Sample records for background natural products

  1. A review on natural background radiation

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Setayandeh, Samaneh

    2013-01-01

    The world is naturally radioactive and approximately 82% of human-absorbed radiation doses, which are out of control, arise from natural sources such as cosmic, terrestrial, and exposure from inhalation or intake radiation sources. In recent years, several international studies have been carried out, which have reported different values regarding the effect of background radiation on human health. Gamma radiation emitted from natural sources (background radiation) is largely due to primordial radionuclides, mainly 232Th and 238U series, and their decay products, as well as 40K, which exist at trace levels in the earth's crust. Their concentrations in soil, sands, and rocks depend on the local geology of each region in the world. Naturally occurring radioactive materials generally contain terrestrial-origin radionuclides, left over since the creation of the earth. In addition, the existence of some springs and quarries increases the dose rate of background radiation in some regions that are known as high level background radiation regions. The type of building materials used in houses can also affect the dose rate of background radiations. The present review article was carried out to consider all of the natural radiations, including cosmic, terrestrial, and food radiation. PMID:24223380

  2. Supercritical Fluid Chromatography--Theoretical Background and Applications on Natural Products.

    PubMed

    Hartmann, Anja; Ganzera, Markus

    2015-11-01

    The use of supercritical fluid chromatography for natural product analysis as well as underlying theoretical mechanisms and instrumental requirements are summarized in this review. A short introduction focusing on the historical development of this interesting separation technique is followed by remarks on the current instrumental design, also describing possible detection modes and useable stationary phases. The overview on relevant applications is grouped based on their basic intention, may it be (semi)preparative or purely analytical. They indicate that supercritical fluid chromatography is still primarily considered for the analysis of nonpolar analytes like carotenoids, fatty acids, or terpenes. The low polarity of supercritical carbon dioxide, which is used with modifiers almost exclusively as a mobile phase today, combined with high efficiency and fast separations might explain the popularity of supercritical fluid chromatography for the analysis of these compounds. Yet, it has been shown that more polar natural products (e.g., xanthones, flavonoids, alkaloids) are separable too, with the same (if not superior) selectivity and reproducibility than established approaches like HPLC or GC. Georg Thieme Verlag KG Stuttgart · New York.

  3. Teaching about Natural Background Radiation

    ERIC Educational Resources Information Center

    Al-Azmi, Darwish; Karunakara, N.; Mustapha, Amidu O.

    2013-01-01

    Ambient gamma dose rates in air were measured at different locations (indoors and outdoors) to demonstrate the ubiquitous nature of natural background radiation in the environment and to show that levels vary from one location to another, depending on the underlying geology. The effect of a lead shield on a gamma radiation field was also…

  4. Spectral characterization of natural backgrounds

    NASA Astrophysics Data System (ADS)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  5. Background radiation: natural and man-made.

    PubMed

    Thorne, M C

    2003-03-01

    A brief overview and comparison is given of dose rates arising from natural background radiation and the fallout from atmospheric testing of nuclear weapons. Although there are considerable spatial variations in exposure to natural background radiation, it is useful to give estimates of worldwide average overall exposures from the various components of that background. Cosmic-ray secondaries of low linear energy transfer (LET), mainly muons and photons, deliver about 280 microSv a(-1). Cosmic-ray neutrons deliver about another 100 microSv a(-1). These low- and high-LET exposures are relatively uniform to the whole body. The effective dose rate from cosmogenic radionuclides is dominated by the contribution of 12 microSv a(-1) from 14C. This is due to relatively uniform irradiation of all organs and tissues from low-energy beta particles. Primordial radionuclides and their progeny (principally the 238U and 232Th series, and 40K) contribute about 480 microSv a(-1) of effective dose by external irradiation. This is relatively uniform photon irradiation of the whole body. Internally incorporated 40K contributes a further 165 microSv a(-1) of effective dose in adults, mainly from beta particles, but with a significant gamma component. Equivalent doses from 40K are somewhat higher in muscle than other soft tissues, but the distinction is less than a factor of three. Uranium and thorium series radionuclides give rise to an average effective dose rate of around 120 microSv a(-1). This includes a major alpha particle component, and exposures of radiosensitive tissues in lung, liver, kidney and the skeleton are recognised as important contributors to effective dose. Overall, these various sources give a worldwide average effective dose rate of about 1160 microSv a(-1). Exposure to 222Rn, 220Rn and their short-lived progeny has to be considered separately. This is very variable both within and between countries. For 222Rn and its progeny, a worldwide average effective dose

  6. Sinning against nature: the theory of background conditions

    PubMed Central

    Blackford, R

    2006-01-01

    Debates about the moral and political acceptability of particular sexual practices and new technologies often include appeals to a supposed imperative to follow nature. If nature is understood as the totality of all phenomena or as those things that are not artificial, there is little prospect of developing a successful argument to impugn interference with it or sinning against it. At the same time, there are serious difficulties with approaches that seek to identify "proper" human functioning. An alternative approach is to understand interference with nature as acting in a manner that threatens basic background conditions to human choice. Arguably, the theory of background conditions helps explain much of the hostility to practices and technologies that allegedly sin against nature. The theory does not, however, entail that appeals to nature are relevant or rational. Such appeals should be subjected to sceptical scrutiny. Indeed, the theory suggests that arguments against practices and technologies that can be seen as contrary to nature sometimes exercise a psychological attraction that is disproportional to their actual cogency. PMID:17074819

  7. Countercurrent Separation of Natural Products: An Update

    PubMed Central

    2015-01-01

    This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod.2008, 71, 1489–1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources. PMID:26177360

  8. In-mine testing of a natural background sensor, part B

    NASA Technical Reports Server (NTRS)

    Martzloff, F. D.

    1981-01-01

    The capability of a natural background sensor for measuring the thickness of top coal on a longwall face was examined. The limitations on the time during which tests could be performed, and the roof conditions, did not produce readings of top coal measurements during the shearer operation. It was demonstrated that the system is capable to survive operating conditions in the mine environment, while the static tests confirmed that the natural background sensor approach is a valid method of measuring top coal thickness in mines where the roof rock provides a constant radiation level. It is concluded that the practical results will improve sequent development of an integrated vertical control system which is information from the natural background system.

  9. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  10. Nephrotoxicity of Natural Products.

    PubMed

    Nauffal, Mary; Gabardi, Steven

    2016-01-01

    The manufacture and sale of natural products constitute a multi-billion dollar industry. Nearly a third of the American population admit to using some form of complementary or alternative medicine, with many using them in addition to prescription medications. Most patients fail to inform their healthcare providers of their natural product use and physicians rarely inquire. Annually, thousands of natural product-induced adverse events are reported to Poison Control Centers nationwide. Natural product manufacturers are not responsible for proving safety and efficacy, as the FDA does not regulate them. However, concerns exist surrounding the safety of natural products. This review provides details on natural products that have been associated with renal dysfunction. We have focused on products that have been associated with direct renal injury, immune-mediated nephrotoxicity, nephrolithiasis, rhabdomyolysis with acute renal injury, hepatorenal syndrome, and common adulterants or contaminants that are associated with renal dysfunction. The potential for natural products to cause renal dysfunction is justifiable. It is imperative that natural product use be monitored closely in all patients. Healthcare practitioners must play an active role in identifying patients using natural products and provide appropriate patient education. © 2016 S. Karger AG, Basel.

  11. Natural-Product-Derived Carbon Dots: From Natural Products to Functional Materials.

    PubMed

    Zhang, Xinyue; Jiang, Mingyue; Niu, Na; Chen, Zhijun; Li, Shujun; Liu, Shouxin; Li, Jian

    2018-01-10

    Nature provides an almost limitless supply of sources that inspire scientists to develop new materials with novel applications and less of an environmental impact. Recently, much attention has been focused on preparing natural-product-derived carbon dots (NCDs), because natural products have several advantages. First, natural products are renewable and have good biocompatibility. Second, natural products contain heteroatoms, which facilitate the fabrication of heteroatom-doped NCDs without the addition of an external heteroatom source. Finally, some natural products can be used to prepare NCDs in ways that are very green and simple relative to traditional methods for the preparation of carbon dots from man-made carbon sources. NCDs have shown tremendous potential in many fields, including biosensing, bioimaging, optoelectronics, and photocatalysis. This Review addresses recent progress in the synthesis, properties, and applications of NCDs. The challenges and future direction of research on NCD-based materials in this booming field are also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Atmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region.

    PubMed

    Zavala-Araiza, Daniel; Sullivan, David W; Allen, David T

    2014-05-06

    Hourly ambient hydrocarbon concentration data were collected, in the Barnett Shale Natural Gas Production Region, using automated gas chromatography (auto-GC), for the period from April 2010 to December 2011. Data for three sites were compared: a site in the geographical center of the natural gas production region (Eagle Mountain Lake (EML)); a rural/suburban site at the periphery of the production region (Flower Mound Shiloh), and an urban site (Hinton). The dominant hydrocarbon species observed in the Barnett Shale region were light alkanes. Analyses of daily, monthly, and hourly patterns showed little variation in relative composition. Observed concentrations were compared to concentrations predicted using a dispersion model (AERMOD) and a spatially resolved inventory of volatile organic compounds (VOC) emissions from natural gas production (Barnett Shale Special Emissions Inventory) prepared by the Texas Commission on Environmental Quality (TCEQ), and other emissions information. The predicted concentrations of VOC due to natural gas production were 0-40% lower than background corrected measurements, after accounting for potential under-estimation of certain emission categories. Hourly and daily variations in observed, background corrected concentrations were primarily explained by variability in meteorology, suggesting that episodic emission events had little impact on hourly averaged concentrations. Total emissions for VOC from natural gas production sources are estimated to be approximately 25,300 tons/yr, when accounting for potential under-estimation of certain emission categories. This region produced, in 2011, approximately 5 bcf/d of natural gas (100 Gg/d) for a VOC to natural gas production ratio (mass basis) of 0.0006.

  13. Use of Natural Products as Chemical Library for Drug Discovery and Network Pharmacology

    PubMed Central

    Gu, Jiangyong; Gui, Yuanshen; Chen, Lirong; Yuan, Gu; Lu, Hui-Zhe; Xu, Xiaojie

    2013-01-01

    Background Natural products have been an important source of lead compounds for drug discovery. How to find and evaluate bioactive natural products is critical to the achievement of drug/lead discovery from natural products. Methodology We collected 19,7201 natural products structures, reported biological activities and virtual screening results. Principal component analysis was employed to explore the chemical space, and we found that there was a large portion of overlap between natural products and FDA-approved drugs in the chemical space, which indicated that natural products had large quantity of potential lead compounds. We also explored the network properties of natural product-target networks and found that polypharmacology was greatly enriched to those compounds with large degree and high betweenness centrality. In order to make up for a lack of experimental data, high throughput virtual screening was employed. All natural products were docked to 332 target proteins of FDA-approved drugs. The most potential natural products for drug discovery and their indications were predicted based on a docking score-weighted prediction model. Conclusions Analysis of molecular descriptors, distribution in chemical space and biological activities of natural products was conducted in this article. Natural products have vast chemical diversity, good drug-like properties and can interact with multiple cellular target proteins. PMID:23638153

  14. Natural and engineered biosynthesis of fluorinated natural products.

    PubMed

    Walker, Mark C; Chang, Michelle C Y

    2014-09-21

    Both natural products and synthetic organofluorines play important roles in the discovery and design of pharmaceuticals. The combination of these two classes of molecules has the potential to be useful in the ongoing search for new bioactive compounds but our ability to produce site-selectively fluorinated natural products remains limited by challenges in compatibility between their high structural complexity and current methods for fluorination. Living systems provide an alternative route to chemical fluorination and could enable the production of organofluorine natural products through synthetic biology approaches. While the identification of biogenic organofluorines has been limited, the study of the native organisms and enzymes that utilize these compounds can help to guide efforts to engineer the incorporation of this unusual element into complex pharmacologically active natural products. This review covers recent advances in understanding both natural and engineered production of organofluorine natural products.

  15. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  16. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE PAGES

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; ...

    2018-02-10

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  17. Naturally occurring 32Si and low-background silicon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  18. Naturally occurring 32 Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that productionmore » of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  19. Assessment of natural background radiation in one of the highest regions of Ecuador

    NASA Astrophysics Data System (ADS)

    Pérez, Mario; Chávez, Estefanía; Echeverría, Magdy; Córdova, Rafael; Recalde, Celso

    2018-05-01

    Natural background radiation was measured in the province of Chimborazo (Ecuador) with the following reference coordinates 1°40'00''S 78°39'00''W, where the furthest point to the center of the planet is located. Natural background radiation measurements were performed at 130 randomly selected sites using a Geiger Müller GCA-07W portable detector; these measurements were run at 6 m away from buildings or walls and 1 m above the ground. The global average natural background radiation established by UNSCEAR is 2.4 mSv y-1. In the study area measurements ranged from 0.57 mSv y-1 to 3.09 mSv y-1 with a mean value of 1.57 mSv y-1, the maximum value was recorded in the north of the study area at 5073 metres above sea level (m.a.s.l.), and the minimum value was recorded in the southwestern area at 297 m.a.s.l. An isodose map was plotted to represent the equivalent dose rate due to natural background radiation. An analysis of variance (ANOVA) between the data of the high and low regions of the study area showed a significant difference (p < α), in addition a linear correlation coefficient of 0.92 was obtained, supporting the hypothesis that in high altitude zones extraterrestrial radiation contributes significantly to natural background radiation.

  20. Image Discrimination Models Predict Object Detection in Natural Backgrounds

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Rohaly, A. M.; Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    Object detection involves looking for one of a large set of object sub-images in a large set of background images. Image discrimination models only predict the probability that an observer will detect a difference between two images. In a recent study based on only six different images, we found that discrimination models can predict the relative detectability of objects in those images, suggesting that these simpler models may be useful in some object detection applications. Here we replicate this result using a new, larger set of images. Fifteen images of a vehicle in an other-wise natural setting were altered to remove the vehicle and mixed with the original image in a proportion chosen to make the target neither perfectly recognizable nor unrecognizable. The target was also rotated about a vertical axis through its center and mixed with the background. Sixteen observers rated these 30 target images and the 15 background-only images for the presence of a vehicle. The likelihoods of the observer responses were computed from a Thurstone scaling model with the assumption that the detectabilities are proportional to the predictions of an image discrimination model. Three image discrimination models were used: a cortex transform model, a single channel model with a contrast sensitivity function filter, and the Root-Mean-Square (RMS) difference of the digital target and background-only images. As in the previous study, the cortex transform model performed best; the RMS difference predictor was second best; and last, but still a reasonable predictor, was the single channel model. Image discrimination models can predict the relative detectabilities of objects in natural backgrounds.

  1. Natural Products and HIV/AIDS.

    PubMed

    Cary, Daniele C; Peterlin, B Matija

    2018-01-01

    The study of natural products in biomedical research is not a modern concept. Many of the most successful medical therapeutics are derived from natural products, including those studied in the field of HIV/AIDS. Biomedical research has a rich history of discovery based on screens of medicinal herbs and traditional medicine practices. Compounds derived from natural products, which repress HIV and those that activate latent HIV, have been reported. It is important to remember the tradition in medical research to derive therapies based on these natural products and to overcome the negative perception of natural products as an "alternative medicine."

  2. An Overview of Some Natural Products with Two A-Level Science Club Natural Products Experiments

    ERIC Educational Resources Information Center

    Sosabowski, Michael Hal; Olivier, George W. J.; Jawad, Hala; Maatta, Sieja

    2017-01-01

    Natural products are ubiquitous in nature but do not form a large proportion of the A-level syllabuses in the UK. In this article we briefly discuss a small selection of natural products, focusing on alcohols, aldehydes and ketones, and alkaloids. We then outline two natural product experiments that are suitable for A-level chemistry clubs or…

  3. Glycosylation and Activities of Natural Products.

    PubMed

    Huang, Gangliang; Lv, Meijiao; Hu, Jinchuan; Huang, Kunlin; Xu, Hong

    2016-01-01

    Natural products are widely found in nature, their number and variety are numerous, the structures are complex and diverse. These natural products have many physiological and pharmacological activities. Glycosylation can increase the diversity of structure and function of natural product, it has become the focus of drug research and development. The impacts of glycosylation of natural products to water solubility, pharmacological activities, bioavailability, or others were described in this review, which provides a reference for the development and application of glycosylated natural products.

  4. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products.

    PubMed

    Johnston, Chad W; Skinnider, Michael A; Wyatt, Morgan A; Li, Xiang; Ranieri, Michael R M; Yang, Lian; Zechel, David L; Ma, Bin; Magarvey, Nathan A

    2015-09-28

    Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC-MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products.

  5. NATURAL PRODUCTS: A CONTINUING SOURCE OF NOVEL DRUG LEADS

    PubMed Central

    Cragg, Gordon M.; Newman, David J.

    2013-01-01

    1. Background Nature has been a source of medicinal products for millennia, with many useful drugs developed from plant sources. Following discovery of the penicillins, drug discovery from microbial sources occurred and diving techniques in the 1970s opened the seas. Combinatorial chemistry (late 1980s), shifted the focus of drug discovery efforts from Nature to the laboratory bench. 2. Scope of Review This review traces natural products drug discovery, outlining important drugs from natural sources that revolutionized treatment of serious diseases. It is clear Nature will continue to be a major source of new structural leads, and effective drug development depends on multidisciplinary collaborations. 3. Major Conclusions The explosion of genetic information led not only to novel screens, but the genetic techniques permitted the implementation of combinatorial biosynthetic technology and genome mining. The knowledge gained has allowed unknown molecules to be identified. These novel bioactive structures can be optimized by using combinatorial chemistry generating new drug candidates for many diseases. 4 General Significance: The advent of genetic techniques that permitted the isolation / expression of biosynthetic cassettes from microbes may well be the new frontier for natural products lead discovery. It is now apparent that biodiversity may be much greater in those organisms. The numbers of potential species involved in the microbial world are many orders of magnitude greater than those of plants and multi-celled animals. Coupling these numbers to the number of currently unexpressed biosynthetic clusters now identified (>10 per species) the potential of microbial diversity remains essentially untapped. PMID:23428572

  6. Metabolic Engineering for the Production of Natural Products

    PubMed Central

    Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng

    2014-01-01

    Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617

  7. NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening.

    PubMed

    Thornburg, Christopher C; Britt, John R; Evans, Jason R; Akee, Rhone K; Whitt, James A; Trinh, Spencer K; Harris, Matthew J; Thompson, Jerell R; Ewing, Teresa L; Shipley, Suzanne M; Grothaus, Paul G; Newman, David J; Schneider, Joel P; Grkovic, Tanja; O'Keefe, Barry R

    2018-06-13

    The US National Cancer Institute's (NCI) Natural Product Repository is one of the world's largest, most diverse collections of natural products containing over 230,000 unique extracts derived from plant, marine, and microbial organisms that have been collected from biodiverse regions throughout the world. Importantly, this national resource is available to the research community for the screening of extracts and the isolation of bioactive natural products. However, despite the success of natural products in drug discovery, compatibility issues that make extracts challenging for liquid handling systems, extended timelines that complicate natural product-based drug discovery efforts and the presence of pan-assay interfering compounds have reduced enthusiasm for the high-throughput screening (HTS) of crude natural product extract libraries in targeted assay systems. To address these limitations, the NCI Program for Natural Product Discovery (NPNPD), a newly launched, national program to advance natural product discovery technologies and facilitate the discovery of structurally defined, validated lead molecules ready for translation will create a prefractionated library from over 125,000 natural product extracts with the aim of producing a publicly-accessible, HTS-amenable library of >1,000,000 fractions. This library, representing perhaps the largest accumulation of natural-product based fractions in the world, will be made available free of charge in 384-well plates for screening against all disease states in an effort to reinvigorate natural product-based drug discovery.

  8. Biomimetic syntheses of racemic natural products.

    PubMed

    Zask, Arie; Ellestad, George

    2018-02-01

    Racemic natural products are rarely produced in plants and microorganisms and are thought to be the result of nonenzymatic, spontaneous reactions. These compounds are often highly complex with multiple contiguous chiral centers that present a challenge to organic synthesis. Formation of these racemates often occurs by cyclization reactions that can generate multiple stereocenters from achiral precursors. Biomimetic synthesis of these racemic natural products provides support for their proposed nonenzymatic spontaneous biosynthesis. These elegant syntheses also provide scalable and efficient routes to these complex natural products. Although the number of reported racemic natural products is relatively low, an isolated natural product that has a very small optical rotation has been shown to be a true racemate. Thus, the occurrence of racemic natural products could be more common than thought. © 2017 Wiley Periodicals, Inc.

  9. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  10. Quality assurance of temporal variability of natural decay chain and neutron induced background for low-level NORM analysis

    DOE PAGES

    Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon

    2015-09-22

    In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fastmore » neutron fluxes.« less

  11. Natural products used for diabetes.

    PubMed

    Shapiro, Karen; Gong, William C

    2002-01-01

    To review the efficacy and safety of natural products commonly used for diabetes. English and Spanish-language journals retrieved through a MEDLINE search of articles published between 1960 and December 2001 using these index terms: Opuntia, karela, gymnema, tecoma, alpha lipoic acid, thioctic acid, ginseng, panaxans, and diabetes. Natural products have long been used in traditional systems of medicine for diabetes. Products in common use include nopal (prickly pear cactus), fenu-greek, karela (bitter melon), gymnema, ginseng, tronadora, chromium, and alpha-lipoic acid. The popularity of these products varies among people of different ethnicities. Nopal is the most commonly used herbal hypoglycemic among persons of Mexican descent. Karela is more commonly used by persons from Asian countries. Some of these agents have gained universal appeal. For a select number of products, studies have revealed single or multiple mechanisms of action. For several of these, high soluble fiber content is a contributing factor. Based on the available evidence, several natural products in common use can lower blood glucose in patients with diabetes. Commonly used natural products often have a long history of traditional use, and pharmacists who have a stronger understanding of these products are better positioned to counsel patients on their appropriate use.

  12. Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products.

    PubMed

    Prescher, Horst; Koch, Guido; Schuhmann, Tim; Ertl, Peter; Bussenault, Alex; Glick, Meir; Dix, Ina; Petersen, Frank; Lizos, Dimitrios E

    2017-02-01

    A fragment library consisting of 3D-shaped, natural product-like fragments was assembled. Library construction was mainly performed by natural product degradation and natural product diversification reactions and was complemented by the identification of 3D-shaped, natural product like fragments available from commercial sources. In addition, during the course of these studies, novel rearrangements were discovered for Massarigenin C and Cytochalasin E. The obtained fragment library has an excellent 3D-shape and natural product likeness, covering a novel, unexplored and underrepresented chemical space in fragment based drug discovery (FBDD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Alternative Fuels Data Center: Natural Gas Production

    Science.gov Websites

    Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas

  14. Engineering microbial hosts for production of bacterial natural products.

    PubMed

    Zhang, Mingzi M; Wang, Yajie; Ang, Ee Lui; Zhao, Huimin

    2016-08-27

    Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.

  15. Enantiomeric Natural Products: Occurrence and Biogenesis**

    PubMed Central

    Finefield, Jennifer M.; Sherman, David H.; Kreitman, Martin; Williams, Robert M.

    2012-01-01

    In Nature, chiral natural products are usually produced in optically pure form; however, on occasion Nature is known to produce enantiomerically opposite metabolites. These enantiomeric natural products can arise in Nature from a single species, or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers, however, many fascinating puzzles and stereochemical anomalies still remain. PMID:22555867

  16. Toward the Dark Matter of Natural Products.

    PubMed

    Wakimoto, Toshiyuki

    2017-11-01

    Considering the dynamic features of natural products, our access toward exploring the entire diversity of natural products has been quite limited. It is challenging to assess the diversity of natural products by using conventional analytical methods, even with tandem chromatographic techniques, such as LC-MS and GC-MS. This viewpoint is supported by the sequencing analyses of microbial genomes, which have unveiled the potential of secondary metabolite production far exceeding the number of isolated molecules. Recent advancements in metabolomics, in concert with genomics analyses, have further extended the natural product diversity, prompting growing awareness of the existence of reactive or short-lived natural molecules. This personal account introduces some examples of the discoveries of hitherto elusive natural products, due to physico-chemical or biological reasons, and highlights the significance of the dark matter of natural products. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cancer wars: natural products strike back

    PubMed Central

    Basmadjian, Christine; Zhao, Qian; Bentouhami, Embarek; Djehal, Amel; Nebigil, Canan G.; Johnson, Roger A.; Serova, Maria; de Gramont, Armand; Faivre, Sandrine; Raymond, Eric; Désaubry, Laurent G.

    2014-01-01

    Natural products have historically been a mainstay source of anticancer drugs, but in the 90's they fell out of favor in pharmaceutical companies with the emergence of targeted therapies, which rely on antibodies or small synthetic molecules identified by high throughput screening. Although targeted therapies greatly improved the treatment of a few cancers, the benefit has remained disappointing for many solid tumors, which revitalized the interest in natural products. With the approval of rapamycin in 2007, 12 novel natural product derivatives have been brought to market. The present review describes the discovery and development of these new anticancer drugs and highlights the peculiarities of natural product and new trends in this exciting field of drug discovery. PMID:24822174

  18. In silico polypharmacology of natural products.

    PubMed

    Fang, Jiansong; Liu, Chuang; Wang, Qi; Lin, Ping; Cheng, Feixiong

    2017-04-27

    Natural products with polypharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Currently, many gaps exist in our knowledge of which compounds interact with which targets, and experimentally testing all possible interactions is infeasible. Recent advances and developments of systems pharmacology and computational (in silico) approaches provide powerful tools for exploring the polypharmacological profiles of natural products. In this review, we introduce recent progresses and advances of computational tools and systems pharmacology approaches for identifying drug targets of natural products by focusing on the development of targeted cancer therapy. We survey the polypharmacological and systems immunology profiles of five representative natural products that are being considered as cancer therapies. We summarize various chemoinformatics, bioinformatics and systems biology resources for reconstructing drug-target networks of natural products. We then review currently available computational approaches and tools for prediction of drug-target interactions by focusing on five domains: target-based, ligand-based, chemogenomics-based, network-based and omics-based systems biology approaches. In addition, we describe a practical example of the application of systems pharmacology approaches by integrating the polypharmacology of natural products and large-scale cancer genomics data for the development of precision oncology under the systems biology framework. Finally, we highlight the promise of cancer immunotherapies and combination therapies that target tumor ecosystems (e.g. clones or 'selfish' sub-clones) via exploiting the immunological and inflammatory 'side' effects of natural products in the cancer post-genomics era. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. High impact technologies for natural products screening.

    PubMed

    Koehn, Frank E

    2008-01-01

    Natural products have historically been a rich source of lead molecules in drug discovery. However, natural products have been de-emphasized as high throughput screening resources in the recent past, in part because of difficulties in obtaining high quality natural products screening libraries, or in applying modern screening assays to these libraries. In addition, natural products programs based on screening of extract libraries, bioassay-guided isolation, structure elucidation and subsequent production scale-up are challenged to meet the rapid cycle times that are characteristic of the modern HTS approach. Fortunately, new technologies in mass spectrometry, NMR and other spectroscopic techniques can greatly facilitate the first components of the process - namely the efficient creation of high-quality natural products libraries, bimolecular target or cell-based screening, and early hit characterization. The success of any high throughput screening campaign is dependent on the quality of the chemical library. The construction and maintenance of a high quality natural products library, whether based on microbial, plant, marine or other sources is a costly endeavor. The library itself may be composed of samples that are themselves mixtures - such as crude extracts, semi-pure mixtures or single purified natural products. Each of these library designs carries with it distinctive advantages and disadvantages. Crude extract libraries have lower resource requirements for sample preparation, but high requirements for identification of the bioactive constituents. Pre-fractionated libraries can be an effective strategy to alleviate interferences encountered with crude libraries, and may shorten the time needed to identify the active principle. Purified natural product libraries require substantial resources for preparation, but offer the advantage that the hit detection process is reduced to that of synthetic single component libraries. Whether the natural products library

  20. Object detection in natural backgrounds predicted by discrimination performance and models

    NASA Technical Reports Server (NTRS)

    Rohaly, A. M.; Ahumada, A. J. Jr; Watson, A. B.

    1997-01-01

    Many models of visual performance predict image discriminability, the visibility of the difference between a pair of images. We compared the ability of three image discrimination models to predict the detectability of objects embedded in natural backgrounds. The three models were: a multiple channel Cortex transform model with within-channel masking; a single channel contrast sensitivity filter model; and a digital image difference metric. Each model used a Minkowski distance metric (generalized vector magnitude) to summate absolute differences between the background and object plus background images. For each model, this summation was implemented with three different exponents: 2, 4 and infinity. In addition, each combination of model and summation exponent was implemented with and without a simple contrast gain factor. The model outputs were compared to measures of object detectability obtained from 19 observers. Among the models without the contrast gain factor, the multiple channel model with a summation exponent of 4 performed best, predicting the pattern of observer d's with an RMS error of 2.3 dB. The contrast gain factor improved the predictions of all three models for all three exponents. With the factor, the best exponent was 4 for all three models, and their prediction errors were near 1 dB. These results demonstrate that image discrimination models can predict the relative detectability of objects in natural scenes.

  1. Cancer wars: Natural products strike back

    NASA Astrophysics Data System (ADS)

    Basmadjian, Christine; Zhao, Qian; Djehal, Amel; Bentouhami, Embarek; Nebigil, Canan; Johnson, Roger; Serova, Maria; De Gramont, Armand; Faivre, Sandrine; Raymond, Eric; Désaubry, Laurent

    2014-05-01

    Natural products have historically been a mainstay source of anticancer drugs, but in the 90’s they fell out of favor in pharmaceutical companies with the emergence of targeted therapies, which rely on antibodies or small synthetic molecules identified by high throughput screening. Although targeted therapies greatly improved the treatment of a few cancers, the benefit has remained disappointing for many sol¬¬id tumors, which revitalized the interest in natural products. With the approval of rapamycin in 2007, twelve novel natural product derivatives have been brought to market. The present review describes the discovery and development of these new anticancer drugs and highlights the peculiarities of natural product and new trends in this exciting field of drug discovery.

  2. Natural product-based amyloid inhibitors.

    PubMed

    Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R; Xu, Bin

    2017-09-01

    Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Natural product-based amyloid inhibitors

    PubMed Central

    Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R.; Xu, Bin

    2018-01-01

    Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. PMID:28390938

  4. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov Websites

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  5. Synthesis of Polycyclic Natural Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tuan Hoang

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents amore » worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.« less

  6. Gluten Contamination in Naturally or Labeled Gluten-Free Products Marketed in Italy

    PubMed Central

    Verma, Anil K.; Gatti, Simona; Galeazzi, Tiziana; Monachesi, Chiara; Padella, Lucia; Baldo, Giada Del; Annibali, Roberta; Lionetti, Elena; Catassi, Carlo

    2017-01-01

    Background: A strict and lifelong gluten-free diet is the only treatment of celiac disease. Gluten contamination has been frequently reported in nominally gluten-free products. The aim of this study was to test the level of gluten contamination in gluten-free products currently available in the Italian market. Method: A total of 200 commercially available gluten-free products (including both naturally and certified gluten-free products) were randomly collected from different Italian supermarkets. The gluten content was determined by the R5 ELISA Kit approved by EU regulations. Results: Gluten level was lower than 10 part per million (ppm) in 173 products (86.5%), between 10 and 20 ppm in 9 (4.5%), and higher than 20 ppm in 18 (9%), respectively. In contaminated foodstuff (gluten > 20 ppm) the amount of gluten was almost exclusively in the range of a very low gluten content. Contaminated products most commonly belonged to oats-, buckwheat-, and lentils-based items. Certified and higher cost gluten-free products were less commonly contaminated by gluten. Conclusion: Gluten contamination in either naturally or labeled gluten-free products marketed in Italy is nowadays uncommon and usually mild on a quantitative basis. A program of systematic sampling of gluten-free food is needed to promptly disclose at-risk products. PMID:28178205

  7. Computational Assessment of Naturally Occurring Neutron and Photon Background Radiation Produced by Extraterrestrial Sources

    DOE PAGES

    Miller, Thomas Martin; de Wet, Wouter C.; Patton, Bruce W.

    2015-10-28

    In this study, a computational assessment of the variation in terrestrial neutron and photon background from extraterrestrial sources is presented. The motivation of this assessment is to evaluate the practicality of developing a tool or database to estimate background in real time (or near–real time) during an experimental measurement or to even predict the background for future measurements. The extraterrestrial source focused on during this assessment is naturally occurring galactic cosmic rays (GCRs). The MCNP6 transport code was used to perform the computational assessment. However, the GCR source available in MCNP6 was not used. Rather, models developed and maintained bymore » NASA were used to generate the GCR sources. The largest variation in both neutron and photon background spectra was found to be caused by changes in elevation on Earth's surface, which can be as large as an order of magnitude. All other perturbations produced background variations on the order of a factor of 3 or less. The most interesting finding was that ~80% and 50% of terrestrial background neutrons and photons, respectively, are generated by interactions in Earth's surface and other naturally occurring and man-made objects near a detector of particles from extraterrestrial sources and their progeny created in Earth's atmosphere. In conclusion, this assessment shows that it will be difficult to estimate the terrestrial background from extraterrestrial sources without a good understanding of a detector's surroundings. Therefore, estimating or predicting background during a measurement environment like a mobile random search will be difficult.« less

  8. Bioactive Oligosaccharide Natural Products

    PubMed Central

    McCranie, Emilianne K.; Bachmann, Brian O.

    2016-01-01

    Oligosaccharide natural products target a wide spectrum of biological processes including disruption of cell wall biosynthesis, interference of bacterial translation, and inhibition of human α-amylase. Correspondingly, oligosaccharides possess potential for development as treatments of such diverse diseases as bacterial infections and type II diabetes. Despite their potent and selective activities and potential clinical relevance, isolated bioactive secondary metabolic oligosaccharides are less prevalent than other classes of natural products and their biosynthesis has received comparatively less attention. This review highlights the unique modes of action and biosynthesis of four classes of bioactive oligosaccharides: the orthosomycins, moenomycins, saccharomicins, and acarviostatins. PMID:24883430

  9. Natural Products as a Foundation for Drug Discovery

    PubMed Central

    Beutler, John A.

    2009-01-01

    Natural products have contributed to the development of many drugs for diverse indications. While most U.S. pharmaceutical companies have reduced or eliminated their in-house natural product groups, new paradigms and new enterprises have evolved to carry on a role for natural products in the pharmaceutical industry. Many of the reasons for the decline in popularity of natural products are being addressed by the development of new techniques for screening and production. This overview aims to inform pharmacologists of current strategies and techniques that make natural products a viable strategic choice for inclusion in drug discovery programs. PMID:20161632

  10. Underexplored Opportunities for Natural Products in Drug Discovery.

    PubMed

    DeCorte, Bart L

    2016-10-27

    The importance of natural products in the treatment of human disease is well documented. While natural products continue to have a profound impact on human health, chemists have succeeded in generating semisynthetic analogues that sometimes overshadow the original natural product in terms of clinical significance. Synthetic efforts based on natural products have primarily focused on improving their drug-like features while targeting utility in the same biological space. A less documented phenomenon is that natural products can serve as powerful starting materials to generate drug substances with novel therapeutic utility that is unrelated to the biological space of the natural product starting material. In this Perspective, examples of natural product derived marketed drugs with therapeutic utility in clinical space that is different from the biological profile of the starting material are presented, demonstrating that this is not merely a theoretical concept but both a clinical reality and an underexplored opportunity.

  11. Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China.

    PubMed

    Gan, Yandong; Wang, Lihong; Yang, Guiqiang; Dai, Jiulan; Wang, Renqing; Wang, Wenxing

    2017-10-01

    A field survey was conducted to investigate the concentrations of chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in vegetables, corresponding cultivated soils and irrigation waters from 36 open sites in high natural background area of Wuzhou, South China. Redundancy analysis, Spearman's rho correlation analysis and multiple regression analysis were adopted to evaluate the contributions of impacting factors on metal contents in the edible parts of vegetables. This study concluded that leafy and root vegetables had relatively higher metal concentrations and adjusted transfer factor values compared to fruiting vegetables according to nonparametric tests. Plant species, total soil metal content and soil pH value were affirmed as three critical factors with the highest contribution rate among all the influencing factors. The bivariate curve equation models for heavy metals in the edible vegetable tissues were well fitted to predict the metal concentrations in vegetables. The results from this case study also suggested that it could be one of efficient strategies for clean agricultural production and food safety in high natural background area to breed vegetable varieties with low heavy metal accumulation and to enlarge planting scale of these varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bioactive natural products from novel microbial sources.

    PubMed

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. © 2015 New York Academy of Sciences.

  13. Biomarkers in Natural Fish Populations Indicate Adverse Biological Effects of Offshore Oil Production

    PubMed Central

    Balk, Lennart; Hylland, Ketil; Hansson, Tomas; Berntssen, Marc H. G.; Beyer, Jonny; Jonsson, Grete; Melbye, Alf; Grung, Merete; Torstensen, Bente E.; Børseth, Jan Fredrik; Skarphedinsdottir, Halldora; Klungsøyr, Jarle

    2011-01-01

    Background Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. Methods and principal findings Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. Conclusion It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production. PMID:21625421

  14. Natural Health Products and Community Pharmacy-Remove the Mysticism Not the Product.

    PubMed

    Blackburn, David F; Gill, Munpreet; Krol, Ed; Taylor, Jeff

    2017-12-01

    The allure of natural products has captivated humans for centuries. Although they can be compatible with evidence-based care, attitudes surrounding natural products can seem almost mystical and may even be accompanied by contempt toward Western medicine. Considering the high volumes of natural products sold in community pharmacies, pharmacists can inject balanced information to minimize the mysticism and help patients make informed decisions. The aim of this article is to argue for standardized guidelines pertaining to the management of natural products in community pharmacy practice.

  15. Sources for Leads: Natural Products and Libraries.

    PubMed

    van Herwerden, Eric F; Süssmuth, Roderich D

    2016-01-01

    Natural products have traditionally been a major source of leads in the drug discovery process. However, the development of high-throughput screening led to an increased interest in synthetic methods that enabled the rapid construction of large libraries of molecules. This resulted in the termination or downscaling of many natural product research programs, but the chemical libraries did not necessarily produce a larger amount of drug leads. On one hand, this chapter explores the current state of natural product research within the drug discovery process. On the other hand it evaluates the efforts made to increase the amount of leads generated from chemical libraries and considers what role natural products could play here.

  16. Natural products as a foundation for drug discovery.

    PubMed

    Beutler, John A

    2009-09-01

    Natural products have provided chemical leads for the development of many drugs for diverse indications. While most U.S. pharmaceutical firms have reduced or eliminated their in-house natural product groups, there is a renewed interest in this source of new chemical entities. Many of the reasons for the past decline in popularity of natural products are being addressed by the development of new techniques for screening and production. The aim of this unit is to review current strategies and techniques that increase the value of natural products as a source for novel drug candidates.

  17. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  18. Use of natural diamonds to monitor 14C AMS instrument backgrounds

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Southon, John

    2007-06-01

    To examine one component of the instrument-based background in the University of California Keck Carbon Cycle AMS spectrometer, we have obtained measurements on a set of natural diamonds pressed into sample holders. Natural diamond samples (N = 14) from different sources within rock formations with geological ages greatly in excess of 100 Ma yielded a range of currents (∼110-250 μA 12C- where filamentous graphite typically yields ∼150 μA 12C-) and apparent 14C ages (64.9 ± 0.4 ka BP [0.00031 ± 0.00002 fm] to 80.0 ± 1.1 ka BP [0.00005 ± 0.00001 fm]). Six fragments cut from a single diamond exhibited essentially identical 14C values - 69.3 ± 0.5 ka-70.6 ± 0.5 ka BP. The oldest 14C age equivalents were measured on natural diamonds which exhibited the highest current yields.

  19. Natural products and combinatorial chemistry: back to the future.

    PubMed

    Ortholand, Jean-Yves; Ganesan, A

    2004-06-01

    The introduction of high-throughput synthesis and combinatorial chemistry has precipitated a global decline in the screening of natural products by the pharmaceutical industry. Some companies terminated their natural products program, despite the unproven success of the new technologies. This was a premature decision, as natural products have a long history of providing important medicinal agents. Furthermore, they occupy a complementary region of chemical space compared with the typical synthetic compound library. For these reasons, the interest in natural products has been rekindled. Various approaches have evolved that combine the power of natural products and organic chemistry, ranging from the combinatorial total synthesis of analogues to the exploration of natural product scaffolds and the design of completely unnatural molecules that resemble natural products in their molecular characteristics.

  20. Exploring the decision to disclose the use of natural products among outpatients: a mixed-method study

    PubMed Central

    2013-01-01

    Background There is little understanding of the reasons for the limited communication between patients and conventional healthcare professionals regarding patients’ use of complementary and alternative medicine (CAM). The purpose of this study is to explore the predictors of outpatients’ decision to disclose their use of natural products to conventional healthcare professionals. Methods A mixed method design was used. Quantitative data were obtained through a survey and qualitative data were obtained from semi-structured interviews. A total of 257 outpatients who fulfilled the criteria of having used natural products prior to the interview were recruited for this study. Subsequently, 39 patients of those who completed the survey were further selected to take part in an in-depth qualitative interview. Results Predictors of the decision to disclose the use of natural products to conventional healthcare professionals included age, frequency of clinic visits, knowledge of the natural products and the attitude towards the benefits of CAM use. The themes that emerged from the qualitative data included safeness of the natural products, consulting alternative sources of information, apprehension regarding the development of negative relationships with healthcare professionals and reactions from the healthcare professionals. Conclusions Understanding the factors and reasons affecting patients’ decision as to whether to disclose their use of natural products provides an opportunity for conventional healthcare professionals to communicate better with patients. It is important to encourage patients to disclose their use of natural products in order to provide responsible health care as well as increasing patient safety regarding medication usage. PMID:24245611

  1. Novel Natural Products from Extremophilic Fungi.

    PubMed

    Zhang, Xuan; Li, Shou-Jie; Li, Jin-Jie; Liang, Zi-Zhen; Zhao, Chang-Qi

    2018-06-04

    Extremophilic fungi have been found to develop unique defences to survive extremes of pressure, temperature, salinity, desiccation, and pH, leading to the biosynthesis of novel natural products with diverse biological activities. The present review focuses on new extremophilic fungal natural products published from 2005 to 2017, highlighting the chemical structures and their biological potential.

  2. Natural Products for Cancer Prevention: Clinical Update 2016.

    PubMed

    Sanders, Kathleen; Moran, Zelda; Shi, Zaixing; Paul, Rachel; Greenlee, Heather

    2016-08-01

    To present a clinical update of natural products for cancer prevention and provide oncology nurses with an evidence-based review of natural products for patient counseling and education. Clinical trials published in PubMed. In the past 4 years since the publication of the original review there have been minimal changes in the conclusions of the published literature on the use of natural products for cancer prevention. To date, clinical trials have not demonstrated conclusive benefit of using natural products for cancer prevention, and current guidelines do not recommend their use. This review provides an update on published and ongoing trials and can serve as an updated resource for nurses. Evidence-based natural products databases can help nurses stay current with the scientific literature and be effective educators and health coaches for their patients, who can be influenced by marketing of unregulated products. Patients often discuss the use of natural products with nurses. Nurses have an opportunity to educate and coach patients in effective preventive lifestyle practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. [Status of libraries and databases for natural products at abroad].

    PubMed

    Zhao, Li-Mei; Tan, Ning-Hua

    2015-01-01

    For natural products are one of the important sources for drug discovery, libraries and databases of natural products are significant for the development and research of natural products. At present, most of compound libraries at abroad are synthetic or combinatorial synthetic molecules, resulting to access natural products difficult; for information of natural products are scattered with different standards, it is difficult to construct convenient, comprehensive and large-scale databases for natural products. This paper reviewed the status of current accessing libraries and databases for natural products at abroad and provided some important information for the development of libraries and database for natural products.

  4. Synthetic Biological Approaches to Natural Product Biosynthesis

    PubMed Central

    Winter, Jaclyn M; Tang, Yi

    2012-01-01

    Small molecules produced in Nature continue to be an inspiration for the development of new therapeutic agents. These natural products possess exquisite chemical diversity, which gives rise to their wide range of biological activities. In their host organism, natural products are assembled and modified by dedicated biosynthetic pathways that Nature has meticulously developed. Often times, the complex structures or chemical modifications instated by these pathways are difficult to replicate using traditional synthetic methods. An alternative approach for creating or enhancing the structural variation of natural products is through combinatorial biosynthesis. By rationally reprogramming and manipulating the biosynthetic machinery responsible for their production, unnatural metabolites that were otherwise inaccessible can be obtained. Additionally, new chemical structures can be synthesized or derivatized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed unnatural metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds. PMID:22221832

  5. Object Detection in Natural Backgrounds Predicted by Discrimination Performance and Models

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Watson, A. B.; Rohaly, A. M.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    In object detection, an observer looks for an object class member in a set of backgrounds. In discrimination, an observer tries to distinguish two images. Discrimination models predict the probability that an observer detects a difference between two images. We compare object detection and image discrimination with the same stimuli by: (1) making stimulus pairs of the same background with and without the target object and (2) either giving many consecutive trials with the same background (discrimination) or intermixing the stimuli (object detection). Six images of a vehicle in a natural setting were altered to remove the vehicle and mixed with the original image in various proportions. Detection observers rated the images for vehicle presence. Discrimination observers rated the images for any difference from the background image. Estimated detectabilities of the vehicles were found by maximizing the likelihood of a Thurstone category scaling model. The pattern of estimated detectabilities is similar for discrimination and object detection, and is accurately predicted by a Cortex Transform discrimination model. Predictions of a Contrast- Sensitivity- Function filter model and a Root-Mean-Square difference metric based on the digital image values are less accurate. The discrimination detectabilities averaged about twice those of object detection.

  6. Biosynthesis of therapeutic natural products using synthetic biology.

    PubMed

    Awan, Ali R; Shaw, William M; Ellis, Tom

    2016-10-01

    Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Natural Products for Antithrombosis

    PubMed Central

    Chen, Cen; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Xia, Zhi-Ning

    2015-01-01

    Thrombosis is considered to be closely related to several diseases such as atherosclerosis, ischemic heart disease and stroke, as well as rheumatoid arthritis, hyperuricemia, and various inflammatory conditions. More and more studies have been focused on understanding the mechanism of molecular and cellular basis of thrombus formation as well as preventing thrombosis for the treatment of thrombotic diseases. In reality, there is considerable interest in the role of natural products and their bioactive components in the prevention and treatment of thrombosis related disorders. This paper briefly describes the mechanisms of thrombus formation on three aspects, including coagulation system, platelet activation, and aggregation, and change of blood flow conditions. Furthermore, the natural products for antithrombosis by anticoagulation, antiplatelet aggregation, and fibrinolysis were summarized, respectively. PMID:26075003

  8. Strategies for target identification of antimicrobial natural products.

    PubMed

    Farha, Maya A; Brown, Eric D

    2016-05-04

    Covering: 2000 to 2015Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds. Due to their inherent complexity, natural extracts face several hurdles in high-throughout discovery programs, including target identification. Target identification and validation is a crucial process for advancing hits through the discovery pipeline, but has remained a major bottleneck. In the case of natural products, extremely low yields and limited compound supply further impede the process. Here, we review the wealth of target identification strategies that have been proposed and implemented for the characterization of novel antibacterials. Traditionally, these have included genomic and biochemical-based approaches, which, in recent years, have been improved with modern-day technology and better honed for natural product discovery. Further, we discuss the more recent innovative approaches for uncovering the target of new antibacterial natural products, which have resulted from modern advances in chemical biology tools. Finally, we present unique screening platforms implemented to streamline the process of target identification. The different innovative methods to respond to the challenge of characterizing the mode of action for antibacterial natural products have cumulatively built useful frameworks that may advocate a renovated interest in natural product drug discovery programs.

  9. Natural products as sources for new pesticides.

    PubMed

    Cantrell, Charles L; Dayan, Franck E; Duke, Stephen O

    2012-06-22

    Natural products as pesticides have been reviewed from several perspectives in the past, but no prior treatment has examined the impact of natural product and natural product-based pesticides on the U.S. market, as a function of new active ingredient registrations with the Environmental Protection Agency (EPA). Thus, EPA registration details of new active ingredients for all conventional pesticide registrations and biopesticide registrations were compiled from the years 1997-2010. Conventional pesticide registrations and biopesticide registrations were examined both collectively and independently for all 277 new active ingredients (NAI) and subsequently categorized and sorted into four types: biological (B), natural product (NP), synthetic (S), and synthetic natural derived (SND). When examining conventional pesticides alone, the S category accounted for the majority of NAI registrations, with 78.0%, followed by SND with 14.7%, NP with 6.4%, and B with 0.9%. Biopesticides alone were dominated by NPs with 54.8%, followed by B with 44.6%, SND with 0.6%, and 0% for S. When examining conventional pesticides and biopesticides combined, NPs accounted for the majority of NAI registrations, with 35.7%, followed by S with 30.7%, B with 27.4%, and SND with 6.1%. Despite the common perception that natural products may not be the best sources for NAI as pesticides, when both conventional and biopesticides are examined collectively, and considering that NP, SND, and B all have origins from natural product research, it can be argued that their combined impact with the EPA from 1997 to 2010 accounted for 69.3% of all NAI registrations.

