Development of criteria used to establish a background environmental monitoring station
Fritz, Brad G.; Barnett, J. Matthew; Snyder, Sandra F.; ...
2015-03-02
It is generally considered necessary to measure concentrations of contaminants-of-concern at a background location when conducting atmospheric environmental surveillance. This is because it is recognized that measurements of background concentrations can enhance interpretation of environmental monitoring data. Despite the recognized need for background measurements, there is little published guidance available that describes how to identify an appropriate atmospheric background monitoring location. This paper develops generic criteria that can guide the decision making process for identifying suitable locations for background atmospheric monitoring station. Detailed methods for evaluating some of these criteria are also provided and a case study for establishment ofmore » an atmospheric background surveillance station as part of an environmental surveillance program is described. While the case study focuses on monitoring for radionuclides, the approach is equally valid for any airborne constituent being monitored. The case study shows that implementation of the developed criteria can result in a good, defensible choice for a background atmospheric monitoring location.« less
Veira, Andreas; Jackson, Peter L; Ainslie, Bruce; Fudge, Dennis
2013-07-01
This study investigates the development and application of a simple method to calculate annual and seasonal PM2.5 and PM10 background concentrations in small cities and rural areas. The Low Pollution Sectors and Conditions (LPSC) method is based on existing measured long-term data sets and is designed for locations where particulate matter (PM) monitors are only influenced by local anthropogenic emission sources from particular wind sectors. The LPSC method combines the analysis of measured hourly meteorological data, PM concentrations, and geographical emission source distributions. PM background levels emerge from measured data for specific wind conditions, where air parcel trajectories measured at a monitoring station are assumed to have passed over geographic sectors with negligible local emissions. Seasonal and annual background levels were estimated for two monitoring stations in Prince George, Canada, and the method was also applied to four other small cities (Burns Lake, Houston, Quesnel, Smithers) in northern British Columbia. The analysis showed reasonable background concentrations for both monitoring stations in Prince George, whereas annual PM10 background concentrations at two of the other locations and PM2.5 background concentrations at one other location were implausibly high. For those locations where the LPSC method was successful, annual background levels ranged between 1.8 +/- 0.1 microg/m3 and 2.5 +/- 0.1 microg/m3 for PM2.5 and between 6.3 +/- 0.3 microg/m3 and 8.5 +/- 0.3 microg/m3 for PM10. Precipitation effects and patterns of seasonal variability in the estimated background concentrations were detectable for all locations where the method was successful. Overall the method was dependent on the configuration of local geography and sources with respect to the monitoring location, and may fail at some locations and under some conditions. Where applicable, the LPSC method can provide a fast and cost-efficient way to estimate background PM concentrations for small cities in sparsely populated regions like northern British Columbia. In rural areas like northern British Columbia, particulate matter (PM) monitoring stations are usually located close to emission sources and residential areas in order to assess the PM impact on human health. Thus there is a lack of accurate PM background concentration data that represent PM ambient concentrations in the absence of local emissions. The background calculation method developed in this study uses observed meteorological data as well as local source emission locations and provides annual, seasonal and precipitation-related PM background concentrations that are comparable to literature values for four out of six monitoring stations.
NASA Astrophysics Data System (ADS)
Mavroidis, I.; Ilia, M.
2012-12-01
This work presents a systematic analysis and evaluation of the historic and current levels of atmospheric pollution in the Athens metropolitan region, regarding nitrogen oxides (NOx = NO + NO2), ozone (O3) and the NO2/NOx and NO/NO2 concentration ratios. Hourly, daily, monthly, seasonal and annual pollutant variations are examined and compared, using the results of concentration time series from three different stations of the national network for air pollution monitoring, one urban-traffic, one urban-background and one suburban-background. Concentration data are also related to meteorological parameters. The results show that the traffic affected station of Patission Street presents the higher NOx values and the lower concentrations of O3, while it is the station with the highest number of NO2 limit exceedances. The monitoring data suggest, inter alia, that there is a change in the behaviour of the suburban-background station of Liossia at about year 2000, indicating that the exact location of this station may need to be reconsidered. Comparison of NOx concentrations in Athens with concentrations in urban areas of other countries reveal that the Patission urban-traffic station records very high NOx concentrations, while remarkably high is the ratio of NO2 concentrations recorded at the urban-traffic vs. the urban-background station in Athens, indicating the overarching role of vehicles and traffic congestion on NO2 formation. The NO2/NOx ratio in the urban-traffic station appears to be almost constant with time, while it has been increasing in other urban areas, such as London and Seoul, suggesting an increased effect of primary NO2 in these areas. Diesel passenger cars were only recently allowed in Athens and, therefore, NO2 trends should be carefully monitored since a possible increase in primary NO2 may affect compliance with NO2 air quality standards.
Infrared monitoring of the Space Station environment
NASA Technical Reports Server (NTRS)
Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.
1988-01-01
The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.
Analysis of selected volatile organic compounds at background level in South Africa.
NASA Astrophysics Data System (ADS)
Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang
2017-04-01
Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator
NASA Astrophysics Data System (ADS)
Simeonov, V.; van den Bergh, H.; Parlange, M. B.
2009-12-01
A new long-open-path instrument developed at EPFL for methane and water vapor observation will be presented. The instrument is developed and will be used within the GAW+ CH program and aims at long-term monitoring of background methane concentration at the High Altitude Research Station Jungfraujoch (3580 mASL). The instrument is built on the monostatic scheme (transceiver -distant retroreflector) using a 1.65 nm tunable diode laser (TDL) and a retroreflector at 1200 m from the transceiver. The data will be compared with in-situ measurements to evaluate the effect of the station on the in-situ data.
Su, Bin-Bin; Xu, Ju-Yang; Zhang, Ruo-Yu; Ji, Xian-Xin
2014-08-01
Transport characteristics of air pollutants transported to the background atmosphere of East China were investigated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) 4.8 model driven by NCEP reanalysis data during June 2011 to May 2012. Based on the air pollutants monitoring data collected at the National atmospheric background monitoring station (Wuyishan station) in Fujian Province, characteristics of different clustered air masses as well as the origins of highly polluted air masses were further examined. The results showed that 65% of all the trajectories, in which air masses mainly passed over highly polluted area of East China, Jiangxi province and upper air in desert areas of Northwest China, carried polluted air to the station, while the rest of trajectories (35%) with air masses originated from ocean could effectively remove air pollutants at the Wuyishan station. However, the impact on the air pollutants for each air mass group varied with seasons. Elevated SO2 concentrations observed at the background station were mainly influenced by coal burning activities in Northern China during heating season. The high CO concentrations were likely associated with the pollutants emission in the process of coal production and consumption in Anhui province. The elevated NO(x), O3, PM10 and PM2.5 concentrations were mostly impacted by East China with high levels of air pollutants.
20 years of Black Carbon measurements in Germany
NASA Astrophysics Data System (ADS)
Kutzner, Rebecca; Quedenau, Jörn; Kuik, Friderike; von Schneidemesser, Erika; Schmale, Julia
2016-04-01
Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. At the same time, BC, as a component of particulate matter (PM) exerts adverse health effects, like decreased lung function and exacerbated asthma. Globally, anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, while the dominant natural emission sources are wildfires. Despite the various adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union. Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (particulate matter with a diameter smaller 10 μm and 2.5 μm). Before the introduction of mandatory PM10 and PM2.5 monitoring in the European Union in 2005 and 2015, respectively, 'black smoke', a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 μg m-3 from 1995 and 8 μg m-3 from 1998 onwards. Many 'black smoke' measurements were stopped in 2004, with the repeal of the regulations obtaining at the time. However, in most German federal states a limited number BC monitoring stations continued to operate. Here we present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include locations classified as background, urban-background, industrial and traffic among other types. Raw data in many different formats has been modelled and integrated in a relational database, allowing various options for further data analysis. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 30 stations. In 2009 daily average concentrations at 12 background stations ranged from 0.20 to 9.10 μg m-3 BC, while at traffic sites (15 stations) concentrations ranged from 0.30 to 30.60 μg m-3 BC, and industrial sites (3 stations) showed concentrations ranging between 0.30 and 9.4 μg m-3. The seasonal cycle for the year 2009 shows a similar pattern for industrial and background stations with a tendency of higher concentrations in winter. The concentrations at traffic stations are not as clearly coupled to seasons but have a strong weekly cycle with lower concentrations during weekends. Investigating the trends in BC concentration over at least 10 years was possible for 13 stations. Preliminary results suggest that concentrations have declined at traffic and background stations between 2005 and 2014. This implies that a general reduction of BC has already been achieved. However, preliminary results also show that elevated concentrations still occur during the colder months, most likely linked to residential heating.
Analyzing 20 years of Black Carbon measurements in Germany
NASA Astrophysics Data System (ADS)
Kutzner, R. D.; Quedenau, J.; Kuik, F.; von Schneidemesser, E.; Schmale, J.
2016-12-01
Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. In addition, BC, as a component of particulate matter (PM) exerts adverse health effects. Anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, and the dominant natural emission source is wildfires. Despite the adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union (EU). Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (PM with a diameter smaller 10 µm and 2.5 µm, respectively). Before the introduction of mandatory PM10 and PM2.5 monitoring in the EU in 2005 and 2015, respectively, `black smoke' (BS), a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 µg/m3 from 1995 and 8 µg/m³ from 1998. In 2004, many measurements were stopped, with the repeal of the regulations. In most German federal states a limited number BC monitoring stations continued to operate. We present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include, among others, urban background, traffic and rural. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 28 stations. Further, we calculated trends in BC concentrations for 13 stations with at least 10 years of data, for median concentrations, as well as 5th percentile (background) and 95th percentile (peak episodes). Preliminary results suggest that concentrations have generally declined, with a larger trend at traffic stations compared to urban background stations between 2005 and 2014. However, preliminary results also show that concentrations are highest during the colder months, likely linked to residential heating.
NASA Astrophysics Data System (ADS)
Achim, Pascal; Generoso, Sylvia; Morin, Mireille; Gross, Philippe; Le Petit, Gilbert; Moulin, Christophe
2016-05-01
Monitoring atmospheric concentrations of radioxenons is relevant to provide evidence of atmospheric or underground nuclear weapon tests. However, when the design of the International Monitoring Network (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was set up, the impact of industrial releases was not perceived. It is now well known that industrial radioxenon signature can interfere with that of nuclear tests. Therefore, there is a crucial need to characterize atmospheric distributions of radioxenons from industrial sources—the so-called atmospheric background—in the frame of the CTBT. Two years of Xe-133 atmospheric background have been simulated using 2013 and 2014 meteorological data together with the most comprehensive emission inventory of radiopharmaceutical facilities and nuclear power plants to date. Annual average simulated activity concentrations vary from 0.01 mBq/m3 up to above 5 mBq/m3 nearby major sources. Average measured and simulated concentrations agree on most of the IMS stations, which indicates that the main sources during the time frame are properly captured. Xe-133 atmospheric background simulated at IMS stations turn out to be a complex combination of sources. Stations most impacted are in Europe and North America and can potentially detect Xe-133 every day. Predicted occurrences of detections of atmospheric Xe-133 show seasonal variations, more accentuated in the Northern Hemisphere, where the maximum occurs in winter. To our knowledge, this study presents the first global maps of Xe-133 atmospheric background from industrial sources based on two years of simulation and is a first attempt to analyze its composition in terms of origin at IMS stations.
Lammel, G; Dobrovolný, P; Dvorská, A; Chromá, K; Brázdil, R; Holoubek, I; Hosek, J
2009-11-01
A network for the study of long-term trends of the continental background in Africa and the intercontinental background of persistent organic pollutants as resulting from long-range transport of contaminants from European, South Asian, and other potential source regions, as well as by watching supposedly pristine regions, i.e. the Southern Ocean and Antarctica is designed. The results of a pilot phase sampling programme in 2008 and meteorological and climatological information from the period 1961-2007 was used to apply objective criteria for the selection of stations for the monitoring network: out the original 26 stations six have been rejected because of suggested strong local sources of POPs and three others because of local meteorological effects, which may prevent part of the time long-range transported air to reach the sampling site. Representativeness of the meteorological patterns during the pilot phase with respect to climatology was assessed by comparison of the more local airflow situation as given by climatological vs. observed wind roses and by comparison of backward trajectories with the climatological wind (NCEP/NCAR re-analyses). With minor exceptions advection to nine inspected stations was typical for present-day climate during the pilot phase, 2008. Six to nine stations would cover satisfyingly large and densely populated regions of North-eastern, West and East Africa and its neighbouring seas, the Mediterranean, Northern and Equatorial Atlantic Ocean, the Western Indian Ocean and the Southern Ocean. Among the more densely populated areas Southern Cameroon, parts of the Abessinian plateau and most of the Great Lakes area would not be covered. The potential of the network is not hampered by on-going long-term changes of the advection to the selected stations, as these do hardly affect the coverage of target areas.
Liu, Ming; Chen, Laiguo; Xie, Donghai; Sun, Jiaren; He, Qiusheng; Cai, Limei; Gao, Zhiqiang; Zhang, Yiqiang
2016-11-01
Concentrations of gaseous elemental mercury (GEM) were continuously monitored from May 2011 to May 2012 at the Wuzhishan State Atmosphere Background Monitoring Station (109°29'30.2″ E, 18°50'11.0″ N) located in Hainan Island. This station is an ideal site for monitoring long-range transport of atmospheric pollutants from mainland China and Southeast Asia to South China Sea. Annual average GEM concentration was 1.58 ± 0.71 ng m -3 during the monitoring period, which was close to background values in the Northern Hemisphere. GEM concentrations showed a clear seasonal variation with relatively higher levels in autumn (1.86 ± 0.55 ng m -3 ) and winter (1.80 ± 0.62 ng m -3 ) and lower levels in spring (1.16 ± 0.45 ng m -3 ) and summer (1.43 ± 0.46 ng m -3 ). Long-range atmospheric transport dominated by monsoons was a dominant factor influencing the seasonal variations of GEM. The GEM diel trends were related to the wind speed and long-range atmospheric mercury transport. We observed 30 pollution episodes throughout the monitoring period. The analysis of wind direction and backward trajectory suggested that elevated GEM concentrations at the monitoring site were primarily related to the outflows of atmospheric Hg from mainland China and the Indochina peninsula. The △GEM/△CO values also suggested that GEM was significantly affected by the long-range transport from the anthropogenic sources and biomass burning in Asia and Indochina peninsula.
Ravikumar, Dwarakanath; Sinha, Parikhit
2017-10-01
With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM 2.5 and PM 10 (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM 2.5 and PM 10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM 2.5 and PM 10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM 2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions. This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.
Trivett, N. B. A. [Environment Canada, Atmospheric Environment Service, Downsview, Ontario, Canada; Hudec, V. C. [Environment Canada, Atmospheric Environment Service, Downsview, Ontario, Canada; Wong, C. S. [Marine Carbon Research Centre, Institute of Ocean Sciences, Sidney, British Columbia, Canada
1993-01-01
Flask air samples collected at roughly weekly intervals at three Canadian sites [Alert, Northwest Territories (July 1975 through July 1992); Sable Island, Nova Scotia (March 1975 through July 1992); and Cape St. James, British Columbia (May 1979 through July 1992)] were analyzed for CO2 concentration with the measurements directly traceable to the WMO primary CO2 standards. Each record includes the date, atmospheric CO2 concentration, and flask classification code. They provide an accurate record of CO2 concentration levels in Canada during the past two decades. Because these data are directly traceable to WMO standards, this record may be compared with records from other Background Air Pollution Monitoring Network (BAPMoN) stations. The data are in three files (one for each of the monitoring stations) ranging in size from 9.4 to 20.1 kB.
Measurement of acid precipitation in Norway
Arne Semb
1976-01-01
Since January 1972, chemical analysis of daily precipitation samples from about 20 background stations in Norway has been carried out on a routine basis. Air monitoring is carried out at six stations. The chemical analysis programme is: sulphate, pH and acidity in precipitation, sulphates and sulphur dioxide in air. In addition, more detailed chemical analysis of...
de la Campa, A M Sánchez; Pio, C; de la Rosa, J D; Querol, X; Alastuey, A; González-Castanedo, Y
2009-08-01
In the South of Spain, major industrial estates (e.g. Huelva) exist alongside ecologically interesting zones (e.g. Doñana National Park). Between June 2005 and June 2006, PM10 and PM2.5 were measured, for total mass, organic carbon (OC) and elemental carbon (EC) chemical composition, at a station in an ecologically interesting area located near Doñana National Park and an urban background area with industrial influence. The mean OC concentration is higher in the urban background (3.5 microg m(-3)) than in the rural monitoring station (2.8 microg m(-3)) as a consequence of local emissions (e.g. traffic). A total of 82% of TC is OC in the rural station, while the urban background station reveals 70% and 73% of TC in the PM10 and PM2.5 mass, respectively. The study of air-mass origin and characterization of carbonaceous species in the course of simultaneous sampling in rural and urban background monitoring stations differentiated three long-range air-mass transports: a North-African dust outbreak, Atlantic Advection and Continental (N-NW) episodes, the origins of the first and last of which are more heavily influenced by the anthropogenic emissions from industrial estates located around the city of Huelva (Punta del Sebo and Nuevo Puerto). Higher values were measured for OC and EC in the study area during the North-African dust outbreak, similar to those obtained during the Continental episode (N-NW), which was clearly influenced by industrial emissions, followed by the Atlantic Advection episodes. The comparison of carbon species with air-mass origin can help to discriminate the origin and source of particulate matter, as well as to determine the urban impact on rural areas.
A report on upgraded seismic monitoring stations in Myanmar: Station performance and site response
Thiam, Hrin Nei; Min Htwe, Yin Myo; Kyaw, Tun Lin; Tun, Pa Pa; Min, Zaw; Htwe, Sun Hninn; Aung, Tin Myo; Lin, Kyaw Kyaw; Aung, Myat Min; De Cristofaro, Jason; Franke, Mathias; Radman, Stefan; Lepiten, Elouie; Wolin, Emily; Hough, Susan E.
2017-01-01
Myanmar is in a tectonically complex region between the eastern edge of the Himalayan collision zone and the northern end of the Sunda megathrust. Until recently, earthquake monitoring and research efforts have been hampered by a lack of modern instrumentation and communication infrastructure. In January 2016, a major upgrade of the Myanmar National Seismic Network (MNSN; network code MM) was undertaken to improve earthquake monitoring capability. We installed five permanent broadband and strong‐motion seismic stations and real‐time data telemetry using newly improved cellular networks. Data are telemetered to the MNSN hub in Nay Pyi Taw and archived at the Incorporated Research Institutions for Seismology Data Management Center. We analyzed station noise characteristics and site response using noise and events recorded over the first six months of station operation. Background noise characteristics vary across the array, but indicate that the new stations are performing well. MM stations recorded more than 20 earthquakes of M≥4.5 within Myanmar and its immediate surroundings, including an M 6.8 earthquake located northwest of Mandalay on 13 April 2016 and the Mw 6.8 Chauk event on 24 August 2016. We use this new dataset to calculate horizontal‐to‐vertical spectral ratios, which provide a preliminary characterization of site response of the upgraded MM stations.
Long term assessment of air quality from a background station on the Malaysian Peninsula.
Latif, Mohd Talib; Dominick, Doreena; Ahamad, Fatimah; Khan, Md Firoz; Juneng, Liew; Hamzah, Firdaus Mohamad; Nadzir, Mohd Shahrul Mohd
2014-06-01
Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted. Copyright © 2014 Elsevier B.V. All rights reserved.
Three years of operational experience from Schauinsland CTBT monitoring station.
Zähringer, M; Bieringer, J; Schlosser, C
2008-04-01
Data from three years of operation of a low-level aerosol sampler and analyzer (RASA) at Schauinsland monitoring station are reported. The system is part of the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The fully automatic system is capable to measure aerosol borne gamma emitters with high sensitivity and routinely quantifies 7Be and 212Pb. The system had a high level of data availability of 90% within the reporting period. A daily screening process rendered 66 tentative identifications of verification relevant radionuclides since the system entered IMS operation in February 2004. Two of these were real events and associated to a plausible source. The remaining 64 cases can consistently be explained by detector background and statistical phenomena. Inter-comparison with data from a weekly sampler operated at the same station shows instabilities of the calibration during the test phase and a good agreement since certification of the system.
Background Acoustic Noise Models for the IMS Hydroacoustic Stations
2010-09-01
noise models based on data from the 60’s and 70’s ( Urick , 1983). In some ocean basins, noise levels in the monitoring band (1-100 Hz) have risen 15...the 60?s and 70?s ( Urick , 1983). In some ocean basins, noise levels in the monitoring band (1-100 Hz) have risen 15 dB since the 1960?s. To address this...from Urick , 1983. 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 542 To address this issue and provide
NASA Technical Reports Server (NTRS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-01-01
On the occasion of the June 3, 1982 intense gamma-ray solar flare a significant increase in counting rate due to solar neutrons was observed by the neutron monitors of Junsfraujoch and Lomnicky Stit located at middle latitudes and high altitudes. In spite of a larger detector employed and of the smaller solar zenith angle, the amplitude of the same event observed at Rome was much smaller and the statistical fluctuations of the salactic cosmic ray background higher than the ones registered at the two mountain stations, because of the greater atmospheric depth at which the Rome monitor is located. The effeciency for detecting a solar neutron event by a NM-64 monitor as a function of the Sun zenith angle, atmospheric depth and threshold rigidity of the station was studied.
Dėdelė, Audrius; Miškinytė, Auksė
2015-09-01
In many countries, road traffic is one of the main sources of air pollution associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered to be a measure of traffic-related air pollution, with concentrations tending to be higher near highways, along busy roads, and in the city centers, and the exceedances are mainly observed at measurement stations located close to traffic. In order to assess the air quality in the city and the air pollution impact on public health, air quality models are used. However, firstly, before the model can be used for these purposes, it is important to evaluate the accuracy of the dispersion modelling as one of the most widely used method. The monitoring and dispersion modelling are two components of air quality monitoring system (AQMS), in which statistical comparison was made in this research. The evaluation of the Atmospheric Dispersion Modelling System (ADMS-Urban) was made by comparing monthly modelled NO2 concentrations with the data of continuous air quality monitoring stations in Kaunas city. The statistical measures of model performance were calculated for annual and monthly concentrations of NO2 for each monitoring station site. The spatial analysis was made using geographic information systems (GIS). The calculation of statistical parameters indicated a good ADMS-Urban model performance for the prediction of NO2. The results of this study showed that the agreement of modelled values and observations was better for traffic monitoring stations compared to the background and residential stations.
Monitoring trends in bird populations: addressing background levels of annual variability in counts
Jared Verner; Kathryn L. Purcell; Jennifer G. Turner
1996-01-01
Point counting has been widely accepted as a method for monitoring trends in bird populations. Using a rigorously standardized protocol at 210 counting stations at the San Joaquin Experimental Range, Madera Co., California, we have been studying sources of variability in point counts of birds. Vegetation types in the study area have not changed during the 11 years of...
Shafer, David S; Hartwell, William T
2011-11-01
The public's trust in the source of information about radiation is a key element of its acceptance. The public tends to trust two groups where risk communication is concerned: (1) scientists with expertise who are viewed as acting independently; and (2) friends, family, and other close associates who are viewed as sharing the same interests and concern, even if they have less knowledge of the subject. The Community Environmental Monitoring Program (CEMP) bridges both of these groups by having members of the public help operate and communicate results of a network of 29 radiation monitoring stations around the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS), the principal continental location where the United States conducted nuclear tests. The CEMP stations, spread across a 160,000 km area, help provide evidence to the public that no releases of radiation of health concern are occurring from the NNSS to public receptors. The stations provide continuous measurements of gamma radiation and collect air particulate samples that are analyzed for radioactivity and meteorological measurements that aid in interpreting variations in background radiation. A public website (http://cemp.dri.edu) provides data for most instruments. Twenty-three of the 29 stations upload their data in near-real time to a public website as well as to digital readout displays at the stations, both of which are key elements in the CEMP's transparency. The remaining six stations upload their data hourly. Public stakeholders who are direct participants provide the most significant element of the CEMP. The "Community Environmental Monitors," who are residents of towns where the stations are located, are part of the chain-of-custody for the air samples, perform minor station maintenance, and most significantly in terms of trust, serve as lay experts on issues concerning the NNSS and on ionizing radiation and nuclear technologies in general. The CEMP meets nearly all of the principles for stakeholder engagement identified by the International Radiation Protection Association.
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; van den Bergh, Hubert; Parlange, Marc
2010-05-01
A new, long open-path instrument for monitoring of path-averaged methane and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver - distant retroreflector). A VCSEL tunable diode laser (TDL) with a central wavelength of 1654 nm is used as a light source. A specially designed, single-cell, hollow-cube retroreflector with 150 mm aperture will be installed at 1200 m from the transceiver in the final deployment at Jungfraujjoch and 100 mm retroreflectors will be used in the other applications. The receiver is built around a 20 cm Newtonian telescope. To avoid distortions in the shape of a methane line, caused by atmospheric turbulences, the line is scanned within 1 µs. Fast InGaAs photodiodes and 200 MHz are used to achieve this scanning rate. The expected concentration resolution for the above mentioned path lengths is of the order of 2 ppb. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane concentration in the Swiss Alps. After completing the initial tests at EPFL the instrument will be installed in 2012 at the High Altitude Research Station Jungfraujoch (HARSJ) located at 3580 m ASL. The HARSJ is one of the 24 global GAW stations and carries on continuous observations of a number of trace gasses, including methane. One of the goals of the project is to compare path-averaged to ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Colombian part of Amazonia and Siberian wetlands.
Expedition 13 flight controller on console during mission - Orbit 1, BFCR
2006-08-31
JSC2006-E-38929 (31 Aug. 2006) --- Astronaut Andrew J. Feustel (background), spacecraft communicator (CAPCOM), and flight director Rick LaBrode monitor data at their consoles in the Station (Blue) Flight Control Room in Houston's Mission Control Center during Expedition 13 mission activities.
Variations in statewide water quality of New Jersey streams, water years 1998-2009
Heckathorn, Heather A.; Deetz, Anna C.
2012-01-01
Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.
NASA Astrophysics Data System (ADS)
Dulac, Francois
2013-04-01
The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) is a French initiative supported by the MISTRALS program (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The major stake is an understanding of the future of the Mediterranean region in a context of strong regional anthropogenic and climatic pressures. The target of ChArMEx is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry. In order to fulfill these objectives, important efforts have been put in 2012 in order to implement the infrastructure and instrumentation for a fully equipped background monitoring station at Ersa, Cape Corsica, a key location at the crossroads of dusty southerly air masses and polluted outflows from the European continent. The observations at this station began in June 2012 (in the context of the EMEP / ACTRIS / PEGASOS / ChArMEx campaigns). A broad spectrum of aerosol properties is also measured at the station, from the chemical composition (off-line daily filter sampling in PM2.5/PM10, on-line Aerosol Chemical Speciation Monitor), ground optical properties (extinction/absorption/light scattering coeff. with 1-? CAPS PMex monitor, 7-? Aethalometer, 3-? Nephelometer), integrated and vertically resolved optical properties (4-? Cimel sunphotometer and LIDAR, respective), size distribution properties (N-AIS, SMPS, APS, and OPS instruments), mass (PM1/PM10 by TEOM/TEOM-FDMS), hygroscopicity (CCN), as well as total insoluble deposition. So far, real-time measurement of reactive gases (O3, CO, NO, NO2), and off-line VOC measurements (cylinders, cartridges) are also performed. A Kipp and Zonen system for monitoring direct and diffuse broadband radiative fluxes will also be in operation soon, as well as an ICOS/RAMCES CO2 and CH4 monitoring instrument. Through this unprecedented effort and with the support from ChArMEx, ADEME, and CORSiCA programs (http://www.obs-mip.fr/corsica), this observatory represents so far the most achieved French atmospheric station having the best set of instruments for measuring in-situ reactive gases and aerosols. It stands out as the station of not one laboratory but of a large number (see list of co-authors). It provides "real time" information useful to the local air quality network (Qualitair Corse, http://www.qualitaircorse.org/) concerning EU regulated parameters (O3, PMx). This station aims providing quality controlled climatically relevant gas/aerosol database following the recommendations of the EU-FP7 ACTRIS infrastructure, EMEP and WMO-GAW programs. Atmospheric datasets are currently available at the MISTRALS database (http://mistrals.sedoo.fr/ChArMEx/) and soon at the ACTRIS & GAW databases. After a brief presentation of the Cape Corsica Station (location, climatology, instrumental settings ...), we present here the first months of aerosols properties (optical / chemical / particle size) obtained at this station. Acknowledgements: the station is mainly supported by ADEME, CNRS-INSU, CEA, CTC, EMD, FEDER, and Météo-France.
Atmospheric CO2 Record from In Situ Measurements at K-Puszta, Hungary (1981 - 1997)
Haszpra, Laszlo [Hungarian Meteorological Service, Institute for Atmospheric Physics, Budapest, Hungary
1998-02-23
The K-puszta regional background air pollution monitoring station was established in a clearing in a mixed forest on the Hungarian Great Plain in the middle of the Carpathian Basin. K-puszta is as free from direct pollution as possible in the highly industrialized, densely populated central Europe. Because of the growing vegetation, the station was moved in September 1993 to a larger clearing, also at the same elevation, approximately 500 m from the original site. The region is climatologically calm. The yearly mean atmospheric CO2 concentration at K-puszta, Hungary increased from 354.1 parts per million (ppm) in 1981 to 377.0 ppm in 1997. Because the K-puszta station is located in a clearing of a forested area on the Hungarian Great Plain, it is subject to significant biospheric effects. As a result, the record from K-puszta shows high seasonal and interannual variability. However, the trends and temporal features of the K-puszta record parallel those observed at other Northern Hemisphere baseline air pollution monitoring stations (Haszpra 1995).
Risk management in air protection in the Republic of Croatia.
Peternel, Renata; Toth, Ivan; Hercog, Predrag
2014-03-01
In the Republic of Croatia, according to the Air Protection Act, air pollution assessment is obligatory on the whole State territory. For individual regions and populated areas in the State a network has been established for permanent air quality monitoring. The State network consists of stations for measuring background pollution, regional and cross-border remote transfer and measurements as part of international government liabilities, then stations for measuring air quality in areas of cultural and natural heritage, and stations for measuring air pollution in towns and industrial zones. The exceeding of alert and information threshold levels of air pollutants are related to emissions from industrial plants, and accidents. Each excess represents a threat to human health in case of short-time exposure. Monitoring of alert and information threshold levels is carried out at stations from the state and local networks for permanent air quality monitoring according to the Air Quality Measurement Program in the State network for permanent monitoring of air quality and air quality measurement programs in local networks for permanent air quality monitoring. The State network for permanent air quality monitoring has a developed automatic system for reporting on alert and information threshold levels, whereas many local networks under the competence of regional and local self-governments still lack any fully installed systems of this type. In case of accidents, prompt action at all responsibility levels is necessary in order to prevent crisis and this requires developed and coordinated competent units of State Administration as well as self-government units. It is also necessary to be continuously active in improving the implementation of legislative regulations in the field of crises related to critical and alert levels of air pollutants, especially at local levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.; Moleta, Donna Grace L.; Meier, Kirsten M.
This is the second revision of the DQO Supporting Radiological Air Emissions Monitoring for the Pacific Northwest National Laboratory Richland Campus. In January 2017, the PNNL Richland Campus expanded to the north by 0.35 km 2 (85.6 acres). Under the requirements of Washington State Department of Health Radioactive Air Emissions License (RAEL)-005, the PNNL Campus operates and maintains a radiological air monitoring program. This revision documents and evaluates the newly acquired acreage while also removing recreational land at the southwest, and also re-examines all active radioactive emission units on the PNNL Campus. No buildings are located on this new Campusmore » land, which was transferred from the U.S. DOE Hanford Site. Additionally, this revision includes information regarding the background monitoring station PNL-5 in Benton City, Washington, which became active in October 2016. The key purpose of this revision is to determine the adequacy of the existing environmental surveillance stations to monitor radiological air emissions in light of this northern boundary change.« less
ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza
2015-01-01
Background: Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. Methods: A multi-pollutant method (implemented as a MATLAB program) was explored for configuring an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a station’s dosage to the total dosage in the network. Results: Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. Conclusion: The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health. PMID:26933646
Henry, Ronald C; Vette, Alan; Norris, Gary; Vedantham, Ram; Kimbrough, Sue; Shores, Richard C
2011-12-15
Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur dioxide concentrations were collected from December 2008 to December 2009. The purpose of the study was to determine the impact of the highway at three downwind monitoring stations using an upwind station to measure background concentrations. NTA was used to precisely determine the contribution of the highway to the average concentrations measured at the monitoring stations accounting for the spatially heterogeneous contributions of other local urban sources. NTA uses short time average concentrations, 5 min in this case, and constructed local back-trajectories from similarly short time average wind speed and direction to locate and quantify contributions from local source regions. Averaged over an entire year, the decrease of concentrations with distance from the highway was found to be consistent with previous studies. For this study, the NTA model is shown to be a reliable approach to quantify the impact of the highway on local air quality in an urban area with other local sources.
Hashimoto, S; Murakami, Y; Taniguchi, K; Nagai, M
1999-12-01
Our purpose was to determine the number of monitoring stations (medical institutions) necessary for estimating incidence rates in the surveillance system of infectious diseases in Japan. Infectious diseases were selected by the type of monitoring stations: 15 diseases in pediatrics stations, influenza in influenza stations, 3 diseases in ophthalmology stations and 5 diseases in the stations of sexually transmitted diseases (STD). For each type of monitoring station, 5 cases of the number of monitoring stations in each health center, including the number determined from presently established standards and the actual number in 1997, were given. It was assumed that monitoring stations were randomly selected among medical institutions in health centers. For each infectious disease, each case and each type of monitoring station, standard error rates of estimated numbers of incidence cases in the whole country were calculated in 1993-1997 using the data of the surveillance of infectious diseases. Among 5 cases of monitoring stations, the case satisfied the condition that those standard error rates were lower than the critical values, was selected. The critical values were 5% in pediatrics and influenza stations, and 10% in ophthalmology and STD stations. The numbers of monitoring stations in the selected cases were 3,000 in pediatrics stations, 5,000 in influenza stations (including all pediatrics stations), 605 in ophthalmology stations and 900 in STD stations.
Yao, Bo; Zhou, Ling-Xi; Liu, Zhao; Zhang, Gen; Xia, Ling-Jun
2014-07-01
An in-situ GC-ECD monitoring system was established at the Shangdianzi GAW regional background station (SDZ) for a 2-year atmospheric methyl chloroform (CH3CCl3) measurement experiment. Robust extraction of baseline signal filter was applied to the CH3CCl3 time series to separate the background and pollution data. The yearly averaged background mixing ratios of atmospheric CH3CCl3 were (9.03 +/- 0.53) x 10(-12) mol x mol(-1) in 2009 and (7.73 +/- 0.47) x 10(-12) in 2010, and the percentages of the background data in the whole data were 61.1% in 2009 and 60.4% in 2010, respectively. The yearly background CH3CCl3 mixing ratios at SDZ were consistent with the northern hemisphere background levels observed at Mace Head and Trinidad Head stations, but lower than the results observed at sites in southern China and some Chinese cities from 2001 to 2005. During the study period, background mixing ratios trends exhibited a decreasing rate of 1.39 x 10 12(-12) a(-1). The wind direction with the maximum CH3CCl3 mixing ratio was from the southwest sector and that with the minimum ratio was from the northeast sector. The differences between the maximum and the minimum average mixing ratios in the 16 wind directions were 0.77 x 10(-12) (2009) and 0.52 x 10(-12) (2010). In the 16 different wind directions, the averaged mixing ratio of CH3CCl3 in 2010 was lower than that in 2009 by 1.03 x 10(-12) -1.68 x 10(-12).
Di Palma, A; Capozzi, F; Agrelli, D; Amalfitano, C; Giordano, S; Spagnuolo, V; Adamo, P
2018-08-01
Investigating the nature of PM 10 is crucial to differentiate sources and their relative contributions. In this study we compared the levels, and the chemical and mineralogical properties of PM 10 particles sampled in different seasons at monitoring stations representative of urban background, urban traffic and suburban traffic areas of Naples city. The aims were to relate the PM 10 load and characteristics to the location of the monitoring stations, to investigate the different sources contributing to PM 10 and to highlight PM 10 seasonal variability. Bulk analyses of chemical species in the PM 10 fraction included total carbon and nitrogen, δ 13 C and other 20 elements. Both natural and anthropogenic sources were found to contribute to the exceedances of the EU PM 10 limit values. The natural contribution was mainly related to marine aerosols and soil dust, as highlighted by X-ray diffractometry and SEM-EDS microscopy. The percentage of total carbon suggested a higher contribution of biogenic components to PM 10 in spring. However, this result was not supported by the δ 13 C values which were seasonally homogeneous and not sufficient to extract single emission sources. No significant differences, in terms of PM 10 load and chemistry, were observed between monitoring stations with different locations, suggesting a homogeneous distribution of PM 10 on the studied area in all seasons. The anthropogenic contribution to PM 10 seemed to dominate in all sites and seasons with vehicular traffic acting as a main source mostly by generation of non-exhaust emissions Our findings reinforce the need to focus more on the analysis of PM 10 in terms of quality than of load, to reconsider the criteria for the classification and the spatial distribution of the monitoring stations within urban and suburban areas, with a special attention to the background location, and to emphasize all the policies promoting sustainable mobility and reduction of both exhaust and not-exhaust traffic-related emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Márton, Emö; Domján, Ádám; Lautner, Péter; Szentmarjay, Tibor; Uram, János
2013-04-01
Air monitoring stations in Hungary are operated by Environmental, Nature Conservancy and Water Pollution Inspectorates, according to the CEN/TC 264 European Union standards. PM10 samples are collected on a 24-hour basis, for two weeks in February, in May, in August and in November. About 720m3 air is pumped through quartz filters daily. Mass measurements and toxic metal analysis (As, Pb, Cd, Ni) are made on each filter (Whatmann DHA-80 PAH, 150 mm diameter) by the inspectorates. We have carried out low field magnetic susceptibility measurements using a KLY-2 instrument on all PM10 samples collected at 9 stations from 2009 on (a total of more than 2000 filters). One station, located far from direct sources, monitors background pollution. Here PM2.5 was also collected in two-week runs, seven times during the period of 2009-2012 and made available for the non-destructive magnetic susceptibility measurements. Due to the rather weak magnetic signal, the susceptibility of each PM-10 sample was computed from 10, that of each PM2.5 sample from 20 measurements. Corrections were made for the susceptibility of the sample holder, for the unpolluted filter (provided with each of the two-week runs), and for the plastic bag containing the samples. The susceptibilities of the PM10 samples were analyzed from different aspects, like the degree of magnetic pollution at different stations, daily and seasonal variations of the total and mass susceptibilities compared to the mass of the pollutants and in relation to the concentrations of the toxic elements. As expected, the lowest total and mass susceptibilities characterize the background station (pollution arrives mostly from distant sources, Vienna, Bratislava or even the Sudeten), while the highest values were measured for an industrial town with heavy traffic. At the background station the mass of the PM10 and PM2.5, respectively for the same period are quite similar, while the magnetic susceptibilities are usually higher in the first, indicating that a sizable part of the magnetic grains is coming from nearby capitals rather than from more distant sources. We found no correlation between magnetic susceptibility and toxic metals. On the other hand the weaker vehicle traffic during week-ends, especially on Sundays is evident in the total susceptibilities, although it is also seen as a tendency in the mass of the pollutants and in the mass susceptibilities. While the generally used mass susceptibility seems to be useful as an indication for the heaviness of vehicle traffic in the area of the studied monitoring stations, it is a total failure for expressing correctly seasonal variations. The reason is that much more non-magnetic than magnetic pollutants are produced during heating season, especially by household heating with coal and wood. The consequence is that in the total susceptibility the higher production of the magnetic particles during heating season is evident, while in the mass susceptibility the trend is opposite, i.e. the magnetic pollution seems to be less intensive during heating season than otherwise. Acknowledgement: This work was financially supported by the Hungarian Scientific Research Fund (project no. OTKA K 75395).
CTBT infrasound network performance to detect the 2013 Russian fireball event
Pilger, Christoph; Ceranna, Lars; Ross, J. Ole; ...
2015-03-18
The explosive fragmentation of the 2013 Chelyabinsk meteorite generated a large airburst with an equivalent yield of 500 kT TNT. It is the most energetic event recorded by the infrasound component of the Comprehensive Nuclear-Test-Ban Treaty-International Monitoring System (CTBT-IMS), globally detected by 20 out of 42 operational stations. This study performs a station-by-station estimation of the IMS detection capability to explain infrasound detections and nondetections from short to long distances, using the Chelyabinsk meteorite as global reference event. Investigated parameters influencing the detection capability are the directivity of the line source signal, the ducting of acoustic energy, and the individualmore » noise conditions at each station. Findings include a clear detection preference for stations perpendicular to the meteorite trajectory, even over large distances. Only a weak influence of stratospheric ducting is observed for this low-frequency case. As a result, a strong dependence on the diurnal variability of background noise levels at each station is observed, favoring nocturnal detections.« less
NASA Technical Reports Server (NTRS)
Barber, Bryan; Kahn, Laura; Wong, David
1990-01-01
Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.
Background: Preflight Screening, In-flight Capabilities, and Postflight Testing
NASA Technical Reports Server (NTRS)
Gibson, Charles Robert; Duncan, James
2009-01-01
Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):
NASA Astrophysics Data System (ADS)
Bowman, Daniel C.; Albert, Sarah A.
2018-06-01
A variety of Earth surface and atmospheric sources generate low-frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth's surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphone stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while travelling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves at 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Daniel C.; Albert, Sarah A.
We present that a variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth’s surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphonemore » stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves in the 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Lastly, background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 seconds.« less
Bowman, Daniel C.; Albert, Sarah A.
2018-02-22
We present that a variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth’s surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphonemore » stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves in the 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Lastly, background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 seconds.« less
GPS Monitor Station Upgrade Program at the Naval Research Laboratory
NASA Technical Reports Server (NTRS)
Galysh, Ivan J.; Craig, Dwin M.
1996-01-01
One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.
Space station proximity operations windows: Human factors design guidelines
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1987-01-01
Proximity operations refers to all activities outside the Space Station which take place within a 1-km radius. Since there will be a large number of different operations involving manned and unmanned vehicles, single- and multiperson crews, automated and manually controlled flight, a wide variety of cargo, and construction/repair activities, accurate and continuous human monitoring of these operations from a specially designed control station on Space Station will be required. Total situational awareness will be required. This paper presents numerous human factors design guidelines and related background information for control windows which will support proximity operations. Separate sections deal with natural and artificial illumination geometry; all basic rendezvous vector approaches; window field-of-view requirements; window size; shape and placement criteria; window optical characteristics as they relate to human perception; maintenance and protection issues; and a comprehensive review of windows installed on U.S. and U.S.S.R. manned vehicles.
NASA Astrophysics Data System (ADS)
Forrester, H.; Roop, H. A.; Clow, D. W.
2011-12-01
Backpackers and pack animals, primarily horses and mules, may impair water quality in high-use zones of federally designated wilderness areas within Sequoia and Kings Canyon National Parks (SEKI). Impacts include erosion from trails, campsites and grazing sites, which increases suspended sediment concentrations and turbidity in downstream water bodies; and fecal matter that may be washed into surface waters during rainstorms or snowmelt periods. The fecal matter also may contain pathogenic bacteria such as Escherichia coli (E. coli) that can pose a health threat to humans. This study aims to establish a working methodology to document and assess effects from backpackers and stock use on physical, chemical and biological water quality parameters. In July 2010, monitoring stations were established within the high-use Crabtree Ranger Station zone. Sites were selected to represent high backpacker use, high pack-animal use, and background conditions. Monitoring stations are instrumented to continuously record water level, temperature, and turbidity and to automatically collect storm samples. Water samples are analyzed for dissolved and particulate nutrients, suspended sediment, and E. coli concentrations. Preliminary data show E. coli counts averaged 4.5 Colony Forming Units/100ml (CFUs) at the high backpacker use, 29.0 CFUs at the high-pack animal use, and 3.4 CFUs at the background sites. Results from the nutrients and suspended sediment analyses are pending. Data collection continued throughout the 2011 field season, with the objective of better quantifying differences in water quality among the study sites.
In situ monitoring of animal micronuclei before the operation of Daya Bay Nuclear Power Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y.N. Cai; H.Y. He; L.M. Qian
1994-12-31
Daya Bay Nuclear Power Station, a newly-built nuclear power station in southern mainland China, started its operation in 1993. We examined micro-nucleated cells of Invertibrate (Bivalves) and Vertibrate (Fish and Amphibia) in different spots within the 50km surroundings of the Power Station during 1986-1993. This paper reports the results of the investigation carried out in Dong Shan, a place 4.7km to the Power Station:Bivalves; Pteria martensil 5.1(1986),4.8(1988),4.8(1991),5,0(1993),Mytilus smardinus 4.7(1987),4.6(1988); Chamys nobilis 4.9(1987);4.9(1991),4.5(1992),4.5(1993). Fish; Therapon jarbua 0.48(1991),0.67(1992),0.47(1993). Amphibia; Bufo melanostictus 0.29 (1987), 0.34(1988),0.39(1992),0.39(1993). These results showed that the environmental situation, estimated by using the frequencies of micronucleated cells, was stable-there wasmore » no obvious chromosome damage in the animals studied. It was found that the incidence of micronucleated cells of Bivalves was higher than that of Fish and Amphibia, suggesting the epithelial cells to be more sensitive than peripheral erythrocytes to environmental genotoxic effects. The results of our studies for other spots will be reported afterward. These data can be used as the original background information to monitor the environment when the Nuclear Power Station is in operation.« less
Detection capability of the IMS seismic network based on ambient seismic noise measurements
NASA Astrophysics Data System (ADS)
Gaebler, Peter J.; Ceranna, Lars
2016-04-01
All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.