  10. Natural product synthesis at the interface of chemistry and biology

    PubMed Central

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. PMID:25043880

  11. Natural product synthesis at the interface of chemistry and biology.

    PubMed

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. New Synthetic Methods for Hypericum Natural Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Insik

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  13. The influence of socio-cultural background and product value in usability testing.

    PubMed

    Sonderegger, Andreas; Sauer, Juergen

    2013-05-01

    This article examines the influence of socio-cultural background and product value on different outcomes of usability tests. A study was conducted in two different socio-cultural regions, Switzerland and East Germany, which differed in a number of aspects (e.g. economic power, price sensitivity and culture). Product value (high vs. low) was varied by manipulating the price of the product. Sixty-four test participants were asked to carry out five typical user tasks in the context of coffee machine usage, measuring performance, perceived usability, and emotion. The results showed that in Switzerland, high-value products were rated higher in usability than low-value products whereas in East Germany, high-value products were evaluated lower in usability. A similar interaction effect of socio-cultural background and product value was observed for user emotion. Implications are that the outcomes of usability tests do not allow for a simple transfer across cultures and that the mediating influence of perceived product value needs to be taken into consideration. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  15. Synthetic fiber production facilities: Background information for proposed standards

    NASA Astrophysics Data System (ADS)

    Goodwin, D. R.

    1982-10-01

    Standards of performance to control emissions of volatile organic compounds (VOC) from new, modified, and reconstructed synthetic fiber production facilities are being proposed under section III of the Clean Air Act. This document contains information on the background and authority, regulatory alternatives considered, and environmental and economic impacts of the regulatory alternatives.

  16. Methanol production from eucalyptus wood chips. Attachment VI. Florida's eucalyptus energy farm: the natural system interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishkind, H.H.

    1982-05-01

    A review of pertinent literature covered the following: eucalypt background, the candidate species, biomass plantation considerations, effects of site production, leachate and allelopathy, and some exotic flora considerations. The comparative eucalypt field survey covers mined land stands, unmined south Florida stands, and Glade County eucalypt stands. The problem of eucalypt naturalization is discussed.

  17. Natural products and the athlete: facts and folklore.

    PubMed

    Barron, R L; Vanscoy, G J

    1993-05-01

    To contrast scientific facts with suggested manufacturers' claims regarding food supplements (natural products) marketed for enhanced athletic prowess. A MEDLINE search was performed to obtain documentation supporting the claims of natural-product manufacturers. In addition, several references pertaining to pharmacognosy, natural products, herbs, pharmacy practice, and sports medicine were reviewed. Claims were obtained from promotional advertisements in bodybuilding magazines, product labels, and fact sheets for sales representatives in nutrition and health-food stores. We reviewed all of the clinical trials, published between 1966 and 1992, relative to the manufacturers' claims regarding these products. Pertinent human and/or animal studies supporting each natural product were compared with the manufacturers' claims. We found that there was no published scientific evidence to support the promotional claims for a large proportion of the products (8/19, 42 percent). Only 4 of 19 products (21 percent) were associated with any documented human clinical trials supporting their promotional claims. Six of 19 agents (32 percent) had some scientific documentation to support their promotional claims; however, these products were judged to be marketed in a misleading manner.

  18. Cumulative neutrino background from quasar-driven outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission frommore » quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.« less

  19. Bioengineering natural product biosynthetic pathways for therapeutic applications.

    PubMed

    Wu, Ming-Cheng; Law, Brian; Wilkinson, Barrie; Micklefield, Jason

    2012-12-01

    With the advent of next-generation DNA sequencing technologies, the number of microbial genome sequences has increased dramatically, revealing a vast array of new biosynthetic gene clusters. Genomics data provide a tremendous opportunity to discover new natural products, and also to guide the bioengineering of new and existing natural product scaffolds for therapeutic applications. Notably, it is apparent that the vast majority of biosynthetic gene clusters are either silent or produce very low quantities of the corresponding natural products. It is imperative therefore to devise methods for activating unproductive biosynthetic pathways to provide the quantities of natural products needed for further development. Moreover, on the basis of our expanding mechanistic and structural knowledge of biosynthetic assembly-line enzymes, new strategies for re-programming biosynthetic pathways have emerged, resulting in focused libraries of modified products with potentially improved biological properties. In this review we will focus on the latest bioengineering approaches that have been utilised to optimise yields and increase the structural diversity of natural product scaffolds for future clinical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Editorial for Special Issue on Herbal Medicines and Natural Products.

    PubMed

    Zhou, Zhi-Wei; Zhou, Shu-Feng

    2015-11-16

    Herbal medicines and natural products have been the most productive source of drug development and there is a large line of evidence on the applications of herbal medicines and natural products for the management of body function and the treatment of aliments. The multiple bioactive components in herbal medicines and natural products can explain the multiple targets effect in their medical applications. The increasing usage of state-of-art computational, molecular biological, and analytical chemistry techniques will promote the exploration of the pharmacological effect of previously inaccessible sources of herbal medicines and natural products. Notably, with the increasing reports on the safety issues regarding the medical use of herbal medicines and natural products, the awareness of pharmacovigilance in herbal medicines and natural products needs to be strengthened. To prevent the adverse drug reactions related to herbal medicines and natural products, physicians need to be aware of potential risks and alert patients in the use of herbal medicines and natural products.

  1. Protein Engineering Towards Natural Product Synthesis and Diversification

    PubMed Central

    Zabala, Angelica O.; Cacho, Ralph A.; Tang, Yi

    2014-01-01

    A dazzling array of enzymes is used by nature in making structurally complex natural products. These enzymes constitute a molecular toolbox that may be used in the construction and fine-tuning of pharmaceutically active molecules. Aided by technological advancements in protein engineering, it is now possible to tailor the activities and specificities of these enzymes as biocatalysts in the production of both natural products and their unnatural derivatives. These efforts are crucial in drug discovery and development, where there is a continuous quest for more potent agents. Both rational and random evolution techniques have been utilized in engineering these enzymes. This review will highlight some examples from several large families of natural products. PMID:22006344

  2. Bacterial symbionts and natural products

    PubMed Central

    Crawford, Jason M.; Clardy, Jon

    2011-01-01

    The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses. In the last ten years, a series of shocking revelations – the molecular equivalents of a reality TV show’s uncovering the true parents of a well known individual or a deeply hidden family secret – altered the study of genetically encoded small molecules, natural products for short. These revelations all involved natural products produced by bacterial symbionts, and while details differed, two main plot lines emerged: parentage, in which the real producers of well known natural products with medical potential were not the organisms from which they were originally discovered, and hidden relationships, in which bacterially produced small molecules turned out to be the unsuspected regulators of complex interactions. For chemists, these studies led to new molecules, new biosynthetic pathways, and an understanding of the biological functions these molecules fulfill. PMID:21594283

  3. Natural product discovery: past, present, and future.

    PubMed

    Katz, Leonard; Baltz, Richard H

    2016-03-01

    Microorganisms have provided abundant sources of natural products which have been developed as commercial products for human medicine, animal health, and plant crop protection. In the early years of natural product discovery from microorganisms (The Golden Age), new antibiotics were found with relative ease from low-throughput fermentation and whole cell screening methods. Later, molecular genetic and medicinal chemistry approaches were applied to modify and improve the activities of important chemical scaffolds, and more sophisticated screening methods were directed at target disease states. In the 1990s, the pharmaceutical industry moved to high-throughput screening of synthetic chemical libraries against many potential therapeutic targets, including new targets identified from the human genome sequencing project, largely to the exclusion of natural products, and discovery rates dropped dramatically. Nonetheless, natural products continued to provide key scaffolds for drug development. In the current millennium, it was discovered from genome sequencing that microbes with large genomes have the capacity to produce about ten times as many secondary metabolites as was previously recognized. Indeed, the most gifted actinomycetes have the capacity to produce around 30-50 secondary metabolites. With the precipitous drop in cost for genome sequencing, it is now feasible to sequence thousands of actinomycete genomes to identify the "biosynthetic dark matter" as sources for the discovery of new and novel secondary metabolites. Advances in bioinformatics, mass spectrometry, proteomics, transcriptomics, metabolomics and gene expression are driving the new field of microbial genome mining for applications in natural product discovery and development.

  4. Forest Products Laboratory natural finish

    Treesearch

    J. M. Black; D. F. Laughnan; E. A. Mraz

    1979-01-01

    A simple and durable exterior natural finish developed at the Forest Products Laboratory is described. The finish is classified as a semi-transparent oil-base penetrating stain that effectively retains much of the natural grain and texture of wood when exposed to the weather. The directions for preparation are included as are the recommendations for application to both...

  5. Natural Products in the Discovery of Agrochemicals.

    PubMed

    Loiseleur, Olivier

    2017-12-01

    Natural products have a long history of being used as, or serving as inspiration for, novel crop protection agents. Many of the discoveries in agrochemical research in the last decades have their origin in a wide range of natural products from a variety of sources. In light of the continuing need for new tools to address an ever-changing array of fungal, weed and insect pests, new agricultural practices and evolving regulatory requirements, the needs for new agrochemical tools remains as critical as ever. In that respect, nature continues to be an important source for novel chemical structures and biological mechanisms to be applied for the development of pest control agents. Here we review several of the natural products and their derivatives which contributed to shape crop protection research in past and present.

  6. Natural products from filamentous fungi and production by heterologous expression.

    PubMed

    Alberti, Fabrizio; Foster, Gary D; Bailey, Andy M

    2017-01-01

    Filamentous fungi represent an incredibly rich and rather overlooked reservoir of natural products, which often show potent bioactivity and find applications in different fields. Increasing the naturally low yields of bioactive metabolites within their host producers can be problematic, and yield improvement is further hampered by such fungi often being genetic intractable or having demanding culturing conditions. Additionally, total synthesis does not always represent a cost-effective approach for producing bioactive fungal-inspired metabolites, especially when pursuing assembly of compounds with complex chemistry. This review aims at providing insights into heterologous production of secondary metabolites from filamentous fungi, which has been established as a potent system for the biosynthesis of bioactive compounds. Numerous advantages are associated with this technique, such as the availability of tools that allow enhanced production yields and directing biosynthesis towards analogues of the naturally occurring metabolite. Furthermore, a choice of hosts is available for heterologous expression, going from model unicellular organisms to well-characterised filamentous fungi, which has also been shown to allow the study of biosynthesis of complex secondary metabolites. Looking to the future, fungi are likely to continue to play a substantial role as sources of new pharmaceuticals and agrochemicals-either as producers of novel natural products or indeed as platforms to generate new compounds through synthetic biology.

  7. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries.

    PubMed

    Lee, M L; Schneider, G

    2001-01-01

    Natural products were analyzed to determine whether they contain appealing novel scaffold architectures for potential use in combinatorial chemistry. Ring systems were extracted and clustered on the basis of structural similarity. Several such potential scaffolds for combinatorial chemistry were identified that are not present in current trade drugs. For one of these scaffolds a virtual combinatorial library was generated. Pharmacophoric properties of natural products, trade drugs, and the virtual combinatorial library were assessed using a self-organizing map. Obviously, current trade drugs and natural products have several topological pharmacophore patterns in common. These features can be systematically explored with selected combinatorial libraries based on a combination of natural product-derived and synthetic molecular building blocks.

  8. Natural product-based nanomedicine: recent advances and issues

    PubMed Central

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111

  9. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds.

    PubMed

    La Clair, James J

    2010-07-01

    In our understanding of matter, natural products deliver plots that would stun even the best productions of the legendary filmmaker, Sergio Leone. While every decade heralds a new genre of film (as well as avenues of small-molecule discovery), natural products and their "untamed prehistoric" plots continue to dazzle the fields of biotechnology, drug discovery, fragrances, food additives and agrochemistry. This review provides an abridged synopsis of the modes of natural product action discovered within the last decade and the tools and methods used in their discovery. Their stories are united in a common theme that unveils one of the more vital aspects of chemical biological research:understanding the global activity of Nature's arsenal of secondary metabolites.

  10. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products.

    PubMed

    Li, Rongshi

    2016-01-01

    Natural products provide a successful supply of new chemical entities (NCEs) for drug discovery to treat human diseases. Approximately half of the NCEs are based on natural products and their derivatives. Notably, marine natural products, a largely untapped resource, have contributed to drug discovery and development with eight drugs or cosmeceuticals approved by the U.S. Food and Drug Administration and European Medicines Agency, and ten candidates undergoing clinical trials. Collaborative efforts from drug developers, biologists, organic, medicinal, and natural product chemists have elevated drug discoveries to new levels. These efforts are expected to continue to improve the efficiency of natural product-based drugs. Marinopyrroles are examined here as a case study for potential anticancer and antibiotic agents. © 2015 Wiley Periodicals, Inc.

  11. Natural Products from Mangrove Actinomycetes

    PubMed Central

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  12. Natural products from the genus tephrosia.

    PubMed

    Chen, Yinning; Yan, Tao; Gao, Chenghai; Cao, Wenhao; Huang, Riming

    2014-01-27

    The genus Tephrosia, belonging to the Leguminosae family, is a large pantropical genus of more than 350 species, many of which have important traditional uses in agriculture. This review not only outlines the source, chemistry and biological evaluations of natural products from the genus Tephrosia worldwide that have appeared in literature from 1910 to December 2013, but also covers work related to proposed biosynthetic pathways and synthesis of some natural products from the genus Tephrosia, with 105 citations and 168 new compounds.

  13. Antibiotics: natural products essential to human health.

    PubMed

    Demain, Arnold L

    2009-11-01

    For more than 50 years, natural products have served us well in combating infectious bacteria and fungi. Microbial and plant secondary metabolites helped to double our life span during the 20th century, reduced pain and suffering, and revolutionized medicine. Most antibiotics are either (i) natural products of microorganisms, (ii) semi-synthetically produced from natural products, or (iii) chemically synthesized based on the structure of the natural products. Production of antibiotics began with penicillin in the late 1940s and proceeded with great success until the 1970-1980s when it became harder and harder to discover new and useful products. Furthermore, resistance development in pathogens became a major problem, which is still with us today. In addition, new pathogens are continually emerging and there are still bacteria that are not eliminated by any antibiotic, e.g., Pseudomonas aeruginosa. In addition to these problems, many of the major pharmaceutical companies have abandoned the antibiotic field, leaving much of the discovery efforts to small companies, new companies, and the biotechnology industries. Despite these problems, development of new antibiotics has continued, albeit at a much lower pace than in the last century. We have seen the (i) appearance of newly discovered antibiotics (e.g., candins), (ii) development of old but unutilized antibiotics (e.g., daptomycin), (iii) production of new semi-synthetic versions of old antibiotics (e.g., glycylcyclines, streptogrammins), as well as the (iv) very useful application of old but underutilized antibiotics (e.g., teicoplanin).

  14. Natural Products Version 2.0: Connecting Genes to Molecules

    PubMed Central

    Walsh, Christopher T.; Fischbach, Michael A.

    2009-01-01

    Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this perspective, we explore how connecting Nature’s small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and nonribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future? PMID:20121095

  15. Fungi as a source of natural coumarins production.

    PubMed

    Costa, Tania Maria; Tavares, Lorena Benathar Ballod; de Oliveira, Débora

    2016-08-01

    Natural coumarins and derivatives are compounds that occur naturally in several organisms (plant, bacteria, and fungi) consisting of fused benzene and α-pyrone rings. These compounds show high technological potential applications in agrochemical, food, pharmaceuticals, and cosmetics industries. Therefore, the need for bulk production of coumarins and the advancement of the chemical and pharmaceutical industries led to the development of synthetic coumarin. However, biotransformation process, synthetic bioengineering, metabolic engineering, and bioinformatics have proven effective in the production of natural products. Today, these biological systems are recognized as green chemistry innovation and business strategy. This review article aims to report the potential of fungi for synthesis of coumarin. These microorganisms are described as a source of natural products capable of synthesizing many bioactive metabolites. The features, classification, properties, and industrial applications of natural coumarins as well as new molecules obtained by basidiomycetes and ascomycetes fungi are reported in order to explore a topic not yet discussed in the scientific literature.

  16. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes.

    PubMed

    Schirmer, B C T; Heir, E; Møretrø, T; Skaar, I; Langsrud, S

    2013-10-01

    The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes. Copyright © 2013 American

  17. [Microalgae as the source of natural products].

    PubMed

    Vasas, Gábor

    2018-05-01

    More than 90% of herbal products and herbal medicines have been derived from higher plants recently, but due to independent circumstances, several photosynthetic microalgal species are in focus in this point of view. In the last 50 years, many carbohydrate-, peptide-, terpenoid-, alkaloid- and phenol-type components were described from algae because of the developing structural determination and analytical methods, algae mass production and also artificial algae technologies. At the same time, based partly on traditional causes and partly on the clinical and preclinical data of today, some dried products of algae are directly used as food supplements. Hereinafter, the historical background, economic significance and metabolic background of the mostly used microalgal species will be reviewed. The diverse metabolite production of these organisms will be demonstrated by some molecules with special bioactivity. Several preclinical and clinical studies will be described relating to the microalgal species Spirulina sp., Chlorella sp., Haematococcus sp. and Dunaliella sp. Orv Hetil. 2018; 159(18): 703-708.

  18. Direct Capture Technologies for Genomics-Guided Discovery of Natural Products.

    PubMed

    Chan, Andrew N; Santa Maria, Kevin C; Li, Bo

    2016-01-01

    Microbes are important producers of natural products, which have played key roles in understanding biology and treating disease. However, the full potential of microbes to produce natural products has yet to be realized; the overwhelming majority of natural product gene clusters encoded in microbial genomes remain "cryptic", and have not been expressed or characterized. In contrast to the fast-growing number of genomic sequences and bioinformatic tools, methods to connect these genes to natural product molecules are still limited, creating a bottleneck in genome-mining efforts to discover novel natural products. Here we review developing technologies that leverage the power of homologous recombination to directly capture natural product gene clusters and express them in model hosts for isolation and structural characterization. Although direct capture is still in its early stages of development, it has been successfully utilized in several different classes of natural products. These early successes will be reviewed, and the methods will be compared and contrasted with existing traditional technologies. Lastly, we will discuss the opportunities for the development of direct capture in other organisms, and possibilities to integrate direct capture with emerging genome-editing techniques to accelerate future study of natural products.

  19. Bioactive activities of natural products against herpesvirus infection.

    PubMed

    Son, Myoungki; Lee, Minjung; Sung, Gi-Ho; Lee, Taeho; Shin, Yu Su; Cho, Hyosun; Lieberman, Paul M; Kang, Hyojeung

    2013-10-01

    More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.

  20. Rediscovering natural products as a source of new drugs.

    PubMed

    Koehn, Frank E; Carter, Guy T

    2005-04-01

    Extract: Since the very beginnings of human medicine, physicians have relied on chemical compounds produced by animals, plants and microorganisms, so-called natural products, to treat diseases. Natural products are directly or indirectly responsible for roughly one-half of all drugs currently in use. Of the 877 small-molecule new drug molecules introduced between 1981 and 2002, 49% were natural products or natural product analogs. Despite the great success of the 70s and 80s, the pharmaceutical industry de-emphasized natural products research during the following decade. In this article, we examine the underlying reasons for the decline, and assess future prospects for natural products research in drug discovery. In the 1990s, major pharmaceutical companies moved to a lead-finding strategy based on High Throughput Screening (HTS) of very large collections (libraries) of synthetic compounds. The move arose from the belief that techniques such as combinatorial chemistry could produce larger, more cost-effective libraries with improved hit rates and quality. Additionally, advances in molecular biology, cellular biology and genomics dramatically increased the number of molecular targets, prompting shorter drug discovery timelines. In today's drug discovery environment, rapid screening and identification of potential drug molecules is essential for success. This puts traditional natural products-based programs, with their reliance on the lengthy processes of the screening of extracts library, bioassay-guided isolation of the active components, structure elucidation and subsequent production scale-up, at a competitive disadvantage.

  1. Enumerating viruses by using fluorescence and the nature of the nonviral background fraction.

    PubMed

    Pollard, Peter C

    2012-09-01

    Bulk fluorescence measurements could be a faster and cheaper way of enumerating viruses than epifluorescence microscopy, flow cytometry, or transmission electron microscopy (TEM). However, since viruses are not imaged, the background fluorescence compromises the signal, and we know little about its nature. In this paper the size ranges of nucleotides that fluoresce in the presence of SYBR gold were determined for wastewater and a range of freshwater samples using a differential filtration method. Fluorescence excitation-emission matrices (FEEMs) showed that >70% of the SYBR fluorescence was in the <10-nm size fraction (background) and was not associated with intact viruses. This was confirmed using TEM. The use of FEEMs to develop a fluorescence-based method for counting viruses is an approach that is fundamentally different from the epifluorescence microscopy technique used for enumerating viruses. This high fluorescence background is currently overlooked, yet it has had a most pervasive influence on the development of a simple fluorescence-based method for quantifying viral abundance in water.

  2. Plants as natural antioxidants for meat products

    NASA Astrophysics Data System (ADS)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  3. Environmental Impact of Natural Gas Hydrate Production

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Unmet conventional energy demand is encouraging a number of deep energy importing nations closer to production of their potentially very large Natural Gas Hydrate (NGH) resources. As methane and other natural gases are potent greenhouse gases, concerns exist about the possible environmental risks associated NGH development. Accidental of natural gas would have environmental consequences. However, the special characteristics of NGH and production models indicate a very low environmental risk from the reservoir to the deepwater wellhead that is much lower than for conventional deepwater gas. NGH is naturally stable in its solid form in the reservoir and shutting in the gas can be achieved by stopping NGH conversion and gas production in the reservoir. Rapid shut down results in re-crystallization of gas and stabilization of the reservoir through NGH reformation. In addition, new options for innovative technologies have the potential to allow safe development of NGH at a fraction of the current estimated cost. Gas produced from NGH is about the same as processed conventional gas, although almost certainly more pure. Leakage of gas during transport is not a production issue. Gas transport leakage is a matter for best practices regulation that is rigorously enforced.

  4. Data Resources for the Computer-Guided Discovery of Bioactive Natural Products.

    PubMed

    Chen, Ya; de Bruyn Kops, Christina; Kirchmair, Johannes

    2017-09-25

    Natural products from plants, animals, marine life, fungi, bacteria, and other organisms are an important resource for modern drug discovery. Their biological relevance and structural diversity make natural products good starting points for drug design. Natural product-based drug discovery can benefit greatly from computational approaches, which are a valuable precursor or supplementary method to in vitro testing. We present an overview of 25 virtual and 31 physical natural product libraries that are useful for applications in cheminformatics, in particular virtual screening. The overview includes detailed information about each library, the extent of its structural information, and the overlap between different sources of natural products. In terms of chemical structures, there is a large overlap between freely available and commercial virtual natural product libraries. Of particular interest for drug discovery is that at least ten percent of known natural products are readily purchasable and many more natural products and derivatives are available through on-demand sourcing, extraction and synthesis services. Many of the readily purchasable natural products are of small size and hence of relevance to fragment-based drug discovery. There are also an increasing number of macrocyclic natural products and derivatives becoming available for screening.

  5. Discovery of Repellents from Natural Products

    USDA-ARS?s Scientific Manuscript database

    Natural products are an ideal source of chemicals for topical application to human skin, and can be a means of personal protection from the bites of mosquitoes and other arthropods. This report covers a diverse array of natural compounds, and includes descriptions of observed correlations between ch...

  6. Natural products in modern life science.

    PubMed

    Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-06-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific

  7. Impact of natural products in modern drug development.

    PubMed

    Dev, Sukh

    2010-03-01

    Usage of natural substances as therapeutic agents in modern medicine has sharply declined from the predominant position held in the early decades of last century, but search for bioactive molecules from nature (plants, animals, microflora) continues to play an important role in fashioning new medicinal agents. With the advent of modern techniques, instrumentation and automation in isolation and structural characterisation, we have on hand an enormous repository of natural compounds. In parallel to this, biology has also made tremendous progress in expanding its frontiers of knowledge. An interplay of these two disciplines constitutes the modern thrust in research in the realm of compounds elaborated by nature. The purpose of this article is to underline how natural products research continues to make significant contributions in the domain of discovery and development of new medicinal products. It is proposed to present the material under several heads, each of which has made natural products research relevant in the search for new and better medication.

  8. Collective synthesis of natural products by means of organocascade catalysis

    PubMed Central

    Jones, Spencer B.; Simmons, Bryon; Mastracchio, Anthony; MacMillan, David W. C.

    2012-01-01

    Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine. PMID:21753848

  9. [The recent research progress of chemistry of marine natural products].

    PubMed

    Shi, Qing-wen; Li, Li-geng; Wang, Yu-fang; Huo, Chang-hong; Zhang, Man-li

    2010-10-01

    Ocean is a unique and excellent resource that provides a diverse array of intriguing natural products. Marine natural products have demonstrated significant and extremely potent biological activities and have captured the attention of natural products chemists in the past few decades. It is increasingly recognized that a wealth of fascinating natural products and novel chemical entities will play a dominant role in the discovery of useful leads for the development of pharmaceutical agents and provide useful probes to lead to breakthroughs in a variety of life-science fields. This article focused on the research progress of chemistry of marine natural products in recent five years.

  10. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.

    PubMed

    Dittmann, Elke; Gugger, Muriel; Sivonen, Kaarina; Fewer, David P

    2015-10-01

    Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms. Copyright © 2015. Published by Elsevier Ltd.

  11. Effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes new natural product discovery.

    PubMed

    Watanabe, Kenji

    2014-01-01

    In the past few years, there has been impressive progress in elucidating the mechanism of biosynthesis of various natural products accomplished through the use of genetic, molecular biological and biochemical techniques. Here, we present a comprehensive overview of the current results from our studies on fungal natural product biosynthetic enzymes, including nonribosomal peptide synthetase and polyketide synthase-nonribosomal peptide synthetase hybrid synthetase, as well as auxiliary enzymes, such as methyltransferases and oxygenases. Specifically, biosynthesis of the following compounds is described in detail: (i) Sch210972, potentially involving a Diels-Alder reaction that may be catalyzed by CghA, a functionally unknown protein identified by targeted gene disruption in the wild type fungus; (ii) chaetoglobosin A, formed via multi-step oxidations catalyzed by three redox enzymes, one flavin-containing monooxygenase and two cytochrome P450 oxygenases as characterized by in vivo biotransformation of relevant intermediates in our engineered Saccharomyces cerevisiae; (iii) (-)-ditryptophenaline, formed by a cytochrome P450, revealing the dimerization mechanism for the biosynthesis of diketopiperazine alkaloids; (iv) pseurotins, whose variations in the C- and O-methylations and the degree of oxidation are introduced combinatorially by multiple redox enzymes; and (v) spirotryprostatins, whose spiro-carbon moiety is formed by a flavin-containing monooxygenase or a cytochrome P450 as determined by heterologous de novo production of the biosynthetic intermediates and final products in Aspergillus niger. We close our discussion by summarizing some of the key techniques that have facilitated the discovery of new natural products, production of their analogs and identification of biosynthetic mechanisms in our study.

  12. Monthly Crude Oil and Natural Gas Production Report

    EIA Publications

    2017-01-01

    Crude oil production (including lease condensate) and natural gas production (gross withdrawals) from data collected on Form EIA-914 (Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, other states and lower 48 states. Alaska data are from the Alaska state government and included to obtain a U.S. total.

  13. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGES

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; ...

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  14. Techniques for extraction and isolation of natural products: a comprehensive review.

    PubMed

    Zhang, Qing-Wen; Lin, Li-Gen; Ye, Wen-Cai

    2018-01-01

    Natural medicines were the only option for the prevention and treatment of human diseases for thousands of years. Natural products are important sources for drug development. The amounts of bioactive natural products in natural medicines are always fairly low. Today, it is very crucial to develop effective and selective methods for the extraction and isolation of those bioactive natural products. This paper intends to provide a comprehensive view of a variety of methods used in the extraction and isolation of natural products. This paper also presents the advantage, disadvantage and practical examples of conventional and modern techniques involved in natural products research.

  15. Particle production in a gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  16. Collective synthesis of natural products by means of organocascade catalysis.

    PubMed

    Jones, Spencer B; Simmons, Bryon; Mastracchio, Anthony; MacMillan, David W C

    2011-07-13

    Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine. ©2011 Macmillan Publishers Limited. All rights reserved

  17. Antiviral Natural Products and Herbal Medicines

    PubMed Central

    Lin, Liang-Tzung; Hsu, Wen-Chan; Lin, Chun-Ching

    2014-01-01

    Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines. PMID:24872930

  18. Natural Product-Derived Drugs for the Treatment of Inflammatory Bowel Diseases

    PubMed Central

    2014-01-01

    Natural products have been used as drugs for millennia, and the therapeutic potential of natural products has been studied for more than a century. Since the mid-1880s, approximately 60% of drugs have originated from natural products. Recently, the importance of using natural products has increased, as has interest in discovering efficient new drugs. Natural drugs are desirable for the treatment of inflammatory bowel diseases, such as ulcerative colitis and Crohn's disease. This review discusses the discovery and development of drugs derived from natural products for the treatment of inflammatory bowel diseases. PMID:25349576

  19. Natural production of biological optical systems

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kim, Young L.

    2015-03-01

    Synthesis and production in nature often provide ideas to design and fabricate advanced biomimetic photonic materials and structures, leading to excellent physical properties and enhanced performance. In addition, the recognition and utilization of natural or biological substances have been typical routes to develop biocompatible and biodegradable materials for medical applications. In this respect, biological lasers utilizing such biomaterials and biostructures have been received considerable attention, given a variety of implications and potentials for bioimaging, biosensing, implantation, and therapy. However, without relying on industrial facilities, eco-friendly massive production of such optical components or systems has not yet been investigated. We show examples of bioproduction of biological lasers using agriculture and fisheries. We anticipate that such approaches will open new possibilities for scalable eco-friendly `green' production of biological photonics components and systems.

  20. Dearomatization Strategies in the Synthesis of Complex Natural Products

    PubMed Central

    Roche, Stéphane P.; Porco, John A.

    2014-01-01

    Evolution in the field of the total synthesis of natural products has led to exciting developments over the last decade. Numerous chemo-selective and enantioselective methodologies have emerged from total syntheses, resulting in efficient access to many important natural product targets. This Review highlights recent developments concerning dearomatization, a powerful strategy for the total synthesis of architecturally complex natural products wherein planar, aromatic scaffolds are converted to three-dimensional molecular architectures. PMID:21506209

  1. Caspase-1 Specific Light-Up Probe with Aggregation-Induced Emission Characteristics for Inhibitor Screening of Coumarin-Originated Natural Products.

    PubMed

    Lin, Hao; Yang, Haitao; Huang, Shuai; Wang, Fujia; Wang, Dong-Mei; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-04-18

    Caspase-1 is a key player in pyroptosis and inflammation. Caspase-1 inhibition is found to be beneficial to various diseases. Coumarin-originated natural products have an anti-inflammation function, but their direct inhibition effect to caspase-1 remains unexplored. To evaluate their interactions, the widely used commercial coumarin-based probe (Ac-YVAD-AMC) is not suitable, as the background signal from coumarin-originated natural products could interfere with the screening results. Therefore, fluorescent probes using a large Stokes shift could help solve this problem. In this work, we chose the fluorophore of tetraphenylethylene-thiophene (TPETH) with aggregation-induced emission characteristics and a large Stokes shift of about 200 nm to develop a molecular probe. Bioconjugation between TPETH and hydrophilic peptides (DDYVADC) through a thiol-ene reaction generated a light-up probe, C1-P3. The probe has little background signal in aqueous media and exerts a fluorescent turn-on effect in the presence of caspase-1. Moreover, when evaluating the inhibition potency of coumarin-originated natural products, the new probe could generate a true and objective result but not for the commercial probe (Ac-YVAD-AMC), which is evidenced by HPLC analysis. The quick light-up response and accurate screening results make C1-P3 very useful in fundamental study and inhibitior screening toward caspase-1.

  2. Divergent Synthesis of Quinolone Natural Products from Pseudonocardia sp. CL38489.

    PubMed

    Geddis, Stephen M; Carro, Laura; Hodgkinson, James T; Spring, David R

    2016-12-01

    Two divergent synthetic routes are reported offering access to four quinolone natural products from Pseudonocardia sp. CL38489. Key steps to the natural products involved a regioselective epoxidation, an intramolecular Buchwald-Hartwig amination and a final acid-catalysed 1,3-allylic-alcohol rearrangement to give two of the natural products in one step. This study completes the synthesis of all eight antibacterial quinolone natural products reported in the family. In addition, this modular strategy enables an improved synthesis towards two natural products previously reported.

  3. Divergent Synthesis of Quinolone Natural Products from Pseudonocardia sp. CL38489

    PubMed Central

    Geddis, Stephen M.; Carro, Laura; Hodgkinson, James T.

    2016-01-01

    Two divergent synthetic routes are reported offering access to four quinolone natural products from Pseudonocardia sp. CL38489. Key steps to the natural products involved a regioselective epoxidation, an intramolecular Buchwald–Hartwig amination and a final acid‐catalysed 1,3‐allylic‐alcohol rearrangement to give two of the natural products in one step. This study completes the synthesis of all eight antibacterial quinolone natural products reported in the family. In addition, this modular strategy enables an improved synthesis towards two natural products previously reported. PMID:28111524

  4. The Natural Product Phyllanthusmin C Enhances IFN-γ Production by Human Natural Killer Cells through Upregulation of TLR-Mediated NF-κB Signaling

    PubMed Central

    Deng, Youcai; Chu, Jianhong; Ren, Yulin; Fan, Zhijin; Ji, Xiaotian; Mundy, Bethany; Yuan, Shunzong; Hughes, Tiffany; Zhang, Jianying; Cheema, Baljash; Camardo, Andrew T.; Xia, Yong; Wu, Lai-Chu; Wang, Li-Shu; He, Xiaoming; Kinghorn, A. Douglas; Li, Xiaohui; Caligiuri, Michael A; Yu, Jianhua

    2014-01-01

    Natural products are a major source for cancer drug development. NK cells are a critical component of innate immunity with the capacity to destroy cancer cells, cancer initiating cells, and clear viral infections. However, few reports describe a natural product that selectively stimulates NK cell IFN-γ production and unravel a mechanism of action. In this study, through screening, we found that a natural product, phyllanthusmin C (PL-C), alone enhanced IFN-γ production by human NK cells. PL-C also synergized with IL-12, even at the low cytokine concentration of 0.1 mg/ml, and stimulated IFN-γ production in both human CD56bright and CD56dim NK cell subsets. Mechanistically, TLR1 and/or TLR6 mediated PL-C’s activation of the NF-κB p65 subunit that in turn bound to the proximal promoter of IFNG and subsequently resulted in increased IFN-γ production in NK cells. However, IL-12/IL-15 receptors and their related STAT signaling pathways were not significantly modulated by PL-C. PL-C induced little or no T cell IFN-γ production or NK cell cytotoxicity. Collectively, we identify a natural product with the capacity to selectively activate human NK cell IFN-γ. Given the role of IFN-γ in immune surveillance, additional studies to understand the role of this natural product in prevention of cancer or infection in select populations are warranted. PMID:25122922

  5. Natural products as reservoirs of novel therapeutic agents.

    PubMed

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.

  6. Antifungal potential of marine natural products.

    PubMed

    El-Hossary, Ebaa M; Cheng, Cheng; Hamed, Mostafa M; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2017-01-27

    Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. An analysis of FDA-approved drugs: natural products and their derivatives.

    PubMed

    Patridge, Eric; Gareiss, Peter; Kinch, Michael S; Hoyer, Denton

    2016-02-01

    Natural products contribute greatly to the history and landscape of new molecular entities (NMEs). An assessment of all FDA-approved NMEs reveals that natural products and their derivatives represent over one-third of all NMEs. Nearly one-half of these are derived from mammals, one-quarter from microbes and one-quarter from plants. Since the 1930s, the total fraction of natural products has diminished, whereas semisynthetic and synthetic natural product derivatives have increased. Over time, this fraction has also become enriched with microbial natural products, which represent a significant portion of approved antibiotics, including more than two-thirds of all antibacterial NMEs. In recent years, the declining focus on natural products has impacted the pipeline of NMEs from specific classes, and this trend is likely to continue without specific investment in the pursuit of natural products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Informatic analysis reveals Legionella as a source of novel natural products.

    PubMed

    Johnston, Chad W; Plumb, Jonathan; Li, Xiang; Grinstein, Sergio; Magarvey, Nathan A

    2016-06-01

    Microbial natural products are a crucial source of bioactive molecules and unique chemical scaffolds. Despite their importance, rediscovery of known natural products from established productive microbes has led to declining interest, even while emergent genomic data suggest that the majority of microbial natural products remain to be discovered. Now, new sources of microbial natural products must be defined in order to provide chemical scaffolds for the next generation of small molecules for therapeutic, agricultural, and industrial purposes. In this work, we use specialized bioinformatic programs, genetic knockouts, and comparative metabolomics to define the genus Legionella as a new source of novel natural products. We show that Legionella spp. hold a diverse collection of biosynthetic gene clusters for the production of polyketide and nonribosomal peptide natural products. To confirm this bioinformatic survey, we create targeted mutants of L. pneumophila and use comparative metabolomics to identify a novel polyketide surfactant. Using spectroscopic techniques, we show that this polyketide possesses a new chemical scaffold, and firmly demonstrate that this unexplored genus is a source for novel natural products.

  9. The Traditional Medicine and Modern Medicine from Natural Products.

    PubMed

    Yuan, Haidan; Ma, Qianqian; Ye, Li; Piao, Guangchun

    2016-04-29

    Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.

  10. Does species diversity limit productivity in natural grassland communities?

    USGS Publications Warehouse

    Grace, J.B.; Anderson, T.M.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.; Willig, M.R.

    2007-01-01

    Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity-productivity relationships. In this study, we evaluated diversity-productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity-productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity. ?? 2007 Blackwell Publishing Ltd/CNRS.

  11. Background radiation measurements at high power research reactors

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.; Prospect Collaboration

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  12. Marine actinobacteria: an important source of bioactive natural products.

    PubMed

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Natural products as reservoirs of novel therapeutic agents

    PubMed Central

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it. PMID:29805348

  14. Culture-independent discovery of natural products from soil metagenomes.

    PubMed

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.

  15. EIA's Natural Gas Production Data

    EIA Publications

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  16. Utilization of natural products for treatment of blood diseases.

    PubMed

    Miles, D H; Nguyen, C L; Miles, D H

    1998-12-01

    This chapter presents an introduction to several diseases of the blood including infectious mononucleosis, leukemia, thrombosis and coagulation, bone marrow disorders, malaria, and anemia. In addition a survey of the recent literature is presented relative to natural products that have been utilized for the treatment of these diseases. The natural products that are reported represent a wide range of structural types and present interesting mechanisms of action. Thus the possibility exists that new drugs may be developed from these natural products which are more effective than those currently on the market.

  17. Natural personal care products-analysis of ingredient lists and legal situation.

    PubMed

    Klaschka, Ursula

    2016-01-01

    Many natural substances are classified as dangerous substances according to the European regulation on classification and labelling. Are they used in natural personal care products today? One hundred ingredient lists were analyzed to find this out. All products with natural substances contained dangerous natural substances or they contained natural substances, for which the information about their classification as dangerous substances is not available. 54 natural substances quoted in the ingredient lists were found to be classified, with 37 substances being classified due to hazardous effects for skin and eyes. However, the most frequently used natural substances are not classified as dangerous. Natural substances are multi-constituent compounds, leading to two main problems in personal care products: the potential interactions of a multitude of substances and the fact that dangerous constituents are not disclosed in the ingredient lists. For example, the fragrance allergens citral, farnesol, limonene, and linalool are frequent components of the natural substances employed. In addition, 82 products listed allergenic fragrance ingredients as single substances in their ingredient lists. Recommendations for sensitive skin in a product's name do not imply that the '26 fragrance allergens' are omitted. Furthermore, 80 products listed 'parfum'/'aroma', and 50 products listed ethanol. The data show that the loopholes for natural substances and for personal care products in the present European chemical legislation (e.g. the exception for classification and labelling of cosmetic products and the exception for information transfer in the supply chain) are not in line with an adequate consumer and environmental protection.

  18. Molecular scaffold analysis of natural products databases in the public domain.

    PubMed

    Yongye, Austin B; Waddell, Jacob; Medina-Franco, José L

    2012-11-01

    Natural products represent important sources of bioactive compounds in drug discovery efforts. In this work, we compiled five natural products databases available in the public domain and performed a comprehensive chemoinformatic analysis focused on the content and diversity of the scaffolds with an overview of the diversity based on molecular fingerprints. The natural products databases were compared with each other and with a set of molecules obtained from in-house combinatorial libraries, and with a general screening commercial library. It was found that publicly available natural products databases have different scaffold diversity. In contrast to the common concept that larger libraries have the largest scaffold diversity, the largest natural products collection analyzed in this work was not the most diverse. The general screening library showed, overall, the highest scaffold diversity. However, considering the most frequent scaffolds, the general reference library was the least diverse. In general, natural products databases in the public domain showed low molecule overlap. In addition to benzene and acyclic compounds, flavones, coumarins, and flavanones were identified as the most frequent molecular scaffolds across the different natural products collections. The results of this work have direct implications in the computational and experimental screening of natural product databases for drug discovery. © 2012 John Wiley & Sons A/S.

  19. Cheminformatic comparison of approved drugs from natural product versus synthetic origins.

    PubMed

    Stratton, Christopher F; Newman, David J; Tan, Derek S

    2015-11-01

    Despite the recent decline of natural product discovery programs in the pharmaceutical industry, approximately half of all new drug approvals still trace their structural origins to a natural product. Herein, we use principal component analysis to compare the structural and physicochemical features of drugs from natural product-based versus completely synthetic origins that were approved between 1981 and 2010. Drugs based on natural product structures display greater chemical diversity and occupy larger regions of chemical space than drugs from completely synthetic origins. Notably, synthetic drugs based on natural product pharmacophores also exhibit lower hydrophobicity and greater stereochemical content than drugs from completely synthetic origins. These results illustrate that structural features found in natural products can be successfully incorporated into synthetic drugs, thereby increasing the chemical diversity available for small-molecule drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Antimicrobial activity of natural products against Clostridium difficile in vitro.

    PubMed

    Roshan, N; Riley, T V; Hammer, K A

    2017-05-10

    To investigate the antimicrobial activity of various natural products against Clostridium difficile in vitro. The antibacterial activity of 20 natural products was determined by the agar well diffusion and broth microdilution assays against four C. difficile strains, three comparator organisms and four gastrointestinal commensal organisms. Of the raw natural products, garlic juice had the highest activity. The most active processed products were peppermint oil and the four pure compounds trans-cinnamaldehyde, allicin, menthol and zingerone. Furthermore, Bacteroides species had similar susceptibility to C. difficile to most natural products; however, Lactobacillus casei was less susceptible. The combined effect of natural products with vancomycin or metronidazole was determined using the conventional checkerboard titration method and the fractional inhibitory concentration index was calculated. The results showed a possible synergism between trans-cinnamaldehyde and vancomycin and partial synergy between trans-cinnamaldehyde and metronidazole. The study indicates a range of antimicrobial activity of natural products against C. difficile and suggests that they may be useful as alternative or complementary treatments for C. difficile infection (CDI), particularly as most are able to be given orally. This study encourages further investigation of natural products for treatment of CDI. © 2017 The Society for Applied Microbiology.

  1. Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum.

    PubMed

    Chatwin-Davies, Aidan; Kempf, Achim; Martin, Robert T W

    2017-07-21

    We calculate the impact of quantum gravity-motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 10^{5}; i.e., eventual observability may not be ruled out.

  2. Applications of Nonenzymatic Catalysts to the Alteration of Natural Products.

    PubMed

    Shugrue, Christopher R; Miller, Scott J

    2017-09-27

    The application of small molecules as catalysts for the diversification of natural product scaffolds is reviewed. Specifically, principles that relate to the selectivity challenges intrinsic to complex molecular scaffolds are summarized. The synthesis of analogues of natural products by this approach is then described as a quintessential "late-stage functionalization" exercise wherein natural products serve as the lead scaffolds. Given the historical application of enzymatic catalysts to the site-selective alteration of complex molecules, the focus of this Review is on the recent studies of nonenzymatic catalysts. Reactions involving hydroxyl group derivatization with a variety of electrophilic reagents are discussed. C-H bond functionalizations that lead to oxidations, aminations, and halogenations are also presented. Several examples of site-selective olefin functionalizations and C-C bond formations are also included. Numerous classes of natural products have been subjected to these studies of site-selective alteration including polyketides, glycopeptides, terpenoids, macrolides, alkaloids, carbohydrates, and others. What emerges is a platform for chemical remodeling of naturally occurring scaffolds that targets virtually all known chemical functionalities and microenvironments. However, challenges for the design of very broad classes of catalysts, with even broader selectivity demands (e.g., stereoselectivity, functional group selectivity, and site-selectivity) persist. Yet, a significant spectrum of powerful, catalytic alterations of complex natural products now exists such that expansion of scope seems inevitable. Several instances of biological activity assays of remodeled natural product derivatives are also presented. These reports may foreshadow further interdisciplinary impacts for catalytic remodeling of natural products, including contributions to SAR development, mode of action studies, and eventually medicinal chemistry.

  3. Docking of Natural Products against Neurodegenerative Diseases: General Concepts.

    PubMed

    Ribeiro, Frederico F; Mendonca Junior, Francisco J B; Ghasemi, Jahan B; Ishiki, Hamilton M; Scotti, Marcus T; Scotti, Luciana

    2018-01-01

    Since antiquity, humanity has used medicinal plant preparations to cure its ills, and, as research has progressed, new technologies have enabled more investigations on natural compounds which originate from plants, fungi, and marine species. The health benefits that these natural products provide have become a motive for treatment studies of various diseases. Among them, the neurodegenerative diseases like Alzheimer's and Parkinson's, a major age-related neurodegenerative disorder. Studies with natural products for neurodegenerative diseases (particularly through molecular docking) search for, and then focus on those ligands which offer effective inhibition of the enzymes monoamine oxidase and acetylcholinesterase. This review introduces the main concepts involved in docking studies with natural products: and also in our group, which has conducted a docking study of natural products isolated from Tetrapterys mucronata for inhibition of acetylcholinesterase. We observed that compounds 4 and 5 formed more interactions than the theoretical ligand, but that ligands with greater activity also interacted with residues HIS 381 and GLN 527. We have reported on our docking study performed with AChE and alkaloids isolated from the plant Tetrapterys mucronata. Our docking results corroborate the experiments conducted, and emphasize the positive contribution that these theoretical studies involving natural products bring to the fight against neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-07-08

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.

  5. Natural product-like virtual libraries: recursive atom-based enumeration.

    PubMed

    Yu, Melvin J

    2011-03-28

    A new molecular enumerator is described that allows chemically and architecturally diverse sets of natural product-like and drug-like structures to be generated from a core structure as simple as a single carbon atom or as complex as a polycyclic ring system. Integrated with a rudimentary machine-learning algorithm, the enumerator has the ability to assemble biased virtual libraries enriched in compounds predicted to meet target criteria. The ability to dynamically generate relatively small focused libraries in a recursive manner could reduce the computational time and infrastructure necessary to construct and manage extremely large static libraries. Depending on enumeration conditions, natural product-like structures can be produced with a wide range of heterocyclic and alicyclic ring assemblies. Because natural products represent a proven source of validated structures for identifying and designing new drug candidates, mimicking the structural and topological diversity found in nature with a dynamic set of virtual natural product-like compounds may facilitate the creation of new ideas for novel, biologically relevant lead structures in areas of uncharted chemical space.

  6. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia

    NASA Astrophysics Data System (ADS)

    Edwards, G. C.; Howard, D. A.

    2012-10-01

    This paper presents the first gaseous elemental mercury (GEM) air-surface exchange measurements obtained over naturally enriched and background (< 0.1 μg g-1 Hg) terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m-2 h-1 to 113 ± 6 ng m-2 h-1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m-2 h-1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. Comparison of the Australian data to North American data confirmed the need for Australian specific mercury air-surface exchange data representative of Australia's unique climatic conditions, vegetation types, land use patterns, and soils.

  7. Retrospective analysis of natural products provides insights for future discovery trends.

    PubMed

    Pye, Cameron R; Bertin, Matthew J; Lokey, R Scott; Gerwick, William H; Linington, Roger G

    2017-05-30

    Understanding of the capacity of the natural world to produce secondary metabolites is important to a broad range of fields, including drug discovery, ecology, biosynthesis, and chemical biology, among others. Both the absolute number and the rate of discovery of natural products have increased significantly in recent years. However, there is a perception and concern that the fundamental novelty of these discoveries is decreasing relative to previously known natural products. This study presents a quantitative examination of the field from the perspective of both number of compounds and compound novelty using a dataset of all published microbial and marine-derived natural products. This analysis aimed to explore a number of key questions, such as how the rate of discovery of new natural products has changed over the past decades, how the average natural product structural novelty has changed as a function of time, whether exploring novel taxonomic space affords an advantage in terms of novel compound discovery, and whether it is possible to estimate how close we are to having described all of the chemical space covered by natural products. Our analyses demonstrate that most natural products being published today bear structural similarity to previously published compounds, and that the range of scaffolds readily accessible from nature is limited. However, the analysis also shows that the field continues to discover appreciable numbers of natural products with no structural precedent. Together, these results suggest that the development of innovative discovery methods will continue to yield compounds with unique structural and biological properties.

  8. Retrospective analysis of natural products provides insights for future discovery trends

    PubMed Central

    Pye, Cameron R.; Bertin, Matthew J.; Lokey, R. Scott; Gerwick, William H.

    2017-01-01

    Understanding of the capacity of the natural world to produce secondary metabolites is important to a broad range of fields, including drug discovery, ecology, biosynthesis, and chemical biology, among others. Both the absolute number and the rate of discovery of natural products have increased significantly in recent years. However, there is a perception and concern that the fundamental novelty of these discoveries is decreasing relative to previously known natural products. This study presents a quantitative examination of the field from the perspective of both number of compounds and compound novelty using a dataset of all published microbial and marine-derived natural products. This analysis aimed to explore a number of key questions, such as how the rate of discovery of new natural products has changed over the past decades, how the average natural product structural novelty has changed as a function of time, whether exploring novel taxonomic space affords an advantage in terms of novel compound discovery, and whether it is possible to estimate how close we are to having described all of the chemical space covered by natural products. Our analyses demonstrate that most natural products being published today bear structural similarity to previously published compounds, and that the range of scaffolds readily accessible from nature is limited. However, the analysis also shows that the field continues to discover appreciable numbers of natural products with no structural precedent. Together, these results suggest that the development of innovative discovery methods will continue to yield compounds with unique structural and biological properties. PMID:28461474

  9. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis

    PubMed Central

    Crane, Erika A.

    2016-01-01

    Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  10. Bluegenics: Bioactive Natural Products of Medicinal Relevance and Approaches to Their Diversification.

    PubMed

    Zarins-Tutt, Joseph S; Abraham, Emily R; Bailey, Christopher S; Goss, Rebecca J M

    Nature provides a valuable resource of medicinally relevant compounds, with many antimicrobial and antitumor agents entering clinical trials being derived from natural products. The generation of analogues of these bioactive natural products is important in order to gain a greater understanding of structure activity relationships; probing the mechanism of action, as well as to optimise the natural product's bioactivity and bioavailability. This chapter critically examines different approaches to generating natural products and their analogues, exploring the way in which synthetic and biosynthetic approaches may be blended together to enable expeditious access to new designer natural products.

  11. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    PubMed

    Balk, Lennart; Hylland, Ketil; Hansson, Tomas; Berntssen, Marc H G; Beyer, Jonny; Jonsson, Grete; Melbye, Alf; Grung, Merete; Torstensen, Bente E; Børseth, Jan Fredrik; Skarphedinsdottir, Halldora; Klungsøyr, Jarle

    2011-01-01

    Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  12. Neurotrophic Natural Products: Chemistry and Biology

    PubMed Central

    Xu, Jing; Lacoske, Michelle H.

    2014-01-01

    Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project. PMID:24353244

  13. Phenolics occurrence in surface water of the Dniester river basin (West Ukraine): natural background and industrial pollution

    NASA Astrophysics Data System (ADS)

    Sprynskyy, M.; Lebedynets, M.; Namieśnik, J.; Buszewski, B.

    2007-09-01

    Phenolics’ occurrence in surface water of the Dniester river basin (West Ukraine) with the definition of the natural background is studied. The main attention is given to the Upper Dniester basin and its tributary Stryj as the parts of the Sub-Carpathian oil- and gas province with the numerous objects of oil industry. The total amount of phenolics in water is studied. Phenolics’ concentrations from the first micrograms to the first milligrams per litre have been found in the surface water of the region. The natural background is defined as 0.012 mg l-1 for the areas out of the industrial influence. The anthropogenic part of phenolics is caused mainly by oil industry. The oil-producing objects provide the main phenolics’ releases in the region, due to the low protection level of mechanical facilities as well as to breach of technological norms on the oil-extracting objects. A man-made pollution of the basin water has a regional character and the natural self-purification processes seem to be insufficient for its neutralisation on the plains in particular.

  14. Cyclooxygenase inhibitory natural products: current status.

    PubMed

    Jachak, Sanjay M

    2006-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.

  15. Opportunities for natural products in 21st century antibiotic discovery.

    PubMed

    Wright, Gerard D

    2017-07-01

    Natural products and their derivatives are mainstays of our antibiotic drugs, but they are increasingly in peril. The combination of widespread multidrug resistance in once susceptible bacterial pathogens, disenchantment with natural products as sources of new drugs, lack of success using synthetic compounds and target-based discovery methods, along with shifting economic and regulatory issues, conspire to move investment in research and development away from the antibiotics arena. The result is a growing crisis in antibiotic drug discovery that threatens modern medicine. 21 st century natural product research is perfectly positioned to fill the antibiotic discovery gap and bring new drug candidates to the clinic. Innovations in genomics and techniques to explore new sources of antimicrobial chemical matter are revealing new chemistry. Increasing appreciation of the value of narrow-spectrum drugs and re-examination of once discarded chemical scaffolds coupled with synthetic biology methods to generate new compounds and improve yields offer new strategies to revitalize once moribund natural product programs. The increasing awareness that the combination of antibiotics with adjuvants, non-antibiotic compounds that overcome resistance and enhance drug activity, can rescue older chemical scaffolds, and concepts such as blocking pathogen virulence present orthogonal strategies to traditional antibiotics. In all these areas, natural products offer chemical matter, shaped by natural selection, that is privileged in this therapeutic area. Natural product research is poised to regain prominence in delivering new drugs to solve the antibiotic crisis.

  16. The impact of natural products upon modern drug discovery.

    PubMed

    Ganesan, A

    2008-06-01

    In the period 1970-2006, a total of 24 unique natural products were discovered that led to an approved drug. We analyze these successful leads in terms of drug-like properties, and show that they can be divided into two equal subsets. The first falls in the 'Lipinski universe' and complies with the Rule of Five. The second is a 'parallel universe' that violates the rules. Nevertheless, the latter compounds remain largely compliant in terms of logP and H-bond donors, highlighting the importance of these two metrics in predicting bioavailability. Natural products are often cited as an exception to Lipinski's rules. We believe this is because nature has learned to maintain low hydrophobicity and intermolecular H-bond donating potential when it needs to make biologically active compounds with high molecular weight and large numbers of rotatable bonds. In addition, natural products are more likely than purely synthetic compounds to resemble biosynthetic intermediates or endogenous metabolites, and hence take advantage of active transport mechanisms. Interestingly, the natural product leads in the Lipinski and parallel universe had an identical success rate (50%) in delivering an oral drug.

  17. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania's Allegheny National Forest.

    PubMed

    Pekney, Natalie J; Veloski, Garret; Reeder, Matthew; Tamilia, Joseph; Rupp, Erik; Wetzel, Alan

    2014-09-01

    Oil and natural gas exploration and production (E&P) activities generate emissions from diesel engines, compressor stations, condensate tanks, leaks and venting of natural gas, construction of well pads, and well access roads that can negatively impact air quality on both local and regional scales. A mobile, autonomous air quality monitoring laboratory was constructed to collect measurements of ambient concentrations of pollutants associated with oil and natural gas E&P activities. This air-monitoring laboratory was deployed to the Allegheny National Forest (ANF) in northwestern Pennsylvania for a campaign that resulted in the collection of approximately 7 months of data split between three monitoring locations between July 2010 and June 2011. The three monitoring locations were the Kane Experimental Forest (KEF) area in Elk County, which is downwind of the Sackett oilfield; the Bradford Ranger Station (BRS) in McKean County, which is downwind of a large area of historic oil and gas productivity; and the U.S. Forest Service Hearts Content campground (HC) in Warren County, which is in an area relatively unimpacted by oil and gas development and which therefore yielded background pollutant concentrations in the ANF. Concentrations of criteria pollutants ozone and NO2 did not vary significantly from site to site; averages were below National Ambient Air Quality Standards. Concentrations of volatile organic compounds (VOCs) associated with oil and natural gas (ethane, propane, butane, pentane) were highly correlated. Applying the conditional probability function (CPF) to the ethane data yielded most probable directions of the sources that were coincident with known location of existing wells and activity. Differences between the two impacted and one background site were difficult to discern, suggesting the that the monitoring laboratory was a great enough distance downwind of active areas to allow for sufficient dispersion with background air such that the localized

  18. Regulation of natural health products in Canada.

    PubMed

    Smith, Alysyn; Jogalekar, Sumedha; Gibson, Adam

    2014-12-02

    In Canada, all natural health products (NHPs) are regulated by Health Canada (HC) under the Food and Drugs Act and the Natural Health Product Regulations. All authorized products undergo pre-market assessment for safety, efficacy and quality and the degree of pre-market oversight varies depending on the risk of the product. In Canada, over 70,000 products have been authorized for sale and over 2000 sites have been licensed to produce NHPs. In the management of NHPs on the Canadian market, HC employs a number of active and collaborative methods to address the most common issues such as contamination, adulteration and deceptive or misleading advertising practices. HC is currently evolving its approaches to NHPs to recognize them as part of the larger group of health products available without a prescription. As such, the regulatory responsibility for all over-the-counter (OTC) drugs, including non-prescription drugs and NHPs, has been transferred to a single federal division. As a result of this transition a number of benefits are being realized with respect to government efficiency, clarity for industry, support for new innovations and consolidated government interactions with the Canadian market. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Introducing N-glycans into natural products through a chemoenzymatic approach.

    PubMed

    Huang, Wei; Ochiai, Hirofumi; Zhang, Xinyu; Wang, Lai-Xi

    2008-11-24

    The present study describes an efficient chemoenzymatic method for introducing a core N-glycan of glycoprotein origin into various lipophilic natural products. It was found that the endo-beta-N-acetylglucosaminidase from Arthrobactor protophormiae (Endo-A) had broad substrate specificity and can accommodate a wide range of glucose (Glc)- or N-acetylglucosamine (GlcNAc)-containing natural products as acceptors for transglycosylation, when an N-glycan oxazoline was used as a donor substrate. Using lithocholic acid as a model compound, we have shown that introduction of an N-glycan could be achieved by a two-step approach: chemical glycosylation to introduce a monosaccharide (Glc or GlcNAc) as a handle, and then Endo-A catalyzed transglycosylation to accomplish the site-specific N-glycan attachment. For those natural products that already carry terminal Glc or GlcNAc residues, direct enzymatic transglycosylation using sugar oxazoline as the donor substrate was achievable to introduce an N-glycan. It was also demonstrated that simultaneous double glycosylation could be fulfilled when the natural product contains two Glc residues. This chemoenzymatic method is concise, site-specific, and highly convergent. Because N-glycans of glycoprotein origin can serve as ligands for diverse lectins and cell-surface receptors, introduction of a defined N-glycan into biologically significant natural products may bestow novel properties onto these natural products for drug discovery and development.

  20. Human contact imagined during the production process increases food naturalness perceptions.

    PubMed

    Abouab, Nathalie; Gomez, Pierrick

    2015-08-01

    It is well established that food processing and naturalness are not good friends, but is food processing always detrimental to naturalness? Building on the contagion principle, this research examines how production mode (handmade vs. machine-made) influences naturalness perceptions. In a pilot study (n = 69) and an experiment (n = 133), we found that compared with both a baseline condition and a condition in which the mode of production process was portrayed as machine-made, a handmade production mode increases naturalness ratings of a grape juice. A mediation analysis demonstrates that these effects result from higher perceived human contact suggesting that the production process may preserve food naturalness when humanized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Natural products discovery from micro-organisms in the post-genome era.

    PubMed

    Ikeda, Haruo

    2017-01-01

    With the decision to award the Nobel Prize in Physiology or Medicine to Drs. S. Ōmura, W.C. Campbell, and Y. Tu, the importance and usefulness of natural drug discovery and development have been revalidated. Since the end of the twentieth century, many genome analyses of organisms have been conducted, and accordingly, numerous microbial genomes have been decoded. In particular, genomic studies of actinomycetes, micro-organisms that readily produce natural products, led to the discovery of biosynthetic gene clusters responsible for producing natural products. New explorations for natural products through a comprehensive approach combining genomic information with conventional methods show great promise for the discovery of new natural products and even systematic generation of unnaturally occurring compounds.

  2. Breaking the silence: new strategies for discovering novel natural products.

    PubMed

    Ren, Hengqian; Wang, Bin; Zhao, Huimin

    2017-12-01

    Natural products have been a prolific source of antibacterial and anticancer drugs for decades. One of the major challenges in natural product discovery is that the vast majority of natural product biosynthetic gene clusters (BGCs) have not been characterized, partially due to the fact that they are either transcriptionally silent or expressed at very low levels under standard laboratory conditions. Here we describe the strategies developed in recent years (mostly between 2014-2016) for activating silent BGCs. These strategies can be broadly divided into two categories: approaches in native hosts and approaches in heterologous hosts. In addition, we briefly discuss recent advances in developing new computational tools for identification and characterization of BGCs and high-throughput methods for detection of natural products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Natural products in soil microbe interactions and evolution.

    PubMed

    Traxler, Matthew F; Kolter, Roberto

    2015-07-01

    In recent years, bacterial interspecies interactions mediated by small molecule natural products have been found to give rise to a surprising array of phenotypes in soil-dwelling bacteria, especially among Streptomyces and Bacillus species. This review examines these interspecies interactions, and the natural products involved, as they have been presented in literature stemming from four disciplines: soil science, interspecies microbiology, ecology, and evolutionary biology. We also consider how these interactions fit into accepted paradigms of signaling, cueing, and coercion.

  4. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    PubMed

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. α-Haloaldehydes: versatile building blocks for natural product synthesis.

    PubMed

    Britton, Robert; Kang, Baldip

    2013-02-01

    The diastereoselective addition of organometallic reagents to α-chloroaldehydes was first reported in 1959 and occupies a historically significant role as the prototypical reaction for Cornforth's model of stereoinduction. Despite clear synthetic potential for these reagents, difficulties associated with producing enantiomerically enriched α-haloaldehydes limited their use in natural product synthesis through the latter half of the 20th century. In recent years, however, a variety of robust, organocatalytic processes have been reported that now provide direct access to optically enriched α-haloaldehydes and have motivated renewed interest in their use as building blocks for natural product synthesis. This Highlight summarizes the methods available for the enantioselective preparation of α-haloaldehydes and their stereoselective conversion into natural products.

  6. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  7. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes

    PubMed Central

    Skinnider, Michael A.; Merwin, Nishanth J.; Johnston, Chad W.

    2017-01-01

    Abstract Microbial natural products represent a rich resource of pharmaceutically and industrially important compounds. Genome sequencing has revealed that the majority of natural products remain undiscovered, and computational methods to connect biosynthetic gene clusters to their corresponding natural products therefore have the potential to revitalize natural product discovery. Previously, we described PRediction Informatics for Secondary Metabolomes (PRISM), a combinatorial approach to chemical structure prediction for genetically encoded nonribosomal peptides and type I and II polyketides. Here, we present a ground-up rewrite of the PRISM structure prediction algorithm to derive prediction of natural products arising from non-modular biosynthetic paradigms. Within this new version, PRISM 3, natural product scaffolds are modeled as chemical graphs, permitting structure prediction for aminocoumarins, antimetabolites, bisindoles and phosphonate natural products, and building upon the addition of ribosomally synthesized and post-translationally modified peptides. Further, with the addition of cluster detection for 11 new cluster types, PRISM 3 expands to detect 22 distinct natural product cluster types. Other major modifications to PRISM include improved sequence input and ORF detection, user-friendliness and output. Distribution of PRISM 3 over a 300-core server grid improves the speed and capacity of the web application. PRISM 3 is available at http://magarveylab.ca/prism/. PMID:28460067

  8. The value of nature's natural product library for the discovery of New Chemical Entities: the discovery of ingenol mebutate.

    PubMed

    Ogbourne, Steven M; Parsons, Peter G

    2014-10-01

    In recent decades, 'Big Pharma' has invested billions of dollars into ingenious and innovative strategies designed to develop drugs using high throughput screening of small molecule libraries generated on the laboratory bench. Within the same time frame, screening of natural products by pharmaceutical companies has suffered an equally significant reduction. This is despite the fact that the complexity, functional diversity and druggability of nature's natural product library are considered by many to be superior to any library any team of scientists can prepare. It is therefore no coincidence that the number of New Chemical Entities reaching the market has also suffered a substantial decrease, leading to a productivity crisis within the pharmaceutical sector. In fact, the current dearth of New Chemical Entities reaching the market in recent decades might be a direct consequence of the strategic decision to move away from screening of natural products. Nearly 700 novel drugs derived from natural product New Chemical Entities were approved between 1981 and 2010; more than 60% of all approved drugs over the same time. In this review, we use the example of ingenol mebutate, a natural product identified from Euphorbia peplus and later approved as a therapy for actinic keratosis, as why nature's natural product library remains the most valuable library for discovery of New Chemical Entities and of novel drug candidates. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Measurement of Neutrino-Induced Coherent Pion Production and the Diffractive Background in MINERvA

    NASA Astrophysics Data System (ADS)

    Gomez, Alicia; Minerva Collaboration

    2015-04-01

    Neutrino-induced coherent charged pion production is a unique neutrino-nucleus scattering process in which a muon and pion are produced while the nucleus is left in its ground state. The MINERvA experiment has made a model-independent differential cross section measurement of this process on carbon by selecting events with a muon and a pion, no evidence of nuclear break-up, and small momentum transfer to the nucleus | t | . A similar process which is a background to the measurement on carbon is diffractive pion production off the free protons in MINERvA's scintillator. This process is not modeled in the neutrino event generator GENIE. At low | t | these events have a similar final state to the aforementioned process. A study to quantify this diffractive event contribution to the background is done by emulating these diffractive events by reweighting all other GENIE-generated background events to the predicted | t | distribution of diffractive events, and then scaling to the diffractive cross section.

  10. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders

    PubMed Central

    Šmejkal, Karel; Heiss, Elke H.; Atanasov, Atanas G.

    2016-01-01

    Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an “opening” of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease. PMID:27338339

  11. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders.

    PubMed

    Waltenberger, Birgit; Mocan, Andrei; Šmejkal, Karel; Heiss, Elke H; Atanasov, Atanas G

    2016-06-22

    Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.

  12. Bioactive natural products from Chinese marine flora and fauna.

    PubMed

    Zhou, Zhen-Fang; Guo, Yue-Wei

    2012-09-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail.

  13. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity.

    PubMed

    Aswad, Miran; Rayan, Mahmoud; Abu-Lafi, Saleh; Falah, Mizied; Raiyn, Jamal; Abdallah, Ziyad; Rayan, Anwar

    2018-01-01

    The aim was to index natural products for less expensive preventive or curative anti-inflammatory therapeutic drugs. A set of 441 anti-inflammatory drugs representing the active domain and 2892 natural products representing the inactive domain was used to construct a predictive model for bioactivity-indexing purposes. The model for indexing the natural products for potential anti-inflammatory activity was constructed using the iterative stochastic elimination algorithm (ISE). ISE is capable of differentiating between active and inactive anti-inflammatory molecules. By applying the prediction model to a mix set of (active/inactive) substances, we managed to capture 38% of the anti-inflammatory drugs in the top 1% of the screened set of chemicals, yielding enrichment factor of 38. Ten natural products that scored highly as potential anti-inflammatory drug candidates are disclosed. Searching the PubMed revealed that only three molecules (Moupinamide, Capsaicin, and Hypaphorine) out of the ten were tested and reported as anti-inflammatory. The other seven phytochemicals await evaluation for their anti-inflammatory activity in wet lab. The proposed anti-inflammatory model can be utilized for the virtual screening of large chemical databases and for indexing natural products for potential anti-inflammatory activity.

  14. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia

    NASA Astrophysics Data System (ADS)

    Edwards, G. C.; Howard, D. A.

    2013-05-01

    This paper presents the first gaseous elemental mercury (GEM) air-surface exchange measurements obtained over naturally enriched and background (<0.1 μg g-1 Hg) terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m-2 h-1 to 113 ± 6 ng m-2 h-1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m-2 h-1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. For periods of deposition, dry deposition velocities ranged from 0.00025 cm s-1 to 0.0083 cm s-1 with an average of 0.0041 ± 0.00018 cm s-1, representing bare soil, nighttime conditions. Comparison of the Australian data to North American data suggests the need for Australian-specific mercury air-surface exchange data representative of Australia's unique climatic conditions, vegetation types, land use patterns and soils.

  15. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes.

    PubMed

    Skinnider, Michael A; Merwin, Nishanth J; Johnston, Chad W; Magarvey, Nathan A

    2017-07-03

    Microbial natural products represent a rich resource of pharmaceutically and industrially important compounds. Genome sequencing has revealed that the majority of natural products remain undiscovered, and computational methods to connect biosynthetic gene clusters to their corresponding natural products therefore have the potential to revitalize natural product discovery. Previously, we described PRediction Informatics for Secondary Metabolomes (PRISM), a combinatorial approach to chemical structure prediction for genetically encoded nonribosomal peptides and type I and II polyketides. Here, we present a ground-up rewrite of the PRISM structure prediction algorithm to derive prediction of natural products arising from non-modular biosynthetic paradigms. Within this new version, PRISM 3, natural product scaffolds are modeled as chemical graphs, permitting structure prediction for aminocoumarins, antimetabolites, bisindoles and phosphonate natural products, and building upon the addition of ribosomally synthesized and post-translationally modified peptides. Further, with the addition of cluster detection for 11 new cluster types, PRISM 3 expands to detect 22 distinct natural product cluster types. Other major modifications to PRISM include improved sequence input and ORF detection, user-friendliness and output. Distribution of PRISM 3 over a 300-core server grid improves the speed and capacity of the web application. PRISM 3 is available at http://magarveylab.ca/prism/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Metabolic engineering of microorganisms for the synthesis of plant natural products.

    PubMed

    Marienhagen, Jan; Bott, Michael

    2013-01-20

    Of more than 200,000 plant natural products known to date, many demonstrate important pharmacological activities or are of biotechnological significance. However, isolation from natural sources is usually limited by low abundance and environmental, seasonal as well as regional variation, whereas total chemical synthesis is typically commercially unfeasible considering the complex structures of most plant natural products. With advances in DNA sequencing and recombinant DNA technology many of the biosynthetic pathways responsible for the production of these valuable compounds have been elucidated, offering the opportunity of a functional integration of biosynthetic pathways in suitable microorganisms. This approach offers promise to provide sufficient quantities of the desired plant natural products from inexpensive renewable resources. This review covers recent advancements in the metabolic engineering of microorganisms for the production of plant natural products such as isoprenoids, phenylpropanoids and alkaloids, and highlights general approaches and strategies to gain access to the rich biochemical diversity of plants by employing the biosynthetic power of microorganisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Estimating COCOM Natural Background Dormancy

    DTIC Science & Technology

    2015-04-01

    Goode and Espenshade 1953). Maps from Goode’s World Atlas included natural vegetation, agricultural regions, and soils . Clark University provided...and shallow, high mountain soils (Chambers 1967). The vertical stripes indi- cate a probability of more than two weeks of snow cover during the month...needle-leaf evergreen and deciduous trees during dormant or dry season, and desert alluvial deposits, sand, and thin mountain soils 6 Needle-leaf

  18. Stop the top background of the stop search

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Cheng, Hsin-Chia; Gallicchio, Jason; Gu, Jiayin

    2012-07-01

    The main background for the supersymmetric stop direct production search comes from Standard Model toverline t events. For the single-lepton search channel, we introduce a few kinematic variables to further suppress this background by focusing on its dileptonic and semileptonic topologies. All are defined to have end points in the background, but not signal distributions. They can substantially improve the stop signal significance and mass reach when combined with traditional kinematic variables such as the total missing transverse energy. Among them, our variable M_{{T2}}^W hasthebestoverallperformancebecause it uses all available kinematic information, including the on-shell mass of both W's. We see 20 %-30 % improvement on the discovery significance and estimate that the 8 TeV LHC run with 20 fb-1 of data would be able to reach an exclusion limit of 650-700 GeV for direct stop production, as long as the stop decays dominantly to the top quark and a light stable neutralino. Most of the mass range required for the supersymmetric solution of the naturalness problem in the standard scenario can be covered.

  19. Something old, something new: revisiting natural products in antibiotic drug discovery.

    PubMed

    Wright, Gerard D

    2014-03-01

    Antibiotic discovery is in crisis. Despite a growing need for new drugs resulting from the increasing number of multi-antibiotic-resistant pathogens, there have been only a handful of new antibiotics approved for clinical use in the past 2 decades. Faced with scientific, economic, and regulatory challenges, the pharmaceutical sector seems unable to respond to what has been called an "apocalyptic" threat. Natural products produced by bacteria and fungi are genetically encoded products of natural selection that have been the mainstay sources of the antibiotics in current clinical use. The pharmaceutical industry has largely abandoned these compounds in favor of large libraries of synthetic molecules because of difficulties in identifying new natural product antibiotics scaffolds. Advances in next-generation genome sequencing, bioinformatics, and analytical chemistry are combining to overcome barriers to natural products. Coupled with new strategies in antibiotic discovery, including inhibition of resistance, novel drug combinations, and new targets, natural products are poised for a renaissance to address what is a pressing health care crisis.

  20. Natural health product use in Canada.

    PubMed

    Troppmann, Leticia; Johns, Timothy; Gray-Donald, Katherine

    2002-01-01

    To quantify patterns of Natural Health Product (NHP) use in Canada. The Food Habits of Canadians surveyed 1,543 Canadian adults using a 24-hour recall to record dietary supplements. Prevalence of use by user profile was examined. Forty-six percent of women and 33% of men reported taking at least one Natural Health Product with a mean of 2.3 among users. The highest prevalence of supplement use, 57%, occurred among women aged 50-65. Supplement users were older, less likely to smoke and perceived their health as better than non-users. Among supplement users, men had higher rates of use of garlic and vitamin C while women used iron, calcium, B complex, evening primrose oil and glucosamine sulfate. Supplement use by Canadians, at 38% for nutrients and 15% for herbal products, was similar to the rate of uses in the U.S., although differences in the reporting of types of supplements underline aspects of consumer behaviour as well as methodological issues specific to NHPs. Investigation of the use of NHPs in the healthcare setting is important given the widespread use and the potential health care consequences associated with supplement use.

  1. Natural and Heterologous Production of Bacteriocins

    NASA Astrophysics Data System (ADS)

    Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, and their use as natural and nontoxic food preservatives has been the source of considerable interest for the research community. In addition, bacteriocins have been investigated for their potential use in human and veterinary applications and in the animal production field. In the native bacterial strain, most bacteriocins are synthesized as biologically inactive precursors, with N-terminal extensions, that are cleaved concomitantly during export of the bacteriocin by dedicated ABC transporters, or the general secretory pathway (GSP) or Sec-dependent pathway. However, a few bacteriocins are synthesized without an N-terminal extension, and others are circularized through a head-to-tail peptide bond, complicating the elucidation of their processing and transport across the cytoplasmic membrane. The high cost of synthetic bacteriocin synthesis and their low yields from many natural producers recommends the exploration of recombinant microbial systems for the heterologous production of bacteriocins. Other advantages of such systems include production of bacteriocins in safer hosts, increased bacteriocin production, control of bacteriocin gene expression, production of food ingredients with antimicrobial activity, construction of multibacteriocinogenic strains with a wider antagonistic spectrum, a better adaptation of the selected hosts to food environments, and providing antagonistic properties to lactic acid bacteria (LAB) used as starter, protective, or probiotic cultures. The recombinant production of bacteriocins mostly relies on the use of expression vectors that replicate in Gram-negative bacteria, Gram-positive bacteria, and yeasts, whereas the production of bacteriocins in heterologous LAB hosts may be essentially based on the expression of native biosynthetic genes, by exchanging or replacing leader peptides and/or dedicated processing and secretion systems (ABC transporters

  2. Natural Products as Sources of New Drugs from 1981 to 2014.

    PubMed

    Newman, David J; Cragg, Gordon M

    2016-03-25

    This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from around the 1940s to the end of 2014, of the 175 small molecules approved, 131, or 75%, are other than "S" (synthetic), with 85, or 49%, actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore it is considered that this area of natural product research should be expanded significantly.

  3. [Strategies of elucidation of biosynthetic pathways of natural products].

    PubMed

    Zou, Li-Qiu; Kuang, Xue-Jun; Sun, Chao; Chen, Shi-Lin

    2016-11-01

    Elucidation of the biosynthetic pathways of natural products is not only the major goal of herb genomics, but also the solid foundation of synthetic biology of natural products. Here, this paper reviewed recent advance in this field and put forward strategies to elucidate the biosynthetic pathway of natural products. Firstly, a proposed biosynthetic pathway should be set up based on well-known knowledge about chemical reactions and information on the identified compounds, as well as studies with isotope tracer. Secondly, candidate genes possibly involved in the biosynthetic pathway were screened out by co-expression analysis and/or gene cluster mining. Lastly, all the candidate genes were heterologously expressed in the host and then the enzyme involved in the biosynthetic pathway was characterized by activity assay. Sometimes, the function of the enzyme in the original plant could be further studied by RNAi or VIGS technology. Understanding the biosynthetic pathways of natural products will contribute to supply of new leading compounds by synthetic biology and provide "functional marker" for herbal molecular breeding, thus but boosting the development of traditional Chinese medicine agriculture. Copyright© by the Chinese Pharmaceutical Association.

  4. Enhanced radioactivity due to natural oil and gas production and related radiological problems.

    PubMed

    Kolb, W A; Wojcik, M

    1985-10-01

    Increased gamma radiation detected incidentally a few years ago in a North German oil field was traceable to radioactive scale. At the request of the Federal Ministry of the Interior a survey program was then established for dose rate measurements at various production sites, assessment of the radionuclide content of brines and scale and the Rn-222 content of natural gas. Dose equivalent rates of up to 50 mu Sv/h have been measured at the external surface of storage tanks for brines, but 73% of the 160 sites investigated did not show an increase above the natural background. Brines from gas fields contained Ra-226 of up to 286 Bq/l and scale of up to 1 kBq/g. In brines and scale from oil fields Ra-228 was usually the predominant radionuclide. Some samples contained "unsupported" Pb-210 and even Ac-227, too, but practically no uranium or thorium. The Rn-222 concentrations in natural gas samples varied between 0.004 and 4 Bq/l with a mean value of 0.6 Bq/l. It is shown that the radiation exposure due to natural gas consumption is negligible but some other problems or radiological relevance are recognized.

  5. [Elaboration of Pseudo-natural Products Using Artificial In Vitro Biosynthesis Systems].

    PubMed

    Goto, Yuki

    2018-01-01

     Peptidic natural products often consist of not only proteinogenic building blocks but also unique non-proteinogenic structures such as macrocyclic scaffolds and N-methylated backbones. Since such non-proteinogenic structures are important structural motifs that contribute to diverse bioactivity, we have proposed that peptides with non-proteinogenic structures should be attractive candidates as artificial bioactive peptides mimicking natural products, or so-called pseudo-natural products. We previously devised an engineered translation system for pseudo-natural peptides, referred to as the flexible in vitro translation (FIT) system. This system enabled "one-pot" synthesis of highly diverse pseudo-natural peptide libraries, which can be rapidly screened by mRNA display technology for the discovery of pseudo-natural peptides with diverse bioactivities.

  6. The re-emergence of natural products for drug discovery in the genomics era.

    PubMed

    Harvey, Alan L; Edrada-Ebel, RuAngelie; Quinn, Ronald J

    2015-02-01

    Natural products have been a rich source of compounds for drug discovery. However, their use has diminished in the past two decades, in part because of technical barriers to screening natural products in high-throughput assays against molecular targets. Here, we review strategies for natural product screening that harness the recent technical advances that have reduced these barriers. We also assess the use of genomic and metabolomic approaches to augment traditional methods of studying natural products, and highlight recent examples of natural products in antimicrobial drug discovery and as inhibitors of protein-protein interactions. The growing appreciation of functional assays and phenotypic screens may further contribute to a revival of interest in natural products for drug discovery.

  7. Synthesis and Biological Investigation of Antioxidant Pyrrolomorpholine Spiroketal Natural Products

    NASA Astrophysics Data System (ADS)

    Verano, Alyssa Leigh

    The pyrrolomorpholine spiroketal natural product family is comprised of epimeric furanose and pyranose isomers. These compounds were isolated from diverse plant species, all of which are used as traditional Chinese medicines for the treatment of a variety of diseases. Notably, the spiroketal natural products acortatarins A and B exhibit antioxidant activity in a diabetic renal cell model, significantly attenuating hyperglycemia-induced production of reactive oxygen species (ROS), a hallmark of diabetic nephropathy. The xylapyrrosides, additional members of the family, also inhibit t-butyl hydroperoxide-induced cytotoxicity in rat vascular smooth muscle cells. Accordingly, these natural products have therapeutic potential for the treatment of oxidative stress-related pathologies, and synthetic access would provide an exciting opportunity to investigate bioactivity and mechanism of action. Herein, we report the stereoselective synthesis of acortatarins A and B, furanose members of the pyrrolomorpholine spiroketal family. Our synthetic route was expanded to synthesize the pyranose congeners, thus completing entire D-enantiomeric family of natural products. Efficient access towards these scaffolds enabled systematic analogue synthesis, investigation of mechanism-of-action, and the discovery of novel antioxidants.

  8. Novel Artificial Natural Products Against Breast Cancer Through Combinatorial Biosynthesis

    DTIC Science & Technology

    2002-07-01

    compounds normally produced by a certain strain. Our investigations on the discovery of novel natural metabolites using type II polyketide synthase ...limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations. THIS TECHNICAL REPORT HAS... polyketides remain the central group of natural products in this research area, since this class of natural products form one of the largest and most

  9. Flow chemistry syntheses of natural products.

    PubMed

    Pastre, Julio C; Browne, Duncan L; Ley, Steven V

    2013-12-07

    The development and application of continuous flow chemistry methods for synthesis is a rapidly growing area of research. In particular, natural products provide demanding challenges to this developing technology. This review highlights successes in the area with an emphasis on new opportunities and technological advances.

  10. Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks.

    PubMed

    Olivon, Florent; Allard, Pierre-Marie; Koval, Alexey; Righi, Davide; Genta-Jouve, Gregory; Neyts, Johan; Apel, Cécile; Pannecouque, Christophe; Nothias, Louis-Félix; Cachet, Xavier; Marcourt, Laurence; Roussi, Fanny; Katanaev, Vladimir L; Touboul, David; Wolfender, Jean-Luc; Litaudon, Marc

    2017-10-20

    Natural products represent an inexhaustible source of novel therapeutic agents. Their complex and constrained three-dimensional structures endow these molecules with exceptional biological properties, thereby giving them a major role in drug discovery programs. However, the search for new bioactive metabolites is hampered by the chemical complexity of the biological matrices in which they are found. The purification of single constituents from such matrices requires such a significant amount of work that it should be ideally performed only on molecules of high potential value (i.e., chemical novelty and biological activity). Recent bioinformatics approaches based on mass spectrometry metabolite profiling methods are beginning to address the complex task of compound identification within complex mixtures. However, in parallel to these developments, methods providing information on the bioactivity potential of natural products prior to their isolation are still lacking and are of key interest to target the isolation of valuable natural products only. In the present investigation, we propose an integrated analysis strategy for bioactive natural products prioritization. Our approach uses massive molecular networks embedding various informational layers (bioactivity and taxonomical data) to highlight potentially bioactive scaffolds within the chemical diversity of crude extracts collections. We exemplify this workflow by targeting the isolation of predicted active and nonactive metabolites from two botanical sources (Bocquillonia nervosa and Neoguillauminia cleopatra) against two biological targets (Wnt signaling pathway and chikungunya virus replication). Eventually, the detection and isolation processes of a daphnane diterpene orthoester and four 12-deoxyphorbols inhibiting the Wnt signaling pathway and exhibiting potent antiviral activities against the CHIKV virus are detailed. Combined with efficient metabolite annotation tools, this bioactive natural products

  11. Transporter-mediated natural product-drug interactions for the treatment of cardiovascular diseases.

    PubMed

    Zha, Weibin

    2018-04-01

    The growing use of natural products in cardiovascular (CV) patients has been greatly raising the concerns about potential natural product-CV drug interactions. Some of these may lead to unexpected cardiovascular adverse effects and it is, therefore, essential to identify or predict potential natural product-CV drug interactions, and to understand the underlying mechanisms. Drug transporters are important determinants for the pharmacokinetics of drugs and alterations of drug transport has been recognized as one of the major causes of natural product-drug interactions. In last two decades, many CV drugs (e.g., angiotensin II receptor blockers, beta-blockers and statins) have been identified to be substrates and inhibitors of the solute carrier (SLC) transporters and the ATP-binding cassette (ABC) transporters, which are two major transporter superfamilies. Meanwhile, in vitro and in vivo studies indicate that a growing number of natural products showed cardioprotective effects (e.g., gingko biloba, danshen and their active ingredients) are also substrates and inhibitors of drug transporters. Thus, to understand transporter-mediated natural product-CV drug interactions is important and some transporter-mediated interactions have already shown to have clinical relevance. In this review, we review the current knowledge on the role of ABC and SLC transporters in CV therapy, as well as transporter modulation by natural products used in CV diseases and their induced natural product-CV drug interactions through alterations of drug transport. We hope our review will aid in a comprehensive summary of transporter-mediated natural product-CV drug interactions and help public and physicians understand these type of interactions. Copyright © 2017. Published by Elsevier B.V.

  12. Bioactive natural products from Chinese marine flora and fauna

    PubMed Central

    Zhou, Zhen-fang; Guo, Yue-wei

    2012-01-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail. PMID:22941288

  13. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products.

    PubMed

    Tabassum, Nadia; Tai, Hongmei; Jung, Da-Woon; Williams, Darren R

    2015-01-01

    Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential "hits" fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a "bridge" to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories.

  14. Natural Products as a Source for Novel Antibiotics.

    PubMed

    Moloney, Mark G

    2016-08-01

    Natural products have historically been of crucial importance in the identification and development of antibacterial agents. Interest in these systems has waned in recent years, but the rapid emergence of resistant bacterial strains has forced their re-evaluation as a route to identify novel chemical skeletons with antibacterial activity for elaboration in drug development. This overview examines the current situation, highlights new natural product systems which have been found, together with re-examination of some old ones, and new technologies for their identification. While natural products certainly have the potential to re-emerge as a key start-point in antibacterial drug discovery, reports of new or reinvestigated structures need to be supported with sufficient quality chemical (solubility, stability), biochemical (including toxicity in particular, along with target information) and microbiological [minimum inhibitory concentration (MIC) and resistance frequency] validation data to assist in the identification of promising hit structures and to avoid wasted effort from trawling over already cultivated territory. This is particularly important in a resource-limited research environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Recent (2000-2015) developments in the analysis of minor unknown natural products based on characteristic fragment information using LC-MS.

    PubMed

    Cai, Tian; Guo, Ze-Qin; Xu, Xiao-Ying; Wu, Zhi-Jun

    2018-03-01

    Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MS n spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018. © 2016 Wiley Periodicals, Inc.

  16. Genome mining for ribosomally synthesized natural products.

    PubMed

    Velásquez, Juan E; van der Donk, Wilfred A

    2011-02-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  18. In situ monitoring of tracer tests: how to distinguish tracer recovery from natural background

    NASA Astrophysics Data System (ADS)

    Bailly-Comte, V.; Durepaire, X.; Batiot-Guilhe, C.; Schnegg, P.-A.

    2018-03-01

    Hydrogeological tracer tests are primarily conducted with fluorescent tracers. Field fluorometers make it possible to monitor tracers at very low concentrations (<1 ppb) and at high frequency. However, changes in natural fluorescence at a site resulting from variations of dissolved and suspended inorganic and organic material may compromise the measurement of useful signals, thereby limiting the chances of identifying or quantifying the real tracer recovery. An elevated natural signal can mask small concentrations of the tracer while its variability can give the impression of a false recovery. This article shows how the use of a combination of several continuous measurements at different wavelengths allows a better extraction of the natural signal. Field multispectral fluorometers were installed at two Mediterranean karst outlets; both drain carbonate systems but have different environmental conditions. The fluorometers functioned over several hydrologic cycles, in periods affected or not by artificial tracers, making it possible to observe natural signal variations at these sites. The optical properties of this type of field fluorometer were used to calculate the spectral response of the different optics of the measuring probe. These responses, superimposed on three-dimensional excitation/emission matrices produced from laboratory fluorescence measurements, allowed an understanding of what the fluorometer sees under natural flow conditions. The result is an innovative method for correcting artificial tracer results. This type of correction makes it possible to fine-tune the effect of natural background variation on tracer recovery curves for a clear identification of the tracer presence and a more precise quantification of its recovery.

  19. Collective Syntheses of Icetexane Natural Products Based on Biogenetic Hypotheses.

    PubMed

    Thommen, Christophe; Neuburger, Markus; Gademann, Karl

    2017-01-01

    A divergent synthesis of 10 icetexane natural products based on a proposed biogenetic cationic ring expansion of a reduced carnosic acid derivative is described. Of these icetexanes, (+)-salvicanol, (-)-cyclocoulterone, (-)-coulterone, (-)-obtusinone D, and (-)-obtusinone E have been synthesized for the first time. In addition, the hypothesis for the non-enzymatic biogenesis of benzo[1,3]dioxole natural products has been experimentally investigated. Additional experimental evidence for the abiotic formation of the methylenedioxy unit is provided, as photolysis of the quinone (+)-komaroviquinone resulted in the formation of the [1,3]dioxole-containing natural product (-)-cyclocoulterone and (+)-komarovispirone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Natural-product-derived fragments for fragment-based ligand discovery

    NASA Astrophysics Data System (ADS)

    Over, Björn; Wetzel, Stefan; Grütter, Christian; Nakai, Yasushi; Renner, Steffen; Rauh, Daniel; Waldmann, Herbert

    2013-01-01

    Fragment-based ligand and drug discovery predominantly employs sp2-rich compounds covering well-explored regions of chemical space. Despite the ease with which such fragments can be coupled, this focus on flat compounds is widely cited as contributing to the attrition rate of the drug discovery process. In contrast, biologically validated natural products are rich in stereogenic centres and populate areas of chemical space not occupied by average synthetic molecules. Here, we have analysed more than 180,000 natural product structures to arrive at 2,000 clusters of natural-product-derived fragments with high structural diversity, which resemble natural scaffolds and are rich in sp3-configured centres. The structures of the cluster centres differ from previously explored fragment libraries, but for nearly half of the clusters representative members are commercially available. We validate their usefulness for the discovery of novel ligand and inhibitor types by means of protein X-ray crystallography and the identification of novel stabilizers of inactive conformations of p38α MAP kinase and of inhibitors of several phosphatases.

  1. Toxic Element Contamination of Natural Health Products and Pharmaceutical Preparations

    PubMed Central

    Genuis, Stephen J.; Schwalfenberg, Gerry; Siy, Anna-Kristen J.; Rodushkin, Ilya

    2012-01-01

    Background Concern has recently emerged regarding the safety of natural health products (NHPs)–therapies that are increasingly recommended by various health providers, including conventional physicians. Recognizing that most individuals in the Western world now consume vitamins and many take herbal agents, this study endeavored to determine levels of toxic element contamination within a range of NHPs. Methods Toxic element testing was performed on 121 NHPs (including Ayurvedic, traditional Chinese, and various marine-source products) as well as 49 routinely prescribed pharmaceutical preparations. Testing was also performed on several batches of one prenatal supplement, with multiple samples tested within each batch. Results were compared to existing toxicant regulatory limits. Results Toxic element contamination was found in many supplements and pharmaceuticals; levels exceeding established limits were only found in a small percentage of the NHPs tested and none of the drugs tested. Some NHPs demonstrated contamination levels above preferred daily endpoints for mercury, cadmium, lead, arsenic or aluminum. NHPs manufactured in China generally had higher levels of mercury and aluminum. Conclusions Exposure to toxic elements is occurring regularly as a result of some contaminated NHPs. Best practices for quality control–developed and implemented by the NHP industry with government oversight–is recommended to guard the safety of unsuspecting consumers. PMID:23185404

  2. Survey of natural products reported by Asian research groups in 2016.

    PubMed

    Liu, Yan-Fei; Yu, Shi-Shan

    2017-11-01

    The new natural products reported in peer-reviewed articles in 2016 in journals with good reputations were reviewed and analyzed. The advances that Asian research groups made in the field of natural products chemistry in 2016 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on structural classification.

  3. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any

  4. Importance of microbial natural products and the need to revitalize their discovery.

    PubMed

    Demain, Arnold L

    2014-02-01

    Microbes are the leading producers of useful natural products. Natural products from microbes and plants make excellent drugs. Significant portions of the microbial genomes are devoted to production of these useful secondary metabolites. A single microbe can make a number of secondary metabolites, as high as 50 compounds. The most useful products include antibiotics, anticancer agents, immunosuppressants, but products for many other applications, e.g., antivirals, anthelmintics, enzyme inhibitors, nutraceuticals, polymers, surfactants, bioherbicides, and vaccines have been commercialized. Unfortunately, due to the decrease in natural product discovery efforts, drug discovery has decreased in the past 20 years. The reasons include excessive costs for clinical trials, too short a window before the products become generics, difficulty in discovery of antibiotics against resistant organisms, and short treatment times by patients for products such as antibiotics. Despite these difficulties, technology to discover new drugs has advanced, e.g., combinatorial chemistry of natural product scaffolds, discoveries in biodiversity, genome mining, and systems biology. Of great help would be government extension of the time before products become generic.

  5. Seeking new anti-cancer agents from autophagy-regulating natural products.

    PubMed

    Hua, Fang; Shang, Shuang; Hu, Zhuo-Wei

    2017-04-01

    Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.

  6. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  7. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  8. Mapping of Sample Collection Data: GIS Tools for the Natural Product Researcher

    PubMed Central

    Oberlies, Nicholas H.; Rineer, James I.; Alali, Feras Q.; Tawaha, Khaled; Falkinham, Joseph O.; Wheaton, William D.

    2009-01-01

    Scientists engaged in the research of natural products often either conduct field collections themselves or collaborate with partners who do, such as botanists, mycologists, or SCUBA divers. The information gleaned from such collecting trips (e.g. longitude/latitude coordinates, geography, elevation, and a multitude of other field observations) have provided valuable data to the scientific community (e.g., biodiversity), even if it is tangential to the direct aims of the natural products research, which are often focused on drug discovery and/or chemical ecology. Geographic Information Systems (GIS) have been used to display, manage, and analyze geographic data, including collection sites for natural products. However, to the uninitiated, these tools are often beyond the financial and/or computational means of the natural product scientist. With new, free, and easy-to-use geospatial visualization tools, such as Google Earth, mapping and geographic imaging of sampling data are now within the reach of natural products scientists. The goals of the present study were to develop simple tools that are tailored for the natural products setting, thereby presenting a means to map such information, particularly via open source software like Google Earth. PMID:20161345

  9. A comprehensive review of glycosylated bacterial natural products

    PubMed Central

    Elshahawi, Sherif I.; Shaaban, Khaled A.; Kharel, Madan K.