NASA Astrophysics Data System (ADS)
Ángel López Comino, José; Cesca, Simone; Kriegerowski, Marius; Heimann, Sebastian; Dahm, Torsten; Mirek, Janusz; Lasocky, Stanislaw
2017-04-01
Previous analysis to assess the monitoring performance of a dedicated seismic network are always useful to determine its capability of detecting, locating and characterizing target seismicity. This work focuses on a hydrofracking experiment in Poland, which is monitored in the framework of the SHEER (SHale gas Exploration and Exploitation induced Risks) EU project. The seismic installation is located near Wysin (Poland), in the central-western part of the Peribaltic synclise at Pomerania. The network setup includes a distributed network of six broadband stations, three shallow borehole stations and three small-scale arrays. We assess the monitoring performance prior operations, using synthetic seismograms. Realistic full waveform are generated and combined with real noise before fracking operations, to produce either event based or continuous synthetic waveforms. Background seismicity is modelled by double couple (DC) focal mechanisms. Non-DC sources resemble induced tensile fractures opening in the direction of the minimal compressive stress and closing in the same direction after the injection. Microseismic sources are combined with a realistic crustal model, distribution of hypocenters, magnitudes and source durations. The network detection performance is then assessed in terms of Magnitude of Completeness (Mc) through two different techniques: i) using an amplitude threshold approach, taking into account a station dependent noise level and different values of signal-to-noise ratio (SNR) and ii) through the application of an automatic detection algorithm to the continuous synthetic dataset. In the first case, we compare the maximal amplitude of noise free synthetic waveforms with the different noise levels. Imposing the simultaneous detection at e.g. 4 stations for a robust detection, the Mc is assessed and can be adjusted by empirical relationships for different SNR values. We find that different source mechanisms have different detection threshold. The background seismicity (DC sources) is better detectable than induced earthquakes (tensile cracks mechanisms). Assuming a SNR of 2, we estimate a Mc 0.55 around the fracking wells, with an increase of 0.05 during day hours. The value of Mc can be decreased to 0.45 around the fracking region, taking advantage by the array installations. The second approach applies a full waveform detection and location algorithm based on the stacking of smooth characteristic function and the identification of high coherence in the signals recorded at different stations. In this case the detection can be increased at the cost of increasing also false detections, with an acceptable compromise found for Mc 0.1.
2010-02-17
S130-E-009694 (17 Feb. 2010) --- This image is among the initial series taken through a first of its kind “bay window” on the International Space Station, the seven-windowed Cupola. The image shows small clouds over a light blue background. The image was recorded with a digital still camera using a 19mm lens setting. The Cupola, which a week and half ago was brought up to the orbital outpost by the STS-130 crew on the space shuttle Endeavour, will house controls for the station robotics and will be a location where crew members can operate the robotic arms and monitor other exterior activities.
9. View southeast corner of perimeter acquisition radar power plant ...
9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND
The influence of periodic wind turbine noise on infrasound array measurements
NASA Astrophysics Data System (ADS)
Pilger, Christoph; Ceranna, Lars
2017-02-01
Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. These systems are equipped with highly sensitive micro pressure sensors accurately measuring acoustic signals in a frequency range inaudible to the human ear. Ten years of data (2006-2015) from the infrasound array IGADE in Northern Germany are analysed to quantify the influence of wind turbine noise on infrasound recordings. Furthermore, a theoretical model is derived and validated by a field experiment with mobile micro-barometer stations. Fieldwork was carried out 2004 to measure the infrasonic pressure level of a single horizontal-axis wind turbine and to extrapolate the sound effect for a larger number of nearby wind turbines. The model estimates the generated sound pressure level of wind turbines and thus enables for specifying the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. This aspect is particularly important to guarantee the monitoring performance of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and thus have to meet stringent specifications with respect to infrasonic background noise.
NASA Astrophysics Data System (ADS)
Spychala, M. D.; Morris, G. A.; Lefer, B. L.; Rappenglueck, B.; Cohan, D. S.; zhou, W.
2012-12-01
The Tropospheric Ozone Pollution Project (TOPP) at Rice University (2004 - 2006) and the University of Houston (2006 - present) has gathered > 400 profiles of ozone, temperature, pressure, and relative humidity, and > 250 of those also have wind speed and wind direction near the core of the City of Houston, Texas. Houston continues to be plagued with difficulty in coming into compliance with EPA National Ambient Air Quality Standards (NAAQS) due to a combination of its geographic location, large commuter population, significant petrochemical and energy production, and favorable weather patterns. An outstanding question remains the relative partitioning of ozone between local and remote, anthropogenic and natural sources. In this presentation, we use TOPP ozone profiles to determine a "background" ozone concentration and compare this measure with surface monitor "background" ozone as determined from upwind and downwind Continuous Air Monitoring Stations (CAMS) in an effort to further our understanding of this partitioning. For periods studied with the Community Multiscale Air Quality (CMAQ) Model, we also compare the sonde and surface "background" ozone with that suggested by the model.
NASA Technical Reports Server (NTRS)
1978-01-01
In photo above, the electrocardiogram of a hospitalized patient is being transmitted by telemetry. Widely employed in space operations, telemetry is a process wherein instrument data is converted to electrical signals and sent to a receiver where the signals are reconverted to usable information. In this instance, heart readings are picked up by the electrode attached to the patient's body and delivered by wire to the small box shown, which is a telemetry transmitter. The signals are relayed wirelessly to the console in the background, which converts them to EKG data. The data is displayed visually and recorded on a printout; at the same time, it is transmitted to a central control station (upper photo) where a nurse can monitor the condition of several patients simultaneously. The Patient Monitoring System was developed by SCI Systems, Inc., Huntsville, Alabama, in conjunction with Abbott Medical Electronics, Houston, Texas. In developing the system, SCI drew upon its extensive experience as a NASA contractor. The company applied telemetry technology developed for the Saturn launch vehicle and the Apollo spacecraft; instrumentation technology developed for heart, blood pressure and sleep monitoring of astronauts aboard NASA's Skylab long duration space station; and communications technology developed for the Space Shuttle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolich, George; Shadel, Craig; Chapman, Jenny
2016-09-01
In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective ofmore » the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.« less
NASA Astrophysics Data System (ADS)
Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.
2013-07-01
A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).
A pilot study of human response to general aviation aircraft noise
NASA Technical Reports Server (NTRS)
Stearns, J.; Brown, R.; Neiswander, P.
1983-01-01
A pilot study, conducted to evaluate procedures for measuring the noise impact and community response to general aviation aircraft around Torrance Municipal Airport, a typical large GA airport, employed Torrance Airport's computer-based aircraft noise monitoring system, which includes nine permanent monitor stations surrounding the airport. Some 18 residences near these monitor stations were equipped with digital noise level recorders to measure indoor noise levels. Residents were instructed to fill out annoyance diaries for periods of 5-6 days, logging the time of each annoying aircraft overflight noise event and judging its degree of annoyance on a seven-point scale. Among the noise metrics studied, the differential between outdoor maximum A-weighted noise level of the aircraft and the outdoor background level showed the best correlation with annoyance; this correlation was clearly seen at only high noise levels, And was only slightly better than that using outdoor aircraft noise level alone. The results indicate that, on a national basis, a telephone survey coupled with outdoor noise measurements would provide an efficient and practical means of assessing the noise impact of general aviation aircraft.
NASA Astrophysics Data System (ADS)
Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Gsella, A.; Amann, M.
2013-08-01
NO2 concentrations at the street level are a major concern for urban air quality in Europe and have been regulated under the EU Thematic Strategy on Air Pollution. Despite the legal requirements, limit values are exceeded at many monitoring stations with little or no improvement during recent years. In order to assess the effects of future emission control regulations on roadside NO2 concentrations, a downscaling module has been implemented in the GAINS integrated assessment model. The module follows a hybrid approach based on atmospheric dispersion calculations and observations from the AirBase European air quality data base that are used to estimate site-specific parameters. Pollutant concentrations at every monitoring site with sufficient data coverage are disaggregated into contributions from regional background, urban increment, and local roadside increment. The future evolution of each contribution is assessed with a model of the appropriate scale - 28 × 28 km grid based on the EMEP Model for the regional background, 7 × 7 km urban increment based on the CHIMERE Chemistry Transport Model, and a chemical box model for the roadside increment. Thus, different emission scenarios and control options for long-range transport, regional and local emissions can be analysed. Observed concentrations and historical trends are well captured, in particular the differing NO2 and total NOx = NO + NO2 trends. Altogether, more than 1950 air quality monitoring stations in the EU are covered by the model, including more than 400 traffic stations and 70% of the critical stations. Together with its well-established bottom-up emission and dispersion calculation scheme, GAINS is thus able to bridge the scales from European-wide policies to impacts in street canyons. As an application of the model, we assess the evolution of attainment of NO2 limit values under current legislation until 2030. Strong improvements are expected with the introduction of the Euro 6 emission standard for light duty vehicles; however, for some major European cities, further measures may be required, in particular if aiming to achieve compliance at an earlier time.
NASA Astrophysics Data System (ADS)
Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Gsella, A.; Amann, M.
2014-01-01
NO2 concentrations at the street level are a major concern for urban air quality in Europe and have been regulated under the EU Thematic Strategy on Air Pollution. Despite the legal requirements, limit values are exceeded at many monitoring stations with little or no improvement in recent years. In order to assess the effects of future emission control regulations on roadside NO2 concentrations, a downscaling module has been implemented in the GAINS integrated assessment model. The module follows a hybrid approach based on atmospheric dispersion calculations and observations from the AirBase European air quality database that are used to estimate site-specific parameters. Pollutant concentrations at every monitoring site with sufficient data coverage are disaggregated into contributions from regional background, urban increment, and local roadside increment. The future evolution of each contribution is assessed with a model of the appropriate scale: 28 × 28 km grid based on the EMEP Model for the regional background, 7 × 7 km urban increment based on the CHIMERE Chemistry Transport Model, and a chemical box model for the roadside increment. Thus, different emission scenarios and control options for long-range transport as well as regional and local emissions can be analysed. Observed concentrations and historical trends are well captured, in particular the differing NO2 and total NOx = NO + NO2 trends. Altogether, more than 1950 air quality monitoring stations in the EU are covered by the model, including more than 400 traffic stations and 70% of the critical stations. Together with its well-established bottom-up emission and dispersion calculation scheme, GAINS is thus able to bridge the scales from European-wide policies to impacts in street canyons. As an application of the model, we assess the evolution of attainment of NO2 limit values under current legislation until 2030. Strong improvements are expected with the introduction of the Euro 6 emission standard for light duty vehicles; however, for some major European cities, further measures may be required, in particular if aiming to achieve compliance at an earlier time.
Chi, Kai Hsien; Lin, Chuan-Yao; Yang, Chang-Feng Ou; Wang, Jia-Lin; Lin, Neng-Heui; Sheu, Guey-Rong; Lee, Chung-Te
2010-04-15
Recent biomass burning in Southeast Asia has raised global concerns over its adverse effects on visibility, human health, and global climate. The concentrations of total suspended particles (TSPs) and other vapor-phase pollutants (CO and ozone) were monitored at Lulin, an atmospheric background station in central Taiwan in 2008. To evaluate the long-range transport of persistent organic pollutants (POPs) during the Southeast Asia biomass burning event, the atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were also measured at Lulin station. The atmospheric PCDD/F and TSP concentrations measured at Lulin station ranged from 0.71-3.41 fg I-TEQ/m(3) and 5.32-55.6 microg/m(3), respectively, during the regular sampling periods. However, significantly higher concentrations of PCDD/Fs, TSPs, CO, and ozone were measured during the spring season. These high concentrations could be the result of long-range transport of the products of Southeast Asia biomass burning. During the Southeast Asia biomass burning event (March 18-24, 2008), an intensive observation program was also carried out at the same station. The results of this observation program indicated that the atmospheric PCDD/F concentration increased dramatically from 2.33 to 390 fg I-TEQ/m(3) (March 19, 2008). The trace gas (CO) of biomass burning also significantly increased to 232 ppb during the same period, while the particle-bound PCDD/Fs in the TSP increased from 28.7 to 109 pg I-TEQ/g-TSP at Lulin station during the burning event. We conclude that there was a significant increase in the PCDD/F concentration in ambient air at a high-altitude background station in central Taiwan during the Southeast Asia biomass burning event.
NASA Astrophysics Data System (ADS)
Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.
2013-03-01
A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian Research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, a- and g-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar as observed for Arctic samples, HCB is the predominant POP compound with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART). The POP levels determined in Troll air were compared with 1 concentrations found in earlier measurement campaigns at other Antarctic research stations from the past 18 yr. Except for HCB for which similar concentration distributions were observed in all sampling campaigns, concentrations in the recent Troll samples were lower than in samples collected during the early 1990s. These concentration reductions are obviously a direct consequence of international regulations restricting the usage of POP-like chemicals on a worldwide scale.
Ultra-Low Background Measurements Of Decayed Aerosol Filters
NASA Astrophysics Data System (ADS)
Miley, H.
2009-04-01
To experimentally evaluate the opportunity to apply ultra-low background measurement methods to samples collected, for instance, by the Comprehensive Test Ban Treaty International Monitoring System (IMS), aerosol samples collected on filter media were measured using HPGe spectrometers of varying low-background technology approaches. In this way, realistic estimates of the impact of low-background methodology can be assessed on the Minimum Detectable Activities obtained in systems such as the IMS. The current measurement requirement of stations in the IMS is 30 microBq per cubic meter of air for 140Ba, or about 106 fissions per daily sample. Importantly, this is for a fresh aerosol filter. Decay varying form 3 days to one week reduce the intrinsic background from radon daughters in the sample. Computational estimates of the improvement factor for these decayed filters for underground-based HPGe in clean shielding materials are orders of magnitude less, even when the decay of the isotopes of interest is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-04-01
This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiationmore » levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. Small amounts of Co-60 and Cs-134 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public.« less
NASA Astrophysics Data System (ADS)
Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio
2015-04-01
Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic events (magnitude >3 up to 5.4) experienced in the Tuscany, Emilia-Romagna and Umbria regions during the period 2012-2014, and these geochemical anomalies. Changes in pH (decreasing) and PCO2 (increasing) are generally observed from a few months to a few weeks before the main shock. This trend has been recognized for the Parma quake of 27 January 2012 (M = 5.4), for the Pieve Fosciana quake of 13 January 2013 (M = 4.8), for the Garfagnana-Lunigiana seismic sequence started June 21, 2013 (Mmax = 5.2), for the Montefeltro seismic sequence started July 11, 2013 (Mmax = 3.9), for the Gubbio seismic sequences of July and December 2013 (Mmax = 3.9), for the Città di Castello seismic sequences of April 2013 and December 2013 (Mmax = 3.9), for the Casentino seismic sequence started October 17, 2014 (Mmax = 3.5), and for the Chianti seismic sequence started December 19, 2014 (Mmax = 4.1). These features suggest that the selected mineral springs can be considered as appropriate sites for the search of geochemical earthquake precursors. Further investigations focused on in-depth analysis of signals are currently in progress.
Murakami, Y; Hashimoto, S; Taniguchi, K; Nagai, M
1999-12-01
To describe the characteristics of monitoring stations for the infectious disease surveillance system in Japan, we compared the distributions of the number of monitoring stations in terms of population, region, size of medical institution, and medical specialty. The distributions of annual number of reported cases in terms of the type of diseases, the size of medical institution, and medical specialty were also compared. We conducted a nationwide survey of the pediatrics stations (16 diseases), ophthalmology stations (3 diseases) and the stations of sexually transmitted diseases (STD) (5 diseases) in Japan. In the survey, we collected the data of monitoring stations and the annual reported cases of diseases. We also collected the data on the population, served by the health center where the monitoring stations existed, from the census. First, we compared the difference between the present number of monitoring stations and the current standard established by the Ministry of Health and Welfare (MHW). Second, we compared the distribution of all medical institutions in Japan and the monitoring stations in terms of the size of the medical institution. Third, we compared the average number of annual reported cases of diseases in terms of the size of medical institution and the medical specialty. In most health centers, the number of monitoring stations achieved the current standard of MHW, while a few health centers had no monitoring station, although they had a large population. Most prefectures also achieved the current standard of MHW, but some prefectures were well below the standard. Among pediatric stations, the sampling proportion of large hospitals was higher than other categories. Among the ophthalmology stations, the sampling proportion of hospitals was higher than other categories. Among the STD stations, the sampling proportion of clinics of obstetrics and gynecology was lower than other categories. Except for some diseases, it made little difference in the average number of annual reported cases of diseases in terms of the type of medical institution. Among STD, there was a great difference in the average number of annual reported cases of diseases in terms of medical specialty.
Composition of air masses in Fuerteventura (Canary Islands) according to their origins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.
1994-12-31
The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure somemore » atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.« less
Rain-induced increase in background radiation detected by Radiation Portal Monitors.
Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A
2014-11-01
A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Atmospheric Deposition of Nitrogen and Sulfur in the Yellow Sea Region
NASA Astrophysics Data System (ADS)
Ghim, Y.; Kim, J.; Lee, S.; Moon, K.; Won, J.; Yoon, S.
2002-05-01
The Yellow Sea is a semi-enclosed, shelf-type shallow basin with reduced water exchange with the open ocean. The rim of the Yellow Sea--the west side is China and the east side is Korea--is one of the fastest developing zones in the world. During the past several years, considerable measurements have been made both around and over the Yellow Sea in order to study the pollutant transport in the region. Fine particles as well as gaseous pollutants have been routinely measured at three national background monitoring stations on the Korean side. Two ground stations have been operated for supplementing these monitoring stations; one is on the Korean side and the other is on the Chinese side. Aircraft and shipboard measurements were also made during selected intensive measurement periods. However, not all these measurements have been made for a common object. Rather, several research teams carried out their measurements for their own purposes according to separate plans. In the present work, the amounts of nitrogen and sulfur deposited in the region of the Yellow Sea in both dry and wet forms were estimated. Concentration data available from each measurement were reviewed to choose adequate ones. Meteorological data at ground stations were readily obtained either from a collocated automatic weather station or from a surface weather station in the nearby area. However, those over the sea were estimated from the output of RDAPS (Regional Data Assimilation and Prediction System), which were provided by the Korea Meteorological Administration. Precipitation data were only available from several routinely operated ground stations since intensive measurements accompanying aircraft or shipboard measurements were not made on rainy days. The amounts of dry and wet depositions were compared at these stations. (This work was supported in part by the Korea Ministry of Science and Technology under grant 98-LO-01-01-A-003 and in part by the Sustainable Water Resources Research Center of the 21st Century Frontier Research Program.)
NASA Astrophysics Data System (ADS)
Gaebler, P. J.; Ceranna, L.
2016-12-01
All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.
Space Station Induced Monitoring
NASA Technical Reports Server (NTRS)
Spann, James F. (Editor); Torr, Marsha R. (Editor)
1988-01-01
This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.
NASA Astrophysics Data System (ADS)
Dvorska, Alice; Milan, Váňa; Vlastimil, Hanuš; Marian, Pavelka
2013-04-01
The collocated station Košetice - Křešín u Pacova, central Czech Republic, is a major research and monitoring infrastructure in the Czech Republic and central Europe. It consists of two basic components: the observatory Košetice run since 1988 by the Czech Hydrometeorological Institute and the atmospheric station (AS) Křešín u Pacova starting operation in 2013. The AS is built and run by CzechGlobe - Global Change Research Centre, Academy of Sciences of the Czech Republic and is situated 100 m far from the observatory. There are three research and monitoring activities at the collocated station providing data necessary for the research on climate and related changes. The AS Křešín u Pacova consists of a 250 m tall tower serving for ground-based and vertical gradient measurements of (i) concentrations of CO2, CO, CH4, total gaseous mercury and tropospheric ozone (continuously), (ii) elemental and organic carbon (semicontinuously), (iii) carbon and oxygen isotopes, radon, N2O, SF6 and other species (episodically), (iv) optical properties of atmospheric aerosols and (v) meteorological parameters and the boundary layer height. Further, eddy covariance measurements in the nearby agroecosystem provide data on CO2 and H2O fluxes between the atmosphere and the ecosystem. Finally, monitoring activities at the nearby small hydrological catchment Anenské povodí run under the GEOMON network enables studying local hydrological and biogeochemical cycles. These measurements are supported by the long-term monitoring of meteorological and air quality parameters at the observatory Košetice, that are representative for the central European background. The collocated station provides a big research opportunity and challenge due to (i) a broad spectra of monitored chemical species, meteorological, hydrological and other parameters, (ii) measurements in various environmental compartments and especially the atmosphere, (iii) provision of data suitable for conducting multidisciplinar research activities and (iv) participation in a number of international programmes and projects, i.e. ICOS (AS Křešín u Pacova), ACTRIS, ACCENT, CLRTAP/EMEP, GAW and ICP-IM (Košetice) and others. Finally, the collocated station has potential for a successful participation in the planned network of European superstations covering both climate and air quality issues, one of the key areas in the European Strategy Forum on Research Infrastructures (ESFRI) process. Acknowledgement: This work is supported by the CzechGlobe (CZ.1.05/1.1.00/02.0073) and CZ.1.07/2.4.00/31.0056 projects.
Eslinger, Paul W; Bowyer, Ted W; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T; Seibert, Petra; Stein, Ariel F; Ungar, Kurt; Yi, Jing
2016-06-01
The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from releases from a nuclear explosion. Published by Elsevier Ltd.
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... part of SLAMS, NCore stations, STN stations, State speciation stations, SPM stations, and/or, in... analysis method(s) for each measured parameter. (4) The operating schedules for each monitor. (5) Any...
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... part of SLAMS, NCore stations, STN stations, State speciation stations, SPM stations, and/or, in... and analysis method(s) for each measured parameter. (4) The operating schedules for each monitor. (5...
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... part of SLAMS, NCore stations, STN stations, State speciation stations, SPM stations, and/or, in... and analysis method(s) for each measured parameter. (4) The operating schedules for each monitor. (5...
A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor†
Okino, Toru; Yamahira, Seiji; Yamada, Shota; Hirose, Yutaka; Odagawa, Akihiro; Kato, Yoshihisa; Tanaka, Tsuyoshi
2018-01-01
We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations. PMID:29361742
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Michael Suffredini, program manager, International Space Station, NASA; William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; and Bernardo Patti, head of International Space Station, Program Department, ESA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
Monitoring environmental effects of shale gas exploitation at Wysin in Poland.
NASA Astrophysics Data System (ADS)
Lasocki, Stanislaw; Mirek, Janusz; Bialon, Wojciech; Cielesta, Szymon; Lasak, Mateusz; Cesca, Simone; Lopez Comino, Jose Angel; Dahm, Torsten; Scarpa, Roberto; Gunning, Andrew; Montcoudiol, Nelly; Isherwood, Catherine; Jaroslawski, Janusz; Guzikowski, Jakub
2017-04-01
Environmental effects of shale gas exploration and exploitation are extensively studied in the framework of "Shale Gas Exploration and Exploitation Induced Risks" project (SHEER, H2020-LCE 16-2014-1). One of the main component of this study is on-site monitoring of the effects at Wysin shale-gas play of Polish Oil and Gas Company in Poland. This includes monitoring of seismicity and water and air quality. Surface seismic monitoring network consists of 6 surface broadband (BB) seismometers and 25 surface short-period (SP) seismometers The SPs are assembled into three small aperture arrays with 9, 8 and 8 stations, respectively, distributed in a triangle geometry at a distance of about 2-4 km from the hydrofracturing rig. Each array is complemented with one BB station. The three remaining BBs are located up to about 5 km from the rig. In addition 3 borehole broadband seismometers are located in three shallow boreholes. The groundwater monitoring makes use of four wells, which reach a main underground water reservoir. Three complementary datasets are collected: continuous monitoring of borehole data, laboratory analyses of water samples and field monitoring of water quality parameters. The continuous monitoring makes use of down-hole probes, which have been installed in each borehole. The probes record absolute pressure, temperature and electrical conductivity. In addition, a barometric probe has been installed above ground to record atmospheric pressure in order to allow conversion of absolute pressure to a water level. After collection, water samples are sent to an accredited laboratory for analysis. The field monitoring is undertaken during the sampling visits. Whilst the borehole is being purged, physico-chemical parameters are monitored using a multi-parameter probe. This measures and records temperature, specific conductivity, pH, dissolved oxygen and oxidation-reduction potential within the water. Hydrocarbon gas content within the water is below detection limits for methane, ethane, ethene and propane gases. Air pollution monitoring is performed by means of an automatic station. The station is situated east from the Wysin rig at the distance of some 1200 m. This distance is appropriate in order not to measure a direct emission of pollutants. The station monitors the content of NO, NO2, NOx, CO, PM10, O3, CO2, CH4, NMHC and Radon. At the beginning of SHEER project in May 2015, there was one vertical well at the site, reaching gas-bearing shale formations at the nearly 4km depth. Further on two horizontal wells, each of about 1.7km length, were drilled (late Autumn 2015) and fracked (June - August, 2016). This time table has provided the opportunity to record background seismicity and baseline levels of water and air quality, and then to record the immediate and delayed effects of hydrofracturing operations. The monitoring will continue at least 1.5 year after completion of technological activity at the site. This work was supported within SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.
Worker-specific exposure monitor and method for surveillance of workers
Lovejoy, Michael L.; Peeters, John P.; Johnson, A. Wayne
2000-01-01
A person-specific monitor that provides sensor information regarding hazards to which the person is exposed and means to geolocate the person at the time of the exposure. The monitor also includes means to communicate with a remote base station. Information from the monitor can be downloaded at the base station for long term storage and analysis. The base station can also include means to recharge the monitor.
Evaluating the Capability of High-Altitude Infrasound Platforms to Cover Gaps in Existing Networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Daniel
A variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at the Earth's surface. The experiments have been limited to at most two stations at altitude, limiting their utility in acoustic event detection and localization. We describe the deployment of five drifting microphonemore » stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic broad band signals similar to those seen on previous flights in the same region were noted as well, but their source remains unclear. Background noise levels were commensurate with those on infrasound stations in the International Monitoring System (IMS) below 2 seconds, but sensor self noise appears to dominate at higher frequencies.« less
DOT National Transportation Integrated Search
2005-11-01
In order to extend commercial vehicle enforcement coverage to routes that are not monitored by fixed weigh stations, Kentucky has developed and implemented a Remote Monitoring System (RMS) and a Virtual Weight Station (VWS). The RMS captures images o...
2014-06-11
CAPE CANAVERAL, Fla. – Jim Smodell, a technician with SGT, moves the plant pillows containing the outredgeous red lettuce leaves outside of the International Space Station Environmental Simulator chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. In the background is Chuck Spern, lead project engineer with QinetiQ North America on the Engineering Services Contract. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin
1. EAST AND SOUTH SIDES OF STATION, SHOWING (LEFT BACKGROUND ...
1. EAST AND SOUTH SIDES OF STATION, SHOWING (LEFT BACKGROUND TO CENTER FOREGROUND) SOUTH CANOPY, OPEN CONCOURSE ROOF, AND CONCOURSE ROOF EXTENSION (SMALL BUILDING UNDER CONCOURSE ROOF IS TEMPORARY AMTRAK STATION) - Pennsylvania Railroad Station, Open Concourse & Concourse Roof Extension, 1101 Liberty Avenue, Pittsburgh, Allegheny County, PA
US EPA's National Dioxin Air Monitoring Network: Analytical ...
The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry, and animal feed crops are grown; (2) to provide measurements of atmospheric levels in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. Designed in 1997, NDAMN has been implemented in phases, with the first phase consisting of 9 monitoring stations and is achieving congener-specific detection lmits of 0.1 fg/m3 for 2,3,7,8-TCDD and 10 fg/m3 for OCDD. With respect to coplanar PCBs, the detection limits are generally higher due to the presence of background levels in the air during the preparation and processing of the samples. Achieving these extremely low levels of detection present a host of analytical issues. Among these issues are the methods used to establish ultra-trace detection limits, measures to ensure against and monitor for breakthrough of native analytes when sampling large volumes of air, and procedures for handling and e
Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan
2014-09-01
Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized plumes were not detected. Implications: Monitoring of pollutants associated with oil and natural gas exploration and production activity at three sites within the Allegheny National Forest (ANF) showed only slight site-to-site differences even with one site far removed from these activities. However, the impact was evident not in detection of localized plumes but in regional elevated ethane concentrations, as ethane can be considered a tracer species for oil and natural gas activity. The data presented serve as baseline conditions for evaluation of impacts from future development of Marcellus or Utica shale gas reserves.
Observations of Europe wide Trends in background and peak O3, CO and NO2 levels
NASA Astrophysics Data System (ADS)
Fleming, Z. L.; Monks, P. S.; Brunsdon, C.; Henne, S.; Buchmann, B.; Konovalov, I.; Beekman, M.
2009-04-01
The GEOMON (Global Earth Observation and MONitoring) project has produced a harmonised data set of trace gases from various ground-based measurement stations. These stations belong to a variety of regional, national and European air quality networks (e.g. EMEP, GAW). Investigations into instrumental calibration and data quality have been carried out in order to make comparison between the sites as accurate as possible for a long time-scale trend analysis. Ozone seasonal cycles at the various sites have been compared, showing characteristic cycles according to latitude, elevation, vicinity to coastal areas and pollution sources and population nearby. A de-trending of this seasonal cycle revealed long-term variations in ozone and a considerable difference between background and peak ozone trends between sites. National, European and international legislation has aimed at reducing CO and NO2 and correspondingly, reduce O3 levels over the last 20 years but the trends are not as clear cut and reveal that there is not a homogeneous reduction in these species across Europe. Splitting the data into seasonal periods and also into lower and upper concentration percentiles shows us more clearly how the species vary across Europe. There is a tendency for peak ozone levels to decrease, whilst the background levels have mostly increased. Averages, lower and upper percentiles of these species at the GEOMON stations are shown on European maps and the distribution of annual ozone trends is evaluated. Comparisons with models that estimate the lower and upper percentiles of ozone during summer overestimate ozone levels but not uniformly across Europe.
NASA Astrophysics Data System (ADS)
Shang, Yanliang; Han, Tongyin; Shi, Wenjun; Du, Shouji; Qin, Zhichao
2017-10-01
The development of urban subway is becoming more and more rapid and plays an increasingly important role. The shield tunneling method has become the first choice for the construction of urban subway tunnel in the construction of urban subway. The paper takes the interval of Shijiazhuang Metro Line 3 Administrative Center Station and Garden Park Station as the engineering background. The establishment of double shield finite difference model by considering the thickness of covering soil, tunnel excavation and excavation at the same time, distance and other factors, the surface deformation, and soil thickness. The ground deformation law is obtained, the surface settlement is inversely proportional to the overburden thickness and the double line spacing, and the gradual excavation is smaller than the synchronous excavation.
CAQI Common Air Quality Index--update with PM(2.5) and sensitivity analysis.
van den Elshout, Sef; Léger, Karine; Heich, Hermann
2014-08-01
The CAQI or Common Air Quality Index was proposed to facilitate the comparison of air quality in European cities in real-time. There are many air quality indices in use in the world. All are somewhat different in concept and presentation and comparing air quality presentations of cities on the internet was virtually impossible. The CAQI and the accompanying website www.airqualitynow.eu and app were proposed to overcome this problem in Europe. This paper describes the logic of making an index, in particular the CAQI and its update with a grid for PM2.5. To assure a smooth transition to the new calculation scheme we studied the behaviour of the index before and after the changes. We used 2006 Airbase data from 31 urban background and 27 street stations all across Europe (that were monitoring PM2.5 in 2006). The CAQI characterises a city by a roadside and urban background situation. It also insists on a minimum number of pollutants to be included in the calculation. Both were deemed necessary to improve the basis for comparing one city to another. A sensitivity analysis demonstrates the comparative behaviour of the street and urban background stations and presents the sensitivity of the CAQI outcome to the pollutants included in its calculation. © 2013.
46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL. § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b...
46 CFR 35.40-17 - Foam hose/monitor stations-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Foam hose/monitor stations-T/ALL. 35.40-17 Section 35.40... Requirements-TB/ALL. § 35.40-17 Foam hose/monitor stations—T/ALL. (a) At each required foam hose/monitor valve there shall be marked in not less than 2-inch red letters and figures: “FOAM STATION 1,” 2, 3, etc. (b...
Hydroacoustic Signals Recorded by the International Monitoring System
NASA Astrophysics Data System (ADS)
Blackman, D.; de Groot-Hedlin, C.; Orcutt, J.; Harben, P.
2002-12-01
Networks of hydrophones, such as the hydroacoustic part of the International Monitoring System (IMS), and hydrophone arrays, such as the U.S. Navy operates, record many types of signals, some of which travel thousands of kilometers in the oceanic sound channel. Abyssal earthquakes generate many such individual events and occasionally occur in swarms. Here we focus on signals generated by other types of sources, illustrating their character with recent data, mostly from the Indian Ocean. Shipping generates signals in the 5-40 Hz band. Large airgun arrays can generate T-waves that travel across an ocean basin if the near-source seafloor has appropriate depth/slope. Airgun array shots from our 2001 experiment were located with an accuracy of 25-40 km at 700-1000 km ranges, using data from a Diego Garcia tripartite sensor station. Shots at greater range (up to 4800 km) were recorded at multiple stations but their higher background noise levels in the 5-30 Hz band resulted in location errors of ~100 km. Imploding glass spheres shattered within the sound channel produce a very impulsive arrival, even after propagating 4400 km. Recordings of the sphere signal have energy concentrated in the band above 40 Hz. Natural sources such as undersea volcanic eruptions and marine mammals also produce signals that are clearly evident in hydrophone recordings. For whales, the frequency range is 20~120Hz and specific patterns of vocalization characterize different species. Volcanic eruptions typically produce intense swarms of acoustic activity that last days-weeks and the source area can migrate tens of kms during the period. The utility of these types of hydroacoustic sources for research and/or monitoring purposes depends on the accuracy with which recordings can be used to locate and quantitatively characterize the source. Oceanic weather, both local and regional, affect background noise levels in key frequency bands at the recording stations. Databases used in forward modeling of propagation and acoustic losses can be sparse in remote regions. Our Indian Ocean results suggest that when bathymetric coverage is poor, predictions for 8 Hz propagation/loss match observations better than those for propagation of 30 Hz signals over 1000-km distances.
Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; Parlange, Marc
2013-04-01
A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director; Bernardo Patti, head of International Space Station, Program Department, ESA; and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Kennedy Director Bob Cabana addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; Bernardo Patti, head of International Space Station, Program Department, ESA; and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.
Rathi, Shweta; Gupta, Rajesh
2014-04-01
Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.
Price, Don; Plantz, G.G.
1987-01-01
The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)
NASA Astrophysics Data System (ADS)
El Yazidi, Abdelhadi; Ramonet, Michel; Ciais, Philippe; Broquet, Gregoire; Pison, Isabelle; Abbaris, Amara; Brunner, Dominik; Conil, Sebastien; Delmotte, Marc; Gheusi, Francois; Guerin, Frederic; Hazan, Lynn; Kachroudi, Nesrine; Kouvarakis, Giorgos; Mihalopoulos, Nikolaos; Rivier, Leonard; Serça, Dominique
2018-03-01
This study deals with the problem of identifying atmospheric data influenced by local emissions that can result in spikes in time series of greenhouse gases and long-lived tracer measurements. We considered three spike detection methods known as coefficient of variation (COV), robust extraction of baseline signal (REBS) and standard deviation of the background (SD) to detect and filter positive spikes in continuous greenhouse gas time series from four monitoring stations representative of the European ICOS (Integrated Carbon Observation System) Research Infrastructure network. The results of the different methods are compared to each other and against a manual detection performed by station managers. Four stations were selected as test cases to apply the spike detection methods: a continental rural tower of 100 m height in eastern France (OPE), a high-mountain observatory in the south-west of France (PDM), a regional marine background site in Crete (FKL) and a marine clean-air background site in the Southern Hemisphere on Amsterdam Island (AMS). This selection allows us to address spike detection problems in time series with different variability. Two years of continuous measurements of CO2, CH4 and CO were analysed. All methods were found to be able to detect short-term spikes (lasting from a few seconds to a few minutes) in the time series. Analysis of the results of each method leads us to exclude the COV method due to the requirement to arbitrarily specify an a priori percentage of rejected data in the time series, which may over- or underestimate the actual number of spikes. The two other methods freely determine the number of spikes for a given set of parameters, and the values of these parameters were calibrated to provide the best match with spikes known to reflect local emissions episodes that are well documented by the station managers. More than 96 % of the spikes manually identified by station managers were successfully detected both in the SD and the REBS methods after the best adjustment of parameter values. At PDM, measurements made by two analyzers located 200 m from each other allow us to confirm that the CH4 spikes identified in one of the time series but not in the other correspond to a local source from a sewage treatment facility in one of the observatory buildings. From this experiment, we also found that the REBS method underestimates the number of positive anomalies in the CH4 data caused by local sewage emissions. As a conclusion, we recommend the use of the SD method, which also appears to be the easiest one to implement in automatic data processing, used for the operational filtering of spikes in greenhouse gases time series at global and regional monitoring stations of networks like that of the ICOS atmosphere network.
Quality of surface water in Missouri, water year 2012
Barr, Miya N.
2014-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Reevaluation of air surveillance station siting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, K.; Jannik, T.
2016-07-06
DOE Technical Standard HDBK-1216-2015 (DOE 2015) recommends evaluating air-monitoring station placement using the analytical method developed by Waite. The technique utilizes wind rose and population distribution data in order to determine a weighting factor for each directional sector surrounding a nuclear facility. Based on the available resources (number of stations) and a scaling factor, this weighting factor is used to determine the number of stations recommended to be placed in each sector considered. An assessment utilizing this method was performed in 2003 to evaluate the effectiveness of the existing SRS air-monitoring program. The resulting recommended distribution of air-monitoring stations wasmore » then compared to that of the existing site perimeter surveillance program. The assessment demonstrated that the distribution of air-monitoring stations at the time generally agreed with the results obtained using the Waite method; however, at the time new stations were established in Barnwell and in Williston in order to meet requirements of DOE guidance document EH-0173T.« less
Quality of surface water in Missouri, water year 2013
Barr, Miya N.; Schneider, Rachel E.
2014-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
NASA Astrophysics Data System (ADS)
Donohoue, D.; Jumes, D.; Jaglowski, J.
2017-12-01
During a campaign launched in August 2015, concentrations of ozone, nitrogen oxides, and weather conditions were measured throughout the Bakken-Williston Basin. The data was collected using a new in-situ monitoring system ARTEMIS (Atmospheric Research Trailer for Environmental Monitoring and Interactive Science). ARTEMIS is a self-sustaining trailer equipped with a solar panel and four 80 Ah batteries, which can power an instrumental suite. It provided a temporary sampling station which could be erected in five minutes. During this campaign we collected data for one hour at sites throughout North Dakota and Montana. Preliminary results from this data suggests that near active mining or methane flaring regions ozone concentrations appear to be elevated from the background.
Web Information Systems for Monitoring and Control of Indoor Air Quality at Subway Stations
NASA Astrophysics Data System (ADS)
Choi, Gi Heung; Choi, Gi Sang; Jang, Joo Hyoung
In crowded subway stations indoor air quality (IAQ) is a key factor for ensuring the safety, health and comfort of passengers. In this study, a framework for web-based information system in VDN environment for monitoring and control of IAQ in subway stations is suggested. Since physical variables that describing IAQ need to be closely monitored and controlled in multiple locations in subway stations, concept of distributed monitoring and control network using wireless media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated, distributed monitoring and control performance, making a web-based information system possible.
Firefighters from Mayport Naval Station train at CCAFS
NASA Technical Reports Server (NTRS)
2000-01-01
A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
Mercury speciation in sediments at a municipal sewage sludge marine disposal site.
Shoham-Frider, E; Shelef, G; Kress, N
2007-12-01
Mercury speciation was performed in excess activated sewage sludge (ASS) and in marine sediments collected at the AAS disposal site off the Mediterranean coast of Israel in order to characterize the spatial and vertical distribution of different mercury species and assess their environmental impact. Total Hg (HgT) concentrations ranged between 0.19 and 1003ng/g at the polluted stations and 5.7 and 72.8ng/g at the background station, while the average concentration in ASS was 1181+/-273ng/g. Only at the polluted stations did HgT concentrations decrease exponentially with sediment depth, reaching background values at 16-20cm, the vertical distribution resulting from mixing of natural sediment with ASS solids and bioturbation by large populations of polycheates. Average Methyl Hg (MeHg) concentration in ASS was 39.7+/-7.1ng/g, ca. 3% of the HgT concentration, while the background concentrations ranged between 0.1 and 0.61ng/g. MeHg concentrations in surficial polluted sediments were 0.7-5.9ng/g (ca. 0.5% of the HgT) and decreased vertically, similar to HgT. A positive correlation between MeHg and Hg only at the polluted stations, higher MeHg concentrations at the surface of the sediment and not below the redoxline, and no seasonality in the concentrations suggest that the MeHg originated from the ASS and not from in situ methylation. By doing selective extractions, we found that ca. 80% of the total Hg in ASS and polluted sediments was strongly bound to amorphous organo-sulfur and to inorganic sulfide species that are not bioavailable. The fractions with potential bioaccessible Hg had maximal concentrations in the range in which biotic effects should be expected. Therefore, although no bioaccumulation was found in the biota in the area, the concentration in the polluted sediments are not negligible and should be carefully monitored.
ERIC Educational Resources Information Center
Barcus, F. Earle
Some 25-1/2 hours of Boston commercial television for children were monitored on a Saturday and Sunday in April 1975. The monitoring covered three network affiliated stations and two independent UHF stations. Monitoring, coding, and editing provided much statistical data, which was analyzed to yield findings in the areas of distribution of…
Melcher, Peter; Zajonz, Dirk; Roth, Andreas; Heyde, Christoph-E.; Ghanem, Mohamed
2016-01-01
Background: The OSCE (objective structured clinical examination) is composed of oral and practical examination in order to examine students’ abilities to imply clinical examination techniques and to interact with patients. The examiners for this procedure can be either lecturers or peers. The aim of this work is to evaluate the peer-assisted teaching student tutors as examiners in an orthopedic surgery OSCE station. Methods: We analyzed the OSCE data from 2013 to 2015. During this period over 300 medical students were examined each year. An evaluation was conducted at an orthopedic station and examined by peer students to assess the advantages and disadvantages of peer-assisted teaching student tutors as examiners. Results: We have noticed that student peers are more flexible regarding their schedule and they have been well trained for OSCE. Concerning the economic aspects, student peers are clearly of major economic advantage. Disadvantages were not reported in our study probably because peers were well trained and the checklists are monitored regularly. Conclusion: Student peers in OSCE are of major advantage due to their flexible time schedule and relatively low costs. They must be well trained and the checklists are to be monitored regularly. Our study shows that peer tutor examiners conducted the examination as competent as lecture examiners. However, legal restrictions on the employment of students should be considered. PMID:27500078
Michikawa, Takehiro; Morokuma, Seiichi; Nitta, Hiroshi; Kato, Kiyoko; Yamazaki, Shin
2017-06-13
Numerous earlier studies examining the association of air pollution with maternal and foetal health estimated maternal exposure to air pollutants based on the women's residential addresses. However, residential addresses, which are personally identifiable information, are not always obtainable. Since a majority of pregnant women reside near their delivery hospitals, the concentrations of air pollutants at the respective delivery hospitals may be surrogate markers of pollutant exposure at home. We compared air pollutant concentrations measured at the nearest monitoring station to Kyushu University Hospital with those measured at the closest monitoring stations to the respective residential postal code regions of pregnant women in Fukuoka. Aggregated postal code data for the home addresses of pregnant women who delivered at Kyushu University Hospital in 2014 was obtained from Kyushu University Hospital. For each of the study's 695 women who resided in Fukuoka Prefecture, we assigned pollutant concentrations measured at the nearest monitoring station to Kyushu University Hospital and pollutant concentrations measured at the nearest monitoring station to their respective residential postal code regions. Among the 695 women, 584 (84.0%) resided in the proximity of the nearest monitoring station to hospital or one of the four other stations (as the nearest stations to their respective residential postal code region) in Fukuoka city. Pearson's correlation for daily mean concentrations among the monitoring stations in Fukuoka city was strong for fine particulate matter (PM 2.5 ), suspended particulate matter (SPM), and photochemical oxidants (Ox) (coefficients ≥0.9), but moderate for coarse particulate matter (the result of subtracting the PM 2.5 from the SPM concentrations), nitrogen dioxide, and sulphur dioxide. Hospital-based and residence-based concentrations of PM 2.5 , SPM, and Ox were comparable. For PM 2.5 , SPM, and Ox, exposure estimation based on the delivery hospital is likely to approximate that based on the home of pregnant women.
2014-06-11
CAPE CANAVERAL, Fla. – Jim Smodell, a technician with SGT, removes an outredgeous red lettuce leaf from a plant pillow inside the Payload Development Laboratory at the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center in Florida. In the background is George Guerra, a quality control engineer with QinetiQ North America. The plant pillows were removed from the Veggie plant growth system inside a control chamber at the SSPF. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin
Monitoring productivity with multiple mist-net stations
C. John Ralph; Kimberly Hollinger; Sherri L. Miller
2004-01-01
We evaluated data from 22 mist-net capture stations operated over 5 to 13 years in northern California and southern Oregon, to help develop sampling designs for monitoring using mist nets. In summer, 2.6% of individuals were recaptured at other stations within 1 km of the original banding station, and in fall, 1.4% were recaptured nearby. We recommend...