    2015-01-01

    A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts. PMID:25735878

  10. Informatic search strategies to discover analogues and variants of natural product archetypes.

    PubMed

    Johnston, Chad W; Connaty, Alex D; Skinnider, Michael A; Li, Yong; Grunwald, Alyssa; Wyatt, Morgan A; Kerr, Russell G; Magarvey, Nathan A

    2016-03-01

    Natural products are a crucial source of antimicrobial agents, but reliance on low-resolution bioactivity-guided approaches has led to diminishing interest in discovery programmes. Here, we demonstrate that two in-house automated informatic platforms can be used to target classes of biologically active natural products, specifically, peptaibols. We demonstrate that mass spectrometry-based informatic approaches can be used to detect natural products with high sensitivity, identifying desired agents present in complex microbial extracts. Using our specialised software packages, we could elaborate specific branches of chemical space, uncovering new variants of trichopolyn and demonstrating a way forward in mining natural products as a valuable source of potential pharmaceutical agents.

  11. ASSESSMENT OF FUNCTIONAL CHANGES TEAR PRODUCTION UNDER THE ACTION OF THE EYE DROPS ON THE BASE OF NATURAL MOLECULE OF ECTOINE AND ARTIFICIAL TEARS IN PATIENTS WITH DRY EYE SYNDROME ON THE BACKGROUND OF ENDOCRINE OPHTHALMOPATHY.

    PubMed

    Veselovskaya, N N; Zherebko, I B

    Conducted a comparative analysis of functional changes in tear production in patients with dry eye syndrome and endocrine ophthalmopathy in the conditions of the long-term acting of preservative free medications based on natural substances. A total of 30 people, aged 35 to 53 years old with clinical manifestations of DES on the background of EO were divided on two groups. In I group eye drops of ectoine and in II - artificial tears were administered. The examination included general and specific methods. The term of follow up - 30 days. It was found that long-term use of preservative free eye drops based on ectoine leads to more expressive positive changes in the condition of the anterior surface of the eye and the secretion and quality of the tear.

  12. Bioactive natural products in cancer prevention and therapy: Progress and promise.

    PubMed

    Bishayee, Anupam; Sethi, Gautam

    2016-10-01

    Natural products represent a rich source for the discovery and development of cancer preventive and anticancer drugs. Nearly, 80% of all drugs approved by the United States Food and Drug Administration during the last three decades for cancer therapy are either natural products per se or are based thereon, or mimicked natural products in one form or another. With the advent and refinement of new technologies, such as genetic techniques for production of secondary plant metabolites, combinatorial synthesis and high-throughput screening, it is expected that novel compounds from natural sources, including medicinal plants, would be identified and developed as safe and effective chemopreventive and anticancer drugs. Numerous bioactive natural compounds have been shown to be useful in prevention and therapy of cancer by targeting various signaling molecules and pathways. Extensive literature underscores the anticancer and chemopreventive activity of a plethora of naturally occurring agents, including phytochemicals. Several of these molecules have been tested in clinical trials and some of them have shown promise in combination therapy when administered along with standard chemotherapeutic agents. Thus, accelerated chemopreventive and chemotherapeutic drug development from natural sources is of great importance. In this special theme issue, contributions from eminent scientists and scholars around the world presented critical analysis of the current progress and promise of natural bioactive constituents in cancer prevention and therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A systematic approach to identify therapeutic effects of natural products based on human metabolite information.

    PubMed

    Noh, Kyungrin; Yoo, Sunyong; Lee, Doheon

    2018-06-13

    Natural products have been widely investigated in the drug development field. Their traditional use cases as medicinal agents and their resemblance of our endogenous compounds show the possibility of new drug development. Many researchers have focused on identifying therapeutic effects of natural products, yet the resemblance of natural products and human metabolites has been rarely touched. We propose a novel method which predicts therapeutic effects of natural products based on their similarity with human metabolites. In this study, we compare the structure, target and phenotype similarities between natural products and human metabolites to capture molecular and phenotypic properties of both compounds. With the generated similarity features, we train support vector machine model to identify similar natural product and human metabolite pairs. The known functions of human metabolites are then mapped to the paired natural products to predict their therapeutic effects. With our selected three feature sets, structure, target and phenotype similarities, our trained model successfully paired similar natural products and human metabolites. When applied to the natural product derived drugs, we could successfully identify their indications with high specificity and sensitivity. We further validated the found therapeutic effects of natural products with the literature evidence. These results suggest that our model can match natural products to similar human metabolites and provide possible therapeutic effects of natural products. By utilizing the similar human metabolite information, we expect to find new indications of natural products which could not be covered by previous in silico methods.

  14. Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products.

    PubMed

    Jamison, Christopher R; Badillo, Joseph J; Lipshultz, Jeffrey M; Comito, Robert J; MacMillan, David W C

    2017-12-01

    In nature, many organisms generate large families of natural product metabolites that have related molecular structures as a means to increase functional diversity and gain an evolutionary advantage against competing systems within the same environment. One pathway commonly employed by living systems to generate these large classes of structurally related families is oligomerization, wherein a series of enzymatically catalysed reactions is employed to generate secondary metabolites by iteratively appending monomers to a growing serial oligomer chain. The polypyrroloindolines are an interesting class of oligomeric natural products that consist of multiple cyclotryptamine subunits. Herein we describe an iterative application of asymmetric copper catalysis towards the synthesis of six distinct oligomeric polypyrroloindoline natural products: hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridine B and C. Given the customizable nature of the small-molecule catalysts employed, we demonstrate that this strategy is further amenable to the construction of quadrigemine H-type alkaloids not isolated previously from natural sources.

  15. Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products

    NASA Astrophysics Data System (ADS)

    Jamison, Christopher R.; Badillo, Joseph J.; Lipshultz, Jeffrey M.; Comito, Robert J.; MacMillan, David W. C.

    2017-12-01

    In nature, many organisms generate large families of natural product metabolites that have related molecular structures as a means to increase functional diversity and gain an evolutionary advantage against competing systems within the same environment. One pathway commonly employed by living systems to generate these large classes of structurally related families is oligomerization, wherein a series of enzymatically catalysed reactions is employed to generate secondary metabolites by iteratively appending monomers to a growing serial oligomer chain. The polypyrroloindolines are an interesting class of oligomeric natural products that consist of multiple cyclotryptamine subunits. Herein we describe an iterative application of asymmetric copper catalysis towards the synthesis of six distinct oligomeric polypyrroloindoline natural products: hodgkinsine, hodgkinsine B, idiospermuline, quadrigemine H and isopsychotridine B and C. Given the customizable nature of the small-molecule catalysts employed, we demonstrate that this strategy is further amenable to the construction of quadrigemine H-type alkaloids not isolated previously from natural sources.

  16. Dietary Natural Products for Prevention and Treatment of Liver Cancer

    PubMed Central

    Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Li, Sha; Li, Hua-Bin

    2016-01-01

    Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action. PMID:26978396

  17. Genomic basis for natural product biosynthetic diversity in the actinomycetes†

    PubMed Central

    Nett, Markus; Ikeda, Haruo; Moore, Bradley S.

    2010-01-01

    The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora. These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references. PMID:19844637

  18. Supercritical Fluid Chromatography in Natural Product Analysis - An Update.

    PubMed

    Gibitz Eisath, Nora; Sturm, Sonja; Stuppner, Hermann

    2018-04-01

    The wide chemical diversity of natural products has challenged analysts all over the world and has been a driving force for the development of innovative technologies since decades. In the last years, supercritical fluid chromatography (SFC) has finally emerged from the shadow of liquid chromatography (LC) and gas chromatography (GC) and has become a powerful tool in modern natural product analysis. Whereas in the past the technique had mainly been restricted to a small group of nonpolar compounds, it has largely expanded its suitability in the last years and has demonstrated possibilities without boundaries. This mini-review, focused on the latest applications, provides a brief update on the current status of SFC in natural product analysis with the aim to demonstrate its applicability for both polar and nonpolar plant constituents. The approaches cover the whole range of polarity, including carotenoids, flavonoids, water-unstable ginkgolides, and even highly polar triterpene saponins with several sugar residues. Georg Thieme Verlag KG Stuttgart · New York.

  19. Natural Products: An Alternative to Conventional Therapy for Dermatophytosis?

    PubMed

    Lopes, Graciliana; Pinto, Eugénia; Salgueiro, Lígia

    2017-02-01

    The increased incidence of fungal infections, associated with the widespread use of antifungal drugs, has resulted in the development of resistance, making it necessary to discover new therapeutic alternatives. Among fungal infections, dermatophytoses constitute a serious public health problem, affecting 20-25 % of the world population. Medicinal plants represent an endless source of bioactive molecules, and their volatile and non-volatile extracts are clearly recognized for being the historical basis of therapeutic health care. Because of this, the research on natural products with antifungal activity against dermatophytes has considerably increased in recent years. However, despite the recognized anti-dermatophytic potential of natural products, often advantageous face to commercial drugs, there is still a long way to go until their use in therapeutics. This review attempts to summarize the current status of anti-dermatophytic natural products, focusing on their mechanism of action, the developed pharmaceutical formulations and their effectiveness in human and animal models of infection.

  20. Effect of natural products on diabetes associated neurological disorders.

    PubMed

    Patel, Sita Sharan; Udayabanu, Malairaman

    2017-04-01

    Diabetes mellitus, a metabolic disorder, is associated with neurological complications such as depression, anxiety, hypolocomotion, cognitive dysfunction, phobias, anorexia, stroke, pain, etc. Traditional system of medicine is long known for its efficient management of diabetes. The current review discusses the scope of some common medicinal herbs as well as secondary metabolites with a special focus on diabetes-mediated central nervous system complications. Literatures suggest that natural products reduce diabetes-mediated neurological complications partly by reducing oxidative stress and/or inflammation or apoptosis in certain brain regions. Natural products are known to modulate diabetes-mediated alterations in the level of acetylcholinesterase, choline acetyltransferase, monoamine oxidase, serotonin receptors, muscarinic receptors, insulin receptor, nerve growth factor, brain-derived neurotrophic factor, and neuropeptide in brain. Further, there are several natural products reported to manage diabetic complications with unknown mechanism. In conclusion, medicinal plants or their secondary metabolites have a wide scope and possess therapeutic potential to effectively manage neurological complications associated with chronic diabetes.

  1. Dereplication of peptidic natural products through database search of mass spectra

    PubMed Central

    Mohimani, Hosein; Gurevich, Alexey; Mikheenko, Alla; Garg, Neha; Nothias, Louis-Felix; Ninomiya, Akihiro; Takada, Kentaro; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2016-01-01

    Peptidic Natural Products (PNPs) are widely used compounds that include many antibiotics and a variety of other bioactive peptides. While recent breakthroughs in PNP discovery raised the challenge of developing new algorithms for their analysis, identification of PNPs via database search of tandem mass spectra remains an open problem. To address this problem, natural product researchers utilize dereplication strategies that identify known PNPs and lead to the discovery of new ones even in cases when the reference spectra are not present in existing spectral libraries. DEREPLICATOR is a new dereplication algorithm that enabled high-throughput PNP identification and that is compatible with large-scale mass spectrometry-based screening platforms for natural product discovery. After searching nearly one hundred million tandem mass spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure, DEREPLICATOR identified an order of magnitude more PNPs (and their new variants) than any previous dereplication efforts. PMID:27820803

  2. Anti-Biofilm Performance of Three Natural Products against Initial Bacterial Attachment

    PubMed Central

    Salta, Maria; Wharton, Julian A.; Dennington, Simon P.; Stoodley, Paul; Stokes, Keith R.

    2013-01-01

    Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment) and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement). This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+)-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Bioassays were developed using quantitative imaging and fluorescent labelling to test the natural products over a range of concentrations against initial bacterial attachment. All natural products affected bacterial attachment; however, juglone demonstrated the best anti-biofilm performance against both bacterial species at a concentration range between 5–20 ppm. In addition, for the first time, a dose-dependent inhibition (hormetic) response was observed for natural products against marine biofilm forming bacteria. PMID:24192819

  3. Natural Product Potential of the Genus Nocardiopsis

    PubMed Central

    Ibrahim, Alyaa Hatem; Desoukey, Samar Yehia; Fouad, Mostafa A.; Kamel, Mohamed Salah; Gulder, Tobias A. M.; Abdelmohsen, Usama Ramadan

    2018-01-01

    Actinomycetes are a relevant source of novel bioactive compounds. One of the pharmaceutically and biotechnologically important genera that attract natural products research is the genus Nocardiopsis, mainly for its ability to produce a wide variety of secondary metabolites accounting for its wide range of biological activities. This review covers the literature from January 2015 until February 2018 making a complete survey of all the compounds that were isolated from the genus Nocardiopsis, their biological activities, and natural sources, whenever applicable. PMID:29710816

  4. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents.

    PubMed

    Farah, Shrouq I; Abdelrahman, Abd Almonem; North, E Jeffrey; Chauhan, Harsh

    2016-01-01

    Current tuberculosis (TB) treatment suffers from complexity of the dosage regimens, length of treatment, and toxicity risks. Many natural products have shown activity against drug-susceptible, drug-resistant, and latent/dormant Mycobacterium tuberculosis, the pathogen responsible for TB infections. Natural sources, including plants, fungi, and bacteria, provide a rich source of chemically diverse compounds equipped with unique pharmacological, pharmacokinetic, and pharmacodynamic properties. This review focuses on natural products as starting points for the discovery and development of novel anti-TB chemotherapy and classifies them based on their chemical nature. The classes discussed are divided into alkaloids, chalcones, flavonoids, peptides, polyketides, steroids, and terpenes. This review also highlights the importance of collaboration between phytochemistry, medicinal chemistry, and physical chemistry, which is very important for the development of these natural compounds.

  5. Natural products as potential anticonvulsants: caffeoylquinic acids.

    PubMed

    Kim, Hyo Geun; Oh, Myung Sook

    2012-03-01

    Current anticonvulsant therapies are generally directed at symptomatic treatment by suppressing excitability within the brain. Consequently, they have adverse effects such as cognitive impairment, dependence, and abuse. The need for more effective and less toxic anticonvulsants has generated renewed interest in natural products for the treatment of convulsions. Caffeoylquinic acids (CQs) are naturally occurring phenolic acids that are distributed widely in plants. There has been increasing interest in the biological activities of CQs in diseases of the central nervous system. In this issue, Nugroho et al. give evidence for the anticonvulsive effect of a CQ-rich extract from Aster glehni Franchet et Sckmidt. They optimized the extract solvent conditions, resulting in high levels of CQs and peroxynitrite-scavenging activity. Then, they investigated the sedative and anticonvulsive effects in pentobarbital- and pentylenetetrazole-induced models in mice. The CQ-rich extract significantly inhibited tonic convulsions as assessed by onset time, tonic extent, and mortality. They suggested that the CQ-rich extract from A. glehni has potential for treating convulsions. This report provides preclinical data which may be used for the development of anticonvulsants from natural products.

  6. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM).

    PubMed

    Skinnider, Michael A; Dejong, Chris A; Rees, Philip N; Johnston, Chad W; Li, Haoxin; Webster, Andrew L H; Wyatt, Morgan A; Magarvey, Nathan A

    2015-11-16

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Natural products as inspiration for the development of new synthetic methods.

    PubMed

    Ma, Zhiqiang; Chen, Chuo

    2018-01-01

    Natural products have played an important role in shaping modern synthetic organic chemistry. In particular, their complex molecular skeletons have stimulated the development of many new synthetic methods. We highlight in this article some recent examples of synthetic design inspired by the biosynthesis of natural products.

  8. Therapeutic potential of natural products in Parkinson's disease.

    PubMed

    Mythri, Rajeswara B; Harish, Gangadharappa; Bharath, M M

    2012-09-01

    The central objective in treating patients with Parkinson's disease (PD) is two-fold (i) to increase the striatal dopamine content and (ii) to prevent further degeneration of the surviving dopaminergic neurons in the substantia nigra region of the ventral midbrain. Most of the current PD drugs contribute to the former and provide symptomatic relief. Although compounds such as Levodopa (L-DOPA) improve the striatal dopamine content, their long-term usage is associated with progressive decrease in drug response, motor fluctuations, dyskinesias and drug-induced toxicity. In addition, these drugs fail to prevent the progression of the degenerative process. This has shifted the focus onto alternative therapeutic approaches involving natural products that could provide independent therapy or offer neuroprotective support to the existing drugs. The current review describes the neuroprotective and therapeutic utility of such natural products including herbal extracts, phytochemicals and bioactive ingredients from other natural sources either in isolation or in combination, with potential application in PD, highlighting the relevant patents.

  9. Discovery of novel drug targets and their functions using phenotypic screening of natural products.

    PubMed

    Chang, Junghwa; Kwon, Ho Jeong

    2016-03-01

    Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.

  10. Natural background levels and threshold values for groundwater in fluvial Pleistocene and Tertiary marine aquifers in Flanders, Belgium

    NASA Astrophysics Data System (ADS)

    Coetsiers, Marleen; Blaser, Petra; Martens, Kristine; Walraevens, Kristine

    2009-05-01

    Aquifers from the same typology can have strongly different groundwater chemistry. Deducing the groundwater quality of less well-characterized aquifers from well-documented aquifers belonging to the same typology should be done with great reserve, and can only be considered as a preliminary approach. In the EU’s 6th FP BRIDGE project “Background cRiteria for the IDentification of Groundwater thrEsholds”, a methodology for the derivation of threshold values (TV) for groundwater bodies is proposed. This methodology is tested on four aquifers in Flanders of the sand and gravel typology. The methodology works well for all but the Ledo-Paniselian aquifer, where the subdivision into a fresh and saline part is disproved, as a gradual natural transition from fresh to saline conditions in the aquifer is observed. The 90 percentile is proposed as natural background level (NBL) for the unconfined Pleistocene deposits, ascribing the outliers to possible influence of pollution. For the Tertiary aquifers, high values for different parameters have a natural origin and the 97.7 percentile is preferred as NBL. The methodology leads to high TVs for parameters presenting low NBL, when compared to the standard used as a reference. This would allow for substantial anthropogenic inputs of these parameters.

  11. [Advances in the study of anti-MRSA natural products].

    PubMed

    Song, Hao; Qin, Yong

    2016-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a multi-drug resistant pathogenic bacteria, which has seriously threatened human health for a long time. Discovery of novel anti-MRSA lead compounds with high efficiency and low toxicity represents an important research focus in the realm of antibiotic studies. Owing to their structural diversity and complexity, natural products have exhibited unique advantages and great potential in the development of anti-MRSA new drugs.This review summarizes the studies of anti-MRSA natural products and their relevant medicinal chemistry reported since 2010.

  12. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    PubMed

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  13. HEx: A heterologous expression platform for the discovery of fungal natural products

    PubMed Central

    Schlecht, Ulrich; Horecka, Joe; Lin, Hsiao-Ching; Naughton, Brian; Miranda, Molly; Li, Yong Fuga; Hennessy, James R.; Vandova, Gergana A.; Steinmetz, Lars M.; Sattely, Elizabeth; Khosla, Chaitan; Hillenmeyer, Maureen E.

    2018-01-01

    For decades, fungi have been a source of U.S. Food and Drug Administration–approved natural products such as penicillin, cyclosporine, and the statins. Recent breakthroughs in DNA sequencing suggest that millions of fungal species exist on Earth, with each genome encoding pathways capable of generating as many as dozens of natural products. However, the majority of encoded molecules are difficult or impossible to access because the organisms are uncultivable or the genes are transcriptionally silent. To overcome this bottleneck in natural product discovery, we developed the HEx (Heterologous EXpression) synthetic biology platform for rapid, scalable expression of fungal biosynthetic genes and their encoded metabolites in Saccharomyces cerevisiae. We applied this platform to 41 fungal biosynthetic gene clusters from diverse fungal species from around the world, 22 of which produced detectable compounds. These included novel compounds with unexpected biosynthetic origins, particularly from poorly studied species. This result establishes the HEx platform for rapid discovery of natural products from any fungal species, even those that are uncultivable, and opens the door to discovery of the next generation of natural products. PMID:29651464

  14. Research Progress in Reversal of Tumor Multi-drug Resistance via Natural Products.

    PubMed

    Guo, Qi; Cao, Hongyan; Qi, Xianghui; Li, Huikai; Ye, Peizhi; Wang, Zhiguo; Wang, Danqiao; Sun, Mingyu

    2017-11-24

    Multidrug resistance occurs when a tumor develops resistance to multiple chemotherapeutic drugs, which may include antitumor drugs with different chemical structures and mechanisms. Multidrug resistance limits the treatment effects of antitumor drugs, and is the main cause of chemotherapy failure. Multidrug resistance is caused by numerous factors including changes in ATP-binding cassette transporters, target proteins, detoxification, deoxyribonucleic acid repair, drug metabolic enzymes, and signal pathways of apoptosis. Clinical research indicates that natural products have great potential to treat tumors and reverse multidrug resistance. Natural products, which often have multiple targets, could play an important role in tumor treatment, have beneficial effects on tumor inhibition, improve symptoms, reduce radiotherapy and chemotherapy side effects, enhance immunity, and prolong survival. Because natural products often have few adverse reactions and less drug resistance, the antitumor activities of natural products have attracted extensive research. We aimed to review the basic research and clinical application of natural products in the reversal of multidrug resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells.

    PubMed

    Li, Xinxin; Dong, Wenjuan; Nalin, Ansel P; Wang, Yufeng; Pan, Pan; Xu, Bo; Zhang, Yibo; Tun, Steven; Zhang, Jianying; Wang, Li-Shu; He, Xiaoming; Caligiuri, Michael A; Yu, Jianhua

    2018-01-01

    Natural products comprise an important class of biologically active molecules. Many of these compounds derived from natural sources exhibit specific physiologic or biochemical effects. An example of a natural product is chitosan, which is enriched in the shells of certain seafood that are frequently consumed worldwide. Like other natural products, chitosan has the potential for applications in clinical medicine and perhaps in cancer therapy. Toward this end, the immunomodulatory or anti-cancer properties of chitosan have yet to be reported. In this study, we discovered that chitosan enhanced the anti-tumor activity of natural killer (NK) cells by activating dendritic cells (DCs). In the presence of DCs, chitosan augmented IFN-γ production by human NK cells. Mechanistically, chitosan activated DCs to express pro-inflammatory cytokines such as interleukin (IL)-12 and IL-15, which in turn activated the STAT4 and NF-κB signaling pathways, respectively, in NK cells. Moreover, chitosan promoted NK cell survival, and also enhanced NK cell cytotoxicity against leukemia cells. Finally, a related in vivo study demonstrated that chitosan activated NK cells against B16F10 tumor cells in an immunocompetent syngeneic murine melanoma model. This effect was accompanied by in vivo upregulation of IL-12 and IL-15 in DCs, as well as increased IFN-γ production and cytolytic degranulation in NK cells. Collectively, our results demonstrate that chitosan activates DCs leading to enhanced capacity for immune surveillance by NK cells. We believe that our study has future clinical applications for chitosan in the prevention or treatment of cancer and infectious diseases.

  16. The Colour of Velvet. A Transdisciplinary Approach to Connecting Students from a Refugee Background to the Natural World

    ERIC Educational Resources Information Center

    Brown, Leni; O'Keefe, Lise; Paige, Kathryn

    2017-01-01

    What pedagogical strategies support students from a refugee background connecting to the natural world? What would these strategies look like for fifteen students participating in a language intensive New Arrivals Program (NAP)? These questions were the focus of a small collaborative project set up to investigate the impact of pedagogical…

  17. Updates on Managing Type 2 Diabetes Mellitus with Natural Products: Towards Antidiabetic Drug Development.

    PubMed

    Alam, Fahmida; Islam, Md Asiful; Kamal, M A; Gan, Siew Hua

    2016-08-13

    Over the years, natural products have shown success as antidiabetics in vitro, in vivo and in clinical trials. Because natural product-derived drugs are more affordable and effective with fewer side-effects compared to conventional therapies, pharmaceutical research is increasingly leaning towards the discovery of new antidiabetic drugs from natural products targeting pathways or components associated with type 2 diabetes mellitus (T2DM) pathophysiology. However, the drug discovery process is very lengthy and costly with significant challenges. Therefore, various techniques are currently being developed for the preclinical research phase of drug discovery with the aim of drug development with less time and efforts from natural products. In this review, we have provided an update on natural products including fruits, vegetables, spices, nuts, beverages and mushrooms with potential antidiabetic activities from in vivo, in vitro and clinical studies. Synergistic interactions between natural products and antidiabetic drugs; and potential antidiabetic active compounds from natural products are also documented to pave the way for combination treatment and new drug discovery, respectively. Additionally, a brief idea of the drug discovery process along with the challenges that arise during drug development from natural products and the methods to conquer those challenges are discussed to create a more convenient future drug discovery process.

  18. Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties.

    PubMed

    Yue, Zhenyu; Zhang, Wenna; Lu, Yongming; Yang, Qiaoyue; Ding, Qiuying; Xia, Junfeng; Chen, Yan

    2015-01-01

    Natural products play a significant role in cancer chemotherapy. They are likely to provide many lead structures, which can be used as templates for the construction of novel drugs with enhanced antitumor activity. Traditional research approaches studied structure-activity relationship of natural products and obtained key structural properties, such as chemical bond or group, with the purpose of ascertaining their effect on a single cell line or a single tissue type. Here, for the first time, we develop a machine learning method to comprehensively predict natural products responses against a panel of cancer cell lines based on both the gene expression and the chemical properties of natural products. The results on two datasets, training set and independent test set, show that this proposed method yields significantly better prediction accuracy. In addition, we also demonstrate the predictive power of our proposed method by modeling the cancer cell sensitivity to two natural products, Curcumin and Resveratrol, which indicate that our method can effectively predict the response of cancer cell lines to these two natural products. Taken together, the method will facilitate the identification of natural products as cancer therapies and the development of precision medicine by linking the features of patient genomes to natural product sensitivity.

  19. Strain Prioritization for Natural Product Discovery by a High-Throughput Real-Time PCR Method

    PubMed Central

    2015-01-01

    Natural products offer unmatched chemical and structural diversity compared to other small-molecule libraries, but traditional natural product discovery programs are not sustainable, demanding too much time, effort, and resources. Here we report a strain prioritization method for natural product discovery. Central to the method is the application of real-time PCR, targeting genes characteristic to the biosynthetic machinery of natural products with distinct scaffolds in a high-throughput format. The practicality and effectiveness of the method were showcased by prioritizing 1911 actinomycete strains for diterpenoid discovery. A total of 488 potential diterpenoid producers were identified, among which six were confirmed as platensimycin and platencin dual producers and one as a viguiepinol and oxaloterpin producer. While the method as described is most appropriate to prioritize strains for discovering specific natural products, variations of this method should be applicable to the discovery of other classes of natural products. Applications of genome sequencing and genome mining to the high-priority strains could essentially eliminate the chance elements from traditional discovery programs and fundamentally change how natural products are discovered. PMID:25238028

  20. NPCARE: database of natural products and fractional extracts for cancer regulation.

    PubMed

    Choi, Hwanho; Cho, Sun Young; Pak, Ho Jeong; Kim, Youngsoo; Choi, Jung-Yun; Lee, Yoon Jae; Gong, Byung Hee; Kang, Yeon Seok; Han, Taehoon; Choi, Geunbae; Cho, Yeeun; Lee, Soomin; Ryoo, Dekwoo; Park, Hwangseo

    2017-01-01

    Natural products have increasingly attracted much attention as a valuable resource for the development of anticancer medicines due to the structural novelty and good bioavailability. This necessitates a comprehensive database for the natural products and the fractional extracts whose anticancer activities have been verified. NPCARE (http://silver.sejong.ac.kr/npcare) is a publicly accessible online database of natural products and fractional extracts for cancer regulation. At NPCARE, one can explore 6578 natural compounds and 2566 fractional extracts isolated from 1952 distinct biological species including plants, marine organisms, fungi, and bacteria whose anticancer activities were validated with 1107 cell lines for 34 cancer types. Each entry in NPCARE is annotated with the cancer type, genus and species names of the biological resource, the cell line used for demonstrating the anticancer activity, PubChem ID, and a wealth of information about the target gene or protein. Besides the augmentation of plant entries up to 743 genus and 197 families, NPCARE is further enriched with the natural products and the fractional extracts of diverse non-traditional biological resources. NPCARE is anticipated to serve as a dominant gateway for the discovery of new anticancer medicines due to the inclusion of a large number of the fractional extracts as well as the natural compounds isolated from a variety of biological resources.

  1. Does natural selection organize ecosystems for the maintenance of high productivity and diversity?

    PubMed Central

    Leigh, Egbert Giles; Vermeij, Geerat Jacobus

    2002-01-01

    Three types of evidence suggest that natural ecosystems are organized for high productivity and diversity: (i) changes not previously experienced by a natural ecosystem, such as novel human disturbances, tend to diminish its productivity and/or diversity, just as 'random' changes in a machine designed for a function usually impair its execution of that function; (ii) humans strive to recreate properties of natural ecosystems to enhance productivity of artificial ones, as farmers try to recreate properties of natural soils in their fields; and (iii) productivity and diversity have increased during the Earth's history as a whole, and after every major biotic crisis. Natural selection results in ecosystems organized to maintain high productivity of organic matter and diversity of species, just as competition among individuals in Adam Smith's ideal economy favours high production of wealth and diversity of occupations. In nature, poorly exploited energy attracts more efficient users. This circumstance favours the opening of new ways of life and more efficient recycling of resources, and eliminates most productivity-reducing 'ecological monopolies'. Ecological dominants tend to be replaced by successors with higher metabolism, which respond to more stimuli and engage in more varied interactions. Finally, increasingly efficient predators and herbivores favour faster turnover of resources. PMID:12079531

  2. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy.

    PubMed

    Yarla, Nagendra Sastry; Bishayee, Anupam; Sethi, Gautam; Reddanna, Pallu; Kalle, Arunasree M; Dhananjaya, Bhadrapura Lakkappa; Dowluru, Kaladhar S V G K; Chintala, Ramakrishna; Duddukuri, Govinda Rao

    2016-10-01

    Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A 2 s (PLA 2 s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA 2 s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Chocolate: A Marvelous Natural Product of Chemistry

    ERIC Educational Resources Information Center

    Tannenbaum, Ginger

    2004-01-01

    The study of chocolate, a natural product, can be beneficial for the chemistry students as they ask frequently about the relevancy of their chemistry classes. The history of chocolate, its chemical and physical changes during processing, its composition, different crystalline forms, tempering and its viscosity are discussed.

  4. Inhibition of aflatoxin B production of Aspergillus flavus, isolated from soybean seeds by certain natural plant products.

    PubMed

    Krishnamurthy, Y L; Shashikala, J

    2006-11-01

    The inhibitory effect of cowdung fumes, Captan, leaf powder of Withania somnifera, Hyptis suaveolens, Eucalyptus citriodora, peel powder of Citrus sinensis, Citrus medica and Punica granatum, neem cake and pongamia cake and spore suspension of Trichoderma harzianum and Aspergillus niger on aflatoxin B(1) production by toxigenic strain of Aspergillus flavus isolated from soybean seeds was investigated. Soybean seed was treated with different natural products and fungicide captan and was inoculated with toxigenic strain of A. flavus and incubated for different periods. The results showed that all the treatments were effective in controlling aflatoxin B(1) production. Captan, neem cake, spore suspension of T. harzianum, A. niger and combination of both reduced the level of aflatoxin B(1) to a great extent. Leaf powder of W. somnifera, H. suaveolens, peel powder of C. sinensis, C. medica and pongamia cake also controlled the aflatoxin B(1) production. All the natural product treatments applied were significantly effective in inhibiting aflatoxin B(1) production on soybean seeds by A. flavus. These natural plant products may successfully replace chemical fungicides and provide an alternative method to protect soybean and other agricultural commodities from aflatoxin B(1) production by A. flavus.

  5. Natural Products: Insights into Leishmaniasis Inflammatory Response

    PubMed Central

    Rodrigues, Igor A.; Mazotto, Ana Maria; Cardoso, Verônica; Alves, Renan L.; Amaral, Ana Claudia F.; Silva, Jefferson Rocha de Andrade; Pinheiro, Anderson S.; Vermelho, Alane B.

    2015-01-01

    Leishmaniasis is a vector-borne disease that affects several populations worldwide, against which there are no vaccines available and the chemotherapy is highly toxic. Depending on the species causing the infection, the disease is characterized by commitment of tissues, including the skin, mucous membranes, and internal organs. Despite the relevance of host inflammatory mediators on parasite burden control, Leishmania and host immune cells interaction may generate an exacerbated proinflammatory response that plays an important role in the development of leishmaniasis clinical manifestations. Plant-derived natural products have been recognized as bioactive agents with several properties, including anti-protozoal and anti-inflammatory activities. The present review focuses on the antileishmanial activity of plant-derived natural products that are able to modulate the inflammatory response in vitro and in vivo. The capability of crude extracts and some isolated substances in promoting an anti-inflammatory response during Leishmania infection may be used as part of an effective strategy to fight the disease. PMID:26538837

  6. Prompt photon pair production in association with top-antitop pairs. An important background to intermediate mass Higgs detection

    NASA Astrophysics Data System (ADS)

    Ballestrero, Alessandro; Maina, Ezio

    1991-10-01

    The reaction pp→ t t¯γγ is studied for 80⩽ Mγγ⩽140 GeV, as a possible background to the detection of an intermedia te mass standard model Higgs in the rare ℓ νγγ final state. If the top is not too heavy the prompt photon production, integrated over a window of 6 GeV in Mγγ around the Higgs mass, can be larger than the production of photon pairs from Higgs decay. Standard isolation cuts can effectively dispose of this background for mt⩾150 GeV. For mt∼100 GeV approximately the same nu mber of background and signal events pass the cuts.

  7. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

  8. Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis

    PubMed Central

    Suyama, Takashi L.; Gerwick, William H.; McPhail, Kerry L.

    2011-01-01

    The structural assignment of new natural product molecules supports research in a multitude of disciplines that may lead to new therapeutic agents and or new understanding of disease biology. However, reports of numerous structural revisions, even of recently elucidated natural products, inspired the present survey of techniques used in structural misassignments and subsequent revisions in the context of constitutional or configurational errors. Given the comparatively recent development of marine natural products chemistry, coincident with the modern spectroscopy, it is of interest to consider the relative roles of spectroscopy and chemical synthesis in the structure elucidation and revision of those marine natural products which were initially misassigned. Thus, a tabulated review of all marine natural product structural revisions from 2005 to 2010 is organized according to structural motif revised. Misassignments of constitution are more frequent than perhaps anticipated by reliance on HMBC and other advanced NMR experiments, especially considering the full complement of all natural products. However, these techniques also feature prominently in structural revisions, specifically of marine natural products. Nevertheless, as is the case for revision of relative and absolute configuration, total synthesis is a proven partner for marine, as well as terrestrial, natural products structure elucidation. It also becomes apparent that considerable ‘detective work’ remains in structure elucidation, in spite of the spectacular advances in spectroscopic techniques. PMID:21715178

  9. Discovery of the leinamycin family of natural products by mining actinobacterial genomes.

    PubMed

    Pan, Guohui; Xu, Zhengren; Guo, Zhikai; Hindra; Ma, Ming; Yang, Dong; Zhou, Hao; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Cheng, Jinhua; Van Nieuwerburgh, Filip; Suh, Joo-Won; Duan, Yanwen; Shen, Ben

    2017-12-26

    Nature's ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF-SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF-SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm -type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature's rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature's biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity.

  10. Modern Natural Products Drug Discovery and its Relevance to Biodiversity Conservation†

    PubMed Central

    Kingston, David G. I.

    2010-01-01

    Natural products continue to provide a diverse and unique source of bioactive lead compounds for drug discovery, but maintaining their continued eminence as source compounds is challenging in the face of the changing face of the pharmaceutical industry and the changing nature of biodiversity prospecting brought about by the Convention of Biodiversity. This review provides an overview of some of these challenges, and suggests ways in which they can be addressed so that natural products research can remain a viable and productive route to drug discovery. Results from International Cooperative Biodiversity Groups (ICBGs) working in Madagascar, Panama, and Suriname are used as examples of what can be achieved when biodiversity conservation is linked to drug discovery. PMID:21138324

  11. Anti-Candida albicans natural products, sources of new antifungal drugs: A review.

    PubMed

    Zida, A; Bamba, S; Yacouba, A; Ouedraogo-Traore, R; Guiguemdé, R T

    2017-03-01

    Candida albicans is the most prevalent fungal pathogen in humans. Due to the development of drug resistance, there is today a need for new antifungal agents for the efficient management of C. albicans infections. Therefore, we reviewed antifungal activity, mechanisms of action, possible synergism with antifungal drugs of all natural substances experimented to be efficient against C. albicans for future. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A total of 111 documents were published and highlighted 142 anti-C. albicans natural products. These products are mostly are reported in Asia (44.37%) and America (28.17%). According to in vitro model criteria, from the 142 natural substances, antifungal activity can be considered as important for 40 (28.20%) and moderate for 24 (16.90%). Sixteen products have their antifungal activity confirmed by in vivo gold standard experimentation. Microbial natural products, source of antifungals, have their antifungal mechanism well described in the literature: interaction with ergosterol (polyenes), inhibition 1,3-β-d-glucan synthase (Echinocandins), inhibition of the synthesis of cell wall components (chitin and mannoproteins), inhibition of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase) and inhibition of protein synthesis (sordarins). Natural products from plants mostly exert their antifungal effects by membrane-active mechanism. Some substances from arthropods are also explored to act on the fungal membrane. Interestingly, synergistic effects were found between different classes of natural products as well as between natural products and azoles. Search for anti-C. albicans new drugs is promising since the list of natural substances, which disclose activity against this yeast is today long. Investigations must be pursued not only to found more new anti

  12. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity

    PubMed Central

    Rayan, Anwar; Raiyn, Jamal

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab. PMID:29121120

  13. Chemical proteomics approaches for identifying the cellular targets of natural products

    PubMed Central

    Sieber, S. A.

    2016-01-01

    Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed. PMID:27098809

  14. Chemical proteomics approaches for identifying the cellular targets of natural products.

    PubMed

    Wright, M H; Sieber, S A

    2016-05-04

    Covering: 2010 up to 2016Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.

  15. Genome engineering for microbial natural product discovery.

    PubMed

    Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo

    2018-03-03

    The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Synthesis and characterization of a small analogue of the anticancer natural product leinamycin.

    PubMed

    Keerthi, Kripa; Rajapakse, Anuruddha; Sun, Daekyu; Gates, Kent S

    2013-01-01

    Leinamycin (1) is a Streptomyces-derived natural product that displays nanomolar IC(50) values against human cancer cell lines. In the work described here, we report the synthesis and characterization of a small leinamycin analogue 19 that closely resembles the 'upper-right quadrant' of the natural product, consisting of an alicyclic 1,2-dithiolan-3-one 1-oxide heterocycle connected to an alkene by a two-carbon linker. The results indicate that this small analogue contains the core set of functional groups required to enable thiol-triggered generation of both redox active polysulfides and an episulfonium ion intermediate via the complex reaction cascade first seen in the natural product leinamycin. The small leinamycin analogue 19 caused thiol-triggered oxidative DNA strand cleavage in a manner similar to the natural product, but did not alkyate duplex DNA effectively. This highlights the central role of the 18-membered macrocycle of leinamycin in driving efficient DNA alkylation by the natural product. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. "Pruning of biomolecules and natural products (PBNP)": an innovative paradigm in drug discovery.

    PubMed

    Bathula, Surendar Reddy; Akondi, Srirama Murthy; Mainkar, Prathama S; Chandrasekhar, Srivari

    2015-06-21

    The source or inspiration of many marketed drugs can be traced back to natural product research. However, the chemical structure of natural products covers a wide spectrum from very simple to complex. With more complex structures it is often desirable to simplify the molecule whilst retaining the desired biological activity. This approach seeks to identify the structural unit or pharmacophore responsible for the desired activity. Such pharmacophores have been the start point for a wide range of lead generation and optimisation programmes using techniques such as Biology Oriented Synthesis, Diversity Oriented Synthesis, Diverted Total Synthesis, and Fragment Based Drug Discovery. This review discusses the literature precedence of simplification strategies in four areas of natural product research: proteins, polysaccharides, nucleic acids, and compounds isolated from natural product extracts, and their impact on identifying therapeutic products.

  18. Natural gas production problems : solutions, methodologies, and modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpretmore » and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.« less

  19. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.

    PubMed

    Zou, Huibin; Shi, Mengxun; Zhang, Tongtong; Li, Lei; Li, Liangzhi; Xian, Mo

    2017-10-01

    With the finite supply of petroleum and increasing concern with environmental issues associated with their harvest and processing, the development of more eco-friendly, sustainable alternative biopolymers that can effectively fill the role of petro-polymers has become a major focus. Polyhydroxyalkanoate (PHA) can be naturally produced by many species of bacteria and the PHA synthase is believed to be key enzyme in this natural pathway. Natural PHA synthases are diverse and can affect the properties of the produced PHAs, such as monomer composition, molecular weights, and material properties. Moreover, recent studies have led to major advances in the searching of PHA synthases that display specific properties, as well as engineering efforts that offer more efficient PHA synthases, increased PHA compound production, or even novel biopolyesters which cannot be naturally produced. In this article, we review the updated information of natural PHA synthases and their engineering strategies for improved performance in polyester production. We also speculate future trends on the development of robust PHA synthases and their application in biopolyester production.

  20. Natural products used as a chemical library for protein-protein interaction targeted drug discovery.

    PubMed

    Jin, Xuemei; Lee, Kyungro; Kim, Nam Hee; Kim, Hyun Sil; Yook, Jong In; Choi, Jiwon; No, Kyoung Tai

    2018-01-01

    Protein-protein interactions (PPIs), which are essential for cellular processes, have been recognized as attractive therapeutic targets. Therefore, the construction of a PPI-focused chemical library is an inevitable necessity for future drug discovery. Natural products have been used as traditional medicines to treat human diseases for millennia; in addition, their molecular scaffolds have been used in diverse approved drugs and drug candidates. The recent discovery of the ability of natural products to inhibit PPIs led us to use natural products as a chemical library for PPI-targeted drug discovery. In this study, we collected natural products (NPDB) from non-commercial and in-house databases to analyze their similarities to small-molecule PPI inhibitors (iPPIs) and FDA-approved drugs by using eight molecular descriptors. Then, we evaluated the distribution of NPDB and iPPIs in the chemical space, represented by the molecular fingerprint and molecular scaffolds, to identify the promising scaffolds, which could interfere with PPIs. To investigate the ability of natural products to inhibit PPI targets, molecular docking was used. Then, we predicted a set of high-potency natural products by using the iPPI-likeness score based on a docking score-weighted model. These selected natural products showed high binding affinities to the PPI target, namely XIAP, which were validated in an in vitro experiment. In addition, the natural products with novel scaffolds might provide a promising starting point for further medicinal chemistry developments. Overall, our study shows the potency of natural products in targeting PPIs, which might help in the design of a PPI-focused chemical library for future drug discovery. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Current perspectives in drug discovery against tuberculosis from natural products.

    PubMed

    Nguta, Joseph Mwanzia; Appiah-Opong, Regina; Nyarko, Alexander K; Yeboah-Manu, Dorothy; Addo, Phyllis G A

    2015-09-01

    Currently, one third of the world's population is latently infected with Mycobacterium tuberculosis (MTB), while 8.9-9.9 million new and relapse cases of tuberculosis (TB) are reported yearly. The renewed research interests in natural products in the hope of discovering new and novel antitubercular leads have been driven partly by the increased incidence of multidrug-resistant strains of MTB and the adverse effects associated with the first- and second-line antitubercular drugs. Natural products have been, and will continue to be a rich source of new drugs against many diseases. The depth and breadth of therapeutic agents that have their origins in the secondary metabolites produced by living organisms cannot be compared with any other source of therapeutic agents. Discovery of new chemical molecules against active and latent TB from natural products requires an interdisciplinary approach, which is a major challenge facing scientists in this field. In order to overcome this challenge, cutting edge techniques in mycobacteriology and innovative natural product chemistry tools need to be developed and used in tandem. The present review provides a cross-linkage to the most recent literature in both fields and their potential to impact the early phase of drug discovery against TB if seamlessly combined. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  2. Marine natural products: a new wave of drugs?

    PubMed Central

    Montaser, Rana; Luesch, Hendrik

    2011-01-01

    The largely unexplored marine world that presumably harbors the most biodiversity may be the vastest resource to discover novel ‘validated’ structures with novel modes of action that cover biologically relevant chemical space. Several challenges, including the supply problem and target identification, need to be met for successful drug development of these often complex molecules; however, approaches are available to overcome the hurdles. Advances in technologies such as sampling strategies, nanoscale NMR for structure determination, total chemical synthesis, fermentation and biotechnology are all crucial to the success of marine natural products as drug leads. We illustrate the high degree of innovation in the field of marine natural products, which in our view will lead to a new wave of drugs that flow into the market and pharmacies in the future. PMID:21882941

  3. 2013-2014 Production of guayule natural rubber in Arizona, U.S.A.

    USDA-ARS?s Scientific Manuscript database

    Natural rubber is a unique biopolymer whose physical properties cannot be replicated in synthetic alternatives; therefore, it is required for production of tires (passenger, truck, and aircraft) and thousands of consumer and medical products. While demand for natural rubber is expected to increase ...

  4. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    PubMed Central

    2011-01-01

    Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal medicinal products already

  5. Nde of Lumber and Natural Fiber Based Products with Air Coupled Ultrasound

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Utrata, David; Kuo, Monlin

    2010-02-01

    Due to the porous nature of wood and natural fiber based products, conventional fluid or gel coupled ultrasonic inspection is unsuitable. Air-coupled ultrasonic transmission scanning, being non-contact, is ideally suited for inspecting lumber, wood and natural fiber based products. We report here several successful applications of air-coupled ultrasound for the inspection of wood. Air-coupled ultrasonic scan at 120 kHz can easily detect "sinker-stock" lumber in which bacterial damage of ray tissue cells had occurred during anaerobic pond storage. Channels in ash lumber board caused by insect bore were imaged in transmission scan. Delamination and material inhomogeneities were mapped out in manufactured wood and natural fiber products including medium density fiberboards, compression molded shredded waste wood with formaldehyde resin, and acoustic panels molded with kenaf fibers. The study has demonstrated some of the capabilities of air-coupled ultrasound in the NDE of forest products.

  6. Production of bio-synthetic natural gas in Canada.

    PubMed

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  7. Do Anti-Bredt Natural Products Exist? Olefin Strain Energy as a Predictor of Isolability.

    PubMed

    Krenske, Elizabeth H; Williams, Craig M

    2015-09-01

    Bredt's rule holds a special place in the realm of physical organic chemistry, but its application to natural products chemistry—the field in which the rule was originally formulated—is not well defined. Herein, the use of olefin strain (OS) energy as a readily calculated predictor of the stability of natural products containing a bridgehead alkene is introduced. Schleyer first used OS energies to classify parent bridgehead alkenes into "isolable", "observable", and "unstable" classes. OS calculations on natural products, using contemporary forcefield methods, unequivocally predict all structurally verified bridgehead alkene natural products to be "isolable". Thus, when one assigns the structure of a putative bridgehead alkene natural product, an OS in the "observable" or "unstable" ranges is a red flag for error. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rational and Efficient Preparative Isolation of Natural Products by MPLC-UV-ELSD based on HPLC to MPLC Gradient Transfer.

    PubMed

    Challal, Soura; Queiroz, Emerson Ferreira; Debrus, Benjamin; Kloeti, Werner; Guillarme, Davy; Gupta, Mahabir Prashad; Wolfender, Jean-Luc

    2015-11-01

    In natural product research, the isolation of biomarkers or bioactive compounds from complex natural extracts represents an essential step for de novo identification and bioactivity assessment. When pure natural products have to be obtained in milligram quantities, the chromatographic steps are generally labourious and time-consuming. In this respect, an efficient method has been developed for the reversed-phase gradient transfer from high-performance liquid chromatography to medium-performance liquid chromatography for the isolation of pure natural products at the level of tens of milligrams from complex crude natural extracts. The proposed method provides a rational way to predict retention behaviour and resolution at the analytical scale prior to medium-performance liquid chromatography, and guarantees similar performances at both analytical and preparative scales. The optimisation of the high-performance liquid chromatography separation and system characterisation allows for the prediction of the gradient at the medium-performance liquid chromatography scale by using identical stationary phase chemistries. The samples were introduced in medium-performance liquid chromatography using a pressure-resistant aluminium dry load cell especially designed for this study to allow high sample loading while maintaining a maximum achievable flow rate for the separation. The method has been validated with a mixture of eight natural product standards. Ultraviolet and evaporative light scattering detections were used in parallel for a comprehensive monitoring. In addition, post-chromatographic mass spectrometry detection was provided by high-throughput ultrahigh-performance liquid chromatography time-of-flight mass spectrometry analyses of all fractions. The processing of all liquid chromatography-mass spectrometry data in the form of an medium-performance liquid chromatography x ultra high-performance liquid chromatography time-of-flight mass spectrometry matrix enabled an

  9. The water-food nexus of natural rubber production

    NASA Astrophysics Data System (ADS)

    Chiarelli, D. D.; Rosa, L.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    The increasing global demand for natural rubber (100% increase in the last 15 years) is for most part met by Malaysia and Indonesia, and - to a lesser extent - other countries in south-east Asia and Africa. The consequent expansion of rubber plantation has often occurred at the expenses of agricultural land for staple food, particularly in southeast Asia, where most of the land suitable for agriculture is already harvested for food crops or other uses. Here we investigate the extent to which the ongoing increase in rubber production is competing with the food system and affecting the livelihoods of rural communities in the areas of production and their appropriation of natural resources, such as water. We also investigate to what extent the expansion of rubber plantations is taking place through large scale land acquisitions (LSLAs) and evaluate the impacts on rural communities. Our results show how rubber production has strong environmental, social and economic impacts. Despite their ability to bring employment and increase the average income of economically disadvantaged areas, rubber plantations may threaten the local water and food security and induce a loss of rural livelihoods, particularly when the new plantations result from LSLAs that displace semi-subsistence forms of production thereby forcing the local populations to depend on global markets.

  10. Natural 'background' soil water repellency in conifer forests: its prediction and relationship to wildfire occurrence

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan; Woods, Scott; Martin, Deborah; Casimiro, Marta

    2013-04-01

    Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by col- lecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were fur- ther analyzed for repellency using WDPT and contact angle (hsl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelma- nii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long- unburnt conifer forest soils of the north-western USA is

  11. Biosynthetic Potential-Based Strain Prioritization for Natural Product Discovery: A Showcase for Diterpenoid-Producing Actinomycetes

    PubMed Central

    2015-01-01

    Natural products remain the best sources of drugs and drug leads and serve as outstanding small-molecule probes to dissect fundamental biological processes. A great challenge for the natural product community is to discover novel natural products efficiently and cost effectively. Here we report the development of a practical method to survey biosynthetic potential in microorganisms, thereby identifying the most promising strains and prioritizing them for natural product discovery. Central to our approach is the innovative preparation, by a two-tiered PCR method, of a pool of pathway-specific probes, thereby allowing the survey of all variants of the biosynthetic machineries for the targeted class of natural products. The utility of the method was demonstrated by surveying 100 strains, randomly selected from our actinomycete collection, for their biosynthetic potential of four classes of natural products, aromatic polyketides, reduced polyketides, nonribosomal peptides, and diterpenoids, identifying 16 talented strains. One of the talented strains, Streptomyces griseus CB00830, was finally chosen to showcase the discovery of the targeted classes of natural products, resulting in the isolation of three diterpenoids, six nonribosomal peptides and related metabolites, and three polyketides. Variations of this method should be applicable to the discovery of other classes of natural products. PMID:24484381

  12. 30 CFR 260.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I measure natural gas production on my... do I measure natural gas production on my eligible lease? You must measure natural gas production on... natural gas, measured according to part 250, subpart L of this title, equals one barrel of oil equivalent...

  13. Amorfrutins are potent antidiabetic dietary natural products

    PubMed Central

    Weidner, Christopher; de Groot, Jens C.; Prasad, Aman; Freiwald, Anja; Quedenau, Claudia; Kliem, Magdalena; Witzke, Annabell; Kodelja, Vitam; Han, Chung-Ting; Giegold, Sascha; Baumann, Matthias; Klebl, Bert; Siems, Karsten; Müller-Kuhrt, Lutz; Schürmann, Annette; Schüler, Rita; Pfeiffer, Andreas F. H.; Schroeder, Frank C.; Büssow, Konrad; Sauer, Sascha

    2012-01-01

    Given worldwide increases in the incidence of obesity and type 2 diabetes, new strategies for preventing and treating metabolic diseases are needed. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a central role in lipid and glucose metabolism; however, current PPARγ-targeting drugs are characterized by undesirable side effects. Natural products from edible biomaterial provide a structurally diverse resource to alleviate complex disorders via tailored nutritional intervention. We identified a family of natural products, the amorfrutins, from edible parts of two legumes, Glycyrrhiza foetida and Amorpha fruticosa, as structurally new and powerful antidiabetics with unprecedented effects for a dietary molecule. Amorfrutins bind to and activate PPARγ, which results in selective gene expression and physiological profiles markedly different from activation by current synthetic PPARγ drugs. In diet-induced obese and db/db mice, amorfrutin treatment strongly improves insulin resistance and other metabolic and inflammatory parameters without concomitant increase of fat storage or other unwanted side effects such as hepatoxicity. These results show that selective PPARγ-activation by diet-derived ligands may constitute a promising approach to combat metabolic disease. PMID:22509006

  14. Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries

    PubMed Central

    Cordier, Christopher; Morton, Daniel; Murrison, Sarah; O'Leary-Steele, Catherine

    2008-01-01

    The purpose of diversity-oriented synthesis is to drive the discovery of small molecules with previously unknown biological functions. Natural products necessarily populate biologically relevant chemical space, since they bind both their biosynthetic enzymes and their target macromolecules. Natural product families are, therefore, libraries of pre-validated, functionally diverse structures in which individual compounds selectively modulate unrelated macromolecular targets. This review describes examples of diversity-oriented syntheses which have, to some extent, been inspired by the structures of natural products. Particular emphasis is placed on innovations that allow the synthesis of compound libraries that, like natural products, are skeletally diverse. Mimicking the broad structural features of natural products may allow the discovery of compounds that modulate the functions of macromolecules for which ligands are not known. The ability of innovations in diversity-oriented synthesis to deliver such compounds is critically assessed. PMID:18663392

  15. Discovery and characterization of natural products that act as pheromones in fish.

    PubMed

    Li, Ke; Buchinger, Tyler J; Li, Weiming

    2018-06-20

    Covering: up to 2018 Fish use a diverse collection of molecules to communicate with conspecifics. Since Karlson and Lüscher termed these molecules 'pheromones', chemists and biologists have joined efforts to characterize their structures and functions. In particular, the understanding of insect pheromones developed at a rapid pace, set, in part, by the use of bioassay-guided fractionation and natural product chemistry. Research on vertebrate pheromones, however, has progressed more slowly. Initially, biologists characterized fish pheromones by screening commercially available compounds suspected to act as pheromones based upon their physiological function. Such biology-driven screening has proven a productive approach to studying pheromones in fish. However, the many functions of fish pheromones and diverse metabolites that fish release make predicting pheromone identity difficult and necessitate approaches led by chemistry. Indeed, the few cases in which pheromone identification was led by natural product chemistry indicated novel or otherwise unpredicted compounds act as pheromones. Here, we provide a brief review of the approaches to identifying pheromones, placing particular emphasis on the promise of using natural product chemistry together with assays of biological activity. Several case studies illustrate bioassay-guided fractionation as an approach to pheromone identification in fish and the unexpected diversity of pheromone structures discovered by natural product chemistry. With recent advances in natural product chemistry, bioassay-guided fractionation is likely to unveil an even broader collection of pheromone structures and enable research that spans across disciplines.

  16. Pyranone natural products as inspirations for catalytic reaction discovery and development.

    PubMed

    McDonald, Benjamin R; Scheidt, Karl A

    2015-04-21

    Natural products continue to provide a wealth of opportunities in the areas of chemical and therapeutic development. These structures are effective measuring sticks for the current state of chemical synthesis as a field and constantly inspire new approaches and strategies. Tetrahydropryans and tetrahydropyran-4-ones are found in numerous bioactive marine natural products and medicinal compounds. Our interest in exploring the therapeutic potential of natural products containing these motifs provided the impetus to explore new methods to access highly functionalized, chiral pyran molecules in the most direct and rapid fashion possible. This goal led to exploration and development of a Lewis acid-mediated Prins reaction between a chiral β-hydroxy-dioxinone and aldehyde to produce a pyran-dioxinone fused product that can be processed in a single pot operation to the desired tetrahydropyran-4-ones in excellent yield and stereoselectivity. Although the Prins reaction is a commonly employed approach toward pyrans, this method uniquely provides a 3-carboxy-trisubstituted pyran and utilizes dioxinones in a manner that was underexplored at the time. The 3-carboxy substituent served as a key synthetic handhold when this method was applied to the synthesis of highly functionalized pyrans within the macrocyclic natural products neopeltolide, okilactiomycin, and exiguolide. When employed in challenging macrocyclizations, this tetrahydropyranone forming reaction proved highly stereoselective and robust. Another major thrust in our lab has been the synthesis of benzopyranone natural products, specifically flavonoids, because this broad and diverse family of compounds possesses an equally broad range of biological and medicinal applications. With the goal of developing a broad platform toward the synthesis of enantioenriched flavonoid analogs and natural products, a biomimetic, asymmetric catalytic approach toward the synthesis of 2-aryl benzopyranones was developed. A

  17. Natural products for chronic cough: Text mining the East Asian historical literature for future therapeutics.

    PubMed

    Shergis, Johannah Linda; Wu, Lei; May, Brian H; Zhang, Anthony Lin; Guo, Xinfeng; Lu, Chuanjian; Xue, Charlie Changli

    2015-08-01

    Chronic cough is a significant health burden. Patients experience variable benefits from over the counter and prescribed products, but there is an unmet need to provide more effective treatments. Natural products have been used to treat cough and some plant compounds such as pseudoephedrine from ephedra and codeine from opium poppy have been developed into drugs. Text mining historical literature may offer new insight for future therapeutic development. We identified natural products used in the East Asian historical literature to treat chronic cough. Evaluation of the historical literature revealed 331 natural products used to treat chronic cough. Products included plants, minerals and animal substances. These natural products were found in 75 different books published between AD 363 and 1911. Of the 331 products, the 10 most frequently and continually used products were examined, taking into consideration findings from contemporary experimental studies. The natural products identified are promising and offer new directions in therapeutic development for treating chronic cough. © The Author(s) 2015.

  18. Identifying the cellular targets of natural products using T7 phage display.

    PubMed

    Piggott, Andrew M; Karuso, Peter

    2016-05-04

    Covering: up to the end of 2015While Nature continues to deliver a myriad of potent and structurally diverse biologically active small molecules, the cellular targets and modes of action of these natural products are rarely identified, significantly hindering their development as new chemotherapeutic agents. This article provides an introductory tutorial on the use of T7 phage display as a tool to rapidly identify the cellular targets of natural products and is aimed specifically at natural products chemists who may have only limited experience in molecular biology. A brief overview of T7 phage display is provided, including its strengths, weaknesses, and the type of problems that can and cannot be tackled with this technology. Affinity probe construction is reviewed, including linker design and natural product derivatisation strategies. A detailed description of the T7 phage biopanning procedure is provided, with valuable tips for optimising each step in the process, as well as advice for identifying and avoiding the most commonly encountered challenges and pitfalls along the way. Finally, a brief discussion is provided on techniques for validating the cellular targets identified using T7 phage display.

  19. Biosynthesis and Function of Polyacetylenes and Allied Natural Products

    PubMed Central

    Minto, Robert E.; Blacklock, Brenda J.

    2008-01-01

    Polyacetylenic natural products are a substantial class of often unstable compounds containing a unique carbon-carbon triple bond functionality, that are intriguing for their wide variety of biochemical and ecological functions, economic potential, and surprising mode of biosynthesis. Isotopic tracer experiments between 1960 and 1990 demonstrated that the majority of these compounds are derived from fatty acid and polyketide precursors. During the past decade, research into the metabolism of polyacetylenes has swiftly advanced, driven by the cloning of the first genes responsible for polyacetylene biosynthesis in plants, moss, fungi, and actinomycetes, and the initial characterization of the gene products. The current state of knowledge of the biochemistry and molecular genetics of polyacetylenic secondary metabolic pathways will be presented together with an up-to-date survey of new terrestrial and marine natural products, their known biological activities, and a discussion of their likely metabolic origins. PMID:18387369

  20. Discovery and resupply of pharmacologically active plant-derived natural products: A review

    PubMed Central

    Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H.; Rollinger, Judith M.; Schuster, Daniela; Breuss, Johannes M.; Bochkov, Valery; Mihovilovic, Marko D.; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M.; Stuppner, Hermann

    2016-01-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a “screening hit” through a “drug lead” to a “marketed drug” is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future. PMID:26281720

  1. Discovery and resupply of pharmacologically active plant-derived natural products: A review.

    PubMed

    Atanasov, Atanas G; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H; Rollinger, Judith M; Schuster, Daniela; Breuss, Johannes M; Bochkov, Valery; Mihovilovic, Marko D; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M; Stuppner, Hermann

    2015-12-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Natural Products for Management of Oral Mucositis Induced by Radiotherapy and Chemotherapy

    PubMed Central

    Aghamohamamdi, Azar; Hosseinimehr, Seyed Jalal

    2015-01-01

    Oral mucositis is a common side effect of systemic chemotherapy and radiotherapy of head and neck in patients with cancer. Severe oral mucositis is painful and affects oral functions, including intake of food and medications and speech. Prevention of oral mucositis affects the life quality of patients. Recent studies have been focused on natural products to improve or reduce this complication. Many clinical trials have been performed to assess natural products for treatment of mucositis and their results are promising. The authors reviewed the evidence for natural products in the prevention and treatment of oral mucositis induced by radiation therapy and chemotherapy. PMID:26306626

  3. A natural product based DOS library of hybrid systems.

    PubMed

    Prabhu, Ganesh; Agarwal, Shalini; Sharma, Vijeta; Madurkar, Sanjay M; Munshi, Parthapratim; Singh, Shailja; Sen, Subhabrata

    2015-05-05

    Here we described a natural product inspired modular DOS strategy for the synthesis of a library of hybrid systems that are structurally and stereochemically disparate. The main scaffold is a pyrroloisoquinoline motif, that is synthesized from tandem Pictet-Spengler lactamization. The structural diversity is generated via "privileged scaffolds" that are attached at the appropriate site of the motif. Screening of the library compounds for their antiplasmodial activity against chloroquine sensitive 3D7 cells indicated few compounds with moderate activity (20-50 μM). A systematic comparison of structural intricacy between the library members and a natural product dataset obtained from ZINC(®) revealed comparable complexity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. In-use product stocks link manufactured capital to natural capital.

    PubMed

    Chen, Wei-Qiang; Graedel, T E

    2015-05-19

    In-use stock of a product is the amount of the product in active use. In-use product stocks provide various functions or services on which we rely in our daily work and lives, and the concept of in-use product stock for industrial ecologists is similar to the concept of net manufactured capital stock for economists. This study estimates historical physical in-use stocks of 91 products and 9 product groups and uses monetary data on net capital stocks of 56 products to either approximate or compare with in-use stocks of the corresponding products in the United States. Findings include the following: (i) The development of new products and the buildup of their in-use stocks result in the increase in variety of in-use product stocks and of manufactured capital; (ii) substitution among products providing similar or identical functions reflects the improvement in quality of in-use product stocks and of manufactured capital; and (iii) the historical evolution of stocks of the 156 products or product groups in absolute, per capita, or per-household terms shows that stocks of most products have reached or are approaching an upper limit. Because the buildup, renewal, renovation, maintenance, and operation of in-use product stocks drive the anthropogenic cycles of materials that are used to produce products and that originate from natural capital, the determination of in-use product stocks together with modeling of anthropogenic material cycles provides an analytic perspective on the material linkage between manufactured capital and natural capital.

  5. In-use product stocks link manufactured capital to natural capital

    PubMed Central

    Chen, Wei-Qiang; Graedel, T. E.

    2015-01-01

    In-use stock of a product is the amount of the product in active use. In-use product stocks provide various functions or services on which we rely in our daily work and lives, and the concept of in-use product stock for industrial ecologists is similar to the concept of net manufactured capital stock for economists. This study estimates historical physical in-use stocks of 91 products and 9 product groups and uses monetary data on net capital stocks of 56 products to either approximate or compare with in-use stocks of the corresponding products in the United States. Findings include the following: (i) The development of new products and the buildup of their in-use stocks result in the increase in variety of in-use product stocks and of manufactured capital; (ii) substitution among products providing similar or identical functions reflects the improvement in quality of in-use product stocks and of manufactured capital; and (iii) the historical evolution of stocks of the 156 products or product groups in absolute, per capita, or per-household terms shows that stocks of most products have reached or are approaching an upper limit. Because the buildup, renewal, renovation, maintenance, and operation of in-use product stocks drive the anthropogenic cycles of materials that are used to produce products and that originate from natural capital, the determination of in-use product stocks together with modeling of anthropogenic material cycles provides an analytic perspective on the material linkage between manufactured capital and natural capital. PMID:25733904

  6. Natural products as modulators of spermatogenesis: the search for a male contraceptive.

    PubMed

    Dias, Tania R; Alves, Marco G; Oliveira, Pedro F; Silva, Branca M

    2014-01-01

    Population growth in the last century has raised important social and economic questions. Thus, current methods of fertility control have been under debate for a long period. Birth rates are essentially dependent on several environmental and social factors but women, who are great users of contraceptives, play a major role. Regulation of male fertility has been widely studied in recent years with the aim of developing a new male contraceptive for further inclusion of men's choice in family planning. Based on the ancient people techniques to control the birth rates, natural products appeared as a promising source for the development of a male contraceptive. Over the years, many plants and their main constituents have been studied in the search for their antifertility properties. Interestingly, some antispermatogenic effects have been reported. Herein, we will discuss the antispermatogenic properties of some natural products. We propose to discuss specific targets and sites of action of the selected natural products. Despite the advances in this field in the last years, the molecular mechanisms by which natural products can control fertility, need to be disclosed to develop an effective, reversible and safe male contraceptive and avoid undesired toxicity in other organs. To date, no natural-based male contraceptive is available in the commercial market, mostly due to the difficulty in reversing the effects of these products in male fertility.

  7. Using natural products for drug discovery: the impact of the genomics era.

    PubMed

    Zhang, Mingzi M; Qiao, Yuan; Ang, Ee Lui; Zhao, Huimin

    2017-05-01

    Evolutionarily selected over billions of years for their interactions with biomolecules, natural products have been and continue to be a major source of pharmaceuticals. In the 1990s, pharmaceutical companies scaled down their natural product discovery programs in favor of synthetic chemical libraries due to major challenges such as high rediscovery rates, challenging isolation, and low production titers. Propelled by advances in DNA sequencing and synthetic biology technologies, insights into microbial secondary metabolism provided have inspired a number of strategies to address these challenges. Areas covered: This review highlights the importance of genomics and metagenomics in natural product discovery, and provides an overview of the technical and conceptual advances that offer unprecedented access to molecules encoded by biosynthetic gene clusters. Expert opinion: Genomics and metagenomics revealed nature's remarkable biosynthetic potential and her vast chemical inventory that we can now prioritize and systematically mine for novel chemical scaffolds with desirable bioactivities. Coupled with synthetic biology and genome engineering technologies, significant progress has been made in identifying and predicting the chemical output of biosynthetic gene clusters, as well as in optimizing cluster expression in native and heterologous host systems for the production of pharmaceutically relevant metabolites and their derivatives.

  8. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm.

    PubMed

    Skinnider, Michael A; Dejong, Chris A; Franczak, Brian C; McNicholas, Paul D; Magarvey, Nathan A

    2017-08-16

    Natural products represent a prominent source of pharmaceutically and industrially important agents. Calculating the chemical similarity of two molecules is a central task in cheminformatics, with applications at multiple stages of the drug discovery pipeline. Quantifying the similarity of natural products is a particularly important problem, as the biological activities of these molecules have been extensively optimized by natural selection. The large and structurally complex scaffolds of natural products distinguish their physical and chemical properties from those of synthetic compounds. However, no analysis of the performance of existing methods for molecular similarity calculation specific to natural products has been reported to date. Here, we present LEMONS, an algorithm for the enumeration of hypothetical modular natural product structures. We leverage this algorithm to conduct a comparative analysis of molecular similarity methods within the unique chemical space occupied by modular natural products using controlled synthetic data, and comprehensively investigate the impact of diverse biosynthetic parameters on similarity search. We additionally investigate a recently described algorithm for natural product retrobiosynthesis and alignment, and find that when rule-based retrobiosynthesis can be applied, this approach outperforms conventional two-dimensional fingerprints, suggesting it may represent a valuable approach for the targeted exploration of natural product chemical space and microbial genome mining. Our open-source algorithm is an extensible method of enumerating hypothetical natural product structures with diverse potential applications in bioinformatics.

  9. Management of natural health products in pediatrics: a provider-focused quality improvement project.

    PubMed

    Gutierrez, Emily; Silbert-Flagg, JoAnne; Vohra, Sunita

    2015-01-01

    The use of natural health products by pediatric patients is common, yet health care providers often do not provide management guidance. The purpose of this project was to improve management of natural health products by pediatric nurse practitioners. Pediatric nurse practitioners from large metropolitan city were recruited (n = 32). A paired pretest-posttest design was used. Study participants were engaged to improve knowledge of natural health products, and a management toolkit was created and tested. Mean knowledge scores increased from 59.19 to 76.3 (p < .01). Management practices improved with regard to patient guidance (p < .01) and resource utilization (p < .01). Assessments of product use (p = .51) and drug/herb interactions (p = .35) were not significant. This investigation is the first known study to improve knowledge and management of natural health products in pediatric clinical practice. Copyright © 2015 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  10. Naturally Occurring Fish Poisons from Plants

    ERIC Educational Resources Information Center

    Cannon, Jonathan G.; Burton, Robert A.; Wood, Steven G.; Owen, Noel L.

    2004-01-01

    The fish poisons derived from plants used throughout the world, not only as piscicides but also for a range of other uses, including insecticident and in folk medicines, is presented. The aim of this review is to provide a useful background for students interested in natural products.

  11. Modulation of Toll-like receptor signaling in innate immunity by natural products.

    PubMed

    Chen, Luxi; Yu, Jianhua

    2016-08-01

    For centuries, natural products and their derivatives have provided a rich source of compounds for the development of new immunotherapies in the treatment of human disease. Many of these compounds are currently undergoing clinical trials, particularly as anti-oxidative, anti-microbial, and anti-cancer agents. However, the function and mechanism of natural products in how they interact with our immune system has yet to be extensively explored. Natural immune modulators may provide the key to control and ultimately defeat disorders affecting the immune system. They can either up- or down-regulate the immune response with few undesired adverse effects. In this review, we summarize the recent advancements made in utilizing natural products for immunomodulation and their important molecular targets, members of the Toll-like receptor (TLR) family, in the innate immune system. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Natural fiber production, harvesting, and preliminary processing: options and opportunities

    USDA-ARS?s Scientific Manuscript database

    The utilization of natural fibers and plant oils in bio-products introduces numerous logistical challenges not typically encountered with non-agricultural resources. Once it has been determined that a plant material is suitable for commercial development, the production, harvesting, and processing s...

  13. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990–2009

    PubMed Central

    Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline

    2016-01-01

    Background: Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. Methods: AL cases diagnosed over 1990–2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002–2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. Results: AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Conclusions: Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland. Citation: Demoury C, Marquant F, Ielsch G, Goujon S, Debayle C, Faure L, Coste A, Laurent O, Guillevic J, Laurier D, Hémon D, Clavel J

  14. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products.

    PubMed

    Grossman, Elizabeth A; Ward, Carl C; Spradlin, Jessica N; Bateman, Leslie A; Huffman, Tucker R; Miyamoto, David K; Kleinman, Jordan I; Nomura, Daniel K

    2017-11-16

    Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Principal component analysis as a tool for library design: a case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries.

    PubMed

    Wenderski, Todd A; Stratton, Christopher F; Bauer, Renato A; Kopp, Felix; Tan, Derek S

    2015-01-01

    Principal component analysis (PCA) is a useful tool in the design and planning of chemical libraries. PCA can be used to reveal differences in structural and physicochemical parameters between various classes of compounds by displaying them in a convenient graphical format. Herein, we demonstrate the use of PCA to gain insight into structural features that differentiate natural products, synthetic drugs, natural product-like libraries, and drug-like libraries, and show how the results can be used to guide library design.

  16. Principal Component Analysis as a Tool for Library Design: A Case Study Investigating Natural Products, Brand-Name Drugs, Natural Product-Like Libraries, and Drug-Like Libraries

    PubMed Central

    Wenderski, Todd A.; Stratton, Christopher F.; Bauer, Renato A.; Kopp, Felix; Tan, Derek S.

    2015-01-01

    Principal component analysis (PCA) is a useful tool in the design and planning of chemical libraries. PCA can be used to reveal differences in structural and physicochemical parameters between various classes of compounds by displaying them in a convenient graphical format. Herein, we demonstrate the use of PCA to gain insight into structural features that differentiate natural products, synthetic drugs, natural product-like libraries, and drug-like libraries, and show how the results can be used to guide library design. PMID:25618349

  17. New Methodology for Natural Gas Production Estimates

    EIA Publications

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  18. Marine Natural Products as Prototype Agrochemical Agents

    PubMed Central

    Peng, Jiangnan; Shen, Xiaoyu; El Sayed, Khalid A.; Dunbar, D. C Harles; Perry, Tony L.; Wilkins, Scott P.; Hamann, Mark T.; Bobzin, Steve; Huesing, Joseph; Camp, Robin; Prinsen, Mike; Krupa, Dan; Wideman, Margaret A.

    2016-01-01

    In the interest of identifying new leads that could serve as prototype agrochemical agents, 18 structurally diverse marine-derived compounds were examined for insecticidal, herbicidal, and fungicidal activities. Several new classes of compounds have been shown to be insecticidal, herbicidal, and fungicidal, which suggests that marine natural products represent an intriguing source for the discovery of new agrochemical agents. PMID:12670165

  19. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs.

    PubMed

    Egieyeh, Samuel Ayodele; Syce, James; Malan, Sarel F; Christoffels, Alan

    2016-01-29

    A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). Natural products with in vitro antiplasmodial activities (NAA) were compiled from various sources. These natural products were sub-divided into four groups based on inhibitory concentration (IC50). Key molecular descriptors and physicochemical properties were computed for these compounds and analysis of variance used to assess statistical significance amongst the sets of compounds. Molecular similarity analysis, estimation of drug-likeness, in silico pharmacokinetic profiling, and exploration of structure-activity landscape were also carried out on these sets of compounds. A total of 1040 natural products were selected and a total of 13 molecular descriptors were analysed. Significant differences were observed among the sub-groups of NAA and CRAD for at least 11 of the molecular descriptors, including number of hydrogen bond donors and acceptors, molecular weight, polar and hydrophobic surface areas, chiral centres, oxygen and nitrogen atoms, and shape index. The remaining molecular descriptors, including clogP, number of rotatable bonds and number of aromatic rings, did not show any significant difference when comparing the two compound sets. Molecular similarity and chemical space analysis identified natural products that were structurally diverse from CRAD. Prediction of the pharmacokinetic properties and drug-likeness of these natural products identified over 50% with desirable drug-like properties. Nearly 70% of all natural products were identified as potentially promiscuous compounds. Structure-activity landscape analysis highlighted compound pairs that

  20. Spirolactones: Recent Advances in Natural Products, Bioactive Compounds and Synthetic Strategies.

    PubMed

    Quintavalla, Arianna

    2018-01-01

    The spirocyclic compounds have always aroused a great interest because this motif is present as structural core in a number of natural products and bioactive compounds. In particular, the spirolactone moiety has been recognized in a wide array of natural and non-natural scaffolds showing a variety of useful pharmacological properties. Extensive literature search using SciFinder (Databases: CA Plus, CAS Registry, CAS React, Chemlist, Chemcat and Medline) and Web of Science (Database: Web of Science Core Collection) was conducted. Nowadays, many efforts are being devoted to the discovery of new natural products containing the promising spirolactone framework and to the disclosure of the potential bioactivities of these chemical entities. Moreover, the medicinal relevance of many spirolactones makes these scaffolds attractive targets for the design and development of innovative and efficient synthetic strategies, enabling the construction of complex and variably substituted products. This review gives an overview on the recent advances in the spirolactones field, in terms of new compounds isolated from natural sources, recently determined bioactivity profiles and innovative synthetic approaches. The collected data demonstrate the key role played by spirolactones in medicinal chemistry and the great attention still devoted by the scientific community to these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Rational selection of structurally diverse natural product scaffolds with favorable ADME properties for drug discovery.

    PubMed

    Samiulla, D S; Vaidyanathan, V V; Arun, P C; Balan, G; Blaze, M; Bondre, S; Chandrasekhar, G; Gadakh, A; Kumar, R; Kharvi, G; Kim, H O; Kumar, S; Malikayil, J A; Moger, M; Mone, M K; Nagarjuna, P; Ogbu, C; Pendhalkar, D; Rao, A V S Raja; Rao, G Venkateshwar; Sarma, V K; Shaik, S; Sharma, G V R; Singh, S; Sreedhar, C; Sonawane, R; Timmanna, U; Hardy, L W

    2005-01-01

    Natural product analogs are significant sources for therapeutic agents. To capitalize efficiently on the effective features of naturally occurring substances, a natural product-based library production platform has been devised at Aurigene for drug lead discovery. This approach combines the attractive biological and physicochemical properties of natural product scaffolds, provided by eons of natural selection, with the chemical diversity available from parallel synthetic methods. Virtual property analysis, using computational methods described here, guides the selection of a set of natural product scaffolds that are both structurally diverse and likely to have favorable pharmacokinetic properties. The experimental characterization of several in vitro ADME properties of twenty of these scaffolds, and of a small set of designed congeners based upon one scaffold, is also described. These data confirm that most of the scaffolds and the designed library members have properties favorable to their utilization for creating libraries of lead-like molecules.

  2. Natural products: a hope for glioblastoma patients.

    PubMed

    Vengoji, Raghupathy; Macha, Muzafar A; Batra, Surinder K; Shonka, Nicole A

    2018-04-24

    Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.

  3. Natural products: a hope for glioblastoma patients

    PubMed Central

    Vengoji, Raghupathy; Macha, Muzafar A.; Batra, Surinder K.; Shonka, Nicole A.

    2018-01-01

    Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT. PMID:29774132

  4. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the

  5. 30 CFR 260.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do I measure natural gas production on my... Bidding Systems Eligible Leases § 260.116 How do I measure natural gas production on my eligible lease? You must measure natural gas production on your eligible lease subject to the royalty suspension...

  6. Modern mass spectrometry for synthetic biology and structure-based discovery of natural products.

    PubMed

    Henke, Matthew T; Kelleher, Neil L

    2016-08-27

    Covering: up to 2016In this highlight, we describe the current landscape for dereplication and discovery of natural products based on the measurement of the intact mass by LC-MS. Often it is assumed that because better mass accuracy (provided by higher resolution mass spectrometers) is necessary for absolute chemical formula determination (≤1 part-per-million), that it is also necessary for dereplication of natural products. However, the average ability to dereplicate tapers off at ∼10 ppm, with modest improvement gained from better mass accuracy when querying focused databases of natural products. We also highlight some recent examples of how these platforms are applied to synthetic biology, and recent methods for dereplication and correlation of substructures using tandem MS data. We also offer this highlight to serve as a brief primer for those entering the field of mass spectrometry-based natural products discovery.

  7. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review.

    PubMed

    Chemat, Farid; Rombaut, Natacha; Sicaire, Anne-Gaëlle; Meullemiestre, Alice; Fabiano-Tixier, Anne-Sylvie; Abert-Vian, Maryline

    2017-01-01

    This review presents a complete picture of current knowledge on ultrasound-assisted extraction (UAE) in food ingredients and products, nutraceutics, cosmetic, pharmaceutical and bioenergy applications. It provides the necessary theoretical background and some details about extraction by ultrasound, the techniques and their combinations, the mechanisms (fragmentation, erosion, capillarity, detexturation, and sonoporation), applications from laboratory to industry, security, and environmental impacts. In addition, the ultrasound extraction procedures and the important parameters influencing its performance are also included, together with the advantages and the drawbacks of each UAE techniques. Ultrasound-assisted extraction is a research topic, which affects several fields of modern plant-based chemistry. All the reported applications have shown that ultrasound-assisted extraction is a green and economically viable alternative to conventional techniques for food and natural products. The main benefits are decrease of extraction and processing time, the amount of energy and solvents used, unit operations, and CO 2 emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    NASA Astrophysics Data System (ADS)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  9. Multimodular biocatalysts for natural product assembly

    NASA Astrophysics Data System (ADS)

    Schwarzer, Dirk; Marahiel, Mohamed A.

    2001-03-01

    Nonribosomal peptides and polyketides represent a large class of natural products that show an extreme structural diversity and broad pharmacological relevance. They are synthesized from simple building blocks such as amino or carboxy acids and malonate derivatives on multimodular enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Although utilizing different substrates, NRPSs and PKSs show striking similarities in the modular architecture of their catalytic domains and product assembly-line mechanism. Among these compounds are well known antibiotics (penicillin, vancomycin and erythromycin) as well as potent immunosuppressive agents (cyclosporin, rapamycin and FK 506). This review focuses on the modular organization of NRPSs, PKSs and mixed NRPS/PKS systems and how modules and domains that build up the biosynthetic templates can be exploited for the rational design of recombinant enzymes capable of synthesizing novel compounds.

  10. Fruit-based Natural Antioxidants in Meat and Meat Products: A Review.

    PubMed

    Ahmad, S R; Gokulakrishnan, P; Giriprasad, R; Yatoo, M A

    2015-01-01

    Due to the potential toxic effects of synthetic antioxidants, natural antioxidant sources especially fruits are being preferred now-a-days for use in different meat products. The majority of the antioxidant capacity of a fruit is especially because of numerous phenolic compounds. Many of the phytochemicals present in fruits may help protect cells against the oxidative damage caused by free radicals, thereby reducing the risk of degenerative diseases such as cardiovascular diseases, various types of cancers, and neurological diseases. Various parts of the fruit including their byproducts like skin and seeds have been used in meat products. Plum has been used as plum puree, prunes (dried plum), and plum extracts. Grape skin, seed, peel extracts, and grape pomace; berries as cakes and powder extracts; pomegranate rind powder and its juice; and most of the citrus fruits have proved beneficial sources of antioxidants. All these natural sources have effectively reduced the thiobarbituric acid-reactive substances (TBARS) values and free radical frequency. Thus, lipid oxidation is prevented and shelf life is greatly enhanced by incorporating various kinds of fruits and their byproducts in meat and meat products. There is a great scope for the use of fruits as natural sources of antioxidants in meat industry. The review is intended to provide an overview of the fruit-based natural antioxidants in meat and meat products.

  11. Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery.

    PubMed

    Maciá-Vicente, Jose G; Shi, Yan-Ni; Cheikh-Ali, Zakaria; Grün, Peter; Glynou, Kyriaki; Kia, Sevda Haghi; Piepenbring, Meike; Bode, Helge B

    2018-03-01

    Fungi are prolific producers of natural products routinely screened for biotechnological applications, and those living endophytically within plants attract particular attention because of their purported chemical diversity. However, the harnessing of their biosynthetic potential is hampered by a large and often cryptic phylogenetic and ecological diversity, coupled with a lack of large-scale natural products' dereplication studies. To guide efforts to discover new chemistries among root-endophytic fungi, we analyzed the natural products produced by 822 strains using an untargeted UPLC-ESI-MS/MS-based approach and linked the patterns of chemical features to fungal lineages. We detected 17 809 compounds of which 7951 were classified in 1992 molecular families, whereas the remaining were considered unique chemistries. Our approach allowed to annotate 1191 compounds with different degrees of accuracy, many of which had known fungal origins. Approximately 61% of the compounds were specific of a fungal order, and differences were observed across lineages in the diversity and characteristics of their chemistries. Chemical profiles also showed variable chemosystematic values across lineages, ranging from relative homogeneity to high heterogeneity among related fungi. Our results provide an extensive resource to dereplicate fungal natural products and may assist future discovery programs by providing a guide for the selection of target fungi. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Development of new critical fluid-based processing methods for nutraceuticals and natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. W.

    2004-01-01

    The development of new supercritical fluid processing technology as applied to nutraceuticals and natural products is no longer confined to using just supercritical fluid extraction (SFE) and supercritical carbon dioxide (SC-CO{sub 2}). Recently reported advances have been focused on modifying natural products and improving functionality of an end product using newer experimental techniques and fluid phases. In this presentation four focus areas will be emphasized: (1) control of particle size/morphology and encapsulation of the nutraceutical ingredients, (2) the use of combinatorial methodology to optimize critical fluid processing, (3) application of sub-critical water as a complementary medium for processing natural products,more » and (4) an assessment of the current state of products and processing which use critical fluid to produce nutraceutical and natural products for the food and cosmetic marketplace. Application of the various particle fomiation processes conducted in the presence of critical fluid media, such as: CPF, SAS, DELOS, RESS, PGSS, and GAS, can be used to produce particles of small and uniform distribution, having unique morphologies, that facilitate rapid dissolution or sustained release of many nutraceutical ingredients. These substances have included: therapeutic spices, phystosterols, vitamins, phospholpids, and carotenoids. Accelerating the development of critical fluid processing has been the application of combinatorial methodology to optimize extraction, fractionation, and/or reactions in near-, SC-, or subcritical fluid media. This is frequently accomplished by using sequential or multichannel automated instrumentation that was originally designed for analytical purposes. Several examples will be provided of rapidly assessing the extraction of anthocyanins with sub-critical water and the SFE of natural products. However, differences do exist in conducting experiments on the above instrumentation vs. scaled-up continuous processes

  13. Defining "natural product" between public health and business, 17th to 21st centuries.

    PubMed

    Stanziani, Alessandro

    2008-07-01

    The historical definition of a natural product stands at the crossroads of business, health, and the symbolic order of things. Until the end of the 19th century, "natural product" was a synonym of perishable. The emergency of organic chemistry made perishability be replaced with "toxicity". Nowadays, genetics is provoking a radical change in the notion and practises of "natural product". However, these concerns are never entirely opposed to "naturality" as a synonym for sacred and symbolic order. Traceability is largely based upon kosher practices and the association between organic and good for health is hardly based upon sound scientific arguments.

  14. Biosynthesis of nitrogen-containing natural products, C7N aminocyclitols and bis-indoles, from actinomycetes.

    PubMed

    Asamizu, Shumpei

    2017-05-01

    Actinomycetes are a major source of bioactive natural products with important pharmaceutical properties. Understanding the natural enzymatic assembly of complex small molecules is important for rational metabolic pathway design to produce "artificial" natural products in bacterial cells. This review will highlight current research on the biosynthetic mechanisms of two classes of nitrogen-containing natural products, C 7 N aminocyclitols and bis-indoles. Validamycin A is a member of C 7 N aminocyclitol natural products from Streptomyces hygroscopicus. Here, two important biosynthetic steps, pseudoglycosyltranferase-catalyzed C-N bond formation, and C 7 -sugar phosphate cyclase-catalyzed divergent carbasugar formation, will be reviewed. In addition, the bis-indolic natural products indolocarbazole, staurosporine from Streptomyces sp. TP-A0274, and rearranged bis-indole violacein from Chromobacterium violaceum are reviewed including the oxidative course of the assembly pathway for the bis-indolic scaffold. The identified biosynthesis mechanisms will be useful to generating new biocatalytic tools and bioactive compounds.

  15. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.

    PubMed

    Abdelmohsen, Usama Ramadan; Balasubramanian, Srikkanth; Oelschlaeger, Tobias A; Grkovic, Tanja; Pham, Ngoc B; Quinn, Ronald J; Hentschel, Ute

    2017-02-01

    Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies. Copyright © 2017 Elsevier Ltd

  16. Subclass-specific labeling of protein-reactive natural products with customized nucleophilic probes.

    PubMed

    Rudolf, Georg C; Koch, Maximilian F; Mandl, Franziska A M; Sieber, Stephan A

    2015-02-23

    Natural products represent a rich source of bioactive compounds that constitute a large fraction of approved drugs. Among those are molecules with electrophilic scaffolds, such as Michael acceptors, β-lactams, and epoxides that irreversibly inhibit essential enzymes based on their catalytic mechanism. In the search for novel bioactive molecules, current methods are challenged by the frequent rediscovery of known chemical entities. Herein small nucleophilic probes that attack electrophilic natural products and enhance their detection by HPLC-UV and HPLC-MS are introduced. A screen of diverse probe designs revealed one compound with a desired selectivity for epoxide- and maleimide-based antibiotics. Correspondingly, the natural products showdomycin and phosphomycin could be selectively targeted in extracts of their natural producing organism, in which the probe-modified molecules exhibited superior retention and MS detection relative to their unmodified counterparts. This method may thus help to discover small, electrophilic molecules that might otherwise easily elude detection in complex samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DNA Assembly Techniques for Next Generation Combinatorial Biosynthesis of Natural Products

    PubMed Central

    Cobb, Ryan E.; Ning, Jonathan C.; Zhao, Huimin

    2013-01-01

    Natural product scaffolds remain important leads for pharmaceutical development. However, transforming a natural product into a drug entity often requires derivatization to enhance the compound’s therapeutic properties. A powerful method by which to perform this derivatization is combinatorial biosynthesis, the manipulation of the genes in the corresponding pathway to divert synthesis towards novel derivatives. While these manipulations have traditionally been carried out via restriction digestion/ligation-based cloning, the shortcomings of such techniques limit their throughput and thus the scope of corresponding combinatorial biosynthesis experiments. In the burgeoning field of synthetic biology, the demand for facile DNA assembly techniques has promoted the development of a host of novel DNA assembly strategies. Here we describe the advantages of these recently-developed tools for rapid, efficient synthesis of large DNA constructs. We also discuss their potential to facilitate the simultaneous assembly of complete libraries of natural product biosynthetic pathways, ushering in the next generation of combinatorial biosynthesis. PMID:24127070

  18. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  19. Discovery of the leinamycin family of natural products by mining actinobacterial genomes

    PubMed Central

    Xu, Zhengren; Guo, Zhikai; Hindra; Ma, Ming; Zhou, Hao; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Cheng, Jinhua; Van Nieuwerburgh, Filip; Suh, Joo-Won; Duan, Yanwen

    2017-01-01

    Nature’s ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF–SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF–SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm-type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature’s rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature’s biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity. PMID:29229819

  20. Investigation of dielectric constant variations for Malaysians soil species towards its natural background dose

    NASA Astrophysics Data System (ADS)

    Jafery, Khawarizmi Mohd; Embong, Zaidi; Khee, Yee See; Haimi Dahlan, Samsul; Tajudin, Saiful Azhar Ahmad; Ahmad, Salawati; Kudnie Sahari, Siti; Maxwell, Omeje

    2018-01-01

    The correlation of natural background gamma radiation and real part of the complex relative permittivity (dielectric constant) for various species Malaysian soils was investigated in this research. The sampling sites were chosen randomly according to soils groups that consist of sedentary, alluvial and miscellaneous soil which covered the area of Batu Pahat, Kluang and Johor Bahru, Johor state of Malaysia. There are 11 types of Malaysian soil species that have been studied; namely Peat, Linau-Sedu, Selangor-Kangkong, Kranji, Telemong-Akob-Local Alluvium, Holyrood-Lunas, Batu Anam-Melaka-Tavy, Harimau Tampoi, Kulai-Yong Peng, Rengam-Jerangau, and Steepland soils. In-situ exposure rates of each soil species were measured by using portable gamma survey meter and ex-situ analysis of real part of relative permittivity was performed by using DAK (Dielectric Assessment Kit assist by network analyser). Results revealed that the highest and the lowest background dose rate were 94 ± 26.28 μR hr-1 and 7 ± 0.67 μR hr-1 contributed by Rengam Jerangau and Peat soil species respectively. Meanwhile, dielectric constant measurement, it was performed in the range of frequency between 100 MHz to 3 GHz. The measurements of each soils species dielectric constant are in the range of 1 to 3. At the lower frequencies in the range of 100 MHz to 600 MHz, it was observed that the dielectric constant for each soil species fluctuated and inconsistent. But it remained consistent in plateau form of signal at higher frequency at range above 600 MHz. From the comparison of dielectric properties of each soil at above 600 MHz of frequency, it was found that Rengam-Jerangau soil species give the highest reading and followed by Selangor-Kangkong species. The average dielectric measurement for both Selangor-Kangkong and Rengam-Jerangau soil species are 2.34 and 2.35 respectively. Meanwhile, peat soil species exhibits the lowest dielectric measurement of 1.83. It can be clearly seen that the pattern

  1. Natural product-derived small molecule activators of hypoxia-inducible factor-1 (HIF-1).

    PubMed

    Nagle, Dale G; Zhou, Yu-Dong

    2006-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a key mediator of oxygen homeostasis that was first identified as a transcription factor that is induced and activated by decreased oxygen tension. Upon activation, HIF-1 upregulates the transcription of genes that promote adaptation and survival under hypoxic conditions. HIF-1 is a heterodimer composed of an oxygen-regulated subunit known as HIF-1alpha and a constitutively expressed HIF-1beta subunit. In general, the availability and activity of the HIF-1alpha subunit determines the activity of HIF-1. Subsequent studies have revealed that HIF-1 is also activated by environmental and physiological stimuli that range from iron chelators to hormones. Preclinical studies suggest that HIF-1 activation may be a valuable therapeutic approach to treat tissue ischemia and other ischemia/hypoxia-related disorders. The focus of this review is natural product-derived small molecule HIF-1 activators. Natural products, relatively low molecular weight organic compounds produced by plants, animals, and microbes, have been and continue to be a major source of new drugs and molecular probes. The majority of known natural product-derived HIF-1 activators were discovered through the pharmacological evaluation of specifically selected individual compounds. On the other hand, the combination of natural products chemistry with appropriate high-throughput screening bioassays may yield novel natural product-derived HIF-1 activators. Potent natural product-derived HIF-1 activators that exhibit a low level of toxicity and side effects hold promise as new treatment options for diseases such as myocardial and peripheral ischemia, and as chemopreventative agents that could be used to reduce the level of ischemia/reperfusion injury following heart attack and stroke.

  2. Emerging Trends in the Discovery of Natural Product Antibacterials

    PubMed Central

    Bologa, Cristian G.; Ursu, Oleg; Oprea, Tudor; Melançon, Charles E.; Tegos, George P.

    2013-01-01

    This article highlights current trends and advances in exploiting natural sources for the deployment of novel and potent anti-infective countermeasures. The key challenge is to therapeutically target microbial pathogens exhibiting a variety of puzzling and evolutionary complex resistance mechanisms. Special emphasis is given to the strengths, weaknesses, and opportunities in the natural product antimicrobial drug discovery arena, and to emerging applications driven by advances in bioinformatics, chemical biology, and synthetic biology in concert with exploiting the microbial phenotype. These orchestrated efforts have identified a critical mass of lead natural antimicrobials chemical scaffolds and discovery technologies with high probability of successful implementation against emerging microbial pathogens. PMID:23890825

  3. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family

    PubMed Central

    2010-01-01

    Background A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM). As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor. Results Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP) family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P), but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery. Conclusions This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for secondary metabolism. Precursors

  4. Natural products as sources of new lead compounds for the treatment of Alzheimer's disease.

    PubMed

    Huang, Ling; Su, Tao; Li, Xingshu

    2013-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia and affects approximately 24 million people worldwide. One possible approach for the treatment of this disease is the restoration of the level of acetylcholine (ACh) through the inhibition of acetylcholinesterase (AChE) with reversible inhibitors. Naturally occurring alkaloids are an important source of AChE inhibitors. Galantamine and huperzine A have been used for the clinical treatment of AD patients. In this review, we summarise the natural products and their derivatives that were reported to act as AChE inhibitors for the treatment of AD in 2010-2013. Several characteristics were summarised from the literature results: 1) Amongst all of the natural products with AChE inhibitory activity, alkaloids appear to be the most promising compound class. 2) Coumarins, flavonoids, stilbenes, and other natural products are also important AChE inhibitors from natural products. Among these inhibitors, 146 (IC50 = 0.573 µM) was identified as the most potent AChE inhibitor. 3) A coumarin derivative (117, IC50 = 0.11 nM) exhibited more than 100-fold superior activity compared with the reference drug donepezil hydrochloride (IC50 = 14 nM). In conclusion, natural products and their derivatives are promising leads for the development of new drugs for the future treatment of AD.