Journal Article: the National Dioxin Air Monitoring Network ...
The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric CDDs, CDFs and coplanar PCBs at rural and nonimpacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry and animal feed crops are grown; (2) to provide measurements of atmospheric levels of dioxin-like compounds in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. Designed in 1997, NDAMN has been implemented in phases, with the first phase consisting of 9 monitoring stations. Previously EPA has reported on the preliminary results of monitoring at 9 rural locations from June1998 through June 19991. The one-year measurement at the 9 stations indicated an annual mean TEQDF–WHO98 air concentration of 12 fg m-3. Since this reporting, NDAMN has been extended to include additional stations. The following is intended to be an update to this national monitoring effort. We are reporting the air monitoring results of 22 NDAMN stations operational over 9 sampling moments from June 1998 to December 1999. Fifteen stations are in rural areas, and 6 are located in National Parks. One station is located in suburban Wa
Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXTmore » Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.« less
2015-02-11
The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, rises in the background as the countdown clock at NASA’s Kennedy Space Center in Florida reads 44 seconds into flight. The Falcon 9 launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Frankie Martin
2015-02-11
The countdown clock at NASA’s Kennedy Space Center in Florida reads 30 seconds into flight of the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, seen rising in the background. The Falcon 9 launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Frankie Martin
2009-11-20
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, head of International Space Station, Program Department, ESA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director, and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett
Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-04-01
This report describes the environmental radiological monitoring programs conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1987. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstreams from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 34 tabs.« less
Browns Ferry Nuclear Plant annual radiological environmental operating report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-04-01
This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1990. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less
Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-04-01
This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1989. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiationmore » levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts if plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in river sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less
Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-01
This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Chen, Chun; Ho, Lih-Der
2017-04-01
This study reports a continuous microclimate monitoring carried out in the Gorilla Cave (Kaohsiung, Taiwan) between December 2015 and December 2016. This limestone cave is located in the Mt. Shoushan, which is mainly composed of limestone and mudstone. This study tried to assess the recreational impacts to the microclimate of the cave by monitoring the CO2, temperature, humidity and barometric pressure. Two monitoring stations were set up respectively at the front part (station A) and the end of the cave (station B). We also set up an auto-operated time-lapse camera at the entrance of the cave to record the numbers of tourists, and their entering time and the durations in cave. As carbon dioxide in the limestone cave may have negative impact to both speleothems and visitors, our presentation focuses on the variations of CO2 concentration in the Gorilla Cave. Daily and seasonal fluctuations of CO2 concentration were observed. The fluctuations are closely related with the temperature outside the cave. In summer, when the temperature outside the cave maintained at 30。C, fluctuations of CO2 concentration in the cave will become chaotic. The CO2 concentration would fluctuate around 1000ppm most of the day, but it would be relatively low ( 500ppm) during the noon. In winter, when temperature outside the cave maintained below 25゜C, the fluctuation of CO2 concentration in cave presented a steady state ( 400-500 ppm). Only at the noon, the temperature outside the cave rose above 25 ゜C, the CO2 concentration inside the cave would increase. There were 1,517 tourists entered the cave during the monitoring period. The average number of visitors in a group is 13, and each group averagely stayed for 15 minutes. Over half of the visitors (776 tourists) entered the cave in December, due to lower humidity, drier in the cave and less dripping water in winter. After tourists entered the cave, the CO2 concentration value of station A rose instantly. However, most tourists stayed at the end of the cave longer, so the CO2 concentration of station B would be higher due to the CO2 accumulation. Therefore, it took a long time to return to the background level of CO2 concentration. In summer, because the CO2 concentration in the cave was already high, the value fluctuated less when the tourists entered the cave, but it took a longer time to return to the background CO2 level. On the contrary, the CO2 concentration increased significantly after tourists entered the cave during the winter time, but the recovery time was shorter. Based on the monitoring results, we suggest that (1) the buffering time between each visiting group should be longer in summer, but shorter in winter. (2) Consider to the limited space of the cave, each group should not exceed 20 tourists and stays no longer than 30 minutes to avoid the CO2 concentration exceeding 2400 ppm to discomfort tourists. However, the degradation of speleothems by increasing CO2 concentration in the Gorilla Cave is still unclear and further research is needed.
Dybwad, Marius; Skogan, Gunnar; Blatny, Janet Martha
2014-01-01
Naturally occurring bioaerosol environments may present a challenge to biological detection-identification-monitoring (BIODIM) systems aiming at rapid and reliable warning of bioterrorism incidents. One way to improve the operational performance of BIODIM systems is to increase our understanding of relevant bioaerosol backgrounds. Subway stations are enclosed public environments which may be regarded as potential bioterrorism targets. This study provides novel information concerning the temporal variability of the concentration level, size distribution, and diversity of airborne bacteria in a Norwegian subway station. Three different air samplers were used during a 72-h sampling campaign in February 2011. The results suggested that the airborne bacterial environment was stable between days and seasons, while the intraday variability was found to be substantial, although often following a consistent diurnal pattern. The bacterial levels ranged from not detected to 10(3) CFU m(-3) and generally showed increased levels during the daytime compared to the nighttime levels, as well as during rush hours compared to non-rush hours. The airborne bacterial levels showed rapid temporal variation (up to 270-fold) on some occasions, both consistent and inconsistent with the diurnal profile. Airborne bacterium-containing particles were distributed between different sizes for particles of >1.1 μm, although ∼50% were between 1.1 and 3.3 μm. Anthropogenic activities (mainly passengers) were demonstrated as major sources of airborne bacteria and predominantly contributed 1.1- to 3.3-μm bacterium-containing particles. Our findings contribute to the development of realistic testing and evaluation schemes for BIODIM equipment by providing information that may be used to simulate operational bioaerosol backgrounds during controlled aerosol chamber-based challenge tests with biological threat agents.
Dybwad, Marius; Skogan, Gunnar
2014-01-01
Naturally occurring bioaerosol environments may present a challenge to biological detection-identification-monitoring (BIODIM) systems aiming at rapid and reliable warning of bioterrorism incidents. One way to improve the operational performance of BIODIM systems is to increase our understanding of relevant bioaerosol backgrounds. Subway stations are enclosed public environments which may be regarded as potential bioterrorism targets. This study provides novel information concerning the temporal variability of the concentration level, size distribution, and diversity of airborne bacteria in a Norwegian subway station. Three different air samplers were used during a 72-h sampling campaign in February 2011. The results suggested that the airborne bacterial environment was stable between days and seasons, while the intraday variability was found to be substantial, although often following a consistent diurnal pattern. The bacterial levels ranged from not detected to 103 CFU m−3 and generally showed increased levels during the daytime compared to the nighttime levels, as well as during rush hours compared to non-rush hours. The airborne bacterial levels showed rapid temporal variation (up to 270-fold) on some occasions, both consistent and inconsistent with the diurnal profile. Airborne bacterium-containing particles were distributed between different sizes for particles of >1.1 μm, although ∼50% were between 1.1 and 3.3 μm. Anthropogenic activities (mainly passengers) were demonstrated as major sources of airborne bacteria and predominantly contributed 1.1- to 3.3-μm bacterium-containing particles. Our findings contribute to the development of realistic testing and evaluation schemes for BIODIM equipment by providing information that may be used to simulate operational bioaerosol backgrounds during controlled aerosol chamber-based challenge tests with biological threat agents. PMID:24162566
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.158 - Directional antenna monitoring points.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Directional antenna monitoring points. 73.158... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.158 Directional antenna monitoring points. (a) When a licensee of a station using a directional antenna system finds that a field monitoring point, as...
47 CFR 73.158 - Directional antenna monitoring points.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Directional antenna monitoring points. 73.158... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.158 Directional antenna monitoring points. (a) When a licensee of a station using a directional antenna system finds that a field monitoring point, as...
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.158 - Directional antenna monitoring points.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Directional antenna monitoring points. 73.158... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.158 Directional antenna monitoring points. (a) When a licensee of a station using a directional antenna system finds that a field monitoring point, as...
47 CFR 73.158 - Directional antenna monitoring points.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Directional antenna monitoring points. 73.158... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.158 Directional antenna monitoring points. (a) When a licensee of a station using a directional antenna system finds that a field monitoring point, as...
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.69 - Antenna monitors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...
47 CFR 73.158 - Directional antenna monitoring points.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Directional antenna monitoring points. 73.158... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.158 Directional antenna monitoring points. (a) When a licensee of a station using a directional antenna system finds that a field monitoring point, as...
Jones, Susan C
2003-10-01
A major challenge to termite baiting in soil habitats is the prolonged time that it may take for subterranean termites (Isoptera: Rhinotermitidae) to infest stations. The objective of this research study was to determine whether the location of food sources (Sentricon in-ground monitoring stations and wooden monitors) influences the likelihood of infestation by termites. In field trials conducted at 15 structures in central Ohio, standard placement of stations at 3-4.5 m intervals was compared with targeted placements based on evidence of termite activity indoors and outdoors as well as conducive moisture conditions. Termites infested significantly more targeted placements (70/374) than standard placements (35/372) around structures. At the targeted placement sites, termites infested more wooden monitors than Sentricon stations, but this was not statistically significant. This implies that placement, rather than cellulose composition, was the more important factor. Termites first infested stations/monitors an average of 38 d sooner at targeted sites than standard placement sites. This research indicates that evidence of termite activity indoors and outdoors should be a prime consideration when placing in-ground stations.
Calculating background levels for ecological risk parameters in toxic harbor sediment
Leadon, C.J.; McDonnell, T.R.; Lear, J.; Barclift, D.
2007-01-01
Establishing background levels for biological parameters is necessary in assessing the ecological risks from harbor sediment contaminated with toxic chemicals. For chemicals in sediment, the term contaminated is defined as having concentrations above background and significant human health or ecological risk levels. For biological parameters, a site could be considered contaminated if levels of the parameter are either more or less than the background level, depending on the specific parameter. Biological parameters can include tissue chemical concentrations in ecological receptors, bioassay responses, bioaccumulation levels, and benthic community metrics. Chemical parameters can include sediment concentrations of a variety of potentially toxic chemicals. Indirectly, contaminated harbor sediment can impact shellfish, fish, birds, and marine mammals, and human populations. This paper summarizes the methods used to define background levels for chemical and biological parameters from a survey of ecological risk investigations of marine harbor sediment at California Navy bases. Background levels for regional biological indices used to quantify ecological risks for benthic communities are also described. Generally, background stations are positioned in relatively clean areas exhibiting the same physical and general chemical characteristics as nearby areas with contaminated harbor sediment. The number of background stations and the number of sample replicates per background station depend on the statistical design of the sediment ecological risk investigation, developed through the data quality objective (DQO) process. Biological data from the background stations can be compared to data from a contaminated site by using minimum or maximum background levels or comparative statistics. In Navy ecological risk assessments (ERA's), calculated background levels and appropriate ecological risk screening criteria are used to identify sampling stations and sites with contaminated sediments.
Air quality monitor and acid rain networks
NASA Technical Reports Server (NTRS)
Rudolph, H.
1980-01-01
The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.
Bowyer, Theodore W; Kephart, Rosara; Eslinger, Paul W; Friese, Judah I; Miley, Harry S; Saey, Paul R J
2013-01-01
Fission gases such as (133)Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of (99)Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Stocki et al., 2005; Saey, 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5 × 10(9) Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers. Copyright © 2012 Elsevier Ltd. All rights reserved.
View southeast of computer controlled energy monitoring system. System replaced ...
View southeast of computer controlled energy monitoring system. System replaced strip chart recorders and other instruments under the direct observation of the load dispatcher. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA
Industrial safety and applied health physics. Annual report for 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
Information is reported in sections entitled: radiation monitoring; Environmental Management Program; radiation and safety surveys; industrial safety and special projects; Office of Operational Safety; and training, lectures, publications, and professional activities. There were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 35 employees received whole body dose equivalents of 10 mSv (1 rem) or greater. There were no releases of gaseous waste from the Laboratory which were of a level that required an incident report to DOE. There were no releases of liquid radioactive waste frommore » the Laboratory which were of a level that required an incident report to DOE. The quantity of those radionuclides of primary concern in the Clinch River, based on the concentration measured at White Oak Dam and the dilution afforded by the Clinch River, averaged 0.16 percent of the concentration guide. The average background level at the Perimeter Air Monitoring (PAM) stations during 1980 was 9.0 ..mu..rad/h (0.090 ..mu..Gy/h). Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 1.5 Bq/kg (0.04 pCi/g), and the uranium-235 content ranged from 0.7 Bq/kg (0.02 pCi/g) to 16 Bq/kg (0.43 pCi/g). Grass samples were collected at all perimeter and remote monitoring stations and analyzed for twelve radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.04 Bq/kg (0.001 pCi/g) to 0.07 Bq/kg (0.002 pCi/g), and the uranium-235 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 12 Bq/kg (0.33 pCi/g).« less
4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ...
4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ON RIGHT. NOTE TUNNEL IN BACKGROUND. - Baltimore & Ohio Railroad, Harpers Ferry Station, Potomac Street, Harpers Ferry, Jefferson County, WV
LOCATING MONITORING STATIONS IN WATER DISTRIBUTION SYSTEMS
Water undergoes changes in quality between the time it leaves the treatment plant and the time it reaches the customer's tap, making it important to select monitoring stations that will adequately monitor these changers. But because there is no uniform schedule or framework for ...
1997-10-06
Astronaut C. Michael Foale gets extra-special care back on Earth from his family and his flight physician after an approximate four-and-a-half-month stay aboard the Russian Space Station Mir. Dr. Terry Tadeo, a NASA physician who has been monitoring the astronaut’s health during his stay on the Mir, pushes the wheelchair holding Foale and the space flyer’s two children, 3-year-old Ian and 5-year-old Jenna, through the astronaut crew quarters of the Operations and Checkout Building. Foale’s wife, Rhonda, is in background at left. Foale’s family was at KSC for the late-night reunion after the Oct. 6 landing of the Space Shuttle orbiter Atlantis on the STS-86 mission. Foale, a member of the Mir 24 crew, was dropped off on the Russian space station during the STS-84 mission in mid-May. He joined the STS-86 crew aboard Atlantis for the return trip to Earth. STS-86 was the seventh docking of the Space Shuttle with the Mir. STS-86 Mission Specialist David A. Wolf replaced Foale on the Russian station
Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples
NASA Astrophysics Data System (ADS)
Burnett, J. L.; Davies, A. V.
2014-05-01
The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a 140Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra LynxTM multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.
Mercury in Precipitation in Indiana, January 2004-December 2005
Risch, Martin R.; Fowler, Kathleen K.
2008-01-01
Mercury in precipitation was monitored during 2004-2005 at five locations in Indiana as part of the National Atmospheric Deposition Program-Mercury Deposition Network (NADP-MDN). Monitoring stations were operated at Roush Lake near Huntington, Clifty Falls State Park near Madison, Fort Harrison State Park near Indianapolis, Monroe County Regional Airport near Bloomington, and Indiana Dunes National Lakeshore near Porter. At these monitoring stations, precipitation amounts were measured continuously and weekly samples were collected for analysis of mercury by methods achieving detection limits as low as 0.05 ng/L (nanograms per liter). Wet deposition was computed as the product of mercury concentration and precipitation. The data were analyzed for seasonal patterns, temporal trends, and geographic differences. In the 2 years, 520 weekly samples were collected at the 5 monitoring stations and 448 of these samples had sufficient precipitation to compute mercury wet deposition. The 2-year mean mercury concentration at the five monitoring stations (normalized to the sample volume) was 10.6 ng/L. As a reference for comparison, the total mercury concentration in 41 percent of the samples analyzed was greater than the statewide Indiana water-quality standard for mercury (12 ng/L, protecting aquatic life) and 99 percent of the concentrations exceeded the most conservative Indiana water-quality criterion (1.3 ng/L, protecting wild mammals and birds). The normalized annual mercury concentration at Clifty Falls in 2004 was the fourth highest in the NADP-MDN in eastern North America that year. In 2005, the mercury concentrations at Clifty Falls and Indiana Dunes were the ninth highest in the NADP-MDN in eastern North America. At the five monitoring stations during the study period, the mean weekly total mercury deposition was 0.208 ug/m2 (micrograms per square meter) and mean annual total mercury deposition was 10.8 ug/m2. The annual mercury deposition at Clifty Falls in 2004 and 2005 was in the top 25 percent of the NADP-MDN stations in eastern North America. Mercury concentrations and deposition varied at the five monitoring stations during 2004-2005. Mercury concentrations in wet-deposition samples ranged from 1.2 to 116.6 ng/L and weekly mercury deposition ranged from 0.002 to 1.74 ug/m2. Data from weekly samples exhibited seasonal patterns. During April through September, total mercury concentrations and deposition were higher than the median for all samples. Annual precipitation at four of the five monitoring stations was within 10 percent of normal both years, with the exception of Indiana Dunes, where precipitation was 23 percent below normal in 2005. Episodes of high mercury deposition, which were the top 10 percent of weekly mercury deposition at the five monitoring stations, contributed 39 percent of all mercury deposition during 2004-2005. Mercury deposition more than 1.04 ug/m2 (5 times the mean weekly deposition) was recorded for 12 samples. These episodes of highest mercury deposition were recorded at all five monitoring stations, but the most (7 of 12) were at Clifty Falls and contributed 34.4 percent of the total deposition at that station during 2004-2005. Weekly samples with high mercury deposition may help to explain the differences in annual mercury deposition among the five monitoring stations in Indiana. A statistical evaluation of the monitoring data for 2001-2005 indicated several statistically significant temporal trends. A statewide (5-station) decrease (p = 0.007) in mercury deposition and a statewide decrease (p = 0.059) in mercury concentration were shown. Decreases in mercury deposition (p = 0.061 and p = 0.083) were observed at Roush Lake and Bloomington. A statistically significant trend was not observed for precipitation at the five monitoring stations during this 5-year period. A potential explanation for part of the statewide decrease in mercury concentration and mercury deposition was a 2
Grechi, Daniele
2016-01-01
On March 2015, the Environmental Protection Agency of Tuscany Region (Central Italy) and the Laboratory of monitoring and environmental modelling published a Report on spatial representativeness of monitoring stations for Tuscan air quality, where they supported the decommissioning of modelling stations located in the Florentine Plain. The stations of Signa, Scandicci, and Firenze-Bassi, located in a further South area, were considered representative Believing that air quality of the Plain could be evaluated by these stations is a stretch. In this text the author show the inconsistency of the conclusion of the Report through correlation graphs comparing daily means of PM10 detected in the disposed stations and in the active ones, showing relevant differences between the reported values and the days when the limits are exceeded. The discrepancy is due to the fact that uncertainty of theoretical estimates is greater than the differences recorded by the stations considered as a reference and the areas they may represent. The area of the Plain has a population of 150,000 individuals and it is subject to a heavy environmental pression, which will change for the urban works planned for the coming years. The population's legitimate request for the analytical monitoring of air pollution could be met through the organization of participated monitoring based on the use of low-cost innovative tools.
Support and Maintenance of the International Monitoring System network
NASA Astrophysics Data System (ADS)
Pereira, Jose; Bazarragchaa, Sergelen; Kilgour, Owen; Pretorius, Jacques; Werzi, Robert; Beziat, Guillaume; Hamani, Wacel; Mohammad, Walid; Brely, Natalie
2014-05-01
The Monitoring Facilities Support Section of the Provisional Technical Secretariat (PTS) has as its main task to ensure optimal support and maintenance of an array of 321 monitoring stations and 16 radionuclide laboratories distributed worldwide. Raw seismic, infrasonic, hydroacoustic and radionuclide data from these facilities constitutes the basic product delivered by the International Monitoring System (IMS). In the process of maintaining such a wide array of stations of different technologies, the Support Section contributes to ensuring station mission capability. Mission capable data availability according to the IMS requirements should be at least 98% annually (no more than 7 days down time per year per waveform stations - 14 continuous for radionuclide stations) for continuous data sending stations. In this presentation, we will present our case regarding our intervention at stations to address equipment supportability and maintainability, as these are particularly large activities requiring the removal of a substantial part of the station equipment and installation of new equipment. The objective is always to plan these activities while minimizing downtime and continuing to meet all IMS requirements, including those of data availability mentioned above. We postulate that these objectives are better achieved by planning and making use of preventive maintenance, as opposed to "run-to-failure" with associated corrective maintenance. We use two recently upgraded Infrasound Stations (IS39 Palau and IS52 BIOT) as a case study and establish a comparison between these results and several other stations where corrective maintenance was performed, to demonstrate our hypothesis.
Life sciences utilization of Space Station Freedom
NASA Technical Reports Server (NTRS)
Chambers, Lawrence P.
1992-01-01
Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.
Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An
2018-05-01
In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.
Continuous turbidity monitoring in streams of northwestern California
Rand Eads; Jack Lewis
2002-01-01
Abstract - Redwood Sciences Laboratory, a field office of the USDA Forest Service, Pacific Southwest Research Station has developed and refined methods and instrumentation to monitor turbidity and suspended sediment in streams of northern California since 1996. Currently we operate 21 stations and have provided assistance in the installation of 6 gaging stations for...
47 CFR 74.1262 - Frequency monitors and measurements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...
47 CFR 74.1262 - Frequency monitors and measurements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...
47 CFR 74.1262 - Frequency monitors and measurements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...
47 CFR 74.1262 - Frequency monitors and measurements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...
47 CFR 74.1262 - Frequency monitors and measurements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1262 Frequency monitors and measurements. (a) The... approved for use by an FM translator or booster. (b) In the event that a station authorized under this... translator or booster shall be made by a qualified person in accordance with § 74.1250(g). ...
Does a Rater's Professional Background Influence Communication Skills Assessment?
Artemiou, Elpida; Hecker, Kent G; Adams, Cindy L; Coe, Jason B
2015-01-01
There is increasing pressure in veterinary education to teach and assess communication skills, with the Objective Structured Clinical Examination (OSCE) being the most common assessment method. Previous research reveals that raters are a large source of variance in OSCEs. This study focused on examining the effect of raters' professional background as a source of variance when assessing students' communication skills. Twenty-three raters were categorized according to their professional background: clinical sciences (n=11), basic sciences (n=4), clinical communication (n=5), or hospital administrator/clinical skills technicians (n=3). Raters from each professional background were assigned to the same station and assessed the same students during two four-station OSCEs. Students were in year 2 of their pre-clinical program. Repeated-measures ANOVA results showed that OSCE scores awarded by the rater groups differed significantly: (F(matched_station_1) [2,91]=6.97, p=.002), (F(matched_station_2) [3,90]=13.95, p=.001), (F(matched_station_3) [3,90]=8.76, p=.001), and ((Fmatched_station_4) [2,91]=30.60, p=.001). A significant time effect between the two OSCEs was calculated for matched stations 1, 2, and 4, indicating improved student performances. Raters with a clinical communication skills background assigned scores that were significantly lower compared to the other rater groups. Analysis of written feedback provided by the clinical sciences raters showed that they were influenced by the students' clinical knowledge of the case and that they did not rely solely on the communication checklist items. This study shows that it is important to consider rater background both in recruitment and training programs for communication skills' assessment.
Understanding the rapid growth of background concentrations of methane in 2007
NASA Astrophysics Data System (ADS)
Witham, C. S.; Manning, A. J.; O'Doherty, S.; Simmonds, P. G.
2009-04-01
The growth of background levels of atmospheric methane showed a marked increase in both hemispheres in 2007. This paper looks at the data from a range of observation stations that monitor methane at high frequency, including Barrow (Alaska), Ragged Point (Barbados), Trinidad Head (California), Cape Grim (Australia), Cape Matatula (Samoa), Gosan (South Korea) and Mace Head (Ireland), to try to understand the likely causes for this sudden rise. At each station the recent history of the air arriving at each station is considered using the NAME model. NAME (Numerical Atmospheric-dispersion Modelling Environment) is a Lagrangian atmospheric dispersion model that uses 3D meteorology from the UK Met Office numerical weather prediction model. High temporal resolution and high precision measurements of a wide range of trace gases in ambient air are available from the instrumentation at the AGAGE (Advanced Global Atmospheric Gases Experiment), NOAA and Korean measurement stations. The locations of these stations span both hemispheres and therefore allow global changes to be monitored. In this work, we are primarily interested in the measurements of methane and carbon monoxide. Baseline concentrations of methane and carbon monoxide have been determined for both the Northern and Southern Hemispheres using NAME and statistical post-processing of the observations at each measurement station. For this application, NAME is run backwards in time for ten days for each 3-hour interval for the years of specific interest 2006-2008 inclusive, releasing thousands of model particles at each observing site. A map is then produced estimating all of the surface (0-100m) contributions within ten days of travel arriving at each site during each interval. The resulting matrix describes the dilution in concentration that occurs from a unit release from each grid as it travels to the measurement site. By identifying regions where air is expected to be unpolluted, baseline periods can be determined. Statistical filtering of the remaining data allows a daily baseline concentration to be estimated for each station. These baselines are used to generate a time series of "polluted" (above baseline) observations at each station. Analysis of these baseline and polluted levels over time allows identification of changes in growth rates and seasonal cycles for each species, site and hemisphere. In 2007, the growth rate of background levels of methane was significantly elevated at all AGAGE stations (Rigby et al., 2008). The increase in growth rate appears to have occurred nearly simultaneously in both hemispheres. This raises the possibility of a common global cause for the change and a previously postulated explanation is that it could be due to a change in the global OH sink. However, OH is the main atmospheric sink for carbon monoxide and we see no coincident change in the growth rate of this species. In fact, there has been negligible growth in carbon monoxide at Mace Head since the end of 2005. The magnitude of the observed change also varied with location and was highest in the high Arctic. Another postulated theory was enhanced emissions in the high Arctic, but in isolation this would fail to explain a change that was seen so rapidly across the globe, particularly in the Southern Hemisphere. We present detailed analyses of the origin of the air reaching each site during the start of the period of growth. For each point identified as baseline, we consider the recent history of the air to determine whether there was a significant change in the source area of measured methane during this period and discern the geographical area responsible for the rise in background levels. The results provide useful insight to the key questions as to whether all sites were affected simultaneously (or whether there was a gradual change between different sites over a few months) and why the magnitude of the change may have been different at different latitudes. Reference: Rigby, M., et al. (2008), Renewed growth of atmospheric methane, Geophys. Res. Lett., 35, L22805, doi:10.1029/2008GL036037.
Atmosphere and water quality monitoring on Space Station Freedom
NASA Technical Reports Server (NTRS)
Niu, William
1990-01-01
In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.
NASA Astrophysics Data System (ADS)
Ivanov, D. V.; Uratsuka, M.-R.; Ipatov, A. V.; Marshalov, D. A.; Shuygina, N. V.; Vasilyev, M. V.; Gayazov, I. S.; Ilyin, G. N.; Bondarenko, Yu. S.; Melnikov, A. E.; Suvorkin, V. V.
2018-04-01
The article presents the main possibilities of using the projected Russian-Cuban geodynamic colocation station on the basis of the Institute of Geophysics and Astronomy of the Ministry of Science, Technology and the Environment of the Republic of Cuba to carry out radio observations and monitoring the near-Earth space. Potential capabilities of the station are considered for providing various observational programs: astrophysical observations; observations by space geodesy methods using radio very long baselines interferometers, global navigation satellite systems, laser rangers, and various Doppler systems, as well as monitoring of artificial and natural bodies in the near-Earth and deep space, including the ranging of asteroids approaching the Earth. The results of modeling the observations on the planned station are compared with that obtained on the existing geodynamic stations. The efficiency of the projected Russian-Cuban station for solving astronomical tasks is considered.
2000-09-14
KENNEDY SPACE CENTER, FLA. -- A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
2000-09-14
KENNEDY SPACE CENTER, FLA. -- A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
Quality of surface water in Missouri, water year 2010
Barr, Miya N.
2011-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
NASA Astrophysics Data System (ADS)
López-Comino, J. A.; Cesca, S.; Kriegerowski, M.; Heimann, S.; Dahm, T.; Mirek, J.; Lasocki, S.
2017-07-01
Ideally, the performance of a dedicated seismic monitoring installation should be assessed prior to the observation of target seismicity. This work is focused on a hydrofracking experiment monitored at Wysin, NE Poland. A microseismic synthetic catalogue is generated to assess the monitoring performance during the pre-operational phase, where seismic information only concerns the noise conditions and the potential background seismicity. Full waveform, accounting for the expected spatial, magnitude and focal mechanism distributions and a realistic local crustal model, are combined with real noise recording to produce either event based or continuous synthetic waveforms. The network detection performance is assessed in terms of the magnitude of completeness (Mc) through two different techniques. First, we use an amplitude threshold, taking into the ratio among the maximal amplitude of synthetic waveforms and station-dependent noise levels, for different values of signal-to-noise ratio. The detection probability at each station is estimated for the whole data set and extrapolated to a broader range of magnitude and distances. We estimate an Mc of about 0.55, when considering the distributed network, and can further decrease Mc to 0.45 using arrays techniques. The second approach, taking advantage on an automatic, coherence-based detection algorithm, can lower Mc to ∼ 0.1, at the cost of an increase of false detections. Mc experiences significant changes during day hours, in consequence of strongly varying noise conditions. Moreover, due to the radiation patterns and network geometry, double-couple like sources are better detected than tensile cracks, which may be induced during fracking.
SKYLAB (SL) - ORBITAL WORKSHOP (OWS) - JSC
1973-05-29
S73-26849 (25 May 1973) --- Four flight directors for the Skylab 1 and 2 mission are grouped around the flight director's console in the Mission Operations Control Room in the Mission Control Center at Johnson Space Center during the Skylab 2 Command/Service Module (CSM) "fly around" inspection of the Skylab 1 space station cluster. They are, going counterclockwise from center foreground, Donald R. Puddy (white shirt), Milton Windler, Philip C. Shaffer and M.P. Frank. A view of the Skylab 1 Orbital Workshop seen from the Skylab 2 CSM is visible on the television monitor in the background. Photo credit: NASA
47 CFR 73.68 - Sampling systems for antenna monitors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Sampling systems for antenna monitors. 73.68... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.68 Sampling systems for antenna monitors. (a) Each AM station permittee authorized to construct a new directional antenna system which will be subject...
47 CFR 73.68 - Sampling systems for antenna monitors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Sampling systems for antenna monitors. 73.68... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.68 Sampling systems for antenna monitors. (a) Each AM station permittee authorized to construct a new directional antenna system which will be subject...
47 CFR 73.68 - Sampling systems for antenna monitors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Sampling systems for antenna monitors. 73.68... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.68 Sampling systems for antenna monitors. (a) Each AM station permittee authorized to construct a new directional antenna system which will be subject...
47 CFR 73.68 - Sampling systems for antenna monitors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Sampling systems for antenna monitors. 73.68... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.68 Sampling systems for antenna monitors. (a) Each AM station permittee authorized to construct a new directional antenna system which will be subject...
47 CFR 73.68 - Sampling systems for antenna monitors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Sampling systems for antenna monitors. 73.68... RADIO BROADCAST SERVICES AM Broadcast Stations § 73.68 Sampling systems for antenna monitors. (a) Each AM station permittee authorized to construct a new directional antenna system which will be subject...
Quality of surface water in Missouri, water year 2009
Barr, Miya N.
2010-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.
13. I95 bridge crossing corridor with Providence Station in background. ...
13. I-95 bridge crossing corridor with Providence Station in background. Providence, Providence County, RI. sec. 4116, mp 185.15. - Northeast Railroad Corridor, Amtrak route between CT & MA state lines, Providence, Providence County, RI
Diurnal variations of ELF transients and background noise in the Schumann resonance band
NASA Astrophysics Data System (ADS)
Greenberg, Eran; Price, Colin
2007-02-01
Schumann resonances (SR) are resonant electromagnetic waves in the Earth-ionosphere cavity, induced primarily by lightning discharges, with a fundamental frequency of about 8 Hz and higher-order modes separated by approximately 6 Hz. The SR are made up of the background signal resulting from global lightning activity and extremely low frequency (ELF) transients resulting from particularly intense lightning discharges somewhere on the planet. Since transients within the Earth-ionosphere cavity due to lightning propagate globally in the ELF range, we can monitor and study global ELF transients from a single station. Data from our Negev Desert (Israel) ELF site are collected using two horizontal magnetic induction coils and a vertical electric field ball antenna, monitored in the 5-40 Hz range with a sampling frequency of 250 Hz. In this paper we present statistics related to the probability distribution of ELF transients and background noise in the time domain and its temporal variations during the day. Our results show that the ELF signal in the time domain follows the normal distribution very well. The σ parameter exhibits three peaks at 0800, 1400, and 2000 UT, which are related to the three main global lightning activity centers in Asia, Africa, and America, respectively. Furthermore, the occurrence of intense ELF events obeys the Poisson distribution, with such intense events occurring every ~10 s, depending on the time of the day. We found that the diurnal changes of the σ parameter are several percent of the mean, while for the number of intense events per minute, the diurnal changes are tens of percent about the mean. We also present the diurnal changes of the SR intensities in the frequency domain as observed at our station. To better understand the diurnal variability of the observations, we simulated the measured ELF background noise using space observations as input, as detected by the Optical Transient Detector (OTD). The most active center which is reflected from both ELF measurements and OTD observations is in Africa. However, the second most active center on the basis of ELF measurements appears to be Asia, while OTD observations show that the American center is more active than the Asian center. These differences are discussed. This paper contributes to our understanding of the origin of the SR by comparing different lightning data sets: background electromagnetic radiation and optical emission observed from space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Paul; Blessinger, Christopher S; Guzzardo, Tyler
A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associatedmore » with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.« less
GSFC contamination monitors for Space Station
NASA Technical Reports Server (NTRS)
Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.
1988-01-01
This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.
47 CFR 73.1690 - Modification of transmission systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... antenna system. See § 73.45 and § 73.150. (5) Any decrease in the authorized power of an AM station or the... station is located in or near a radio quiet zone, radio coordination zone, or a Commission monitoring... Information Bureau in the case of a monitoring station, to increase effective radiated power PRIOR to...
47 CFR 73.1690 - Modification of transmission systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... antenna system. See § 73.45 and § 73.150. (5) Any decrease in the authorized power of an AM station or the... coordination zone, or a Commission monitoring station (see § 73.1030 and § 0.121(c)), the licensee or permittee... the Commission's Compliance and Information Bureau in the case of a monitoring station, to increase...
USDA-ARS?s Scientific Manuscript database
The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...
Quality of stormwater runoff discharged from Massachusetts highways, 2005-07
Smith, Kirk P.; Granato, Gregory E.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with U.S. Department of Transportation Federal Highway Administration and the Massachusetts Department of Transportation, conducted a field study from September 2005 through September 2007 to characterize the quality of highway runoff for a wide range of constituents. The highways studied had annual average daily traffic (AADT) volumes from about 3,000 to more than 190,000 vehicles per day. Highway-monitoring stations were installed at 12 locations in Massachusetts on 8 highways. The 12 monitoring stations were subdivided into 4 primary, 4 secondary, and 4 test stations. Each site contained a 100-percent impervious drainage area that included two or more catch basins sharing a common outflow pipe. Paired primary and secondary stations were located within a few miles of each other on a limited-access section of the same highway. Most of the data were collected at the primary and secondary stations, which were located on four principal highways (Route 119, Route 2, Interstate 495, and Interstate 95). The secondary stations were operated simultaneously with the primary stations for at least a year. Data from the four test stations (Route 8, Interstate 195, Interstate 190, and Interstate 93) were used to determine the transferability of the data collected from the principal highways to other highways characterized by different construction techniques, land use, and geography. Automatic-monitoring techniques were used to collect composite samples of highway runoff and make continuous measurements of several physical characteristics. Flowweighted samples of highway runoff were collected automatically during approximately 140 rain and mixed rain, sleet, and snowstorms. These samples were analyzed for physical characteristics and concentrations of 6 dissolved major ions, total nutrients, 8 total-recoverable metals, suspended sediment, and 85 semivolatile organic compounds (SVOCs), which include priority polyaromatic hydrocarbons (PAHs), phthalate esters, and other anthropogenic or naturally occurring organic compounds. The distribution of particle size of suspended sediment also was determined for composite samples of highway runoff. Samples of highway runoff were collected year round and under various dry antecedent conditions throughout the 2-year sampling period. In addition to samples of highway runoff, supplemental samples also were collected of sediment in highway runoff, background soils, berm materials, maintenance sands, deicing compounds, and vegetation matter. These additional samples were collected near or on the highways to support data analysis. There were few statistically significant differences between populations of constituent concentrations in samples from the primary and secondary stations on the same principal highways (Mann-Whitney test, 95-percent confidence level). Similarly, there were few statistically significant differences between populations of constituent concentrations for the four principal highways (data from the paired primary and secondary stations for each principal highway) and populations for test stations with similar AADT volumes. Exceptions to this include several total-recoverable metals for stations on Route 2 and Interstate 195 (highways with moderate AADT volumes), and for stations on Interstate 95 and Interstate 93 (highways with high AADT volumes). Supplemental data collected during this study indicate that many of these differences may be explained by the quantity, as well as the quality, of the sediment in samples of highway runoff. Nonparametric statistical methods also were used to test for differences between populations of sample constituent concentrations among the four principal highways that differed mainly in traffic volume. These results indicate that there were few statistically significant differences (Mann-Whitney test, 95-percent confidence level) for populations of concentrations of most total-recoverable metals
Low Background Counting at LBNL
Smith, A. R.; Thomas, K. J.; Norman, E. B.; ...
2015-03-24
The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background cave and remotely at an underground location that historically has operated underground in Oroville, CA, but has recently been relocated to the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K)more » or common cosmogenic/anthropogenic products, as well as active screening via Neutron Activation Analysis for specific applications. The LBF also provides hosting services for general R&D testing in low background environments on the surface or underground for background testing of detector systems or similar prototyping. A general overview of the facilities, services, and sensitivities is presented. Recent activities and upgrades will also be presented, such as the completion of a 3π anticoincidence shield at the surface station and environmental monitoring of Fukushima fallout. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.« less
Kraus, Tamara E.C.; Bergamaschi, Brian A.; Downing, Bryan D.
2017-07-11
Executive SummaryThis report is the first in a series of three reports that provide information about high-frequency (HF) nutrient and biogeochemical monitoring in the Sacramento–San Joaquin Delta of northern California (Delta). This first report provides an introduction to the reasons for and fundamental concepts behind collecting HF measurements, and describes the benefits associated with a real-time, continuous, HF, multi-parameter water quality monitoring station network that is co-located with flow stations. It then provides examples of how HF nutrient measurements have improved our understating of nutrient sources and cycling in aquatic systems worldwide, followed by specific examples from the Delta. These examples describe the ways in which HF instrumentation may be used for both fixed-station and spatial assessments. The overall intent of this document is to describe how HF measurements currently (2017) are being used in the Delta to examine the relationship between nutrient concentrations, nutrient cycling, and aquatic habitat conditions.The second report in the series (Downing and others, 2017) summarizes information about HF nutrient and associated biogeochemical monitoring in the northern Delta. The report synthesizes data available from the nutrient and water quality monitoring network currently operated by the U.S. Geological Survey in this ecologically important region of the Delta. In the report, we present and discuss the available data at various timescales—first, at the monthly, seasonal, and inter-annual timescales; and, second, for comparison, at the tidal and event (for example, storms, reservoir releases, phytoplankton blooms) timescales. As expected, we determined that there is substantial variability in nitrate concentrations at short timescales within hours, but also significant variability at longer timescales such as months or years. This multi-scale, high variability affects calculation of fluxes and loads, indicating that HF monitoring is necessary for understanding and assessing flux-based processes and outcomes in tidal environments, such as the Delta.The third report in the series (Bergamaschi and others, 2017) provides information about how to design HF nutrient and biogeochemical monitoring for assessment of nutrient inputs and dynamics in the Delta. The report provides background, principles, and considerations for designing an HF nutrient-monitoring network for the Sacramento–San Joaquin Delta to address high-priority, nutrient-management questions. The report starts with high-priority management questions to be addressed, continues with questions and considerations that place demands and constraints on network design, discusses the principles applicable to network design, and concludes with the presentation of three example nutrient‑monitoring network designs for the Delta. For the three example networks, we assess how they would address high-priority questions identified by the Delta Regional Monitoring Program (Delta Regional Monitoring Program Technical Advisory Committee, 2015).
Monitoring fossil fuel sources of methane in Australia
NASA Astrophysics Data System (ADS)
Loh, Zoe; Etheridge, David; Luhar, Ashok; Hibberd, Mark; Thatcher, Marcus; Noonan, Julie; Thornton, David; Spencer, Darren; Gregory, Rebecca; Jenkins, Charles; Zegelin, Steve; Leuning, Ray; Day, Stuart; Barrett, Damian
2017-04-01
CSIRO has been active in identifying and quantifying methane emissions from a range of fossil fuel sources in Australia over the past decade. We present here a history of the development of our work in this domain. While we have principally focused on optimising the use of long term, fixed location, high precision monitoring, paired with both forward and inverse modelling techniques suitable either local or regional scales, we have also incorporated mobile ground surveys and flux calculations from plumes in some contexts. We initially developed leak detection methodologies for geological carbon storage at a local scale using a Bayesian probabilistic approach coupled to a backward Lagrangian particle dispersion model (Luhar et al. JGR, 2014), and single point monitoring with sector analysis (Etheridge et al. In prep.) We have since expanded our modelling techniques to regional scales using both forward and inverse approaches to constrain methane emissions from coal mining and coal seam gas (CSG) production. The Surat Basin (Queensland, Australia) is a region of rapidly expanding CSG production, in which we have established a pair of carefully located, well-intercalibrated monitoring stations. These data sets provide an almost continuous record of (i) background air arriving at the Surat Basin, and (ii) the signal resulting from methane emissions within the Basin, i.e. total downwind methane concentration (comprising emissions including natural geological seeps, agricultural and biogenic sources and fugitive emissions from CSG production) minus background or upwind concentration. We will present our latest results on monitoring from the Surat Basin and their application to estimating methane emissions.
A remote drip infusion monitoring system employing Bluetooth.
Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton
2012-01-01
We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.
The status and prospective of environmental radiation monitoring stations in Saudi Arabia
NASA Astrophysics Data System (ADS)
Al-Kheliewi, Abdullah S.; Holzheimer, Clous
2014-09-01
The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS's) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS's. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS).
Gamma-Radiation Background Onboard Russian Orbital Stations
NASA Astrophysics Data System (ADS)
Dmitrenko, V. V.; Galper, A. M.; Gratchev, V. M.; Kirillov-Ugryumov, V. G.; Krivov, S. V.; Moiseev, A. A.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.; Yurkin, Yn. T.
Large manned space flight missions have several advantages for carrying out astrophysical and cosmic ray experiments, including the ability to install heavy instruments with large dimensions, increased electrical power and telemetry capacity, and the operation of fixed instruments by qualified personnel (astronauts). The main disadvantage in the use of heavy orbital stations for these experiments is the high level of background radiation generated by the interaction of station material with primary cosmic rays, high energy particles that exist in the magnetosphere of Earth, and albedo radiation from Earth. In some cases, additional radiation may originate from man-made radiation sources installed at the stations. For many years MEPhI have maintained experiments onboard manned Russian space flight missions to study primary gamma-rays at two energy intervals: 0.1 - 8 MeV and 30-600 MeV and electrons with energy more than 30 MeV. During these experiments significant time was spent investigating high energy background radiation onboard the stations. To measure 30-600 MeV gamma-rays, the gas-Cherenkov-scintillation telescope Elena was used. The angular view of this telescope was 10 deg, with a geometrical factor of 0.5 cm2sr. This telescope was operated onboard the orbital stations Salyut-6 and Salyut-7. Usually these stations were operated together with the space missions Soyuz and Progress. For background measurements, cosmonauts installed the telescope at various locations on Salyut, Soyuz and Progress, and oriented it in various directions respectively to the station's axes. During these experiments, the orbital stations were not oriented.
Computer systems for automatic earthquake detection
Stewart, S.W.
1974-01-01
U.S Geological Survey seismologists in Menlo park, California, are utilizing the speed, reliability, and efficiency of minicomputers to monitor seismograph stations and to automatically detect earthquakes. An earthquake detection computer system, believed to be the only one of its kind in operation, automatically reports about 90 percent of all local earthquakes recorded by a network of over 100 central California seismograph stations. The system also monitors the stations for signs of malfunction or abnormal operation. Before the automatic system was put in operation, all of the earthquakes recorded had to be detected by manually searching the records, a time-consuming process. With the automatic detection system, the stations are efficiently monitored continuously.
Verifying the operational set-up of a radionuclide air-monitoring station.
Werzi, R; Padoani, F
2007-05-01
A worldwide radionuclide network of 80 stations, part of the International Monitoring System, was designed to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty. After installation, the stations are certified to comply with the minimum requirements laid down by the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization. Among the several certification tests carried out at each station, the verification of the radionuclide activity concentrations is a crucial one and is based on an independent testing of the airflow rate measurement system and of the gamma detector system, as well as on the assessment of the samples collected during parallel sampling and measured at radionuclide laboratories.
NASA Astrophysics Data System (ADS)
Jiang, J.; Gu, F.; Gennish, R.; Moore, D. J.; Harris, G.; Ball, A. D.