  5. SAM-Dependent Enzyme-Catalysed Pericyclic Reactions in Natural Product Biosynthesis

    PubMed Central

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-01-01

    Pericyclic reactions are among the most powerful synthetic transformations to make multiple regioselective and stereoselective carbon-carbon bonds1. These reactions have been widely applied for the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centers2–6. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples, intramolecular Diels-Alder (IMDA) reaction7, Cope8 and Claisen rearrangements9, have been characterized. Here, we report the discovery of a S-adenosyl-L-methionine (SAM) dependent enzyme LepI that can catalyse stereoselective dehydration, bifurcating IMDA/hetero-DA (HDA) reactions via an ambimodal transition state, and a [3,3]-sigmatropic retro-Claisen rearrangement leading to the formation of dihydopyran core in the fungal natural product leporin10. Combined in vitro enzymatic characterization and computational studies provide evidence and mechanistic insight about how the O-methyltransferase-like protein LepI regulates the bifurcating biosynthetic reaction pathways (“direct” HDA and “byproduct recycle” IMDA/retro-Claisen reaction pathways) by utilizing SAM as the cofactor in order to converge to the desired biosynthetic end product. This work highlights that LepI is the first example of an enzyme catalysing a (SAM-dependent) retro-Claisen rearrangement. We suggest that more pericyclic biosynthetic enzymatic transformations are yet to be discovered in the intriguing enzyme toolboxes in Nature11, and propose an ever expanding role of the versatile cofactor SAM in enzyme catalysis. PMID:28902839

  6. Natural Product Molecular Fossils.

    PubMed

    Falk, Heinz; Wolkenstein, Klaus

    The natural products synthesized by organisms that were living a long time ago gave rise to their molecular fossils. These can consist of either the original unchanged compounds or they may undergo peripheral transformations in which their skeletons remain intact. In cases when molecular fossils can be traced to their organismic source, they are termed "geological biomarkers".This contribution describes apolar and polar molecular fossils and, in particular biomarkers, along the lines usually followed in organic chemistry textbooks, and points to their bioprecursors when available. Thus, the apolar compounds are divided in linear and branched alkanes followed by alicyclic compounds and aromatic and heterocyclic molecules, and, in particular, the geoporphyrins. The polar molecular fossils contain as functional groups or constituent units ethers, alcohols, phenols, carbonyl groups, flavonoids, quinones, and acids, or are polymers like kerogen, amber, melanin, proteins, or nucleic acids. The final sections discuss the methodology used and the fundamental processes encountered by the biomolecules described, including diagenesis, catagenesis, and metagenesis.

  7. The ethics of dietary supplements and natural health products in pharmacy practice: a systematic documentary analysis.

    PubMed

    Boon, Heather; Hirschkorn, Kristine; Griener, Glenn; Cali, Michelle

    2009-02-01

    Many natural health products and dietary supplements are purchased in pharmacies and it has been argued that pharmacists are in the best position to provide patients with evidence-based information about them. This study was designed to identify how the pharmacist's role with respect to natural health products and dietary supplements is portrayed in the literature. A systematic search was conducted in a variety of health databases to identify all literature that pertained to both pharmacy and natural health products and dietary supplements. Of the 786 articles identified, 665 were broad-coded and 259 were subjected to in-depth qualitative content analysis for emergent themes. Overwhelmingly, support for the sale of natural health products and dietary supplements in pharmacies is strong. Additionally, a role for pharmacist counselling is underscored. But another recurrent theme is that pharmacists are ill-equipped to counsel patients about these products that are available on their shelves. This situation has led some to question the ethics of pharmacists selling natural health products and dietary supplements and to highlight the existence of an ethical conflict stemming from the profit-motive associated with sales of natural health products and dietary supplements. This analysis raises concerns about the ethics of natural health products and dietary supplements being sold in pharmacies, and about pharmacists being expected to provide counselling about products of which they have little knowledge.

  8. Microarray Bactericidal Testing of Natural Products Against Yersinia intermedia and Bacillus anthracis

    DTIC Science & Technology

    2002-01-01

    Based Preservation Systems and Probiotic Bacteria. In Food Microbiology: Fundamentals and Frontiers. M. P. Doyle, L.R. Beuchat and T.J. Montville...Microarray Bactericidal Testing of Natural Products Against Yersinia intermedia and Bacillus anthracis I.J. Fry1, F.K. Lee2, A. Turetsky2 and J.J...effective protection against biological warfare agents (BWA’s), natural products with a historical record of bactericidal efficacy such as

  9. Prioritizing pharmacokinetic drug interaction precipitants in natural products: application to OATP inhibitors in grapefruit juice

    PubMed Central

    Johnson, Emily J.; Won, Christina S.; Köck, Kathleen; Paine, Mary F.

    2017-01-01

    Natural products, including botanical dietary supplements and exotic drinks, represent an ever-increasing share of the health care market. The parallel ever-increasing popularity of self-medicating with natural products increases the likelihood of co-consumption with conventional drugs, raising concerns for unwanted natural product-drug interactions. Assessing the drug interaction liability of natural products is challenging due to the complex and variable chemical composition inherent to these products, necessitating a streamlined preclinical testing approach to prioritize precipitant individual constituents for further investigation. Such an approach was evaluated in the current work to prioritize constituents in the model natural product, grapefruit juice, as inhibitors of intestinal organic anion-transporting peptide (OATP)-mediated uptake. Using OATP2B1-expressing MDCKII cells and the probe substrate estrone 3-sulfate, IC50s were determined for constituents representative of the flavanone (naringin, naringenin, hesperidin), furanocoumarin (bergamottin, 6′,7′-dihydroxybergamottin), and polymethoxyflavone (nobiletin and tangeretin) classes contained in grapefruit juice juice. Nobiletin was the most potent (IC50, 3.7 μM); 6′,7′-dihydroxybergamottin, naringin, naringenin, and tangeretin were moderately potent (IC50, 20–50 μM); and bergamottin and hesperidin were the least potent (IC50, >300 μM) OATP2B1 inhibitors. Intestinal absorption simulations based on physiochemical properties were used to determine ratios of unbound concentration to IC50 for each constituent within enterocytes and to prioritize in order of pre-defined cut-off values. This streamlined approach could be applied to other natural products that contain multiple precipitants of natural product-drug interactions. PMID:28032362

  10. Drug Discovery Prospect from Untapped Species: Indications from Approved Natural Product Drugs

    PubMed Central

    Qin, Chu; Tao, Lin; Liu, Xin; Shi, Zhe; Zhang, Cun Long; Tan, Chun Yan; Chen, Yu Zong; Jiang, Yu Yang

    2012-01-01

    Due to extensive bioprospecting efforts of the past and technology factors, there have been questions about drug discovery prospect from untapped species. We analyzed recent trends of approved drugs derived from previously untapped species, which show no sign of untapped drug-productive species being near extinction and suggest high probability of deriving new drugs from new species in existing drug-productive species families and clusters. Case histories of recently approved drugs reveal useful strategies for deriving new drugs from the scaffolds and pharmacophores of the natural product leads of these untapped species. New technologies such as cryptic gene-cluster exploration may generate novel natural products with highly anticipated potential impact on drug discovery. PMID:22808057

  11. [New natural products from the marine-derived Aspergillus fungi-A review].

    PubMed

    Zhao, Chengying; Liu, Haishan; Zhu, Weiming

    2016-03-04

    Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer.

  12. Spectroscopic and quantum chemical analysis of a natural product - Hayatin hydrochloride

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2015-08-01

    Majority of drugs in use today are natural products, natural product mimics or semi synthetic derivatives. Therefore in recent times, focus on plant research has increased all over the world and large body of evidence has been collected to show immense potential of medicinal plants used in various traditional systems. Therefore, in the present communication to aid that research, structural and spectroscopic analysis of a natural product, an alkaloid Hayatin hydrochloride was performed. Both ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311G (d,p) basis set were used for the calculations. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and micro-Raman spectra. The complete assignments were performed on the basis of potential energy distribution. The structure-activity relationship has also been interpreted by mapping electrostatic potential surface, which are valuable information for the quality control of medicines and drug-receptor interactions. Electronic properties have been analysed employing TD-DFT for both gaseous and solvent phase. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  13. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials

    PubMed Central

    Choudhary, Alka; Naughton, Lynn M.; Montánchez, Itxaso

    2017-01-01

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds. PMID:28846659

  14. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products.

    PubMed

    Yu, Jie; Wang, Changxi; Kong, Qi; Wu, Xiaxia; Lu, Jin-Jian; Chen, Xiuping

    2018-02-01

    As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials.

    PubMed

    Choudhary, Alka; Naughton, Lynn M; Montánchez, Itxaso; Dobson, Alan D W; Rai, Dilip K

    2017-08-28

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.

  16. Natural products from Cuscuta reflexa Roxb. with antiproliferation activities in HCT116 colorectal cell lines.

    PubMed

    Riaz, Muhammad; Bilal, Aishah; Ali, Muhammad Shaiq; Fatima, Itrat; Faisal, Amir; Sherkheli, Muhammad Azhar; Asghar, Adnan

    2017-03-01

    Parasitic Cuscuta reflexa Roxb. possesses many medicinal properties and is a rich source of a variety of biologically relevant natural products. Natural products are the prime source of leads, drugs, and drug templates, and many of the anticancer and antiviral drugs are either based on natural product or derived from them. Cancer is a devastating disease and one of the leading causes of death worldwide despite improvements in patient survival during the past 50 years; new and improved treatments for cancer are therefore actively sought. Colorectal cancer is the fourth most prevalent cancer worldwide and is responsible for nearly 9% of all cancer deaths. Our search for anticancer natural products from C. reflexa has yielded four natural products: Scoparone (1), p-coumaric acid (2), stigmasta-3,5-diene (3) and 1-O-p-hydroxycinnamoylglucose (4) and among them 1-O-p-hydroxycinnamoyldlucose (4) showed promising antiproliferative activities in HCT116 colorectal cell lines, whereas compounds 1-3 showed moderate activities.

  17. Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities.

    PubMed

    Wang, H X; Ng, T B

    1999-01-01

    This article reviews compounds of botanical origin which are capable of lowering plasma levels of glucose and cholesterol and blood pressure, as well as compounds inhibiting atherosclerosis and thrombosis. Hypoglycemic natural products comprise flavonoids, xanthones, triterpenoids, alkaloids, glycosides, alkyldisulfides, aminobutyric acid derivatives, guanidine, polysaccharides and peptides. Hypotensive compounds include flavonoids, diterpenes, alkaloids, glycosides, polysaccharides and proteins. Among natural products with hypocholesterolemic activity are beta-carotene, lycopene, cycloartenol, beta-sitosterol, sitostanol, saponin, soybean protein, indoles, dietary fiber, propionate, mevinolin (beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitor) and polysaccharides. Heparins, flavonoids, tocotrienols, beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins), garlic compounds and fungal proteases exert antithrombotic action. Statins and garlic compounds also possess antiatherosclerotic activity.

  18. Effects of Morus alba L. and Natural Products Including Morusin on In Vivo Secretion and In Vitro Production of Airway MUC5AC Mucin

    PubMed Central

    Lee, Hyun Jae; Ryu, Jiho; Park, Su Hyun; Woo, Eun-Rhan; Kim, A Ryun; Lee, Sang Kook; Kim, Yeong Shik; Kim, Ju-Ock; Hong, Jang-Hee

    2014-01-01

    Background It is valuable to find the potential activity of regulating the excessive mucin secretion by the compounds derived from various medicinal plants. We investigated whether aqueous extract of the root bark of Morus alba L. (AMA), kuwanon E, kuwanon G, mulberrofuran G, and morusin significantly affect the secretion and production of airway mucin using in vivo and in vitro experimental models. Methods Effect of AMA was examined on hypersecretion of airway mucin in sulfur dioxide-induced acute bronchitis in rats. Confluent NCI-H292 cells were pretreated with ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G, or morusin for 30 minutes and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 hours. The MUC5AC mucin secretion and production were measured by enzyme-linked immunosorbent assay. Results AMA stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; aqueous extract, ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G and morusin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. Conclusion These results suggest that extract of the root bark and the natural products derived from Morus alba L. can regulate the secretion and production of airway mucin and, at least in part, explains the folk use of extract of Morus alba L. as mucoregulators in diverse inflammatory pulmonary diseases. PMID:25237377

  19. An introduction to planar chromatography and its application to natural products isolation.

    PubMed

    Gibbons, Simon

    2012-01-01

    Thin-layer chromatography (TLC) is an easy, inexpensive, rapid, and the most widely used method for the analysis and isolation of small organic natural and synthetic products. It also has use in the biological evaluation of organic compounds, particularly in the areas of antimicrobial and antioxidant metabolites and for the evaluation of acetylcholinesterase inhibitors which have utility in the treatment of Alzheimer's disease. The ease and inexpensiveness of use of this technique, coupled with the ability to rapidly develop separation and bioassay protocols will ensure that TLC will be used for some considerable time alongside conventional instrumental methods. This chapter deals with the basic principles of TLC and describes methods for the analysis and isolation of natural products. Examples of methods for isolation of several classes of natural product are detailed and protocols for TLC bioassays are given.

  20. Background in X-ray astronomy proportional counters

    NASA Technical Reports Server (NTRS)

    Bower, C. R.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1991-01-01

    The authors report the results of an investigation into the nature of background events in proportional counters sensitive to X-ray photons having energy of less than 150 keV. Even with the use of thick shields composed of high-atomic-number material, a significant flux background in the detector's energy region can result from multiple Compton scattering in the mass surrounding the active region of the detector. The importance of the selection of detector components in the reduction of the background by more than an order of magnitude is emphasized. Experimental results are shown to agree qualitatively with Monte Carlo simulations. It is concluded that escape gating is a powerful means of determining the nature of background in flight detectors: the single/pair ratios reveal whether the detected events are charged particles or photons.

  1. The natural product phyllanthusmin C enhances IFN-γ production by human NK cells through upregulation of TLR-mediated NF-κB signaling.

    PubMed

    Deng, Youcai; Chu, Jianhong; Ren, Yulin; Fan, Zhijin; Ji, Xiaotian; Mundy-Bosse, Bethany; Yuan, Shunzong; Hughes, Tiffany; Zhang, Jianying; Cheema, Baljash; Camardo, Andrew T; Xia, Yong; Wu, Lai-Chu; Wang, Li-Shu; He, Xiaoming; Kinghorn, A Douglas; Li, Xiaohui; Caligiuri, Michael A; Yu, Jianhua

    2014-09-15

    Natural products are a major source for cancer drug development. NK cells are a critical component of innate immunity with the capacity to destroy cancer cells, cancer-initiating cells, and clear viral infections. However, few reports describe a natural product that stimulates NK cell IFN-γ production and unravel a mechanism of action. In this study, through screening, we found that a natural product, phyllanthusmin C (PL-C), alone enhanced IFN-γ production by human NK cells. PL-C also synergized with IL-12, even at the low cytokine concentration of 0.1 ng/ml, and stimulated IFN-γ production in both human CD56(bright) and CD56(dim) NK cell subsets. Mechanistically, TLR1 and/or TLR6 mediated PL-C's activation of the NF-κB p65 subunit that in turn bound to the proximal promoter of IFNG and subsequently resulted in increased IFN-γ production in NK cells. However, IL-12 and IL-15Rs and their related STAT signaling pathways were not responsible for the enhanced IFN-γ secretion by PL-C. PL-C induced little or no T cell IFN-γ production or NK cell cytotoxicity. Collectively, we identify a natural product with the capacity to selectively enhance human NK cell IFN-γ production. Given the role of IFN-γ in immune surveillance, additional studies to understand the role of this natural product in prevention of cancer or infection in select populations are warranted. Copyright © 2014 by The American Association of Immunologists, Inc.

  2. Marine Natural Products with P-Glycoprotein Inhibitor Properties

    PubMed Central

    Lopez, Dioxelis; Martinez-Luis, Sergio

    2014-01-01

    P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193

  3. The interaction of natural background gamma radiation with depleted uranium micro-particles in the human body.

    PubMed

    Pattison, John E

    2013-03-01

    In this study, some characteristics of the photo-electrons produced when natural background gamma radiation interacts with micron-sized depleted uranium (DU) particles in the human body have been estimated using Monte Carlo simulations. In addition, an estimate has been made of the likelihood of radiological health effects occurring due to such an exposure. Upon exposure to naturally occurring background gamma radiation, DU particles in the body will produce an enhancement of the dose to the tissue in the immediate vicinity of the particles due to the photo-electric absorption of the radiation in the particle. In this study, the photo-electrons produced by a 10 μm-size particle embedded in tissue at the centre of the human torso have been investigated. The mean energies of the photo-electrons in the DU particle and in the two consecutive immediately surrounding 2 μm-wide tissue shells around the particle were found to be 38, 49 and 50 keV, respectively, with corresponding ranges of 1.3, 38 and 39 μm, respectively. The total photo-electron fluence-rates in the two consecutive 2 μm-wide tissue layers were found to be 14% and 7% of the fluence-rate in the DU particle, respectively. The estimated dose enhancement due to one 10 μm-sized DU particle in 1 cm(3) of tissue was less than 2 in 10 million of the dose received by the tissue without a particle being present. The increase in risk of death from cancer due to this effect is consequently insignificant.

  4. Synthesis of four diastereomers of sclerophytin F and structural reassignment of several sclerophytin natural products.

    PubMed

    Clark, J Stephen; Delion, Laëtitia; Farrugia, Louis J

    2015-03-16

    Synthesis of the triol that has been proposed to be the marine natural product sclerophytin F has been completed along with the syntheses of three diastereomers. Comparison of the NMR spectroscopic data for all four compounds to the data reported for the natural product reveals that sclerophytin F is not the 3S diastereomer of sclerophytin A as proposed by Friedrich and Paquette. Re-analysis of the NMR spectroscopic data for known sclerophytin natural products and synthetic analogues leads to the conclusion that sclerophytins E and F are the same compound. This finding has allowed structural reassignment of several other cladiellin natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A New Route to Azafluoranthene Natural Products via Direct Arylation

    PubMed Central

    Ponnala, Shashikanth; Harding, Wayne W.

    2013-01-01

    Microwave-assisted direct arylation was successfully employed in the synthesis of azafluoranthene alkaloids for the first time. Direct arylation reactions on a diverse set of phenyltetrahydroisoquinolines produces the indeno[1,2,3-ij]isoquinoline nucleus en route to a high yielding azafluoranthene synthesis. The method was used as a key step in the efficient preparation of the natural products rufescine and triclisine. As demonstrated herein, this synthetic approach should be generally applicable to the preparation of natural and un-natural azafluoranthene alkaloids as well as “azafluoranthene-like” isoquinoline alkaloids. PMID:23503080

  6. An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery

    PubMed Central

    Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing

    2010-01-01

    The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897

  7. Teachers' Knowledge and Views on the Use of Learners' Socio-Cultural Background in Teaching Natural Sciences in Grade 9 Township Classes

    ERIC Educational Resources Information Center

    Mavuru, Lydia; Ramnarain, Umesh

    2017-01-01

    This article explores teachers' knowledge and views on the role of learners' socio-cultural background when teaching Natural Sciences to Grade 9 learners at three South African township schools. Within a socio-cultural framework, the research investigated how teachers accommodate learners' cultural norms and values, religion and beliefs,…

  8. Natural or Plant Products for the Treatment of Neurological Disorders: Current Knowledge.

    PubMed

    Parvez, Mohammad Khalid

    2018-01-01

    In recent decades, complementary and alternative medicine (CAM) has become very popular in the treatment of several chronic diseases. Natural products as one of the CAM modalities offer potential opportunities to discover lead compounds for novel drug development. The use of CAM or natural products in the prevention of neurodegenerative diseases is comparatively a newer area. A structured online literature search for peer-reviewed research articles was conducted on the PubMed, Europe PMC, Medline and Google Scholar portals, using phrases: natural products for neurologic disorders, phytomedicine for neurodegenerative diseases, natural therapeutics for neurological symptopms etc. Results: The retrieved data showed the natural therapeutics with anti-oxidative and anti-inflammatory salutations evidently plays a crucial role in protecting neurons. Of these, the most promising are caffeine, trigonelline, shogaol, curcumin, resveratrol, baicalein, wogonin, ginsenosides, tanshinones, withanolides, picrosides, parthenolide, cannabinoids, Devil's claw and white willow bark, including Chinese formulations Renshen Shouwu and Shengmai San. Though several herbs and their active ingredients have been studied in laboratory and clinical settings, only a few have been investigated for their molecular mechanisms of action. Notably, despite the promising and safe therapeutic benefits of CAM/herbal medicines, there exists a possible risk when combining them with prescription drugs. As a result, many drugs have shown changes in blood pressure, hepatotoxicity, seizures etc. when combined with certain herbs. Certainly, extensive work is needed to make sure that patients should take a regimen of protective and restorative therapy under an experienced healthcare professional. This article updates on the current knowledge of promising natural products used in neurological disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Evaluation of potential for mercury volatilization from natural and FGD gypsum products using flux-chamber tests.

    PubMed

    Shock, Scott S; Noggle, Jessica J; Bloom, Nicholas; Yost, Lisa J

    2009-04-01

    Synthetic gypsum produced by flue-gas desulfurization (FGD) in coal-fired power plants (FGD gypsum) is put to productive use in manufacturing wallboard. FGD gypsum wallboard is widely used, accounting for nearly 30% of wallboard sold in the United States. Mercury is captured in flue gas and thus is one of the trace metals present in FGD gypsum; raising questions about the potential for mercury exposure from wallboard. Mercury is also one of the trace metals present in "natural" mined gypsum used to make wall board. Data available in the literature were not adequate to assess whether mercury in wallboard from either FGD or natural gypsum could volatilize into indoor air. In this study, mercury volatilization was evaluated using small-scale (5 L) glass and Teflon flux chambers, with samples collected using both iodated carbon and gold-coated sand traps. Mercury flux measurements made using iodated carbon traps (n=6) were below the detection limit of 11.5 ng/m2-day for all natural and synthetic gypsum wallboard samples. Mercury flux measurements made using gold-coated sand traps (n=6) were 0.92 +/- 0.11 ng/m2-day for natural gypsum wallboard and 5.9 +/- 2.4 ng/m2-day for synthetic gypsum wallboard. Room air mercury concentrations between 0.028 and 0.28 ng/m3 and between 0.13 and 2.2 ng/m3 were estimated based on the flux-rate data for natural and synthetic gypsum wallboard samples, respectively, and were calculated assuming a 3 m x 4 m x 5 m room, and 10th and 90th percentile air exchange rates of 0.18/hour and 1.26/hour. The resulting concentration estimates are well below the U.S. Environmental Protection Agency (EPA) reference concentration for indoor air elemental mercury of 300 ng/m3 and the Agency for Toxic Substances and Disease Registry minimal risk level (MRL) of 200 ng/m3. Further, these estimates are below background mercury concentrations in indoor air and within or below the range of typical background mercury concentrations in outdoor air.

  10. Highly Stereoselective Synthesis of a Compound Collection Based on the Bicyclic Scaffolds of Natural Products.

    PubMed

    Annamalai, Murali; Hristeva, Stanimira; Bielska, Martyna; Ortega, Raquel; Kumar, Kamal

    2017-05-18

    Despite the great contribution of natural products in the history of successful drug discovery, there are significant limitations that persuade the pharmaceutical industry to evade natural products in drug discovery research. The extreme scarcity as well as structural complexity of natural products renders their practical synthetic access and further modifications extremely challenging. Although other alternative technologies, particularly combinatorial chemistry, were embraced by the pharmaceutical industry to get quick access to a large number of small molecules with simple frameworks that often lack three-dimensional complexity, hardly any success was achieved in the discovery of lead molecules. To acquire chemotypes beholding structural features of natural products, for instance high sp ³ character, the synthesis of compound collections based on core-scaffolds of natural products presents a promising strategy. Here, we report a natural product inspired synthesis of six different chemotypes and their derivatives for drug discovery research. These bicyclic hetero- and carbocyclic scaffolds are highly novel, rich in sp ³ features and with ideal physicochemical properties to display drug likeness. The functional groups on the scaffolds were exploited further to generate corresponding compound collections. Synthesis of two of these collections exemplified with ca. 350 compounds are each also presented. The whole compound library is being exposed to various biological screenings within the European Lead Factory consortium.

  11. Prioritizing pharmacokinetic drug interaction precipitants in natural products: application to OATP inhibitors in grapefruit juice.

    PubMed

    Johnson, Emily J; Won, Christina S; Köck, Kathleen; Paine, Mary F

    2017-04-01

    Natural products, including botanical dietary supplements and exotic drinks, represent an ever-increasing share of the health-care market. The parallel ever-increasing popularity of self-medicating with natural products increases the likelihood of co-consumption with conventional drugs, raising concerns for unwanted natural product-drug interactions. Assessing the drug interaction liability of natural products is challenging due to the complex and variable chemical composition inherent to these products, necessitating a streamlined preclinical testing approach to prioritize precipitant individual constituents for further investigation. Such an approach was evaluated in the current work to prioritize constituents in the model natural product, grapefruit juice, as inhibitors of intestinal organic anion-transporting peptide (OATP)-mediated uptake. Using OATP2B1-expressing MDCKII cells (Madin-Darby canine kidney type II) and the probe substrate estrone 3-sulfate, IC 50s were determined for constituents representative of the flavanone (naringin, naringenin, hesperidin), furanocoumarin (bergamottin, 6',7'-dihydroxybergamottin) and polymethoxyflavone (nobiletin and tangeretin) classes contained in grapefruit juice. Nobiletin was the most potent (IC 50 , 3.7 μm); 6',7'-dihydroxybergamottin, naringin, naringenin and tangeretin were moderately potent (IC 50 , 20-50 μm); and bergamottin and hesperidin were the least potent (IC 50 , >300 μm) OATP2B1 inhibitors. Intestinal absorption simulations based on physiochemical properties were used to determine the ratios of unbound concentration to IC 50 for each constituent within enterocytes and to prioritize in order of pre-defined cut-off values. This streamlined approach could be applied to other natural products that contain multiple precipitants of natural product-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Database for Rapid Dereplication of Known Natural Products Using Data from MS and Fast NMR Experiments.

    PubMed

    Zani, Carlos L; Carroll, Anthony R

    2017-06-23

    The discovery of novel and/or new bioactive natural products from biota sources is often confounded by the reisolation of known natural products. Dereplication strategies that involve the analysis of NMR and MS spectroscopic data to infer structural features present in purified natural products in combination with database searches of these substructures provide an efficient method to rapidly identify known natural products. Unfortunately this strategy has been hampered by the lack of publically available and comprehensive natural product databases and open source cheminformatics tools. A new platform, DEREP-NP, has been developed to help solve this problem. DEREP-NP uses the open source cheminformatics program DataWarrior to generate a database containing counts of 65 structural fragments present in 229 358 natural product structures derived from plants, animals, and microorganisms, published before 2013 and freely available in the nonproprietary Universal Natural Products Database (UNPD). By counting the number of times one or more of these structural features occurs in an unknown compound, as deduced from the analysis of its NMR ( 1 H, HSQC, and/or HMBC) and/or MS data, matching structures carrying the same numeric combination of searched structural features can be retrieved from the database. Confirmation that the matching structure is the same compound can then be verified through literature comparison of spectroscopic data. This methodology can be applied to both purified natural products and fractions containing a small number of individual compounds that are often generated as screening libraries. The utility of DEREP-NP has been verified through the analysis of spectra derived from compounds (and fractions containing two or three compounds) isolated from plant, marine invertebrate, and fungal sources. DEREP-NP is freely available at https://github.com/clzani/DEREP-NP and will help to streamline the natural product discovery process.

  13. Outdoor (222)Rn-concentrations in Germany - part 1 - natural background.

    PubMed

    Kümmel, M; Dushe, C; Müller, S; Gehrcke, K

    2014-06-01

    To determine the natural radiation exposure due to outdoor radon ((222)Rn) and its short-lived decay products in Germany, the Federal Office for Radiation Protection (BfS) conducted a measuring programme over three years. The annual mean radon concentration at 1.5 m above ground level was measured with solid-state track etch detectors at 173 measuring points in an even grid with a grid length of approx. 50 km. Furthermore, annual mean values of the equilibrium-equivalent radon concentration (EEC) and the equilibrium factor were estimated on the basis of the activity concentrations of (214)Pb and (214)Bi measured at 27 stations of the German Meteorological Service (DWD). Our study yielded a spatial mean outdoor radon concentration for Germany of 9 ± 1 Bq m(-3) (median: 8 (-0.5/+1.0) Bq m(-3)), with regional means varying from 4.5 Bq m(-3) in Hamburg to 14 Bq m(-3) in Bavaria. The determined EEC are in a range from 1.4 to 11 Bq m(-3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Gamma-Ray Background Variability in Mobile Detectors

    NASA Astrophysics Data System (ADS)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background

  15. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    PubMed

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  16. Discovery of New Compounds Active against Plasmodium falciparum by High Throughput Screening of Microbial Natural Products.

    PubMed

    Pérez-Moreno, Guiomar; Cantizani, Juan; Sánchez-Carrasco, Paula; Ruiz-Pérez, Luis Miguel; Martín, Jesús; El Aouad, Noureddine; Pérez-Victoria, Ignacio; Tormo, José Rubén; González-Menendez, Víctor; González, Ignacio; de Pedro, Nuria; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; González-Pacanowska, Dolores

    2016-01-01

    Due to the low structural diversity within the set of antimalarial drugs currently available in the clinic and the increasing number of cases of resistance, there is an urgent need to find new compounds with novel modes of action to treat the disease. Microbial natural products are characterized by their large diversity provided in terms of the chemical complexity of the compounds and the novelty of structures. Microbial natural products extracts have been underexplored in the search for new antiparasitic drugs and even more so in the discovery of new antimalarials. Our objective was to find new druggable natural products with antimalarial properties from the MEDINA natural products collection, one of the largest natural product libraries harboring more than 130,000 microbial extracts. In this work, we describe the optimization process and the results of a phenotypic high throughput screen (HTS) based on measurements of Plasmodium lactate dehydrogenase. A subset of more than 20,000 extracts from the MEDINA microbial products collection has been explored, leading to the discovery of 3 new compounds with antimalarial activity. In addition, we report on the novel antiplasmodial activity of 4 previously described natural products.

  17. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.

    PubMed

    Valliappan, Karuppiah; Sun, Wei; Li, Zhiyong

    2014-09-01

    Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.

  18. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  19. Natural Products: Key Prototypes to Drug Discovery Against Neglected Diseases Caused by Trypanosomatids.

    PubMed

    Varela, Marina Themoteo; Fernandes, Joao Paulo S

    2018-04-30

    Neglected tropical diseases are a group of infections caused by microorganisms and viruses that affect mainly poor regions of the world. In addition, most available drugs are associated with long periods of treatment and high toxicity which limits the application and patient compliance. Investment in research and development is not seen as an attractive deal by the pharmaceutical industry since the final product must ideally be cheap, not returning the amount invested. Natural products have always played an important source for bioactive compounds and are advantageous over synthetic compounds when considering the unique structural variety and biological activities. On the other hand, isolation difficulties and low yields, environmental impact and high cost usually limit their application as drug per se. In this review, the use of natural products as prototypes for the semi-synthesis or total synthesis, as well as natural products as promising hits are covered, specifically regarding compounds with activities against trypanosomatids such as Trypanosoma spp. and Leishmania spp. Selected reports from literature with this approach were retrieved. As summary, it can be concluded that natural products are an underestimated source for designing novel agents against these parasites. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Background monitoring and its role in global estimation and forecast of the state of the biosphere.

    PubMed

    Izrael, Y A

    1982-12-01

    (1) Scientific grounds and the concept of monitoring as the system for observations, assessment and prediction of man-induced changes in the state of natural environment, the program and aims of the background monitoring were developed by the author in 1972-1980. These questions were discussed in detail at the International Symposium on Global Integrated Monitoring (Riga, U.S.S.R., December, 1978). It should be stressed that along with significant anthropogenic loading on large cities and industrial areas, natural ecosystems covering most of the Earth's territory are also exposed to quite extended, though insignificant anthropogenic effects. This paper proposes to consider the ways of the background information use for the biosphere state assessment and prediction. (2) Classification of objects for monitoring from the point of view of the consequences of the man-made impact, pollution in the first hand, is as follows: - population (public health); - ecosystem elements employed by man whose production is used by population (soil, water bodies, forest, etc.); - biotic elements of ecosystems (without the immediate consumed production); - abiotic constituents of natural ecosystems, considerable components of the biosphere, climatic system. (3) Historically, monitoring in all countries involves the first two spheres. The background monitoring also extends on the next two spheres. It should differentially take into account physical, chemical and biological factors of impacts. Indentification of biological effects is most complex and vital. Human impact at the background level proceeds indirectly through a general (global or regional) deterioration of the state of the biosphere. (4) Gradually the background monitoring is being practiced on a larger and larger scale. It is shown that the long-range atmospheric transport of pollutants in various regions leads to a gradual general increase of all the natural media pollution and to perceptible biological effects (soil and

  1. Geostatistics as a tool to improve the natural background level definition: An application in groundwater.

    PubMed

    Dalla Libera, Nico; Fabbri, Paolo; Mason, Leonardo; Piccinini, Leonardo; Pola, Marco

    2017-11-15

    The Natural Background Level (NBL), suggested by UE BRIDGE project, is suited for spatially distributed datasets providing a regional value that could be higher than the Threshold Value (TV) set by every country. In hydro-geochemically dis-homogeneous areas, the use of a unique regional NBL, higher than TV, could arise problems to distinguish between natural occurrences and anthropogenic contaminant sources. Hence, the goal of this study is to improve the NBL definition employing a geostatistical approach, which reconstructs the contaminant spatial structure accounting geochemical and hydrogeological relationships. This integrated mapping is fundamental to evaluate the contaminant's distribution impact on the NBL, giving indications to improve it. We decided to test this method on the Drainage Basin of Venice Lagoon (DBVL, NE Italy), where the existing NBL is seven times higher than the TV. This area is notoriously affected by naturally occurring arsenic contamination. An available geochemical dataset collected by 50 piezometers was used to reconstruct the spatial distribution of arsenic in the densely populated area of the DBVL. A cokriging approach was applied exploiting the geochemical relationships among As, Fe and NH4+. The obtained spatial predictions of arsenic concentrations were divided into three different zones: i) areas with an As concentration lower than the TV, ii) areas with an As concentration between the TV and the median of the values higher than the TV, and iii) areas with an As concentration higher than the median. Following the BRIDGE suggestions, where enough samples were available, the 90th percentile for each zone was calculated to obtain a local NBL (LNBL). Differently from the original NBL, this local value gives more detailed water quality information accounting the hydrogeological and geochemical setting, and contaminant spatial variation. Hence, the LNBL could give more indications about the distinction between natural occurrence and

  2. Epoxide-Opening Cascades in the Synthesis of Polycyclic Polyether Natural Products

    PubMed Central

    2009-01-01

    The group of polycyclic polyether natural products is of special interest due to the fascinating structure and biological effects displayed by its members. The latter includes potentially therapeutic antibiotic, antifungal, and anticancer properties, as well as extreme lethality. The polycyclic structural features of this family can, in some cases, be traced to their biosynthetic origin, but in others that are less well understood, only to proposed biosynthetic pathways that feature dramatic, yet speculative, epoxide–opening cascades. In this review we summarize how such epoxide–opening cascade reactions have been used in the synthesis of polycyclic polyethers and related natural products. PMID:19572302

  3. Rationale for a natural products approach to herbicide discovery.

    PubMed

    Dayan, Franck E; Owens, Daniel K; Duke, Stephen O

    2012-04-01

    Weeds continue to evolve resistance to all the known modes of herbicidal action, but no herbicide with a new target site has been commercialized in nearly 20 years. The so-called 'new chemistries' are simply molecules belonging to new chemical classes that have the same mechanisms of action as older herbicides (e.g. the protoporphyrinogen-oxidase-inhibiting pyrimidinedione saflufenacil or the very-long-chain fatty acid elongase targeting sulfonylisoxazoline herbicide pyroxasulfone). Therefore, the number of tools to manage weeds, and in particular those that can control herbicide-resistant weeds, is diminishing rapidly. There is an imminent need for truly innovative classes of herbicides that explore chemical spaces and interact with target sites not previously exploited by older active ingredients. This review proposes a rationale for a natural-products-centered approach to herbicide discovery that capitalizes on the structural diversity and ingenuity afforded by these biologically active compounds. The natural process of extended-throughput screening (high number of compounds tested on many potential target sites over long periods of times) that has shaped the evolution of natural products tends to generate molecules tailored to interact with specific target sites. As this review shows, there is generally little overlap between the mode of action of natural and synthetic phytotoxins, and more emphasis should be placed on applying methods that have proved beneficial to the pharmaceutical industry to solve problems in the agrochemical industry. Published 2012 by John Wiley & Sons, Ltd.

  4. Bio-mining the microbial treasures of the ocean: new natural products.

    PubMed

    Imhoff, Johannes F; Labes, Antje; Wiese, Jutta

    2011-01-01

    The biological resources of the oceans have been exploited since ancient human history, mainly by catching fish and harvesting algae. Research on natural products with special emphasis on marine animals and also algae during the last decades of the 20th century has revealed the importance of marine organisms as producers of substances useful for the treatment of human diseases. Though a large number of bioactive substances have been identified, some many years ago, only recently the first drugs from the oceans were approved. Quite astonishingly, the immense diversity of microbes in the marine environments and their almost untouched capacity to produce natural products and therefore the importance of microbes for marine biotechnology was realized on a broad basis by the scientific communities only recently. This has strengthened worldwide research activities dealing with the exploration of marine microorganisms for biotechnological applications, which comprise the production of bioactive compounds for pharmaceutical use, as well as the development of other valuable products, such as enzymes, nutraceuticals and cosmetics. While the focus in these fields was mainly on marine bacteria, also marine fungi now receive growing attention. Although culture-dependent studies continue to provide interesting new chemical structures with biological activities at a high rate and represent highly promising approaches for the search of new drugs, exploration and use of genomic and metagenomic resources are considered to further increase this potential. Many efforts are made for the sustainable exploration of marine microbial resources. Large culture collections specifically of marine bacteria and marine fungi are available. Compound libraries of marine natural products, even of highly purified substances, were established. The expectations into the commercial exploitation of marine microbial resources has given rise to numerous institutions worldwide, basic research facilities as

  5. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas.

    PubMed

    Marrero, Josette E; Townsend-Small, Amy; Lyon, David R; Tsai, Tracy R; Meinardi, Simone; Blake, Donald R

    2016-10-04

    Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h -1 . Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h -1 . While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.

  6. Search for bioactive natural products from medicinal plants of Bangladesh.

    PubMed

    Ahmed, Firoj; Sadhu, Samir Kumar; Ishibashi, Masami

    2010-10-01

    In our continuous search for bioactive natural products from natural resources, we explored medicinal plants of Bangladesh, targeting cancer-related tumor necrosis factor-related apoptosis-inducing ligand-signaling pathway, along with some other biological activities such as prostaglandin inhibitory activity, 1,1-diphenyl-2-picrylhydrazyl free-radical-scavenging activity, and cell growth inhibitory activity. Along with this, we describe a short field study on Sundarbans mangrove forests, Bangladesh, in the review.

  7. Natural or Induced: Identifying Natural and Induced Swarms from Pre-production and Co-production Microseismic Catalogs at the Coso Geothermal Field

    USGS Publications Warehouse

    Schoenball, Martin; Kaven, Joern; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2015-01-01

    Increased levels of seismicity coinciding with injection of reservoir fluids have prompted interest in methods to distinguish induced from natural seismicity. Discrimination between induced and natural seismicity is especially difficult in areas that have high levels of natural seismicity, such as the geothermal fields at the Salton Sea and Coso, both in California. Both areas show swarm-like sequences that could be related to natural, deep fluid migration as part of the natural hydrothermal system. Therefore, swarms often have spatio-temporal patterns that resemble fluid-induced seismicity, and might possibly share other characteristics. The Coso Geothermal Field and its surroundings is one of the most seismically active areas in California with a large proportion of its activity occurring as seismic swarms. Here we analyze clustered seismicity in and surrounding the currently produced reservoir comparatively for pre-production and co-production periods. We perform a cluster analysis, based on the inter-event distance in a space-time-energy domain to identify notable earthquake sequences. For each event j, the closest previous event i is identified and their relationship categorized. If this nearest neighbor’s distance is below a threshold based on the local minimum of the bimodal distribution of nearest neighbor distances, then the event j is included in the cluster as a child to this parent event i. If it is above the threshold, event j begins a new cluster. This process identifies subsets of events whose nearest neighbor distances and relative timing qualify as a cluster as well as a characterizing the parent-child relationships among events in the cluster. We apply this method to three different catalogs: (1) a two-year microseismic survey of the Coso geothermal area that was acquired before exploration drilling in the area began; (2) the HYS_catalog_2013 that contains 52,000 double-difference relocated events and covers the years 1981 to 2013; and (3) a

  8. Identification of ω-N-Methyl-4-hydroxytryptamine (Norpsilocin) as a Psilocybe Natural Product.

    PubMed

    Lenz, Claudius; Wick, Jonas; Hoffmeister, Dirk

    2017-10-27

    We report the identification of ω-N-methyl-4-hydroxytryptamine (norpsilocin, 1) from the carpophores of the hallucinogenic mushroom Psilocybe cubensis. The structure was elucidated by 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. Norpsilocin has not previously been reported as a natural product. It likely represents the actual psychotropic agent liberated from its 4-phosphate ester derivative, the known natural product baeocystin. We further present a simple and artifact-free extraction method that prevents dephosphorylation and therefore helps reflect the naturally occurring metabolic profile of Psilocybe mushrooms in subsequent analyses.

  9. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    PubMed

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes

    USDA-ARS?s Scientific Manuscript database

    Although natural products have been a particularly rich source of human medicines, the rate at which new molecules are being discovered is declining precipitously. Based on the large number of natural product biosynthetic genes in microbial genomes, many have suggested “genome mining” as an approach...

  11. Using natural products for drug discovery: the impact of the genomics era

    PubMed Central

    Zhang, Mingzi M; Qiao, Yuan; Ang, Ee Lui; Zhao, Huimin

    2017-01-01

    Introduction Evolutionarily selected over billions of years for their interactions with biomolecules, natural products have been and continue to be a major source of pharmaceuticals. In the 1990s, pharmaceutical companies scaled down their natural product discovery programs in favor of synthetic chemical libraries due to major challenges such as high rediscovery rates, challenging isolation, and low production titers. Propelled by advances in DNA sequencing and synthetic biology technologies, insights into microbial secondary metabolism provided have inspired a number of strategies to address these challenges. Areas covered This review highlights the importance of genomics and metagenomics in natural product discovery, and provides an overview of the technical and conceptual advances that offer unprecedented access to molecules encoded by biosynthetic gene clusters. Expert opinion Genomics and metagenomics revealed nature’s remarkable biosynthetic potential and her vast chemical inventory that we can now prioritize and systematically mine for novel chemical scaffolds with desirable bioactivities. Coupled with synthetic biology and genome engineering technologies, significant progress has been made in identifying and predicting the chemical output of biosynthetic gene clusters, as well as in optimizing cluster expression in native and heterologous host systems for the production of pharmaceutically relevant metabolites and their derivatives. PMID:28277838

  12. Using Functional Signature Ontology (FUSION) to Identify Mechanisms of Action for Natural Products

    PubMed Central

    Potts, Malia B.; Kim, Hyun Seok; Fisher, Kurt W.; Hu, Youcai; Carrasco, Yazmin P.; Bulut, Gamze Betul; Ou, Yi-Hung; Herrera-Herrera, Mireya L.; Cubillos, Federico; Mendiratta, Saurabh; Xiao, Guanghua; Hofree, Matan; Ideker, Trey; Xie, Yang; Huang, Lily Jun-shen; Lewis, Robert E.; MacMillan, John B.; White, Michael A.

    2014-01-01

    A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells. We used cell-based screening and computational analysis to match gene expression signatures produced by natural products to those produced by siRNA and synthetic microRNA libraries. With this strategy, we matched proteins and microRNAs with diverse biological processes and also identified putative protein targets and mechanisms of action for several previously undescribed marine-derived natural products. We confirmed mechanistic relationships for selected short-interfering RNAs, microRNAs, and compounds with functional roles in autophagy, chemotaxis mediated by discoidin domain receptor 2, or activation of the kinase AKT. Thus, this approach may be an effective method for screening new drugs while simultaneously identifying their targets. PMID:24129700

  13. Spontaneously Reported Adverse Reactions for Herbal Medicinal Products and Natural Remedies in Sweden 2007-15: Report from the Medical Products Agency.

    PubMed

    Svedlund, Erika; Larsson, Maria; Hägerkvist, Robert

    2017-06-01

    In relation to the extensive use of herbal medicinal products in self-care, the safety information is limited and there is a need for improvement. This study describes spontaneously reported adverse reactions related to herbal medicinal products and natural remedies in Sweden. To evaluate the characteristics and frequency of adverse events recorded by the Swedish Medical Products Agency, where herbal medicinal products and natural remedies were suspected as causative agents. Adverse drug reactions reported to the Swedish Medical Product Agency during 2007-15 related to approved herbal medicinal products or natural remedies were included and analysed in the retrospective study. Reports had been assessed for causality when they were lodged and only reports that had been assessed as at least possible were included in the study. In total, 116 reports (concerning 259 adverse reactions) related to herbal medicinal products or natural remedies were found in the Swedish national pharmacovigilance database. The active ingredients most frequently suspected during the study period were black cohosh rhizome (15 reports), purple coneflower herb (14 reports) and a combination of extracts of pollen (13 reports). Adverse reactions related to skin and subcutaneous tissue were the most commonly reported reactions. No previously unknown safety problems have been discovered in the present study. This finding could be explained by a thorough pre-approval assessment of medicinal products and the fact that most herbal preparations in medicinal products have been in clinical use for many years (for traditional herbal medicinal products, the requirements are ≥30 years), i.e. adverse reactions are acknowledged and assessed before approval.

  14. Organisms for biofuel production: natural bioresources and methodologies for improving their biosynthetic potentials.

    PubMed

    Hu, Guangrong; Ji, Shiqi; Yu, Yanchong; Wang, Shi'an; Zhou, Gongke; Li, Fuli

    2015-01-01

    In order to relieve the pressure of energy supply and environment contamination that humans are facing, there are now intensive worldwide efforts to explore natural bioresources for production of energy storage compounds, such as lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many plants have been evaluated and developed as feedstock for bioenergy production, among which several crops have successfully achieved industrialization. Microalgae are another group of photosynthetic autotroph of interest due to their superior growth rates, relatively high photosynthetic conversion efficiencies, and vast metabolic capabilities. Heterotrophic microorganisms, such as yeast and bacteria, can utilize carbohydrates from lignocellulosic biomass directly or after pretreatment and enzymatic hydrolysis to produce liquid biofuels such as ethanol and butanol. Although finding a suitable organism for biofuel production is not easy, many naturally occurring organisms with good traits have recently been obtained. This review mainly focuses on the new organism resources discovered in the last 5 years for production of transport fuels (biodiesel, gasoline, jet fuel, and alkanes) and hydrogen, and available methods to improve natural organisms as platforms for the production of biofuels.

  15. Regional air quality impacts of increased natural gas production and use in Texas.

    PubMed

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-02

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.

  16. Natural products with health benefits from marine biological resources

    USDA-ARS?s Scientific Manuscript database

    The ocean is the cradle of lives, which provides a diverse array of intriguing natural products that has captured scientists’ attention in the past few decades due to their significant and extremely potent biological activities. In addition to being rich sources for pharmaceutical drugs, marine nat...

  17. High content live cell imaging for the discovery of new antimalarial marine natural products

    PubMed Central

    2012-01-01

    Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. PMID:22214291

  18. Evidences of Herbal Medicine-Derived Natural Products Effects in Inflammatory Lung Diseases.

    PubMed

    Santana, Fernanda Paula R; Pinheiro, Nathalia M; Mernak, Márcia Isabel B; Righetti, Renato F; Martins, Mílton A; Lago, João H G; Lopes, Fernanda D T Q Dos Santos; Tibério, Iolanda F L C; Prado, Carla M

    2016-01-01

    Pulmonary inflammation is a hallmark of many respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory syndrome distress (ARDS). Most of these diseases are treated with anti-inflammatory therapy in order to prevent or to reduce the pulmonary inflammation. Herbal medicine-derived natural products have been used in folk medicine and scientific studies to evaluate the value of these compounds have grown in recent years. Many substances derived from plants have the biological effects in vitro and in vivo, such as flavonoids, alkaloids, and terpenoids. Among the biological activities of natural products derived from plants can be pointed out the anti-inflammatory, antiviral, antiplatelet, antitumor anti-allergic activities, and antioxidant. Although many reports have evaluated the effects of these compounds in experimental models, studies evaluating clinical trials are scarce in the literature. This review aims to emphasize the effects of these different natural products in pulmonary diseases in experimental models and in humans and pointing out some possible mechanisms of action.

  19. Natural products targeting ER stress pathway for the treatment of cardiovascular diseases.

    PubMed

    Choy, Ker Woon; Murugan, Dharmani; Mustafa, Mohd Rais

    2018-04-21

    Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes.

    PubMed

    Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R; Wang, Kwo-Kwang A; Thibodeaux, Christopher J; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P; Evans, Bradley S; Hirota, Ryuichi; Labeda, David P; van der Donk, Wilfred A; Metcalf, William W

    2015-09-29

    Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.

  1. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes

    PubMed Central

    Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R.; Wang, Kwo-Kwang A.; Thibodeaux, Christopher J.; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P.; Evans, Bradley S.; Hirota, Ryuichi; Labeda, David P.; van der Donk, Wilfred A.; Metcalf, William W.

    2015-01-01

    Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed “genome mining” as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N5-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products. PMID:26324907

  2. 16 CFR 1406.2 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Background. 1406.2 Section 1406.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING... Consumer Product Safety Commission disclose a number of incidents involving coal and wood burning...

  3. 16 CFR 1406.2 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Background. 1406.2 Section 1406.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING... Consumer Product Safety Commission disclose a number of incidents involving coal and wood burning...

  4. 16 CFR 1406.2 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Background. 1406.2 Section 1406.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING... Consumer Product Safety Commission disclose a number of incidents involving coal and wood burning...

  5. 16 CFR 1406.2 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Background. 1406.2 Section 1406.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING... Consumer Product Safety Commission disclose a number of incidents involving coal and wood burning...

  6. Strain Prioritization and Genome Mining for Enediyne Natural Products

    PubMed Central

    Yan, Xiaohui; Ge, Huiming; Huang, Tingting; Hindra; Yang, Dong; Teng, Qihui; Crnovčić, Ivana; Li, Xiuling; Rudolf, Jeffrey D.; Lohman, Jeremy R.; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Van Nieuwerburgh, Filip; Rader, Christoph

    2016-01-01

    ABSTRACT The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster. A genome neighborhood network allows prediction of new structural features and biosynthetic insights that could be exploited for enediyne discovery. We confirmed one clade as new C-1027 producers, with a significantly higher C-1027 titer than the original producer, and discovered a new family of enediyne natural products, the tiancimycins (TNMs), that exhibit potent cytotoxicity against a broad spectrum of cancer cell lines. Our results demonstrate the feasibility of rapid discovery of new enediynes from a large strain collection. PMID:27999165

  7. Microbial production of natural gas from coal and organic-rich shale

    USGS Publications Warehouse

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  8. A Growing Disconnection From Nature Is Evident in Cultural Products.

    PubMed

    Kesebir, Selin; Kesebir, Pelin

    2017-03-01

    Human connection with nature is widely believed to be in decline even though empirical evidence is scarce on the magnitude and historical pattern of the change. Studying works of popular culture in English throughout the 20th century and later, we have documented a cultural shift away from nature that begins in the 1950s. Since then, references to nature have been decreasing steadily in fiction books, song lyrics, and film storylines, whereas references to the human-made environment have not. The observed temporal pattern is consistent with the explanatory role of increased virtual and indoors recreation options (e.g., television, video games) in the disconnect from nature, and it is inconsistent with a pure urbanization account. These findings are cause for concern, not only because they imply foregone physical and psychological benefits from engagement with nature, but also because cultural products are agents of socialization that can evoke curiosity, respect, and concern for the natural world.

  9. Medicinal plants and natural products in amelioration of arsenic toxicity: a short review.

    PubMed

    Bhattacharya, Sanjib

    2017-12-01

    Chronic arsenic toxicity (arsenicosis) is considered a serious public health menace worldwide, as there is no specific, safe, and efficacious therapeutic management of arsenicosis. To collate the studies on medicinal plants and natural products with arsenic toxicity ameliorative effect, active pre-clinically and/or clinically. Literature survey was carried out by using Google, Scholar Google and Pub-Med. Only the scientific journal articles found on the internet for last two decades were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. Literature study revealed that 34 medicinal plants and 14 natural products exhibited significant protection from arsenic toxicity, mostly in preclinical trials and a few in clinical studies. This research could lead to development of a potentially useful agent in clinical management of arsenicosis in humans.

  10. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Chiral thiazoline and thiazole building blocks for the synthesis of peptide-derived natural products.

    PubMed

    Just-Baringo, Xavier; Albericio, Fernando; Alvarez, Mercedes

    2014-01-01

    Thiazoline and thiazole heterocycles are privileged motifs found in numerous peptide-derived natural products of biological interest. During the last decades, the synthesis of optically pure building blocks has been addressed by numerous groups, which have developed a plethora of strategies to that end. Efficient and reliable methodologies that are compatible with the intricate and capricious architectures of natural products are a must to further develop their science. Structure confirmation, structure-activity relationship studies and industrial production are fields of paramount importance that require these robust methodologies in order to successfully bring natural products into the clinic. Today's chemist toolbox is assorted with many powerful methods for chiral thiazoline and thiazole synthesis. Ranging from biomimetic approaches to stereoselective alkylations, one is likely to find a suitable method for their needs.

  12. Natural Products in Caries Research: Current (Limited) Knowledge, Challenges and Future Perspective

    PubMed Central

    Jeon, J.-G; Rosalen, P.L.; Falsetta, M.L.; Koo, H.

    2011-01-01

    Dental caries is the most prevalent and costly oral infectious disease worldwide. Virulent biofilms firmly attached to tooth surfaces are prime biological factors associated with this disease. The formation of an exopolysaccharide-rich biofilm matrix, acidification of the milieu and persistent low pH at the tooth-biofilm interface are major controlling virulence factors that modulate dental caries pathogenesis. Each one offers a selective therapeutic target for prevention. Although fluoride, delivered in various modalities, remains the mainstay for the prevention of caries, additional approaches are required to enhance its effectiveness. Available antiplaque approaches are based on the use of broad-spectrum microbicidal agents, e.g. chlorhexidine. Natural products offer a rich source of structurally diverse substances with a wide range of biological activities, which could be useful for the development of alternative or adjunctive anticaries therapies. However, it is a challenging approach owing to complex chemistry and isolation procedures to derive active compounds from natural products. Furthermore, most of the studies have been focused on the general inhibitory effects on glucan synthesis as well as on bacterial metabolism and growth, often employing methods that do not address the pathophysiological aspects of the disease (e.g. bacteria in biofilms) and the length of exposure/retention in the mouth. Thus, the true value of natural products in caries prevention and/or their exact mechanisms of action remain largely unknown. Nevertheless, natural substances potentially active against virulent properties of cariogenic organisms have been identified. This review focuses on gaps in the current knowledge and presents a model for investigating the use of natural products in anticaries chemotherapy. PMID:21576957

  13. Cell immobilization for production of lactic acid biofilms do it naturally.

    PubMed

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. DETERMINING BACKGROUND EXPOSURE TO PETROLEUM AND COMBUSTION BY-PRODUCTS: COMPARISON OF MID-WESTERN AND MID-ATLANTIC REGIONS

    EPA Science Inventory

    Regional background levels of exposure to fish from petroleum and combustion by-products were determined for the state of Ohio and the mid-Atlantic region. Exposures were measured using bile metabolites that fluoresce at 290/335 nm for naphthalene(NAPH)-type compounds and at 380...

  15. Natural Products from Marine Fungi—Still an Underrepresented Resource

    PubMed Central

    Imhoff, Johannes F.

    2016-01-01

    Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author’s lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes. PMID:26784209

  16. SU-F-T-166: On the Nature of the Background Visible Light Observed in Fiber Optic Dosimetry of Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darafsheh, A; Kassaee, A; Finlay, J

    Purpose: The nature of the background visible light observed during fiber optic dosimetry of proton beams, whether it is due to Cherenkov radiation or not, has been debated in the literature recently. In this work, experimentally and by means of Monte Carlo simulations, we shed light on this problem and investigated the nature of the background visible light observed in fiber optics irradiated with proton beams. Methods: A bare silica fiber optics was embedded in tissue-mimicking phantoms and irradiated with clinical proton beams with energies of 100–225 MeV at Roberts Proton Therapy Center. Luminescence spectroscopy was performed by a CCD-coupledmore » spectrograph to analyze in detail the emission spectrum of the fiber tip across the visible range of 400–700 nm. Monte Carlo simulation was performed by using FLUKA Monte Carlo code to simulate Cherenkov light and ionizing radiation dose deposition in the fiber. Results: The experimental spectra of the irradiated silica fiber shows two distinct peaks at 450 and 650 nm, whose spectral shape is different from that of Cherenkov radiation. We believe that the nature of these peaks are connected to the point defects of silica including oxygen-deficiency center (ODC) and non-bridging oxygen hole center (NBOHC). Monte Carlo simulations confirmed the experimental observations that Cherenkov radiation cannot be solely responsible for such a signal. Conclusion: We showed that Cherenkov radiation is not the dominant visible signal observed in bare fiber optics irradiated with proton beams. We observed two distinct peaks at 450 and 650 nm whose nature is connected with the point defects of silica fiber including oxygen-deficiency center and non-bridging oxygen hole center.« less

  17. Natural products as modulator of autophagy with potential clinical prospects.

    PubMed

    Wang, Peiqi; Zhu, Lingjuan; Sun, Dejuan; Gan, Feihong; Gao, Suyu; Yin, Yuanyuan; Chen, Lixia

    2017-03-01

    Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.

  18. Estimating background and threshold nitrate concentrations using probability graphs

    USGS Publications Warehouse

    Panno, S.V.; Kelly, W.R.; Martinsek, A.T.; Hackley, Keith C.

    2006-01-01

    Because of the ubiquitous nature of anthropogenic nitrate (NO 3-) in many parts of the world, determining background concentrations of NO3- in shallow ground water from natural sources is probably impossible in most environments. Present-day background must now include diffuse sources of NO3- such as disruption of soils and oxidation of organic matter, and atmospheric inputs from products of combustion and evaporation of ammonia from fertilizer and livestock waste. Anomalies can be defined as NO3- derived from nitrogen (N) inputs to the environment from anthropogenic activities, including synthetic fertilizers, livestock waste, and septic effluent. Cumulative probability graphs were used to identify threshold concentrations separating background and anomalous NO3-N concentrations and to assist in the determination of sources of N contamination for 232 spring water samples and 200 well water samples from karst aquifers. Thresholds were 0.4, 2.5, and 6.7 mg/L for spring water samples, and 0.1, 2.1, and 17 mg/L for well water samples. The 0.4 and 0.1 mg/L values are assumed to represent thresholds for present-day precipitation. Thresholds at 2.5 and 2.1 mg/L are interpreted to represent present-day background concentrations of NO3-N. The population of spring water samples with concentrations between 2.5 and 6.7 mg/L represents an amalgam of all sources of NO3- in the ground water basins that feed each spring; concentrations >6.7 mg/L were typically samples collected soon after springtime application of synthetic fertilizer. The 17 mg/L threshold (adjusted to 15 mg/L) for well water samples is interpreted as the level above which livestock wastes dominate the N sources. Copyright ?? 2006 The Author(s).

  19. Natural products and drug discovery: a survey of stakeholders in industry and academia.

    PubMed

    Amirkia, Vafa; Heinrich, Michael

    2015-01-01

    In recent decades, natural products have undisputedly played a leading role in the development of novel medicines. Yet, trends in the pharmaceutical industry at the level of research investments indicate that natural product research is neither prioritized nor perceived as fruitful in drug discovery programmes as compared with incremental structural modifications and large volume HTS screening of synthetics. We seek to understand this phenomenon through insights from highly experienced natural product experts in industry and academia. We conducted a survey including a series of qualitative and quantitative questions related to current insights and prospective developments in natural product drug development. The survey was completed by a cross-section of 52 respondents in industry and academia. One recurrent theme is the dissonance between the perceived high potential of NP as drug leads among individuals and the survey participants' assessment of the overall industry and/or company level strategies and their success. The study's industry and academic respondents did not perceive current discovery efforts as more effective as compared with previous decades, yet industry contacts perceived higher hit rates in HTS efforts as compared with academic respondents. Surprisingly, many industry contacts were highly critical to prevalent company and industry-wide drug discovery strategies indicating a high level of dissatisfaction within the industry. These findings support the notion that there is an increasing gap in perception between the effectiveness of well established, commercially widespread drug discovery strategies between those working in industry and academic experts. This research seeks to shed light on this gap and aid in furthering natural product discovery endeavors through an analysis of current bottlenecks in industry drug discovery programmes.

  20. The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases.

    PubMed

    Cheuka, Peter Mubanga; Mayoka, Godfrey; Mutai, Peggoty; Chibale, Kelly

    2016-12-31

    Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs) affect more than 1 billion people annually, including 875 million children in developing economies. These diseases are also responsible for over 500,000 deaths per year and are characterized by long-term disability and severe pain. The impact of the combined NTDs closely rivals that of malaria and tuberculosis. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Natural products have been a valuable source of drug regimens that form the cornerstone of modern pharmaceutical care. In this review, we highlight the potential that remains untapped in natural products as drug leads for NTDs. We cover natural products from plant, marine, and microbial sources including natural-product-inspired semi-synthetic derivatives which have been evaluated against the various causative agents of NTDs. Our coverage is limited to four major NTDs which include human African trypanosomiasis (sleeping sickness), leishmaniasis, schistosomiasis and lymphatic filariasis.

  1. Gluten Contamination in Naturally or Labeled Gluten-Free Products Marketed in Italy.

    PubMed

    Verma, Anil K; Gatti, Simona; Galeazzi, Tiziana; Monachesi, Chiara; Padella, Lucia; Baldo, Giada Del; Annibali, Roberta; Lionetti, Elena; Catassi, Carlo

    2017-02-07

    A strict and lifelong gluten-free diet is the only treatment of celiac disease. Gluten contamination has been frequently reported in nominally gluten-free products. The aim of this study was to test the level of gluten contamination in gluten-free products currently available in the Italian market. A total of 200 commercially available gluten-free products (including both naturally and certified gluten-free products) were randomly collected from different Italian supermarkets. The gluten content was determined by the R5 ELISA Kit approved by EU regulations. Gluten level was lower than 10 part per million (ppm) in 173 products (86.5%), between 10 and 20 ppm in 9 (4.5%), and higher than 20 ppm in 18 (9%), respectively. In contaminated foodstuff (gluten > 20 ppm) the amount of gluten was almost exclusively in the range of a very low gluten content. Contaminated products most commonly belonged to oats-, buckwheat-, and lentils-based items. Certified and higher cost gluten-free products were less commonly contaminated by gluten. Gluten contamination in either naturally or labeled gluten-free products marketed in Italy is nowadays uncommon and usually mild on a quantitative basis. A program of systematic sampling of gluten-free food is needed to promptly disclose at-risk products.

  2. Insect natural products and processes: new treatments for human disease.

    PubMed

    Ratcliffe, Norman A; Mello, Cicero B; Garcia, Eloi S; Butt, Tariq M; Azambuja, Patricia

    2011-10-01

    In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing.

    PubMed

    Weber, Jakob; Valiante, Vito; Nødvig, Christina S; Mattern, Derek J; Slotkowski, Rebecca A; Mortensen, Uffe H; Brakhage, Axel A

    2017-01-20

    Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.

  4. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGES

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; ...

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  5. Methane Emissions from Production Sites in Dry vs. Wet Natural Gas Fields

    NASA Astrophysics Data System (ADS)

    Robertson, Anna M.

    Drilling of unconventional resources (shale, tight sands), has resulted in a 40% increase in U.S. natural gas production since 2005. Due to the large increase in supply, and thus decrease in cost, natural gas has become a viable bridge fuel to transition from more carbon-intensive fuels (coal, oil). Natural gas emits roughly half as much carbon dioxide as coal when burned in a modern power plant, but methane emissions throughout the natural gas network can negate its climatic benefits. Methane emissions from active oil and natural gas production sites were quantified in four basins/plays: Upper Green River (UGR, Wyoming), Denver-Julesburg (DJ, Colorado), Uintah (Utah), and Fayetteville (FV, Arkansas), using the EPA's Other Test Method 33a. Throughput-normalized mass average (TNMA) emissions, total methane mass emissions as a percent of gross methane produced, were higher in basins where wells co-produced oil (Uintah, DJ, UGR) than in FV, which has no oil production. Average TNMA emissions in the UGR were lower than in the DJ and Uintah (0.18% vs 2.06% and 2.78%, respectively). However, well pads in UGR with low gas production (< 500 mcfd) had TNMA emissions similar to wells in DJ and Uintah. The low overall TNMA emissions from UGR appear to be driven by higher average well pad gas production (1774 mcfd per well pad vs 111-148 mcfd in DJ and Uintah). Skewed emission distributions were observed in the Uintah, DJ, and FV with 20% of well pads contributing 72-83% of total measured mass emissions, but not in the UGR where only 54% of total measured mass emissions were contributed by the highest emitting 20% of well pads. TNMA emissions from measured well pads were (95% CI): 0.05-0.16% in FV, 0.12-0.29% in UGR, 1.10-3.95% in DJ, and 0.96-8.60% in Uintah.

  6. Current approaches to exploit actinomycetes as a source of novel natural products.

    PubMed

    Genilloud, Olga; González, Ignacio; Salazar, Oscar; Martín, Jesus; Tormo, José Rubén; Vicente, Francisca

    2011-03-01

    For decades, microbial natural products have been one of the major sources of novel drugs for pharmaceutical companies, and today all evidence suggests that novel molecules with potential therapeutic applications are still waiting to be discovered from these natural sources, especially from actinomycetes. Any appropriate exploitation of the chemical diversity of these microbial sources relies on proper understanding of their biological diversity and other related key factors that maximize the possibility of successful identification of novel molecules. Without doubt, the discovery of platensimycin has shown that microbial natural products can continue to deliver novel scaffolds if appropriate tools are put in place to reveal them in a cost-effective manner. Whereas today innovative technologies involving exploitation of uncultivated environmental diversity, together with chemical biology and in silico approaches, are seeing rapid development in natural products research, maximization of the chances of exploiting chemical diversity from microbial collections is still essential for novel drug discovery. This work provides an overview of the integrated approaches developed at the former Basic Research Center of Merck Sharp and Dohme in Spain to exploit the diversity and biosynthetic potential of actinomycetes, and includes some examples of those that were successfully applied to the discovery of novel antibiotics.

  7. PRODUCTION AND NATURE OF LISTERIA MONOCYTOGENES HEMOLYSINS

    PubMed Central

    Njoku-Obi, Augustine N.; Jenkins, Edward M.; Njoku-Obi, Jessie C.; Adams, Joanne; Covington, Verdell

    1963-01-01

    Njoku-Obi, Augustine N. (School of Veterinary Medicine, Tuskegee Institute, Ala.), Edward M. Jenkins, Jessie C. Njoku-Obi, Joanne Adams, and Verdell Covington. Production and nature of Listeria monocytogenes hemolysins. J. Bacteriol. 86:1–8. 1963.—Hemolysin produced by various strains of Listeria monocytogenes varied in quality and quantity, depending on medium, incubation temperature and time, and biological variations in the organisms. The hemolysin was inactivated by filtration (through Seitz, Selas, or sintered-glass filters), heat, oxygen, and formalin. Sodium thiosulfate reactivated hemolysin inactivated by filtration and oxygen. The hemolysin was protein in nature, migrating electrophoretically as a gamma-globulin, and highly antigenic in the rabbit. Although no toxicity was observed in intact mice injected with hemolysin, a possible leukocytolysis was noted with isolated mice peritoneal exudate cells. Due to the high antihemolytic activity of normal sera from various species, the possible use of an antilisteriolysin test in serological diagnosis is questioned. PMID:14051817

  8. Educational Background, Teaching Experience and Teachers' Views on the Inclusion of Nature of Science in the Science Curriculum

    NASA Astrophysics Data System (ADS)

    Martín-Díaz, M. J.

    2006-08-01

    The aim of this research is to ascertain teachers’ opinions on what elements of nature of science (NOS) and science technology society relationships (STS) should be taught in school science. To this end an adapted version of the questionnaire developed by Osborne et al. is used. Our results show that experts consulted by Osborne et al. and Spanish teachers confer similar importance on the provisional, experimental, and predictive nature of scientific knowledge based on some of the procedures used such as the drawing up of hypotheses and the analysis and interpretation of data. We also look into the relationship between the teachers’ views and their educational background.1 Results suggest that philosophy teachers are more concerned with the inclusion of NOS and STS topics in science curricula than science teachers, although further studies will be necessary. Some suggestions concerning the university training of science teachers are also discussed.

  9. Natural Products and Supplements for Geriatric Depression and Cognitive Disorders: An Evaluation of the Research

    PubMed Central

    Varteresian, Taya; Lavretsky, Helen

    2014-01-01

    Numerous geriatric patients are using Complementary and Alternative Medicine (CAM) for late-life mood and cognitive disorders. Natural products and supplements are a common CAM intervention which have risks and benefits of which patients should be appropriately advised. The data for omega-3 fatty acids, ginkgo biloba, SAMe, St John’s wort, B Vitamins and Vitamin D, huperzine, caprylidene and coconut oil will be evaluated. Since the evidence basis for natural products and supplements is limited, especially for the geriatric population. Studies involving the general adult population are included to infer effects in the aging population. Despite the data available, more rigorous studies with larger sample sizes over longer periods of time are still needed. Regardless of a physician’s preference to recommend various natural supplements and products, a physician could protect their patients by having an understanding of the side effects and indications for various natural products. PMID:24912606

  10. Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines

    PubMed Central

    Ratcliffe, Norman; Azambuja, Patricia; Mello, Cicero Brasileiro

    2014-01-01

    Except for honey as food, and silk for clothing and pollination of plants, people give little thought to the benefits of insects in their lives. This overview briefly describes significant recent advances in developing insect natural products as potential new medicinal drugs. This is an exciting and rapidly expanding new field since insects are hugely variable and have utilised an enormous range of natural products to survive environmental perturbations for 100s of millions of years. There is thus a treasure chest of untapped resources waiting to be discovered. Insects products, such as silk and honey, have already been utilised for thousands of years, and extracts of insects have been produced for use in Folk Medicine around the world, but only with the development of modern molecular and biochemical techniques has it become feasible to manipulate and bioengineer insect natural products into modern medicines. Utilising knowledge gleaned from Insect Folk Medicines, this review describes modern research into bioengineering honey and venom from bees, silk, cantharidin, antimicrobial peptides, and maggot secretions and anticoagulants from blood-sucking insects into medicines. Problems and solutions encountered in these endeavours are described and indicate that the future is bright for new insect derived pharmaceuticals treatments and medicines. PMID:24883072

  11. Lightweight Approaches to Natural Gas Hydrate Exploration & Production

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Lower-cost approaches to drilling and reservoir utilization are made possible by adapting both emerging and new technology to the unique, low risk NGH natural gas resource. We have focused on drilling, wellbore lining technology, and reservoir management with an emphasis on long-term sand control and adaptive mechanical stability during NGH conversion to its constituent gas and water. In addition, we suggest that there are opportunities for management of both the gas and water with respect to maintaining desired thermal conditions. Some of the unique aspects of NGH deposits allow for new, more efficient technology to be applied to development, particularly in drilling. While NGH-bearing sands are in deepwater, they are confined to depths beneath the seafloor of 1.2 kilometers or less. As a result, they will not be significantly above hydrostatic pressure, and temperatures will be less than 30 oC. Drilling will be through semi-consolidated sediment without liquid hydrocarbons. These characteristics mean that high capability drillships are not needed. What is needed is a new perspective about drilling and producing NGH. Drilling from the seafloor will resolve the high-pressure differential between a wellhead on the sea surface in a vessel and reservoir to about the hydrostatic pressure difference between the seafloor and, at most, the base of the GHSZ. Although NGH production will begin using "off-the-shelf" technology, innovation will lead to new technology that will bring down costs and increase efficiency in the same way that led to the shale breakthrough. Commercial success is possible if consideration is given to what is actually needed to produce NGH in a safe and environmentally manner. Max, M.D. 2017. Wellbore Lining for Natural Gas Hydrate. U.S. Patent Application US15644947 Max, M.D. & Johnson, A.H. 2017. E&P Cost Reduction Opportunities for Natural Gas Hydrate. OilPro. . Max, M.D. & Johnson, A.H. 2016. Exploration and Production of Oceanic Natural Gas

  12. Developmental Changes in Early Comprehension and Production of Drawings: Evidence From Two Socioeconomic Backgrounds.

    PubMed

    Salsa, Analía M; Vivaldi, Romina

    2017-01-01

    Two studies examined young children's comprehension and production of representational drawings across and within 2 socioeconomic strata (SES). Participants were 130 middle-SES (MSES) and low-SES (LSES) Argentine children, from 30 to 60 months old, given a task with 2 phases, production and comprehension. The production phase assessed free drawing and drawings from simple 3-dimensional objects (model drawing); the comprehension phase assessed children's understanding of an adult's line drawings of the objects. MSES children solved the comprehension phase of the task within the studied age range; representational production emerged first in model drawing (42 months) and later in free drawing (48 months). The same developmental pathway was observed in LSES children but with a clear asynchrony in the age of onset of comprehension and production: Children understood the symbolic nature of drawings at 42 months old and the first representational drawings were found at 60 months old. These results provide empirical evidence that support the crucial influence of social experiences by organizing and constraining graphic development.

  13. Direct Capture and Heterologous Expression of Salinispora Natural Product Genes for the Biosynthesis of Enterocin

    PubMed Central

    2015-01-01

    Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora’s promising secondary metabolome. PMID:25382643

  14. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin.

    PubMed

    Bonet, Bailey; Teufel, Robin; Crüsemann, Max; Ziemert, Nadine; Moore, Bradley S

    2015-03-27

    Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora's promising secondary metabolome.

  15. Building blocks for automated elucidation of metabolites: natural product-likeness for candidate ranking.

    PubMed

    Jayaseelan, Kalai Vanii; Steinbeck, Christoph

    2014-07-05

    In metabolomics experiments, spectral fingerprints of metabolites with no known structural identity are detected routinely. Computer-assisted structure elucidation (CASE) has been used to determine the structural identities of unknown compounds. It is generally accepted that a single 1D NMR spectrum or mass spectrum is usually not sufficient to establish the identity of a hitherto unknown compound. When a suite of spectra from 1D and 2D NMR experiments supplemented with a molecular formula are available, the successful elucidation of the chemical structure for candidates with up to 30 heavy atoms has been reported previously by one of the authors. In high-throughput metabolomics, usually 1D NMR or mass spectrometry experiments alone are conducted for rapid analysis of samples. This method subsequently requires that the spectral patterns are analyzed automatically to quickly identify known and unknown structures. In this study, we investigated whether additional existing knowledge, such as the fact that the unknown compound is a natural product, can be used to improve the ranking of the correct structure in the result list after the structure elucidation process. To identify unknowns using as little spectroscopic information as possible, we implemented an evolutionary algorithm-based CASE mechanism to elucidate candidates in a fully automated fashion, with input of the molecular formula and 13C NMR spectrum of the isolated compound. We also tested how filters like natural product-likeness, a measure that calculates the similarity of the compounds to known natural product space, might enhance the performance and quality of the structure elucidation. The evolutionary algorithm is implemented within the SENECA package for CASE reported previously, and is available for free download under artistic license at http://sourceforge.net/projects/seneca/. The natural product-likeness calculator is incorporated as a plugin within SENECA and is available as a GUI client and

  16. The Synthesis of Quinolone Natural Products from Pseudonocardia sp.

    PubMed Central

    Salvaggio, Flavia; Hodgkinson, James T.; Carro, Laura; Geddis, Stephen M.; Galloway, Warren R. J. D.; Welch, Martin

    2015-01-01

    Abstract The synthesis of four quinolone natural products from the actinomycete Pseudonocardia sp. is reported. The key step involved a sp2–sp3 Suzuki–Miyaura reaction between a common boronic ester lateral chain and various functionalised quinolone cores. The quinolones slowed growth of E. coli and S. aureus by inducing extended lag phases.

  17. Recreational drug discovery: natural products as lead structures for the synthesis of smart drugs.

    PubMed

    Appendino, Giovanni; Minassi, Alberto; Taglialatela-Scafati, Orazio

    2014-07-01

    Covering: up to December 2013. Over the past decade, there has been a growing transition in recreational drugs from natural materials (marijuana, hashish, opium), natural products (morphine, cocaine), or their simple derivatives (heroin), to synthetic agents more potent than their natural prototypes, which are sometimes less harmful in the short term, or that combine properties from different classes of recreational prototypes. These agents have been named smart drugs, and have become popular both for personal consumption and for collective intoxication at rave parties. The reasons for this transition are varied, but are mainly regulatory and commercial. New analogues of known illegal intoxicants are invisible to most forensic detection techniques, while the alleged natural status and the lack of avert acute toxicity make them appealing to a wide range of users. On the other hand, the advent of the internet has made possible the quick dispersal of information among users and the on-line purchase of these agents and/or the precursors for their synthesis. Unlike their natural products chemotypes (ephedrine, mescaline, cathinone, psilocybin, THC), most new drugs of abuse are largely unfamiliar to the organic chemistry community as well as to health care providers. To raise awareness of the growing plague of smart drugs we have surveyed, in a medicinal chemistry fashion, their development from natural products leads, their current methods of production, and the role that clandestine home laboratories and underground chemists have played in the surge of popularity of these drugs.

  18. Total Synthesis of Natural Products Using Hypervalent Iodine Reagents

    NASA Astrophysics Data System (ADS)

    Maertens, Gaetan; L'homme, Chloe; Canesi, Sylvain

    2014-12-01

    We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.

  19. Applications of natural zeolites on agriculture and food production.

    PubMed

    Eroglu, Nazife; Emekci, Mevlut; Athanassiou, Christos G

    2017-08-01

    Zeolites are crystalline hydrated aluminosilicates with remarkable physical and chemical properties, which include losing and receiving water in a reverse way, adsorbing molecules that act as molecular sieves, and replacing their constituent cations without structural change. The commercial production of natural zeolites has accelerated during the last 50 years. The Structure Commission of the International Zeolite Association recorded more than 200 zeolites, which currently include more than 40 naturally occurring zeolites. Recent findings have supported their role in stored-pest management as inert dust applications, pesticide and fertilizer carriers, soil amendments, animal feed additives, mycotoxin binders and food packaging materials. There are many advantages of inert dust application, including low cost, non-neurotoxic action, low mammalian toxicity and safety for human consumption. The latest consumer trends and government protocols have shifted toward organic origin materials to replace synthetic chemical products. In the present review, we summarize most of the main uses of zeolites in food and agruculture, along with the with specific paradigms that illustrate their important role. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Cheminformatic Insight into the Differences between Terrestrial and Marine Originated Natural Products.

    PubMed

    Shang, Jun; Hu, Ben; Wang, Junmei; Zhu, Feng; Kang, Yu; Li, Dan; Sun, Huiyong; Kong, De-Xin; Hou, Tingjun

    2018-06-07

    This is a new golden age for drug discovery based on natural products derived from both marine and terrestrial sources. Herein, a straightforward but important question is "what are the major structural differences between marine natural products (MNPs) and terrestrial natural products (TNPs)?" To answer this question, we analyzed the important physicochemical properties, structural features, and drug-likeness of the two types of natural products and discussed their differences from the perspective of evolution. In general, MNPs have lower solubility and are often larger than TNPs. On average, particularly from the perspective of unique fragments and scaffolds, MNPs usually possess more long chains and large rings, especially 8- to 10-membered rings. MNPs also have more nitrogen atoms and halogens, notably bromines, and fewer oxygen atoms, suggesting that MNPs may be synthesized by more diverse biosynthetic pathways than TNPs. Analysis of the frequently occurring Murcko frameworks in MNPs and TNPS also reveals a striking difference between MNPs and TNPs. The scaffolds of the former tend to be longer and often contain ester bonds connected to 10-membered rings, while the scaffolds of the latter tend to be shorter and often bear more stable ring systems and bond types. Besides, the prediction from the naïve Bayesian drug-likeness classification model suggests that most compounds in MNPs and TNPs are drug-like, although MNPs are slightly more drug-like than TNPs. We believe that MNPs and TNPs with novel drug-like scaffolds have great potential to be drug leads or drug candidates in drug discovery campaigns.

  1. Brazilian Propolis: A Natural Product That Improved the Fungicidal Activity by Blood Phagocytes

    PubMed Central

    Possamai, Muryllo Mendes; Honorio-França, Adenilda Cristina; Reinaque, Ana Paula Barcelos; França, Eduardo Luzia; Souto, Paula Cristina de Souza

    2013-01-01

    Natural product incorporation into microcarriers increases the bioavailability of these compounds, consequently improving their therapeutic properties. Natural products, particularly those from bees such as propolis, are widely used in popular medicine. Propolis is a powerful treatment for several diseases. In this context, the present study evaluated the effect of propolis Scaptotrigona sp. and its fractions, alone or adsorbed to polyethylene glycol (PEG) microspheres, on the activity of human phagocytes against Candida albicans. The results show that propolis exerts a stimulatory effect on these cells to assist in combating the fungus, especially as the crude extract is compared with the fractions. However, when incorporated into microspheres, these properties were significantly potentiated. These results suggest that propolis adsorbed onto PEG microspheres has immunostimulatory effects on phagocytes in human blood. Therefore, propolis may potentially be an additional natural product that can be used for a variety of therapies. PMID:23509737

  2. A High-Throughput Assay for Screening of Natural Products that Enhanced Tumoricidal Activity of NK Cells.

    PubMed

    Gong, Chenyuan; Ni, Zhongya; Yao, Chao; Zhu, Xiaowen; Ni, Lulu; Wang, Lixin; Zhu, Shiguo

    2015-01-01

    Recently, immunotherapy has shown a lot of promise in cancer treatment and different immune cell types are involved in this endeavor. Among different immune cell populations, NK cells are also an important component in unleashing the therapeutic activity of immune cells. Therefore, in order to enhance the tumoricidal activity of NK cells, identification of new small-molecule natural products is important. Despite the availability of different screening methods for identification of natural products, a simple, economic and high-throughput method is lacking. Hence, in this study, we have developed a high-throughput assay for screening and indentifying natural products that can enhance NK cell-mediated killing of cancer cells. We expanded human NK cell population from human peripheral blood mononuclear cells (PBMCs) by culturing these PBMCs with membrane-bound IL-21 and CD137L engineered K562 cells. Next, expanded NK cells were co-cultured with non-small cell lung cancer (NSCLC) cells with or without natural products and after 24 h of co-culturing, harvested supernatants were analyzed for IFN-γ secretions by ELISA method. We screened 502 natural products and identified that 28 candidates has the potential to induce IFN-γ secretion by NK cells to varying degrees. Among the 28 natural product candidates, we further confirmed and analyzed the potential of one molecule, andrographolide. It actually increased IFN-γ secretion by NK cells and enhanced NK cell-mediated killing of NSCLC cells. Our results demonstrated that this IFN-γ based high-throughput assay for screening of natural products for NK cell tumoricidal activity is a simple, economic and reliable method.

  3. The Walla Walla Basin Natural Production Monitoring and Evaluation Project : Progress Report, 1999-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contor, Craig R.; Sexton, Amy D.

    2003-06-02

    The Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME).more » Chapter One provides an overview of the entire report and how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. Chapter One also provides background information relevant to the aquatic resources of the Walla Walla River Basin. Objectives are outlined below for the statements of work for the 1999, 2000, 2001 and 2002 contract years. The same objectives were sometimes given different numbers in different years. Because this document is a synthesis of four years of reporting, we gave objectives letter designations and listed the objective number associated with the statement of work for each year. Some objectives were in all four work statements, while other objectives were in only one or two work statements. Each objective is discussed in a chapter. The chapter that reports activities and findings of each objective are listed with the objective below. Because data is often interrelated, aspects of some findings may be reported or discussed in more than one chapter. Specifics related to tasks, approaches, methods, results and discussion are addressed in the individual chapters.« less

  4. Late-stage chemoselective functional-group manipulation of bioactive natural products with super-electrophilic silylium ions

    NASA Astrophysics Data System (ADS)

    Bender, Trandon A.; Payne, Philippa R.; Gagné, Michel R.

    2018-01-01

    The selective (and controllable) modification of complex molecules with disparate functional groups (for example, natural products) is a long-standing challenge that has been addressed using catalysts tuned to perform singular transformations (for example, C-H hydroxylation). A method whereby reactions with diverse functional groups within a single natural product are feasible depending on which catalyst or reagent is chosen would widen the possible structures one could obtain. Fluoroarylborane catalysts can heterolytically split Si-H bonds to yield an oxophilic silylium (R3Si+) equivalent along with a reducing (H-) equivalent. Together, these reactive intermediates enable the reduction of multiple functional groups. Exogenous phosphine Lewis bases further modify the catalyst speciation and attenuate aggressive silylium ions for the selective modification of complex natural products. Manipulation of the catalyst, silane reagent and the reaction conditions provides experimental control over which site is modified (and how). Applying this catalytic method to complex bioactive compounds (natural products or drugs) provides a powerful tool for studying structure-activity relationships.

  5. Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010†

    PubMed Central

    Newman, David J.; Cragg, Gordon M.

    2013-01-01

    This review is an updated and expanded version of the three prior reviews that were published in this journal in 1997, 2003 and 2007. In the case of all approved therapeutic agents, the time frame has been extended to cover the 30 years from January 1st 1981 to December 31st 2010 for all diseases world-wide, and from 1950 (earliest so far identified) to December 2010 for all approved antitumor drugs world-wide. We have continued to utilize our secondary subdivision of a “natural product mimic” or “NM” to join the original primary divisions, and have added a new designation “natural product botanical” or “NB” to cover those botanical “defined mixtures” that have now been recognized as drug entities by the FDA and similar organizations. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 175 small molecules, 131 or 74.8% are other than “S” (synthetic), with 85 or 48.6% actually being either natural products or directly derived there from. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures, and have been used very successfully in the optimization of many recently approved agents, we are only able to identify only one de novo combinatorial compound approved as a drug in this 30-year time frame. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the “host from whence it was isolated”, and therefore we consider that this area of natural product research should be

  6. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy.

    PubMed

    Valli, Marilia; Russo, Helena M; Bolzani, Vanderlan S

    2018-01-01

    The development of our society has been based on the use of biodiversity, especially for medicines and nutrition. Brazil is the nation with the largest biodiversity in the world accounting for more than 15% of all living species. The devastation of biodiversity in Brazil is critical and may not only cause the loss of species and genes that encode enzymes involved in the complex metabolism of organisms, but also the loss of a rich chemical diversity, which is a potential source for bioeconomy based on natural products and new synthetic derivatives. Bioeconomy focus on the use of bio-based products, instead of fossil-based ones and could address some of the important challenges faced by society. Considering the chemical and biological diversity of Brazil, this review highlights the Brazilian natural products that were successfully used to develop new products and the value of secondary metabolites from Brazilian biodiversity with potential application for new products and technologies. Additionally, we would like to address the importance of new technologies and scientific programs to support preservation policies, bioeconomy and strategies for the sustainable use of biodiversity.

  7. Low Carbon Technology Options for the Natural Gas Electricity Production

    EPA Science Inventory

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  8. Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric

    2005-10-01

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). UBNPMEP is coordinated with two ODFW research projects that also monitor and evaluatemore » the success of the Umatilla Fisheries Restoration Plan. Our project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 19000500, Umatilla Hatchery M & E) and smolt outmigration (project No. 198902401, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects comprehensively monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. Table 1 outlines relationships with other BPA supported projects. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan (ODFW and CTUIR 2004), the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (Schwartz & Cameron Under Revision). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPPC 2004). The need for monitoring the natural production of salmonids in the Umatilla River

  9. Water Resources and Natural Gas Production from the Marcellus Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Kappel, William M.

    2009-01-01

    The Marcellus Shale is a sedimentary rock formation deposited over 350 million years ago in a shallow inland sea located in the eastern United States where the present-day Appalachian Mountains now stand (de Witt and others, 1993). This shale contains significant quantities of natural gas. New developments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across Pennsylvania, and into western Maryland, West Virginia, and eastern Ohio (fig. 1). The production of commercial quantities of gas from this shale requires large volumes of water to drill and hydraulically fracture the rock. This water must be recovered from the well and disposed of before the gas can flow. Concerns about the availability of water supplies needed for gas production, and questions about wastewater disposal have been raised by water-resource agencies and citizens throughout the Marcellus Shale gas development region. This Fact Sheet explains the basics of Marcellus Shale gas production, with the intent of helping the reader better understand the framework of the water-resource questions and concerns.

  10. Dietary Natural Products for Prevention and Treatment of Breast Cancer.

    PubMed

    Li, Ya; Li, Sha; Meng, Xiao; Gan, Ren-You; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-07-08

    Breast cancer is the most common cancer among females worldwide. Several epidemiological studies suggested the inverse correlation between the intake of vegetables and fruits and the incidence of breast cancer. Substantial experimental studies indicated that many dietary natural products could affect the development and progression of breast cancer, such as soy, pomegranate, mangosteen, citrus fruits, apple, grape, mango, cruciferous vegetables, ginger, garlic, black cumin, edible macro-fungi, and cereals. Their anti-breast cancer effects involve various mechanisms of action, such as downregulating ER-α expression and activity, inhibiting proliferation, migration, metastasis and angiogenesis of breast tumor cells, inducing apoptosis and cell cycle arrest, and sensitizing breast tumor cells to radiotherapy and chemotherapy. This review summarizes the potential role of dietary natural products and their major bioactive components in prevention and treatment of breast cancer, and special attention was paid to the mechanisms of action.

  11. Dietary Natural Products for Prevention and Treatment of Breast Cancer

    PubMed Central

    Li, Ya; Li, Sha; Meng, Xiao; Zhang, Jiao-Jiao

    2017-01-01

    Breast cancer is the most common cancer among females worldwide. Several epidemiological studies suggested the inverse correlation between the intake of vegetables and fruits and the incidence of breast cancer. Substantial experimental studies indicated that many dietary natural products could affect the development and progression of breast cancer, such as soy, pomegranate, mangosteen, citrus fruits, apple, grape, mango, cruciferous vegetables, ginger, garlic, black cumin, edible macro-fungi, and cereals. Their anti-breast cancer effects involve various mechanisms of action, such as downregulating ER-α expression and activity, inhibiting proliferation, migration, metastasis and angiogenesis of breast tumor cells, inducing apoptosis and cell cycle arrest, and sensitizing breast tumor cells to radiotherapy and chemotherapy. This review summarizes the potential role of dietary natural products and their major bioactive components in prevention and treatment of breast cancer, and special attention was paid to the mechanisms of action. PMID:28698459

  12. Nanoscale Delivery Systems: Actual and Potential Applications in the Natural Products Industry.

    PubMed

    Simona, Antal Diana; Florina, Ardelean; Rodica, Chis Aimee; Evelyne, Ollivier; Maria-Corina, Serban

    2017-01-01

    Compounds and extracts derived from natural sources continue to stand in the spotlight of drug design owing to their versatile interaction with enzymes, receptors and metabolic pathways. Nanomedicine offers an operative tool for the efficient delivery of natural products, in terms of increased bioavailability, targeting, and controlled release while protecting active constituents against physico-chemical alterations. The interest of the scientific community in the field of nanosized delivery of natural compounds is demonstrated by the exponential growth of the publications in this field. Beyond the presentation of successful examples of nanoscale delivery systems containing natural products, the scope of this review is to point out the yet underexplored capacities of this field with relevance for the pharmaceutical and nutraceutical market. Departing from a short presentation of plant-derived natural products and strategies to obtain nanoformulations, the current work discusses nanoparticulate drug delivery systems targeting diseases of various organs and systems: skin, central nervous system, skeletal tissue, cardiovascular apparatus, and diabetes. While notable progress has been achieved in the preparation of nanomedicines containing selected dietary polyphenols, works dealing with crude extracts or standardized fractions are much less frequent. In fact, most of the plants with solidly documented therapeutic properties and registered in pharmacopoeias still wait to benefit from advances in the field of nanotechnology. At least for some of them, adequate nanoformulation shall contribute to their removal from the group of dietary supplements and pharmaceutical preparations with suboptimal bioavailability and efficacy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Hydrogeochemical characterization and Natural Background Levels in urbanized areas: Milan Metropolitan area (Northern Italy)

    NASA Astrophysics Data System (ADS)

    De Caro, Mattia; Crosta, Giovanni B.; Frattini, Paolo

    2017-04-01

    Although aquifers in densely populated and industrialized areas are extremely valuable and sensitive to contamination, an estimate of the groundwater quality status relative to baseline conditions is lacking for many of them. This paper provides a hydrogeochemical characterization of the groundwater in the Milan metropolitan area, one of the most densely populated areas in Europe. First, a conceptual model of the study area based on the analysis of the spatial distribution of natural chemical species and indicator contaminants is presented. The hydrochemical facies of the study area depend on the lithology of catchments drained by the main contributing rivers and on the aquifer settings. The anthropogenic influence on the groundwater quality of superficial aquifers is studied by means of probability plots, concentration versus depth plots and spatial-temporal plots for nitrate, sulfate and chloride. These allow differentiation of contaminated superficial aquifers from deep confined aquifers with baseline water quality. Natural Background Levels (NBL) of selected species (Cl, Na, NH4, SO4, NO3, As, Fe, Mn and Zn) are estimated by means of the pre-selection (PS) and the component separation (CS) statistical approaches. The NBLs depend on hydrogeological settings of the study area; sodium, chloride, sulfate and zinc NBL values never exceed the environmental water quality standards. NBL values of ammonium, iron, arsenic and manganese exceed the environmental water quality standards in the anaerobic portion of the aquifers. On the basis of observations, a set of criteria and precautions are suggested for adoption with both PS and CS methods in the aquifer characterization of highly urbanized areas.

  14. Validation of time and temperature values as critical limits for Salmonella and background flora growth during the production of fresh ground and boneless pork products.

    PubMed

    Mann, J E; Smith, L; Brashears, M M

    2004-07-01

    To provide pork processors with valuable data to validate the critical limits set for temperature during pork fabrication and grinding, a study was conducted to determine the growth of Salmonella serotypes and background flora at various temperatures. Growth of Salmonella Typhimurium and Salmonella Enteritidis and of background flora was monitored in ground pork and boneless pork chops held at various temperatures to determine growth patterns. Case-ready modified atmosphere packaged ground pork and fresh whole pork loins were obtained locally. Boneless chops and ground pork were inoculated with a cocktail mixture of streptomycin-resistant Salmonella to facilitate recovery in the presence of background flora. Samples were held at 4.4, 7.2C, and 10 degrees C and at room temperature (22.2 to 23.3 degrees C) to mimic typical processing and holding temperatures observed in pork processing environments. Salmonella counts were determined at regular intervals over 12 and 72 h for both room and refrigeration temperatures. No significant growth of Salmonella (P < 0.05) was observed in boneless pork chops held at refrigeration temperatures. However, Salmonella in boneless pork chops held at room temperature had grown significantly by 8 h. Salmonella grew at faster rates in ground pork. Significant growth was observed at 6, 24. and 72 h when samples were held at room temperature, 10 degrees C, and 7.2 degrees C, respectively. No significant growth was observed at 4.4 degrees C. Background flora in ground pork samples increased significantly after 10 h at room temperature and after 12 h for samples held at 10 and 7.2 degrees C. Background flora in samples held at refrigeration temperatures did not increase until 72 h. Background flora in the boneless chops increased significantly after 6 h at room temperature and after 24 h when held at 10 and 4.4 degrees C. These results illustrate that meat processors can utilize a variety of time and temperature combinations as critical

  15. Expansion of chemical space for natural products by uncommon P450 reactions.

    PubMed

    Zhang, Xingwang; Li, Shengying

    2017-08-30

    Covering: 2000 to 2017Cytochrome P450 enzymes (P450s) are the most versatile biocatalysts in nature. The catalytic competence of these extraordinary hemoproteins is broadly harnessed by numerous chemical defenders such as bacteria, fungi, and plants for the generation of diverse and complex natural products. Rather than the common tailoring reactions (e.g. hydroxylation and epoxidation) mediated by the majority of biosynthetic P450s, in this review, we will focus on the unusual P450 enzymes in relation to new chemistry, skeleton construction, and structure re-shaping via their own unique catalytic power or the intriguing protein-protein interactions between P450s and other proteins. These uncommon P450 reactions lead to a higher level of chemical space expansion for natural products, through which a broader spectrum of bioactivities can be gained by the host organisms.