2008-08-01
Acoustic methods are among the most useful techniques for monitoring the condition of machines. However, the influence of background noise is a major issue in implementing this method. This paper introduces an effective monitoring approach to diesel engine combustion based on acoustic one-port source theory and exhaust acoustic measurements. It has been found that the strength, in terms of pressure, of the engine acoustic source is able to provide a more accurate representation of the engine combustion because it is obtained by minimising the reflection effects in the exhaust system. A multi-load acoustic method was then developed to determine the pressure signal when a four-cylinder diesel engine was tested with faults in the fuel injector and exhaust valve. From the experimental results, it is shown that a two-load acoustic method is sufficient to permit the detection and diagnosis of abnormalities in the pressure signal, caused by the faults. This then provides a novel and yet reliable method to achieve condition monitoring of diesel engines even if they operate in high noise environments such as standby power stations and vessel chambers.
Dou, Ming; Zhang, Yan; Li, Guiqiu
2016-09-01
Based on the monitoring data of 78 monitoring stations from 2003 to 2012, five key water quality indexes (biochemical oxygen demand: BOD5, permanganate index: CODMn, dissolved oxygen: DO, ammonium nitrogen: NH3-N, and total phosphorus: TP) were selected to analyze their temporal and spatial characteristics in the highly disturbed Huaihe River Basin via Mann-Kendall trend analysis and boxplot analysis. The temporal and spatial variations of water pollutant concentrations in the Huaihe River Basin were investigated and analyzed to provide a scientific basis for water pollution control, water environment protection, and ecological restoration. The results indicated that the Yinghe River, Quanhe River, Honghe River, Guohe River, and Baohe River were the most seriously polluted rivers, followed by Hongze Lake, Luoma Lake, Yishuhe River, and Nansi Lake. BOD5, CODMn, and NH3-N were the major pollution indexes, for which the monitoring stations reported that more than 40 % of the water quality concentrations exceeded the class IV level. There were 21, 50, 36, and 21 monitoring stations that recorded significantly decreasing trends for BOD5, CODMn, NH3-N, and TP, respectively, and 39 monitoring stations showed a significantly increasing trend for DO. Moreover, the water quality concentrations had a certain concentricity and volatility according to boxplot analysis for the 20 monitoring stations. The majority of monitoring stations recorded a large fluctuation for the monitoring indexes in 2003 and 2004, which indicated that the water quality concentrations were unstable. According to the seasonal variations of the water quality concentrations in the mainstream of Huaihe River, the monthly variation trends of the BOD5, CODMn, DO, NH3-N, and TP concentrations were basically consistent among the seven monitoring stations. The BOD5, CODMn, NH3-N, and TP concentrations were affected by the change of the stream discharge; changes in DO and NH3-N concentrations were influenced by the regional environmental temperature, and the DO and NH3-N concentrations decreased when the water temperature increased.
Baker, Nancy T.
2011-01-01
This report and the accompanying geospatial data were created to assist in analysis and interpretation of water-quality data provided by the U.S. Geological Survey's National Stream Quality Accounting Network (NASQAN) and by the U.S. Coastal Waters and Tributaries National Monitoring Network (NMN), which is a cooperative monitoring program of Federal, regional, and State agencies. The report describes the methods used to develop the geospatial data, which was primarily derived from the National Watershed Boundary Dataset. The geospatial data contains polygon shapefiles of basin boundaries for 33 NASQAN and 5 NMN streamflow and water-quality monitoring stations. In addition, 30 polygon shapefiles of the closed and noncontributing basins contained within the NASQAN or NMN boundaries are included. Also included is a point shapefile of the NASQAN and NMN monitoring stations and associated basin and station attributes. Geospatial data for basin delineations, associated closed and noncontributing basins, and monitoring station locations are available at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ds641_nasqan_wbd12.xml.
Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia
NASA Astrophysics Data System (ADS)
Ou-Yang, Chang-Feng; Lin, Neng-Huei; Lin, Chia-Ching; Wang, Sheng-Hsiang; Sheu, Guey-Rong; Lee, Chung-Te; Schnell, Russell C.; Lang, Patricia M.; Kawasato, Taro; Wang, Jia-Lin
2014-06-01
Atmospheric CO were monitored at the Lulin Atmospheric Background Station (LABS) with an elevation of 2862 m AMSL from April 2006 to April 2011 by the in-situ non-dispersive infrared (NDIR) spectrometer and weekly flask sample collections via collaboration with NOAA/ESRL/GMD. In general very coherent results were observed between the two datasets, despite a slight difference between the two. A distinct seasonal pattern of CO was noticed at the LABS with a springtime maximum and a summertime minimum, which was predominately shaped by the long-range transport of biomass burning air masses from Southeast Asia and oceanic influences from the Pacific, respectively. Diurnal cycles were also observed at the LABS, with a maximum in late afternoon and a minimum in early morning. The daytime CO maximum was most likely caused by the up-slope transport of lower elevation air. After filtering out the possibly polluted data points from the entire dataset with a mathematic procedure, the mean background CO level at the LABS was assessed as 129.3 ± 46.6 ppb, compared to 149.0 ± 72.2 ppb prior to the filtering. The cluster analysis of the backward trajectories revealed six possible source regions, which shows that air masses originating from the Westerly Wind Zone were dominated in spring and winter resulting in higher CO concentrations. As a contrast, the oceanic influences from the Pacific were found mostly in summer, contributing a lower seasonal CO concentration throughout a year.
View west of load dispatch model board; section covers substations ...
View west of load dispatch model board; section covers substations from edgerly (right) to thorndale and west yard (left). Instruments at bottom of center board section formerly monitored energy usage and were replaced by a computerized monitoring system. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Spahr, Norman E.; Hartle, David M.; Diaz, Paul
2008-01-01
Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were collected following USGS protocols.
Solberg, P.A.; Moore, Bryan; Smits, Dennis
2009-01-01
Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were collected following USGS protocols (U.S. Geological Survey, variously dated).
Using geo-targeted social media data to detect outdoor air pollution
NASA Astrophysics Data System (ADS)
Jiang, W.; Wang, Y.; Tsou, M. H.; Fu, X.
2016-06-01
Outdoor air pollution has become a more and more serious issue over recent years (He, 2014). Urban air quality is measured at air monitoring stations. Building air monitoring stations requires land, incurs costs and entails skilled technicians to maintain a station. Many countries do not have any monitoring stations and even lack any means to monitor air quality. Recent years, the social media could be used to monitor air quality dynamically (Wang, 2015; Mei, 2014). However, no studies have investigated the inter-correlations between real-space and cyberspace by examining variation in micro-blogging behaviors relative to changes in daily air quality. Thus, existing methods of monitoring AQI using micro-blogging data shows a high degree of error between real AQI and air quality as inferred from social media messages. In this paper, we introduce a new geo-targeted social media analytic method to (1) investigate the dynamic relationship between air pollution-related posts on Sina Weibo and daily AQI values; (2) apply Gradient Tree Boosting, a machine learning method, to monitor the dynamics of AQI using filtered social media messages. Our results expose the spatiotemporal relationships between social media messages and real-world environmental changes as well suggesting new ways to monitor air pollution using social media.
Roadside and in-vehicle concentrations of monoaromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Leung, Pei-Ling; Harrison, Roy M.
Airborne concentrations of benzene, toluene and the xylenes have been measured inside passenger cars whilst driven along major roads in the city of Birmingham, UK, as well as immediately outside the car, and at the roadside. A comparison of concentrations measured in the car with those determined from immediately outside showed little difference, with a mean ratio for benzene of 1.17±0.34 and for toluene 1.11±0.16 ( n=53). The ratio of in-car to roadside concentration was rather higher at 1.55±0.68 for benzene and 1.54±0.72 for toluene ( n=53). The roadside concentrations were typically several-fold higher than those measured at a background suburban monitoring station within Birmingham, although much variation was seen between congested and uncongested roads, with concentrations adjacent to uncongested roads similar to those measured at the background monitoring station. Measurements of benzene and toluene in a car driven on a rural road outside the city showed very comparable in-car and out-of-car concentrations strengthening the conclusion that pollution inside the car is derived from pollutants outside entering with ventilation air. The exceptions were an older car where in-car concentrations appreciably exceeded those outside (in-to out-vehicle ratio=2.3 for benzene and 2.2 for toluene where n=5) indicating probable self-contamination, and a very new car which built up increased VOC concentrations when stationary without ventilation (in-to out-vehicle ratio=2.4 for benzene and 3.3 for toluene where n=5). A further set of measurements inside London taxi cabs showed concentrations to be influenced by the area within which the taxi was driven, the traffic density and the presence of passengers smoking cigarettes.
Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station
NASA Technical Reports Server (NTRS)
Drouant, George J. (Inventor); Jensen, Scott L. (Inventor)
2013-01-01
A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.
Motor recovery monitoring using acceleration measurements in post acute stroke patients
2013-01-01
Background Stroke is one of the major causes of morbidity and mortality. Its recovery and treatment depends on close clinical monitoring by a clinician especially during the first few hours after the onset of stroke. Patients who do not exhibit early motor recovery post thrombolysis may benefit from more aggressive treatment. Method A novel approach for monitoring stroke during the first few hours after the onset of stroke using a wireless accelerometer based motor activity monitoring system is developed. It monitors the motor activity by measuring the acceleration of the arms in three axes. In the presented proof of concept study, the measured acceleration data is transferred wirelessly using iMote2 platform to the base station that is equipped with an online algorithm capable of calculating an index equivalent to the National Institute of Health Stroke Score (NIHSS) motor index. The system is developed by collecting data from 15 patients. Results We have successfully demonstrated an end-to-end stroke monitoring system reporting an accuracy of calculating stroke index of more than 80%, highest Cohen’s overall agreement of 0.91 (with excellent κ coefficient of 0.76). Conclusion A wireless accelerometer based ‘hot stroke’ monitoring system is developed to monitor the motor recovery in acute-stroke patients. It has been shown to monitor stroke patients continuously, which has not been possible so far with high reliability. PMID:23590690
All chain Loran-C time synchronization
NASA Technical Reports Server (NTRS)
Sherman, H. T.
1973-01-01
A program is in progress to implement coordinated universal time (UTC) synchronization on all Loran-C transmissions. The present capability is limited to five Loran-C chains in which the tolerance is twenty-five microseconds with respect to UTC. Upon completion of the program, the transmissions of all Loran-C chains will be maintained within five microseconds of UTC. The improvement plan consists of equipping selected Loran-C transmitting stations for greater precision of frequency standard adjustment and improved monitoring capability. External time monitor stations will utilize television time transfer techniques with nearby SATCOM terminals where practicable, thus providing the requisite traceability to the Naval Observatory. The monitor equipment groups and the interrelationships with the ground station equipment are discussed. After a brief review of control doctrine, forth-coming improvements to transmitting stations and how the time monitor and navigation equipments will complement each other resulting in improved service to all users of the Loran-C system are described.
Quality of surface water in Missouri, water year 2015
Barr, Miya N.; Heimann, David C.
2016-11-14
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.
Quality of surface water in Missouri, water year 2011
Barr, Miya N.
2012-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Quality of surface water in Missouri, water year 2014
Barr, Miya N.
2015-12-18
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Common View Time Transfer Using Worldwide GPS and DMA Monitor Stations
NASA Technical Reports Server (NTRS)
Reid, Wilson G.; McCaskill, Thomas B.; Oaks, Orville J.; Buisson, James A.; Warren, Hugh E.
1996-01-01
Analysis of the on-orbit Navstar clocks and the Global Positioning System (GPS) monitor station reference clocks is performed by the Naval Research Laboratory using both broadcast and postprocessed precise ephemerides. The precise ephemerides are produced by the Defense Mapping Agency (DMA) for each of the GPS space vehicles from pseudo-range measurements collected at five GPS and at five DMA monitor stations spaced around the world. Recently, DMA established an additional site co-located with the US Naval Observatory precise time site. The time reference for the new DMA site is the DoD Master Clock. Now, for the first time, it is possible to transfer time every 15 minutes via common view from the DoD Master Clock to the 11 GPS and DMA monitor stations. The estimated precision of a single common-view time transfer measurement taken over a 15-minute interval was between 1.4 and 2.7 nanoseconds. Using the measurements from all Navstar space vehicles in common view during the 15-minute interval, typically 3-7 space vehicles, improved the estimate of the precision to between 0.65 and 1.13 nanoseconds. The mean phase error obtained from closure of the time transfer around the world using the 11 monitor stations and the 25 space vehicle clocks over a period of 4 months had a magnitude of 31 picoseconds. Analysis of the low noise time transfer from the DoD Master Clock to each of the monitor stations yields not only the bias in the time of the reference clock, but also focuses attention on structure in the behaviour of the reference clock not previously seen. Furthermore, the time transfer provides a a uniformly sampled database of 15-minute measurements that make possible, for the first time, the direct and exhaustive computation of the frequency stability of the monitor station reference clocks. To lend perspective to the analysis, a summary is given of the discontinuities in phase and frequency that occurred in the reference clock at the Master Control Station during the period covered by the analysis.
Ground Level Ozone Regional Background Characteristics In North-west Pacific Rim
NASA Astrophysics Data System (ADS)
Chiang, C.; Fan, J.; Chang, J. S.
2007-12-01
Understanding the ground level ozone regional background characteristics is essential in understanding the contribution of long-range transport of pollutants from Asia Mainland to air quality in downwind areas. In order to understand this characteristic in north-west Pacific Rim, we conducted a coupled study using ozone observation from regional background stations and 3-D regional-scale chemical transport model simulations. We used O3, CO, wind speed and wind direction data from two regional background stations and ¡§other stations¡¨ over a ten year period and organized several numerical experiments to simulate one spring month in 2003 to obtain a deeper understanding. The so called ¡§other stations¡¨ had actually been named as background stations under various governmental auspices. But we found them to be often under strong influence of local pollution sources with strong diurnal or slightly longer time variations. We found that the Yonagunijima station (24.74 N, 123.02 E) and Heng-Chuen station (21.96 N,120.78 E), about a distance of 400 km apart, have almost the same ozone time series pattern. For these two stations in 2003, correlation coefficients (R2) for annual observed ozone concentration is about 0.64, in the springtime it is about 0.7, and in a one-month period at simulation days it is about 0.76. These two stations have very little small scale variations in all the variables studied. All variations are associated with large scale circulation changes. This is especially so at Yonagunijima station. Using a 3-D regional-scale chemical transport model for East Asia region including contribution from Asia continental outflow and neighboring island pollution areas we found that the Yonagunijima and HengChuen station are indeed free of pollutants from all neighboring areas keeping in mind that pollutants from Taiwan area is never far away. Ozone concentrations in these two stations are dominated by synoptic scale weather patterns, with diffused pollutant contribution from distant sources. When the weather system brings in air mass from the low latitude of western Pacific Ocean, ozone concentrations are about 10-20 ppb. When the China high pressure system moves eastward and with the accompanying Asian continental outflow plume, ozone concentrations are about 65-80 ppb.
Photochemical Assessment Monitoring Stations (PAMS)
Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.
Levels, trends and health concerns of atmospheric PAHs in Europe
NASA Astrophysics Data System (ADS)
Garrido, Adrián; Jiménez-Guerrero, Pedro; Ratola, Nuno
2014-12-01
Changes in climate can affect the concentration patterns of polycyclic aromatic hydrocarbons (PAHs) by altering the dispersion (wind speed, mixing layer height, convective fronts), deposition by precipitation, dry deposition, photochemistry, natural emissions and background concentrations. This means the evolution trends of these pollutants have to be studied under a multi-scale perspective, allowing the establishment of transport patterns and distribution of PAHs. In this sense, this work tries to unveil the atmospheric behaviour of these pollutants using temporal data series collected in different stations from the European Monitoring and Evaluation Programme (EMEP) air sampling network. These sites are thought to avoid the direct influence of emitting areas (background stations), allowing the study of long-range transport effects, intra- and trans-annual variability, relationships between concentrations patterns and meteorological variables and latitudinal gradients of PAH levels in Europe. Overall, a typical high concentration pattern was found for the colder months (and an opposite behaviour is found for summertime). Negative trends were detected over high latitudes, for instance, in Svalbard (Norway), whereas for the United Kingdom the pattern is the inverse. Also, negative latitudinal gradients were observed in 4 of the 15 PAHs studied. Finally, air quality parameters revealed concern over human health issues, given the recent increase of BaP levels in Europe.
Open hardware, low cost, air quality stations for monitoring ozone in coastal area
NASA Astrophysics Data System (ADS)
Lima, Marco; Donzella, Davide; Pintus, Fabio; Fedi, Adriano; Ferrari, Daniele; Massabò, Marco
2014-05-01
Ozone concentrations in urban and coastal area are a great concern for citizens and, consequently regulator. In the last 20 years the Ozone concentration is almost doubled and it has attracted the public attention because of the well know harmful impacts on human health and biosphere in general. Official monitoring networks usually comprise high precision, high accuracy observation stations, usually managed by public administrations and environmental agency; unfortunately due to their high costs of installation and maintenance, the monitoring stations are relatively sparse. This kind of monitoring networks have been recognized to be unsuitable to effectively characterize the high variability of air quality, especially in areas where pollution sources are various and often not static. We present a prototype of a low cost station for air quality monitoring, specifically developed for complementing the official monitoring stations improving the representation of air quality spatial distribution. We focused on a semi-professional product that could guarantee the highest reliability at the lowest possible cost, supported by a consistent infrastructure for data management. We test two type of Ozone sensor electrochemical and metal oxide. This work is integrated in the ACRONET Paradigm ® project: an open-hardware platform strongly oriented on environmental monitoring. All software and hardware sources will be available on the web. Thus, a computer and a small amount of work tools will be sufficient to create new monitoring networks, with the only constraint to share all the data obtained. It will so possible to create a real "sensing community". The prototype is currently able to measure ozone level, temperature and relative humidity, but soon, with the upcoming changes, it will be able also to monitor dust, carbon monoxide and nitrogen dioxide, always through the use of commercial sensors. The sensors are grouped in a compact board that interfaces with a data-logger able to transmit data to a dedicated server through a GPRS module (no ad hoc radio infrastructure needed). Due to the GPRS low latency transmission the data are transmitted in near-real time. The prototype has an independent power supply. The sensors outputs are directly compared with the measurement of the official fixed monitoring stations. We present preliminary tests of a ozone level assessment obtained without laboratory calibration during a first field campaign in Savona (Italy); the preliminary verification and test show reasonable agreement between low cost sensors and fixed monitoring station ozone level trends (low cost sensors detect gas concentration at ppb level). The preliminary results are promising for complementing the fixed official monitoring networks with low-cost sensors.
Medalie, Laura
2007-01-01
The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saey, P. R.J.; Ringbom, Anders; Bowyer, Ted W.
The Comprehensive Nuclear-Test-Ban Treaty (CTBT) specifies that radioxenon measurements should be performed at 40 or more stations worldwide within the International Monitoring System (IMS). Measuring radioxenon is one of the principle techniques to detect underground nuclear explosions. Specifically, presence and ratios of different radioxenon isotopes allows determining whether a detection event under consideration originated from a nuclear explosion or a civilian source. However, radioxenon monitoring on a global scale is a novel technology and the global civil background must be characterized sufficiently. This paper lays out a study, based on several unique measurement campaigns, of the worldwide concentrations and sourcesmore » of verification relevant xenon isotopes. It complements the experience already gathered with radioxenon measurements within the CTBT IMS programme and focuses on locations in Belgium, Germany, Kuwait, Thailand and South Africa where very little information was available on ambient xenon levels or interesting sites offered opportunities to learn more about emissions from known sources. The findings corroborate the hypothesis that a few major radioxenon sources contribute in great part to the global radioxenon background. Additionally, the existence of independent sources of 131mXe (the daughter of 131I) has been demonstrated, which has some potential to bias the isotopic signature of signals from nuclear explosions.« less
Bragg, Heather M.; Johnston, Matthew W.
2015-01-01
All quality-assurance values exceed the criteria established by the U.S. Army Corps of Engineers TDG monitoring plan. Criteria for data completeness (95 percent) were met at six of the eight monitoring stations. Deleted data at the John Day tailwater station and missed transmissions at the Camas station resulted in data completeness below criteria.
NASA Astrophysics Data System (ADS)
Paz, Shlomit; Goldstein, Pavel; Kordova-Biezuner, Levana; Adler, Lea
2017-04-01
Exposure to benzene has been associated with multiple severe impacts on health. This notwithstanding, at most monitoring stations, benzene is not monitored on a regular basis. The aims of the study were to compare benzene rates in different urban environments (region with heavy traffic and industrial region), to analyse the relationship between benzene and meteorological parameters in a Mediterranean climate type, to estimate the linkages between benzene and NOx and to suggest a prediction model for benzene rates based on NOx levels in order contribute to a better estimation of benzene. Data were used from two different monitoring stations, located on the eastern Mediterranean coast: 1) a traffic monitoring station in Tel Aviv, Israel (TLV) located in an urban region with heavy traffic; 2) a general air quality monitoring station in Haifa Bay (HIB), located in Israel's main industrial region. At each station, hourly, daily, monthly, seasonal, and annual data of benzene, NOx, mean temperature, relative humidity, inversion level, and temperature gradient were analysed over three years: 2008, 2009, and 2010. A prediction model for benzene rates based on NOx levels (which are monitored regularly) was developed to contribute to a better estimation of benzene. The severity of benzene pollution was found to be considerably higher at the traffic monitoring station (TLV) than at the general air quality station (HIB), despite the location of the latter in an industrial area. Hourly, daily, monthly, seasonal, and annual patterns have been shown to coincide with anthropogenic activities (traffic), the day of the week, and atmospheric conditions. A strong correlation between NOx and benzene allowed the development of a prediction model for benzene rates, based on NOx, the day of the week, and the month. The model succeeded in predicting the benzene values throughout the year (except for September). The severity of benzene pollution was found to be considerably higher at the traffic station (TLV) than at the general air quality station (HIB), despite being located in an industrial area. Hourly, daily, seasonal, and annual patterns of benzene rates have been shown to coincide with anthropogenic activities (traffic), day of the week, and atmospheric conditions. A prediction model for benzene rates was developed, based on NOx, the day of the week, and the month. The model suggested in this study might be useful for identifying potential risk of benzene in other urban environments.
Citizen Science Seismic Stations for Monitoring Regional and Local Events
NASA Astrophysics Data System (ADS)
Zucca, J. J.; Myers, S.; Srikrishna, D.
2016-12-01
The earth has tens of thousands of seismometers installed on its surface or in boreholes that are operated by many organizations for many purposes including the study of earthquakes, volcanos, and nuclear explosions. Although global networks such as the Global Seismic Network and the International Monitoring System do an excellent job of monitoring nuclear test explosions and other seismic events, their thresholds could be lowered with the addition of more stations. In recent years there has been interest in citizen-science approaches to augment government-sponsored monitoring networks (see, for example, Stubbs and Drell, 2013). A modestly-priced seismic station that could be purchased by citizen scientists could enhance regional and local coverage of the GSN, IMS, and other networks if those stations are of high enough quality and distributed optimally. In this paper we present a minimum set of hardware and software specifications that a citizen seismograph station would need in order to add value to global networks. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The status and prospective of environmental radiation monitoring stations in Saudi Arabia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Kheliewi, Abdullah S.; Holzheimer, Clous
2014-09-30
The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Earlymore » Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)« less
Space Station Environmental Health System water quality monitoring
NASA Technical Reports Server (NTRS)
Vincze, Johanna E.; Sauer, Richard L.
1990-01-01
One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.
Single-station monitoring of volcanoes using seismic ambient noise
NASA Astrophysics Data System (ADS)
De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier
2016-08-01
Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars
2017-04-01
We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.
35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...
35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
Identifying atmospheric monitoring needs for Space Station Freedom
NASA Technical Reports Server (NTRS)
Casserly, Dennis M.
1989-01-01
The atmospheric monitoring needs for Space Station Freedom were identified by examining the following from an industrial hygiene perspective: the experiences of past missions; ground based tests of proposed life support systems; the unique experimental and manufacturing facilities; the contaminant load model; metabolic production; and a fire. A target list of compounds to be monitored is presented and information is provided relative to the frequency of analysis, concentration ranges, and locations for monitoring probes.
Long-term monitoring of black carbon across Germany
NASA Astrophysics Data System (ADS)
Kutzner, Rebecca D.; von Schneidemesser, Erika; Kuik, Friderike; Quedenau, Jörn; Weatherhead, Elizabeth C.; Schmale, Julia
2018-07-01
Lately, black carbon (BC) has received significant attention due to its climate-warming properties and adverse health effects. Nevertheless, long-term observations in urban areas are scarce, most likely because BC monitoring is not required by environmental legislation. This, however, handicaps the evaluation of air quality models which can be used to assess the effectiveness of policy measures which aim to reduce BC concentrations. Here, we present a new dataset of atmospheric BC measurements from Germany constructed from over six million measurements at over 170 stations. Data covering the period between 1994 and 2014 were collected from twelve German Federal States and the Federal Environment Agency, quality checked and harmonized into a database with comprehensive metadata. The final data in original time resolution are available for download (https://doi.org/10.1594/PANGAEA.881173) Our analysis focuses on 2009, the year with the largest data coverage with one single methodology, as well as on the relative changes in long-term trends over ten years. For 2009, we find that BC concentrations at traffic sites were at least twice as high as at urban background, industrial and rural sites. Weekly cycles are most prominent at traffic stations, however, the presence of differences in concentrations during the week and on weekends at other station types suggests that traffic plays an important role throughout the full network. Generally higher concentrations and weaker weekly cycles during the winter months point towards the influence of other sources such as domestic heating. Regarding the long-term trends, advanced statistical techniques allow us to account for instrumentation changes and to separate seasonal and long-term changes in our dataset. Analysis shows a downward trend in BC at nearly all locations and in all conditions, with a high level of confidence for the period of 2005-2014. In depth analysis indicates that background BC is decreasing slowly, while the occurrences of high concentrations are decreasing more rapidly. In summary, legislation - both in Europe and locally - to reduce particulate emissions and indirectly BC appear to be working, based on this analysis. Adverse human health and climate impacts are likely to be diminished because of the improvements in air quality.
Lundgren, Robert F.; Lopes, Thomas J.
1999-01-01
The Ohio River is a source of drinking water for more than 3 million people. Thus, it is important to monitor the water quality of this river to determine if contaminants are present, their concentrations, and if water quality is changing with time. This report presents an analysis of the occurrence, distribution, and trends of 21 volatile organic compounds (VOCs) along the main stem of the Ohio River and its major tributaries from 1987 through 1996. The data were collected by the Ohio River Valley Water Sanitation Commission's Organics Detection System, which monitors daily for VOCs at 15 stations. Various statistical methods were applied to basinwide data from all monitoring stations and to data from individual monitoring stations. For the basinwide data, one or more VOCs were detected in 45 percent of the 44,837 river-water samples. Trichloromethane, detected in 26 percent of the samples, was the most frequently detected VOC followed by benzene (11 percent), methylbenzene (6.4 percent), and the other 18 VOCs, which were detected in less than 4 percent of the samples. In samples from 8 of the 15 monitoring stations, trichloromethane was also the most frequently detected VOC. These stations were generally near large cities along the Ohio River. The median trichloromethane concentration was 0.3 microgram per liter (μg/L), and concentrations ranged from less than 0.1 to 125.3 μg/L. Most of the VOCs had median detected concentrations that ranged from 0.1 to 0.4 μg/L for the basinwide data and for samples from individual stations. Samples from stations in the upstream part of the basin and from the Kanawha River had the highest median concentrations. Ninety-nine percent of the detected VOC concentrations were within U.S. Environmental Protection Agency drinking-water regulations. Of the 268 exceedances of drinking-water regulations, 188 were due to the detection of 1,2-dichloroethane prior to 1993 in samples from the monitoring station near Paducah, Ky. Time trend analyses indicated that most VOCs had no trend in samples at most monitoring stations because they were detected infrequently. At one or more stations, 14 VOCs had decreasing trends in monthly mean concentrations that ranged from -0.01 to -0.42 μ/L per year. Nine VOCs had significant decreasing trends in percentage detection that ranged from -1.08 to -12.90 percent per year. These trends suggest that source-control efforts are working and that water quality is improving.
Sources of atmospheric aerosols controlling PM10 levels in Heraklion, Crete during winter time
NASA Astrophysics Data System (ADS)
Kalivitis, Nikolaos; Kouvarakis, Giorgos; Stavroulas, Iasonas; Kandilogiannaki, Maria; Vavadaki, Katerina; Mihalopoulos, Nikolaos
2016-04-01
High concentrations of Particulate Matter (PM) in the atmosphere have negative impact to human health. Thresholds for ambient concentrations that are defined by the directive 2008/50/EC are frequently exceeded even at background conditions in the Mediterranean region as shown in earlier studies. The sources of atmospheric particles in the urban environment of a medium size city of eastern Mediterranean are studied in the present work in order to better understand the causes and characteristics of exceedances of the daily mean PM10limit value of 50 μg m-3. Measurements were performed at the atmospheric quality measurement station of the Region of Crete, at the Heraklion city center on Crete island, during the winter/spring period of 2014-2015 and 2015-2016. Special emphasis was given to the study of the contribution of Black Carbon (BC) to the levels of PM10. Continuous measurements were performed using a beta-attenuation PM10monitor and a 7-wavelength Aethalometer with a time resolution of 30 and 5 minutes respectively. For direct comparison to background regional conditions, concurrent routine measurements at the atmospheric research station of University of Crete at Finokalia were used as background reference. Analysis of exceedances in the daily PM10 mass concentration showed that the total of the exceedances was related to long range transport of Saharan dust rather than local sources. However, compared to the Finokalia station it was found that there were 20% more exceedances in Heraklion, the addition of transported dust on the local pollution was the reason for the additional exceedance days. Excluding dust events, it was found that the PM10variability was dependent on the BC abundance, traffic during rush hours in the morning and biomass burning for domestic heating in the evening contributed significantly to PM10levels in Heraklion.
NASA Astrophysics Data System (ADS)
Burba, George; Madsen, Rodney; Feese, Kristin
2014-05-01
Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and quantify leakages from the subsurface, to improve storage efficiency, and for other storage characterizations [5-8]. In this presentation, the latest regulatory and methodological updates are provided regarding atmospheric monitoring of the injected CO2 behavior using flux stations. These include 2013 improvements in methodology, as well as the latest literature, including regulatory documents for using the method and step-by-step instructions on implementing it in the field. Updates also include 2013 development of a fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CO2 emission rates in a similar manner as a standard weather station outputs weather parameters. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [8] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia, 40C: 329-336; 2013.
An inexpensive and reliable monitoring station design for use with lightweight, compact data loggers
Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; William L., Jr. Headlee; Richard B. Hall; A. Assibi Mahama; Jill A. Zalesny
2007-01-01
We designed, constructed, and field-tested an inexpensive and reliable monitoring station that can be used with lightweight, compact data loggers. We feel this design, improved three times over 6 yr, could benefit anyone in nursery or field settings interested in acquiring environmental data. We provide step-by-step instructions on the construction of the monitoring...
NASA Technical Reports Server (NTRS)
Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II
2005-01-01
On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.
Evaluation and application of regional turbidity-sediment regression models in Virginia
Hyer, Kenneth; Jastram, John D.; Moyer, Douglas; Webber, James S.; Chanat, Jeffrey G.
2015-01-01
Conventional thinking has long held that turbidity-sediment surrogate-regression equations are site specific and that regression equations developed at a single monitoring station should not be applied to another station; however, few studies have evaluated this issue in a rigorous manner. If robust regional turbidity-sediment models can be developed successfully, their applications could greatly expand the usage of these methods. Suspended sediment load estimation could occur as soon as flow and turbidity monitoring commence at a site, suspended sediment sampling frequencies for various projects potentially could be reduced, and special-project applications (sediment monitoring following dam removal, for example) could be significantly enhanced. The objective of this effort was to investigate the turbidity-suspended sediment concentration (SSC) relations at all available USGS monitoring sites within Virginia to determine whether meaningful turbidity-sediment regression models can be developed by combining the data from multiple monitoring stations into a single model, known as a “regional” model. Following the development of the regional model, additional objectives included a comparison of predicted SSCs between the regional model and commonly used site-specific models, as well as an evaluation of why specific monitoring stations did not fit the regional model.
Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M
2016-03-01
Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of increased shielding on gamma-radiation levels within spacecraft
NASA Astrophysics Data System (ADS)
Haskins, P. S.; McKisson, J. E.; Weisenberger, A. G.; Ely, D. W.; Ballard, T. A.; Dyer, C. S.; Truscott, P. R.; Piercey, R. B.; Ramayya, A. V.; Camp, D. C.
The Shuttle Activation Monitor (SAM) experiment was flown on the Space Shuttle Columbia (STS-28) from 8 - 13 August, 1989 in a 57°, 300 km orbit. One objective of the SAM experiment was to determine the relative effect of different amounts of shielding on the gamma-ray backgrounds measured with similarly configured sodium iodide (NaI) and bismuth germante (BGO) detectors. To achieve this objective twenty-four hours of data were taken with each detector in the middeck of the Shuttle on the ceiling of the airlock (a high-shielding location) as well as on the sleep station wall (a low-shielding location). For the cosmic-ray induced background the results indicate an increased overall count rate in the 0.2 to 10 MeV energy range at the more highly shielded location, while in regions of trapped radiation the low shielding configuration gives higher rates at the low energy end of the spectrum.
2007-07-19
KENNEDY SPACE CENTER, Fla. --In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander spacecraft is moved toward the spacecraft, in the background. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
Spatio-temporal patterns of high summer ozone events in the Madrid Basin, Central Spain
NASA Astrophysics Data System (ADS)
Reche, C.; Moreno, T.; Amato, F.; Pandolfi, M.; Pérez, J.; de la Paz, D.; Diaz, E.; Gómez-Moreno, F. J.; Pujadas, M.; Artíñano, B.; Reina, F.; Orio, A.; Pallarés, M.; Escudero, M.; Tapia, O.; Crespo, E.; Vargas, R.; Alastuey, A.; Querol, X.
2018-07-01
Complex spatial and temporal patterns of ground-level O3 and NO2 concentrations have been revealed across an important southern European O3 exceedance area (Madrid Basin, central Spain). Data were obtained from 102 diffusion tube sites and 49 monitoring stations (25 urban/suburban, 12 urban/suburban-traffic, 7 remote, 3 rural, 2 urban-industrial) located through a wide area inside and beyond the city. This new, high-density database confirms that current locations of monitoring stations in the Madrid networks are well positioned to record representative levels of O3 across the area. Two air quality monitoring stations were identified as reference measurement points, based on their lower O3 and NO2 concentrations, and used as a proxy for regional and hemispheric background levels. Although a main regional contribution was evidenced, emissions of local precursors within the Madrid urban plume play a key role in the generation of O3 exceedances, which are higher and occur earlier near the city than at rural sites, where the effect of NO titration is lower. Despite the fact that weekend emissions of O3 precursors in Madrid are typically lower than on weekdays, mainly due to fewer road traffic emissions, there is little difference in average values of weekday and weekend O3. However, more subtle "weekend effect" differences are revealed by probability density analysis, with high O3 and low NO2 at the highest temperature range (30-35° C) at weekends reflecting lower NO titration. This analysis highlights the importance of NO timing with respect to the photochemical activity timing. The complexity of these O3 pollution patterns in and around the city is dependent on an ever-changing interplay between weather conditions, emission sources, and the timescale required for pollutant transport, chemical processing and recirculation in an evolving contaminated airmass.
Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael
2014-01-01
Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data. Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; http://dx.doi.org/10.1289/ehp.1306566 PMID:24879650
Temporal and spatial distribution of particulate carcinogens and mutagens in Bangkok, Thailand.
Pongpiachan, Siwatt; Choochuay, C; Hattayanone, M; Kositanont, C
2013-01-01
To investigate the level of genotoxicity over Bangkok atmosphere, PM10 samples were collected at the Klongchan Housing Authority (KHA), Nonsree High School (NHS), Watsing High School (WHS), Electricity Generating Authority of Thailand (EGAT), Chokchai 4 Police Station (CPS), Dindaeng Housing Authority (DHA) and Badindecha High School (BHS). For all monitoring stations, each sample covered a period of 24 hours taken at a normal weekday every month from January-December 2006 forming a database of 84 individual air samples (i.e. 12?7=84). Atmospheric concentrations of low molecular weight PAHs (i.e. phenanthrene, anthracene, pyrene and fluoranthene) were measured in PM10 at seven observatory sites operated by the pollution control department of Thailand (PCD). The mutagenicity of extracts of the samples was compared in Salmonella according to standard Ames test method. The dependence of the effects on sampling time and on sampling location was investigated with the aid of a calculation of mutagenic index (MI). This MI was used to estimate the increase in mutagenicity above background levels (i.e. negative control) at the seven monitoring sites in urban area of Bangkok due to anthropogenic emissions within that area. Applications of the AMES method showed that the average MI of PM10 collected at all sampling sites were 1.37±0.10 (TA98; +S9), 1.24±0.08 (TA98; -S9), 1.45±0.10 (TA100; +S9) and 1.30±0.09 (TA100; -S9) with relatively less variations. Analytical results reconfirm that the particulate PAH concentrations measured at PCD air quality monitoring stations are moderately low in comparison with previous results observed in other countries. In addition, the concept of incremental lifetime particulate matter exposure (ILPE) was employed to investigate the potential risks of exposure to particulate PAHs in Bangkok atmosphere.
Integrating scales of seagrass monitoring to meet conservation needs
Neckles, Hilary A.; Kopp, Blaine S.; Peterson, Bradley J.; Pooler, Penelope S.
2012-01-01
We evaluated a hierarchical framework for seagrass monitoring in two estuaries in the northeastern USA: Little Pleasant Bay, Massachusetts, and Great South Bay/Moriches Bay, New York. This approach includes three tiers of monitoring that are integrated across spatial scales and sampling intensities. We identified monitoring attributes for determining attainment of conservation objectives to protect seagrass ecosystems from estuarine nutrient enrichment. Existing mapping programs provided large-scale information on seagrass distribution and bed sizes (tier 1 monitoring). We supplemented this with bay-wide, quadrat-based assessments of seagrass percent cover and canopy height at permanent sampling stations following a spatially distributed random design (tier 2 monitoring). Resampling simulations showed that four observations per station were sufficient to minimize bias in estimating mean percent cover on a bay-wide scale, and sample sizes of 55 stations in a 624-ha system and 198 stations in a 9,220-ha system were sufficient to detect absolute temporal increases in seagrass abundance from 25% to 49% cover and from 4% to 12% cover, respectively. We made high-resolution measurements of seagrass condition (percent cover, canopy height, total and reproductive shoot density, biomass, and seagrass depth limit) at a representative index site in each system (tier 3 monitoring). Tier 3 data helped explain system-wide changes. Our results suggest tiered monitoring as an efficient and feasible way to detect and predict changes in seagrass systems relative to multi-scale conservation objectives.
2004-08-09
KENNEDY SPACE CENTER, FLA. - A Security escort leads the way as this Boeing Delta IV first stage heads to the Horizontal Integration Facility at Launch Complex 37, Cape Canaveral Air Force Station. Two of the launch pads on Cape Canaveral’s coast can be seen in the background. Two rockets were shipped by barge from Decatur, Ala., to Port Canaveral and offloaded onto Elevating Platform Transporters. A Boeing Delta IV will be used for the December launching of the GOES-N weather satellite for NASA and NOAA. The GOES-N is the first in a series of three advanced weather satellites including GOES-O and GOES-P. This satellite will provide continuous monitoring necessary for intensive data analysis. It will provide a constant vigil for the atmospheric “triggers” of severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. When these conditions develop, GOES-N will be able to monitor storm development and track their movements.
Design of a real-time tax-data monitoring intelligent card system
NASA Astrophysics Data System (ADS)
Gu, Yajun; Bi, Guotang; Chen, Liwei; Wang, Zhiyuan
2009-07-01
To solve the current problem of low efficiency of domestic Oil Station's information management, Oil Station's realtime tax data monitoring system has been developed to automatically access tax data of Oil pumping machines, realizing Oil-pumping machines' real-time automatic data collection, displaying and saving. The monitoring system uses the noncontact intelligent card or network to directly collect data which can not be artificially modified and so seals the loopholes and improves the tax collection's automatic level. It can perform real-time collection and management of the Oil Station information, and find the problem promptly, achieves the automatic management for the entire process covering Oil sales accounting and reporting. It can also perform remote query to the Oil Station's operation data. This system has broad application future and economic value.
Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod
2011-01-01
The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in
NASA Astrophysics Data System (ADS)
Cigolini, C.; Laiolo, M.; Coppola, D.; Piscopo, D.; Bertolino, S.
2009-12-01
Real-time radon monitoring at Stromboli volcano has been operative within the last two years. In this contribution we will discuss the recent one-year-long time series analyses in the light of environmental parameters. Two sites for real-time monitoring have been identified by means of a network of periodic radon surveys in order to locate the areas of more efficient response to seismic transients and/or volcanic degassing. Two real-time stations are positioned at Stromboli: one at the summit and located along a fracture zone where the gas flux is concentrated, and the second one at a lower altitude in a sector of diffuse degassing. The signals of the two time-series are essentially concordant but radon concentrations are considerably higher at the summit station. Raw data show that there is a negative correlation between radon emissions and seasonal temperature variations, whereas the correlation with atmospheric pressure is negative for the site of diffuse degassing and sligthly positive for the station lacated along the summit fracture zone. These data and the previously collected ones show that SW winds may substantially decrease radon concentrations at the summit station. Multivarite regression statistics on the radon signals in the light of the above enviromental parameters and tidal forces, may contribute to better idenfify the correlation between radon emissions and variations in volcanic activity. Fig. 1. Radon monitoring stations at Stromboli and the two major summit faults. Stars identify sites for real-time monitoring: LSC and PZZ. The diamond is the location of the automated Labronzo Station. Full dots are stations for periodic measurements using alpha track-etches detectors and E-PERM® electrets. Inset with the location of Stromboli and the major structures of the Aeolian arc.
Online decision support based on modeling with the aim of increased irrigation efficiency
NASA Astrophysics Data System (ADS)
Dövényi-Nagy, Tamás; Bakó, Károly; Molnár, Krisztina; Rácz, Csaba; Vasvári, Gyula; Nagy, János; Dobos, Attila
2015-04-01
The significant changes in the structure of ownership and control of irrigation infrastructure in the past decades resultted in the decrease of total irrigable and irrigated area (Szilárd, 1999). In this paper, the development of a model-based online service is described whose aim is to aid reasonable irrigation practice and increase water use efficiency. In order to establish a scientific background for irrigation, an agrometeorological station network has been built up by the Agrometeorological and Agroecological Monitoring Centre. A website has been launched in order to provide direct access for local agricultural producers to both the measured weather parameters and results of model based calculations. The public site provides information for general use, registered partners get a handy model based toolkit for decision support at the plot level concerning irrigation, plant protection or frost forecast. The agrometeorological reference station network was established in the recent years by the Agrometeorological and Agroecological Monitoring Centre and is distributed to cover most of the irrigated cropland areas of Hungary. From the spatial aspect, the stations have been deployed mainly in Eastern Hungary with concentrated irrigation infrastructure. The meteorological stations' locations have been carefully chosen to represent their environment in terms of soil, climatic and topographic factors, thereby assuring relevant and up-to-date input data for the models. The measured parameters range from classic meteorological data (air temperature, relative humidity, solar irradiation, wind speed etc.) to specific data which are not available from other services in the region, such as soil temperature, soil water content in multiple depths and leaf wetness. In addition to the basic grid of reference stations, specific stations under irrigated conditions have been deployed to calibrate and validate the models. A specific modeling framework (MetAgro) has been developed to allow the integration of several public available models and algorithms adapted to local climate (Rácz et al., 2013). The service, the server side framework, scripts and the front-end, providing access to the measured and modeled data, are based on own developments or free available and/or open source softwares and services like Apache, PHP, MySQL and Google Maps API. MetAgro intends to accomplish functionalities of three different areas of usage: research, education and practice. The members differ in educational background, knowledge of models and possibilities to access relevant input data. The system and interfaces must reflect these differences that is accomplished by the degradation of modeling: choosing the place of the farm and the crop already gives some general results, but with every additional parameter given the results are more reliable. The system 'MetAgro' provides a basis for improved decision-making with regard to irrigation on cropland. Based on experiences and feedback, the online application was proved to be useful in the design and practice of reasonable irrigation. In addition to its use in irrigation practice, MetAgro is also a valuable tool for research and education.
Pollen and spore monitoring in the world.
Buters, J T M; Antunes, C; Galveias, A; Bergmann, K C; Thibaudon, M; Galán, C; Schmidt-Weber, C; Oteros, J
2018-01-01
Ambient air quality monitoring is a governmental duty that is widely carried out in order to detect non-biological ("chemical") components in ambient air, such as particles of < 10 µm (PM 10 , PM 2.5 ), ozone, sulphur dioxide, and nitrogen oxides. These monitoring networks are publicly funded and air quality data are open to the public. The situation for biological particles that have detrimental effects on health, as is the case of pollen and fungal spores, is however very different. Most pollen and spore monitoring networks are not publicly funded and data are not freely available. The information regarding which biological particle is being monitored, where and by whom, is consequently often not known, even by aerobiologists themselves. This is a considerable problem, as local pollen data are an important tool for the prevention of allergic symptoms. The aim of this study was to review pollen monitoring stations throughout the world and to create an interactive visualization of their distribution. The method employed to collect information was based on: (a) a review of the recent and historical bibliography related to pollen and fungal spore monitoring, and (b) personal surveys of the managers of national and regional monitoring networks. The interactive application was developed using the R programming language. We have created an inventory of the active pollen and spore monitoring stations in the world. There are at least 879 active pollen monitoring stations in the world, most of which are in Europe (> 500). The prevalent monitoring method is based on the Hirst principle (> 600 stations). The inventory is visualised as an interactive and on-line map. It can be searched, its appearance can be adjusted to the users' needs and it is updated regularly, as new stations or changes to those that already exist can be submitted online. The map shows the current situation of pollen and spore monitoring and facilitates collaboration among those individuals who are interested in pollen and spore counts. It might also help to improve the monitoring of biological particles up to the current level employed for non-biological components.
40 CFR 52.480 - Photochemical Assessment Monitoring Stations (PAMS) Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of Columbia's Department of Consumer and Regulatory Affairs submitted a plan for the establishment... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Photochemical Assessment Monitoring Stations (PAMS) Program. 52.480 Section 52.480 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
Automated patient monitoring system
NASA Technical Reports Server (NTRS)
Bedard, R. E.; Buxton, R. L.; Dawson, W. S.
1968-01-01
Radio-linked patient monitoring system collects several channels of physiological data from as many as 64 hospital patients and transmits the data in digital form to a central control station. The system consists of a central control station and battery-operated patient units comprising small strap-on electronics packages.
40 CFR 52.430 - Photochemical Assessment Monitoring Stations (PAMS) Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Photochemical Assessment Monitoring Stations (PAMS) Program. 52.430 Section 52.430 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Natural Resources & Environmental Control submitted a plan for the establishment and implementation of a...
Astronaut Andrew M. Allen monitors Columbia's systems from pilots station
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Andrew M. Allen monitors Columbia's systems from the pilot's station during the entry phase of the STS-62 mission. The fast-speed 35mm film highlights the many controls and displays and the cathode ray tubes on the forward flight deck.
Archuleta, Christy-Ann M.; Gonzales, Sophia L.; Maltby, David R.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality, developed computer scripts and applications to automate the delineation of watershed boundaries and compute watershed characteristics for more than 3,000 surface-water-quality monitoring stations in Texas that were active during 2010. Microsoft Visual Basic applications were developed using ArcGIS ArcObjects to format the source input data required to delineate watershed boundaries. Several automated scripts and tools were developed or used to calculate watershed characteristics using Python, Microsoft Visual Basic, and the RivEX tool. Automated methods were augmented by the use of manual methods, including those done using ArcMap software. Watershed boundaries delineated for the monitoring stations are limited to the extent of the Subbasin boundaries in the USGS Watershed Boundary Dataset, which may not include the total watershed boundary from the monitoring station to the headwaters.
Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network
NASA Astrophysics Data System (ADS)
Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.
2011-12-01
The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing procedures, the nonlinloc algorithm was implemented for manual and automatic locations using 1D and 3D velocity models; plugins for improved automatic phase picking and Ml computation were developed; and the graphical user interface for manual review was extended (including pick uncertainty definition; first motion focal mechanisms; interactive review of station magnitude waveforms; full inclusion of strong motion data). SC3 locations are fully compatible with those derived from the existing in-house processing tools and are stored in a database derived from the QuakeML data model. The database is shared with the SED alerting software, which merges origins from both SC3 and external sources in realtime and handles the alerting procedure. With the monitoring software being transitioned to SeisComp3, acquisition, archival and dissemination of SED waveform data now conforms to the seedlink and ArcLink protocols and continuous archives can be accessed via SED and all EIDA (European Integrated Data Archives) web-sites. Further, a SC3 module for waveform parameterisation has been developed, allowing rapid computation of peak values of ground motion and other engineering parameters within minutes of a new event. An output of this module is USGS ShakeMap XML. n minutes of a new event. An output of this module is USGS ShakeMap XML.
Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004
Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.
2007-01-01
The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.
NetMOD version 1.0 user's manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion John
2014-01-01
NetMOD (Network Monitoring for Optimal Detection) is a Java-based software package for conducting simulation of seismic networks. Specifically, NetMOD simulates the detection capabilities of seismic monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed atmore » each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform seismic detection simulations. In addition, NetMOD is distributed with a simulation dataset for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic network for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation.« less
Spahr, N.E.
2003-01-01
Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines. Data were collected during water year 2002 following USGS protocols (U.S. Geological Survey, variously dated).
Operation of International Monitoring System Network
NASA Astrophysics Data System (ADS)
Nikolova, Svetlana; Araujo, Fernando; Aktas, Kadircan; Malakhova, Marina; Otsuka, Riyo; Han, Dongmei; Assef, Thierry; Nava, Elisabetta; Mickevicius, Sigitas; Agrebi, Abdelouaheb
2015-04-01
The IMS is a globally distributed network of monitoring facilities using sensors from four technologies: seismic, hydroacoustic, infrasound and radionuclide. It is designed to detect the seismic and acoustic waves produced by nuclear test explosions and the subsequently released radioactive isotopes. Monitoring stations transmit their data to the IDC in Vienna, Austria, over a global private network known as the GCI. Since 2013, the data availability (DA) requirements for IMS stations account for quality of the data, meaning that in calculation of data availability data should be exclude if: - there is no input from sensor (SHI technology); - the signal consists of constant values (SHI technology); Even more strict are requirements for the DA of the radionuclide (particulate and noble gas) stations - received data have to be analyzed, reviewed and categorized by IDC analysts. In order to satisfy the strict data and network availability requirements of the IMS Network, the operation of the facilities and the GCI are managed by IDC Operations. Operations has following main functions: - to ensure proper operation and functioning of the stations; - to ensure proper operation and functioning of the GCI; - to ensure efficient management of the stations in IDC; - to provide network oversight and incident management. At the core of the IMS Network operations are a series of tools for: monitoring the stations' state of health and data quality, troubleshooting incidents, communicating with internal and external stakeholders, and reporting. The new requirements for data availability increased the importance of the raw data quality monitoring. This task is addressed by development of additional tools for easy and fast identifying problems in data acquisition, regular activities to check compliance of the station parameters with acquired data by scheduled calibration of the seismic network, review of the samples by certified radionuclide laboratories. The DA for the networks of different technologies in 2014 is: Primary seismic (PS) network - 95.70%, Infrasound network (IS) - 97.68%, Hydroacoustic network (HA) - 88.78%, Auxiliary Seismic - 86.07%; Radionuclide Particulate - 83.01% and Radionuclide Noble Gas -75.06%. IDC's strategy for further improving operations and management of the stations and meeting DA requirements is: - further development of tools and procedures to effectively identify and support troubleshooting of problems by the Station Operators; - effective support to the station operators to develop tailored Operation and Maintenance plans for their stations; - focus on early identification of the raw data quality problems at the station in order to support timely resolution; - extensive training programme for station operators (joined effort of IDC and IMS).
NASA Astrophysics Data System (ADS)
Ivanov, Yu. A.
2007-12-01
An analytical review is given of Russian and foreign measurement instruments employed in a system for automatically monitoring the water chemistry of the reactor coolant circuit and used in the development of projects of nuclear power stations equipped with VVER-1000 reactors and the nuclear station project AES 2006. The results of experience gained from the use of such measurement instruments at nuclear power stations operating in Russia and abroad are presented.
Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006
Nobles, Patricia L.; ,
2006-01-01
The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.
Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives
Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao
2014-01-01
Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885
Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring
NASA Astrophysics Data System (ADS)
D'Anna, Giuseppe; D'Alessandro, Antonino; Fertitta, Gioacchino; Fraticelli, Nicola; Calore, Daniele
2016-04-01
From the early 1980's, Italian seismicity is monitored by the National Seismic Network (NSN). The network has been considerably enhanced by INGV since 2005 by 24-bit digital stations equipped with broad-band sensors. The NSN is nowadays constituted by about 300 on-land seismic station able to detect and locate also small magnitude earthquake in the whole Italian peninsula. However, the lack of offshore seismic stations does not allow the accurate estimation of hypocentral and focal parameters of small magnitude earthquakes occurring in offshore areas. As in the Mediterranean area there is an intense offshore seismic activity, an extension of the seismic monitoring to the sea would be beneficial. There are two types of stations that could be used to extend the network towards the sea: the first type is connected to the coast though a cable, the second type is isolated (or stand alone) and works autonomously. Both solutions have serious limitations: the first one, for several technical and economic problems, linked to the indispensable transmission/alimentation cable, cannot be installed far from the coast; the second one, allows access to the recorded data, only after they are recovered from the seabed. It is clear that these technical solutions are not suitable for the real time monitoring of the offshore seismicity or for the realization of a tsunami warning system. For this reason, in early 2010, the OBSLab of Gibilmanna begins the design of a submarine station able to overcome the limitations of the two systems above. The station isbuilt under the project EMSO-MedIT. The two stations built have already been tested in dock and ready for installation. One of this station will be installed, in few time, in the southern Tyrrhenian Sea, near the epicentre of the Palermo 2002 main shock. The sea bottom station will be equipped with 2 very broadband 3C seismometers, a broad band hydrophone, a differential and an absolute pressure gauge. The station includes a submarine module, which houses the sensors. The submarine module is connected via an electromechanical cable to a stopper buoy, which acts as tensioning device, and a "tethered" cable, to a surface buoy, which supply power to the underwater part. The surface buoy handles the communication with the submarine module and the transmission of real-time/near-real-time data to the monitoring centre to the ground.
Data base to compare calculations and observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.L.
Meteorological and climatological data bases were compared with known tritium release points and diffusion calculations to determine if calculated concentrations could replace measure concentrations at the monitoring stations. Daily tritium concentrations were monitored at 8 stations and 16 possible receptors. Automated data retrieval strategies are listed. (PSB)
Internal seismological stations for monitoring a comprehensive test ban theory
NASA Astrophysics Data System (ADS)
Dahlman, O.; Israelson, H.
1980-06-01
Verification of the compliance with a Comprehensive Test Ban on nuclear explosions is expected to be carried out by a seismological verification system of some fifty globally distributed teleseismic stations designed to monitor underground explosions at large distances (beyond 2000 km). It is attempted to assess various technical purposes that such internal stations might serve in relation to a global network of seismological stations. The assessment is based on estimates of the detection capabilities of hypothetical networks of internal stations. Estimates pertaining to currently used detection techniques (P waves) indicate that a limited number (less than 30) of such stations would not improve significantly upon the detection capability that a global network of stations would have throughout the territories of the US and the USSR. Recently available and not yet fully analyzed data indicate however that very high detection capabilities might be obtained in certain regions.
Georgia's Stream-Water-Quality Monitoring Network, 2006
Nobles, Patricia L.; ,
2006-01-01
The USGS stream-water-quality monitoring network for Georgia is an aggregation of smaller networks and individual monitoring stations that have been established in cooperation with Federal, State, and local agencies. These networks collectively provide data from 130 sites, 62 of which are monitored continuously in real time using specialized equipment that transmits these data via satellite to a centralized location for processing and storage. These data are made available on the Web in near real time at http://waterdata.usgs.gov/ga/nwis/ Ninety-eight stations are sampled periodically for a more extensive suite of chemical and biological constituents that require laboratory analysis. Both the continuous and the periodic water-quality data are archived and maintained in the USGS National Water Information System and are available to cooperators, water-resource managers, and the public. The map at right shows the USGS stream-water-quality monitoring network for Georgia and major watersheds. The network represents an aggregation of smaller networks and individual monitoring stations that collectively provide data from 130 sites.
NASA Astrophysics Data System (ADS)
Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Schoeppner, M.
2017-12-01
The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which 31 stations are located in the Southern Hemisphere. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases supported by atmospheric transport modeling (ATM). The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. One of the important noble gases, monitored on a daily basis, is xenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). On the southern hemisphere the number of IPF is rather limited in comparison to the northern hemisphere. Among the major sources are: the ANSTO facility in Sydney (Australia), CNEA in Ezeiza (Argentina), BaTek/INUKI in Jakarta (Indonesia) and NECSA in Pelindaba (South Africa). This study will demonstrate the examples of seasonal contribution of Xe-133 emissions from major sources as observed at selected IMS stations located in the southern hemisphere. It will show as well examples of the atmospheric transport from the northern to the southern hemisphere, and the influence of strong atmospheric convection.
A network for continuous monitoring of water quality in the Sabine River basin, Texas and Louisiana
Blakey, J.F.; Skinner, P.W.
1973-01-01
Level I operations at a proposed site would monitor current and potential problems, water-quality changes in subreaches of streams, and water-quality trends in time and place. Level II operations would monitor current or potential problems only. An optimum system would require Level I operations at all nine stations. A minimum system would require Level II operations at most of the stations.
View west within the periphery of the load dispatch model ...
View west within the periphery of the load dispatch model board, operator's console is at lower center and button board is at lower right of the photograph; section of model board shown covers substation from Perryman (left) to Frankford (right); instruments at right center of photograph formerly monitored energy usage and were replaced by computerized monitoring system. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA
Performance Trials of an Integrated Loran/GPS/IMU Navigation System, Part 1
2005-01-27
differences are used to correct the grid values in the absence of a local ASF monitor station . Performance of the receiver using different ASF grids...United States is served by the North American Loran-C system made up of 29 stations organized into 10 chains (see Figure 1). Loran coverage is...the absence of a local ASF monitor station . Performance of the receiver using different ASF grids and interpolation techniques and corrected using the
NASA Astrophysics Data System (ADS)
Ruiz, M. C.; Yepes, H. A.; Hall, M. L.; Mothes, P. A.; Ramon, P.; Hidalgo, S.; Andrade, D.; Vallejo Vargas, S.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Palacios, P.; Alvarado, A. P.; Enriquez, W.; Vasconez, F.; Vaca, M.; Arrais, S.; Viracucha, G.; Bernard, B.
2014-12-01
In 1988, the Instituto Geofisico (IG) began a permanent surveillance of Ecuadorian volcanoes, and due to activity on Guagua Pichincha, SP seismic stations and EDM control lines were then installed. Later, with the UNDRO and OAS projects, telemetered seismic monitoring was expanded to Tungurahua, Cotopaxi, Cuicocha, Chimborazo, Antisana, Cayambe, Cerro Negro, and Quilotoa volcanoes. In 1992 an agreement with the Instituto Ecuatoriano de Electrificacion strengthened the monitoring of Tungurahua and Cotopaxi volcanoes with real-time SP seismic networks and EDM lines. Thus, background activity levels became established, which was helpful because of the onset of the 1999 eruptive activity at Tungurahua and Guagua Pichincha. These eruptions had a notable impact on Baños and Quito. Unrest at Cotopaxi volcano was detected in 2001-2002, but waned. In 2002 Reventador began its eruptive period which continues to the present and is closely monitored by the IG. In 2006 permanent seismic BB stations and infrasound sensors were installed at Tungurahua and Cotopaxi under a cooperative program supported by JICA, which allowed us to follow Tungurahua's climatic eruptions of 2006 and subsequent eruptions up to the present. Programs supported by the Ecuadorian Secretaria Nacional de Ciencia y Tecnologia and the Secretaria Nacional de Planificacion resulted in further expansion of the IG's monitoring infrastructure. Thermal and video imagery, SO2 emission monitoring, geochemical analyses, continuous GPS and tiltmeters, and micro-barometric surveillance have been incorporated. Sangay, Soche, Ninahuilca, Pululahua, and Fernandina, Cerro Azul, Sierra Negra, and Alcedo in the Galapagos Islands are now monitored in real-time. During this time, international cooperation with universities (Blaise Pascal & Nice-France, U. North Carolina, New Mexico Tech, Uppsala-Sweden, Nagoya, etc.), and research centers (USGS & UNAVCO-USA, IRD-France, NIED-Japan, SGC-Colombia, VAAC, MIROVA) has introduced the use of new technologies and methods. An agreement with the Secretaria de Gestion de Riesgos fortifies the communication flow to society, officials, and risk managers. Today the IG has the challenge of offering real-time information through a web-based net of virtual observatories.
Thakur, P; Lemons, B G; Ballard, S; Hardy, R
2015-08-01
The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the WIPP site, the increased risk from the WIPP releases is exceedingly small, approaching zero. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kuntasal, Oznur Oğuz; Kilavuz, Seda Aslan; Karman, Deniz; Wang, Daniel; Tuncel, Gürdal
2013-10-01
Concentrations of 91 volatile organic compounds (VOCs) ranging from C5 to C12 were measured at three sites in Ankara, the capital of Turkey, in the summer of 2003 and winter of 2004. Samples were collected at roadside, residential and background stations at consecutive 4-hr intervals over a 24-hr period for six weeks in each season. Air samples were collected onto cartridges packed with Tenax TA and Carbopack B resins and analyzed by thermal desorption, followed by gas chromatography coupled to a mass selective detector (GC/MSD). Time resolved data provided information on ambient levels, temporal and spatial variations and sources of VOCs in Ankara. Toluene is the most abundant compound at all sites with and average concentration of 13.1 ?g m(-3). The mean concentrations of benzene are 12.6, 5.2, and 2.4 ?g m(-3) during winter at roadside, residential and background stations, respectively. Diurnal variation in the data together with toluene to benzene concentration ratio (T:B) that is close to 2.0 indicated the influence of traffic related emissions at residential and roadside stations during winter season. Higher T:B ratio observed at residential and background stations during summer period and correlation analysis indicated additional VOC sources. Temporal variations and low m,p-xylene to ethylbenzene ratio (mpX:E) indicated that transported air mass is the major VOC source influencing VOC concentrations measured at the background station.
The Washington DC Metro Area Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Krehbiel, Paul; Rison, William; Edens, Harald; OConnor, Nicholas; Aulich, Graydon; Thomas, Ronald; Kieft, Sandra; Goodman, Steven; Blakeslee, Richard; Hall, John;
2006-01-01
During the spring and summer of 2006, a network of eight lightning mapping stations has been set up in the greater DC metropolitan area to monitor the total lightning activity in storms over Virginia, Maryland and the Washington DC area. The network is a joint project between New Mexico Tech, NASA, and NOAA/National Weather Service, with real-time data being provided to the NWS for use in their forecast and warning operations. The network utilizes newly available portable stations developed with support from the National Science Foundation. Cooperating institutions involved in hosting mapping stations are Howard University, Montgomery County Community College in Rockville MD, NOAA/NWS's Test and Evaluation Site in Sterling, VA, College of Southern Maryland near La Plata MD, the Applied Physics Laboratory of Johns Hopkins University, Northern Virginia Community College in Annandale, VA, the University of Maryland at Baltimore County, and George Mason University (Prince William Campus) in Manassas, VA. The network is experimental in that its stations a) operate in the upper rather than the lower VHF (TV channel 10, 192-198 MHz) to reduce the radio frequency background noise associated with urban environments, and b) are linked to the central processing site via the internet rather than by dedicated wireless communication links. The central processing is done in Huntsville, AL, and updated observations are sent to the National Weather Service every 2 min. The observational data will also be available on a public website. The higher operating frequency results in a decrease in signal strength estimated to be about 15-20 dB, relative to the LMA networks being operated in northern Alabama and central Oklahoma (which operate on TV channels 5 and 3, respectively). This is offset somewhat by decreased background noise levels at many stations. The receiver threshold levels range from about -95 dBm up to -80 dBm and the peak lightning signals typically extend 15-20 dB above the threshold values. Despite having decreased sensitivity, the network locates lightning in plan position over all of Maryland and Delaware, much of Virginia, and into Southern Pennsylvania and New Jersey. 3-D coverage is provided out to 100-150 km range from the Sterling WFO including the 3 major DC commercial airports (Reagan National, Dulles International, and Baltimore Washington International). The network will eventually consist of 10 or more stations, which will extend and improve its coverage.
Kopp, Blaine S.; Nielsen, Martha; Glisic, Dejan; Neckles, Hilary A.
2009-01-01
This report documents results of pilot tests of a protocol for monitoring estuarine nutrient enrichment for the Vital Signs Monitoring Program of the National Park Service Northeast Coastal and Barrier Network. Data collected from four parks during protocol development in 2003-06 are presented: Gateway National Recreation Area, Colonial National Historic Park, Fire Island National Seashore, and Assateague Island National Seashore. The monitoring approach incorporates several spatial and temporal designs to address questions at a hierarchy of scales. Indicators of estuarine response to nutrient enrichment were sampled using a probability design within park estuaries during a late-summer index period. Monitoring variables consisted of dissolved-oxygen concentration, chlorophyll a concentration, water temperature, salinity, attenuation of downwelling photosynthetically available radiation (PAR), and turbidity. The statistical sampling design allowed the condition of unsampled locations to be inferred from the distribution of data from a set of randomly positioned "probability" stations. A subset of sampling stations was sampled repeatedly during the index period, and stations were not rerandomized in subsequent years. These "trend stations" allowed us to examine temporal variability within the index period, and to improve the sensitivity of the monitoring protocol to detecting change through time. Additionally, one index site in each park was equipped for continuous monitoring throughout the index period. Thus, the protocol includes elements of probabilistic and targeted spatial sampling, and the temporal intensity ranges from snapshot assessments to continuous monitoring.
Background noise model development for seismic stations of KMA
NASA Astrophysics Data System (ADS)
Jeon, Youngsoo
2010-05-01
The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.
NASA Astrophysics Data System (ADS)
Smith, K.; Tape, C.; Bruton, C. P.; West, M. E.
2016-12-01
Continuous seismic recordings-or ambient noise-provide means for time-dependent monitoring of site conditions. Frequency-domain amplitude spectra of seismic recordings can be used to characterize time-dependent variations as a function of period (or frequency). Spatial variations can be characterized by using a set of stations across a large region. We analyze time-dependent ambient noise spectra from stations across central Alaska with three purposes. First, we are interested in monitoring the station performance and quality of a new array (FLATS) of 13 posthole seismometers near the Tanana River in Minto Flats. Second, we want to understand time-dependent threshold levels for earthquake detection: when noise is high, earthquake detections are low. Third, we are interested in identifying the effects of nature and Earth structure on seismic stations at different spatial-temporal scales. Our results show that seismic stations are sensitive to variations in wind speed and river flow. Correlations between wind speed and long-period (>10 seconds) seismic noise variations are probably due to tilt effects that have been previously documented. We identify a seismic signal at 10 Hz that is present only on stations close (<100 m) to the main channel of the Tanana river. The 10-Hz signal is strongly correlated with river gage height during summer and weakly correlated during the winter, when the river surface is covered in 1 m of ice. Spatial correlations among stations reveal large variations at shorter time scales (days); these could be due to weather anomalies. The amplitude of seismic noise at periods 2-10 s is strongly influenced by the thickness of sediment, which ranges from 0 m at bedrock sites to 6000 m at sites in the deepest part of Nenana basin. Our analysis allows us to better monitor the performance of temporary and permanent seismic stations, and to understand the physical causes of time-dependent noise variations in Alaska. Our findings show that seismic stations near rivers can potentially be used to monitor the flow of the river during summer and during ice-covered winter, raising the possibility for monitoring river ice break-up during April.
Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A
2015-09-01
A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saey, P. R. J.; Auer, M.; Becker, A.; Colmanet, S.; Hoffmann, E.; Nikkinen, M.; Schlosser, C.; Sonck, M.
2009-04-01
Atmospheric radioxenon monitoring is a key component of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Radiopharmaceutical production facilities (RPF) have recently been identified of emitting the major part of the environmental radioxenon measured at globally distributed monitoring sites deployed to strengthen the radionuclide part of the CTBT verification regime. Efforts to raise a global radioxenon emission inventory revealed that the global total emission from RPF's is 2-3 orders of magnitude higher than the respective emissions related to maintenance of all nuclear power plants (NPP). Given that situation we have seen in 2008 two peculiar hemisphere-specific situations: 1) In the northern hemisphere, a joint shutdown of the global largest four radiopharmaceutical facilities revealed the contribution of the normally 'masked' NPP related emissions. Due to an incident, the Molybdenum production at the "Institut des Radioéléments" (IRE) in Fleurus, Belgium, was shut down between Monday 25 August and 2 December 2008. IRE is the third largest global producer of medical isotopes. In the same period, but for different reasons, the other three worldwide largest producers (CRL in Canada, HFR in The Netherlands and NTP in South Africa) also had scheduled and unscheduled shutdowns. The activity concentrations of 133Xe measured at the Schauinsland Mountain station near Freiburg in Germany (situated 380 km SW of Fleurus) which have a mean of 4.8 mBq/m3 for the period February 2004 - August 2008, went down to 0.87 mBq/m3 for the period September - November 2008. 2) In the southern hemisphere, after a long break, the only radiopharmaceutical facility in Australia started up test production in late November 2008. In the period before the start-up, the background of radioxenon in Australia (Melbourne and Darwin) was below measurable quantities. During six test runs of the renewed RPF at ANSTO in Lucas Heights, up to 6 mBq/m3 of 133Xe were measured in the station at Melbourne, 700 km SW from the facility. This paper confirms the hypothesis that radiopharmaceutical production facilities are the major emitters of radioxenon first of all. Moreover it demonstrates how the temporal shut down of these facilities indicates the scale of their contribution to the European radioxenon background, which decreased 6 fold. Finally we have studied the contribution of the start-up of a renewed RFP to the buildup of a radioxenon background across Australia and the southern hemisphere. Disclaimer The views expressed in this publication are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission or any of the participating institutions.
47 CFR 25.272 - General inter-system coordination procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... network control center which will have the responsibility to monitor space-to-Earth transmissions in its system. This would indirectly monitor uplink earth station transmissions in its system and to coordinate.... (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on which...
47 CFR 25.272 - General inter-system coordination procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... network control center which will have the responsibility to monitor space-to-Earth transmissions in its system. This would indirectly monitor uplink earth station transmissions in its system and to coordinate.... (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on which...
47 CFR 25.272 - General inter-system coordination procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... network control center which will have the responsibility to do the following: (1) Monitor space-to-Earth transmissions in its system (thus indirectly monitoring uplink earth station transmissions in its system) and (2... and correct the problem promptly. (b) [Reserved] (c) The transmitting earth station licensee shall...
47 CFR 25.272 - General inter-system coordination procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... network control center which will have the responsibility to do the following: (1) Monitor space-to-Earth transmissions in its system (thus indirectly monitoring uplink earth station transmissions in its system) and (2... issues. (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on...
50 CFR 679.28 - Equipment and operational requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... estimates, vessel monitoring system hardware, catch monitoring and control plan, and catcher vessel... container to store salmon must be located adjacent to the observer sampling station; (ii) All salmon stored in the container must remain in view of the observer at the observer sampling station at all times...
Astronaut Andrew Allen monitors Columbia's systems from pilots station
1994-03-05
STS062-41-025 (18 March 1994) --- Astronaut Andrew M. Allen monitors Columbia's systems from the pilot's station during the entry phase of the STS-62 mission. The fast-speed 35mm film highlights the many controls and displays and the cathode ray tubes on the forward flight deck.
PPP Sliding Window Algorithm and Its Application in Deformation Monitoring.
Song, Weiwei; Zhang, Rui; Yao, Yibin; Liu, Yanyan; Hu, Yuming
2016-05-31
Compared with the double-difference relative positioning method, the precise point positioning (PPP) algorithm can avoid the selection of a static reference station and directly measure the three-dimensional position changes at the observation site and exhibit superiority in a variety of deformation monitoring applications. However, because of the influence of various observing errors, the accuracy of PPP is generally at the cm-dm level, which cannot meet the requirements needed for high precision deformation monitoring. For most of the monitoring applications, the observation stations maintain stationary, which can be provided as a priori constraint information. In this paper, a new PPP algorithm based on a sliding window was proposed to improve the positioning accuracy. Firstly, data from IGS tracking station was processed using both traditional and new PPP algorithm; the results showed that the new algorithm can effectively improve positioning accuracy, especially for the elevation direction. Then, an earthquake simulation platform was used to simulate an earthquake event; the results illustrated that the new algorithm can effectively detect the vibrations change of a reference station during an earthquake. At last, the observed Wenchuan earthquake experimental results showed that the new algorithm was feasible to monitor the real earthquakes and provide early-warning alerts.
Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A.; Nikolich, George; McCurdy, Greg
On April 24, 1957, the Atomic Energy Commission (AEC, now the Department of Energy [DOE]) conducted the Project 57 safety experiment in western Emigrant Valley north east of the Nevada National Security Site (NNSS, formerly the Nevada Test Site) on lands withdrawn by the Department of Defense (DoD) for the Nevada Test and Training Range (NTTR). The test was undertaken to develop (1) a means of estimating plutonium distribution resulting from a nonnuclear detonation; (2) biomedical evaluation techniques for use in plutonium-laden environments; (3) methods of surface decontamination; and (4) instruments and field procedures for prompt estimation of alpha contaminationmore » (Shreve, 1958). Although the test did not result in the fission of nuclear materials, it did disseminate plutonium across the land surface. Following the experiment, the AEC fenced the contaminated area and returned control of the surrounding land to the DoD. Various radiological surveys have been performed in the area and in 2007, the DOE expanded the demarked contamination area by posting signs 200 to 400 feet (60 to 120 meters) outside of the original fence. Plutonium in soil is thought to attach preferentially to smaller particles. Therefore, redistribution of soil particulates by wind (dust) is the mechanism most likely to transport plutonium beyond the boundary of the Project 57 contamination area. In 2011, DRI installed two instrumentation towers to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination was detectable in samples of airborne dust and characterize meteorological and environmental parameters that influence dust transport. Collected data also permits comparison of radiological conditions at the Project 57 monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Biweekly samples of airborne particulates are submitted for laboratory assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and environmental parameters. Although winds sufficient to generate significant amounts of dust occur at the Project 57 site, they are infrequent and of short duration. Additionally, the potential for wind transport of dust is dependent on other parameters whose influence have not yet been assessed.« less
Science Data Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Zwiener, James M.
1999-01-01
Long term stability of spacecraft materials when exposed to the space environment continues to be a major area of investigation. The natural and induced environment surrounding a spacecraft can decrease material performance and limit useful lifetimes. The Optical Properties Monitor (OPM) experiment provided the capability to perform the important flight testing of materials and was flown on the Russian Mir Station to study the long term effects of the natural and induced space environment on materials. The core of the OPM in-flight analysis was three independent optical instruments. These instruments included an integrating sphere spectral reflectometer, a vacuum ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored selected components of the environment including molecular contamination. The OPM was exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. This report describes the OPM experiment, a brief background of its development, program organization, experiment description, mission overview including space environment definition, performance overview, materials data including flight and ground data, in-depth post flight analysis including ground analysis measurements and a summary discussion of the findings and results.
The U.S. Geological Survey streamflow and observation-well network in Massachusetts and Rhode Island
Zarriello, Phillip J.; Socolow, Roy S.
2003-01-01
The U.S. Geological Survey began systematic streamflow monitoring in Massachusetts nearly 100 years ago (1904) on the Connecticut River at Montague City. Since that time, hydrologic data collection has evolved into a monitoring network of 103 streamgage stations and 200 ground-water observation wells in Massachusetts and Rhode Island (2000 water year). Data from this network provide critical information for a variety of purposes to Federal, State, and local government agencies, engineering consultants, and the public. The uses of this information have been enhanced by the fact that about 70 percent of the streamgage stations and a small but increasing number of observation wells in Massachusetts and Rhode Island have been equipped with digital collection platforms that transmit data by satellite every 4 hours. Twenty-one of the telemetered streamgage stations are also equipped with precipitation recorders. The near real-time data provided by these stations, along with historical data collected at all stations, are available over the Internet at no charge. The monitoring network operated during the 2000 water year was summarized and evaluated with respect to spatial distribution, the current uses of the data, and the physical characteristics associated with the monitoring sites. This report provides maps that show locations and summary tables for active continuous record streamgage stations, discontinued streamgage stations, and observation wells in each of the 28 major basins identified by the Massachusetts Executive Office of Environmental Affairs and five of the major Rhode Island basins. Metrics of record length, regulation, physiographic region and physical and land-cover characteristics indicate that the streamflow-monitoring network represents a wide range of drainage-area sizes, physiographic regions, and basin characteristics. Most streamgage stations are affected by regulation, which provides information for specific water-management purposes, but diminishes the usefulness of these stations for many types of hydrologic analysis. Only 26 of the 103 active streamgage stations operated by the U.S. Geological Survey in Massachusetts and Rhode Island are unaffected by regulation; of these, 17 are in Massachusetts and 9 are in Rhode Island. The paucity of unregulated stations is particularly evident when the stations are grouped into five drainage-area size classes; the fact that about half of these size classes have no representative unregulated stations underscores the importance of establishing and maintaining stations that are unaffected by regulation. The observation-well network comprises 200 wells; 80 percent of these wells are finished in sand and gravel, 19 percent are finished in till, and 1 percent are finished in bedrock. About 6 percent of the wells are equipped with continuous data recorders, and about half of these are capable of transmitting data in near real time.
U.S. Geological Survey Real-Time River Data Applications
Morlock, Scott E.
1998-01-01
Real-time river data provided by the USGS originate from streamflow-gaging stations. The USGS operates and maintains a network of more than 7,000 such stations across the nation (Mason and Wieger, 1995). These gaging stations, used to produce records of stage and streamflow data, are operated in cooperation with local, state, and other federal agencies. The USGS office in Indianapolis operates a statewide network of more than 170 gaging stations. The instrumentation at USGS gaging stations monitors and records river information, primarily river stage (fig. 1). As technological advances are made, many USGS gaging stations are being retrofitted with electronic instrumentation to monitor and record river data. Electronic instrumentation facilitates transmission of real-time or near real-time river data for use by government agencies in such flood-related tasks as operating flood-control structures and ordering evacuations.
Automatic monitoring of vibration welding equipment
Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W
2014-10-14
A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Xu, H.; Pasyanos, M. E.; Pyle, M. L.; Matzel, E.; Mellors, R. J.; Hauk, T. F.
2012-12-01
It is well established empirically that regional distance (200-1600 km) amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes. However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. A goal of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS, formerly the Nevada Test Site (NTS)) is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. Current models of explosion P/S values suggest they are frequency dependent with poor performance below the source corner frequencies and good performance above. This leads to expectations that small magnitude explosions might require much higher frequencies (>10 Hz) to identify them. Interestingly the 1-ton chemical source physics explosions SPE2 and SPE3 appear to discriminate well from background earthquakes in the frequency band 6-8 Hz, where P and S signals are visible at the NVAR array located near Mina, NV about 200 km away. NVAR is a primary seismic station in the International Monitoring System (IMS), part of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The NVAR broadband element NV31 is co-located with the LLNL station MNV that recorded many NTS nuclear tests, allowing the comparison. We find the small SPE explosions in granite have similar Pn/Lg values at 6-8 Hz as the past nuclear tests mainly in softer rocks. We are currently examining a number of other stations in addition to NVAR, including the dedicated SPE stations that recorded the SPE explosions at much closer distances with very high sample rates, in order to better understand the observed frequency dependence as compared with the model predictions. We plan to use these observations to improve our explosion models and our ability to understand and predict where P/S methods of identifying explosions work and any circumstances where they may not. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Lin, Paul P.; Jules, Kenol
2002-01-01
An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.
Measurement results obtained from air quality monitoring system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turzanski, P.K.; Beres, R.
1995-12-31
An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracowmore » area could be more intelligible.« less
Automation study for space station subsystems and mission ground support
NASA Technical Reports Server (NTRS)
1985-01-01
An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.
Filling the monitoring gaps across the US Arctic by permanently adopting USArray stations
NASA Astrophysics Data System (ADS)
Buurman, H.; West, M. E.
2017-12-01
The USArray project represents a truly unique opportunity to fundamentally change geophysical monitoring in the US Arctic. The addition of more than 200 stations capable of recording seismic, infrasound, ground temperature and meteorologic data has brought a diverse group of organizations to the table, fostering new connections and collaborations between scientists whose paths otherwise would not cross. With the array slated for removal beginning in 2019, there is a window of opportunity to advocate for permanently retaining a subset of the USArray stations. The Alaska Earthquake Center has drafted a plan to permanently adopt a subset of the USArray stations and maintain them as part of the seismic network in Alaska. The expanded seismic network would substantially improve on the Alaska Earthquake Center's ongoing mission to advance Alaska's resilience to earthquake hazards. By continuing to provide public climate and infrasound data, the Alaska Earthquake Center would also fill important gaps in the weather, wildfire and climate research monitoring networks across Alaska. The many challenges in adopting USArray stations include choosing which stations to retain, upgrading the power systems to have 24/7 data transmission through the long Alaskan winter months, and lowering the costs of continuous telemetry.
Development of an atmospheric monitoring plan for space station
NASA Technical Reports Server (NTRS)
Casserly, Dennis M.
1989-01-01
An environmental health monitoring plan for Space Station will ensure crew health during prolonged habitation. The Space Station, Freedom, will operate for extended periods, 90+ days, without resupply. A regenerative, closed loop life support system will be utilized in order to minimize resupply logistics and costs. Overboard disposal of wastes and venting of gases to space will be minimal. All waste material will be treated and recycled. The concentrated wastes will be stabilized and stored for ground disposal. The expected useful life of the station (decades) and the diversity of materials brought aboard for experimental or manufacturing purposes, increases the likelihood of cabin contamination. Processes by which cabin contamination can occur include: biological waste production, material off-gassing, process leakage, accidental containment breach, and accumulation due to poor removal efficiencies of the purification units. An industrial hygiene approach was taken to rationalize monitoring needs and to identify the substances likely to be present, the amount, and their hazard.
Distributed On-line Monitoring System Based on Modem and Public Phone Net
NASA Astrophysics Data System (ADS)
Chen, Dandan; Zhang, Qiushi; Li, Guiru
In order to solve the monitoring problem of urban sewage disposal, a distributed on-line monitoring system is proposed. By introducing dial-up communication technology based on Modem, the serial communication program can rationally solve the information transmission problem between master station and slave station. The realization of serial communication program is based on the MSComm control of C++ Builder 6.0.The software includes real-time data operation part and history data handling part, which using Microsoft SQL Server 2000 for database, and C++ Builder6.0 for user interface. The monitoring center displays a user interface with alarm information of over-standard data and real-time curve. Practical application shows that the system has successfully accomplished the real-time data acquisition from data gather station, and stored them in the terminal database.
NASA Astrophysics Data System (ADS)
Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Cahill, C. F.; Bendure, A.; Lucero, D. A.; Roesler, E. L.
2016-12-01
This presentation will make the case for development of a permanent integrated research and testing station at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council has increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a High Arctic Station with an approach that partners stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Station at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: ocean access, and coastal and terrestrial systems; road access; controlled airspaces on land and ocean; nearby air facilities, medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip and hangar for UAS. World-class Arctic research requires year-round access and facilities. The US currently conducts most Arctic research at stations outside the US. A US Arctic Station network enables monitoring that is specific to the US Arctic, to predict and understand impacts that affect people, communities and the planet.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... Assessment Monitoring Stations (PAMS) Network Re-engineering project. DATES: The public teleconference [email protected] . General information concerning the EPA CASAC can be found on the EPA Web site at http://www... Review of EPA's Photochemical Assessment Monitoring Stations (PAMS) Network Re-engineering project. The...
RadNet Map Interface for Near-Real-Time Radiation Monitoring Data
RadNet is a national network of monitoring stations that regularly collect air, precipitation, drinking water, and milk samples for analysis of radioactivity. The RadNet network, which has stations in each state, has been used to track environmental releases of radioactivity from nuclear weapons tests and nuclear accidents.
Jiang, Chaozhe; Xu, Yibo; Wen, Chao; Chen, Dilin
2017-12-19
Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication.
IMS radionuclide monitoring after the announced nuclear test of the DPRK on 3 September 2017
NASA Astrophysics Data System (ADS)
Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Boxue, L.; Gheddou, A.; Klingberg, F.; Leppaenen, A. P.; Schoeppner, M.; Werzi, R.; Wang, J.
2017-12-01
The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. The radionuclide network comprises 80 stations, out of which 40 are to be equipped with noble gas systems. The aim of radionuclide stations is a global monitoring of radioactive aerosols, radioactive noble gases and atmospheric transport modelling (ATM). To investigate the transport of radionuclide emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. The aim of this study is to demonstrate the RN analysis and the application of ATM to investigate the episodes of elevated levels of radioxenon observed by IMS stations after the sixth nuclear test, announced by the Democratic People's Republic of Korea (DPRK) at the Punggye-ri Nuclear Test Site on 3 September 2017. A comparison to the previous tests will be presented.
Jiang, Chaozhe; Xu, Yibo; Chen, Dilin
2017-01-01
Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication. PMID:29257108
Short time-scale optical pulsations in the night sky background
NASA Technical Reports Server (NTRS)
Bertsch, D. L.; Fisher, A.; Ogelman, H.
1971-01-01
A network of monitoring stations designed to detect large scale fluorescence emission in the atmosphere has been in operation for over two years. The motivation for the search arises from the prediction that an energetic photon burst would be produced in a supernova and this burst, when absorbed in the atmosphere, would produce fluorescence. This paper reports on observations up to February 1971. No supernova-like events have been found, although 4.4 were expected. One class of non-fluorescence events is described that evidence suggests is related to electrical discharge in the atmosphere. Another type of non-fluorescence pulse appears to be related to particle precipitation in the atmosphere.
Journal Article: the National Dioxin Air Monitoring Network ...
In June, 1998, the U.S. EPA established the National Dioxin Air Monitoring Network (NDAMN). The primary goal of NDAMN is determine the temporal and geographical variability of atmospheric CDDs, CDFs, and coplanar PCBs at rural and nonimpacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry and animal feed crops are grown; (2) to provide measurements of atmospheric levels of dioxin-like compounds in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. At Dioxin 2000, we reported on the preliminary results of monitoring at 9 rural locations from June 1998 through June 1999. By the end of 1999, NDAMN had expanded to 21 sampling stations. Then, at Dioxin 2001, we reported the results of the first 18 months of operation of NDAMN at 15 rural and 6 National Park stations in the United States. The following is intended to be an update to this national monitoring effort. We are reporting the air monitoring results of 17 rural and 8 National Park NDAMN stations operational over 4 sampling moments during calendar year 2000. Two stations located in suburban Washington DC and San Francisco, CA are more urban in character and serve as an indicator of CDD/F and cop
Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A.; Campbell, Scott A.; McCurdy, Greg
The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Site Contamination Area (CA) as a result of storm runoff. This activity supports U.S. Department of Energy (DOE) Environmental Management Nevada Program (EM-NV) efforts to establish post-closure monitoring plans for the Smoky Site Soils Corrective Action Unit (CAU) 550. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause the movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transportedmore » radionuclide-contaminated soils. These data will facilitate the design of the appropriate post-closure monitoring program. In 2011, DRI installed a meteorological monitoring station on the west side of the Smoky Site CA and a hydrologic (runoff) monitoring station within the CA, near the east side. Air temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and soil water content are collected at the meteorological station. The maximum, minimum, and average or total values (as appropriate) for each of these parameters are recorded for each 10-minute interval. The maximum, minimum, and average water depth in the flume installed at the hydrology station are also recorded for every 10-minute interval. This report presents data collected from these stations during fiscal year (FY) 2017.« less
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This third-year course for electrical power station wirer apprentices is a foundation for the study of all aspects of installation and maintenance of power station equipment. It also provides a good technical background as well as the general knowledge essential to power station operator trainees. The course is intended to be equivalent to a…
Recent Research applications at the Athens Neutron Monitor Station
NASA Astrophysics Data System (ADS)
Mavromichalaki, H.; Gerontidou, M.; Paschalis, P.; Papaioannou, A.; Paouris, E.; Papailiou, M.; Souvatzoglou, G.
2015-08-01
The ground based neutron monitor measurements play a key role in the field of space physics, solar-terrestrial relations, and space weather applications. The Athens cosmic ray group has developed several research applications such as an optimized automated Ground Level Enhancement Alert (GLE Alert Plus) and a web interface, providing data from multiple Neutron Monitor stations (Multi-Station tool). These services are actually available via the Space Weather Portal operated by the European Space Agency (http://swe.ssa.esa.int). In addition, two simulation tools, based on Geant4, have also been implemented. The first one is for the simulation of the cosmic ray showers in the atmosphere (DYASTIMA) and the second one is for the simulation of the 6NM-64 neutron monitor. The contribution of the simulation tools to the calculations of the radiation dose received by air crews and passengers within the Earth's atmosphere and to the neutron monitor study is presented as well. Furthermore, the accurate calculation of the barometric coefficient and the primary data processing by filtering algorithms, such as the well known Median Editor and the developed by the Athens group ANN Algorithm and Edge Editor which contribute to the provision of high quality neutron monitor data are also discussed. Finally, a Space Weather Forecasting Center which provides a three day geomagnetic activity report on a daily basis has been set up and has been operating for the last two years at the Athens Neutron Monitor Station.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CB BASE STATION... electrocutions which have occurred when consumers contacted powerlines with CB base station and outside TV... help protect the public against the unreasonable risk of injury associated with CB base station...
View of automotive repair and gas station, facing southwest from ...
View of automotive repair and gas station, facing southwest from across Pope Street. Garage built for storage of employee automobiles in left background - Automotive Repair & Gas Station, Southwest corner of Pope Street & Olympic Avenue, Port Gamble, Kitsap County, WA
NASA Technical Reports Server (NTRS)
1995-01-01
Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.
How wind turbines affect the performance of seismic monitoring stations and networks
NASA Astrophysics Data System (ADS)
Neuffer, Tobias; Kremers, Simon
2017-12-01
In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.
NASA Astrophysics Data System (ADS)
Bohlander, J. A.; Ross, R.; Scambos, T.; Haran, T. M.; Bauer, R. J.
2012-12-01
The Automated Meteorology - Ice/Indigenous species - Geophysics Observation System (AMIGOS) consists of a set of measurement instruments and camera(s) controlled by a single-board computer with a simplified Linux operating system and an Iridium satellite modem supporting two-way communication. Primary features of the system relevant to polar operations are low power requirements, daily data uploading, reprogramming, tolerance for low temperatures, and various approaches for automatic resets and recovery from low power or cold shut-down. Instruments include a compact weather station, C/A or dual-frequency GPS, solar flux and reflectivity sensors, sonic snow gages, simplified radio-echo-sounder, and resistance thermometer string in the firn column. In the current state of development, there are two basic designs. One is intended for in situ observations of glacier conditions. The other design supports a high-resolution camera for monitoring biological or geophysical systems from short distances (100 m to 20 km). The stations have been successfully used in several locations for operational support, monitoring rapid ice changes in response to climate change or iceberg drift, and monitoring penguin colony activity. As of June, 2012, there are 9 AMIGOS systems installed, all on the Antarctic continent. The stations are a working prototype for a planned series of upgraded stations, currently termed 'Sentinels'. These stations would carry further instrumentation, communications, and processing capability to investigate ice - ocean interaction from ice tongue, ice shelf, or fjord coastline areas.
NASA Astrophysics Data System (ADS)
Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.
2015-12-01
In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.
Bell, C.F.; Belval, D.L.; Campbell, J.P.
1996-01-01
Water-quality samples were collected at the Fall Line of five tributaries to the Chesapeake Bay in Virginia during a 6- to 7-year period. The water-quality data were used to estimate loads of nutrients and suspended solids from these tributaries to the non-tidal part of Chesapeake Bay Basin and to identify trends in water quality. Knowledge of trends in water quality is required to assess the effectiveness of nutrient manage- ment strategies in the five basins. Multivariate log-linear regression and the seasonal Kendall test were used to estimate flow-adjusted trends in constituent concentration and load. Results of multivariate log-linear regression indicated a greater number of statistically significant trends than the seasonal Kendall test; how-ever, when both methods indicated a significant trend, both agreed on the direction of the trend. Interpre- tation of the trend estimates for this report was based on results of the parametric regression method. No significant trends in total nitrogen concentration were detected at the James River monitoring station from July 1988 through June 1995, though total Kjeldahl nitrogen concen- tration decreased slightly in base-flow samples. Total phosphorus concentration decreased about 29 percent at this station during the sampling period. Most of the decrease can be attributed to reductions in point-source phosphorus loads in 1988 and 1989, especially the phosphate detergent ban of 1988. No significant trends in total suspended solids were observed at the James River monitoring station, and no trends in runoff- derived constituents were interpreted for this river. Significant decreases were detected in concentrations of total nitrogen, total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, and total suspended solids at the Rappahannock River monitoring station between July 1988 and June 1995. A similar downward trend in total phosphorus concentration was significant at the 90-percent confidence level, but not the 95-percent confidence level. These decreases can be attributed primarily to reductions in nonpoint nutrient and sediment loads, and may have been partially caused by implementation of best management practices on agricultural and silvicultural land. Flow-adjusted trends observed at the Appomattox, Pamunkey, and Mattaponi monitoring stations were more difficult to explain than those at the James and Rappahannock stations. Total Kjeldahl nitrogen and total phosphorus increased 16 and 23 percent, respectively, at the Appomattox River monitoring station from July 1989 through June 1995. Total phosphorus concentration increased about 46 percent at the Pamunkey River monitoring station between July 1989 and June 1995. At the Mattaponi River monitoring station, decreases in dissolved nitrite-plus-nitrate nitrogen were offset by increases in total Kjeldahl nitrogen, resulting in no net change in total nitrogen concentration from October 1989 through June 1995.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, S.; Lucero, R.; Glidewell, D.
1997-08-01
The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. Thismore » paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.« less
A data fusion-based methodology for optimal redesign of groundwater monitoring networks
NASA Astrophysics Data System (ADS)
Hosseini, Marjan; Kerachian, Reza
2017-09-01
In this paper, a new data fusion-based methodology is presented for spatio-temporal (S-T) redesigning of Groundwater Level Monitoring Networks (GLMNs). The kriged maps of three different criteria (i.e. marginal entropy of water table levels, estimation error variances of mean values of water table levels, and estimation values of long-term changes in water level) are combined for determining monitoring sub-areas of high and low priorities in order to consider different spatial patterns for each sub-area. The best spatial sampling scheme is selected by applying a new method, in which a regular hexagonal gridding pattern and the Thiessen polygon approach are respectively utilized in sub-areas of high and low monitoring priorities. An Artificial Neural Network (ANN) and a S-T kriging models are used to simulate water level fluctuations. To improve the accuracy of the predictions, results of the ANN and S-T kriging models are combined using a data fusion technique. The concept of Value of Information (VOI) is utilized to determine two stations with maximum information values in both sub-areas with high and low monitoring priorities. The observed groundwater level data of these two stations are considered for the power of trend detection, estimating periodic fluctuations and mean values of the stationary components, which are used for determining non-uniform sampling frequencies for sub-areas. The proposed methodology is applied to the Dehgolan plain in northwestern Iran. The results show that a new sampling configuration with 35 and 7 monitoring stations and sampling intervals of 20 and 32 days, respectively in sub-areas with high and low monitoring priorities, leads to a more efficient monitoring network than the existing one containing 52 monitoring stations and monthly temporal sampling.
Hydrologic data for the Larimer-Weld regional water-monitoring program, Colorado, 1975-82
Blakely, S.R.; Steinheimer, J.T.
1984-01-01
The Larimer-Weld, Colorado, regional Monitoring Program was begun in 1976 to provide information on the quality and quantity of the surface-water resources in the area. Three stations on the big Thompson River and five stations on the Cache La Poudre River were selected for a data-collection network. Four previously established stations were added to complete the data-collection network: Horsetooth Reservoir, Joe Wright Creek above and below Joe Wright Reservoir, and Michigan River near Cameron Pass. Station description, location, and period of record are given for each station. A statistical summary of the water-quality data for each station is tabulated. Frequency of occurrence is given at the 95th, 75th, 50th, and 25th percentiles. Monthly water-quality data and daily average streamflow data are tabulated for each streamflow station for which this data was collected; Monthly contents data are presented for Horsetooth Reservoir. All data tabulated and summarized are from the period October 1, 1975, through September 30, 1982. (USGS)
73. BUILDING NO. 3316, PICATINNY ARSENAL FIRE STATION, LOOKING NORTH ...
73. BUILDING NO. 3316, PICATINNY ARSENAL FIRE STATION, LOOKING NORTH AT NORTHWEST AND SOUTHWEST SIDES OF 1903 FIRE STATION. BUILDING NO. 3315, AUTO SHOP, IS VISIBLE IN BACKGROUND. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ
Development of river sediment monitoring in Croatia
NASA Astrophysics Data System (ADS)
Frančišković-Bilinski, Stanislav; Bilinski, Halka; Mlakar, Marina; Maldini, Krešimir
2017-04-01
Establishment of regular river sediment monitoring, in addition to water monitoring, is very important. Unlike water, which represents the current state of a particular watercourse, sediment represents a sort of record of the state of pollution in the long run. Sediment monitoring is crucial to gain a real insight into the status of pollution of particular watercourses and to determine trends over a longer period of time. First scientific investigations of river sediment geochemistry in Croatia started 1989 in the Krka River estuary [1], while first systematic research of a river basin in Croatia was performed 2005 in Kupa River drainage basin [2]. Up to now, several detailed studies of both toxic metals and organic pollutants have been conducted in this drainage basin and some other rivers, also Croatian scientists participated in river sediment research in other countries. In 2008 Croatian water authorities (Hrvatske Vode) started preliminary sediment monitoring program, what was successfully conducted. In the first year of preliminary program only 14 stations existed, while in 2014 number of stations increased to 21. Number of monitored watercourses and of analysed parameters also increased. Current plan is to establish permanent monitoring network of river sediments throughout the state. The goal is to set up about 80 stations, which will cover all most important and most contaminated watercourses in all parts of the country [3]. Until the end of the year 2016, regular monitoring was conducted at 31 stations throughout the country. Currently the second phase of sediment monitoring program is in progress. At the moment parameters being determined on particular stations are not uniform. From inorganic compounds it is aimed to determine Cd, Pb, Ni, Hg, Cu, Cr, Zn and As on all stations. The ratio of natural concentrations of those elements vs. anthropogenic influence is being evaluated on all stations. It was found that worse situation is with Ni, Hg and Cr, who have significant anthropogenic concentrations on several locations. With other studied elements situation is much better and anthropogenic influence is not so significant. Based on own research and experience and comparing them with existing sediment quality criteria worldwide, within the current phase of monitoring program it is aimed to propose threshold values for mentioned elements, what would be base for Croatian National legislative on sediment quality. [1] Prohić, E. and Juračić, M. (1989): Heavy metals in sediments - Problems concerning determination of the anthropogenic influence. Study in the Krka River Estuary, Eastern Adriatic Coast, Yugoslavia. Environmental Geology Water Science, 13(2), 145-151. [2] Franči\\vsković-Bilinski, S. (2005): Geochemistry of stream sediments in Kupa River drainage basin [In Croatian] / Doctoral thesis. University of Zagreb, Croatia. [3] Franči\\vsković-Bilinski, S., Bilinski, H., Maldini, K. (2015): Establishing of monitoring of river sediments in Croatia. Contaminated sediments: Environmental Chemistry, Ecotoxicology and Engineering - Program and Abstract Book, Congressi Stefano Franscini, Ascona, Switzerland, 73-73.
NASA Astrophysics Data System (ADS)
Steigies, C. T.
2015-12-01
Since the International Geophysical Year (IGY) in 1957-58 cosmic rays areroutinely measured by many ground-based Neutron Monitors (NM) around theworld. The World Data Center for Cosmic Rays (WDCCR) was established as apart of this activity and is providing a database of cosmic-ray neutronobservations in unified formats. However, that standard data comprises onlyof one hour averages, whereas most NM stations have been enhanced at the endof the 20th century to provide data in one minute resolution or even better.This data was only available on the web-sites of the institutes operatingthe station, and every station invented their own data format for thehigh-resolution measurements. There were some efforts to collect data fromseveral stations, to make this data available on FTP servers, however noneof these efforts could provide real-time data for all stations.The EU FP7 project NMDB (real-time database for high-resolution NeutronMonitor measurements, http://nmdb.eu) was funded by the European Commission,and a new database was set up by several Neutron Monitor stations in Europeand Asia to store high-resolution data and to provide access to the data inreal-time (i.e. less than five minute delay). By storing the measurements ina database, a standard format for the high-resolution measurements isenforced. This database is complementary to the WDCCR, as it does not (yet)provide all historical data, but the creation of this effort has spurred anew collaboration between Neutron Monitor scientists worldwide, (new)stations have gone online (again), new projects are building on the resultsof NMDB, new users outside of the Cosmic Ray community are starting to useNM data for new applications like soil moisture measurements using cosmicrays. These applications are facilitated by the easy access to the data withthe http://nest.nmdb.eu interface that offers access to all NMDB data forall users.
Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical
NASA Technical Reports Server (NTRS)
1996-01-01
Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical stabilizer and the aft cargo bay area during the entry phase of the flight. Horowitz, pilot, joined four other astronauts and an international payload specialist for 16 days of scientific research in Earth-orbit.
Michelle Moorman; Tom Augspurger
2016-01-01
The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.
Bragg, Heather M.; Johnston, Matthew W.
2016-04-15
All quality-assurance values exceed the criteria established by the U.S. Army Corps of Engineers TDG monitoring plan. Criteria for data completeness (95-percent) were met at seven of the eight monitoring stations. Deleted data at the John Day tailwater station resulted in data completeness below criteria.
Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)
Wilcox, S.; Andreas, A.
2007-05-02
A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.
NASA Astrophysics Data System (ADS)
Kuik, Friderike; Lauer, Axel; von Schneidemesser, Erika; Butler, Tim
2017-04-01
Many European cities continue to struggle with meeting the European air quality limits for NO2. In Berlin, Germany, most of the exceedances in NO2 recorded at monitoring sites near busy roads can be largely attributed to emissions from traffic. In order to assess the impact of changes in traffic emissions on air quality at policy relevant scales, we combine the regional atmosphere-chemistry transport model WRF-Chem at a resolution of 1kmx1km with a statistical downscaling approach. Here, we build on the recently published study evaluating the performance of a WRF-Chem setup in representing observed urban background NO2 concentrations from Kuik et al. (2016) and extend this setup by developing and testing an approach to statistically downscale simulated urban background NO2 concentrations to street level. The approach uses a multilinear regression model to relate roadside NO2 concentrations observed with the municipal monitoring network with observed NO2 concentrations at urban background sites and observed traffic counts. For this, the urban background NO2 concentrations are decomposed into a long term, a synoptic and a diurnal component using the Kolmogorov-Zurbenko filtering method. We estimate the coefficients of the regression model for five different roadside stations in Berlin representing different street types. In a next step we combine the coefficients with simulated urban background concentrations and observed traffic counts, in order to estimate roadside NO2 concentrations based on the results obtained with WRF-Chem at the five selected stations. In a third step, we extrapolate the NO2 concentrations to all major roads in Berlin. The latter is based on available data for Berlin of daily mean traffic counts, diurnal and weekly cycles of traffic as well as simulated urban background NO2 concentrations. We evaluate the NO2 concentrations estimated with this method at street level for Berlin with additional observational data from stationary measurements and mobile measurements conducted during a campaign in summer 2014. The results show that this approach allows us to estimate NO2 concentrations at roadside reasonably well. The approach can be applied when observations show a strong correlation between roadside NO2 concentrations and traffic emissions from a single type of road. The method, however, shows weaknesses for intersections where observed NO2 concentrations are influenced by traffic on several different roads. We then apply this downscaling approach to estimate the impact of different traffic emission scenarios both on urban background and street level NO2 concentrations. References Kuik, F., Lauer, A., Churkina, G., Denier van der Gon, H. A. C., Fenner, D., Mar, K. A., and Butler, T. M.: Air quality modelling in the Berlin-Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data, Geosci. Model Dev., 9, 4339-4363, doi:10.5194/gmd-9-4339-2016, 2016.
Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.
2010-01-01
Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.
NASA Astrophysics Data System (ADS)
van Osnabrugge, B.; Weerts, A. H.; Uijlenhoet, R.
2017-11-01
To enable operational flood forecasting and drought monitoring, reliable and consistent methods for precipitation interpolation are needed. Such methods need to deal with the deficiencies of sparse operational real-time data compared to quality-controlled offline data sources used in historical analyses. In particular, often only a fraction of the measurement network reports in near real-time. For this purpose, we present an interpolation method, generalized REGNIE (genRE), which makes use of climatological monthly background grids derived from existing gridded precipitation climatology data sets. We show how genRE can be used to mimic and extend climatological precipitation data sets in near real-time using (sparse) real-time measurement networks in the Rhine basin upstream of the Netherlands (approximately 160,000 km2). In the process, we create a 1.2 × 1.2 km transnational gridded hourly precipitation data set for the Rhine basin. Precipitation gauge data are collected, spatially interpolated for the period 1996-2015 with genRE and inverse-distance squared weighting (IDW), and then evaluated on the yearly and daily time scale against the HYRAS and EOBS climatological data sets. Hourly fields are compared qualitatively with RADOLAN radar-based precipitation estimates. Two sources of uncertainty are evaluated: station density and the impact of different background grids (HYRAS versus EOBS). The results show that the genRE method successfully mimics climatological precipitation data sets (HYRAS/EOBS) over daily, monthly, and yearly time frames. We conclude that genRE is a good interpolation method of choice for real-time operational use. genRE has the largest added value over IDW for cases with a low real-time station density and a high-resolution background grid.
QUALITY ASSURANCE MEASURES ASSOCIATED WITH CORAL REEF MONITORING
Systematic efforts began in 1997 to assess the incidence of coral diseases in the Florida Keys. Protocols were developed for the selection of permanent stations and for data collection methodology. Permanent stations and for data collection methodology. Permanent stations were es...
5 years of continuous seismic monitoring of a mountain river in the Pyrenees
NASA Astrophysics Data System (ADS)
Diaz, Jordi; Sanchez-Pastor, Pilar S.; Gallart, Josep
2017-04-01
The analysis of background seismic noise variations in the proximity of river channels has revealed as a useful tool to monitor river flow, even for modest discharges. Nevertheless, this monitoring is usually carried on using temporal deployments of seismic stations. The CANF seismic broad-band station, acquiring data continuously since 2010 and located inside an old railway tunnel in the Central Pyrenees, at about 400 m of the Aragón River channel, provides an excellent opportunity to enlarge this view and present a long term monitoring of a mountain river. Seismic signals in the 2-10 Hz band clearly related to river discharges have been identified in the seismic records. Discharge increases due to rainfall, large storms resulting in floods and snowmelt periods can be discriminated from the analysis of the seismic data. Up to now, two large rainfall events resulting in large discharge and damaging floods have been recorded, both sharing similar properties which can be used to implement automatic procedures to identify seismically potentially damaging floods. Another natural process that can be characterized using continuouly acquired seismic data is mountain snowmelt, as this process results in characteristic discharge patterns which can be identified in the seismic data. The time occurrence and intensity of the snowmelt stages for each season can be identified and the 5 seasons available so far compared to detect possible trends The so-called fluvial seismology can also provide important clues to evaluate the beadload transport in rivers, an important parameter to evaluate erosion rates in mountain environments. Analyzing both the amplitude and frequency variations of the seismic data and its hysteresis cycles, it seems possible to estimate the relative contribution of water flow and bedload transport to the seismic signal. The available results suggest that most of the river-generated seismic signal seems related to bed load transportation, while water turbulence is only significant above a discharge thres.hold Since 2015 we are operating 2 additional stations located beside the Cinca and Segre Rivers, also in the Pyrenean range. First results confirm that the river-generated signal can also be identified at these sites, although wind-related signals are recorded in a close frequency band and hence some further analysis is required to discern between both processes. (Founding: MISTERIOS project, CGL2013-48601-C2-1-R)
Mohebbi-Nozar, Seyedeh Laili; Zakaria, Mohamad Pauzi; Ismail, Wan Ruslan; Mortazawi, Mohammad Seddiq; Salimizadeh, Maryam; Momeni, Mohammad; Akbarzadeh, Gholamali
2015-06-15
To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, R. D. (Inventor)
1983-01-01
An intrusion monitoring system includes an array of seismic sensors, such as geophones, arranged along a perimeter to be monitored for unauthorized intrusion as by surface movement or tunneling. Two wires lead from each sensor to a central monitoring station. The central monitoring station has three modes of operation. In a first mode of operation, the output of all of the seismic sensors is summed into a receiver for amplification and detection. When the amplitude of the summed signals exceeds a certain predetermined threshold value an alarm is sounded. In a second mode of operation, the individual output signals from the sensors are multiplexed into the receiver for sequentially interrogating each of the sensors.
Zhang, Yingying; Wang, Juncheng; Vorontsov, A M; Hou, Guangli; Nikanorova, M N; Wang, Hongliang
2014-01-01
The international marine ecological safety monitoring demonstration station in the Yellow Sea was developed as a collaborative project between China and Russia. It is a nonprofit technical workstation designed as a facility for marine scientific research for public welfare. By undertaking long-term monitoring of the marine environment and automatic data collection, this station will provide valuable information for marine ecological protection and disaster prevention and reduction. The results of some initial research by scientists at the research station into predictive modeling of marine ecological environments and early warning are described in this paper. Marine ecological processes are influenced by many factors including hydrological and meteorological conditions, biological factors, and human activities. Consequently, it is very difficult to incorporate all these influences and their interactions in a deterministic or analysis model. A prediction model integrating a time series prediction approach with neural network nonlinear modeling is proposed for marine ecological parameters. The model explores the natural fluctuations in marine ecological parameters by learning from the latest observed data automatically, and then predicting future values of the parameter. The model is updated in a "rolling" fashion with new observed data from the monitoring station. Prediction experiments results showed that the neural network prediction model based on time series data is effective for marine ecological prediction and can be used for the development of early warning systems.
In Utero Exposure to Toxic Air Pollutants and Risk of Childhood Autism
von Ehrenstein, Ondine S; Aralis, Hilary; Cockburn, Myles; Ritz, Beate
2015-01-01
Background Genetic and environmental factors are believed to contribute to the development of autism, but relatively few studies have considered potential environmental risks. Here we examine risks for autism in children related to in utero exposure to monitored ambient air toxics from urban emissions. Methods Among the cohort of children born in Los Angeles County, California 1995–2006, those whose mothers resided during pregnancy in a 5km buffer around air-toxics monitoring stations were included (n=148,722). To identify autism cases in this cohort, birth records were linked to records of children diagnosed with primary autistic disorder at the California Department of Developmental Services between 1998 and 2009 (n=768). We calculated monthly average exposures during pregnancy for 24 air toxics selected based on suspected or known neurotoxicity or neurodevelopmental toxicity. Factor analysis helped us identify the correlational structure among air toxics, and we estimated odds ratios (ORs) for autism from logistic regression analyses. Results Autism risks were increased per interquartile-range increase in average concentrations during pregnancy of several correlated toxics mostly loading on one factor, including 1,3-butadiene (OR=1.59 [95% confidence interval=1.18–2.15]), meta/para-xylene (1.51 [1.26–182]), other aromatic solvents, lead (1.49 [1.23–1.81]), perchloroethylene (1.40 [1.09–1.80]), and formaldehyde (1.34 [1.17–1.52]), adjusting for maternal age, race/ethnicity, nativity, education, insurance type, maternal birth place, parity, child sex, and birth year. Conclusions Risks for autism in children may increase following in utero exposure to ambient air toxics from urban traffic and industry emissions, as measured by community-based air -monitoring stations. PMID:25051312
Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap
NASA Astrophysics Data System (ADS)
Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.
2007-05-01
The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.
Space Station engineering and technology development
NASA Technical Reports Server (NTRS)
1985-01-01
Historical background, costs, organizational assignments, technology development, user requirements, mission evolution, systems analyses and design, systems engineering and integration, contracting, and policies of the space station are discussed.
NASA Astrophysics Data System (ADS)
Kucera, Paul; Steinson, Martin
2017-04-01
Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions of the World, surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The project is focused on improving weather observations for environmental monitoring and early warning alert systems on a regional to global scale. Instrumentation that has been developed use innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The goal of the project is to make the weather station designs, software, and processing tools an open community resource. The weather stations can be built locally by agencies, through educational institutions, and residential communities as a citizen effort to augment existing networks to improve detection of natural hazards for disaster risk reduction. The presentation will provide an overview of the open source weather station technology and evaluation of sensor observations for the initial networks that have been deployed in Africa.
Schloderer, Glen; Bingham, Matthew; Awange, Joseph L; Fleming, Kevin M
2011-09-01
In environmental monitoring, environmental impact assessments and environmental audits, topographical maps play an essential role in providing a means by which the locations of sampling sites may be selected, in assisting with the interpretation of physical features, and in indicating the impact or potential impact on an area due to changes in the system being monitored (e.g., spatially changing features such as wetlands). Global Navigation Satellite Systems (GNSS) are hereby presented as a rapid method for monitoring spatial changes to support environmental monitoring decisions and policies. To validate the GNSS-based method, a comparison is made of results from a small-scale topographic survey using radio-based real-time kinematic GNSS (GNSS-RTK) and total station survey methods at Jack Finnery Lake, Perth, Australia. The accuracies achieved by the total station in this study were 2 cm horizontally and 6 cm vertically, while the GNSS-RTK also achieved an accuracy of 2 cm horizontally, but only 28 cm vertically. While the GNSS-RTK measurements were less accurate in the height component compared to those from the total station method, it is still capable of achieving accuracies sufficient for a topographic map at a scale of 1:1,750 that could support environmental monitoring tasks such as identifying spatial changes in small water bodies or wetlands. The time taken to perform the survey using GNSS-RTK, however, was much shorter compared to the total station method, thereby making it quite suitable for monitoring spatial changes within an environmental context, e.g., dynamic mining activities that require rapid surveys and the updating of the monitored data at regular intervals.
The May 18, 1998 Indian Nuclear Test Seismograms at station NIL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Rodgers, A J; Bowers, D
2005-04-11
The last underground nuclear tests were conducted by India and Pakistan in May 1998. Although the Comprehensive Test Ban Treaty has not entered force, an International Monitoring System (IMS), established by the treaty is nearing completion. This system includes 170 seismic stations, a number of them originally established by IRIS. The station IRIS station NIL (Nilore, Pakistan) is close to a planned IMS primary station and recorded some very interesting seismograms from the May 18, 1998 Indian test. We carefully calibrated the path to NIL using a prior Mw 4.4 that occurred on April 4, 1995 about 110 km northmore » of the Indian test site. We used joint epicentral location techniques along with teleseismic P waves and regional surface waves to fix the epicenter, depth, mechanism and moment of this event. From these we obtained a velocity model for the path to NIL and created explosion synthetic seismograms to compare with the data. Interestingly the observed Rayleigh waves are reversed, consistent with an implosion rather than an explosion source. The preferred explanation is that the explosion released tectonic stress near the source region, which can be modeled as a thrust earthquake of approximate Mw 4.0 plus a pure explosion. This tectonic release is sufficient to completely dominate the Rayleigh waves and produce the observed signal (Walter et al. 2005). We also examined the explosion at high frequencies of 6 6-8 Hz where many studies have shown that relative P/S amplitudes can discriminate explosions from a background of earthquakes (Rodgers and Walter, 2002). Comparing with the April 4 1995 earthquake we see the classic difference of relatively large P/S values for the explosion compared to the earthquakes despite the complication of the large tectonic release during the explosion.« less
Carter Carburetor Weekly Air Monitoring & Sampling Report - March 7, 2013 - March 13, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
NASA Astrophysics Data System (ADS)
Stuffler, Timo; Graue, Roland; Bird, Antony J.; Dean, Antony; Staubert, Rüdiger
2018-04-01
This paper, "PIMACS (Polarimeter and improved modular anti-coincidence system): an effective instrument concept for x-, gamma-ray monitoring, and polarimetry measurements on the International Space Station," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Šiljić Tomić, Aleksandra N; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V
2016-05-01
This paper describes the application of artificial neural network models for the prediction of biological oxygen demand (BOD) levels in the Danube River. Eighteen regularly monitored water quality parameters at 17 stations on the river stretch passing through Serbia were used as input variables. The optimization of the model was performed in three consecutive steps: firstly, the spatial influence of a monitoring station was examined; secondly, the monitoring period necessary to reach satisfactory performance was determined; and lastly, correlation analysis was applied to evaluate the relationship among water quality parameters. Root-mean-square error (RMSE) was used to evaluate model performance in the first two steps, whereas in the last step, multiple statistical indicators of performance were utilized. As a result, two optimized models were developed, a general regression neural network model (labeled GRNN-1) that covers the monitoring stations from the Danube inflow to the city of Novi Sad and a GRNN model (labeled GRNN-2) that covers the stations from the city of Novi Sad to the border with Romania. Both models demonstrated good agreement between the predicted and actually observed BOD values.
Quinones, F.; Vasquez, Pedro; Pena-Cortes, Rafael
1978-01-01
In 1969, the Caribbean District of the U.S. Geological Survey, in cooperation with the Commonwealth of Puerto Rico, initiated the operation of a network to monitor some parameters indicative of water-quality changes at selected stream sites. In 1974, at the request of the Environmental Quality Board of Puerto Rico, the network was modified to conform with the Environmental Protection Agency National Water Quality Surveillance System. The purpose of the present network is to monitor changes in water quality between the upstream and downstream stations. The expanded network consisted of 58 stations. During 1976, five had been discontinued. One other was added late in 1976. Most of the stations in the original network have been maintained, thus providing some degree of continuity. The monitoring stations used in this report are shown on a map and listed in a table. The results of the network operation are summarized for the period July 1976 to August 1977. (Woodard-USGS)
Assessment of Thermal Control and Protective Coatings
NASA Technical Reports Server (NTRS)
Mell, Richard J.
2000-01-01
This final report is concerned with the tasks performed during the contract period which included spacecraft coating development, testing, and applications. Five marker coatings consisting of a bright yellow handrail coating, protective overcoat for ceramic coatings, and specialized primers for composites (or polymer) surfaces were developed and commercialized by AZ Technology during this program. Most of the coatings have passed space environmental stability requirements via ground tests and/or flight verification. Marker coatings and protective overcoats were successfully flown on the Passive Optical Sample Assembly (POSA) and the Optical Properties Monitor (OPM) experiments flown on the Russian space station MIR. To date, most of the coatings developed and/or modified during this program have been utilized on the International Space Station and other spacecraft. For ISS, AZ Technology manufactured the 'UNITY' emblem now being flown on the NASA UNITY node (Node 1) that is docked to the Russian Zarya (FGB) utilizing the colored marker coatings (white, blue, red) developed by AZ Technology. The UNITY emblem included the US American flag, the Unity logo, and NASA logo on a white background, applied to a Beta cloth substrate.
Summary of compact, roof version of a Village Green Project station installed on a secondary school rooftop in Hong Kong. Preliminary comparison of the station's data against nearby regulatory monitors are summarized.
Nimiroski, Mark T.; DeSimone, Leslie A.; Waldron, Marcus C.
2008-01-01
The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality data and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 1, 1995 through September 30, 2002, (water years (WY) 1996-2002) were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1, 1982 through September 30, 2002 (WY 1983-2002). Water samples were collected and analyzed by Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics were calculated for WY 1996-2002 for all 37 monitoring stations for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli) bacteria, orthophosphate, iron, and manganese. Instantaneous loads and yields (loads per unit area) of total coliform and E. coli bacteria (indicator bacteria), chloride, nitrite, nitrate, orthophosphate, iron, and manganese were calculated for all sampling dates during WY 1996-2002 for the 23 stations with streamflow data. Values of physical properties and concentrations of constituents were compared to State and Federal water-quality standards and guidelines, and were related to streamflow, land-use characteristics, and road density. Tributary stream water in the Scituate Reservoir drainage area for WY 1996-2002 was slightly acidic (median pH of all stations equal to 6.1) and contained low concentrations of chloride (median 13 milligrams per liter (mg/L)), nitrate (median 0.04 mg/L as N), and orthophosphate (median 0.04 mg/L as P). Turbidity and alkalinity values also were low with median values of 0.62 nephelometric turbidity units and 4.8 mg/L as calcium carbonate, respectively. Indicator bacteria were detected in samples from all stations, but median concentrations were low, 23 and 9 colony-forming units per 100 mL for total coliform and E. coli bacteria, respectively. Median values of several physical properties and median concentrations of several constituents that can be related to human activities correlated positively with the percentages of developed land and correlated negatively with the percentages of forest cover in the drainage areas of the monitoring stations. Median concentrations of chloride also correlated positively with the density of roads in the drainage areas of monitoring stations, likely reflecting the effects of road-salt applications. Median values of color correlated positively with the percentages of wetlands in the drainage areas of monitoring stations, reflecting the natural sources of color in tributary stream waters. Negative correlations of turbidity, indicator bacteria, and chloride with streamflow likely reflect seasonal patterns, in which higher values and concentrations of these properties and constituents occur during low-flow conditions at the ends of water years. Similar seasonal patterns were observed for pH, alkalinity, and color. Loads and yields of chloride, nitrate, orthophosphate, and bacteria varied among monitoring stations in the Scituate Reservoir drainage area. Loads generally were higher at stations with larger drainage areas and at stations in the eastern, more developed parts of the Scituate Reservoir drainage area. Yields generally were higher at stations in the eastern parts of the drainage area. Upward trends in pH were identified for nearly half the monitoring stations and may reflect regional reductions in acid precipitation. Upward and downward trends were identified in chloride concentrations at various stations; upward trends may reflect the effects of increasing development, whereas strong downward trends at
ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza
2015-01-01
Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. A multi-pollutant method (implemented as a MATLAB program) was explored for configur-ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta-tion's dosage to the total dosage in the network. Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health.
Tools to manage the enterprise-wide picture archiving and communications system environment.
Lannum, L M; Gumpf, S; Piraino, D
2001-06-01
The presentation will focus on the implementation and utilization of a central picture archiving and communications system (PACS) network-monitoring tool that allows for enterprise-wide operations management and support of the image distribution network. The MagicWatch (Siemens, Iselin, NJ) PACS/radiology information system (RIS) monitoring station from Siemens has allowed our organization to create a service support structure that has given us proactive control of our environment and has allowed us to meet the service level performance expectations of the users. The Radiology Help Desk has used the MagicWatch PACS monitoring station as an applications support tool that has allowed the group to monitor network activity and individual systems performance at each node. Fast and timely recognition of the effects of single events within the PACS/RIS environment has allowed the group to proactively recognize possible performance issues and resolve problems. The PACS/operations group performs network management control, image storage management, and software distribution management from a single, central point in the enterprise. The MagicWatch station allows for the complete automation of software distribution, installation, and configuration process across all the nodes in the system. The tool has allowed for the standardization of the workstations and provides a central configuration control for the establishment and maintenance of the system standards. This report will describe the PACS management and operation prior to the implementation of the MagicWatch PACS monitoring station and will highlight the operational benefits of a centralized network and system-monitoring tool.
Background Noise Characteristics in the Western Part of Romania
NASA Astrophysics Data System (ADS)
Grecu, B.; Neagoe, C.; Tataru, D.; Stuart, G.
2012-04-01
The seismological database of the western part of Romania increased significantly during the last years, when 33 broadband seismic stations provided by SEIS-UK (10 CMG 40 T's - 30 s, 9 CMG 3T's - 120 s, 14 CMG 6T's - 30 s) were deployed in the western part of the country in July 2009 to operate autonomously for two years. These stations were installed within a joint project (South Carpathian Project - SCP) between University of Leeds, UK and National Institute for Earth Physics (NIEP), Romania that aimed at determining the lithospheric structure and geodynamical evolution of the South Carpathian Orogen. The characteristics of the background seismic noise recorded at the SCP broadband seismic network have been studied in order to identify the variations in background seismic noise as a function of time of day, season, and particular conditions at the stations. Power spectral densities (PSDs) and their corresponding probability density functions (PDFs) are used to characterize the background seismic noise. At high frequencies (> 1 Hz), seismic noise seems to have cultural origin, since notable variations between daytime and nighttime noise levels are observed at most of the stations. The seasonal variations are seen in the microseisms band. The noise levels increase during the winter and autumn months and decrease in summer and spring seasons, while the double-frequency peak shifts from lower periods in summer to longer periods in winter. The analysis of the probability density functions for stations located in different geologic conditions points out that the noise level is higher for stations sited on softer formations than those sited on hard rocks. Finally, the polarization analysis indicates that the main sources of secondary microseisms are found in the Mediterranean Sea and Atlantic Ocean.
NASA Technical Reports Server (NTRS)
Prosser, William H.; Madaras, Eric I.
2011-01-01
As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment
NASA Astrophysics Data System (ADS)
Davis, Claude S.
Two wet deposition monitoring networks, the Coleson Cove Precipitation Monitoring Network (CCPMN) (12 stations) located in the Coleson Cove-Saint John area of south New Brunswick, and the Expanded New Brunswick Precipitation Monitoring Network (ENBPMN) (6 stations) covering the remainder of the province, were established in May 1988. The monitoring networks and a complementary modelling study were implemented to assess the relative contributions of local and distant sources to wet deposition in New Brunswick. Quality assurance/quality control activities for the networks included independent external audits, collocated samplers at one site and comparisons of weekly measurements at the ENBPMN sampler and the Canadian Air and Precipitation Monitoring Network (CAPMoN) sampler which makes daily measurements. The intercomparisons provided reassurance that the networks provided high quality data. Analysis of 2 years (June 1988-May 1990) data from the networks included routine statistical analyses for acid rain chemistry as well as analysis of 1 year of daily back trajectory data from Harcourt, New Brunswick. Three-day back trajectories determined at 12-h intervals from Harcourt on days with precipitatio showed that air masses originate mainly from regions in Quebec, Ontario and northeast U.S.A. which are known to have high sulphur oxide emissions. Some 18 trajectories were associated with 50% of the wet sulphate deposition and over 200 trajectories with 75% of the deposition in the 1-year period ending 31 May 1989. The MESOPUFF model, applied to an 800 km by 800 km domain that included the entire province of New Brunswick, was used to make predictions of wet sulphate and nitrate deposition at each of the wet deposition monitoring stations for a 2-year period, 1 June 1988-31 May 1990. Model predictions averaged over all receptors due to all sources in the model domain accounted for 7-25% of the measured seasonal average wet sulphate deposition and less than 3% of the measured wet nitrate deposition at all monitoring stations. Wet deposition in New Brunswick is thus dominated by distant sources through long-range transport. The model estimated that the oil-fired Coleson Cove thermal generating station contributed between 7% and 16% to the seasonal wet sulphur deposition and less than 3% of the seasonal wet nitrogen deposition at monitoring stations in the Coleson Cove-Saint John area. The estimates for wet nitrogen deposition are limited by the NO χ emissions information which is considered less reliable than SO 2 emissions information.
New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Peter Morse
Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can bemore » used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.« less
Histogrammatic Method for Determining Relative Abundance of Input Gas Pulse
NASA Technical Reports Server (NTRS)
Mandrake, Lukas; Bornstein, Benjamin J.; Madzunkov, Stojan; MacAskill, John A.
2012-01-01
To satisfy the Major Constituents Analysis (MCA) requirements for the Vehicle Cabin Atmosphere Monitor (VCAM), this software analyzes the relative abundance ratios for N2, O2, Ar, and CO2 as a function of time and constructs their best-estimate mean. A histogram is first built of all abundance ratios for each of the species vs time. The abundance peaks corresponding to the intended measurement and any obfuscating background are then separated via standard peak-finding techniques in histogram space. A voting scheme is then used to include/exclude this particular time sample in the final average based on its membership to the intended measurement or the background population. This results in a robust and reasonable estimate of the abundance of trace components such as CO2 and Ar even in the presence of obfuscating backgrounds internal to the VCAM device. VCAM can provide a means for monitoring the air within the enclosed environments, such as the ISS (International Space Station), Crew Exploration Vehicle (CEV), a Lunar Habitat, or another vehicle traveling to Mars. Its miniature pre-concentrator, gas chromatograph (GC), and mass spectrometer can provide unbiased detection of a large number of organic species as well as MCA analysis. VCAM s software can identify the concentration of trace chemicals and whether the chemicals are on a targeted list of hazardous compounds. This innovation s performance and reliability on orbit, along with the ground team s assessment of its raw data and analysis results, will validate its technology for future use and development.
NASA Astrophysics Data System (ADS)
Wängberg, Ingvar; Nerentorp Mastromonaco, Michelle G.; Munthe, John; Gårdfeldt, Katarina
2016-10-01
Within the EU-funded project, Global Mercury Observation System (GMOS) airborne mercury has been monitored at the background Råö measurement site on the western coast of Sweden from mid-May 2012 to the beginning of July 2013 and from the beginning of February 2014 to the end of May 2015. The following mercury species/fractions were measured: gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidised mercury (GOM) using the Tekran measurement system. The mercury concentrations measured at the Råö site were found to be low in comparison to other, comparable, European measurement sites. A back-trajectory analysis to study the origin of air masses reaching the Råö site was performed. Due to the remote location of the Råö measurement station it receives background air about 60 % of the time. However, elevated mercury concentrations arriving with air masses coming from the south-east are noticeable. GEM and PBM concentrations show a clear annual variation with the highest values occurring during winter, whereas the highest concentrations of GOM were obtained in spring and summer. An evaluation of the diurnal pattern of GOM, with peak concentrations at midday or in the early afternoon, which often is observed at remote places, shows that it is likely to be driven by local meteorology in a similar way to ozone. Evidence that a significant part of the GOM measured at the Råö site has been formed in free tropospheric air is presented.
2. Photocopy of photograph of Hornet Ranger Station. Original on ...
2. Photocopy of photograph of Hornet Ranger Station. Original on file with the Payette National Forest, Supervisor's Office, McCall, Idaho. VIEW OF RESIDENTIAL AREA, CA. 1936. RANGER DWELLING WITH WOODSHED CELLAR AND GARAGE IN BACKGROUND. - Hornet Ranger Station, Forest Service Road No. 50002, Council, Adams County, ID
78 FR 784 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
....; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is... Nuclear Power Station (PNPS). The license provides, among other things, that the facility is subject to... participated in two FEMA-evaluated exercises in conjunction with the Vermont Yankee Nuclear Power Plant and...
2014-08-12
ISS040-E-092581 (12 Aug. 2014) --- A portion of the International Space Station?s Zvezda Service Module with the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) is featured in this image photographed by an Expedition 40 crew member onboard the station. A waning full moon is visible in the background.
75 FR 38147 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0240] FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...
75 FR 80549 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0378] FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...
Phenrat, Tanapon; Otwong, Ashijya; Chantharit, Aphichart; Lowry, Gregory V.
2016-01-01
Background: Klity Creek has become Thailand’s first official remediation ordered by the court in 2013, 15 years after the spill of lead (Pb)-contaminated mine tailing into the creek. The Pollution Control Department (PCD) decided to restore the creek through monitored natural recovery (MNR) since 2006 but has not been successful. Interestingly, the most recent remediation plan in 2015 will still apply MNR to five out of the seven portions of the creek, despite no scientific feasibility evaluation of using MNR to restore the creek. Objective: This study qualitatively and quantitatively evaluated the feasibility of using MNR to clean up the creek in order to protect the Klity children from excess Pb exposure. Methods: We analyzed the physical and chemical transformation of Pb contaminated sediment in the creek and developed a remedial action goal and cleanup level using the Integrated Exposure Uptake Biokinetic model (IEUBK). We empirically determined the natural recovery (NR) potentials and rates using 10 years of data monitoring the water and sediment samples from eight monitoring stations (KC1 to KC8). Results: Klity Creek has NR potential for water except at KC2, which is closest to the spill and the other improperly managed Pb sources. However, the creek has no NR potential for sediment except at the KC8 location (NR rate = 11.1 ± 3.0 × 10–3 month–1) farthest from the spill. Conclusion: The MNR method is not suitable to use as the sole remedial approach for Klity Creek (KC2 to KC7). Although MNR is applicable at KC8, it may require up to 377 ± 76 years to restore the sediment to the background Pb concentration. Citation: Phenrat T, Otwong A, Chantharit A, Lowry GV. 2016. Ten-year monitored natural recovery of lead-contaminated mine tailing in Klity Creek, Kanchanaburi Province, Thailand. Environ Health Perspect 124:1511–1520; http://dx.doi.org/10.1289/EHP215 PMID:27157823
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 30, 2015 – December 6, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 26, 2015 – November 1, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - February 15, 2016 – February 21, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 12, 2015 – October 18, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 23, 2015 – November 29, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 5, 2015 – October 11, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - February 1, 2016 – February 7, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - September 28, 2015 – October 4, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 16, 2015 – November 22, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 9, 2015 – November 15, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 19, 2015 – October 25, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 2, 2015 – November 8, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Pu, Jing-Jiao; Xu, Hong-Hui; Kang, Li-Li; Ma, Qian-Li
2011-08-01
Characteristics of Atmospheric CO2 concentration obtained by Flask measurements were analyzed at Lin'an regional background station from August 2006 to July 2009. According to the simulation results of carbon tracking model, the impact of carbon sources and sinks on CO2 concentration was evaluated in Yangtze River Delta. The results revealed that atmospheric CO2 concentrations at Lin'an regional background station were between 368.3 x 10(-6) and 414.8 x 10(-6). The CO2 concentration varied as seasons change, with maximum in winter and minimum in summer; the annual difference was about 20.5 x 10(-6). The long-term trend of CO2 concentration showed rapid growth year by year; the average growth rate was about 3.2 x 10(-6)/a. CO2 flux of Yangtze River Delta was mainly contributed by fossil fuel burning, terrestrial biosphere exchange and ocean exchange, while the contribution of fire emission was small. CO2 flux from fossil fuel burning played an important role in carbon source; terrestrial biosphere and ocean were important carbon sinks in this area. Seasonal variations of CO2 concentration at Lin'an regional background station were consistent with CO2 fluxes from fossil fuel burning and terrestrial biosphere exchange.
Closeup view of a general electric company demand meter which ...
Close-up view of a general electric company demand meter which formerly monitored railroad power usage obtained from Philadelphia Electric Company sources. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA
Quality of Surface Water in Missouri, Water Year 2008
Otero-Benitez, William; Davis, Jerri V.
2009-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2008 water year (October 1, 2007, through September 30, 2008), data were collected at 67 stations, including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.
A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station
NASA Technical Reports Server (NTRS)
Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne
1989-01-01
This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.
NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2013 and FY2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Julianne J.; Nikolich, George; Mizell, Steve
The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. Emphasis is given to collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans that are beingmore » developed, which will facilitate appropriate closure design and postclosure monitoring. Desert Research Institute installed two meteorological monitoring stations south (station number 1) and north (station number 2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA in 2011. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters is recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during FY2013 and FY2014.« less
NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolich, George; Mizell, Steve; McCurdy, Greg
Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. The emphasis of the work is on collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans thatmore » are being developed, which will facilitate the appropriate closure design and post-closure monitoring. In 2011, DRI installed two meteorological monitoring stations south (station #1) and north (station #2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters are recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during fiscal year (FY) 2015.« less
COLD MAGICS - Continuous Local Deformation Monitoring of an Arctic Geodetic Fundamental Station
NASA Technical Reports Server (NTRS)
Haas, Ruediger; Bergstrand, Sten
2010-01-01
We describe the experience gained in a project to continuously monitor the local tie at the Geodetic Observatory Ny-Alesund. A PC-controlled robotic total station was used to monitor survey prisms that were attached to survey pillars of the local network and the monuments used for geodetic VLBI and GNSS measurements. The monitoring lasted for seven days and had a temporal resolution of six minutes. The raw angle and distance measurements show clear sinusoidal signatures with a daily period, most strongly for a four-day period with 24 hours of sunshine. The derived topocentric coordinates of the survey prisms attached to the GNSS monument and the VLBI radio telescope act as approximation for the local tie. We detect clear signatures at the mm-level. With the current approach we cannot distinguish between real motion of the prisms and potential thermal influences on the instrument used for the observations. However, the project shows that continuous local tie monitoring is feasible today and in the future can and should be used for all geodetic co-location stations.
Monitoring the Storm Tide of Hurricane Wilma in Southwestern Florida, October 2005
Soderqvist, Lars E.; Byrne, Michael J.
2007-01-01
Temporary monitoring stations employing non-vented pressure transducers were used to augment an existing U.S. Geological Survey coastal monitoring network to document the inland water levels related to the storm tide of Hurricane Wilma on the southwestern coast of Florida. On October 22, 2005, an experimental network consisting of 30 temporary stations was deployed over 90 miles of coastline to record the magnitude, extent, and timing of hurricane storm tide and coastal flooding. Sensors were programmed to record time, temperature, and barometric or water pressure. Water pressure was adjusted for changes in barometric pressure and salinity, and then converted to feet of water above the sensor. Elevation surveys using optical levels were conducted to reference storm tide water-level data and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). Storm tide water levels more than 5 feet above NAVD 88 were recorded by sensors at several locations along the southwestern Florida coast. Temporary storm tide monitoring stations used for this effort have demonstrated their value in: (1) furthering the understanding of storm tide by allowing the U.S. Geological Survey to extend the scope of data collection beyond that of existing networks, and (2) serving as backup data collection at existing monitoring stations by utilizing nearby structures that are more likely to survive a major hurricane.
NASA Astrophysics Data System (ADS)
Gumilar, Irwan; Fattah, Alif; Abidin, Hasanuddin Z.; Sadarviana, Vera; Putri, Nabila S. E.; Kristianto
2017-07-01
West Java is one of the provinces in Indonesia which is prone to landslide. Over the past few years, landslides in this area have resulted in a large number of victims. One of the areas in West Java with the highest risk of landslide occurrence is Rancabali Ciwidey. In general, the morphology around the landslide location is steep hills, with the slope > 30° and the altitude between 1550 - 1865 m above sea level. Several indications of ground movements can be seen in the form of slumps and cracks on the village roads and tea plantation, as well as slanting trees and electricity poles. The ground movement monitoring in this area is necessary for disaster mitigation. Several methods that can be used to monitor the landslide are using Terrestrial Laser Scanner (TLS) and robotic total station. This research aims is monitoring the landslide using these methods. The methodology used in this research is by obtaining the scanning data using TLS C-10 and Robotic total station MS05 measurements to obtain the coordinates of monitoring point clouds and prism. The TLS software that we used are Cyclone 8.1 and Maptek I-Site. For robotic total station, the software that we used is MSP software. These method hopefully can be used for early warning system of landslide in Rancabali area.
Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies
López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P.; Bonastre, Alberto; Serrano, Juan J.
2012-01-01
Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.). PMID:23202232
Monitoring pest insect traps by means of low-power image sensor technologies.
López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P; Bonastre, Alberto; Serrano, Juan J
2012-11-13
Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.).
Remote monitoring of a thermal plume
NASA Technical Reports Server (NTRS)
Kuo, C. Y.; Talay, T. A.
1979-01-01
A remote-sensing experiment conducted on May 17, 1977, over the Surry nuclear power station on the James River, Virginia is discussed. Isotherms of the thermal plume from the power station were derived from remotely sensed data and compared with in situ water temperature measurements provided by the Virginia Electric and Power Company, VEPCO. The results of this study were also qualitatively compared with those from other previous studies under comparable conditions of the power station's operation and the ambient flow. These studies included hydraulic model predictions carried out by Pritchard and Carpenter and a 5-year in situ monitoring program based on boat surveys.
Upgrading the seismic and geodetic network of the Popocatépetl volcano (Mexico).
NASA Astrophysics Data System (ADS)
Calò, Marco; Iglesias Mendoza, Arturo; Legrand, Denis; Valdés González, Carlos Miguel; Perez Campos, Xyoli
2017-04-01
The Popocatépetl is one of the most active volcanoes in Mexico and is located only 70 km from Mexico City, populated by more than 20 millions of people, and only 35 km from the Puebla municipality with almost 1.5 millions of people living. The recent activity of the volcano is generally marked by explosions emitting ash plumes often reaching the densely populated regions. In the framework of the Mexican Fund for Prevention of Natural Disasters (FOPREDEN) we are renovating and upgrading the existing geodetic and seismic networks monitoring the volcano. In this project we are installing 10 broadband seismic stations (120s-050Hz) in shallow boreholes (3-5m depth) and 4 GPS with real time sampling rate of 1 Hz. All instruments are equipped with continuous recording systems for real time monitoring purposes and research. The Popocatépetl exceeds 5400m, and the altitude of the stations ranges from 2200 m to 4300 m making it difficult their installation and maintenance. Because of ash emissions and the hard working condition, the real-time transmission is split into two systems in order to ensure the monitoring of the volcano also during the highest expected activity. Therefore we set up a network of "first order", consisting of four stations located about 20 km from the crater and equipped with satellite transmission. These stations, being far enough from the crater, ensure the real time monitoring of the major events also during intense periods of activity of the volcano. The remaining six stations are installed near to the crater (less than 10 km) and take part of the "second order" network equipped with a telemetered radio system transmitting the data either directly to the National Center of Disaster Prevention (CENAPRED) and National Seismological Service (SSN) or to the first order stations (for the sites that have not direct visible line with the monitoring centers). The four GPS sensors are all installed in the second order sites in order to monitor the largest deformations at the top of the volcano. In this work we show both the installation procedure of the boreholes seismometers in hard conditions and their improved performance with respect to the actual stations installed at surface and the scheme of the transmitting system for ensuring the monitoring of the Popocatépetl volcano in all the possible scenarios of its activity.
2007-06-26
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, Phoenix Program Manager Barry Goldstein, from the Jet Propulsion Laboratory, briefs media personnel dressed in clean-room suits about the mission of the Phoenix Mars Lander, in the background. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
Mikhnevo: from seismic station no. 1 to a modern geophysical observatory
NASA Astrophysics Data System (ADS)
Adushkin, V. V.; Ovchinnikov, V. M.; Sanina, I. A.; Riznichenko, O. Yu.
2016-01-01
The Mikhnevo seismic station was founded in accordance with directive no. 1134 RS of the Council of Ministers of the Soviet Union of February 6, 1954. The station, installed south of Moscow, began its operations on monitoring nuclear tests in the United States and England in 1954. For dozens of years this station was the leading experimental base for elaborating new technical solutions and methods for monitoring nuclear explosions, equipped with modern seismological instruments. At present, the focus of activities has been moved from military applications to fundamental geophysical research. The station preserves its leading position in seismological observations due to the development of national high-performance digital instruments and creation of the small-aperture seismic array, the only one in the central part of European Russia, which is capable of recording weak seismic events with M L ≥ 1.5 within a distance of 100 km.
Quality of Surface Water in Missouri, Water Year 2007
Otero-Benitez, William; Davis, Jerri V.
2009-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.
47 CFR 73.754 - Frequency monitors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... station shall operate a frequency monitor at the transmitter independent of the frequency control of the transmitter. (b) The frequency monitor shall be designed and constructed in accordance with good engineering...
An analysis of spatial representativeness of air temperature monitoring stations
NASA Astrophysics Data System (ADS)
Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen
2018-05-01
Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.
Ebinghaus, R; Kock, H H; Schmolke, S R
2001-11-01
In the past five years automated high time-resolution measurements of mercury species in ambient air have promoted remarkable progress in the understanding of the spatial distribution, short-term variability, and fate of this priority pollutant in the lower troposphere. Examples show the wide range of possible applications of these techniques in environmental research and monitoring. Presented applications of measurement methods for total gaseous mercury (TGM) include long-term monitoring of atmospheric mercury at a coastal station, simultaneous measurements during a south-to-north transect measurement campaign covering a distance of approximately 800 km, the operation on board of a research aircraft, and the quantification of mercury emissions from naturally enriched surface soils. First results obtained with a new method for the determination of reactive gaseous mercury (RGM) are presented. Typical background concentrations of TGM are between 1.5 and 2 ng m(-3) in the lower troposphere. Concentrations of RGM have been determined at a rural site in Germany between 2 and 35 pg m(-3). Flux measurements over naturally enriched surface soils in the Western U.S.A. have revealed emission fluxes of up to 200 ng Hg m(-1) h(-1) under dry conditions.
Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.
2017-08-01
The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.
Regional and local background ozone in Houston during Texas Air Quality Study 2006
NASA Astrophysics Data System (ADS)
Langford, A. O.; Senff, C. J.; Banta, R. M.; Hardesty, R. M.; Alvarez, R. J.; Sandberg, Scott P.; Darby, Lisa S.
2009-04-01
Principal Component Analysis (PCA) is used to isolate the common modes of behavior in the daily maximum 8-h average ozone mixing ratios measured at 30 Continuous Ambient Monitoring Stations in the Houston-Galveston-Brazoria area during the Second Texas Air Quality Study field intensive (1 August to 15 October 2006). Three principal components suffice to explain 93% of the total variance. Nearly 84% is explained by the first component, which is attributed to changes in the "regional background" determined primarily by the large-scale winds. The second component (6%) is attributed to changes in the "local background," that is, ozone photochemically produced in the Houston area and spatially and temporally averaged by local circulations. Finally, the third component (3.5%) is attributed to short-lived plumes containing high ozone originating from industrial areas along Galveston Bay and the Houston Ship Channel. Regional background ozone concentrations derived using the first component compare well with mean ozone concentrations measured above the Gulf of Mexico by the tunable profiler for aerosols and ozone lidar aboard the NOAA Twin Otter. The PCA regional background values also agree well with background values derived using the lowest daily 8-h maximum method of Nielsen-Gammon et al. (2005), provided the Galveston Airport data (C34) are omitted from that analysis. The differences found when Galveston is included are caused by the sea breeze, which depresses ozone at Galveston relative to sites further inland. PCA removes the effects of this and other local circulations to obtain a regional background value representative of the greater Houston area.
NASA Astrophysics Data System (ADS)
Steigies, C. T.
2016-12-01
Cosmic rays are routinely measured by standardized ground-based Neutron Monitors (NM) around the world. Stations provide measurements as 1-hour averages to the World-Data Center for Cosmic Rays, but most stations can also provide high-resolution measurements at 1-minute cadence. Measurements of one station provide information about the cosmic ray intensity over time at this location. By correcting the measurement for changes in atmospheric pressure, the intensity of the incoming radiation at the top of the atmosphere can be determined. Studying this time series gives information about long-term changes in the heliospheric environment (11 and 22 year solar cycles), as well as information on shorter (Forbush decrease, Fd) and impulsive (Ground Level Enhancement, GLE) events. Since the measurement of a NM is a cumulative measurement a single station can provide only limited information on the spectrum of the incoming radiation. The whole network of Neutron Monitors, however, can act as a large spectrometer. By combining the measurements of many NM stations, the direction and the spectrum of the incoming radiation can be modeled. With this method, high energy solar particle events (that lead to GLEs) and the precursors of Coronal Mass Ejections (CME, manifesting as a Fd) can be detected by the ground-based instruments before the lower energy particles can harm satellites or astronauts. These ALERT systems require the availability of NM data in real-time, which wass one of the goals of the NMDB project. The easy to use NEST interface (nest.nmdb.eu) to NMDB data allows everyone to plot and download data for all participating stations. Since the project started, not only space agencies and ALERT systems make use of the data, but NMDB has attracted several users outside the cosmic ray community. This data is now also used for example as reference value for soil humidity measurements with cosmic rays, or by the DHS for radiation monitors at border crossings, as well as for computer companies testing the susceptibility of their ICs to cosmic rays. These new uses have only become possible since the individual stations have agreed to share their data freely. We encourage all NM stations that are not yet part of NMDB to join the network, and the space and funding agencies to continue to support these important measurements.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin
2009-01-01
Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1990-01-01
The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.
NASA Astrophysics Data System (ADS)
Pahlavani, Parham; Sheikhian, Hossein; Bigdeli, Behnaz
2017-10-01
Air pollution assessment is an imperative part of megacities planning and control. Hence, a new comprehensive approach for air pollution monitoring and assessment was introduced in this research. It comprises of three main sections: optimizing the existing air pollutant monitoring network, locating new stations to complete the coverage of the existing network, and finally, generating an air pollution map. In the first section, Shannon information index was used to find less informative stations to be candidate for removal. Then, a methodology was proposed to determine the areas which are not sufficiently covered by the current network. These areas are candidates for establishing new monitoring stations. The current air pollution monitoring network of Tehran was used as a case study, where the air pollution issue has been worsened due to the huge population, considerable commuters' absorption and topographic barriers. In this regard, O3, NO, NO2, NOx, CO, PM10, and PM2.5 were considered as the main pollutants of Tehran. Optimization step concluded that all the 16 active monitoring stations should be preserved. Analysis showed that about 35% of the Tehran's area is not properly covered by monitoring stations and about 30% of the area needs additional stations. The winter period in Tehran always faces the most severe air pollution in the year. Hence, to produce the air pollution map of Tehran, three-month of winter measurements of the mentioned pollutants, repeated for five years in the same period, were selected and extended to the entire area using the kriging method. Experts specified the contribution of each pollutant in overall air pollution. Experts' rankings aggregated by a fuzzy-overlay process. Resulted maps characterized the study area with crucial air pollution situation. According to the maps, more than 45% of the city area faced high pollution in the study period, while only less than 10% of the area showed low pollution. This situation confirms the need for effective plans to mitigate the severity of the problem. In addition, an effort made to investigate the rationality of the acquired air pollution map respect to the urban, cultural, and environmental characteristics of Tehran, which also confirmed the results.
Measuring Snow Precipitation in New Zealand- Challenges and Opportunities.
NASA Astrophysics Data System (ADS)
Renwick, J. A.; Zammit, C.
2015-12-01
Monitoring plays a pivotal role in determining sustainable strategy for efficient overall management of the water resource. Though periodic monitoring provides some information, only long-term monitoring can provide data sufficient in quantity and quality to determine trends and develop predictive models. These can support informed decisions about sustainable and efficient use of water resources in New Zealand. However the development of such strategies is underpinned by our understanding and our ability to measure all inputs in headwaters catchments, where most of the precipitation is falling. Historically due to the harsh environment New Zealand has had little to no formal high elevation monitoring stations for all climate and snow related parameters outside of ski field climate and snow stations. This leads to sparse and incomplete archived datasets. Due to the importance of these catchments to the New Zealand economy (eg irrigation, hydro-electricity generation, tourism) NIWA has developed a climate-snow and ice monitoring network (SIN) since 2006. This network extends existing monitoring by electricity generator and ski stations and it is used by a number of stakeholders. In 2014 the network comprises 13 stations located at elevation above 700masl. As part of the WMO Solid Precipitation Intercomparison Experiment (SPICE), NIWA is carrying out an intercomparison of precipitation data over the period 2013-2015 at Mueller Hut. The site was commissioned on 11 July 2013, set up on the 17th September 2013 and comprises two Geonor weighing bucket raingauges, one shielded and the other un-shielded, in association with a conventional tipping bucket raingauge and conventional climate and snow measurements (temperature, wind, solar radiation, relative humidity, snow depth and snow pillow). The presentation aims to outline the state of the current monitoring network in New Zealand, as well as the challenge and opportunities for measurement of precipitation in alpine environment.
Ohio's First Electrolysis-Based Hydrogen Fueling Station
NASA Technical Reports Server (NTRS)
Demattia, Brianne
2014-01-01
Presentation to the earth day coalition describing efforts with NASA GRC and Cleveland RTA on Ohio's hydrogen fueling station and bus demonstration. Project background and goals, challenges and successes, and current status.
Solar observations with a low frequency radio telescope
NASA Astrophysics Data System (ADS)
Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.
2012-01-01
We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.
2006-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2005; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2005.
STS-54 Pilot McMonagle talks to radio station from OV-105's aft flight deck
1993-01-15
STS054-S-012 (15 Jan 1993) --- McMonagle talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:54:14:13 GMT, Jan. 15, 1993.
STS-54 MS1 Runco talks to radio station from OV-105's aft flight deck
1993-01-15
STS054-S-014 (15 Jan 1993) --- Runco talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:48:45:11 GMT, Jan. 15, 1993.
STS-54 Commander Casper talks to radio station from OV-105's aft flight deck
1993-01-15
STS054-S-015 (15 Jan 1993) --- Casper talks to a radio station from the flight deck of Endeavour while, in the background, Runco, left, and Harbaugh await their turns to communicate with other stations. The scene was recorded at 13:45:54:05 GMT, Jan. 15, 1993.
STS-54 MS2 Harbaugh talks to radio station from OV-105's aft flight deck
1993-01-15
STS054-S-013 (15 Jan 1993) --- Harbaugh talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:57:20:20 GMT, Jan. 15, 1993.
Credit PSR. Northeast and southwest facades of Sewage Pumping Station ...
Credit PSR. Northeast and southwest facades of Sewage Pumping Station (Building 4330). Building retains its World War II construction materials and character. In the background at the extreme left is Building 4305 (Unicon Portable Hangar) - Edwards Air Force Base, North Base, Sewage Pumping Station, Southwest of E Street, Boron, Kern County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... Power Station, Unit 1; Exemption From Certain Security Requirements 1.0 Background Exelon Nuclear is the licensee and holder of Facility Operating License No. DPR-2 issued for Dresden Nuclear Power Station (DNPS... protection of licensed activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1...
2014-08-12
ISS040-E-092583 (12 Aug. 2014) --- A portion of the International Space Station?s Russian segment with the newly attached "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) to the Zvezda Service Module is featured in this image photographed by an Expedition 40 crew member onboard the station. A waning full moon is visible in the background.
Sighting the International Space Station
ERIC Educational Resources Information Center
Teets, Donald
2008-01-01
This article shows how to use six parameters describing the International Space Station's orbit to predict when and in what part of the sky observers can look for the station as it passes over their location. The method requires only a good background in trigonometry and some familiarity with elementary vector and matrix operations. An included…
Smith, D G; Baranski, J V; Thompson, M M; Abel, S M
2003-01-01
A total of twenty-five subjects were cloistered for a period of 70 hours, five at a time, in a hyperbaric chamber modified to simulate the conditions aboard the International Space Station (ISS). A recording of 72 dBA background noise from the ISS service module was used to simulate noise conditions on the ISS. Two groups experienced the background noise throughout the experiment, two other groups experienced the noise only during the day, and one control group was cloistered in a quiet environment. All subjects completed a battery of cognitive tests nine times throughout the experiment. The data showed little or no effect of noise on reasoning, perceptual decision-making, memory, vigilance, mood, or subjective indices of fatigue. Our results suggest that the level of noise on the space station should not affect cognitive performance, at least over a period of several days.
Soenksen, P.J.
1990-01-01
Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.
NASA Astrophysics Data System (ADS)
Ángel López Comino, José; Kriegerowski, Marius; Cesca, Simone; Dahm, Torsten; Mirek, Janusz; Lasocki, Stanislaw
2016-04-01
Hydraulic fracturing is considered among the human operations which could induce or trigger seismicity or microseismic activity. The influence of hydraulic fracturing operations is typically expected in terms of weak magnitude events. However, the sensitivity of the rock mass to trigger seismicity varies significantly for different sites and cannot be easily predicted prior to operations. In order to assess the sensitivity of microseismity to hydraulic fracturing operations, we perform a seismic monitoring at a shale gas exploration/exploitation site in the central-western part of the Peribaltic synclise at Pomerania (Poland). The monitoring will be continued before, during and after the termination of hydraulic fracturing operations. The fracking operations are planned in April 2016 at a depth 4000 m. A specific network setup has been installed since summer 2015, including a distributed network of broadband stations and three small-scale arrays. The network covers a region of 60 km2. The aperture of small scale arrays is between 450 and 950 m. So far no fracturing operations have been performed, but seismic data can already be used to assess the seismic noise and background microseismicity, and to investigate and assess the detection performance of our monitoring setup. Here we adopt a recently developed tool to generate a synthetic catalogue and waveform dataset, which realistically account for the expected microseismicity. Synthetic waveforms are generated for a local crustal model, considering a realistic distribution of hypocenters, magnitudes, moment tensors, and source durations. Noise free synthetic seismograms are superposed to real noise traces, to reproduce true monitoring conditions at the different station locations. We estimate the detection probability for different magnitudes, source-receiver distances, and noise conditions. This information is used to estimate the magnitude of completeness at the depth of the hydraulic fracturing horizontal wells. Our technique is useful to evaluate the efficiency of the seismic network and validate detection and location algorithms, taking into account the signal to noise ratio. The same dataset may be used at a later time, to assess the performance of other seismological analysis, such as hypocentral location, magnitude estimation and source parameters inversion. This work is funded by the EU H2020 SHEER project.
NASA Global GNSS Network (GGN) Status and Plans
NASA Astrophysics Data System (ADS)
Doelger, S.; Sklar, J.; Blume, F.; Meertens, C. M.; Mattioli, G. S.
2015-12-01
UNAVCO, in conjunction with JPL, is responsible for monitoring the 62 GNSS permanent stations, which include 88 GPS receivers, which comprise the NASA Global GNSS Network (GGN). These sites represent approximately 16% of the ~400 International GNSS Service (IGS) stations, and they provide a globally distributed GNSS network to support NASA operations and its commitments to GGOS. UNAVCO provides data flow monitoring, trouble-shooting, station installation, maintenance, as well as engineering services to improve the capabilities and performance of station infrastructure. Activities this past year include the installation of a geodetic quality wellhead monument for the new SEY2 station to replace SEY1, which is mounted on a UCSD seismic station in the Seychelles Islands. SEY1 will be removed soon to accommodate planned maintenance and upgrades by UCSD. Data from both SEY1 and SEY2 are being collected concurrently until maintenance begins. MRTG (Multi Router Traffic Grapher), a tool to aid in characterizing bandwidth usage and to identify communications problems, is now being used to monitor data throughput at 7 stations where VSAT or radio telemetry are used, including: ABPO; AREQ; FALK; GUAM; HARV; ISPA; QUIN; and STHL. Aging computers are being replaced with new hardware running Linux CentOS. These are semi-ruggedized low power solid-state systems built to endure challenging environments. With the aid of on-site collaborators, systems are now deployed at: FALK; CUSV; KELY; STHL; SANT; and ZAMB. Last, 4 new GPS stations were deployed for NASA's Space Geodesy Project (SGP); three of which (KOKF, KOKG, and KOKR) are located at Koke'e Park Geophysical Observatory on Kauai, Hawai'i, and HAL1 at the Haleakala observatory complex on Maui, Hawai'i. A campaign system was set up at Koke'e in order to sample data quality to determine if an additional station would be viable. Planning is ongoing for deployment of several new stations next year at McDonald Observatory (TX).
Space Station requirements for in-flight exercise countermeasures
NASA Technical Reports Server (NTRS)
Hayes, Judith C.; Harris, Bernard A.
1990-01-01
In an effort to retard the deleterious effects of space adaptation, NASA has defined requirements for an Exercise Countermeasure Facility (ECF) within the Space Station Crew Health Care System (CHeCS). The application of exercise as a countermeasure to spaceflight-induced deconditioning has been utilized in the past by both the United States and the Soviet space programs. The ECF will provide exercise hardware, physiological monitoring capabilities, and an interactive motivational display system. ECF operations and data will be coupled through the Space Station Freedom Data Management System for monitoring of inflight training and testing from ground control, thus allowing for real-time evaluation of crewmember performance and modification of exercise prescriptions. Finally, the objective of the ECF is to monitor and control the exercise of crewmembers for the maintenance of an operational level of fitness to ensure mission success.
Fifty Years of Seismic Monitoring in Davao,Philippines
NASA Astrophysics Data System (ADS)
McNamara, D. J.
2016-12-01
The Manila Observatory was a 150 years old as of 2015. Fiftry years ago it began a seismic monitoring station in the Island of Mindanao, outside the city of Davao, 7 deg. N and 121 deg. E. approxiamtely. This station was chosen not only for its position on the Ring of Fire but also for the fact the the dip angle of the earth's manetic field is zeo at that location. When the CTBT was established and the Republic of the Philippines (RP) a signatory, the Davao station by agreement with RP, began to send its seismic data to the CTBT database in Vienna. This has continued to the present day with support from CTBTO for updates in equipment and maintainence. We discuss if such a private+government model is the way forward for more comprehensive monitoring in the future.
How to Protect Citizen Rights in Television and Radio.
ERIC Educational Resources Information Center
Jennings, Ralph M.
The Communications Act of 1934 requires broadcasters to operate their stations "in the public interest, convenience, or necessity." But because broadcasters seek to make a profit and because the Federal Communications Commission (FCC) cannot adequately monitor the thousands of radio and television stations, many stations do not live up…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J
2015-12-22
NetMOD is a tool to model the performance of global ground-based explosion monitoring systems. The version 2.0 of the software supports the simulation of seismic, hydroacoustic, and infrasonic detection capability. The tool provides a user interface to execute simulations based upon a hypothetical definition of the monitoring system configuration, geophysical properties of the Earth, and detection analysis criteria. NetMOD will be distributed with a project file defining the basic performance characteristics of the International Monitoring System (IMS), a network of sensors operated by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Network modeling is needed to be able to assess and explainmore » the potential effect of changes to the IMS, to prioritize station deployment and repair, and to assess the overall CTBTO monitoring capability currently and in the future. Currently the CTBTO uses version 1.0 of NetMOD, provided to them in early 2014. NetMOD will provide a modern tool that will cover all the simulations currently available and allow for the development of additional simulation capabilities of the IMS in the future. NetMOD simulates the performance of monitoring networks by estimating the relative amplitudes of the signal and noise measured at each of the stations within the network based upon known geophysical principles. From these signal and noise estimates, a probability of detection may be determined for each of the stations. The detection probabilities at each of the stations may then be combined to produce an estimate of the detection probability for the entire monitoring network.« less
Noise test system of rotating machinery in nuclear power station based on microphone array
NASA Astrophysics Data System (ADS)
Chang, Xincai; Guan, Jishi; Qi, Liangcai
2017-12-01
Rotating machinery plays an important role in all walks of life. Once the equipment fails, equipment maintenance and shutdown will cause great social harm and economic losses. Equipment safety operations at nuclear power stations have always been of top priority. It is prone to noise when the equipment is out of order or aging. Failure to find or develop equipment at the initial stage of equipment failure or ageing will pose a serious threat to the safety of the plant’s equipment. In this paper, sound imaging diagnosis technology is applied as a supplementary method to the condition monitoring and diagnosis system of rotating machinery in nuclear power stations. It provides a powerful guarantee for the condition monitoring and fault diagnosis of rotating machinery in nuclear power stations.
Material screening with HPGe counting station for PandaX experiment
NASA Astrophysics Data System (ADS)
Wang, X.; Chen, X.; Fu, C.; Ji, X.; Liu, X.; Mao, Y.; Wang, H.; Wang, S.; Xie, P.; Zhang, T.
2016-12-01
A gamma counting station based on high-purity germanium (HPGe) detector was set up for the material screening of the PandaX dark matter experiments in the China Jinping Underground Laboratory. Low background gamma rate of 2.6 counts/min within the energy range of 20 to 2700 keV is achieved due to the well-designed passive shield. The sentivities of the HPGe detetector reach mBq/kg level for isotopes like K, U, Th, and even better for Co and Cs, resulted from the low-background rate and the high relative detection efficiency of 175%. The structure and performance of the counting station are described in this article. Detailed counting results for the radioactivity in materials used by the PandaX dark-matter experiment are presented. The upgrading plan of the counting station is also discussed.
Single station monitoring of volcanoes using seismic ambient noise
NASA Astrophysics Data System (ADS)
De Plaen, R. S.; Lecocq, T.; Caudron, C.; Ferrazzini, V.; Francis, O.
2016-12-01
During volcanic eruptions, magma transport causes gas release, pressure perturbations and fracturing in the plumbing system. The potential subsequent surface deformation that can be detected using geodetic techniques and deep mechanical processes associated with magma pressurization and/or migration and their spatial-temporal evolution can be monitored with volcanic seismicity. However, these techniques respectively suffer from limited sensitivity to deep changes and a too short-term temporal distribution to expose early aseismic processes such as magma pressurisation. Seismic ambient noise cross-correlation uses the multiple scattering of seismic vibrations by heterogeneities in the crust to retrieves the Green's function for surface waves between two stations by cross-correlating these diffuse wavefields. Seismic velocity changes are then typically measured from the cross-correlation functions with applications for volcanoes, large magnitude earthquakes in the far field and smaller magnitude earthquakes at smaller distances. This technique is increasingly used as a non-destructive way to continuously monitor small seismic velocity changes ( 0.1%) associated with volcanic activity, although it is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-stations" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multi-disciplinary continuous monitoring. Over the past decade, this volcano was increasingly studied using the traditional cross-station approach and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single 3-component seismometer.
Interact - Access to the Arctic
NASA Astrophysics Data System (ADS)
Johansson, M.; Callaghan, T. V.
2013-12-01
INTERACT is currently a network of 50 terrestrial research stations from all Arctic countries, but is still growing. The network was inaugurated in January 2011 when it received an EU 7th Framework award. INTERACT's main objective is to build capacity for identifying, understanding, predicting and responding to diverse environmental changes throughout the wide environmental and land-use envelopes of the Arctic. Implicit in this objective is the task to build capacity for monitoring, research, education and outreach. INTERACT is increasing access to the Arctic: 20 INTERACT research stations in Europe and Russia are offering Transnational Access and so far, 5600 person-days of access have been granted from the total of 10,000 offered. An INTERACT Station Managers' Forum facilitates a dialogue among station managers on subjects such as best practice in station management and standardised monitoring. The Station Managers' Forum has produced a unique 'one-stop-shop' for information from 45 research stations in an informative and attractive Station Catalogue that is available in hard copy and on the INTERACT web site (www.eu-interact.org). INTERACT also includes three joint research activities that are improving monitoring in remote, harsh environments and are making data capture and dissemination more efficient. Already, new equipment for measuring feedbacks from the land surface to the climate system has been installed at several locations, while best practices for sensor networking have been established. INTERACT networks with most of the high-level Arctic organisations: it includes AMAP and WWF as partners, is endorsed by IASC and CBMP, has signed MoUs with ISAC and the University of the Arctic, is a task within SAON, and contributes to the Cold Region community within GEO/GEOSS. INTERACT welcomes other interactions.
Real-time processing of interferograms for monitoring protein crystal growth on the Space Station
NASA Technical Reports Server (NTRS)
Choudry, A.; Dupuis, N.
1988-01-01
The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.
2010-06-01
parts to detect a nuclear explosion: seismic, hydroacoustic, infrasound and radionuclide. Figure 3. CTBTO International Monitoring System Sites26...Conference,” (Oct. 14, 2009), www.armscontrol.org.. [17] from earthquakes and mining explosions, but have proved effective in detecting past nuclear...hydroacoustic monitoring stations detect sound waves in the oceans, and the 60 infrasound stations detect above ground, ultra-low frequency sound waves
Landers, Mark N.
2013-01-01
The U.S. Geological Survey, in cooperation with the Gwinnett County Department of Water Resources, established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. As of 2009, continuous streamflow and water-quality data as well as discrete water-quality samples were being collected for 14 watershed monitoring stations in Gwinnett County. This report provides statistical summaries of total suspended solids (TSS) concentrations for 730 stormflow and 710 base-flow water-quality samples collected between 1996 and 2009 for 14 watershed monitoring stations in Gwinnett County. Annual yields of TSS were estimated for each of the 14 watersheds using methods described in previous studies. TSS yield was estimated using linear, ordinary least-squares regression of TSS and explanatory variables of discharge, turbidity, season, date, and flow condition. The error of prediction for estimated yields ranged from 1 to 42 percent for the stations in this report; however, the actual overall uncertainty of the estimated yields cannot be less than that of the observed yields (± 15 to 20 percent). These watershed yields provide a basis for evaluation of how watershed characteristics, climate, and watershed management practices affect suspended sediment yield.
Flood monitoring network in southeastern Louisiana
McCallum, Brian E.
1994-01-01
A flood monitoring network has been established to alert emergency operations personnel and the public about hydrologic conditions in the Amite River Basin. The U.S. Geological Survey (USGS), in cooperation with the Louisiana Office of Emergency Preparedness (LOEP), has installed a real-time data acquisition system to monitor rainfall and river stages in the basin. These data will be transmitted for use by emergency operations personnel to develop flood control and evacuation strategies. The current river stages at selected gaging stations in the basin also will be broadcast by local television and radio stations during a flood. Residents can record the changing river stages on a basin monitoring map, similar to a hurricane tracking map.
NASA Astrophysics Data System (ADS)
Fidani, Cristiano
2013-04-01
A network devoted to a continuous monitoring of LF, VLF transmitters and ELF signals was set up in Central Italy, and has been operating since 2006, which is currently composed of 9 stations in 9 different Italian cities. From the beginning of 2012, improvements have been carried out on the stability of CIEN by updating all the stations with UPS and web connections. Moreover, a reduction in the amount of data stored was performed so to permit a real time monitoring of the network by web. Specifically, a 100kb/day was fixed to record the VLF power spectra intervals around the transmitter frequencies every 5 minutes. Similarly, a 600kb/day was fixed to record the ELF power spectra intervals, which was logarithmic spaced in frequency every 5 seconds. Furthermore, different physical measurements at each CIEN site have been recently initiated to better understand the sources of some signals. In order to do so, the Fermo and Torre Pellice stations have been equipped with Geiger counters to monitor atmospheric radioactivity, underground thermometers, as well as meteorological stations to record atmospheric temperature, humidity, wind speed and direction, along with atmospheric pressure and rainfall. The Torre Pellice Station had already been equipped with a magnetometer, a Radon-meter and a compass to check the direction of the geomagnetic field. The Chieti station had already been equipped with a magnetometer and an underground current detector. The Perugia and Rieti stations had already been equipped with seismometers and a network to capture transient luminous phenomena in the atmosphere. On May 20th and 29th 2012, two strong earthquakes struck the Emilia-Romagna Region with a magnitude M=5.9 and M=5.8, respectively. The earthquakes caused 27 fatal causalities and significant ground failures. The observations relative to this seismic period were investigated relative to their ELF band electric fields. Observations were thoroughly analysed from the Zocca station, the closest (50km) CIEN monitoring station to the Emilia-Romagna epicenter. Date from other stations were examined to reveal any possible differences. Many horizontal electric oscillations from April 1 - June 30, 2012, were seen. Most of these appeared at the time of rainfalls, which were revealed by the Zocca station on the same days. Electric oscillations under 100 Hz appeared from May 10 - 11, 2012, when there was no recorded meteorological activity. On May 26, 2012, strong ELF oscillations occurred at the Zocca station. This station had not detected ELF horizontal oscillations for many years prior to Emilia-Romagna seismic events in May 2012. Whereas, signals were revealed in mid-April 2012 and increased in number and intensity around the dates of the quakes.
Investigation of Stability of Precise Geodetic Instruments Used in Deformation Monitoring
NASA Astrophysics Data System (ADS)
Woźniak, Marek; Odziemczyk, Waldemar
2017-12-01
Monitoring systems using automated electronic total stations are an important element of safety control of many engineering objects. In order to ensure the appropriate credibility of acquired data, it is necessary that instruments (total stations in most of the cases) used for measurements meet requirements of measurement accuracy, as well as the stability of instrument axis system geometry. With regards to the above, it is expedient to conduct quality control of data acquired using electronic total stations in the context of performed measurement procedures. This paper presents results of research conducted at the Faculty of Geodesy and Cartography at Warsaw University of Technology investigating the stability of "basic" error values (collimation, zero location for V circle, inclination), for two types of automatic total stations: TDA 5005 and TCRP 1201+. Research provided also information concerning the influence of temperature changes upon the stability of investigated instrument's optical parameters. Results are presented in graphical analytic technique. Final conclusions propose methods, which allow avoiding negative results of measuring tool-set geometry changes during conducting precise deformation monitoring measurements.
Developing the human-computer interface for Space Station Freedom
NASA Technical Reports Server (NTRS)
Holden, Kritina L.
1991-01-01
For the past two years, the Human-Computer Interaction Laboratory (HCIL) at the Johnson Space Center has been involved in prototyping and prototype reviews of in support of the definition phase of the Space Station Freedom program. On the Space Station, crew members will be interacting with multi-monitor workstations where interaction with several displays at one time will be common. The HCIL has conducted several experiments to begin to address design issues for this complex system. Experiments have dealt with design of ON/OFF indicators, the movement of the cursor across multiple monitors, and the importance of various windowing capabilities for users performing multiple tasks simultaneously.
NASA Technical Reports Server (NTRS)
Billica, Roger D.
1992-01-01
Crew health concerns for Space Station Freedom are numerous due to medical hazards from isolation and confinement, internal and external environments, zero gravity effects, occupational exposures, and possible endogenous medical events. The operational crew health program will evolve from existing programs and from life sciences investigations aboard Space Station Freedom to include medical monitoring and certification, medical intervention, health maintenance and countermeasures, psychosocial support, and environmental health monitoring. The knowledge and experience gained regarding crew health issues and needs aboard Space Station Freedom will be used not only to verify requirements and programs for long duration space flight, but also in planning and preparation for Lunar and Mars exploration and colonization.
Long- range transport of Xe-133 emissions under convective and non-convective conditions.
NASA Astrophysics Data System (ADS)
Kusmierczyk-Michulec, Jolanta; Gheddou, Abdelhakim
2015-04-01
The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). The aim of this study is to investigate the long-range transport of Xe-133 emissions under convective and non-convective conditions. For that purpose a series of 14 days forward simulations was conducted using the Lagrangian Particle Diffusion Model FLEXPART, designed for calculating the long-range and mesoscale dispersion of air pollution from point sources. The release point was at the ANSTO facility in Australia. The geographical localization to some extent justifies the assumption that the only source of Xe-133 observed at the neighbouring stations, comes from the ANSTO facility. In the simulations the analysed wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5 degree. Studies have been performed to link Xe-133 emissions with detections at the IMS stations supported by the ATM, and to assess the impact of atmospheric convection on non-detections at the IMS stations. The results of quantitative and qualitative comparison will be presented.
VIEW OF UNLOADING STATION THAT WAS ADDED IN 1997. SUGAR ...
VIEW OF UNLOADING STATION THAT WAS ADDED IN 1997. SUGAR BIN AND MILL IN RIGHT BACKGROUND. VIEW FROM THE NORTHEAST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI
Boyd, Matthew T
2017-06-01
Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.
Boyd, Matthew T.
2017-01-01
Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation. PMID:28670044
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... high wind conditions pass, wind damage to the plant and surrounding area might preclude a sufficient... Power Station, Units 1, 2 and 3, Dominion Nuclear Connecticut, Inc.; Exemption 1.0 Background Dominion..., DPR-65 and NPF-49, which authorize operation of the Millstone Power Station, Unit Nos. 1, 2 and 3...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
...; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor which... previously applicable to the nuclear power units and associated systems, structures, and components (SSC) are...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor... activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee...
Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...
Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
Groschen, George E.; King, Robin B.
2005-01-01
Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.
Chen, Ho-Wen; Tsai, Ching-Tsan; She, Chin-Wen; Lin, Yo-Chen; Chiang, Chow-Feng
2010-11-01
Air pollution data around a monitored site are normally difficult to analyze due to highly inter-related meteorological and topographical factors on top of many complicated atmospheric chemical interactions occurred in local and regional wind fields. The challenge prompts this study to develop a comprehensive data-mining algorithm of cluster analysis followed by meteorological and interspecies correlations to mitigate the inherent data complexity and dissimilarity. This study investigated the background features of acidic and basic air pollutants around a high-tech industrial park in Taiwan. Monthly samplings were taken at 10 sites around the park in a year. The temporal distribution plots show a baseline with two characteristic groups of high and low peaks. Hierarchical cluster analysis confirms that high peaks were primarily associated with low speed south wind in summer for all the chemical species, except for F(-), Cl(-), NH(3) and HF. Crosschecking with the topographical map identifies several major external sources in south and southwest. Further meteorological correlation suggests that HCl is highly positively associated with humidity, while Cl(-) is highly negatively associated with temperature, both for most stations. Interestingly, HNO(3) is highly negatively associated with wind speed for most stations and the hotspot was found in summer and around the foothill of Da-Tu Mountain in the northwest, a stagnant pocket on the study site. However, F(-) is highly positively associated with wind speed at downwind stations to the prevailing north wind in winter, indicating an internal source from the north. The presence of NH(4)(+) stimulates the formation of NO(3)(-), SO(4)(-2) (R=0.7), and HNO(3), H(2)SO(4), NH(3) (R=0.3-0.4). As H(2)SO(4) could be elevated to a level as high as 40% of the regulated standard, species interactions may be a dominate mechanism responsible for the substantial increase in summer from external sources. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maione, M.; Giostra, U.; Arduini, J.; Furlani, F.; Bonasoni, P.; Cristofanelli, P.; Laj, P.; Vuillermoz, E.
2011-04-01
A monitoring programme for halogenated climate-altering gases has been established in the frame of the SHARE EV-K2-CNR project at the Nepal Climate Laboratory - Pyramid in the Himalayan range at the altitude of 5079 m a.s.l. The site is very well located to provide important insights on changes in atmospheric composition in a region that is of great significance for emissions of both anthropogenic and biogenic halogenated compounds. Measurements are performed since March 2006, with grab samples collected on a weekly basis. The first three years of data have been analysed. After the identification of the atmospheric background values for fourteen halocarbons, the frequency of occurrence of pollution events have been compared with the same kind of analysis for data collected at other global background stations. The analysis showed the fully halogenated species, whose production and consumption are regulated under the Montreal Protocol, show a significant occurrence of "above the baseline" values, as a consequence of their current use in the developing countries surrounding the region, meanwhile the hydrogenated gases, more recently introduced into the market, show less frequent spikes. Atmospheric concentration trends have been calculated as well, and they showed a fast increase, ranging from 5.7 to 12.6%, of all the hydrogenated species, and a clear decrease of methyl chloroform (-17.7%). The comparison with time series from other stations has also allowed to derive Meridional gradients, which are absent for long living well mixed species, while for the more reactive species, the gradient increases inversely with respect to their atmospheric lifetime. The effect of long range transport and of local events on the atmospheric composition at the station has been analysed as well, allowing the identification of relevant source regions the Northern half of the Indian sub-continent. Also, at finer spatial scales, a smaller, local contribution of forest fires from the Khumbu valley has been detected.
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
NetMOD Version 2.0 Mathematical Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.; Young, Christopher J.; Chael, Eric P.
2015-08-01
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each ofmore » the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).« less
Near-realtime Cosmic Ray measurements for space weather applications
NASA Astrophysics Data System (ADS)
Steigies, C. T.
2013-12-01
In its FP7 program the European Commission has funded the creation of scientific databases. One successful project is the Neutron Monitor database NMDB which provides near-realtime access to ground-based Neutron Monitor measurements. In its beginning NMDB hosted only data from European and Asian participants, but it has recently grown to also include data from North American stations. We are currently working on providing also data from Australian stations. With the increased coverage of stations the accuracy of the NMDB applications to issue an alert of a ground level enhancement (GLE) or to predict the arrival of a coronal mass ejection (CME) is constantly improving. Besides the Cosmic Ray community and Airlines, that want to calculate radiation doses on flight routes, NMDB has also attracted users from outside the core field, for example hydrologists who compare local Neutron measurements with data from NMDB to determine soil humidity. By providing access to data from 50 stations, NMDB includes already data from the majority of the currently operating stations. However, in the future we want to include data from the few remaining stations, as well as historical data from stations that have been shut down.
NASA Astrophysics Data System (ADS)
Schwandner, F. M.; Hidayat, D.; Laguerta, E. P.; Baloloy, A. V.; Valerio, R.; Vaquilar, R.; Arpa, M. C.; Marcial, S. S.; Novianti, M. L.
2012-04-01
Mount Mayon in Albay province (Philippines) is an openly-degassing basaltic-andesitic stratovolcano, located on the northern edge of the northwest-trending OAS graben. Its latest eruptions were in Aug-Sept 2006 and Dec 2009. Mayon's current status is PHIVOLCS' level 1 with low seismicity dominated mostly local and regional tectonic earthquakes and continuous emission of SO2 from its summit crater. A research collaboration between the Earth Observatory of Singapore-NTU and the Philippine Institute of Volcanology and Seismology (PHIVOLCS) was initiated in 2009, aimed at developing a multi-disciplinary monitoring network around Mayon. The network design comprises a network of co-located geophysical, geochemical, hydrological and meteorological sensors, in both radial and circular arrangements. Radially arranged stations are intended to capture and distinguish vertical conduit processes, while the circular station design (including existing PHIVOLCS stations in cooperation with JICA, Japan) is meant to distinguish locations and sector activity of subsurface events. Geophysical instrumentation from EOS currently includes 4 broadband seismographs (in addition to 3 existing broadbands and 3 short period instruments from PHIVOLCS & JICA), and 5 tiltmeters. Four continuous cGPS stations will be installed in 2012, complementing 5 existing PHIVOLCS stations. Stations are also designed to house a multi-sensor package of static subsurface soil CO2 monitoring stations, the first of which was installed in early 2012, and which include subsoil sensors for heat flux, temperature, and moisture, as well as meteorological stations (with sonic anemometers and contact rain gages). These latter sensors are all controlled from one control box per station. Meteorological stations will help us to validate tilt, gas permeability, and also know lahar initiation potential. Since early 2011, separate stations downwind of the two prevailing wind directions from the summit continuously monitor the SO2 plume during daylight (the first Asian NOVAC dual-channel mini-DOAS). One unused agricultural well and one boxed spring were equipped with multi-sensor probes, installed in spring and summer 2011, to detect bulk volumetric strain and changes in chemical composition in high-gain and low-gain mode. All stations are autonomous in terms of their power source (solar), and are designed to withstand typhoons, break-in attempts and direct/indirect lightning strikes. To telemeter the data from these instruments to the local PHIVOLCS observatory at Lignon Hill (Legazpi), we use spread-spectrum radios with our own repeater stations, GSM/GPRS radio modems, and 3G broadband Internet. High rate data including seismic and NOVAC SO2 data are transmitted via spread-spectrum radio, whereas tilt, ground CO2, meteorology, hydrology and soil parameters are transmitted via 3G and SMS. We designed a low-cost datalogger system, which has been operating since Jan 2011, performing continuous data acquisition with sampling rate of 20 minute/sample and transmitted through GSM network, for tilt data. The receiving station is the PHIVOLCS Lignon Hill Observatory (LHO), where an off-grid power system has been installed to ensure continuous operation of the monitoring computers and radios. Local pre-processing by observatory staff and local archiving ensures close to immediate availability of data products in times of crisis. The data are also forwarded via TCP/IP to servers at PHIVOLCS headquarters and at EOS. Network infrastructure and data flows will be completed in 2012.
NASA space station automation: AI-based technology review
NASA Technical Reports Server (NTRS)
Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.
1985-01-01
Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.
Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots
NASA Astrophysics Data System (ADS)
Bring, Arvid; Shiklomanov, Alexander; Lammers, Richard B.
2017-01-01
The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flows to detect, observe, and understand changes and provide adaptation information. There has, however, been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska, and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.
Pan-Arctic River Discharge: Where Can We Improve Monitoring of Future Change?
NASA Astrophysics Data System (ADS)
Bring, A.; Shiklomanov, A. I.; Lammers, R. B.
2016-12-01
The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flow to detect, observe and understand changes and provide adaptation information. There has however been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change, and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... by more than one system, automatic monitoring equipment must be installed at the base station to prevent activation of the transmitter when signals of co-channel stations are present and activation would... of the interconnected base station transmitter. A statement must be submitted to the Commission...
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be installed at the base station to prevent activation of the transmitter when signals of co... located within a 120 kilometer (75 mile) radius of the interconnected base station transmitter. A... more than one system, automatic monitoring equipment must be installed at the base station to prevent...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... shared by more than one system, automatic monitoring equipment must be installed at the base station to prevent activation of the transmitter when signals of co-channel stations are present and activation would... of the interconnected base station transmitter. A statement must be submitted to the Commission...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
...) existing Sabinsville Meter Station and running south across portions of Clymer, Gaines, and Elk Townships..., Pennsylvania; Replacement of regulators and upgrade of monitor controls at the existing Boom Compressor Station... Station in Stewardson Township, Potter County, Pennsylvania; Installation of about 900 feet of new 24-inch...
California Data Exchange Center
Historical Strong El Nino Years (PDF): 8-Station | 5-Station | 6-Station River Forecast Delta Tide Forecast year has been monitoring water quality in the Sacramento-San Joaquin Delta and upper San Francisco Delta and San Francisco Bay. http://www.water.ca.gov/news/newsreleases/2016/121916.pdf 12/12/2016
The impact of air pollution from the coal-fired Columbia Generating Station upon vegetation was investigated. Air monitoring of 03 and 02 documented levels that occurred before and with operation of the generating station. Field sampling of alfalfa, lichens, and white pines was u...
RadNet Air Quality (Fixed Station) Data
RadNet is a national network of monitoring stations that regularly collect air for analysis of radioactivity. The RadNet network, which has stations in each State, has been used to track environmental releases of radioactivity from nuclear weapons tests and nuclear accidents. RadNet also documents the status and trends of environmental radioactivity
Ichthyoplankton abundance and variance in a large river system concerns for long-term monitoring
Holland-Bartels, Leslie E.; Dewey, Michael R.; Zigler, Steven J.
1995-01-01
System-wide spatial patterns of ichthyoplankton abundance and variability were assessed in the upper Mississippi and lower Illinois rivers to address the experimental design and statistical confidence in density estimates. Ichthyoplankton was sampled from June to August 1989 in primary milieus (vegetated and non-vegated backwaters and impounded areas, main channels and main channel borders) in three navigation pools (8, 13 and 26) of the upper Mississippi River and in a downstream reach of the Illinois River. Ichthyoplankton densities varied among stations of similar aquatic landscapes (milieus) more than among subsamples within a station. An analysis of sampling effort indicated that the collection of single samples at many stations in a given milieu type is statistically and economically preferable to the collection of multiple subsamples at fewer stations. Cluster analyses also revealed that stations only generally grouped by their preassigned milieu types. Pilot studies such as this can define station groupings and sources of variation beyond an a priori habitat classification. Thus the minimum intensity of sampling required to achieve a desired statistical confidence can be identified before implementing monitoring efforts.
Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Zhang, X. Y.; Sun, J. Y.; Zhang, X. C.; Che, H. Z.; Li, Y.
2015-06-01
Concentrations of PM10, PM2.5 and PM1 were monitored at 24 stations of CAWNET (China Atmosphere Watch Network) from 2006 to 2014 using GRIMM 180 dust monitors. The highest particulate matter (PM) concentrations were observed at the stations of Xian, Zhengzhou and Gucheng, in Guanzhong and the Hua Bei Plain (HBP). The second highest PM concentrations were observed in northeast China, followed by southern China. According to the latest air quality standards of China, 14 stations reached the PM10 standard and only 7 stations, mainly rural and remote stations, reached the PM2.5 standard. The PM2.5 and PM10 ratios showed a clear increasing trend from northern to southern China, because of the substantial contribution of coarse mineral aerosol in northern China. The PM1 and PM2.5 ratios were higher than 80% at most stations. PM concentrations tended to be highest in winter and lowest in summer at most stations, and mineral dust impacts influenced the results in spring. A decreasing interannual trend was observed in the HBP and southern China from 2006 to 2014, but an increasing trend occurred at some stations in northeast China. Also diurnal variations of PM concentrations and meteorological factors effects were investigated.
Devon Donahue
2012-01-01
This paper is an analysis of 5 years of accident data for the USDA Forest Service, Rocky Mountain Research Station (RMRS) Inventory and Monitoring (IM) Program that identifies past trends, allows for standardized self-comparison, and increases our understanding of the true costs of injuries and accidents. Measuring safety is a difficult task. While most agree that...
Xcel Energy Comanche Station: Pueblo, Colorado (Data)
Stoffel, T.; Andreas, A.
2007-06-20
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Earth physicist describes US nuclear test monitoring system
NASA Astrophysics Data System (ADS)
1986-01-01
The U. S. capabilities to monitor underground nuclear weapons tests in the USSR was examined. American methods used in monitoring the underground nuclear tests are enumerated. The U. S. technical means of monitoring Solviet nuclear weapons testing, and whether it is possible to conduct tests that could not be detected by these means are examined. The worldwide seismic station network in 55 countries available to the U. S. for seismic detection and measurement of underground nuclear explosions, and also the systems of seismic research observatories in 15 countries and seismic grouping stations in 12 countries are outlined including the advanced computerized data processing capabilities of these facilities. The level of capability of the U. S. seismic system for monitoring nuclear tests, other, nonseismic means of monitoring, such as hydroacoustic and recording of effects in the atmosphere, ionosphere, and the Earth's magnetic field, are discussed.
Implosion Source Development and Diego Garcia Reflections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P E; Boro, C
2001-06-01
Calibration of hydroacoustic stations for nuclear explosion monitoring is important for increasing monitoring capability and confidence from newly installed stations and from existing stations. Past work at Ascension Island has shown that ship-towed airguns can be effectively used for local calibrations such as sensor location, amplitude and phase response, and T-phase coupling in the case of T-phase stations. At regional and ocean-basin distances from a station, the calibration focus is on acoustic travel time, transmission loss, bathymetric shadowing, diffraction, and reflection as recorded at a particular station. Such station calibrations will lead to an overall network calibration that seeks tomore » maximize detection, location, and discrimination capability of events with acoustic signatures. Active-source calibration of hydroacoustic stations at regional and ocean-basin scales has not been attempted to date, but we have made significant headway addressing how such calibrations could be accomplished. We have developed an imploding sphere source that can be used instead of explosives on research and commercial vessels without restriction. The imploding sphere has been modeled using the Lawrence Livermore National Laboratory hydrodynamic code CALE and shown to agree with field data. The need for boosted energy in the monitoring band (2-100 Hz) has led us to develop a 5-sphere implosion device that was tested in the Pacific Ocean earlier this year. Boosting the energy in the monitoring band can be accomplished by a combination of increasing the implosion volume (i.e. the 5-sphere device) and imploding at shallower depths. Although active source calibrations will be necessary at particular locations and for particular objectives, the newly installed Diego Garcia station in the Indian Ocean has shown that earthquakes can be used to help understand regional blockages and the locations responsible for observed hydroacoustic reflections. We have analyzed several events with a back-azimuth from Diego Garcia between 100 and 140 degrees. The Diego Garcia records show a pronounced reflection that correlates in travel time and back-azimuth (calculated using the waveform cross-correlation of the tri-partite array elements to determine lag time across the array) with a reflector at the Saya de Malha Bank, on the Seychelles-Mauritius Plateau. We also show that to accurately predict blockage and reflection regions, it is essential to have detailed bathymetry in relatively small but critical areas.« less
9. SOUTH END OF GENE PUMPING STATION LOOKING WEST WITH ...
9. SOUTH END OF GENE PUMPING STATION LOOKING WEST WITH DELIVERY LINES IN BACKGROUND. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA
Templin, W.E.; Smith, P.E.; DeBortoli, M.L.; Schluter, R.C.
1995-01-01
This report presents an evaluation of water- resources data-collection networks in the northern and coastal areas of Monterey County, California. This evaluation was done by the U.S. Geological Survey in cooperation with the Monterey County Flood Control and Water Conservation District to evaluate precipitation, surface water, and ground water monitoring networks. This report describes existing monitoring networks in the study areas and areas where possible additional data-collection is needed. During this study, 106 precipitation-quantity gages were identified, of which 84 were active; however, no precipitation-quality gages were identified in the study areas. The precipitaion-quantity gages were concentrated in the Monterey Peninsula and the northern part of the county. If the number of gages in these areas were reduced, coverage would still be adequate to meet most objectives; however, additional gages could improve coverage in the Tularcitos Creek basin and in the coastal areas south of Carmel to the county boundary. If collection of precipitation data were expanded to include monitoring precipitation quality, this expanded monitoring also could include monitoring precipitation for acid rain and pesticides. Eleven continuous streamflow-gaging stations were identified during this study, of which seven were active. To meet the objectives of the streamflow networks outlined in this report, the seven active stations would need to be continued, four stations would need to be reactivated, and an additional six streamflow-gaging stations would need to be added. Eleven stations that routinely were sampled for chemical constituents were identified in the study areas. Surface water in the lower Big Sur River basin was sampled annually for total coli- form and fecal coliform bacteria, and the Big Sur River was sampled monthly at 16 stations for these bacteria. Routine sampling for chemical constituents also was done in the Big Sur River basin. The Monterey County Flood Control and Water Conservation District maintained three networks in the study areas to measure ground-water levels: (1) the summer network, (2) the monthly network, and (3) the annual autumn network. The California American Water Company also did some ground-water-level monitoring in these areas. Well coverage for ground-water monitoring was dense in the seawater-intrusion area north of Moss Landing (possibly because of multiple overlying aquifers), but sparse in other parts of the study areas. During the study, 44 sections were identified as not monitored for ground-water levels. In an ideal ground-water-level network, wells would be evenly spaced, except where local conditions or correlations of wells make monitoring unnecessary. A total of 384 wells that monitor ground-water levels and/or ground-water quality were identified during this study. The Monterey County Flood Control and Water Conservation District sampled ground-water quality monthly during the irrigation season to monitor seawater intrusion. Once each year (during the summer), the wells in this network were monitored for chlorides, specific conductance, and nitrates. Additional samples were collected from each well once every 5 years for complete mineral analysis. The California Department of Health Services, the California American Water Company, the U.S. Army Health Service at Ford Ord, and the Monterey Peninsula Water Management District also monitored ground-water quality in wells in the study areas. Well coverage for the ground-water- quality networks was dense in the seawater- intrusion area north of Moss Landing, but sparse in the rest of the study areas. During this study, 54 sections were identified as not monitored for water quality.
NASA Astrophysics Data System (ADS)
Alammar, Montaha; Austin, William
2017-04-01
The present study represents an attempt to evaluate the impacts of marine aquaculture on benthic foraminiferal communities in order to develop an improved, quantitative understanding of their response to the variation in benthic environmental gradients associated with fish farms in Scotland. Furthermore, their performance as a bio-monitoring tool will be discussed and outlined in ongoing research to evaluate their performance alongside traditional bioecological indicators. Foraminiferal faunas offer the potential to assess ecological quality status through their response to stress gradients (e.g. organic matter enrichment), such as that caused by intensive fish farming in coastal sediments. In this study, we followed the Foraminiferal Bio-Monitoring (FOBIMO) protocol (Schönfeld. et al., 2012), which proposed a standardised methodology of using foraminifera as a bio-monitoring tool to evaluate the quality of the marine ecosystem and applied these protocols to the rapidly expanding marine aquaculture sector in Scotland, UK. Eight stations were sampled along a transect in Loch Creran, west coast of Scotland, to describe the spatial and down-core (temporal) distribution pattern of benthic foraminiferal assemblages. Triplicate, Rose-Bengal stained samples from an interval of (0-1cm) below the sediment surface were studied at each station from below the fish cages (impacted stations) to a distance from the farming sites (control stations). Morphospecies counts were conducted, and the organic carbon and the grain size distributions determined. Species richness beneath these fish farming cages were analysed and showed a reduction of foraminifera density and diversity at the impacted stations.
Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.
2015-01-01
Riverine nitrate (NO3) is a well-documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long-term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long-term data availability and to represent a range of climate and land-use conditions. We examined NO3 at the monitoring stations, using a flow-weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945-1980 at most of the stations and have remained elevated, but stopped increasing during 1981-2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century-scale dataset adds to our understanding of long-term NO3 patterns in the U.S.
Network modeling of PM10 concentration in Malaysia
NASA Astrophysics Data System (ADS)
Supian, Muhammad Nazirul Aiman Abu; Bakar, Sakhinah Abu; Razak, Fatimah Abdul
2017-08-01
Air pollution is not a new phenomenon in Malaysia. The Department of Environment (DOE) monitors the country's ambient air quality through a network of 51 stations. The air quality is measured using the Air Pollution Index (API) which is mainly recorded based on the concentration of particulate matter, PM10 readings. The Continuous Air Quality Monitoring (CAQM) stations are located in various places across the country. In this study, a network model of air quality based on PM10 concen tration for selected CAQM stations in Malaysia has been developed. The model is built using a graph formulation, G = (V, E) where vertex, V is a set of CAQM stations and edges, E is a set of correlation values for each pair of vertices. The network measurements such as degree distributions, closeness centrality, and betweenness centrality are computed to analyse the behaviour of the network. As a result, a rank of CAQM stations has been produced based on their centrality characteristics.
NASA Technical Reports Server (NTRS)
Kumar, M.
1976-01-01
The Close Grid Geodynamic Measurement System is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0 to 30 km), which are projected to be of low cost (maintenance free and unattended), and which will permit the saturation of a local area to obtain data useful to monitor crustal movements in the San Andreas fault zone. The system includes a station network of 75 stations covering an area between 36 deg N and 38 deg N latitudes, and 237 deg E and 239 deg E longitudes, with roughly half of the stations on either side of the faults. In addition, the simulation of crustal movements through the introduction of changes in the relative positions between grid stations, weather effect for intervisibility between satellite and station and loss of observations thereof, and comparative evaluation of various observational scheme-patterns have been critically studied.
The distribution and diversity of benthic macroinvertebrate fauna in Pondicherry mangroves, India
2013-01-01
Background Species distribution, abundance and diversity of mangrove benthic macroinvertebrate fauna and the relationships to environmental conditions are important parts of understanding the structure and function of mangrove ecosystems. In this study seasonal variation in the distribution of macrobenthos and related environmental parameters were explored at four mangrove stations along the Pondicherry coast of India, from September 2008 to July 2010. Multivariate statistical analyses, including cluster analysis, principal component analysis and non-multidimensional scales plot were employed to help define trophic status, water quality and benthic characteristic at the four monitoring stations. Results Among the 528 samples collected over 168 ha of mangrove forest 76 species of benthic macroinvertebrate fauna were identified. Macrofauna were mainly composed of deposit feeders, dominated numerically by molluscs and crustaceans. Statistical analyses yielded the following descriptors of benthic macroinvertebrate fauna species distribution: densities between 140–1113 ind. m-2, dominance 0.17-0.50, diversity 1.80-2.83 bits ind-1, richness 0.47-0.74 and evenness 0.45-0.72, equitability 0.38-0.77, berger parker 0.31-0.77 and fisher alpha 2.46-5.70. Increases of species diversity and abundance were recorded during the post monsoon season at station 1 and the lowest diversity was recorded at station 2 during the monsoon season. The pollution indicator organisms Cassidula nucleus, Melampus ceylonicus, Sphaerassiminea minuta were found only at the two most polluted regions, i.e. stations 3 and 4. Benthic macroinvertebrate fauna abundances were inversely related to salinity at the four stations, Based on Bray-Curtis similarity through hierarchical clustering implemented in PAST, it was possible to define three distinct benthic assemblages at the stations. Conclusions From a different multivariate statistical analysis of the different environmental parameters regarding species diversity and abundance of benthic macroinvertebrate fauna, it was found that benthic communities are highly affected by all the environmental parameters governing the distribution and diversity variation of the macrofaunal community in Pondicherry mangroves. Salinity, dissolved oxygen levels, organic matter content, sulphide concentration were the most significant parameters. PMID:23937801
24. Station Oil Tanks, view to the south. The four ...
24. Station Oil Tanks, view to the south. The four oil storage tanks located along the east wall (left side of photograph) are, from foreground to background: dirty transformer oil tank, clean transformer oil tank, dirty lubricating oil tank, and clean lubricating oil tank. An oil filter system is also visible in background along the far wall. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT
NASA Technical Reports Server (NTRS)
Donner, Kimberly A.; Holden, Kritina L.; Manahan, Meera K.
1991-01-01
Investigated are five designs of software-based ON/OFF indicators in a hypothetical Space Station Power System monitoring task. The hardware equivalent of the indicators used in the present study is the traditional indicator light that illuminates an ON label or an OFF label. Coding methods used to represent the active state were reverse video, color, frame, check, or reverse video with check. Display background color was also varied. Subjects made judgments concerning the state of indicators that resulted in very low error rates and high percentages of agreement across indicator designs. Response time measures for each of the five indicator designs did not differ significantly, although subjects reported that color was the best communicator. The impact of these results on indicator design is discussed.
NASA Technical Reports Server (NTRS)
Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.
2015-01-01
Environmental monitoring for manned spaceflight has long depended on archival sampling, which was sufficient for short missions. However, the longer mission durations aboard the International Space Station (ISS) have shown that enhanced, real-time monitoring capabilities are necessary in order to protect both the crewmembers and the spacecraft systems. Over the past several years, a number of real-time environmental monitors have been deployed on the ISS. Currently, volatile organic compounds (VOCs) in the station air are monitored by the Air Quality Monitor (AQM), a small, lightweight gas chromatograph-differential mobility spectrometer. For water monitoring, real-time monitors are used for total organic carbon (TOC) and biocide analysis. No information on the actual makeup of the TOC is provided presently, however. An improvement to the current state of environmental monitoring could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for VOCs in air samples, this instrument provides a logical starting point to evaluate the feasibility of this approach. The major hurdle for this effort lies in the liberation of the target analytes from the water matrix. In this presentation, we will discuss our recent studies, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target VOCs at the concentrations at which they are routinely detected in archival water samples from the ISS. We will compare the results of these studies with those obtained from the instrumentation routinely used to analyze archival water samples.
Frost monitoring of fruit tree with satellite data
NASA Astrophysics Data System (ADS)
Fan, Jinlong; Zhang, Mingwei; Cao, Guangzheng; Zhang, Xiaoyu; Liu, Chenchen; Niu, Xinzan; Xu, Wengbo
2012-09-01
The orchards are developing very fast in the northern China in recent years with the increasing demands on fruits in China. In most parts of the northern China, the risk of frost damage to fruit tree in early spring is potentially high under the background of global warming. The growing season comes earlier than it does in normal year due to the warm weather in earlier spring and the risk will be higher in this case. According to the reports, frost event in spring happens almost every year in Ningxia Region, China. In bad cases, late frosts in spring can be devastating all fruit. So lots of attention has been given to the study in monitoring, evaluating, preventing and mitigating frost. Two orchards in Ningxia, Taole and Jiaozishan orchards were selected as the study areas. MODIS data were used to monitor frost events in combination with minimum air temperature recorded at weather station. The paper presents the findings. The very good correlation was found between MODIS LST and minimum air temperature in Ningxia. Light, middle and severe frosts were captured in the study area by MODIS LST. The MODIS LST shows the spatial differences of temperature in the orchards. 10 frost events in April from 2000 to 2010 were captured by the satellite data. The monitoring information may be hours ahead circulated to the fruit farmers to prevent the damage and loss of fruit trees.
A fence line noble gas monitoring system for nuclear power plants.
Grasty, R L; Hovgaard, J; LaMarre, J R
2001-01-01
A noble gas monitoring system has been installed at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) near Toronto, Canada. This monitoring system allows a direct measure of air kerma from external radiation instead of calculating this based on plant emission data and meteorological models. This has resulted in a reduction in the reported effective dose from external radiation by a factor of at least ten. The system consists of nine self-contained units, each with a 7.6 cm x 7.6 cm (3 inch x 3 inch) NaI(TI) detector that is calibrated for air kerma. The 512-channel gamma ray spectral information is downloaded daily from each unit to a central computer where the data are stored and processed. A spectral stripping procedure is used to remove natural background variations from the spectral windows used to monitor xenon-133 (133Xe), xenon-135 (135Xe), argon-41 (41Ar), and skyshine radiation from the use of radiography sources. Typical monthly minimum detection limits in air kerma are 0.3 nGy for 133Xe, 0.7 nGy for 35Xe, 3 nGy for 41Ar and 2 nGy for skyshine radiation. Based on 9 months of continuous operation, the annualised air kerma due to 133Xe, 135Xe and 41Ar and skyshine radiation were 7 nGy, 8 nGy, 26 nGy and 107 nGy respectively.
NASA Astrophysics Data System (ADS)
Grenard, P.
2009-04-01
The International Monitoring System (IMS) for the Comprehensive Nuclear Test-ban-Treaty Organization is a global Network of stations for detecting and providing evidence of possible nuclear explosions. Upon completion, the IMS will consist of 321 monitoring facilities and 16 radionuclide laboratories distributed worldwide in locations designated by the Treaty. Many of these sites are located in areas that are remote and difficult to access, posing major engineering and logistical challenges. The IMS uses seismic, hydroacoustic and infrasound monitoring waveform technologies to detect signals released from an explosion or a naturally occurring event (e.g. earthquakes) in the underground, underwater and atmospheric environments. The radionuclide technology as an integral part of the IMS uses air samples to collect particular matter from the atmosphere. Samples are then analyzed for evidence of physical products created by a nuclear explosion and carried through the atmosphere. The certification process of the IMS stations assures their compliance with the IMS technical requirements. In 2008 significant progress was made towards the completion of the IMS Network. So far 75% of the IMS stations have been built and certified.
NASA Astrophysics Data System (ADS)
Curilem, Millaray; Huenupan, Fernando; Beltrán, Daniel; San Martin, Cesar; Fuentealba, Gustavo; Franco, Luis; Cardona, Carlos; Acuña, Gonzalo; Chacón, Max; Khan, M. Salman; Becerra Yoma, Nestor
2016-04-01
Automatic pattern recognition applied to seismic signals from volcanoes may assist seismic monitoring by reducing the workload of analysts, allowing them to focus on more challenging activities, such as producing reports, implementing models, and understanding volcanic behaviour. In a previous work, we proposed a structure for automatic classification of seismic events in Llaima volcano, one of the most active volcanoes in the Southern Andes, located in the Araucanía Region of Chile. A database of events taken from three monitoring stations on the volcano was used to create a classification structure, independent of which station provided the signal. The database included three types of volcanic events: tremor, long period, and volcano-tectonic and a contrast group which contains other types of seismic signals. In the present work, we maintain the same classification scheme, but we consider separately the stations information in order to assess whether the complementary information provided by different stations improves the performance of the classifier in recognising seismic patterns. This paper proposes two strategies for combining the information from the stations: i) combining the features extracted from the signals from each station and ii) combining the classifiers of each station. In the first case, the features extracted from the signals from each station are combined forming the input for a single classification structure. In the second, a decision stage combines the results of the classifiers for each station to give a unique output. The results confirm that the station-dependent strategies that combine the features and the classifiers from several stations improves the classification performance, and that the combination of the features provides the best performance. The results show an average improvement of 9% in the classification accuracy when compared with the station-independent method.
76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-22
... hours. After the high wind conditions pass, wind damage to the plant and surrounding area might preclude... Power Company, Surry Power Station, Units 1 and 2; Exemption 1.0 Background Virginia Electric and Power... authorize operation of the Surry Power Station, Units 1 and 2 (Surry 1 and 2) respectively. The license...
Multiple channel optical data acquisition system
Fasching, G.E.; Goff, D.R.
1985-02-22
A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.
2006-01-01
One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
Winter bait stations as a multispecies survey tool
Lacy Robinson; Samuel A. Cushman; Michael K. Lucid
2017-01-01
Winter bait stations are becoming a commonly used technique for multispecies inventory and monitoring but a technical evaluation of their effectiveness is lacking. Bait stations have three components: carcass attractant, remote camera, and hair snare. Our 22,975 km2 mountainous study area was stratified with a 5 Ã 5 km sampling grid centered on northern Idaho and...
Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area
NASA Astrophysics Data System (ADS)
Guillemot, C.; Langbein, J. O.; Murray, J. R.
2012-12-01
The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and automatically select the "next best" station to use as reference. We are also working towards minimizing the loss of streamed data during concurrent data downloads by improving file management on the GPS receivers.
Mars Weather-Station Tools on Rover Mast
2015-04-13
The Rover Environmental Monitoring Station (REMS) on NASA's Curiosity Mars rover includes temperature and humidity sensors mounted on the rover's mast. One of the REMS booms extends to the left from the mast in this view. Spain provided REMS to NASA's Mars Science Laboratory Project. The monitoring station has provided information about air pressure, relative humidity, air temperature, ground temperature, wind and ultraviolet radiation in all Martian seasons and at all times of day or night. This view is a detail from a January 2015 Curiosity self-portrait. The self-portrait, at PIA19142, was assembled from images taken by Curiosity's Mars Hand Lens Imager. http://photojournal.jpl.nasa.gov/catalog/PIA19164
2007-07-31
David L. Iverson of NASA Ames Research center, Moffett Field, California, led development of computer software to monitor the conditions of the gyroscopes that keep the International Space Station (ISS) properly oriented in space as the ISS orbits Earth. The gyroscopes are flywheels that control the station's attitude without the use of propellant fuel. NASA computer scientists designed the new software, the Inductive Monitoring System, to detect warning signs that precede a gyroscope's failure. According to NASA officials, engineers will add the new software tool to a group of existing tools to identify and track problems related to the gyroscopes. If the software detects warning signs, it will quickly warn the space station's mission control center.
Location Performance and Detection Threshold of the Spanish National Seismic Network
NASA Astrophysics Data System (ADS)
D'Alessandro, Antonino; Badal, José; D'Anna, Giuseppe; Papanastassiou, Dimitris; Baskoutas, Ioannis; Özel, Nurcan M.
2013-11-01
Spain is a low-to-moderate seismicity area with relatively low seismic hazard. However, several strong shallow earthquakes have shaken the country causing casualties and extensive damage. Regional seismicity is monitored and surveyed by means of the Spanish National Seismic Network, maintenance and control of which are entrusted to the Instituto Geográfico Nacional. This array currently comprises 120 seismic stations distributed throughout Spanish territory (mainland and islands). Basically, we are interested in checking the noise conditions, reliability, and seismic detection capability of the Spanish network by analyzing the background noise level affecting the array stations, errors in hypocentral location, and detection threshold, which provides knowledge about network performance. It also enables testing of the suitability of the velocity model used in the routine process of earthquake location. To perform this study we use a method that relies on P and S wave travel times, which are computed by simulation of seismic rays from virtual seismic sources placed at the nodes of a regular grid covering the study area. Given the characteristics of the seismicity of Spain, we drew maps for M L magnitudes 2.0, 2.5, and 3.0, at a focal depth of 10 km and a confidence level 95 %. The results relate to the number of stations involved in the hypocentral location process, how these stations are distributed spatially, and the uncertainties of focal data (errors in origin time, longitude, latitude, and depth). To assess the extent to which principal seismogenic areas are well monitored by the network, we estimated the average error in the location of a seismic source from the semiaxes of the ellipsoid of confidence by calculating the radius of the equivalent sphere. Finally, the detection threshold was determined as the magnitude of the smallest seismic event detected at least by four stations. The northwest of the peninsula, the Pyrenees, especially the westernmost segment, the Betic Cordillera, and Tenerife Island are the best-monitored zones. Origin time and focal depth are data that are far from being constrained by regional events. The two Iberian areas with moderate seismicity and the highest seismic hazard, the Pyrenees and Betic Cordillera, and the northwestern quadrant of the peninsula, are the areas wherein the focus of an earthquake is determined with an approximate error of 3 km. For M L 2.5 and M L 3.0 this error is common for almost the whole peninsula and the Canary Islands. In general, errors in epicenter latitude and longitude are small for near-surface earthquakes, increasing gradually as the depth increases, but remaining close to 5 km even at a depth of 60 km. The hypocentral depth seems to be well constrained to a depth of 40 km beneath the zones with the highest density of stations, with an error of less than 5 km. The M L magnitude detection threshold of the network is approximately 2.0 for most of Spain and still less, almost 1.0, for the western sector of the Pyrenean region and the Canary Islands.
How much suspended particulate matter enters long-term in-channel storage?
NASA Astrophysics Data System (ADS)
Dietrich, Stephan; Kleisinger, Carmen; Kehl, Nora; Schubert, Birgit; Hillebrand, Gudrun
2017-04-01
The route of suspended particulate matter (SPM) downstream rivers strongly depends on discharge conditions and involves transport times and periods with resting times in deposits e.g. at areas with low-flow conditions near the channel bed. It is, however, difficult to estimate the contribution of SPM on the bed load. In this study, particle-bound polychlorinated biphenyls (PCB), which were released by an incident in the Elbe river (Central Europe) in spring 2015, could be used as unique tracer for transport pathways of SPM along the whole river stretch (over 700 km length), including low mountain ranges, lowlands, and the estuary. In 2015 the Elbe River was characterized by low-discharge conditions. Thus, the export of SPM on flood plains was strongly limited. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from ten monitoring stations (settling tanks) are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal (hereafter PCB6 ratio). We demonstrate that both the load of PCB as well as its chemical fingerprint allows the estimation of transport durations for the transport processes involved. Only a little part of the suspension has been transported via wash load. The PCB6 ratio is used to estimate mean transport velocities of the wash load fraction. A direct transport of wash load via the mean flow velocity of the water was not observed. Shortly after the incident, the PCB6 ratio was monitored 257 km downstream of the incident site in April 2015, in May first occurrence was monitored 514 km downstream of the incident site and in July it reaches the tidal weir 626 km downstream and enters the estuary. Here the transport velocity strongly decreases and the PCB6 ratio was not detected 25 km downstream the tidal weir before December 2015. The major part of the PCB-marked suspension is transported via suspended load. Interestingly, the reduction of total PCB tagged SPM load within the first 514 km downstream of the incident site indicates that roughly 75% of the annual SPM load (of the most upstream monitoring station located 43 km downstream of the incident site) is stored in the sediments of the Elbe River, suggesting that suspended sediment in transport enters storage after a relatively short distance. Once SPM settles, significant storage can occur over decadal time scales.
The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...
Aerosol and gamma background measurements at Basic Environmental Observatory Moussala
NASA Astrophysics Data System (ADS)
Angelov, Christo; Arsov, Todor; Penev, Ilia; Nikolova, Nina; Kalapov, Ivo; Georgiev, Stefan
2016-03-01
Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW) station Moussala BEO (2925 m a.s.l., 42°10'45'' N, 23°35'07'' E). Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.
Schemel, Laurence E.
2001-01-01
This article presents a simplified conversion to salinity units for use with specific conductance data from monitoring stations that have been normalized to a standard temperature of 25 °C and an equation for the reverse calculation. Although these previously undocumented methods have been shared with many IEP agencies over the last two decades, the sources of the equations and data are identified here so that the original literature can be accessed.
Lowry Range Solar Station: Arapahoe County, Colorado (Data)
Yoder, M.; Andreas, A.
2008-05-30
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Nevada Power: Clark Station; Las Vegas, Nevada (Data)
Stoffel, T.; Andreas, A.
2006-03-27
A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
NASA Technical Reports Server (NTRS)
Oubre, Cherie; Khodadad, Christina; Castro, Victoria; Ott, Mark; Pollack, Lawrence; Roman, Monsi
2017-01-01
The RAZOR EX (Registered Trademark) PCR unit was initially developed by the DoD as part of an SBIR project to detect and identify biothreats during field deployment. The system was evaluated by NASA as a commercial technology for future microbial monitoring requirements and has been successfully demonstrated in microgravity on-board the International Space Station.
Air-dropped sensor network for real-time high-fidelity volcano monitoring
Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.
2009-01-01
This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.
Itaca2 - Twin 76-ilat auroral monitors.
NASA Astrophysics Data System (ADS)
Massetti, S.; Candidi, M.; Cerulli-Irelli, P.; Sparapani, R.; Maggiore, M.; Philipsen, H.; Baldetti, P.; Morbidini, A.
2003-04-01
In August 2002, the Italian Research Council (CNR) set up a new automatic auroral monitor in Daneborg, on the North-East coast of Greenland, thanks to the support of the Progetto Nazionale Ricerche in Antartide (PNRA), and to the logistical support of the Danish Polar Center (DPC) and the Sirus-patrol (PNG). The new station is equipped with a digital all-sky camera, and it is intended to operate in conjunction with the other Italian station located in Ny-Ålesund, Svalbard: the two observatories constitute a system of twin auroral monitors, owing almost the same invariant latitude of 76°, which is mainly devoted to the observation of the dayside red aurora connected to the cusp/LLBL magnetospheric region. When observing the high altitude dayside auroras, the field-of-views of the two stations are contiguous and allow the monitoring of the dayside auroral activity over about 80° of magnetic longitude (about 5/6 hours MLT). Since many years ago, Svalbard Islands have been an ideal place for polar researches due to its scientific facilities, the easy access during all the year and the frequent flight connections. In Greenland, on the contrary, the set up and maintenance of a high-latitude station that has to operate during the winter season, needs more logistical efforts, and it would be impossible without the precious support of people residing in-situ.
Smart Vest: wearable multi-parameter remote physiological monitoring system.
Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C
2008-05-01
The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.
Trends in atmospheric heavy metals abundances over the Russian part of EMEP region in 1990-2012
NASA Astrophysics Data System (ADS)
Gromov, Sergey A.; Konkova, Elizaveta S.
2016-04-01
The European part of Russia is covered by two atmospheric environment monitoring networks established in the 1970s-1980s to monitor and evaluate anthropogenic pollution of regional/background natural environment. These are EMEP - European Monitoring and Evaluation Program of transboundary atmospheric pollutant transmission (under the UN ECE Convention on Long-Range Transboundary Air Pollution) and IBMoN - Integrated Background Monitoring Network of environmental toxic pollution (prior to 1990 under the UNEP/GEMS supervision, mostly for East European countries). IGCE laboratories operate as analytical centers for both networks. Historically, IBMoN was partly implemented at EMEP sites to support this international program with additional (optional) data. IBMoN datasets were selected for analysis of atmospheric heavy metal trends in the Russian territory of EMEP region for the last twenty three years due to more intensive operation up to now [1, 2]. Atmospheric heavy metals are collected at the remote sites with the air samples of atmospheric aerosols deposited on Petryanov's cellulose acetate filters through high-volume pumping during 24 hours. To measure lead and cadmium content, filters are transferred into the solution to determine total amounts by the Atomic Absorption Spectroscopy (AAS) with flameless atomization. Precipitation samples (collected monthly with acidic preserving) are directly injected into the AAS detection module after filtering. The sampling procedure, special processing and analytical techniques allow us to measure concentrations at substantially low levels [3, 2]. In this study we investigate the long term trends of lead and cadmium in air and precipitation at two stations, viz. Astrakhan Biosphere Reserve (46°N, 49°E) and Danki (Oka-Terrace Biosphere Reserve, 54.9°N, 37.8°E). Following the EMEP general recommendations, the evaluation was done for two continuous periods covering 1990-2001 and 2002-2012, respectively. We apply the common methodology recommended by WMO/EMEP Task Force for trend evaluation, implemented in software developed and distributed by EMEP [4]. This methodology allows approximation of apparent trends using the superposition of the exponential (main) and residual components obtained using the ad hoc trend regression model. We further use so-called reduction parameters to investigate quantitatively the nature of trends: The total over the period (Rtot) and annual average (Rave), with the latter corresponding to increasing trend at negative values. Overall, temporal tendencies of airborne cadmium and lead demonstrate similar behaviour, however on top of different average concentration levels. For both species our analysis confirms the increase in air and precipitation abundances at the regional and remote sites over the European part of Russia for the period of 2002-2012. References: 1. Gromov S.A., and S.G. Paramonov, 2015. Current status and prospects for the development of integrated background monitoring of environmental pollution. Problems of Ecological Monitoring and Ecosystem Modelling, v. XXVI, N 1, p. 205-221. 2. Rovinsky F.Ya. (Ed.), 1989. Analytical review of environmental pollution with heavy metals in background areas of the CMEA member countries (1982-1989). Moscow, Gidrometeoizdat, 88 p. 3. Izrael Yu.A., and F.Ya. Rovinsky, 1991. Integrated background monitoring of environmental pollution in mid-latitude Eurasia. WMO Global Atmospheric Watch No 72, WMO/TD No. 434, 104 p. 4. MSC-East, 2015. Methodology of trend analysis of air quality data (http://www.msceast.org/documents/ Methodology_of_trend_analysis.pdf).
Su, N Y; Ban, P M; Scheffrahn, R H
2000-04-01
A sensor consisting of a wooden monitor painted with a conductive circuit of silver particle emulsion was placed in a monitoring station to detect feeding activity of the subterranean termite Coptotermes havilandi Holmgren. Sensor accuracy was 100% 1 mo after installation, but 9 mo after sensor placement, the rate declined to 73%. After the detection of C. havilandi in the stations, baits containing the chitin synthesis inhibitor hexaflumuron were applied in five colonies, and four colonies were eliminated within 3-5 mo. Baiting could not be completed for the remaining one colony because the site became inaccessible.
Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara
2006-01-01
A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.
NASA Technical Reports Server (NTRS)
1990-01-01
This hardware catalog covers that hardware proposed under the Biomedical Monitoring and Countermeasures Development Program supported by the Johnson Space Center. The hardware items are listed separately by item, and are in alphabetical order. Each hardware item specification consists of four pages. The first page describes background information with an illustration, definition and a history/design status. The second page identifies the general specifications, performance, rack interface requirements, problems, issues, concerns, physical description, and functional description. The level of hardware design reliability is also identified under the maintainability and reliability category. The third page specifies the mechanical design guidelines and assumptions. Described are the material types and weights, modules, and construction methods. Also described is an estimation of percentage of construction which utilizes a particular method, and the percentage of required new mechanical design is documented. The fourth page analyzes the electronics, the scope of design effort, and the software requirements. Electronics are described by percentages of component types and new design. The design effort, as well as, the software requirements are identified and categorized.
Velasco, Antonio; Arcega-Cabrera, Flor; Oceguera-Vargas, Ismael; Ramírez, Martha; Ortinez, Abraham; Umlauf, Gunther; Sena, Fabrizio
2016-09-01
Within the Global Mercury Observation System (GMOS) project, long-term continuous measurements of total gaseous mercury (TGM) were carried out by a monitoring station located at Celestun, Yucatan, Mexico, a coastal site along the Gulf of Mexico. The measurements covered the period from January 28th to October 17th, 2012. TGM data, at the Celestun site, were obtained using a high-resolution mercury vapor analyzer. TGM data show values from 0.50 to 2.82 ng/m(3) with an annual average concentration of 1.047 ± 0.271 ng/m(3). Multivariate analyses of TGM and meteorological variables suggest that TGM is correlated with the vertical air mass distribution in the atmosphere, which is influenced by diurnal variations in temperature and relative humidity. Diurnal variation is characterized by higher nighttime mercury concentrations, which might be influenced by convection currents between sea and land. The back trajectory analysis confirmed that local sources do not significantly influence TGM variations. This study shows that TGM monitoring at the Celestun site fulfills GMOS goals for a background site.
Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Ye, F.; Lyu, S.; Lin, J.
2017-12-01
In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.
Frequency division multiplex technique
NASA Technical Reports Server (NTRS)
Brey, H. (Inventor)
1973-01-01
A system for monitoring a plurality of condition responsive devices is described. It consists of a master control station and a remote station. The master control station is capable of transmitting command signals which includes a parity signal to a remote station which transmits the signals back to the command station so that such can be compared with the original signals in order to determine if there are any transmission errors. The system utilizes frequency sources which are 1.21 multiples of each other so that no linear combination of any harmonics will interfere with another frequency.
Continuous flow measurements using fixed ultrasonic meters
Oltmann, Rick
1993-01-01
USGS has or soon will be installing four continuous flow-monitoring stations in the delta that will use ultrasonic velocity meters (DVM). Funding for the stations has been provided by USGS, DWR, USBR, and Contra Costa Water District.
Climate change and soil salinity: The case of coastal Bangladesh.
Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David
2015-12-01
This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.
Development of an Environmental Monitoring Package for the International Space Station
NASA Technical Reports Server (NTRS)
Carruth, Ralph M., Jr.; Clifton, Kenneth S.; Vanhooser, Michael T.
1999-01-01
The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments and provide data and power from ISS. From the beginning of the space station program it has been recognized that external experiments will require knowledge of the external environment because it can affect the science being performed and may impact lifetime and operations of the experiments. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP) was started. This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.
An Environment Monitoring Package for the International Space Station
NASA Technical Reports Server (NTRS)
Carruth, M. Ralph; Clifton, Kenneth S.
1998-01-01
The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.
NetMOD Version 2.0 User?s Manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.
2015-10-01
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydracoustic, and infrasonic networks. Specifically, NetMOD simulates the detection capabilities of monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes ofmore » signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform detection simulations. In addition, NetMOD is distributed with simulation datasets for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic, hydroacoustic, and infrasonic networks for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation. ACKNOWLEDGEMENTS We would like to thank the reviewers of this document for their contributions.« less
Cornelius, Mary L; Osbrink, Weste L A; Gallatin, Erin M
2015-01-01
This study examined the relationship between temperature, precipitation, soil composition, levels of feeding damage, and the caste distribution (workers, soldiers, nymphs) of the Formosan subterranean termite, Coptotermes formosanus Shiraki, collected in underground monitoring stations over a 12 mo period. Because nymphs are the caste that develops into alates, the seasonal abundance of nymphs was examined over a 5 yr period. Numbers of workers, soldiers, and soldier/worker ratio were significantly affected by month. Recruitment and retention of foraging termites in stations was significantly affected by the level of feeding damage. The number of nymphs collected in monitoring stations was highly variable. In the 12 mo test, there was a significant correlation between numbers of nymphs and level of feeding damage, temperature, precipitation, and soil composition. Over a 5 yr period, significantly more nymphs were collected in 2011 than in 2007 and 2008. Peak nymph collections varied from year to year. Overall, peak nymph collections were more likely to occur in Mar., Sept., and Oct. Increasing our knowledge of the environmental factors that influence recruitment and retention of foraging termites in monitoring stations could influence termite bait placement and improve baiting strategies for termite control. Identifying the key factors that cause aggregations of nymphs in underground stations could increase our ability to predict the intensity and location of alate swarms. © Crown copyright 2015.
Kononenko uses laptop computer in the SM Transfer Compartment
2012-03-21
ISS030-E-161167 (21 March 2012) --- Russian cosmonaut Oleg Kononenko, Expedition 30 flight engineer, uses a computer in the transfer compartment of the International Space Station?s Zvezda Service Module. Russia's Zarya module is visible in the background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartwell, William T.; Daniels, Jeffrey; Nikolich, George
2012-01-01
During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primarymore » objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.« less
SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.
2013-12-01
Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.
van Tussenbroek, Brigitta I; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C; Gayle, Peter M H; Guzmán, Hector M; Jácome, Gabriel E; Juman, Rahanna; Koltes, Karen H; Oxenford, Hazel A; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R; Tschirky, John J; Weil, Ernesto
2014-01-01
The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m(-2)) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m(-2)) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration.
NASA Astrophysics Data System (ADS)
Jules, Kenol; Lin, Paul P.
2007-06-01
With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.