  16. The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1β

    PubMed Central

    Miller, Mark JS; Ahmed, Salahuddin; Bobrowski, Paul; Haqqi, Tariq M

    2006-01-01

    Background Cartilage loss is a hallmark of arthritis and follows activation of catabolic processes concomitant with a disruption of anabolic pathways like insulin-like growth factor 1 (IGF-1). We hypothesized that two natural products of South American origin, would limit cartilage degradation by respectively suppressing catabolism and activating local IGF-1 anabolic pathways. One extract, derived from cat's claw (Uncaria guianensis, vincaria®), is a well-described inhibitor of NF-κB. The other extract, derived from the vegetable Lepidium meyenii (RNI 249), possessed an uncertain mechanism of action but with defined ethnomedical applications for fertility and vitality. Methods Human cartilage samples were procured from surgical specimens with consent, and were evaluated either as explants or as primary chondrocytes prepared after enzymatic digestion of cartilage matrix. Assessments included IGF-1 gene expression, IGF-1 production (ELISA), cartilage matrix degradation and nitric oxide (NO) production, under basal conditions and in the presence of IL-1β. Results RNI 249 enhanced basal IGF-1 mRNA levels in human chondrocytes by 2.7 fold, an effect that was further enhanced to 3.8 fold by co-administration with vincaria. Enhanced basal IGF-1 production by RNI 249 alone and together with vincaria, was confirmed in both explants and in primary chondrocytes (P <0.05). As expected, IL-1β exposure completely silenced IGF-1 production by chondrocytes. However, in the presence of IL-1β both RNI 249 and vincaria protected IGF-1 production in an additive manner (P <0.01) with the combination restoring chondrocyte IGF-1 production to normal levels. Cartilage NO production was dramatically enhanced by IL-1β. Both vincaria and RNI 249 partially attenuated NO production in an additive manner (p < 0.05). IL-1β – induced degradation of cartilage matrix was quantified as glycosaminoglycan release. Individually RNI 249 or vincaria, prevented this catabolic action of IL-1

  17. Statistical Modeling of Natural Backgrounds in Hyperspectral LWIR Data

    DTIC Science & Technology

    2016-09-06

    extremely important for studying performance trades. First, we study the validity of this model using real hyperspectral data, and compare the relative...difficult to validate any statistical model created for a target of interest. However, since background measurements are plentiful, it is reasonable to...Golden, S., Less, D., Jin, X., and Rynes, P., “ Modeling and analysis of LWIR signature variability associated with 3d and BRDF effects,” 98400P (May 2016

  18. An overview on the potential of natural products as ureases inhibitors: A review☆

    PubMed Central

    Modolo, Luzia V.; de Souza, Aline X.; Horta, Lívia P.; Araujo, Débora P.; de Fátima, Ângelo

    2014-01-01

    Ureases, enzymes that catalyze urea hydrolysis, have received considerable attention for their impact on living organisms’ health and life quality. On the one hand, the persistence of urease activity in human and animal cells can be the cause of some diseases and pathogen infections. On the other hand, food production can be negatively affected by ureases of soil microbiota that, in turn, lead to losses of nitrogenous nutrients in fields supplemented with urea as fertilizer. In this context, nature has proven to be a rich resource of natural products bearing a variety of scaffolds that decrease the ureolytic activity of ureases from different organisms. Therefore, this work compiles the state-of-the-art researches focused on the potential of plant natural products (present in extracts or as pure compounds) as urease inhibitors of clinical and/or agricultural interests. Emphasis is given to ureases of Helicobacter pylori, Canavalia ensiformis and soil microbiota although the active site of this class of hydrolases is conserved among living organisms. PMID:25685542

  19. Comparing Background and Recent Erosion Rates in Degraded Areas of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, N.; Bierman, P. R.; Sosa-Gonzalez, V.; Rood, D. H.; Fontes, R. L.; Santos, A. C.; Godoy, J. M.; Bhering, S.

    2014-12-01

    Soil erosion is a major problem in northwestern Rio de Janeiro State where, during the last three centuries, major land-use changes took place, associated with the replacement of the original rainforest by agriculture and grazing. The combination of steep hillslopes, erodible soils, sparse vegetation, natural and human-induced fires, as well as downslope ploughing, led to an increase in surface runoff and surface erosion on soil-mantled hillslopes; together, these actions and responses caused a decline in soil productivity. In order to estimate changes in erosion rates over time, we compared erosion rates measured at different spatial and temporal scales, both background (natural) and short-term (human-induced during last few decades). Background long-term erosion rates were measured using in-situ produced cosmogenic 10Be in the sand fraction quartz of active river channel sediment in four basins in the northwestern portion of Rio de Janeiro State. In these basins, average annual precipitation varies from 1,200 to 1,300 mm, while drainage areas vary from 15 to 7,200 km2. Short-term erosion rates were measured in one of these basins from fallout 210Pb in soil samples collected along a hillslope transect located in an abandoned agriculture field. In this transect, 190 undisturbed soil samples (three replicates) were collected from the surface to 0.50 m depth (5 cm vertical intervals) in six soil pits. 10Be average background, basin-wide, erosion rates in the area are ~ 13 m/My; over the last decades, time-integrated (210Pb) average hillslope erosion rates are around 1450 m/Myr, with maximum values at the steepest portion of convex hillslopes of about 2000 m/Myr. These results suggest that recent hillslope erosion rates are about 2 orders of magnitude above background rates of sediment generation integrated over many millennia. This unsustainable rate of soil loss has severely decreased soil productivity eventually leading to the abandonment of farming activities in

  20. Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients.

    PubMed

    Souza, Juliana M DE; Galaverna, Renan; Souza, Aline A N DE; Brocksom, Timothy J; Pastre, Julio C; Souza, Rodrigo O M A DE; Oliveira, Kleber T DE

    2018-01-01

    We present a comprehensive review of the advent and impact of continuous flow chemistry with regard to the synthesis of natural products and drugs, important pharmaceutical products and definitely responsible for a revolution in modern healthcare. We detail the beginnings of modern drugs and the large scale batch mode of production, both chemical and microbiological. The introduction of modern continuous flow chemistry is then presented, both as a technological tool for enabling organic chemistry, and as a fundamental research endeavor. This part details the syntheses of bioactive natural products and commercial drugs.

  1. Natural products as zinc-dependent histone deacetylase inhibitors.

    PubMed

    Tan, Shuai; Liu, Zhao-Peng

    2015-03-01

    Zinc-dependent histone deacetylases (HDACs), a family of hydrolases that remove acetyl groups from lysine residues, play an important role in the regulation of multiple processes, from gene expression to protein activity. The dysregulation of HDACs is associated with many diseases including cancer, neurological disorders, cellular metabolism disorders, and inflammation. Molecules that act as HDAC inhibitors (HDACi) exhibit a variety of related bioactivities. In particular, HDACi have been applied clinically for the treatment of cancers. Inhibition through competitive binding of the catalytic domain of these enzymes has been achieved by a diverse array of small-molecule chemotypes, including a number of natural products. This review provides a systematic introduction of natural HDACi, with an emphasis on their enzyme inhibitory potency, selectivity, and biological activities, highlighting their various binding modes with HDACs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mimicking/extracting structure and functions of natural products: synthetic approaches that address unexplored needs in chemical biology.

    PubMed

    Hirai, Go

    2015-04-01

    Natural products are often attractive and challenging targets for synthetic chemists, and many have interesting biological activities. However, synthetic chemists need to be more than simply suppliers of compounds to biologists. Therefore, we have been seeking ways to actively apply organic synthetic methods to chemical biology studies of natural products and their activities. In this personal review, I would like to introduce our work on the development of new biologically active compounds inspired by, or extracted from, the structures of natural products, focusing on enhancement of functional activity and specificity and overcoming various drawbacks of the parent natural products. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The re-emerging role of microbial natural products in antibiotic discovery.

    PubMed

    Genilloud, Olga

    2014-07-01

    New classes of antibacterial compounds are urgently needed to respond to the high frequency of occurrence of resistances to all major classes of known antibiotics. Microbial natural products have been for decades one of the most successful sources of drugs to treat infectious diseases but today, the emerging unmet clinical need poses completely new challenges to the discovery of novel candidates with the desired properties to be developed as antibiotics. While natural products discovery programs have been gradually abandoned by the big pharma, smaller biotechnology companies and research organizations are taking over the lead in the discovery of novel antibacterials. Recent years have seen new approaches and technologies being developed and integrated in a multidisciplinary effort to further exploit microbial resources and their biosynthetic potential as an untapped source of novel molecules. New strategies to isolate novel species thought to be uncultivable, and synthetic biology approaches ranging from genome mining of microbial strains for cryptic biosynthetic pathways to their heterologous expression have been emerging in combination with high throughput sequencing platforms, integrated bioinformatic analysis, and on-site analytical detection and dereplication tools for novel compounds. These different innovative approaches are defining a completely new framework that is setting the bases for the future discovery of novel chemical scaffolds that should foster a renewed interest in the identification of novel classes of natural product antibiotics from the microbial world.

  4. Natural Products Research in China from 2015 to 2016

    NASA Astrophysics Data System (ADS)

    Liu, Haishan; Zhu, Guoliang; Fan, Yaqin; Du, Yuqi; Lan, Mengmeng; Xu, Yibo; Zhu, Weiming

    2018-03-01

    This review covers the literature published by Chinese chemists from 2015 to 2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.

  5. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    NASA Astrophysics Data System (ADS)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  6. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents

    PubMed Central

    Cragg, Gordon M.; Pezzuto, John M.

    2016-01-01

    Throughout history, natural products have played a dominant role in the treatment of human ailments. For example, the legendary discovery of penicillin transformed global existence. Presently, natural products comprise a large portion of current-day pharmaceutical agents, most notably in the area of cancer therapy. Examples include Taxol, vinblastine, and camptothecin. These structurally unique agents function by novel mechanisms of action; isolation from natural sources is the only plausible method that could have led to their discovery. In addition to terrestrial plants as sources for starting materials, the marine environment (e.g., ecteinascidin 743, halichondrin B, and dolastatins), microbes (e.g., bleomycin, doxorubicin, and staurosporin), and slime molds (e.g., epothilone B) have yielded remarkable cancer chemotherapeutic agents. Irrespective of these advances, cancer remains a leading cause of death worldwide. Undoubtedly, the prevention of human cancer is highly preferable to treatment. Cancer chemoprevention, the use of vaccines or pharmaceutical agents to inhibit, retard, or reverse the process of carcinogenesis, is another important approach for easing this formidable public health burden. Similar to cancer chemotherapeutic agents, natural products play an important role in this field. There are many examples, including dietary phytochemicals such as sulforaphane and phenethyl isothiocyanate (cruciferous vegetables) and resveratrol (grapes and grape products). Overall, natural product research is a powerful approach for discovering biologically active compounds with unique structures and mechanisms of action. Given the unfathomable diversity of nature, it is reasonable to suggest that chemical leads can be generated that are capable of interacting with most or possibly all therapeutic targets. PMID:26679767

  7. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties

    PubMed Central

    2013-01-01

    For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs. PMID:23724847

  8. Productivity as related to diversity and age in planted versus natural forests

    Treesearch

    Qinfeng Guo; Hai Ren

    2014-01-01

    Little is known about the performance of plantations relative to natural forests of the same climate zone and age. China has more plantations than any other country as a consequence of massive afforestation efforts.We use data from China to comparatively examine tree biomass and productivity of planted and natural stands in relation to climate zone, latitude, elevation...

  9. Natural product and natural product derived drugs in clinical trials.

    PubMed

    Butler, Mark S; Robertson, Avril A B; Cooper, Matthew A

    2014-11-01

    There are a significant number of natural product (NP) drugs in development. We review the 100 NP and NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) with a NP-derived cytotoxic component being evaluated in clinical trials or in registration at the end of 2013. 38 of these compounds and 33 ADCs are being investigated as potential oncology treatments, 26 as anti-infectives, 19 for the treatment of cardiovascular and metabolic diseases, 11 for inflammatory and related diseases and 6 for neurology. There was a spread of the NP and NP-derived compounds through the different development phases (17 in phase I, 52 in phase II, 23 in phase III and 8 NDA and/or MAA filed), while there were 23 ADCs in phase I and 10 in phase II. 50 of these 100 compounds were either NPs or semi-synthetic (SS) NPs, which indicated the original NP still plays an important role. NP and NP-derived compounds for which clinical trials have been halted or discontinued since 2008 are listed in the Supplementary Information. The 25 NP and NP-derived drugs launched since 2008 are also reviewed, and late stage development candidates and new NP drug pharmacophores analysed. The short term prospect for new NP and NP-derived drug approvals is bright, with 31 compounds in phase III or in registration, which should ensure a steady stream of approvals for at least the next five years. However, there could be future issues for new drug types as only five new drug pharmacophores discovered in the last 15 years are currently being evaluated in clinical trials. The next few years will be critical for NP-driven lead discovery, and a concerted effort is required to identify new biologically active pharmacophores and to progress these and existing compounds through pre-clinical drug development into clinical trials.

  10. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginkel, Paul R. van; Yan, Michael B.; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cellsmore » to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP{sub 3} pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca{sup 2+}-dependent pro-apoptotic pathways inhibit cancer cell growth.« less

  11. Natural product-inspired cascade synthesis yields modulators of centrosome integrity.

    PubMed

    Dückert, Heiko; Pries, Verena; Khedkar, Vivek; Menninger, Sascha; Bruss, Hanna; Bird, Alexander W; Maliga, Zoltan; Brockmeyer, Andreas; Janning, Petra; Hyman, Anthony; Grimme, Stefan; Schürmann, Markus; Preut, Hans; Hübel, Katja; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert

    2011-12-25

    In biology-oriented synthesis, the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is, in particular, met by the scaffolds of natural products selected in evolution. The synthesis of natural product-inspired compound collections calls for efficient reaction sequences that preferably combine multiple individual transformations in one operation. Here we report the development of a one-pot, twelve-step cascade reaction sequence that includes nine different reactions and two opposing kinds of organocatalysis. The cascade sequence proceeds within 10-30 min and transforms readily available substrates into complex indoloquinolizines that resemble the core tetracyclic scaffold of numerous polycyclic indole alkaloids. Biological investigation of a corresponding focused compound collection revealed modulators of centrosome integrity, termed centrocountins, which caused fragmented and supernumerary centrosomes, chromosome congression defects, multipolar mitotic spindles, acentrosomal spindle poles and multipolar cell division by targeting the centrosome-associated proteins nucleophosmin and Crm1.

  12. A diversity oriented synthesis of natural product inspired molecular libraries.

    PubMed

    Chauhan, Jyoti; Luthra, Tania; Gundla, Rambabu; Ferraro, Antonio; Holzgrabe, Ulrike; Sen, Subhabrata

    2017-11-07

    Natural products are the source of innumerable pharmaceutical drug candidates and also form an important aspect of herbal remedies. They are also a source of various bioactive compounds. Herein we have leveraged the structural attributes of several natural products in building a library of architecturally diverse chiral molecules by harnessing R-tryptophan as the chiral auxiliary. It is converted to its corresponding methyl ester 1 which in turn provided a bevy of 1-aryl-tetrahydro-β-carbolines 2a-d, which were then converted to chiral compounds via a diversity oriented synthetic strategy (DOS). In general, intermolecular and intramolecular ring rearrangements facilitated the formation of the final compounds. Four different classes of molecules with distinct architectures were generated, adding up to nearly twenty-two individual molecules. Phenotypic screening of a representative section of the library revealed two molecules that selectively inhibit MCF7 breast cancer cells with IC 50 of ∼5 μg mL -1 potency.

  13. Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug-Target Interactions of Natural Products Enables New Targeted Cancer Therapy.

    PubMed

    Fang, Jiansong; Wu, Zengrui; Cai, Chuipu; Wang, Qi; Tang, Yun; Cheng, Feixiong

    2017-11-27

    Natural products with diverse chemical scaffolds have been recognized as an invaluable source of compounds in drug discovery and development. However, systematic identification of drug targets for natural products at the human proteome level via various experimental assays is highly expensive and time-consuming. In this study, we proposed a systems pharmacology infrastructure to predict new drug targets and anticancer indications of natural products. Specifically, we reconstructed a global drug-target network with 7,314 interactions connecting 751 targets and 2,388 natural products and built predictive network models via a balanced substructure-drug-target network-based inference approach. A high area under receiver operating characteristic curve of 0.96 was yielded for predicting new targets of natural products during cross-validation. The newly predicted targets of natural products (e.g., resveratrol, genistein, and kaempferol) with high scores were validated by various literature studies. We further built the statistical network models for identification of new anticancer indications of natural products through integration of both experimentally validated and computationally predicted drug-target interactions of natural products with known cancer proteins. We showed that the significantly predicted anticancer indications of multiple natural products (e.g., naringenin, disulfiram, and metformin) with new mechanism-of-action were validated by various published experimental evidence. In summary, this study offers powerful computational systems pharmacology approaches and tools for the development of novel targeted cancer therapies by exploiting the polypharmacology of natural products.

  14. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies

    PubMed Central

    Timmermans, Marshall L.; Paudel, Yagya P.; Ross, Avena C.

    2017-01-01

    The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria. PMID:28762997

  15. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes.

    PubMed

    Fang, J; Cai, C; Wang, Q; Lin, P; Zhao, Z; Cheng, F

    2017-03-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  16. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies.

    PubMed

    Timmermans, Marshall L; Paudel, Yagya P; Ross, Avena C

    2017-08-01

    The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria.

  17. Thiol-Based Probe for Electrophilic Natural Products Reveals That Most of the Ammosamides Are Artifacts.

    PubMed

    Reimer, Daniela; Hughes, Chambers C

    2017-01-27

    To date, 16 members of the ammosamide family of natural products have been discovered, and except for ammosamide D each of these metabolites is characterized by an unusual chlorinated pyrrolo[4,3,2-de]quinoline skeleton. Several ammosamides have been shown to inhibit quinone reductase 2, a flavoenzyme responsible for quelling toxic oxidative species in cells or for killing cancer cells outright. Treatment of the extract from an ammosamide-producing culture (Streptomyces strain CNR-698) with a thiol-based reagent designed to label electrophilic natural products produced an ammosamide C-thiol adduct. This observation led us to hypothesize, and then demonstrate through experimentation, that all of the other ammosamides are derived from ammosamide C via nonenzymatic processes involving exposure to nucleophiles, air, and light. Like many established electrophilic natural products, reaction with the thiol probe suggests that ammosamide C is itself an electrophilic natural product. Although ammosamide C did not show substantial cytotoxicity against cancer cells, its activity against a marine Bacillus bacterial strain may reflect its ecological role.

  18. Enzymatic catalysis of the Diels-Alder reaction in the biosynthesis of natural products.

    PubMed

    Oikawa, Hideaki; Tokiwano, Tetsuo

    2004-06-01

    Recent studies on enzymes catalyzing the Diels- Alder reaction. often named "Diels-Alderases", clearlydemonstrated the involvement of this synthetically useful reaction in the biosynthesis of natural products.This review covers natural Diels-Alder type cycloadducts. synthetic efforts on the chemical feasibility ofthe biosynthctic Diels - Alder reaction and a brief history of studies on Diels-Alderases. In addition,reaction mechanisms of artificial and natural Diels--Alderases are discussed.

  19. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    PubMed Central

    Mohd Sairazi, Nur Shafika; Sirajudeen, K. N. S.; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration. PMID:26793262

  20. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction.

    PubMed

    Woerly, Eric M; Roy, Jahnabi; Burke, Martin D

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  1. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction

    NASA Astrophysics Data System (ADS)

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  2. New and improved tools and methods for enhanced biosynthesis of natural products in microorganisms.

    PubMed

    Wang, Zhiqing; Cirino, Patrick C

    2016-12-01

    Engineering efficient biosynthesis of natural products in microorganisms requires optimizing gene expression levels to balance metabolite flux distributions and to minimize accumulation of toxic intermediates. Such metabolic optimization is challenged with identifying the right gene targets, and then determining and achieving appropriate gene expression levels. After decades of having a relatively limited set of gene regulation tools available, metabolic engineers are recently enjoying an ever-growing repertoire of more precise and tunable gene expression platforms. Here we review recent applications of natural and designed transcriptional and translational regulatory machinery for engineering biosynthesis of natural products in microorganisms. Customized trans-acting RNAs (sgRNA, asRNA and sRNA), along with appropriate accessory proteins, are allowing for unparalleled tuning of gene expression. Meanwhile metabolite-responsive transcription factors and riboswitches have been implemented in strain screening and evolution, and in dynamic gene regulation. Further refinements and expansions on these platform technologies will circumvent many long-term obstacles in natural products biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Stereodivergent Synthesis of 1,3-Syn-Polyol Natural Product for Stereochemical-Based Structure Activity Relationship Studies

    NASA Astrophysics Data System (ADS)

    Zheng, Jiamin

    The 1,3-syn-diol functionality is very common in many natural products. An important class containing this moiety are the 1,3-syn-polyol/pyranone natural products, which have been isolated from a variety of plant sources, and possess biological activities like plant growth inhibition as well as antifeedant, antifungal, antibacterial, and antitumor properties. The feature of this class is a 6-membered lactone where the lactoe oxygen is part of a 1,3-syn-diol motif. To pursue the 1,3-syn-polyol/pyranone natural products, an iterative hydration of polyene strategy was utilized to provide the 1,3- syn-diol functionality, and asymmetric synthetic strategies were explored to form the requisite stereochemistry. The versatility of the asymmetric approach was demonstrated in the synthesis of eupatorium pyranone and also in an ongoing project aimed at the synthesis of SIA7248. As an outgrowth of our work on the total syntheses of 1,3-syn -polyol natural products inspired a stereo-divergent synthesis of 1,3-syn-polyol natural products and their analogs for stereochemical-based structure-activity relationship (SSAR) studies. To identify the key structural factors important for the anticancer activity of the 1,3-syn-polyol/pyranones, a stereo-divergent 16-member library of pyranone/polyol congeners was designed, synthesized and tested with variations in both stereochemistry and numbers of polyol repeat units. Having access to stereochemical isomers of the biologically active natural products allowed us to design experiments that help illustrate their mechanisms of action.

  4. Natural Products Research in China From 2015 to 2016

    PubMed Central

    Liu, Haishan; Zhu, Guoliang; Fan, Yaqin; Du, Yuqi; Lan, Mengmeng; Xu, Yibo; Zhu, Weiming

    2018-01-01

    This review covers the literature published by chemists from China during the 2015–2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin. PMID:29616210

  5. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms.

    PubMed

    Arendt, Philipp; Pollier, Jacob; Callewaert, Nico; Goossens, Alain

    2016-07-01

    With tens of thousands of characterized members, terpenoids constitute the largest class of natural compounds that are synthesized by all living organisms. Several terpenoids play primary roles in the maintenance of cell membrane fluidity, as pigments or as phytohormones, but most of them function as specialized metabolites that are involved in plant resistance to herbivores or plant-environment interactions. Terpenoids are an essential component of human nutrition, and many are economically important pharmaceuticals, aromatics and potential next-generation biofuels. Because of the often low abundance in their natural source, as well as the demand for novel terpenoid structures with new or improved bioactivities, terpenoid biosynthesis has become a prime target for metabolic engineering and synthetic biology projects. In this review we focus on the creation of new-to-nature or tailor-made plant-derived terpenoids in photosynthetic organisms, in particular by means of combinatorial biosynthesis and the activation of silent metabolism. We reflect on the characteristics of different potential photosynthetic host organisms and recent advances in synthetic biology and discuss their utility for the (heterologous) production of (novel) terpenoids. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Vegetation Productivity in Natural vs. Cultivated Systems along Water Availability Gradients in the Dry Subtropics.

    PubMed

    Baldi, Germán; Texeira, Marcos; Murray, Francisco; Jobbágy, Esteban G

    2016-01-01

    The dry subtropics are subject to a rapid expansion of crops and pastures over vast areas of natural woodlands and savannas. In this paper, we explored the effect of this transformation on vegetation productivity (magnitude, and seasonal and long-term variability) along aridity gradients which span from semiarid to subhumid conditions, considering exclusively those areas with summer rains (>66%). Vegetation productivity was characterized with the proxy metric "Enhanced Vegetation Index" (EVI) (2000 to 2012 period), on 6186 natural and cultivated sampling points on five continents, and combined with a global climatology database by means of additive models for quantile regressions. Globally and regionally, cultivation amplified the seasonal and inter-annual variability of EVI without affecting its magnitude. Natural and cultivated systems maintained a similar and continuous increase of EVI with increasing water availability, yet achieved through contrasting ways. In natural systems, the productivity peak and the growing season length displayed concurrent steady increases with water availability, while in cultivated systems the productivity peak increased from semiarid to dry-subhumid conditions, and stabilized thereafter giving place to an increase in the growing season length towards wetter conditions. Our results help to understand and predict the ecological impacts of deforestation on vegetation productivity, a key ecosystem process linked to a broad range of services.

  7. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    PubMed

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  8. Total synthesis and stereochemical assignment of the spiroisoxazoline natural product (+)-calafianin.

    PubMed

    Bardhan, Sujata; Schmitt, Daniel C; Porco, John A

    2006-03-02

    Synthesis of the spiroisoxazoline natural product (+)-calafianin is reported using asymmetric nucleophilic epoxidation and nitrile oxide cycloaddition as key steps. Synthesis and spectral analysis of all calafianin stereoisomers led to unambiguous assignment of relative and absolute stereochemistry.

  9. Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer.

    PubMed

    Macha, Muzafar A; Krishn, Shiv Ram; Jahan, Rahat; Banerjee, Kasturi; Batra, Surinder K; Jain, Maneesh

    2015-03-01

    Deregulated mucin expression is a hallmark of several inflammatory and malignant pathologies. Emerging evidence suggests that, apart from biomarkers, these deregulated mucins are functional contributors to the pathogenesis in inflammation and cancer. Both overexpression and downregulation of mucins in various organ systems is associated with pathobiology of inflammation and cancer. Restoration of mucin homeostasis has become an important goal for therapy and management of such disorders has fueled the quest for selective mucomodulators. With improved understanding of mucin regulation and mechanistic insights into their pathobiological roles, there is optimism to find selective non-toxic agents capable of modulating mucin expression and function. Recently, natural compounds derived from dietary sources have drawn attention due to their anti-inflammatory and anti-oxidant properties and low toxicity. Considerable efforts have been directed towards evaluating dietary natural products as chemopreventive and therapeutic agents; identification, characterization and synthesis of their active compounds; and improving their delivery and bioavailability. We describe the current understanding of mucin regulation, rationale for targeting mucins with natural products and discuss some natural products that modulate mucin expression and functions. We further discuss the approaches and parameters that should guide future research to identify and evaluate selective natural mucomodulators for therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Emerging Potential of Natural Products for Targeting Mucins for Therapy Against Inflammation and Cancer

    PubMed Central

    Macha, Muzafar A.; Krishn, Shiv Ram; Jahan, Rahat; Banerjee, Kasturi; Batra, Surinder K.; Jain, Maneesh

    2015-01-01

    Deregulated mucin expression is a hallmark of several inflammatory and malignant pathologies. Emerging evidence suggests that, apart from biomarkers, these deregulated mucins are functional contributors to pathogenesis in inflammation and cancer. Both overexpression and downregulation of mucins in various organ systems is associated with pathobiology of inflammation and cancer. Restoration of mucin homeostasis has become an important goal for therapy and management of such disorders and has fueled the quest for selective mucomodulators. With improved understanding of mucin regulation and mechanistic insights into their pathobiological roles, there is optimism to find selective non-toxic agents capable of modulating mucin expression and function. Recently, natural compounds derived from dietary sources have drawn attention due to their anti-inflammatory and anti-oxidant properties and low toxicity. Considerable efforts have been directed towards evaluating dietary natural products as chemopreventive and therapeutic agents; identification, characterization and synthesis of their active compounds; and improving their delivery and bioavailability. We describe the current understanding of mucin regulation, rationale for targeting mucins with natural products and discuss some natural products that modulate mucin expression and functions. We further discuss the approaches and parameters that should guide future research to identify and evaluate selective natural mucomodulators for therapy. PMID:25624117

  11. Effects of reduced natural background radiation on Drosophila melanogaster growth and development as revealed by the FLYINGLOW program.

    PubMed

    Morciano, Patrizia; Iorio, Roberto; Iovino, Daniela; Cipressa, Francesca; Esposito, Giuseppe; Porrazzo, Antonella; Satta, Luigi; Alesse, Edoardo; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-01-01

    Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans. © 2017 Wiley Periodicals, Inc.

  12. Rational biosynthetic approaches for the production of new-to-nature compounds in fungi.

    PubMed

    Boecker, Simon; Zobel, Sophia; Meyer, Vera; Süssmuth, Roderich D

    2016-04-01

    Filamentous fungi have the ability to produce a wide range of secondary metabolites some of which are potent toxins whereas others are exploited as food additives or drugs. Fungal natural products still play an important role in the discovery of new chemical entities for potential use as pharmaceuticals. However, in most cases they cannot be directly used as drugs due to toxic side effects or suboptimal pharmacokinetics. To improve drug-like properties, including bioactivity and stability or to produce better precursors for semi-synthetic routes, one needs to generate non-natural derivatives from known fungal secondary metabolites. In this minireview, we describe past and recent biosynthetic approaches for the diversification of fungal natural products, covering examples from precursor-directed biosynthesis, mutasynthesis, metabolic engineering and biocombinatorial synthesis. To illustrate the current state-of-the-art, challenges and pitfalls, we lay particular emphasis on the class of fungal cyclodepsipeptides which have been studied longtime for product diversification and which are of pharmaceutical relevance as drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Natural Products from the Lithistida: A Review of the Literature since 2000

    PubMed Central

    Winder, Priscilla L.; Pomponi, Shirley A.; Wright, Amy E.

    2011-01-01

    Lithistid sponges are known to produce a diverse array of compounds ranging from polyketides, cyclic and linear peptides, alkaloids, pigments, lipids, and sterols. A majority of these structurally complex compounds have very potent and interesting biological activities. It has been a decade since a thorough review has been published that summarizes the literature on the natural products reported from this amazing sponge order. This review provides an update on the current taxonomic classification of the Lithistida, describes structures and biological activities of 131 new natural products, and discusses highlights from the total syntheses of 16 compounds from marine sponges of the Order Lithistida providing a compilation of the literature since the last review published in 2002. PMID:22363244

  14. Antimicrobial susceptibility of foodborne pathogens in organic or natural production systems: an overview.

    PubMed

    Jacob, Megan E; Fox, James Trent; Reinstein, Shelby L; Nagaraja, T G

    2008-12-01

    Organic and natural food production systems are increasing in popularity, at least partially because consumers perceive that these niche markets provide healthier and safer food products. One major difference between these niche markets and conventional production systems is the use of antimicrobials. Because antimicrobial agents exert selective pressures for antimicrobial resistance, relating antimicrobial susceptibility of foodborne bacteria to niche market production systems is of interest. Other differences between production systems might also influence the susceptibility of foodborne pathogens. The objective of this review is to compare the impact of food animal production systems on the antimicrobial susceptibility of common foodborne bacterial pathogens. Studies comparing the susceptibility of such pathogens were diverse in terms of geographic location, procedures, species of bacteria, and antimicrobials evaluated; thus, it was difficult to draw conclusions. The literature is highly variable in terms of production type and practices and susceptibility associations, although few studies have compared truly organic and conventional practices. When statistical associations were found between production type and minimum inhibitory concentrations or percentage of isolates resistant for a particular pathogen, the isolates from conventionally reared animals/products were more commonly resistant than the comparison group (organic, antibiotic free, etc.). Therefore, further studies are needed to better assess public health consequences of antimicrobial resistance and food animal production systems, specifically organic or natural versus conventional.

  15. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction

    PubMed Central

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-01-01

    The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233

  16. Using natural products to promote caspase-8-dependent cancer cell death.

    PubMed

    Tewary, Poonam; Gunatilaka, A A Leslie; Sayers, Thomas J

    2017-02-01

    The selective killing of cancer cells without toxicity to normal nontransformed cells is an idealized goal of cancer therapy. Thus, there has been much interest in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a protein that appears to selectively kill cancer cells. TRAIL has been reported to trigger apoptosis and under some circumstances, an alternate death signaling pathway termed necroptosis. The relative importance of necroptosis for cell death induction in vivo is under intensive investigation. Nonetheless, many cancer cells (particularly those freshly isolated from cancer patients) are highly resistant to TRAIL-mediated cell death. Therefore, there is an underlying interest in identifying agents that can be combined with TRAIL to improve its efficacy. There are numerous reports in which combination of TRAIL with standard antineoplastic drugs has resulted in enhanced cancer cell death in vitro. However, many of these chemotherapeutic drugs are nonspecific and associated with adverse effects, which raise serious concerns for cancer therapy in patients. By contrast, natural products have been shown to be safer and efficacious alternatives. Recently, a number of studies have suggested that certain natural products when combined with TRAIL can enhance cancer cell death. In this review, we highlight molecular pathways that might be targeted by various natural products to promote cell death, and focus on our recent work with withanolides as TRAIL sensitizers. Finally, we will suggest synergistic approaches for combining active withanolides with various forms of immunotherapy to promote cancer cell death and an effective antitumor immune response.

  17. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi.

    PubMed

    Overy, David P; Bayman, Paul; Kerr, Russell G; Bills, Gerald F

    2014-07-03

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from 'marine-derived' fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment.

  18. A systematic review of natural health product treatment for vitiligo

    PubMed Central

    Szczurko, Orest; Boon, Heather S

    2008-01-01

    Background Vitiligo is a hypopigmentation disorder affecting 1 to 4% of the world population. Fifty percent of cases appear before the age of 20 years old, and the disfigurement results in psychiatric morbidity in 16 to 35% of those affected. Methods Our objective was to complete a comprehensive, systematic review of the published scientific literature to identify natural health products (NHP) such as vitamins, herbs and other supplements that may have efficacy in the treatment of vitiligo. We searched eight databases including MEDLINE and EMBASE for vitiligo, leucoderma, and various NHP terms. Prospective controlled clinical human trials were identified and assessed for quality. Results Fifteen clinical trials were identified, and organized into four categories based on the NHP used for treatment. 1) L-phenylalanine monotherapy was assessed in one trial, and as an adjuvant to phototherapy in three trials. All reported beneficial effects. 2) Three clinical trials utilized different traditional Chinese medicine products. Although each traditional Chinese medicine trial reported benefit in the active groups, the quality of the trials was poor. 3) Six trials investigated the use of plants in the treatment of vitiligo, four using plants as photosensitizing agents. The studies provide weak evidence that photosensitizing plants can be effective in conjunction with phototherapy, and moderate evidence that Ginkgo biloba monotherapy can be useful for vitiligo. 4) Two clinical trials investigated the use of vitamins in the therapy of vitiligo. One tested oral cobalamin with folic acid, and found no significant improvement over control. Another trial combined vitamin E with phototherapy and reported significantly better repigmentation over phototherapy only. It was not possible to pool the data from any studies for meta-analytic purposes due to the wide difference in outcome measures and poor quality ofreporting. Conclusion Reports investigating the efficacy of NHPs for

  19. The right hemisphere is highlighted in connected natural speech production and perception.

    PubMed

    Alexandrou, Anna Maria; Saarinen, Timo; Mäkelä, Sasu; Kujala, Jan; Salmelin, Riitta

    2017-05-15

    Current understanding of the cortical mechanisms of speech perception and production stems mostly from studies that focus on single words or sentences. However, it has been suggested that processing of real-life connected speech may rely on additional cortical mechanisms. In the present study, we examined the neural substrates of natural speech production and perception with magnetoencephalography by modulating three central features related to speech: amount of linguistic content, speaking rate and social relevance. The amount of linguistic content was modulated by contrasting natural speech production and perception to speech-like non-linguistic tasks. Meaningful speech was produced and perceived at three speaking rates: normal, slow and fast. Social relevance was probed by having participants attend to speech produced by themselves and an unknown person. These speech-related features were each associated with distinct spatiospectral modulation patterns that involved cortical regions in both hemispheres. Natural speech processing markedly engaged the right hemisphere in addition to the left. In particular, the right temporo-parietal junction, previously linked to attentional processes and social cognition, was highlighted in the task modulations. The present findings suggest that its functional role extends to active generation and perception of meaningful, socially relevant speech. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

    PubMed Central

    Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J.

    2016-01-01

    Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects. PMID:27089350

  1. Emissions of CH4 from natural gas production in the United States using aircraft-based observations

    NASA Astrophysics Data System (ADS)

    Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Ryerson, Thomas; Peischl, Jeff; Trainer, Michael; Rella, Chris; Hardesty, Michael; Crosson, Eric; Montzka, Stephen; Tans, Pieter; Shepson, Paul; Kort, Eric

    2014-05-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches in combination with isotopes and light alkanes to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  2. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    NASA Astrophysics Data System (ADS)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in

  3. Kaolin and copper-based products applications: ecotoxicology on four natural enemies.

    PubMed

    Bengochea, P; Amor, F; Saelices, R; Hernando, S; Budia, F; Adán, A; Medina, P

    2013-05-01

    Lethal and sublethal effects of kaolin clays and two copper-based products on four natural enemies found in olive orchards Anthocoris nemoralis (F.) (Hem. Anthocoridae), Chelonus inanitus (L.) (Hym. Braconidae), Chilocorus nigritus (F.) (Col. Coccinellidae) and Scutellysta cyanea Motschulsky (Hym. Pteromalidae) are described. Both kaolin and copper can be applied for controlling the olive fruit fly and the olive moth, two important pests of this crop. The products did not increase the mortality of any of the insects studied, with the exception of A. nemoralis. The sublethal effects, however, differed depending on the parameter evaluated and the insect studied. Both kaolin and coppers slightly, but significantly, reduced the life span of C. inanitus and S. cyanea. Number of eggs laid by A. nemoralis females were reduced, but not significantly compared to the controls. In the behavioural experiments, clear preference for remaining on kaolin-untreated surfaces when insects were able to choose was observed. Despite having some negative effects, the negative impact on natural enemies was lower than the impact caused by products commonly applied in this crop against the pests stated above. Therefore, both kaolin and copper can be considered as alternative products to be applied in olive orchards if an effective resistance management programme is to be developed. Furthermore, both of them are allowed in organic farming, in which the number of products that can be applied is more restricted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Challenges of conducting clinical trials of natural products to combat cancer.

    PubMed

    Paller, Channing J; Denmeade, Samuel R; Carducci, Michael A

    2016-06-01

    Numerous drugs that the US Food and Drug Administration (FDA) has approved for use in cancer therapy are derived from plants, including taxanes such as paclitaxel and vinca alkaloids such as vinblastine. Dietary supplements are another category of natural products that are widely used by patients with cancer, but without the FDA-reviewed evidence of safety and efficacy--be it related to survival, palliation, symptom mitigation, and/or immune system enhancement-that is required for therapy approval. Nearly half of patients in the United States with cancer report that they started taking new dietary supplements after being given a diagnosis of cancer. Oncologists are challenged in providing advice to patients about which supplements are safe and effective to use to treat cancer or the side effects of cancer therapy, and which supplements are antagonistic to standard treatment with chemotherapy, radiation, and/or immunotherapy. Despite the large number of trials that have been launched, the FDA has not approved any dietary supplement or food to prevent cancer, halt its growth, or prevent its recurrence. In this article, we review the primary challenges faced by researchers attempting to conduct rigorous trials of natural products, including shortages of funding due to lack of patentability, manufacturing difficulties, contamination, and lack of product consistency. We also highlight the methods used by dietary supplement marketers to persuade patients that a supplement is effective (or at least safe) even without FDA approval, as well as the efforts of the US government to protect the health and safety of its citizens by ensuring that the information used to market natural products is accurate. We close with a summary of the most widely used databases of information about the safety, efficacy, and interactions of dietary supplements.

  5. "TEEB begins now": a virtual moment in the production of natural capital.

    PubMed

    MacDonald, Kenneth Iain; Corson, Catherine

    2012-01-01

    This article uses theories of virtualism to analyse the role of The Economics of Ecosystems and Biodiversity (TEEB) project in the production of natural capital. Presented at the 10th Conference of the Parties to the Convention on Biological Diversity, the project seeks to redress the ‘economic invisibility of nature’ by quantifying the value of ecosystems and biodiversity. This endeavour to put an economic value on ecosystems makes nature legible by abstracting it from social and ecological contexts and making it subject to, and productive of, new market devices. In reducing the complexity of ecological dynamics to idealized categories TEEB is driven by economic ideas and idealism, and, in claiming to be a quantitative force for morality, is engaged in the production of practices designed to conform the ‘real’ to the virtual. By rendering a ‘valued’ nature legible for key audiences, TEEB has mobilized a critical mass of support including modellers, policy makers and bankers. We argue that TEEB's rhetoric of crisis and value aligns capitalism with a new kind of ecological modernization in which ‘the market’ and market devices serve as key mechanisms to conform the real and the virtual. Using the case of TEEB, and drawing on data collected at COP10, we illustrate the importance of international meetings as key points where idealized models of biodiversity protection emerge, circulate and are negotiated, and as sites where actors are aligned and articulated with these idealized models in ways that begin further processes of conforming the real with the virtual and the realization of ‘natural capital’.

  6. Leveraging ecological theory to guide natural product discovery.

    PubMed

    Smanski, Michael J; Schlatter, Daniel C; Kinkel, Linda L

    2016-03-01

    Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random 'fishing expeditions' for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.

  7. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    EPA Science Inventory

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  8. Why background colour matters to bees and flowers.

    PubMed

    Bukovac, Zoë; Shrestha, Mani; Garcia, Jair E; Burd, Martin; Dorin, Alan; Dyer, Adrian G

    2017-05-01

    Flowers are often viewed by bee pollinators against a variety of different backgrounds. On the Australian continent, backgrounds are very diverse and include surface examples of all major geological stages of the Earth's history, which have been present during the entire evolutionary period of Angiosperms. Flower signals in Australia are also representative of typical worldwide evolutionary spectral adaptations that enable successful pollination. We measured the spectral properties of 581 natural surfaces, including rocks, sand, green leaves, and dry plant materials, sampled from tropical Cairns through to the southern tip of mainland Australia. We modelled in a hexagon colour space, how interactions between background spectra and flower-like colour stimuli affect reliable discrimination and detection in bee pollinators. We calculated the extent to which a given locus would be conflated with the loci of a different flower-colour stimulus using empirically determined colour discrimination regions for bee vision. Our results reveal that whilst colour signals are robust in homogeneous background viewing conditions, there could be significant pressure on plant flowers to evolve saliently-different colours to overcome background spectral noise. We thus show that perceptual noise has a large influence on how colour information can be used in natural conditions.

  9. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing

    PubMed Central

    Tanimura, Ayumi; Kikukawa, Minako; Yamaguchi, Shino; Kishino, Shigenobu; Ogawa, Jun; Shima, Jun

    2015-01-01

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one-step process, is a promising strategy for cost-effective ethanol production from starchy biomass. To gain insights into starch-based ethanol production using CBP, an extensive screening was undertaken to identify naturally occurring yeasts that produce ethanol without the addition of any amylases. Three yeast strains were capable of producing a significant amount of ethanol. Quantitative assays revealed that Scheffersomyces shehatae JCM 18690 was the strain showing the highest ethanol production ability. This strain was able to utilize starch directly, and the ethanol concentration reached 9.21 g/L. We attribute the ethanol-producing ability of this strain to the high levels of glucoamylase activity, fermentation potential and ethanol stress tolerance. This study strongly suggests the possibility of starch-based ethanol production by consolidated bioprocessing using natural yeasts such as S. shehatae JCM 18690. PMID:25901788

  10. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing.

    PubMed

    Tanimura, Ayumi; Kikukawa, Minako; Yamaguchi, Shino; Kishino, Shigenobu; Ogawa, Jun; Shima, Jun

    2015-04-22

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one-step process, is a promising strategy for cost-effective ethanol production from starchy biomass. To gain insights into starch-based ethanol production using CBP, an extensive screening was undertaken to identify naturally occurring yeasts that produce ethanol without the addition of any amylases. Three yeast strains were capable of producing a significant amount of ethanol. Quantitative assays revealed that Scheffersomyces shehatae JCM 18690 was the strain showing the highest ethanol production ability. This strain was able to utilize starch directly, and the ethanol concentration reached 9.21 g/L. We attribute the ethanol-producing ability of this strain to the high levels of glucoamylase activity, fermentation potential and ethanol stress tolerance. This study strongly suggests the possibility of starch-based ethanol production by consolidated bioprocessing using natural yeasts such as S. shehatae JCM 18690.

  11. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi

    PubMed Central

    Overy, David P.; Bayman, Paul; Kerr, Russell G.; Bills, Gerald F.

    2014-01-01

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from ‘marine-derived’ fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment. PMID:25379338

  12. Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study.

    PubMed

    Olivera, Baldomero M; Raghuraman, Shrinivasan; Schmidt, Eric W; Safavi-Hemami, Helena

    2017-09-01

    From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products-venom components from predatory marine cone snails-this review provides a rationale for why a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as "Chemical Neuroethology", linking the substantial work carried out by chemists on natural products with accelerating advances in neuroethology.

  13. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer.

    PubMed

    Hasanpourghadi, Mohadeseh; Pandurangan, Ashok Kumar; Mustafa, Mohd Rais

    2018-02-01

    Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded

  14. Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways

    PubMed Central

    2016-01-01

    Covering: 2003 to 2016 The last decade has seen the first major discoveries regarding the genomic basis of plant natural product biosynthetic pathways. Four key computationally driven strategies have been developed to identify such pathways, which make use of physical clustering, co-expression, evolutionary co-occurrence and epigenomic co-regulation of the genes involved in producing a plant natural product. Here, we discuss how these approaches can be used for the discovery of plant biosynthetic pathways encoded by both chromosomally clustered and non-clustered genes. Additionally, we will discuss opportunities to prioritize plant gene clusters for experimental characterization, and end with a forward-looking perspective on how synthetic biology technologies will allow effective functional reconstitution of candidate pathways using a variety of genetic systems. PMID:27321668

  15. Inhibition of the ubiquitin-proteasome system by natural products for cancer therapy.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2010-08-01

    The ubiquitin-proteasome system plays a critical role in selective protein degradation and regulates almost all cellular events such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein quality control, development, and neuronal function. The recent approval of bortezomib, a synthetic proteasome inhibitor, for the treatment of relapsed multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and ubiquitinating and deubiquitinating enzymes as well as the delivery system. To date, various synthetic and natural products have been reported to inhibit the components of the ubiquitin-proteasome system. Here, we review natural products targeting the ubiquitin-proteasome system as well as synthetic compounds with potent inhibitory effects. Georg Thieme Verlag KG Stuttgart-New York.

  16. Evaluating natural resource amenities in a human life expectancy production function

    Treesearch

    Neelam C. Poudyal; Donald G. Hodges; J.M. Bowker; H.K. Cordell

    2009-01-01

    This study examined the effect of natural resource amenities on human life expectancy. Extending theexisting model of the life expectancy production function, and correcting for spatial dependence, weevaluated the determinants of life expectancy using county level data. Results indicate that after controlling

  17. Capturing Nature's Diversity

    PubMed Central

    Pascolutti, Mauro; Campitelli, Marc; Nguyen, Bao; Pham, Ngoc; Gorse, Alain-Dominique; Quinn, Ronald J.

    2015-01-01

    Natural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products). PCA analysis was used to illustrate the positioning of the fragment subset within the property space of the non-fragment sized natural products in the dataset. Structural diversity was analysed by three distinct methods: atom function analysis, using pharmacophore fingerprints, atom type analysis, using radial fingerprints, and scaffold analysis. Small pharmacophore triplets, representing the range of chemical features present in natural products that are capable of engaging in molecular interactions with small, contiguous areas of protein binding surfaces, were analysed. We demonstrate that fragment-sized natural products capture more than half of the small pharmacophore triplet diversity observed in non fragment-sized natural product datasets. Atom type analysis using radial fingerprints was represented by a self-organizing map. We examined the structural diversity of non-flat fragment-sized natural product scaffolds, rich in sp3 configured centres. From these results we demonstrate that 2-ring fragment-sized natural products effectively balance the opposing characteristics of minimal complexity and broad structural diversity when compared to the larger, more complex fragment-like natural products. These naturally-derived fragments could be used as the starting point for the generation of a highly diverse library with the scope for further medicinal chemistry elaboration due to their minimal structural complexity. This study highlights the possibility to capture a

  18. Concerning evaluation of eco-geochemical background in remediation strategy

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for

  19. Natural Products and Their Mimics as Targets of Opportunity for Discovery

    PubMed Central

    2017-01-01

    Diverse structural types of natural products and their mimics have served as targets of opportunity in our laboratory to inspire the discovery and development of new methods and strategies to assemble polyfunctional and polycyclic molecular architectures. Furthermore, our efforts toward identifying novel compounds having useful biological properties led to the creation of new targets, many of which posed synthetic challenges that required the invention of new methodology. In this Perspective, selected examples of how we have exploited a diverse range of natural products and their mimics to create, explore, and solve a variety of problems in chemistry and biology will be discussed. The journey was not without its twists and turns, but the unexpected often led to new revelations and insights. Indeed, in our recent excursion into applications of synthetic organic chemistry to neuroscience, avoiding the more-traveled paths was richly rewarding. PMID:28738152

  20. Use of space for development of commercial plant natural products

    NASA Astrophysics Data System (ADS)

    Draeger, Norman A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol.