Stability of an ion-ring distribution in a multi-ion component plasma
NASA Astrophysics Data System (ADS)
Mithaiwala, Manish; Rudakov, Leonid; Ganguli, Gurudas
2010-04-01
The stability of a cold ion-ring velocity distribution in a thermal plasma is analyzed. In particular, the effect of plasma temperature and density on the instability is considered. A high ring density (compared to the background plasma) neutralizes the stabilizing effect of the warm background plasma and the ring is unstable to the generation of waves below the lower-hybrid frequency even for a very high temperature plasma. For ring densities lower than the background plasma density, there is a slow instability where the growth rate is less than the background-ion cyclotron frequency and, consequently, the background-ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background-ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower-hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring.
In situ Observations of Magnetosonic Waves Modulated by Background Plasma Density
NASA Astrophysics Data System (ADS)
Yu, X.; Yuan, Z.; Huang, S.; Wang, D.; Funsten, H. O.
2017-12-01
We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with 'ring' distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate the amplitudes of magnetosonic waves through controlling the wave growth rates.
Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek
By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.
Injection of a coaxial-gun-produced magnetized plasma into a background helicon plasma
NASA Astrophysics Data System (ADS)
Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott
2014-10-01
A compact coaxial plasma gun is employed for experimental investigation of plasma bubble relaxation into a lower density background plasma. Experiments are being conducted in the linear device HelCat at UNM. The gun is powered by a 120-uF ignitron-switched capacitor bank, which is operated in a range of 5 to 10 kV and 100 kA. Multiple diagnostics are employed to investigate the plasma relaxation process. Magnetized argon plasma bubbles with velocities 1.2Cs, densities 1020 m-3 and electron temperature 13eV have been achieved. The background helicon plasma has density 1013 m-3, magnetic field from 200 to 500 Gauss and electron temperature 1eV. Several distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. Additionally a B-dot probe array has been employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify plasma bubble configurations. Experimental data and analysis will be presented.
Non-linear Evolution of Velocity Ring Distributions: Generation of Whistler Waves
NASA Astrophysics Data System (ADS)
Mithaiwala, M.; Rudakov, L.; Ganguli, G.
2010-12-01
Although it is typically believed that an ion ring velocity distribution has a stability threshold, we find that they are universally unstable. This can substantially impact the understanding of dynamics in both laboratory and space plasmas. A high ring density neutralizes the stabilizing effect of ion Landau damping in a warm plasma and the ring is unstable to the generation of waves below the lower hybrid frequency- even for a very high temperature plasma. For ring densities lower than the background plasma density there is a slow instability with growth rate less than the background ion cyclotron frequency and consequently the background ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring. The importance of these conclusions on the nonlinear evolution of space plasmas, in particular to solar wind-comet interaction, post-magnetospheric storm conditions, and chemical release experiments in the ionosphere will be discussed.
Universally Unstable Nature of Velocity Ring Distributions
NASA Astrophysics Data System (ADS)
Mithaiwala, Manish
2010-11-01
Although it is typically believed that an ion ring velocity distribution has a stability threshold, we find that they are universally unstable. This can substantially impact the understanding of dynamics in both laboratory and space plasmas. A high ring density neutralizes the stabilizing effect of ion Landau damping in a warm plasma and the ring is unstable to the generation of waves below the lower hybrid frequency- even for a very high temperature plasma. For ring densities lower than the background plasma density there is a slow instability with growth rate less than the background ion cyclotron frequency and consequently the background ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring. The importance of these conclusions on the nonlinear evolution of space plasmas, in particular to solar wind-comet interaction, post-magnetospheric storm conditions, and chemical release experiments in the ionosphere will be discussed.
NASA Astrophysics Data System (ADS)
Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.
2018-05-01
Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.
Relativistic electron plasma oscillations in an inhomogeneous ion background
NASA Astrophysics Data System (ADS)
Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil
2018-06-01
The combined effect of relativistic electron mass variation and background ion inhomogeneity on the phase mixing process of large amplitude electron oscillations in cold plasmas have been analyzed by using Lagrangian coordinates. An inhomogeneity in the ion density is assumed to be time-independent but spatially periodic, and a periodic perturbation in the electron density is considered as well. An approximate space-time dependent solution is obtained in the weakly-relativistic limit by employing the Bogolyubov and Krylov method of averaging. It is shown that the phase mixing process of relativistically corrected electron oscillations is strongly influenced by the presence of a pre-existing ion density ripple in the plasma background.
NASA Astrophysics Data System (ADS)
Haakonsen, Christian Bernt; Hutchinson, Ian H.
2013-10-01
Mach probes can be used to measure transverse flow in magnetized plasmas, but what they actually measure in strongly non-uniform plasmas has not been definitively established. A fluid treatment in previous work has suggested that the diamagnetic drifts associated with background density and temperature gradients affect transverse flow measurements, but detailed computational study is required to validate and elaborate on those results; it is really a kinetic problem, since the probe deforms and introduces voids in the ion and electron distribution functions. A new code, the Plasma-Object Simulator with Iterated Trajectories (POSIT) has been developed to self-consistently compute the steady-state six-dimensional ion and electron distribution functions in the perturbed plasma. Particle trajectories are integrated backwards in time to the domain boundary, where arbitrary background distribution functions can be specified. This allows POSIT to compute the ion and electron density at each node of its unstructured mesh, update the potential based on those densities, and then iterate until convergence. POSIT is used to study the impact of a background density gradient on transverse Mach probe measurements, and the results compared to the previous fluid theory. C.B. Haakonsen was supported in part by NSF/DOE Grant No. DE-FG02-06ER54512, and in part by an SCGF award administered by ORISE under DOE Contract No. DE-AC05-06OR23100.
Surface currents associated with external kink modes in tokamak plasmas during a major disruption
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
2017-10-01
The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.
Plasma influence on the dispersion properties of finite-length, corrugated waveguides
NASA Astrophysics Data System (ADS)
Shkvarunets, A.; Kobayashi, S.; Weaver, J.; Carmel, Y.; Rodgers, J.; Antonsen, T. M., Jr.; Granatstein, V. L.; Destler, W. W.; Ogura, K.; Minami, K.
1996-03-01
We present an experimental study of the electromagnetic properties of transverse magnetic modes in a corrugated-wall cavity filled with a radially inhomogeneous plasma. The shifts of the resonant frequencies of a finite-length, corrugated cavity were measured as a function of the background plasma density and the dispersion diagram was reconstructed up to a peak plasma density of 1012 cm-3. Good agreement with a calculated dispersion diagram is obtained for plasma densities below 5×1011 cm-3.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1976-01-01
Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
BRIEF COMMUNICATION: A note on the Coulomb collision operator in curvilinear coordinates
NASA Astrophysics Data System (ADS)
Goncharov, P. R.
2010-10-01
The dynamic friction force, diffusion tensor, flux density in velocity space and Coulomb collision term are expressed in curvilinear coordinates via Trubnikov potential functions corresponding to each species of a background plasma. For comparison, explicit formulae are given for the dynamic friction force, diffusion tensor and collisional flux density in velocity space in curvilinear coordinates via Rosenbluth potential functions summed over all species of the background plasma.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1976-01-01
Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.
High Current, High Density Arc Plasma as a New Source for WiPAL
NASA Astrophysics Data System (ADS)
Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team
2016-10-01
The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.
Reverse Current Shock Induced by Plasma-Neutral Collision
NASA Astrophysics Data System (ADS)
Wongwaitayakornkul, Pakorn; Haw, Magnus; Li, Hui; Li, Shengtai; Bellan, Paul
2017-10-01
The Caltech solar experiment creates an arched plasma-filled flux rope expanding into low density background plasma. A layer of electrical current flowing in the opposite direction with respect to the flux rope current is induced in the background plasma just ahead of the flux rope. Two dimensional spatial and temporal measurements by a 3-dimensional magnetic vector probe demonstrate the existence of this induced current layer forming ahead of the flux rope. The induced current magnitude is 20% of the magnitude of the current in the flux rope. The reverse current in the low density background plasma is thought to be a diamagnetic response that shields out the magnetic field ahead of the propagation. The spatial and magnetic characteristics of the reverse current layer are consistent with similar shock structures seen in 3-dimensional ideal MHD numerical simulations performed on the Turquoise supercomputer cluster using the Los Alamos COMPutational Astrophysics Simulation Suite. This discovery of the induced diamagnetic current provides useful insights for space and solar plasma.
Plasma Irregularities on the Leading and Trailing Edges of Polar Cap Patches
NASA Astrophysics Data System (ADS)
Lamarche, L. J.; Varney, R. H.; Gillies, R.; Chartier, A.; Mitchell, C. N.
2017-12-01
Plasma irregularities in the polar cap have often been attributed to the gradient drift instability (GDI). Traditional fluid theories of GDI predicts irregularity growth only on the trailing edge of polar patches, where the plasma density gradient is parallel to the plasma drift velocity, however many observations show irregularities also form on the leading edge of patches. We consider decameter-scale irregularities detected by polar-latitude SuperDARN (Super Dual Auroral Radar Network) radars with any relationship between the background density gradients and drift velocity. Global electron density from the Multi-Instrument Data Analysis System (MIDAS), a GPS tomography routine, is used to provide context for where irregularities are observed relative to polar patches and finer-scale background density gradients are found from 3D imaging from both the North and Canada faces of the Resolute Bay Incoherent Scatter Radars (RISR-N and RISR-C) jointly. Shear-based instabilities are considered as mechanisms by which plasma irregularities could form on the leading edge of patches. Theoretical predictions of instability growth from both GDI and shear instabilities are compared with irregularity observations for the October 13, 2016 storm.
Multi-species hybrid modeling of plasma interactions at Io and Europa
NASA Astrophysics Data System (ADS)
Sebek, O.; Travnicek, P. M.; Walker, R. J.; Hellinger, P.
2017-12-01
We study the plasma interactions of Galilean satellites, Io and Europa, by means of multi-species global hybrid simulations. For both satellites we consider multi-species background plasma composed of oxygen and sulphur ions and multi-component neutral atmospheres. We consider ionization processes of the neutral atmosphere which is then a source of dense population of pick-up ions. We apply variable background plasma conditions (density, temperature, magnetic field magnitude and orientation) in order to cover the variability in conditions experienced by the satellites when located in different regions of the Jovian plasma torus. We examine global structure of the interactions, formation of Alfvén wings, development of temperature anisotropies and corresponding instabilities, and the fine phenomena caused by the multi-specie nature of the plasma. The results are in good agreement with in situ measurements of magnetic field and plasma density made by the Galileo spacecraft.
Amplification of a high-frequency electromagnetic wave by a relativistic plasma
NASA Technical Reports Server (NTRS)
Yoon, Peter H.
1990-01-01
The amplification of a high-frequency transverse electromagnetic wave by a relativistic plasma component, via the synchrotron maser process, is studied. The background plasma that supports the transverse wave is considered to be cold, and the energetic component whose density is much smaller than that of the background component has a loss-cone feature in the perpendicular momentum space and a finite field-aligned drift speed. The ratio of the background plasma frequency squared to the electron gyrofrequency squared is taken to be sufficiently larger than unity. Such a parameter regime is relevant to many space and astrophysical situations. A detailed study of the amplification process is carried out over a wide range of physical parameters including the loss-cone index, the ratio of the electron mass energy to the temperature of the energetic component, the field-aligned drift speed, the normalized density, and the wave propagation angle.
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.
2018-02-01
We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of the magnetic pinch. The pinch width and number density distribution are compared to experimentally obtained data to calibrate the inlet boundary conditions used to set up the plasma acceleration problem.
NASA Astrophysics Data System (ADS)
Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.
2018-06-01
We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.
New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic.
Henriques, R B; Nedzelskiy, I S; Malaquias, A; Fernandes, H
2012-10-01
The tokamak ISTTOK havy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10(7) V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.
Generation of filamentary structures by beam-plasma interaction
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Lin, Y.
2006-05-01
The previous simulations by Wang and Lin [Phys. Plasmas. 10, 3528, (2003)] showed that filaments, frequently observed in space plasmas, can form via the interaction between an ion beam and a background plasma. In this study, the physical mechanism for the generation of the filaments is investigated by a two-dimensional hybrid simulation, in which a field-aligned ion beam with relative beam density nb=0.1 and beam velocity Vb=10VA is initiated in a uniform plasma. Right-hand nonresonant ion beam modes, consistent with the linear theory, are found to be dominant in the linear stage of the beam-plasma interaction. In the later nonlinear stage, the nonresonant modes decay and the resonant modes grow through a nonlinear wave coupling. The interaction among the resonant modes leads to the formation of filamentary structures, which are the field-aligned structures (k⊥B) of magnetic field B, density, and temperature in the final stage. The filaments are nonlinearly generated in a prey-predator fashion by the parallel and oblique resonant ion beam modes, which meanwhile evolve into two types of shear Alfvén modes, with one mainly propagating along the background field B0 and the other obliquely propagating. The filamentary structures are found to be phase standing in the plasma frame, but their amplitude oscillates with time. In the dominant filament mode, fluctuations in the background ion density, background ion temperature, and beam density are in phase with the fluctuations in B, whereas the significantly enhanced beam temperature is antiphase with B. It is found that the filaments are produced by the interaction of at least two ion beam modes with comparable amplitudes, not by only one single mode, thus their generation mechanism is different from other mechanisms such as the stimulated excitation by the decay of an Alfvén wave.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration
2013-10-01
A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.
NASA Astrophysics Data System (ADS)
Tardelli, F. C.; Abalde, J. R.; Pimenta, A. A.; Kavutarapu, V.; Tardelli, A.
2016-12-01
Using optical techniques and satellite data a plasma blob case was observed on February 23, 2007, in São José dos Campos (SJC) (23.21°S, 45.86°O; dip. Lat. 17.6°S) in the Brazilian sector. This is the first observation of plasma blob in SJC region using data from optical techniques and satellite measurements. The plasma blob is the enhancements in plasma density by a factor of 2 or more above background plasma. Simultaneous all-sky images were used to map the spatial extent of plasma blob. DMSP satellite data were used to confirm the enhancements in plasma density in the ionosphere, which provides important parameters of the ionospheric behavior during the event. During the night of present study, the plasma blob was associated with a plasma bubble and the average zonal drift velocities are 61±6 m-s and 74±8 m-s, respectively. The average North/South and East/West extension of the blob were 591 km and 328 km, respectively. Furthermore, the average longitudinal drift velocity was 85±13 m-s. In this work plasma density is found to be enhanced by a factor of 2 compared to the background plasma. We report for the first time plasma blob in SJC at low latitude region associated with plasma bubble and present important features of their behavior.
Harmonic plasma waves excitation and structure evolution of intense ion beams in background plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhang-Hu, E-mail: zhanghu@dlut.edu.cn; Wang, You-Nian
2016-08-15
The long-term dynamic evolutions of intense ion beams in plasmas have been investigated with two-dimensional electromagnetic particle simulations, taking into account the effect of the two-stream instability between beam ions and plasma electrons. Depending on the initial beam radial density profile and velocity distribution, ring structures may be formed in the beam edge regions. At the later stage of beam-plasma interactions, the ion beams are strongly modulated by the two-stream instability and multiple density spikes are formed in the longitudinal direction. The formation of these density spikes is shown to result from the excitation of harmonic plasma waves when themore » instability gets saturated. Comparisons between the beam cases with initial flat-top and Gaussian radial density profiles are made, and a higher instability growth rate is observed for the flat-top profile case.« less
NASA Astrophysics Data System (ADS)
Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.
2016-10-01
A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.
Emittance preservation in plasma-based accelerators with ion motion
Benedetti, C.; Schroeder, C. B.; Esarey, E.; ...
2017-11-01
In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions, valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after saturation) bunch emittance. Analytical results are validated against numerical modeling. Initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittancemore » preservation with ion motion.« less
Artificial ion beam instabilities. I - Linear theory. II - Simulations
NASA Astrophysics Data System (ADS)
Scales, W. A.; Kintner, P. M.
1990-07-01
Some of the important plasma instabilities that result when an artificial ion beam is injected into the ionospheric F region are studied using linear Vlasov theory. The variation in wave spectra at the receiver as the receiver and plasma gun separate perpendicularly to the magnetic field is consistent with a beam density decrease at or near the receiver. At separation distances that are large fractions of the beam gyrodiameter, usually narrow-band waves near the background lower hybrid and H+ gyroharmonic frequencies are measured. These observations are consistent with waves expected to be generated by beam densities on the order of or less than a few percent of the background density. At smaller separation distances, broadband waves are usually observed with frequencies from zero up to and above the lower hybrid frequency. Electrostatic particle simulation studies of the plasma instabilities indicate that the broadband fluidlike lower hybrid instability is the most important for background particle heating. Perpendicular H+ heating is more efficient than perpendicular O+ or parallel electron heating for the drift velocity regime most relevant to past experiments.
NASA Astrophysics Data System (ADS)
Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.
2017-10-01
Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.
Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma
NASA Astrophysics Data System (ADS)
Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.
2016-10-01
The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.
Plasma Properties of Microwave Produced Plasma in a Toroidal Device
NASA Astrophysics Data System (ADS)
Singh, Ajay; Edwards, W. F.; Held, Eric
2011-10-01
We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.
Studies of a plasma with a hot dense core in LAPD
NASA Astrophysics Data System (ADS)
van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Cooper, Chris
2009-11-01
Recently, considerable effort in the LArge Plasma Device at UCLA (LAPD) has gone into the study of large cathodes which would enable higher discharge currents and higher densities. The new cathode is made out of Lanthanum HexaBoride (LaB6). LaB6 has a low work function and has higher emissivity than Barium oxide coated cathodes. The operating temperature of LaB6 cathodes lies above 1600 degrees Celsius. Tests of this cathode in the Enormous Toroidal Plasma Device (ETPD) showed that densities in excess of 2 10^13 cm-3 and electron temperatures of 12 eV are feasible. Small LaB6 cathodes (3mm - 2cm) have been used before in LAPD in several experiments on heat transport and on magnetized flux ropes. The cathode presented in this paper has a 8 cm diameter, and can be positioned at different radial locations. The cathode will be pulsed into the standard background plasma (ne= 2 10^12 cm-3, .25 <=Te<=6 eV, dia = 60 cm, L = 18 m) creating a plasma with a hot dense core. We present the characterization of the core plasma at different conditions. Studies of the heat transport and density spreading at the interface between the core plasma and background plasma will be done by use of a variety of probes (Langmuir, magnetic, Mach, emissive) as well as fast photography.
Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivancic, S.; Haberberger, D.; Habara, H.
Channeling experiments were performed that demonstrate the transport of high-intensity (>10¹⁸ W/cm²), multikilojoule laser light through a millimeter-sized, inhomogeneous (~300-μm density scale length) laser produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.
The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles
NASA Astrophysics Data System (ADS)
Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava
2017-10-01
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.
NASA Technical Reports Server (NTRS)
Grody, N. C.
1973-01-01
Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Yu, J. H.; Doerner, R. P.
2015-09-14
The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.
Effects of in-plane magnetic field on the transport of 2D electron vortices in non-uniform plasmas
NASA Astrophysics Data System (ADS)
Angus, Justin; Richardson, Andrew; Schumer, Joseph; Pulsed Power Team
2015-11-01
The formation of electron vortices in current-carrying plasmas is observed in 2D particle-in-cell (PIC) simulations of the plasma-opening switch. In the presence of a background density gradient in Cartesian systems, vortices drift in the direction found by crossing the magnetic field with the background density gradient as a result of the Hall effect. However, most of the 2D simulations where electron vortices are seen and studied only allow for in-plane currents and thus only an out-of-plane magnetic field. Here we present results of numerical simulations of 2D, seeded electron vortices in an inhomogeneous background using the generalized 2D electron-magneto-hydrodynamic model that additionally allows for in-plane components of the magnetic field. By seeding vortices with a varying axial component of the velocity field, so that the vortex becomes a corkscrew, it is found that a pitch angle of around 20 degrees is sufficient to completely prevent the vortex from propagating due to the Hall effect for typical plasma parameters. This work is supported by the NRL Base Program.
Gas-filled capillaries for plasma-based accelerators
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.
2017-07-01
Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.
Theory and simulations of current drive via injection of an electron beam in the ACT-1 device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuda, H.; Horton, R.; Ono, M.
1985-02-01
One- and two-dimensional particle simulations of beam-plasma interaction have been carried out in order to understand current drive experiments that use an electron beam injected into the ACT-1 device. Typically, the beam velocity along the magnetic field is V = 10/sup 9/ cm/sec while the thermal velocity of the background electrons is v/sub t/ = 10/sup 8//cm. The ratio of the beam density to the background density is about 10% so that a strong beam-plasma instability develops causing rapid diffusion of beam particles. For both one- and two- dimensional simulations, it is found that a significant amount of beam andmore » background electrons is accelerated considerably beyond the initial beam velocity when the beam density is more than a few percent of the background plasma density. In addition, electron distribution along the magnetic field has a smooth negative slope, f' (v/sub parallel/) < 0, for v/ sub parallel/ > 0 extending v/sub parallel/ = 1.5 V approx. 2 V, which is in sharp contrast to the predictions from quasilinear theory. An estimate of the mean-free path for beam electrons due to Coulomb collisions reveals that the beam electrons can propagate a much longer distance than is predicted from a quasilinear theory, due to the presence of a high energy tail. These simulation results agree well with the experimental observations from the ACT-1 device.« less
NASA Astrophysics Data System (ADS)
Tsiklauri, D.
2014-12-01
Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refaction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph=ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011) [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013) [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012) [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014) [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)
Properties of density and magnetic fluctuations occurring in density striations in the new LAPD
NASA Astrophysics Data System (ADS)
Maggs, J. E.; Morales, G. J.
2001-10-01
Previous studies of density striations (long, narrow magnetic-field-aligned density depletions) in the LAPD plasma device at UCLA revealed an eigenmode structure to fluctuations driven by the pressure gradient in the striation wall (Maggs and Morales, Phys. Plasmas, 4, 1997). The nature of these fluctuations depended on the plasma beta external to the striation, with shear Alfvén wave turbulence developing at betas less than the mass ratio and drift-Alfvén waves at betas above the mass ratio. These fluctuations were found to have a direct connection to turbulence observed at the plasma edge. The new LAPD is 18 meters in length with a background field up to twice previously attainable values. We report on the properties of fluctuations associated with density striations in the new device over a wider range of beta, and compare them to previous results. The behavior of fluctuations in density striations created in flared-field and magnetic-mirror geometries will also be presented. Research sponsored by ONR and NSF
Experimental Simulation of the Interaction of Biased Solar Arrays with the Space Plasma
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1981-01-01
The phenomenon of unexpectedly large leakage currents collected by small exposed areas of high voltage solar arrays operating in a plasma environment was investigated. Polyimide (Kapton) was the insulating material used in all tests. Both positive bias (electron collection) and negative bias (ion collection) tests were performed. A mode change in the electron collection mechanism was associated with a glow discharge process and was found to be related to the neutral background density. Results indicate that the glow discharge collection mode does not occur in a space environment where the background density is considerably lower than that of the vacuum facility used.
Characteristics of spacecraft charging in low Earth orbit
NASA Astrophysics Data System (ADS)
Anderson, Phillip C.
2012-07-01
It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.
Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes
NASA Astrophysics Data System (ADS)
Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun
2017-10-01
Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.
NASA Astrophysics Data System (ADS)
McConville, S. L.; Speirs, D. C.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Koepke, M. E.; Whyte, C. G.; Matheson, K.; Robertson, C. W.; Cairns, R. A.; Vorgul, I.; Bingham, R.; Kellett, B. J.; Ronald, K.
2012-04-01
Scaled laboratory experiments have been conducted at Strathclyde University [1,2] to further the understanding of the naturally occurring generation of Auroral Kilometric Radiation (AKR) in the Earth's polar magnetosphere. At an altitude of around 3200km there exists a region of partial plasma depletion (the auroral density cavity), through which electrons descend towards the Earth's atmosphere and are subject to magnetic compression. Due to conservation of the magnetic moment these electrons sacrifice parallel velocity for perpendicular velocity resulting in a horseshoe shaped distribution in velocity space which is unstable to the cyclotron maser instability [3,4]. The radiation is emitted at frequencies extending down to the local electron cyclotron frequency with a peak in emission at ~300kHz. The wave propagation is in the X-mode with powers ~109W corresponding to radiation efficiencies of 1% of the precipitated electron kinetic energy [5]. The background plasma frequency within the auroral density cavity is approximately 9kHz corresponding to an electron plasma density ~106m-3. Previous laboratory experiments at Strathclyde have studied cyclotron radiation emission from electron beams which have horseshoe shaped velocity distributions. Radiation measurements showed emissions in X-like modes with powers ~20kW and efficiencies ~1-2%, coinciding with both theoretical and numerical predictions [6-9] and magnetospheric studies. To enhance the experimental reproduction of the magnetospheric environment a Penning trap was designed and incorporated into the existing apparatus [10]. The trap was placed in the wave generation region where the magnetic field would be maintained at ~0.21T. The trap allowed a background plasma to be generated and its characteristics were studied using a plasma probe. The plasma had a significant impact on the radiation generated, introducing increasingly sporadic behaviour with increasing density. The power and efficiency of the radiation generated was lower than with no plasma present. Plasma diagnostics established the plasma frequency on the order of 150-300MHz and electron density ranging from ~1014-1015m-3, whilst the cyclotron frequency of the electrons within the Penning trap was 5.87GHz giving fce/fpe ~19-40, comparable to the auroral density cavity. Numerical simulations coinciding with this part of the experimental research program are currently being carried out using the VORPAL code. Details of these simulations will be presented in a separate paper [Speirs et al] at this meeting. McConville SL et al 2008, Plasma Phys. Control. Fusion, 50, 074010 Ronald et al 2011, Plasma Phys. Control. Fusion, 53, 074015 Bingham R and Cairns RA, 2002, Phys. Scr., T98, 160-162 Ergun RE et al, 1998, Geophys. Res. Lett., 25, 2061 Gurnett DA et al, 1974, J. Geophys. Res., 79, 4227-4238 Cairns RA et al, 2011, Phys. Plasmas, 18, 022902 Gillespie KM et al, 2008, Plasma Phys. Control. Fusion, 50, 124038 Speirs et al 2010, Phys. Plasmas, 17, 056501 Vorgul et al 2011, Phys. Plasmas, 18, 056501 McConville SL et al 2011, Plasma Phys. Control. Fusion, 53, 124020
Zhang, Yanzeng; Krasheninnikov, S. I.
2017-09-29
The modified Hasegawa-Mima equation retaining all nonlinearities is investigated from the point of view of the formation of blobs. The linear analysis shows that the amplitude of the drift wave packet propagating in the direction of decreasing background plasma density increases and eventually saturates due to nonlinear effects. Nonlinear modification of the time averaged plasma density profile results in the formation of large amplitude modes locked in the radial direction, but still propagating in the poloidal direction, which resembles the experimentally observed chain of blobs propagating in the poloidal direction. Such specific density profiles, causing the locking of drift waves,more » could form naturally at the edge of tokamak due to a neutral ionization source. Thus, locked modes can grow in situ due to plasma instabilities, e.g., caused by finite resistivity. Furthermore, the modulation instability (in the poloidal direction) of these locked modes can result in a blob-like burst of plasma density.« less
Simulation of turbulence in the divertor region of tokamak edge plasma
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Rognlien, T. D.; Xu, X. Q.
2005-03-01
Results are presented for turbulence simulations with the fluid edge turbulence code BOUT [X.Q. Xu, R.H. Cohen, Contr. Plas. Phys. 36 (1998) 158]. The present study is focussed on turbulence in the divertor leg region and on the role of the X-point in the structure of turbulence. Results of the present calculations indicate that the ballooning effects are important for the divertor fluctuations. The X-point shear leads to weak correlation of turbulence across the X-point regions, in particular for large toroidal wavenumber. For the saturated amplitudes of the divertor region turbulence it is found that amplitudes of density fluctuations are roughly proportional to the local density of the background plasma. The amplitudes of electron temperature and electric potential fluctuations are roughly proportional to the local electron temperature of the background plasma.
A simulation study of radial expansion of an electron beam injected into an ionospheric plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1994-01-01
Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.
Sahai, Aakash A; Tsung, Frank S; Tableman, Adam R; Mori, Warren B; Katsouleas, Thomas C
2013-10-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. Fluids 13, 472 (1970); Max and Perkins, Phys. Rev. Lett. 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. Fluids 14, 371 (1971); Silva et al., Phys. Rev. E 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca et al., Lect. Note Comput. Sci. 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber et al., Phys. Rev. Lett. 97, 045005 (2006); Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004); Silva et al., Phys. Rev. Lett. 92, 015002 (2004); Fiuza et al., Phys. Rev. Lett. 109, 215001 (2012)].
RF attenuation as a dusty plasma diagnostic
NASA Astrophysics Data System (ADS)
Doyle, Brandon; Konopka, Uwe; Thomas, Edward
2017-10-01
When a dusty plasma is formed by adding dust to a plasma environment, the electron density of the background plasma is depleted as the dust particles acquire their negative charge. The magnitude of the electron depletion depends on the dust particle charge, and thus its properties, as well as the dust number density. A direct measurement of the electron density in a dusty plasma therefore contains information about the charging state of the dust particles. This measurement is difficult to obtain without influencing the system. For example, Langmuir probes influence the system by creating voids, or they become unreliable due to their potential contamination with dust. A less invasive diagnostic tool might be realized using plasma chamber electrodes for a plasma impedance measurement as it depends on the excitation frequency: the spatially averaged electron density is derived from the electron plasma frequency, which is related to the radio frequency attenuation characteristic. We present preliminary experiments using two impedance probe designs: probes immersed in a plasma and electrodes located at the edge of the plasma. We evaluate the potential application of this method for ground-based laboratory experiments and future microgravity experiment facilities aboard the ISS. This work was supported by JPL/NASA (JPL-RSA 1571699) the US Dept. of Energy (DE-SC0016330) and NSF (PHY-1613087).
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2015-04-01
Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014); http://dx.doi.org/10.1063/1.4863494 This research is funded by the Leverhulme Trust Research Project Grant RPG-311
Rapid temporal evolution of radiation from non-thermal electrons in solar flares
NASA Technical Reports Server (NTRS)
Lu, Edward T.; Petrosian, Vahe
1987-01-01
Solutions of the time dependent Fokker-Planck equation was found for accelerated electrons undergoing Coulomb collisions in a magnetized, fully ionized plasma. An exact solution was found for arbitrary pitch angle and energy distribution in a uniform background plasma. Then, for an inhomogeneous plasma, a solution was found for particles with small pitch angles. These solutions were used to calculate the temporal evolution of bremsstrahlung x-rays from short bursts of nonthermal electron beams, and these spectra were compared with observed high time resolution spectra of short timescale solar hard x-ray bursts. It is shown that the observed softening in time of the spectra rules out a homogeneous background and therefore the possibility of electrons being confined to the corona either because of converging magnetic field or high densities. The inhomogeneous solution was also applied to a model with constant coronal density and exponentially rising chromospheric density. The spectra are shown to be consistent with that produced by a collimated beam of electrons accelerated in the corona with certain given conditions. These conditions could be violated if large pitch angle electrons are present.
Computational studies on scattering of radio frequency waves by density filaments in fusion plasmas
NASA Astrophysics Data System (ADS)
Ioannidis, Zisis C.; Ram, Abhay K.; Hizanidis, Kyriakos; Tigelis, Ioannis G.
2017-10-01
In modern magnetic fusion devices, such as tokamaks and stellarators, radio frequency (RF) waves are commonly used for plasma heating and current profile control, as well as for certain diagnostics. The frequencies of the RF waves range from ion cyclotron frequency to the electron cyclotron frequency. The RF waves are launched from structures, like waveguides and current straps, placed near the wall in a very low density, tenuous plasma region of a fusion device. The RF electromagnetic fields have to propagate through this scrape-off layer before coupling power to the core of the plasma. The scrape-off layer is characterized by turbulent plasmas fluctuations and by blobs and filaments. The variations in the edge density due to these fluctuations and filaments can affect the propagation characteristics of the RF waves—changes in density leading to regions with differing plasma permittivity. Analytical full-wave theories have shown that scattering by blobs and filaments can alter the RF power flow into the core of the plasma in a variety of ways, such as through reflection, refraction, diffraction, and shadowing [see, for example, Ram and Hizanidis, Phys. Plasmas 23, 022504 (2016), and references therein]. There are changes in the wave vectors and the distribution of power-scattering leading to coupling of the incident RF wave to other plasma waves, side-scattering, surface waves, and fragmentation of the Poynting flux in the direction towards the core. However, these theoretical models are somewhat idealized. In particular, it is assumed that there is step-function discontinuity in the density between the plasma inside the filament and the background plasma. In this paper, results from numerical simulations of RF scattering by filaments using a commercial full-wave code are described. The filaments are taken to be cylindrical with the axis of the cylinder aligned along the direction of the ambient magnetic field. The plasma inside and outside the filament is assumed to be cold. There are three primary objectives of these studies. The first objective is to validate the numerical simulations by comparing with the analytical results for the same plasma description—a step-function discontinuity in density. A detailed comparison of the Poynting flux shows that numerical simulations lead to the same results as those from the theoretical model. The second objective is to extend the simulations to take into account a smooth transition in density from the background plasma to the interior of the filament. The ensuing comparison shows that the deviations from the results of the theoretical model are quite small. The third objective is to consider the scattering process for situations well beyond a reasonable theoretical analysis. This includes scattering off multiple filaments with different densities and sizes. Simulations for these complex arrangements of filaments show that, in spite of the obvious limitations, the essential physics of RF scattering is captured by the analytical theory for a single filament.
NASA Technical Reports Server (NTRS)
Koga, J. K.; Lin, C. S.; Winglee, R. M.
1989-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.
Experiments on and observations of intense Alfvén waves in the laboratory
NASA Astrophysics Data System (ADS)
Gekelman, W.; Vanzeeland, M.; Vincena, S.
2002-11-01
There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device ( LAPD) is a machine, at UCLA, in which Alfvén wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments which involve the expansion of a dense (initially, n_lpp/n_0>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over 10^4 locations. The wave generation mechanism is due to currents from fast electrons which leave the lpp and field aligned return currents provided by the plasma to neutralize space charge. Dramatic movies of the measured wave fields and their associated currents will be presented. *Work supported by the ONR, and DOE/NSF.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Creatore, Mariadriana; Ma, Quan-Bao; El Boukili, Aishah; Gao, Lu; Verheijen, Marcel A.; Verhoeven, M. W. G. M. (Tiny); Hensen, Emiel. J. M.
2015-03-01
Plasma-assisted atomic layer deposition (PA-ALD) was adopted to deposit TiO2-xNx ultrathin layers on Si wafers, calcined Ti foils and nanotubular TiO2 arrays. A range of N content and chemical bond configurations were obtained by varying the background gas (O2 or N2) during the Ti precursor exposure, while the N2/H2-fed inductively coupled plasma exposure time was varied between 2 and 20 s. On calcined Ti foils, a positive effect from N doping on photocurrent density was observed when O2 was the background gas with a short plasma exposure time (5 and 10 s). This correlates with the presence of interstitial N states in the TiO2 with a binding energy of 400 eV (Ninterst) as measured by X-ray photoelectron spectroscopy. A longer plasma time or the use of N2 as background gas results in formation of N state with a binding energy of 396 eV (Nsubst) and very low photocurrents. These Nsubst are linked to the presence of Ti3+, which act as detrimental recombination center for photo-generated electron-hole pairs. On contrary, PA-ALD treated nanotubular TiO2 arrays show no variation of photocurrent density (with respect to the pristine nanotubes) upon different plasma exposure times and when the O2 recipe was adopted. This is attributed to constant N content in the PA-ALD TiO2-xNx, regardless of the adopted recipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.
2016-05-15
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2016-10-01
We will present results of simultaneous measurements of LPI-driven light scattering and density/temperature profiles in CH plasmas produced by the Nike krypton fluoride laser (λ = 248 nm). The primary diagnostics for the LPI measurement are time-resolved spectrometers with absolute intensity calibration in spectral ranges relevant to the optical detection of stimulated Raman scattering or two plasmon decay. The spectrometers are capable of monitoring signal intensity relative to thermal background radiation from plasma providing a useful way to analyze LPI initiation. For further understanding of LPI processes, the recently implemented grid image refractometer (Nike-GIR)a is used to measure the coronal plasma profiles. In this experiment, Nike-GIR is equipped with a 5th harmonic probe laser (λ = 213 nm) in attempt to probe into a high density region over the previous peak density with λ = 263 nm probe light ( 4 ×1021 cm-3). The LPI behaviors will be discussed with the measured data sets. Work supported by DoE/NNSA.
Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.
NASA Astrophysics Data System (ADS)
Kabantsev, A. A.; Driscoll, C. F.
2000-10-01
The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Sirse, N.; Ellingboe, A. R.
2015-07-15
This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numericalmore » experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.« less
The effect of a longitudinal density gradient on electron plasma wake field acceleration
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2016-12-01
Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (-6.4×1010 V m-1), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a -2.5×1010 V m-1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (-1.0×1010 V m-1), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.
Modeling of large amplitude plasma blobs in three-dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, Justin R.; Umansky, Maxim V.
2014-01-15
Fluctuations in fusion boundary and similar plasmas often have the form of filamentary structures, or blobs, that convectively propagate radially. This may lead to the degradation of plasma facing components as well as plasma confinement. Theoretical analysis of plasma blobs usually takes advantage of the so-called Boussinesq approximation of the potential vorticity equation, which greatly simplifies the treatment analytically and numerically. This approximation is only strictly justified when the blob density amplitude is small with respect to that of the background plasma. However, this is not the case for typical plasma blobs in the far scrape-off layer region, where themore » background density is small compared to that of the blob, and results obtained based on the Boussinesq approximation are questionable. In this report, the solution of the full vorticity equation, without the usual Boussinesq approximation, is proposed via a novel numerical approach. The method is used to solve for the evolution of 2D and 3D plasma blobs in a regime where the Boussinesq approximation is not valid. The Boussinesq solution under predicts the cross field transport in 2D. However, in 3D, for parameters typical of current tokamaks, the disparity between the radial cross field transport from the Boussinesq approximation and full solution is virtually non-existent due to the effects of the drift wave instability.« less
Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System
NASA Technical Reports Server (NTRS)
Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III
2003-01-01
An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.
First results from the Thomson scattering diagnostic on proto-MPEX.
Biewer, T M; Meitner, S; Rapp, J; Ray, H; Shaw, G
2016-11-01
A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T e ) and electron density (n e ) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T e ∼ 2 eV and n e ∼ 1 × 10 19 m -3 . The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.
First results from the Thomson scattering diagnostic on Proto-MPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biewer, Theodore M; Meitner, Steven J; Rapp, Juergen
2016-01-01
A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate themore » small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.« less
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Plasma high density lipoprotein (HDL) cholesterol (HDL-C) concentration is highly heritable but is also modifiable by environmental factors including physical activity. HDL-C response to exercise varies among individuals, and this variability may be associated with genetic polymorphism...
NASA Astrophysics Data System (ADS)
Singh, Ram Kishor; Singh, Monika; Rajouria, Satish Kumar; Sharma, R. P.
2017-07-01
This communication presents a theoretical model for efficient terahertz (THz) radiation generation by the optical rectification of shaped laser pulse in transversely magnetised ripple density plasma. The laser beam imparts a nonlinear ponderomotive force to the electron and this force exerts a nonlinear velocity component in both transverse and axial directions which have spectral components in the THz range. These velocity components couple with the pre-existing density ripple and give rise to a strong nonlinear current density which drives the THz wave in the plasma. The THz yield increases with the increasing strength of the background magnetic field and the sensitivity depends on the ripple wave number. The emitted power is directly proportional to the square of the amplitude of the density ripple. For exact phase matching condition, the normalised power of the generated THz wave can be achieved of the order of 10-4.
The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Wenbo, E-mail: Wenbo.Tang@asu.edu; Mahalov, Alex, E-mail: Alex.Mahalov@asu.edu
2014-04-15
We present a three-dimensional numerical study for the E and lower F region ionosphere coupled with the neutral atmosphere dynamics. This model is developed based on a previous ionospheric model that examines the transport patterns of plasma density given a prescribed neutral atmospheric flow. Inclusion of neutral dynamics in the model allows us to examine the charge-neutral interactions over the full evolution cycle of an inertial gravity wave when the background flow spins up from rest, saturates and eventually breaks. Using Lagrangian analyses, we show the mixing patterns of the ionospheric responses and the formation of ionospheric layers. The correspondingmore » plasma density in this flow develops complex wave structures and small-scale patches during the gravity wave breaking event.« less
The Scintillation Prediction Observations Research Task (SPORT) Mission
NASA Astrophysics Data System (ADS)
Spann, J. F.; Swenson, C.; Durão, O.; Loures, L.; Heelis, R. A.; Bishop, R. L.; Le, G.; Abdu, M. A.; Habash Krause, L.; De Nardin, C. M.; Fonseca, E.
2015-12-01
Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for Scintillation Prediction Observations Research Task. This mission that will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.
The Scintillation Prediction Observations Research Task (SPORT) Mission
NASA Astrophysics Data System (ADS)
Spann, James; Le, Guan; Swenson, Charles; Denardini, Clezio Marcos; Bishop, Rebecca L.; Abdu, Mangalathayil A.; Cupertino Durao, Otavio S.; Heelis, Roderick; Loures, Luis; Krause, Linda; Fonseca, Eloi
2016-07-01
Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for the Scintillation Prediction Observations Research Task. This mission will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.
The Scintillation Prediction Observations Research Task (SPORT) Mission
NASA Astrophysics Data System (ADS)
Spann, James; Swenson, Charles; Durão, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Nardin, Clezio; Fonseca, Eloi
2016-04-01
Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for the Scintillation Prediction Observations Research Task. This mission will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.
The Plasma Environment Associated With Equatorial Ionospheric Irregularities
NASA Astrophysics Data System (ADS)
Smith, Jonathon M.; Heelis, R. A.
2018-02-01
We examine the density structure of equatorial depletions referred to here as equatorial plasma bubbles (EPBs). Data recorded by the Ion Velocity Meter as part of the Coupled Ion Neutral Dynamics Investigation (CINDI) aboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite are used to study EPBs from 1600 to 0600 h local time at altitudes from 350 to 850 km. The data are taken during the 7 years from 2008 to 2014, more than one half of a magnetic solar cycle, that include solar minimum and a moderate solar maximum. Using a rolling ball algorithm, EPBs are identified by profiles in the plasma density, each having a depth measured as the percent change between the background and minimum density (ΔN/N). During solar moderate activity bubbles observed in the topside postsunset sector are more likely to have large depths compared to those observed in the topside postmidnight sector. Large bubble depths can be observed near 350 km in the bottomside F region in the postsunset period. Conversely at solar minimum the distribution of depths is similar in the postsunset and postmidnight sectors in all longitude sectors. Deep bubbles are rarely observed in the topside postsunset sector and never in the bottomside above 400 km in altitude. We suggest that these features result from the vertical drift of the plasma for these two solar activity levels. These drift conditions affect both the background density in which bubbles are embedded and the growth rate of perturbations in the bottomside where bubbles originate.
Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions
NASA Astrophysics Data System (ADS)
Cheung, N. H.; Ng, C. W.; Ho, W. F.; Yeung, E. S.
1998-05-01
Spectrochemical analysis of liquids and suspensions using laser-induced plasma emissions was investigated. Nd:YAG pulsed-laser (532-nm) ablation of aqueous samples produced plasmas that were hot (few eV) and extensively ionized, with electron density in the 10 18 cm -3 range. Analyte line signals were initially masked by intense plasma continuum emissions, and would only emerge briefly above the background when the plume temperature dropped below 1 eV during the course of its very rapid cooling. In contrast, 193-nm laser ablation at similar fluence generated plasmas of much lower (<1 eV) temperature but comparable electron density. The plasma continuum emissions were relatively weak and the signal-to-background ratio was a thousand times better. This `cold' plasma was ideal for sampling trace amounts of biologically important elements such as sodium and potassium. By ablating hydrodynamically focused jets in a sheath-flow, and with acoustic normalization for improved precision, the single-shot detection limits of sodium and potassium were 8 and 50 fg, respectively. Using the sheath-flow arrangement, the amounts of sodium and potassium inside single human red blood cells were simultaneously determined for the first time. The intracellular contents for a given blood donor were found to vary significantly, with only very weak correlation between the amounts of sodium and potassium in individual cells.
NASA Astrophysics Data System (ADS)
Elliott, Drew; Sutherland, Derek; Siddiqui, Umair; Scime, Earl; Everson, Chris; Morgan, Kyle; Hossack, Aaron; Nelson, Brian; Jarboe, Tom
2016-11-01
Two-photon laser-induced fluorescence measurements were performed on the helicity injected torus (HIT-SI3) device to determine the density and temperature of the background neutral deuterium population. Measurements were taken in 2 ms long pulsed plasmas after the inductive helicity injectors were turned off. Attempts to measure neutrals during the main phase of the plasma were unsuccessful, likely due to the density of neutrals being below the detection threshold of the diagnostic. An unexpectedly low density of atomic deuterium was measured in the afterglow; roughly 100 times lower than the theoretical prediction of 1017 m-3. The neutral temperatures measured were on the order of 1 eV. Temporally and spatially resolved neutral density and temperature data are presented.
Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma
NASA Technical Reports Server (NTRS)
Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.
1999-01-01
In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.
Multi-instrumental Study of Storm-induced Ionospheric Irregularities at Midlatitudes
NASA Astrophysics Data System (ADS)
Cherniak, I.; Zakharenkova, I.; Sokolovskiy, S. V.
2017-12-01
We present multi-instrumental analysis of the unusually intense plasma density irregularities occurred over European midlatitudes during geomagnetic storm of 22-23 June 2015. We combine GPS/GLONASS observations derived from the dense ground-based networks ( 1500 stations) with in situ plasma density onboard Swarm and DMSP satellites and COSMIC Radio Occultation (RO) ionospheric electron density profiles. During this geomagnetic storm, the strong ionospheric irregularities of auroral origin were registered over the Northern Europe sub-auroral and midlatitudes. Meanwhile, another kind of ionospheric irregularities of equatorial origin reached European midlatitudes from the south. The prompt penetration electric fields caused the occurrence of plasma bite-outs in the post-sunset sector over the Western Africa low latitudes and extension of the large-scale plasma bubbles toward Europe. Using GPS/GLONASS observations, the plasma bubble signatures were mapped in Europe. They were observed for more than 8 h (20-04 UT) and covered a broad area within 30o-40o N and 20o W-10o E. In this region, the steep plasma gradients, as large as 5-10 TECU/degree, and numerous embedded deep plasma depletions were developed on the background of high plasma density. For low latitude region, the bite-out signature was recognized in the form of the significantly modified shape of the COSMIC-derived ionospheric electron density profiles. These unique results were confirmed by the in situ density and upward-looking GPS data onboard the Swarm satellites at 500 km altitude, in situ density measured by DMSP and ground-based absolute TEC observations. It was found that close similarity between in situ Ne and Swarm-derived topside vertical TEC suggests that plasma density enhancements and depletions are developed in the topside ionosphere (>500 km). The intensity of plasma gradients at different altitudes was also estimated by COSMIC-based measurements of GPS signal intensity and phase fluctuations as well as by rate of TEC changes on COSMIC-GPS links. Occurrence of the plasma bubbles in Europe affected GNSS measurements over number of reference stations and led to performance degradation of SBAS EGNOS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.
2015-09-15
Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of themore » dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.« less
Simulations of Atmospheric Neutral Wave Coupling to the Ionosphere
NASA Astrophysics Data System (ADS)
Siefring, C. L.; Bernhardt, P. A.
2005-12-01
The densities in the E- and F-layer plasmas are much less than the density of background neutral atmosphere. Atmospheric neutral waves are primary sources of plasma density fluctuations and are the sources for triggering plasma instabilities. The neutral atmosphere supports acoustic waves, acoustic gravity waves, and Kelvin Helmholtz waves from wind shears. These waves help determine the structure of the ionosphere by changes in neutral density that affect ion-electron recombination and by neutral velocities that couple to the plasma via ion-neutral collisions. Neutral acoustic disturbances can arise from thunderstorms, chemical factory explosions and intentional high-explosive tests. Based on conservation of energy, acoustic waves grow in amplitude as they propagate upwards to lower atmospheric densities. Shock waves can form in an acoustic pulse that is eventually damped by viscosity. Ionospheric effects from acoustic waves include transient perturbations of E- and F-Regions and triggering of E-Region instabilities. Acoustic-gravity waves affect the ionosphere over large distances. Gravity wave sources include thunderstorms, auroral region disturbances, Space Shuttle launches and possibly solar eclipses. Low frequency acoustic-gravity waves propagate to yield traveling ionospheric disturbances (TID's), triggering of Equatorial bubbles, and possible periodic structuring of the E-Region. Gravity wave triggering of equatorial bubbles is studied numerically by solving the equations for plasma continuity and ion velocity along with Ohms law to provide an equation for the induced electric potential. Slow moving gravity waves provide density depressions on bottom of ionosphere and a gravitational Rayleigh-Taylor instability is initiated. Radar scatter detects field aligned irregularities in the resulting plasma bubble. Neutral Kelvin-Helmholtz waves are produced by strong mesospheric wind shears that are also coincident with the formation of intense E-layers. An atmospheric model for periodic structures with Kelvin-Helmholtz (KH) wavelengths is used to show the development of quasi-periodic structures in the E-layer. For the model, a background atmosphere near 100 km altitude with a scale height of 12.2 km is subjected to a wind shear profile varying by 100 m/s over a distance of 1.7 km. This neutral speed shear drives the KH instability with a growth time of about 100 seconds. The neutral KH wave is a source of plasma turbulence. The E-layer responds to the KH-Wave structure in the neutral atmosphere as an electrodynamic tracer. The plasma flow leads to small scale plasma field aligned irregularities from a gradient drift, plasma interchange instability (GDI) or a Farley-Buneman, two-stream instability (FBI). These irregularities are detected by radar scatter as quasi-periodic structures. All of these plasma phenomena would not occur without the initiation by neutral atmospheric waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wen-Rong; Tian, Bo, E-mail: tian_bupt@163.com; Jiang, Yan
2014-04-15
Plasmas are the main constituent of the Universe and the cause of a vast variety of astrophysical, space and terrestrial phenomena. The inhomogeneous nonlinear Schrödinger equation is hereby investigated, which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and constant interactional damping. By virtue of the double Wronskian identities, the equation is proved to possess the double-Wronskian soliton solutions. Analytic one- and two-soliton solutions are discussed. Amplitude and velocity of the soliton are related to the damping coefficient. Asymptotic analysis is applied for us tomore » investigate the interaction between the two solitons. Overtaking interaction, head-on interaction and bound state of the two solitons are given. From the non-zero potential Lax pair, the first- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation, and influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed. -- Highlights: •Double-Wronskian soliton solutions are obtained and proof is finished by virtue of some double Wronskian identities. •Asymptotic analysis is applied for us to investigate the interaction between the two solitons. •First- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation. •Influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed.« less
First results from the Thomson scattering diagnostic on proto-MPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biewer, T. M., E-mail: biewertm@ornl.gov; Meitner, S.; Rapp, J.
2016-11-15
A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma. A challenging aspect of the technique is tomore » discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T{sub e} ∼ 2 eV and n{sub e} ∼ 1 × 10{sup 19} m{sup −3}. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.« less
NASA Astrophysics Data System (ADS)
Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.
2013-10-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783-540410.1007/3-540-47789-6_36 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.045005 97, 045005 (2006); Esirkepov , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.175003 92, 175003 (2004); Silva , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.015002 92, 015002 (2004); Fiuza , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.215001 109, 215001 (2012)].
Experimental and Numerical Examination of a Hall Thruster Plume (Preprint)
2007-07-31
Hall thruster has been characterized through measurements from various plasma electrostatic probes. Ion current flux, plasma potential, plasma density, and electron temperatures were measured from the near-field plume to 60 cm downstream of the exit plane. These experimentally derived measurements were compared to numerical simulations run with the plasma plume code DRACO. A major goal of this study was to determine the fidelity of the DRACO numerical simulation. The effect of background pressure on the thruster plume was also examined using ion current flux measurements
Electron self-injection and trapping into an evolving plasma bubble.
Kalmykov, S; Yi, S A; Khudik, V; Shvets, G
2009-09-25
The blowout (or bubble) regime of laser wakefield acceleration is promising for generating monochromatic high-energy electron beams out of low-density plasmas. It is shown analytically and by particle-in-cell simulations that self-injection of the background plasma electrons into the quasistatic plasma bubble can be caused by slow temporal expansion of the bubble. Sufficient criteria for the electron trapping and bubble's expansion rate are derived using a semianalytic nonstationary Hamiltonian theory. It is further shown that the combination of bubble's expansion and contraction results in monoenergetic electron beams.
Alfvén Waves Generated by Expanding Plasmas in the Laboratory and in Space
NASA Astrophysics Data System (ADS)
Gekelman, W.; Vanzeeland, M.; Vincena, S.; Pribyl, P.
2002-12-01
There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvén waves propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. Then a new class of experiments which involve the expansion of a dense (initially, n/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The laser beam impacts a solid target such that the initial plasma burst is directed either along or across the magnetic field. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over {10}4 locations and will be shown in dramatic movies. These are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, which replace fast electrons escaping the initial blast. Work supported by ONR, DOE, and NSF
NASA Astrophysics Data System (ADS)
Reux, Cedric
2017-10-01
Runaway electrons are created during disruptions of tokamak plasmas. They can be accelerated in the form of a multi-MA beam at energies up to several 10's of MeV. Prevention or suppression of runaway electrons during disruptions will be essential to ensure a reliable operation of future tokamaks such as ITER. Recent experiments showed that the suppression of an already accelerated beam with massive gas injection was unsuccessful at JET, conversely to smaller tokamaks. This was attributed to a dense, cold background plasma (up to several 1020 m-3 accompanying the runaway beam. The present contribution reports on the latest experimental results obtained at JET showing that some mitigation efficiency can be restored by changing the features of the background plasma. The density, temperature, position of the plasma and the energy of runaways were characterized using a combined analysis of interferometry, soft X-rays, bolometry, magnetics and hard X-rays. It showed that lower density background plasmas were obtained using smaller amounts of gas to trigger the disruption, leading to an improved penetration of the mitigation gas. Based on the observations, a physical model of the creation of the background plasma and its subsequent evolution is proposed. The plasma characteristics during later stages of the disruption are indeed dependent on the way it was initially created. The sustainment of the plasma during the runaway beam phase is then addressed by making a power balance between ohmic heating, power transfer from runaway electrons, radiation and atomic processes. Finally, a model of the interaction of the plasma with the mitigation gas is proposed to explain why massive gas injection of runaway beams works only in specific situations. This aims at pointing out which parameters bear the most importance if this mitigation scheme is to be used on larger devices like ITER. Acknowledgement: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. C. Reux, S. Jachmich, E. Joffrin, I. Coffey, O. Ficker, S. Gerasimov, V. Kiptily, U. Kruezi, M. Lehnen, U. Losada, A. Martin, J. Mlynar, E. Nardon, M. O'Mullane, V. Plyusnin, V. Riccardo, F. Saint-Laurent, G. Szepesi, S. Silburn and JET contributors.
Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team
2017-10-01
Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.
NASA Astrophysics Data System (ADS)
Wan, Xin; Xiong, Chao; Rodriguez-Zuluaga, Juan; Kervalishvili, Guram N.; Stolle, Claudia; Wang, Hui
2018-04-01
In this study, we developed an autodetection technique for the equatorial plasma depletions (EPDs) and their occurrence and depletion amplitudes based on in situ electron density measurements gathered by Swarm A satellite. For the first time, comparisons are made among the detected EPDs and their amplitudes with the loss of Global Positioning System (GPS) signal of receivers onboard Swarm A, and the Swarm Level-2 product, Ionospheric Bubble Index (IBI). It has been found that the highest rate of EPD occurrence takes place generally between 2200 and 0000 magnetic local time (MLT), in agreement with the IBI. However, the largest amplitudes of EPD are detected earlier at about 1900-2100 MLT. This coincides with the moment of higher background electron density and the largest occurrence of GPS signal loss. From a longitudinal perspective, the higher depletion amplitude is always witnessed in spatial bins with higher background electron density. At most longitudes, the occurrence rate of postmidnight EPDs is reduced compared to premidnight ones; while more postmidnight EPDs are observed at African longitudes. CHAMP observations confirm this point regardless of high or low solar activity condition. Further by comparing with previous studies and the plasma vertical drift velocity from ROCSAT-1, we suggest that while the F region vertical plasma drift plays a key role in dominating the occurrence of EPDs during premidnight hours, the postmidnight EPDs are the combined results from the continuing of former EPDs and newborn EPDs, especially during June solstice. And these newborn EPDs during postmidnight hours seem to be less related to the plasma vertical drift.
Calculation of gyrosynchrotron radiation brightness temperature for outer bright loop of ICME
NASA Astrophysics Data System (ADS)
Sun, Weiying; Wu, Ji; Wang, C. B.; Wang, S.
:Solar polar orbit radio telescope (SPORT) is proposed to detect the high density plasma clouds of outer bright loop of ICMEs from solar orbit with large inclination. Of particular interest is following the propagation of the plasma clouds with remote sensor in radio wavelength band. Gyrosynchrotron emission is a main radio radiation mechanism of the plasma clouds and can provide information of interplanetary magnetic field. In this paper, we statistically analyze the electron density, electron temperature and magnetic field of background solar wind in time of quiet sun and ICMEs propagation. We also estimate the fluctuation range of the electron density, electron temperature and magnetic field of outer bright loop of ICMEs. Moreover, we calculate and analyze the emission brightness temperature and degree of polarization on the basis of the study of gyrosynchrotron emission, absorption and polarization characteristics as the optical depth is less than or equal to 1.
Effects of magnetic field on the interaction between terahertz wave and non-uniform plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuan; Han, YiPing; Guo, LiXin
2015-10-15
In this paper, the interaction between terahertz electromagnetic wave and a non-uniform magnetized plasma slab is investigated. Different from most of the published literatures, the plasma employed in this work is inhomogeneous in both collision frequency and electron density. Profiles are introduced to describe the non-uniformity of the plasma slab. At the same time, magnetic field is applied to the background of the plasma slab. It came out with an interesting phenomenon that there would be a valley in the absorption band as the plasma's electromagnetic characteristic is affected by the magnetic field. In addition, the valley located just nearmore » the middle of the absorption peak. The cause of the valley's appearance is inferred in this paper. And the influences of the variables, such as magnetic field strength, electron density, and collision frequency, are discussed in detail. The objective of this work is also pointed out, such as the applications in flight communication, stealth, emissivity, plasma diagnose, and other areas of plasma.« less
Large-Area Permanent-Magnet ECR Plasma Source
NASA Technical Reports Server (NTRS)
Foster, John E.
2007-01-01
A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [<10(exp -4) torr (less than about 1.3 10(exp -2) Pa)] and input power <200 W at a frequency of 2.45 GHz. Though the prototype model operates at 2.45 GHz, operation at higher frequencies can be achieved by straightforward modification to the input microwave waveguide. Higher frequency operation may be desirable in those applications that require even higher background plasma densities. In the design of this ECR plasma source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired because it is associated with erosion and contamination. The electron temperature is low and does not vary appreciably with power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furno, I.; Chabloz, V.; Fasoli, A.
2014-01-15
The pre-sheath density drop along the magnetic field in field-aligned, radially propagating plasma blobs is investigated in the TORPEX toroidal experiment [Fasoli et al., Plasma Phys. Controlled Fusion 52, 124020 (2010)]. Using Langmuir probes precisely aligned along the magnetic field, we measure the density n{sub se} at a poloidal limiter, where blobs are connected, and the upstream density n{sub 0} at a location half way to the other end of the blobs. The pre-sheath density drop n{sub se}/n{sub 0} is then computed and its dependence upon the neutral background gas pressure is studied. At low neutral gas pressures, the pre-sheathmore » density drop is ≈0.4, close to the value of 0.5 expected in the collisionless case. In qualitative agreement with a simple model, this value decreases with increasing gas pressure. No significant dependence of the density drop upon the radial distance into the limiter shadow is observed. The effect of reduced blob density near the limiter on the blob radial velocity is measured and compared with predictions from a blob speed-versus-size scaling law [Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)].« less
Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea
2016-10-01
We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-Ray Sources
NASA Astrophysics Data System (ADS)
Fein, Jeffrey R.
This thesis describes experiments to understand and mitigate energetic or "hot" electrons from laser-plasma instabilities (LPIs) in an effort to improve radiographic techniques using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show evidence of an underlying background generated by x-rays with energies over 10 keV on radiographs using backlit pinhole radiography, whose source is consistent with hard x-rays from LPI-generated hot electrons. Mitigating this background can dramatically reduce uncertainties in measured object densities from radiographs and may be achieved by eliminating the target components in which LPIs are most likely to grow. Experiments were performed on the OMEGA-EP laser to study hot electron production from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepening electron density profiles that were also measured. The profile-steepening, we infer, increased thresholds of LPIs and contributed to the reduced hot-electron production at higher Z. Possible mechanisms for generating hot electrons include the two-plasmon decay and stimulated Raman scattering instabilities driven by multiple laser beams. Radiation hydrodynamic simulations using the CRASH code predict that both of these instabilities were above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased collisional and Landau damping of electron plasma waves. Another set of experiments were performed on the OMEGA-60 laser to test whether hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-plasma instabilities. Based on the results above, we hypothesized that LPIs and hot electrons that lead to hard x-ray background would be reduced by increasing the atomic number of the irradiated components in the pinhole imagers. Using higher-Z materials we demonstrate significant reduction in x-rays between 30-70 keV and 70% increase in the signal-to-background ratio. Based on this, a proposed backlighter and detector setup predicts a signal-to-background ratio of up to 4.5:1.
White-Light and Radioastronomical Remote-Sensing of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Kooi, Jason E.; Spangler, Steven R.
2017-01-01
Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun that play an important role in space weather. Faraday rotation (FR) is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma (such as a CME) and is proportional to the path integral through the plasma of the electron density and the line-of-sight component of the magnetic field. FR observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch; however, separating the contribution of the plasma density from the line-of-sight magnetic field is challenging.We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made radio observations using the Very Large Array (VLA) at 1 - 2 GHz frequencies of a "constellation" of radio sources through the solar corona at heliocentric distances that ranged from 6 - 15 solar radii: two sources (0842+1835 and 0900+1832) were occulted by a single CME and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. (1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the LASCO/C3 instrument to determine the Thomson scattering brightness (BT), providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation.A constant density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on BT and FR and infer the plasma densities (6 - 22 x 103 cm-3) and axial magnetic field strengths (2 - 12 mG) for the three CMEs. A single flux rope model successfully reproduces the observed BT and FR profiles for 0842+1835 and 0900+1832; however 0843+1547 was occulted by two CMEs. Using the multiple viewpoints provided by LASCO/C3 and STEREO-A/COR2, we model observations of 0843+1547 using two flux ropes embedded in the background corona and demonstrate the model's ability to successfully reproduce both BT and FR profiles.
Follett, R K; Delettrez, J A; Edgell, D H; Henchen, R J; Katz, J; Myatt, J F; Froula, D H
2016-11-01
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10 21 cm -3 , which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
NASA Astrophysics Data System (ADS)
Boichenko, Aleksandr M.; Yakovlenko, Sergei I.
2006-12-01
It was shown earlier that the ionisation propagation in a gas at about the atmospheric pressure may proceed due to the multiplication of the existing electrons with a low background density rather than the transfer of electrons or photons. We consider the feasibility of using the plasma produced in the afterglow of this background-electron multiplication wave for pumping plasma lasers (in particular, Xe2* xenon excimer lasers) as well as excilamps. Simulations show that it is possible to achieve the laser effect at λapprox172 nm as well as to substantially improve the peak specific power of the spontaneous radiation of xenon lamps.
Spacecraft Charging Hazards In Low-earth Orbit
NASA Astrophysics Data System (ADS)
Anderson, P. C.
The space environment in low-Earth orbit (LEO) has until recently been considered quite benign to high levels of spacecraft charging. However, it has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to - 2000 V) when encountering intense precipitating electron events (auroral arcs) while traversing the auroral zone. The occurrence frequency of charging events, defined as when the spacecraft charged to levels exceeding 100 V negative, was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma den- sity be low, at most 104 cm-2. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the oc- currence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. Indeed, of the over 1200 events found during the most recent solar cycle, none occurred during the last solar maximum. This has implications to a number of LEO satellite programs, including the International Space Station (ISS). The plasma density in the ISS orbit, at a much lower altitude than DMSP, is well above that at 840 km and rarely below 104 cm-2. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for significant charging effects. With an inclination of 51.6 degrees, the ISS does enter the auroral zone, particularly during geomagnetic storms and substorms when the auroral boundary can penetrate to very low latitudes. This has significant implications for EVA operations in the ISS wake.
NASA Astrophysics Data System (ADS)
Yi, S. A.; D'Avignon, E. C.; Khudik, V.; Shvets, G.
2010-11-01
We study self-injection into a plasma wakefield accelerator (PWFA) in the blowout regime analytically and through particle-in-cell (PIC) simulations. We propose a new injection mechanism into a plasma wakefield accelerator, where growth of the blowout region is enabled through a slow decrease in background plasma density along the direction of propagation. Deepening of the potential well due to this growth causes a reduction of electron Hamiltonian in the co-moving frame. This reduction depends on the shape of the blowout region, its growth rate, and impact parameter of the electron. When the reduction is greater than mc^2 [1,2], the electron becomes trapped inside the bubble. We demonstrate this effect using analytic expressions for the bubble potentials [3], and estimate plasma density gradients, and beam charge and size required for injection. We also apply the injection criterion to electron trapping through gas ionization. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945. [1] S. Kalmykov, S.A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009). [2] S.A. Yi, V. Khudik, S. Kalmykov, and G. Shvets, Plasma Phys. Contr. Fus., in press. [3] W. Lu, C. Huang, M. Zhou, M. Tzoufras et al., Phys. Plasmas 13, 056709 (2006).
NASA Astrophysics Data System (ADS)
Rawat, Priyanka; Rawat, Vinod; Gaur, Bineet; Purohit, Gunjan
2017-07-01
This paper explores the self-focusing of hollow Gaussian laser beam (HGLB) in collisionless magnetized plasma and its effect on the generation of THz radiation in the presence of relativistic-ponderomotive nonlinearity. The relativistic change of electron mass and electron density perturbation due to the ponderomotive force leads to self-focusing of the laser beam in plasma. Nonlinear coupling between the intense HGLB and electron plasma wave leads to generation of THz radiation in plasma. Resonant excitation of THz radiation at different frequencies of laser and electron plasma wave satisfies proper phase matching conditions. Appropriate expressions for the beam width parameter of the laser beam and the electric vector of the THz wave have been evaluated under the paraxial-ray and Wentzel-Kramers Brillouin approximations. It is found that the yield of THz amplitude depends on the focusing behaviour of laser beam, magnetic field, and background electron density. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on self-focusing of the laser beam and further its effect on the efficiency of the generated THz radiation.
Surface Brightness Test and Plasma Redshift
NASA Astrophysics Data System (ADS)
Brynjolfsson, Ari
2006-03-01
The plasma redshift of photons in a hot sparse plasma follows from basic axioms of physics. It has no adjustable parameters (arXiv:astro-ph/0406437). Both the distance-redshift relation and the magnitude-redshift relation for supernovae and galaxies are well-defined functions of the average electron densities in intergalactic space. We have previously shown that the predictions of the magnitude-redshift relation in plasma- redshift cosmology match well the observed relations for the type Ia supernovae (SNe). No adjustable parameters such as the time variable ``dark energy'' and ``dark matter'' are needed. We have also shown that plasma redshift cosmology predicts well the intensity and black body spectrum of the cosmic microwave background (CMB). Plasma redshift explains also the spectrum below and above the 2.73 K black body CMB, and the X-ray background. In the following, we will show that the good observations and analyses of the relation between surface brightness and redshift for galaxies, as determined by Allan Sandage and Lori M. Lubin in 2001, are well predicted by the plasma redshift. All these relations are inconsistent with cosmic time dilation and the contemporary big-bang cosmology.
THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qing; Xu, Jin; Zhang, Wenchao
The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of themore » beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.« less
Microwave produced plasma in a Toroidal Device
NASA Astrophysics Data System (ADS)
Singh, A. K.; Edwards, W. F.; Held, E. D.
2010-11-01
A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.
NASA Astrophysics Data System (ADS)
Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.
2013-08-01
The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.
New Model for Ionospheric Irregularities at Mars
NASA Astrophysics Data System (ADS)
Keskinen, M. J.
2018-03-01
A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.
NASA Astrophysics Data System (ADS)
Ohtani, S.; Nose, M.; Miyashita, Y.; Lui, A.
2014-12-01
We investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with Vx dependence steeper for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows the ion energy density increases initially, then it decreases to below pre-flow levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background BZ, X distance, and VX; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport along with the earthward increase of the background O+-to-H+ ratio. Results (2) and (4) indicate that ion energization associated with local dipolarization is not mass-dependent possibly because in the energy range of our interest the ions are not magnetized irrespective of species. In the tailward outflow region of reconnection, where the plasma sheet becomes thinner, the H+ ions escape along the field line more easily than the O+ ions, which possibly explains result (3). Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.
Return currents in solar flares - Collisionless effects
NASA Technical Reports Server (NTRS)
Rowland, H. L.; Vlahos, L.
1985-01-01
If the primary, precipitating electrons in a solar flare are unstable to beam plasma interactions, it is shown that strong Langmuir turbulence can seriously modify the way in which a return current is carried by the background plasma. In particular, the return (or reverse) current will not be carried by the bulk of the electrons, but by a small number of high velocity electrons. For beam/plasma densities greater than 0.01, this can reduce the effects of collisions on the return current. For higher density beams where the return current could be unstable to current driven instabilities, the effects of strong turbulence anomalous resistivity is shown to prevent the appearance of such instabilities. Again in this regime, how the return current is carried is determined by the beam generated strong turbulence.
The structure of high-temperature solar flare plasma in non-thermal flare models
NASA Technical Reports Server (NTRS)
Emslie, A. G.
1985-01-01
Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.
NASA Astrophysics Data System (ADS)
Yi, Sunghwan; Khudik, Vladimir; Shvets, Gennady
2012-10-01
We study self-injection into a plasma wakefield accelerator in the blowout (or bubble) regime, where the bubble evolves due to background density inhomogeneities. To explore trapping, we generalize an analytic model for the wakefields inside the bubble [1] to derive expressions for the fields outside. With this extended model, we show that a return current in the bubble sheath layer plays an important role in determining the trapped electron trajectories. We explore an injection mechanism where bubble growth due to a background density downramp causes reduction of the electron Hamiltonian in the co-moving frame, trapping the particle in the dynamically deepening potential well [2]. Model calculations agree quantitatively with PIC simulations on the bubble expansion rate required for trapping, as well as the range of impact parameters for which electrons are trapped. This is an improvement over our previous work [3] using a simplified spherical bubble model, which ignored the fields outside of the bubble and hence overestimated the expansion rate required for trapping. [4pt] [1] W. Lu et al., Phys. Plasmas 13, 056709 (2006).[0pt] [2] S. Kalmykov et al., Phys. Rev. Lett 103, 135004 (2009).[0pt] [3] S.A. Yi et al., Plasma Phys. Contr. Fus. 53, 014012 (2011).
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
Fein, J. R.; Holloway, J. P.; Trantham, M. R.; ...
2017-03-20
Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fein, J. R.; Holloway, J. P.; Trantham, M. R.
Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less
NASA Technical Reports Server (NTRS)
Winglee, Robert M.
1991-01-01
The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
NASA Technical Reports Server (NTRS)
1991-01-01
The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
NASA Astrophysics Data System (ADS)
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
2018-01-01
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.
Allowing for Slow Evolution of Background Plasma in the 3D FDTD Plasma, Sheath, and Antenna Model
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Thomas; King, Jake
2015-11-01
We are working to include a slow-time evolution capability for what has previously been the static background plasma parameters, in the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas. A key aspect of this is SOL-density time-evolution driven by ponderomotive rarefaction from the strong fields in the vicinity of the antenna. We demonstrate and benchmark a Scalar Ponderomotive Potential method, based on local field amplitudes, which is included in the 3D simulation. And present a more advanced Tensor Ponderomotive Potential approach, which we hope to employ in the future, which should improve the physical fidelity in the highly anisotropic environment of the SOL. Finally, we demonstrate and benchmark slow time (non-linear) evolution of the RF sheath, and include realistic collisional effects from the neutral gas. Support from US DOE Grants DE-FC02-08ER54953, DE-FG02-09ER55006.
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.
NASA Astrophysics Data System (ADS)
Lin, C. S.; Sutton, E. K.; Huang, C. Y.; Cooke, D. L.
2018-02-01
Polar cap neutral density anomaly (PCNDA) with large mass density enhancements over the background has been frequently observed in the polar cap during magnetic storms. By tracing field lines to the magnetosphere from the polar ionosphere, we divide the polar cap into two regions, an open field line (OFL) region with field lines connecting to the magnetopause boundary and a distant tail field line (TFL) region threaded with magnetotail lobe field lines. A statistical study of neutral density observed by the Challenging Minisatellite Payload satellite during major magnetic storms with Dst < -100 from July 2001 to 2006 indicates that over 85% of density anomalies were detected in the TFL region, at about 18° to 25° equatorward the center of the OFL region. PCNDAs were frequently accompanied by plasma clouds with peak density greater than 105 #/cm3. Modeling of plasma cloud drift paths suggests that plasma clouds originating in the dayside ionosphere could convect through the OFL region following the zero-potential line and reach the PCNDA locations. Plasma clouds could become stagnate in the TFL region, allowing a long duration of collisions with the neutral gas and possibly contributing to heating of PCNDAs. The PCNDA observations are interpreted as evidence that traveling atmospheric disturbance could be generated in the nightside polar cap. From the PCNDA size and speed of sound at 400 km, we derive an initial energy deposition duration for producing traveling atmospheric disturbance in the range from 0.5 to 2.5 hr.
Experiments on the Expansion of a Dense Plasma into a Background Magnetoplasma
NASA Astrophysics Data System (ADS)
Gekelman, Walter; Vanzeeland, Mike; Vincena, Steve; Pribyl, Pat
2003-10-01
There are many situations, which occur in space (coronal mass ejections, or are man-made (upper atmospheric detonations) as well as the initial stages of a supernovae, in which a dense plasma expands into a background magnetized plasma, that can support Alfvèn waves. The upgraded LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvèn wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments,which involve the expansion of a dense (initially, n_laser-plasma/n_0≫1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvèn waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The interaction results in the production of intense shear Alfvèn waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. In the initial phase the background magnetic field is expelled from a plasma bubble. Currents in the main body of the plasma are generated to neutralize the positively charged bubble. The current system which results, becomes that of a spectrum of shear Alfvèn waves. Spatial patterns of the wave magnetic fields waves are measured at over 10^4 locations. As the dense plasma expands across the magnetic field it seeds the column with shear waves. Most of the Alfvèn wave energy is in shear waves, which become field line resonances after a machine transit time. The interplay between waves, currents, inductive electric fields and space charge is analyzed in great detail. Dramatic movies of the measured wave fields and their associated currents will be presented. Work supported by ONR, and DOE /NSF.
An Optical Trap for Relativistic Plasma
NASA Astrophysics Data System (ADS)
Zhang, Ping
2002-11-01
Optical traps have achieved remarkable success recently in confining ultra-cold matter.Traps capable of confining ultra-hot matter, or plasma, have also been built for applications such as basic plasma research and thermonuclear fusion. For instance, low-density plasmas with temperature less than 1 keV have been confined with static magnetic fields in Malmberg-Penning traps. Low-density 10-50 keV plasmas are confined in magnetic mirrors and tokamaks. High density plasmas have been trapped in optical traps with kinetic energies up to 10 keV [J. L. Chaloupka and D. D. Meyerhofer, Phys. Rev. Lett. 83, 4538 (1999)]. We present the results of experiment, theory and numerical simulation on an optical trap capable of confining relativistic plasma. A stationary interference grating with submicron spacing is created when two high-power (terawatt) laser pulses of equal wavelength (1-micron) are focused from orthogonal directions to the same point in space and time in high density underdense plasma. Light pressure gradients bunch electrons into sheets located at the minima of the interference pattern. The density of the bunched electrons is found to be up to ten times the background density, which is orders-of-magnitude above that previously reported for other optical traps or plasma waves. The amplitudes and frequencies of multiple satellites in the scattered spectrum also indicate the presence of a highly nonlinear ion wave and an electron temperature about 100 keV. Energy transfer from the stronger beam to the weaker beam is also observed. Potential applications include a test-bed for detailed studies of relativistic nonlinear scattering, a positron source and an electrostatic wiggler. This research is also relevant to fast igniter fusion or ion acceleration experiments, in which laser pulses with intensities comparable to those used in the experiment may also potentially beat [Y. Sentoku, et al., Appl. Phys. B 74, 207215 (2002)]. The details of a specific application, the injection of electrons into laser-driven plasma waves, will also be presented. With crossed beams, the energy of a laser-accelerated electron beam is increased and its emittance is decreased compared with a single beam, potentially paving the way towards an all-optical monoenergetic electron injector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.
2016-11-15
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra tomore » show the improvements in plasma characterization.« less
The Gaussian Plasma Lens in Astrophysics: Refraction
NASA Astrophysics Data System (ADS)
Clegg, Andrew W.; Fey, Alan L.; Lazio, T. Joseph W.
1998-03-01
We present the geometrical optics for refraction of a distant background radio source by an interstellar plasma lens, with specific application to a lens with a Gaussian profile of free-electron column density. The refractive properties of the lens are specified completely by a dimensionless parameter α, which is a function of the wavelength of observation, the free-electron column density through the lens, the lens-observer distance, and the diameter of the lens transverse to the line of sight. A lens passing between the observer and a background source, due to the relative motions of the observer, lens, and source, produces modulations in the light curve of the background source. Because plasma lenses are diverging, the light curve displays a minimum in the background source's flux density, formed when the lens is on-axis, surrounded by enhancements above the nominal (unlensed) flux density. The exact form of the light curve depends only upon the parameter α and the relative angular sizes of the source and lens as seen by the observer. Other effects due to lensing include the following: (1) the formation of caustic surfaces, upon which the apparent brightness of the background source becomes very large; (2) the possible creation of multiple images of the background source; and (3) angular position wander of the background source. If caustics are formed, the separation of the outer caustics can be used to constrain α, while the separation of the inner caustics can constrain the size of the lens. We apply our analysis to two sources, which have undergone extreme scattering events: (1) 0954+658, a source for which we can identify multiple caustics in its light curve, and (2) 1741-038, for which polarization observations were obtained during and after the scattering event. We find general agreement between modeled and observed light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies between the modeled and observed light curves may result from some combination of substructure within the lens, an anisotropic lens shape, a lens which only grazes the source rather than passing completely over it, or unresolved substructure within the extragalactic sources. Our analysis also allows us to place constraints on the physical characteristics of the lens. The inferred properties of the lens responsible for the scattering event toward 0954+658 (1741-038) are that it was 0.38 AU (0.065 AU) in diameter with a peak column density of 0.24 pc cm-3 (10-4 pc cm-3), an electron density within the lens of 105 cm-3 (300 cm-3), and a mass of 6.5 × 10-14 M⊙ (10-18 M⊙). The angular position wander caused by the lens was 250 mas (0.4 mas) at 2.25 GHz. In the case of 1741-038, we can place an upper limit of only 100 mG on the magnetic field within the lens.
Investigation of the transition of multicycle AC operation in ISTTOK under edge electrode biasing
NASA Astrophysics Data System (ADS)
Malaquias, A.; Henriques, R. B.; Silva, C.; Figueiredo, H.; Nedzelskiy, I. S.; Fernandes, H.; Sharma, R.; Plyusnin, V. V.
2017-11-01
In this paper we present recent results obtained on plasma edge electrode biasing during AC discharges. The goal is to obtain experimental evidence on a number of plasma parameters that can play a role during the AC transition on the repeatability and reproducibility of AC operation. The control of the plasma density in the quiescent phase is made just before the AC transition by means of positive edge biasing leading to a transitory improved of density (30%-40%). Gas puff experiments show that the increase of background gas pressure during discharge led to a better success of the AC transition. The experimental results indicate that the increase of density during the AC transition induced by edge biasing is followed by an electron temperature drop. The drop in electron temperature leads in most cases the formation of runaway electrons. It has been observed that the runaway population during discharge flattop depends on the interplay between gas content and plasma density and temperature. The results also confirm that the correct balance of external magnetic fields is crucial during the AC transition phase where drift electron currents are formed. The results from the heavy ion beam diagnostic show that the formation of plasma current during consecutive AC transitions is asymmetric. Numerical simulations indicate that for some particular conditions this result could be reproduced from assuming the presence of two counter-currents during AC transition.
Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu
2016-06-21
The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.
Plasma Lipids and Betaine Are Related in an Acute Coronary Syndrome Cohort
Lever, Michael; George, Peter M.; Atkinson, Wendy; Molyneux, Sarah L.; Elmslie, Jane L.; Slow, Sandy; Richards, A. Mark; Chambers, Stephen T.
2011-01-01
Background Low plasma betaine has been associated with unfavorable plasma lipid profiles and cardiovascular risk. In some studies raised plasma betaine after supplementation is associated with elevations in plasma lipids. We aimed to measure the relationships between plasma and urine betaine and plasma lipids, and the effects of lipid-lowering drugs on these. Methodology Fasting plasma samples were collected from 531 subjects (and urine samples from 415) 4 months after hospitalization for an acute coronary syndrome episode. In this cross-sectional study, plasma betaine and dimethylglycine concentrations and urine excretions were compared with plasma lipid concentrations. Subgroup comparisons were made for gender, with and without diabetes mellitus, and for drug treatment. Principal Findings Plasma betaine negatively correlated with triglyceride (Spearman's rs = −0.22, p<0.0001) and non-high-density lipoprotein cholesterol (rs = −0.27, p<0.0001). Plasma betaine was a predictor of BMI (p<0.05) and plasma non-high-density lipoprotein cholesterol and triglyceride (p<0.001) independently of gender, age and the presence of diabetes. Using data grouped by plasma betaine decile, increasing plasma betaine was linearly related to decreases in BMI (p = 0.008) and plasma non-HDL cholesterol (p = 0.002). In a non-linear relationship betaine was negatively associated with elevated plasma triglycerides (p = 0.004) only for plasma betaine >45 µmol/L. Subjects taking statins had higher plasma betaine concentrations (p<0.001). Subjects treated with a fibrate had lower plasma betaine (p = 0.003) possibly caused by elevated urine betaine loss (p<0.001). The ratio of coenzyme Q to non-high-density lipoprotein cholesterol was higher in subjects with higher plasma betaine, and in subjects taking a statin. Conclusion Low plasma betaine concentrations correlated with an unfavourable lipid profile. Betaine deficiency may be common in the study population. Controlled clinical trials of betaine supplementation should be conducted in appropriate populations to determine whether correction affects cardiovascular risk. PMID:21747945
NASA Astrophysics Data System (ADS)
Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.
2017-06-01
Plasmas used for the manufacturing of semiconductor devices are similar in pressure and temperature to those used in the laboratory for the study of astrophysical species in the submillimeter (SMM) spectral region. The methods and technology developed in the SMM for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied and their spectra have been cataloged or are in the literature. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500-750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption was used to calculate absolute densities and temperatures of polar species. Measurements for CHF_3, CF_2, FCN, HCN, and CN made in a CF_4/CHF_3/N_2 plasma will be presented. Temperature equilibrium among species will be shown and the common temperature is leveraged to obtain accurate density measurements for simultaneously observed species. The densities and temperatures of plasma species are studied as a function of plasma parameters, including flow rate, pressure, and discharge power.
Plasma Irregularity Production in the Polar Cap F-Region Ionosphere
NASA Astrophysics Data System (ADS)
Lamarche, Leslie
Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on the asymmetry of the irregularity growth rate across the gradient reversal. Directional dependencies on the plasma density gradient, plasma drift, and wavevector are analyzed in the context of the recently developed general fluid theory of the gradient-drift instability. In the ionospheric F region, the strongest asymmetry is found when an elongated structure is oriented along the radar's boresight and moving perpendicular to its direction of elongation. These results have important implications for finding optimal configurations for oblique-scanning ionospheric radars such as SuperDARN to observe gradient reversals. To test the predictions of the developed model and the general theory of the gradient-drift instability, an experimental investigation is presented focusing on decameter-scale irregularities near a polar patch and the previously uninvestigated directional dependence of irregularity characteristics. Backscatter power and occurrence of irregularities are analyzed using measurements from the SuperDARN radar at Rankin Inlet, Canada, while background density gradients and convection electric fields are found from the north face of the Resolute Bay Incoherent Scatter Radar. It is shown that irregularity occurrence tends to follow the expected trends better than irregularity power, suggesting that while the gradient-drift instability may be a dominant process in generating small-scale irregularities, other mechanisms such as a shear-driven instability or nonlinear process may exert greater control over their intensity. It is concluded from this body of work that the production of small-scale plasma irregularities in the polar F-region ionosphere is controlled both by global factors such as solar illumination as well as local plasma density gradients and electric fields. In general, linear gradient-drift instability theory describes small-scale irregularity production well, particularly for low-amplitude perturbations. The production of irregularities is complex, and while ground-based radars are invaluable tools to study the ionosphere, care must be taken to interpret results correctly.
Conceptual Design of Electron-Beam Generated Plasma Tools
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott
2015-09-01
Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.
Density Enhancements and Voids Following Patchy Reconnection
NASA Astrophysics Data System (ADS)
Guidoni, S. E.; Longcope, D. W.
2011-04-01
We show, through a simple patchy reconnection model, that retracting reconnected flux tubes may present elongated regions relatively devoid of plasma, as well as long lasting, dense central hot regions. Reconnection is assumed to happen in a small patch across a Syrovatskiiˇ (non-uniform) current sheet (CS) with skewed magnetic fields. The background magnetic pressure has its maximum at the center of the CS plane and decreases toward its edges. The reconnection patch creates two V-shaped reconnected tubes that shorten as they retract in opposite directions, due to magnetic tension. One of them moves upward toward the top edge of the CS, and the other one moves downward toward the top of the underlying arcade. Rotational discontinuities (RDs) propagate along the legs of the tubes and generate parallel supersonic flows that collide at the center of the tube. There, gas-dynamic shocks that compress and heat the plasma are launched outwardly. The descending tube moves through the bottom part of the CS where it expands laterally in response to the decreasing background magnetic pressure. This effect may decrease plasma density by 30%-50% of background levels. This tube will arrive at the top of the arcade that will slow it to a stop. Here, the perpendicular dynamics is halted, but the parallel dynamics continues along its legs; the RDs are shut down, and the gas is rarified to even lower densities. The hot post-shock regions continue evolving, determining a long lasting hot region on top of the arcade. We provide an observational method based on total emission measure and mean temperature that indicates where in the CS the tube has been reconnected.
DENSITY PERTURBATION BY ALFVÉN WAVES IN MAGNETO-PLASMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.; Moon, Y.-J.; Sharma, R. P.
In this article, we attempt to investigate the density perturbations along magnetic field by ponderomotive effects due to inertial Alfvén waves (AWs) in auroral ionosphere. For this study, we take high-frequency inertial AWs (pump) and their nonlinear interactions with low-frequency slow modes of AWs in that region. The dynamical equations representing these wave modes are known as the Zakharov like equation, and are solved numerically. From the results presented here, we notice the density perturbations in the direction of background magnetic fields. We also find that the deepest density cavity is associated with the strongest magnetic fields. The main reasonmore » for these nonlinear structures could be the ponderomotive effects due to the pump waves. The amplitude of these density structures varies with time until the modulation instability saturates. From our results, we estimate the amplitude of most intense cavity as ∼15% of the unperturbed plasma number density n {sub 0}, which is consistent with the observations. These density structures could be the locations for particle energizations in this region.« less
Imaginary potential of moving quarkonia in a D-instanton background
NASA Astrophysics Data System (ADS)
Zhang, Zi-qiang; Hou, De-fu; Chen, Gang
2017-11-01
The imaginary part of the inter-quark potential of moving heavy quarkonia is investigated in the context of dual super-gravity in an AdS background, deformed by a dilaton which induces the gauge field condensate in the dual gauge theory. A quark-anti-quark pair is analyzed, moving transverse and parallel to the plasma wind, in turn. It is shown that in both cases increased D-instanton density tends to increase the inter-distance and decrease the imaginary potential, opposite to the effect of the pair’s velocity. Moreover, it is found that the D-instanton density has stronger effects in the parallel case than the transverse.
NASA Astrophysics Data System (ADS)
Kourtzanidis, K.; Raja, L. L.
2017-04-01
We report on a computational modeling study of small scale plasma discharge formation with rectangular dielectric resonators (DR). An array of rectangular dielectric slabs, separated by a gap of millimeter dimensions is used to provide resonant response when illuminated by an incident wave of 1.26 GHz. A coupled electromagnetic (EM) wave-plasma model is used to describe the breakdown, early response and steady state of the argon discharge. We characterize the plasma generation with respect to the input power, background gas pressure and gap size. It is found that the plasma discharge is generated mainly inside the gaps between the DR at positions that correspond to the antinodes of the resonant enhanced electric field pattern. The enhancement of the electric field inside the gaps is due to a combination of leaking and displacement current radiation from the DR. The plasma is sustained in over-critical densities due to the large skin depth with respect to the gap and plasma size. Electron densities are calculated in the order of {10}18{--}{10}19 {{{m}}}-3 for a gas pressure of 10 Torr, while they exceed 1020 {{{m}}}-3 in atmospheric conditions. Increase of input power leads to more intense ionization and thus faster plasma formation and results to a more symmetric plasma pattern. For low background gas pressure the discharge is diffusive and extends away from the gap region while in high pressure it is constricted inside the gap. An optimal gap size can be found to provide maximum EM energy transfer to the plasma. This fact demonstrates that the gap size dictates to a certain extent the resonant frequency and the Q-factor of the dielectric array and the breakdown fields can not be determined in a straight-forward way but they are functions of the resonators geometry and incident field frequency.
Computationally efficient description of relativistic electron beam transport in dense plasma
NASA Astrophysics Data System (ADS)
Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady
2006-10-01
A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.
Chaplin, Vernon H; Bellan, Paul M
2015-07-01
An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.
Kohno, H.; Myra, J. R.
2017-07-24
A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, H.; Myra, J. R.
A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less
High resolution Thomson scattering system for steady-state linear plasma sources
NASA Astrophysics Data System (ADS)
Lee, K. Y.; Lee, K. I.; Kim, J. H.; Lho, T.
2018-01-01
The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (Te) and its density (ne) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB6) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 1019 m-3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters Te and ne with the incoherent scattering spectrum.
High resolution Thomson scattering system for steady-state linear plasma sources.
Lee, K Y; Lee, K I; Kim, J H; Lho, T
2018-01-01
The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (T e ) and its density (n e ) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB 6 ) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 10 19 m -3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters T e and n e with the incoherent scattering spectrum.
NASA Astrophysics Data System (ADS)
Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.
2018-07-01
Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Wei; Li Hui; Li Shengtai
Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic ''bubble'' plasma into a lower density, weakly magnetized background plasma, are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Am. Phys. Soc. 52, 53 (2007)], which is studying magnetic bubble expansion as a model for extragalactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidalmore » to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection facilitated by numerical resistivity and to inhomogeneous angular momentum transport mainly due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.« less
NASA Astrophysics Data System (ADS)
Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.
2016-12-01
We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.
Harvey, Z; Thakur, S Chakraborty; Hansen, A; Hardin, R; Przybysz, W S; Scime, E E
2008-10-01
We present ion velocity distribution function (IVDF) measurements obtained with a five grid retarding field energy analyzer (RFEA) and IVDF measurements obtained with laser induced fluorescence (LIF) for an expanding helicon plasma. The ion population consists of a background population and an energetic ion beam. When the RFEA measurements are corrected for acceleration due to the electric potential difference across the plasma sheath, we find that the RFEA measurements indicate a smaller background to beam density ratio and a much larger parallel ion temperature than the LIF. The energy of the ion beam is the same in both measurements. These results suggest that ion heating occurs during the transit of the background ions through the sheath and that LIF cannot detect the fraction of the ion beam whose metastable population has been eliminated by collisions.
Excitation of Plasma Waves in Aurora by Electron Beams
NASA Technical Reports Server (NTRS)
daSilva, C. E.; Vinas, A. F.; deAssis, A. S.; deAzevedo, C. A.
1996-01-01
In this paper, we study numerically the excitation of plasma waves by electron beams, in the auroral region above 2000 km of altitude. We have solved the fully kinetic dispersion relation, using numerical method and found the real frequency and the growth rate of the plasma wave modes. We have examined the instability properties of low-frequency waves such as the Electromagnetic Ion Cyclotron (EMIC) wave as well as Lower-Hybrid (LH) wave in the range of high-frequency. In all cases, the source of free energy are electron beams propagating parallel to the geomagnetic field. We present some features of the growth rate modes, when the cold plasma parameters are changed, such as background electrons and ions species (H(+) and O(+)) temperature, density or the electron beam density and/or drift velocity. These results can be used in a test-particle simulation code, to investigate the ion acceleration and their implication in the auroral acceleration processes, by wave-particle interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. Thismore » result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.« less
Ross, J S; Datte, P; Divol, L; Galbraith, J; Froula, D H; Glenzer, S H; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manuel, A M; Molander, W; Montgomery, D S; Moody, J D; Swadling, G; Weaver, J
2016-11-01
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10 20 cm -3 while a 3ω probe will be used for plasma densities of ∼1 × 10 19 cm -3 . The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).
Spatial distribution of the wave field of the surface modes sustaining filamentary discharges
NASA Astrophysics Data System (ADS)
Lishev, St.; Shivarova, A.; Tarnev, Kh.
2008-01-01
The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density of the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all—six—field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament—both radially inhomogeneous—are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.
NASA Astrophysics Data System (ADS)
Réfy, D. I.; Brix, M.; Gomes, R.; Tál, B.; Zoletnik, S.; Dunai, D.; Kocsis, G.; Kálvin, S.; Szabolics, T.; JET Contributors
2018-04-01
Diagnostic alkali atom (e.g., lithium) beams are routinely used to diagnose magnetically confined plasmas, namely, to measure the plasma electron density profile in the edge and the scrape off layer region. A light splitting optics system was installed into the observation system of the lithium beam emission spectroscopy diagnostic at the Joint European Torus (JET) tokamak, which allows simultaneous measurement of the beam light emission with a spectrometer and a fast avalanche photodiode (APD) camera. The spectrometer measurement allows density profile reconstruction with ˜10 ms time resolution, absolute position calculation from the Doppler shift, spectral background subtraction as well as relative intensity calibration of the channels for each discharge. The APD system is capable of measuring light intensities on the microsecond time scale. However ˜100 μs integration is needed to have an acceptable signal to noise ratio due to moderate light levels. Fast modulation of the beam up to 30 kHz is implemented which allows background subtraction on the 100 μs time scale. The measurement covers the 0.9 < ρpol < 1.1 range with 6-10 mm optical resolution at the measurement location which translates to 3-5 mm radial resolution at the midplane due to flux expansion. An automated routine has been developed which performs the background subtraction, the relative calibration, and the comprehensive error calculation, runs a Bayesian density reconstruction code, and loads results to the JET database. The paper demonstrates the capability of the APD system by analyzing fast phenomena like pellet injection and edge localized modes.
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
2018-01-01
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less
Generation of forerunner electron beam during interaction of ion beam pulse with plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.
The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less
2009-09-01
elevated background pressure, compared nude Faraday probe designs, and evaluated design modifications to minimize uncertainty due to charge exchange...evaluated Faraday probe design and facility background pressure on collected ion current. A comparison of two nude Faraday probe designs concluded...140.5 Plasma potential in the region surrounding a nude Faraday probe has been measured to study the possibility of probe bias voltage acting as a
Enhanced confinement in electron cyclotron resonance ion source plasma.
Schachter, L; Stiebing, K E; Dobrescu, S
2010-02-01
Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.
Effect of an Energy Reservoir on the Atmospheric Propagation of Laser-Plasma Filaments
NASA Astrophysics Data System (ADS)
Eisenmann, Shmuel; Peñano, Joseph; Sprangle, Phillip; Zigler, Arie
2008-04-01
The ability to select and stabilize a single filament during propagation of an ultrashort, high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present the first detailed measurements and numerical 3-D simulations of the longitudinal plasma density variation in a laser-plasma filament after it passes through an iris that blocks the surrounding energy reservoir. Since no compensation is available from the surrounding background energy, filament propagation is terminated after a few centimeters. For this experiment, simulations indicate that filament propagation is terminated by plasma defocusing and ionization loss, which reduces the pulse power below the effective self-focusing power. With no blockage, a plasma filament length of over a few meters was observed.
Near-infrared spectroscopy for burning plasma diagnostic applications.
Soukhanovskii, V A
2008-10-01
Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.
Modeling of non-stationary local response on impurity penetration in plasma
NASA Astrophysics Data System (ADS)
Tokar, M. Z.; Koltunov, M.
2012-04-01
In fusion devices, strongly localized intensive sources of impurities may arise unexpectedly, e.g., if the wall is excessively demolished by hot plasma particles, or can be created deliberately through impurity seeding. The spreading of impurities from such sources both along and perpendicular to the magnetic field is affected by coulomb collisions with background particles, ionization, acceleration by electric field, etc. Simultaneously, the plasma itself can be significantly disturbed by these interactions. To describe self-consistently the impurity spreading process and the plasma response, three-dimensional fluid equations for the particle, parallel momentum, and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solutions in principal details: the maximum densities of impurity ions of different charges, the dimensions both along and across the magnetic field of the shells occupied by these particles, the characteristic temperatures of all plasma components, and the densities of the main ions and electrons in different shells. The results of modeling for penetration of lithium singly charged particles in tokamak edge plasma are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures, implying an outstanding role of coulomb collisions between main and impurity ions, is proposed.
Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadwick, Bradley A.; Kalmykov, S. Y.
Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of themore » pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense plasmas. These results emphasize that investment into new pulse amplification techniques allowing for ultrahigh frequency bandwidth is as important for the design of future LPA as are the current efforts directed to increasing the pulse energy.« less
NASA Astrophysics Data System (ADS)
Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno
2016-09-01
This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.
Dynamic contraction of the positive column of a self-sustained glow discharge in air flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, M. N.; Mokrov, M. S.; Milikh, G. M.
We study the dynamic contraction of a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when themore » gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed.« less
Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.
2016-11-15
An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density,more » and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.« less
Converging Resonance Cones in the LAPTAG plasma
NASA Astrophysics Data System (ADS)
Katz, Cami; Ha, Chris; Gekelman, Walter; Pribyl, Patrick; Agmon, Nathan; Wise, Joe; Baker, Bob
2013-10-01
The LAPTAG laboratory is a high school outreach effort that has a 1.5m long 50 cm diameter magnetized plasma device. The plasma is produced by an ICP source (1X109 < n < 5X1011 cm-3) and has computer controlled data acquisition. Ring antennas are used to produce converging resonance cones. The experiment was performed in the quiescent plasma afterglow. The electrostatic cones were produced by rf applied to the rings (80 < f < 120 MHz), where fRF < f
Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans
USDA-ARS?s Scientific Manuscript database
Background: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low density lipoprotein cholesterol (LDL-C) and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lo...
SEPAC data analysis in support of the environmental interaction program
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1990-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
The design of the optical Thomson scattering diagnostic for the National Ignition Facility.
Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J
2016-11-01
The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.
NASA Astrophysics Data System (ADS)
Carter, T. A.; Auerbach, D. W.; Brugman, B. T.
2007-11-01
Large amplitude kinetic Alfv'en waves (δB/B ˜1% > k/k) are generated in the Large Plasma Device (LAPD) at UCLA using loop antennas. Substantial electron heating is observed, localized to the wave current channels. The Poynting flux associated with the Alfv'en waves is substantial and the observed heating may be at least in part due to collisional and Landau damping of these waves. However, heating by antenna near inductive electric fields may also be responsible for the observations. A discussion of both possibilities will be presented, including measurements of near fields of the antenna. The heating structures the background plasma and results in the excitation of drift-Alfv'en waves. These drift waves then interact with the incident Alfv'en wave, causing sideband generation which results in a nearly broadband state at high wave power. This process may represent an alternate mechanism by which unidirectional kinetic Alfv'en waves can nonlinearly generate a turbulent spectrum. In addition to electron heating, evidence for background density modification and electron acceleration is observed and will be presented.
Hybrid Simulations of Pickup Ions and Ion Cyclotron Waves at Enceladus
NASA Astrophysics Data System (ADS)
Cowee, M.; Wei, H.; Tokar, R. L.
2014-12-01
Saturn's moon Enceladus releases tens of kilograms per second of water-group neutrals from its southern plumes. These neutrals are ionized and accelerated by the background co-rotation electric field, producing a local population of pickup ions with a ring distribution in velocity space. This velocity space distribution is highly unstable to the growth of electromagnetic ion cyclotron waves whose amplitudes are generally related to the pickup ion production rate, the mass of the pickup ion, the pickup velocity, and the degree of damping by the background plasma. Observations from the Cassini spacecraft show the amplitudes of the waves generally increase with distance within 2 Enceladus radii of the Moon, consistent with an increasing density of pickup ion source, but then decrease right at the Moon, consistent with zero pickup velocity in the stagnating plasma flow. In order to interpret the observed wave amplitudes in terms of ion production rates at Enceladus, we carry out self-consistent hybrid simulations of the growth of ion cyclotron waves from pickup ions to determine the relationship between wave amplitude and background plasma and ion pickup conditions.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Kobayashi, S.; Lu, X. X.; Kenmochi, N.; Ida, K.; Ohshima, S.; Yamamoto, S.; Kado, S.; Kokubu, D.; Nagasaki, K.; Okada, H.; Minami, T.; Otani, Y.; Mizuuchi, T.
2018-01-01
We report properties of a coherent density oscillation observed in the core region and its response to electron cyclotron resonance heating (ECH) in Heliotron J plasma. The measurement was performed using a multi-channel beam emission spectroscopy system. The density oscillation is observed in a radial region between the core and the half radius. The poloidal mode number is found to be 1 (or 2). By modulating the ECH power with 100 Hz, repetition of formation and deformation of a strong electron temperature gradient, which is likely ascribed to be an electron internal transport barrier, is realized. Amplitude and rotation frequency of the coherent density oscillation sitting at the strong electron temperature gradient location are modulated by the ECH, while the poloidal mode structure remains almost unchanged. The change in the rotation velocity in the laboratory frame is derived. Assuming that the change of the rotation velocity is given by the background E × B velocity, a possible time evolution of the radial electric field was deduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Taccogna, F.; Bendib, A.
2014-06-15
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainlymore » carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.« less
NASA Astrophysics Data System (ADS)
Oudini, N.; Taccogna, F.; Bendib, A.; Aanesland, A.
2014-06-01
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zi-an; Ma, J. X., E-mail: jxma@ustc.edu.cn
Ion sheaths formed in the up- and downstream sides of a negatively biased metal plate/mesh in an ion-beam-background-plasma system were experimentally investigated in a double plasma device. Measured potential profiles near the plate exhibit asymmetric structure, showing thicker sheath in the downstream side. The presence of the ion beam causes the shrink of the sheaths on both sides. The sheath thickness decreases with the increase of beam energy and density. Furthermore, the sheaths near the mesh are substantially thinner than that near the plate because of the partial transmission of the mesh to the ions. In addition, the increase ofmore » neutral gas pressure leads to the reduction of the beam energy and density, resulting in the increase of the sheath thickness.« less
Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere
NASA Astrophysics Data System (ADS)
Cannon, P. D.; Honary, F.; Borisov, N.
2016-03-01
Experiments in the illumination of the F region of the ionosphere via radio frequency waves polarized in the ordinary mode (O-mode) have revealed that the magnitude of artificial heating-induced effects depends strongly on the inclination angle of the pump beam, with a greater modification to the plasma observed when the heating beam is directed close to or along the magnetic zenith direction. Numerical simulations performed using a recently developed finite-difference time-domain (FDTD) code are used to investigate the contribution of the O-mode to Z-mode conversion process to this effect. The aspect angle dependence and angular size of the radio window for which conversion of an O-mode pump wave to the Z-mode occurs is simulated for a variety of plasma density profiles including 2-D linear gradients representative of large-scale plasma depletions, density-depleted plasma ducts, and periodic field-aligned irregularities. The angular shape of the conversion window is found to be strongly influenced by the background plasma profile. If the Z-mode wave is reflected, it can propagate back toward the O-mode reflection region leading to resonant enhancement of the electric field in this region. Simulation results presented in this paper demonstrate that this process can make a significant contribution to the magnitude of electron density depletion and temperature enhancement around the resonance height and contributes to a strong dependence of the magnitude of plasma perturbation with the direction of the pump wave.
Simulations of Hall reconnection in partially ionized plasmas
NASA Astrophysics Data System (ADS)
Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni
2017-04-01
Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is heavily affected by collisions with the neutrals. In line with experimental results, we observe reduction of the reconnection rate and no variation of the half-thickness of the ion diffusion region with decreasing IP (increasing gas density). Contrarily to the experiments, we can confidently state that these effects are not influenced by boundary constraints. We then provide an explanation for the behaviour observed.
On plasma convection in Saturn's magnetosphere
NASA Astrophysics Data System (ADS)
Livi, Roberto
We use CAPS plasma data to derive particle characteristics within Saturn's inner magnetosphere. Our approach is to first develop a forward-modeling program to derive 1-dimensional (1D) isotropic plasma characteristics in Saturn's inner, equatorial magnetosphere using a novel correction for the spacecraft potential and penetrating background radiation. The advantage of this fitting routine is the simultaneous modeling of plasma data and systematic errors when operating on large data sets, which greatly reduces the computation time and accurately quantifies instrument noise. The data set consists of particle measurements from the Electron Spectrometer (ELS) and the Ion Mass Spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite onboard the Cassini spacecraft. The data is limited to peak ion flux measurements within +/-10° magnetic latitude and 3-15 geocentric equatorial radial distance (RS). Systematic errors such as spacecraft charging and penetrating background radiation are parametrized individually in the modeling and are automatically addressed during the fitting procedure. The resulting values are in turn used as cross-calibration between IMS and ELS, where we show a significant improvement in magnetospheric electron densities and minor changes in the ion characteristics due to the error adjustments. Preliminary results show ion and electron densities in close agreement, consistent with charge neutrality throughout Saturn's inner magnetosphere and confirming the spacecraft potential to be a common influence on IMS and ELS. Comparison of derived plasma parameters with results from previous studies using CAPS data and the Radio And Plasma Wave Science (RPWS) investigation yields good agreement. Using the derived plasma characteristics we focus on the radial transport of hot electrons. We present evidence of loss-free adiabatic transport of equatorially mirroring electrons (100 eV - 10 keV) in Saturn's magnetosphere between 10-19 RS and from July 1st, 2004 to . Hot electron densities peak near 9 RS and decrease radially at a rate of 1/r3, which suggests a source in the inner magnetosphere. We also observe a decrease in electron energy at a rate of 1/r3 due to the conservation of the first adiabatic invariant, consistent with radial transport through a magnetic dipole. Data from the magnetic field instrument is used to derive the magnetic moment of hot electrons which shows a constant value of 103.4 kgm2s-2 nT-1 +/-10 between 10-19 RS, indicating a loss-free adiabatic transport with minor fluctuations. Plasma transport at Saturn can occur through flux tube interchange instabilities within the magnetosphere, where cold dense plasma is transported radially outward while hot tenuous plasma from the outer magnetosphere moves radially inward. Gradient-curvature drifts cause these hot electrons leave the injection and superimpose on the ambient cold plasma, consequently forcing it to move radially outward. This implies flux-tube interchange to be the main source for hot electrons. Hot electrons are part of the plasma analysis for which CAPS was designed, while the MIMI-LEMMS instrument measures higher energy electrons. Taking into account the penetrating background radiation, we are able to derive information for these energetic particles using our plasma instruments. We present CAPS-IMS background measurements derived from plasma data and show strong correlation with high energy particle data from MIMI-LEMMS. IMS background is generated via two main processes: 1) Collisions between the instrument walls and ambient energetic particles, which cause X-rays to trigger count signals in the instrument optics, and 2) backscatter of energetic particles in the electrostatic analyzer. We quantify these effects and use the results to identify Saturn's radiation belt peaks and nadirs, and magnetospheric regions of depleted particle fluxes, or microsignatures, which are formed through interactions with moons and ring systems. Using methods described in [119] we analyze a moon microsignatures during the outbound phase of Saturn orbit insertion (2004-183) and inside the orbit of Mimas, a region of intense radiation. Using the physical characteristics and radial locations of Atlas, Prometheus, and Pandora we derive the radial diffusion coefficient to be less than 1 x10-9 and particle energies to be below 1 MeV.
NASA Astrophysics Data System (ADS)
Liu, W.; Butté, R.; Dussaigne, A.; Grandjean, N.; Deveaud, B.; Jacopin, G.
2016-11-01
We study the carrier-density-dependent recombination dynamics in m -plane InGaN/GaN multiple quantum wells in the presence of n -type background doping by time-resolved photoluminescence. Based on Fermi's golden rule and Saha's equation, we decompose the radiative recombination channel into an excitonic and an electron-hole pair contribution, and extract the injected carrier-density-dependent bimolecular recombination coefficients. Contrary to the standard electron-hole picture, our results confirm the strong influence of excitons even at room temperature. Indeed, at 300 K, excitons represent up to 63 ± 6% of the photoexcited carriers. In addition, following the Shockley-Read-Hall model, we extract the electron and hole capture rates by deep levels and demonstrate that the increase in the effective lifetime with injected carrier density is due to asymmetric capture rates in presence of an n -type background doping. Thanks to the proper determination of the density-dependent recombination coefficients up to high injection densities, our method provides a way to evaluate the importance of Auger recombination.
Fluctuation spectra in the NASA Lewis bumpy-torus plasma
NASA Technical Reports Server (NTRS)
Singh, C. M.; Krawczonek, W. M.; Roth, J. R.; Hong, J. Y.; Powers, E. J.
1978-01-01
The electrostatic potential fluctuation spectrum in the NASA Lewis bumpy-torus plasma was studied with capacitive probes in the low pressure (high impedance) mode and in the high pressure (low impedance) mode. Under different operating conditions, the plasma exhibited electrostatic potential fluctuations (1) at a set of discrete frequencies, (2) at a continuum of frequencies, and (3) as incoherent high-frequency turbulence. The frequencies and azimuthal wave numbers were determined from digitally implemented autopower and cross-power spectra. The azimuthal dispersion characteristics of the unstable waves were examined by varying the electrode voltage, the polarity of the voltage, and the neutral background density at a constant magnetic field strength.
NASA Astrophysics Data System (ADS)
Tulasi Ram, S.; Ajith, K. K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K.
2017-06-01
The vertical rise velocity (Vr) and maximum altitude (Hm) of equatorial plasma bubbles (EPBs) were estimated using the two-dimensional fan sector maps of 47 MHz Equatorial Atmosphere Radar (EAR), Kototabang, during May 2010 to April 2013. A total of 86 EPBs were observed out of which 68 were postsunset EPBs and remaining 18 EPBs were observed around midnight hours. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller ( 26-128 m/s) compared to those observed in postsunset hours ( 45-265 m/s). Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The three-dimensional numerical high-resolution bubble (HIRB) model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model. The smaller vertical rise velocities (Vr) and lower maximum altitudes (Hm) of EPBs during midnight hours are discussed in terms of weak polarization electric fields within the bubble due to weaker background electric fields and reduced background ion density levels.
Upstream proton cyclotron waves at Venus near solar maximum
NASA Astrophysics Data System (ADS)
Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.
2015-01-01
magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of observable proton cyclotron waves near solar maximum.
Verification of Loop Diagnostics
NASA Technical Reports Server (NTRS)
Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.
2014-01-01
Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.
Experimental and Numerical Study of Drift Alfv'en Waves in LAPD
NASA Astrophysics Data System (ADS)
Friedman, Brett; Popovich, P.; Carter, T. A.; Auerbach, D.; Schaffner, D.
2009-11-01
We present a study of drift Alfv'en waves in linear geometry using experiments in the Large Plasma Device (LAPD) at UCLA and simulations from the Boundary Turbulence code (BOUT). BOUT solves the 3D time evolution of plasma parameters and turbulence using Braginskii fluid equations. First, we present a verification study of linear drift Alfven wave physics in BOUT, which has been modified to simulate the cylindrical geometry of LAPD. Second, we present measurements of density and magnetic field fluctuations in the LAPD plasma and the correlation of these fluctuations as a function of plasma parameters, including strength of the background field and discharge current. We also compare the measurements to nonlinear BOUT calculations using experimental LAPD profiles.
Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)
NASA Astrophysics Data System (ADS)
Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.
2012-05-01
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.
Some experiments with the tunnel probe in a low temperature magnetized plasma
NASA Astrophysics Data System (ADS)
Kovačič, J.; Gyergyek, T.; Kavaš, B.; Vodnik, M.; Kavčič, J.; Gunn, J. P.
2018-02-01
Experiments were performed using a Tunnel Probe (TP) inside the weakly-ionised plasma of the Linear Magnetized Plasma Device (LMPD). The TP is designed as a concave probe, which should annihilate the problem of sheath expansion in the ion branch of the I-V characteristic. As the ion saturation current is consequently well defined, the ion parallel current and plasma density can be more accurately calculated. Furthermore the ratio between the ion saturation currents on the two collectors (tunnel ring and the back-plate) can be used to derive the electron temperature. The TP has been repeatedly used with success on the former Castor and Tore-Supra tokamaks and will be used on the upgraded version of Tore-supra, namely the WEST tokamak, as well [1, 2]. It was however never used successfully in a low-temperature plasma. We studied the feasibility of the TP use in a low-temperature plasma for direct measurements of plasma temperature and density. The various probe characteristic dimensions, such as the distance between the two collectors, the aperture size and the probe radius were varied to see influence of the individual probe feature. We also varied the level of magnetization of the charged particle species, the background gas pressure (which influences the electron energy distribution function), the plasma density (important for the ratio between the λ D and the ion Larmor radius). The sensitivity of the probe alignment to the magnetic field lines was also studied. We found, that the ion saturation current does not necessarily saturate and that the probe works according to expectations only in a limited amount of regimes.
Drift-Alfven wave mediated particle transport in an elongated density depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincena, Stephen; Gekelman, Walter
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function ofmore » frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.« less
Evidence of a New Instability in Gyrokinetic Simulations of LAPD Plasmas
NASA Astrophysics Data System (ADS)
Terry, P. W.; Pueschel, M. J.; Rossi, G.; Jenko, F.; Told, D.; Carter, T. A.
2015-11-01
Recent experiments at the LArge Plasma Device (LAPD) have focused on structure formation driven by density and temperature gradients. A central difference relative to typical, tokamak-like plasmas stems from the linear geometry and absence of background magnetic shear. At sufficiently high β, strong excitation of parallel (compressional) magnetic fluctuations was observed. Here, linear and nonlinear simulations with the
Ross, J. S.; Datte, P.; Divol, L.; ...
2016-07-28
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. Here, we report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ~5 × 10 20more » cm -3 while a 3ω probe will be used for plasma densities of ~1 × 10 19 cm -3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.
2016-11-15
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{supmore » −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less
Spatial distribution of the wave field of the surface modes sustaining filamentary discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lishev, St.; Shivarova, A.; Tarnev, Kh.
2008-01-01
The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density ofmore » the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all--six--field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament--both radially inhomogeneous--are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdizadeh, N.; Aghamir, F. M.
2013-02-28
A fluid theory is used to derive the dispersion relation of two-stream free electron laser (TSFEL) with a magnetic planar wiggler pump in the presence of background plasma (BP). The effect of finite beams and plasma temperature on the growth rate of a TSFEL has been verified. The twelve order dispersion equation has been solved numerically. Three instabilities, FEL along with the TS and TS-FEL instabilities occur simultaneously. The analysis in the case of cold BP shows that when the effect of the beam temperature is taken into account, both instable bands of wave-number and peak growth rate in themore » TS instability increase, but peak growth of the FEL and TS-FEL instabilities decreases. Thermal motion of the BP causes to diminish the TS instability and it causes to decrease the FEL and TS-FEL instabilities. By increasing the beam densities and lowering initial velocities (in the collective Raman regime), growth rate of instabilities increases; however, it has opposite behavior in the Campton regime.« less
Simulation of Noise in a Traveling Wave Tube
NASA Astrophysics Data System (ADS)
Verboncoeur, J. P.; Christenson, P. J.; Smith, H. B.
1999-11-01
Low frequency noise, manifested as close-in sidebands, has long been a significant limit to the performance of many traveling wave tubes. In this study, we investigate oscillations in the gun region due to the presence of plasma formed by electron-impact ionization of a background gas. The gun region of a coupled-cavity traveling wave tube is modeled using the two-dimensional XOOPIC particle-in-cell Monte Carlo collision code (J. P. Verboncoeur et al. Comput. Phys. Comm.) 87, 199-211 (1995). (available via the web: http://ptsg.eecs.berkeley.edu). The beam is 20.5 kV, 2.8 A, in near-confined flow in a solenoidal magnetic field with peak axial value of 0.263 T. Beam scalloping leads to trapping of plasma generated via electron-impact ionization of a background gas. The trapped plasma periodically leaves the system rapidly, and the density begins regenerating at a slow rate, leading to characteristic sawtooth oscillations. Plasma electrons are observed to exit the system axially about 20 ns before the ions exit primarily radially.
Ambipolar ion acceleration in an expanding magnetic nozzle
NASA Astrophysics Data System (ADS)
Longmier, Benjamin W.; Bering, Edgar A., III; Carter, Mark D.; Cassady, Leonard D.; Chancery, William J.; Díaz, Franklin R. Chang; Glover, Tim W.; Hershkowitz, Noah; Ilin, Andrew V.; McCaskill, Greg E.; Olsen, Chris S.; Squire, Jared P.
2011-02-01
The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s-1 argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 × 1020 m-3 and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 104 to 105 λDe depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 1015 m-3 and 2 × 10-5 Torr, respectively, in a 150 m3 vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.
NASA Astrophysics Data System (ADS)
Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Nishioka, M.; Kubota, M.; Tsugawa, T.; Nagatsuma, T.
2012-12-01
Plasma bubbles are plasma-density depletion which is developed by the Rayleigh-Taylor instability on the sunset terminator at equatorial latitudes. They usually propagate eastward after the sunset. The eastward propagation of the plasma bubbles is considered to be controlled by background eastward neutral winds in the thermosphere through the F-region dynamo effect. However, it is not clear how the F-region dynamo effect contributes to the propagation of the plasma bubbles, because plasma bubbles and background neutral winds have not been simultaneously observed at geomagnetic conjugate points in the northern and southern hemispheres. In this study, geomagnetic conjugate observations of the plasma bubbles at low latitudes with thermospheric neutral winds were reported. The plasma bubbles were observed at Kototabang (0.2S, 100.3E, geomagnetic latitude (MLAT): 10.0S), Indonesia and at Chiang Mai (18.8N, 98.9E, MLAT: 8.9N), Thailand, which are geomagnetic conjugate stations, on 5 April, 2011 from 13 to 22 UT (from 20 to 05 LT). These plasma bubbles were observed in the 630-nm airglow images taken by using highly-sensitive all-sky airglow imagers at both stations. They propagated eastward with horizontal velocities of about 100-125 m/s. Background thermospheric neutral winds were also observed at both stations by using two Fabry-Perot interferometers (FPIs). The eastward wind velocities were about 70-130 m/s at Kototabang, and about 50-90 m/s at Chiang Mai. We estimated ion drift velocities by using these neutral winds observed by FPIs and conductivities calculated from the IRI and MSIS models. The estimated velocities were about 60-90 % of the drift velocities of plasma bubbles. This result shows that most of the plasma bubble drift can be explained by the F-region dynamo effect, and additional electric field effect may come in to play.
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
NASA Astrophysics Data System (ADS)
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
Collisionless effects on beam-return current systems in solar flares
NASA Technical Reports Server (NTRS)
Vlahos, L.; Rowland, H. L.
1985-01-01
A theoretical study of the beam-return current system (BRCS) in solar flares shows that the precipitating electrons modify the way in which the return current (RC) is carried by the background plasma. In particular it is found that the RC is not carried by the bulk of the electrons but by a small number of high-velocity electrons. For beam/plasma densities exceeding approximately 0.001, this can reduce the effects of collisions and heating by the RC. For higher-density beams, where the RC could be unstable to current-driven instabilities, the effects of strong turbulence anomalous resistivity prevent the appearance of such instabilities. The main conclusion is that the BRCS is interconnected, and that the beam-generated strong turbulence determines how the RC is carried.
Neutron angular distribution in a plasma focus obtained using nuclear track detectors.
Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G
2002-01-01
The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.
Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.
Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture.more » In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.« less
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1984-01-01
The Plasma Diagnostics Package, which was flown aboard STS-3 recorded various chemical releases from the Orbiter. Changes in the plasma environment were observed to occur during Flash Evaporator System (FES) releases, water dumps and maneuvering thruster operations. During flash evaporator operations, broadband Orbiter-generated electro-static noise is enhanced and plasma density irregularity (delta n/N) is observed to increase by as much as 4 times and is strongly peaked below 6 Hz. In the case of water dumps, background electrostatic noise is enhanced or suppressed depending on frequency and Delta N/N is also seen to increase by as much as 4 times. Various changes in the plasma environment are effected by primary and vernier thruster operations. In addition, thruster activity stimulates electrostatic noise with a spectrum which is most intense at frequencies below 10 kHz.
The Plasma Environment at Mercury
NASA Technical Reports Server (NTRS)
Raines, James M.; Gershman, Daniel J.; Zurbuchen, Thomas H.; Gloeckler, George; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Krimigis, Stamatios M.; Killen, Rosemary M.; Sarantos, Menalos;
2011-01-01
Mercury is the least explored terrestrial planet, and the one subjected to the highest flux of solar radiation in the heliosphere. Its highly dynamic, miniature magnetosphere contains ions from the exosphere and solar wind, and at times may allow solar wind ions to directly impact the planet's surface. Together these features create a plasma environment that shares many features with, but is nonetheless very different from, that of Earth. The first in situ measurements of plasma ions in the Mercury space environment were made only recently, by the Fast Imaging Plasma Spectrometer (FIPS) during the MESSENGER spacecraft's three flybys of the planet in 2008-2009 as the probe was en route to insertion into orbit about Mercury earlier this year. Here. we present analysis of flyby and early orbital mission data with novel techniques that address the particular challenges inherent in these measurements. First. spacecraft structures and sensor orientation limit the FIPS field of view and allow only partial sampling of velocity distribution functions. We use a software model of FIPS sampling in velocity space to explore these effects and recover bulk parameters under certain assumptions. Second, the low densities found in the Mercury magnetosphere result in a relatively low signal-to-noise ratio for many ions. To address this issue, we apply a kernel density spread function to guide removal of background counts according to a background-signature probability map. We then assign individual counts to particular ion species with a time-of-flight forward model, taking into account energy losses in the carbon foil and other physical behavior of ions within the instrument. Using these methods, we have derived bulk plasma properties and heavy ion composition and evaluated them in the context of the Mercury magnetosphere.
Modelling of 13CH4 injection and local carbon deposition at the outer divertor of ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Aho-Mantila, L.; Airila, M. I.; Wischmeier, M.; Krieger, K.; Pugno, R.; Coster, D. P.; Chankin, A. V.; Neu, R.; Rohde, V.
2009-12-01
Numerical modelling of 13CH4 injection into the outer divertor plasma of the full tungsten, vertical target of ASDEX Upgrade is presented. The SOLPS5.0 code package is used to calculate a realistic scrape-off layer plasma background corresponding to L-mode discharges in the attached divertor plasma regime. The ERO code is then used for detailed modelling of the hydrocarbon break-up, re-deposition and re-erosion processes. The deposition patterns observed at two different poloidal locations are shown to strongly reflect the cross-field gradients in divertor plasma density and temperature, as well as the local plasma collisionality. Experimental results with forward and reversed BT, accompanied by numerical modelling, also point towards a significant poloidal hydrocarbon E×B drift in the divertor region.
Measurements of Ion and Neutral Fluctuation Changes with Pressure in a Large-Scale Helicon Plasma
NASA Astrophysics Data System (ADS)
Dwyer, R. H.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Gilmore, M.
2017-10-01
Neutral particle dynamics may play an important role both in laboratory plasmas and in the edge of magnetic fusion devices. However, studies of neutral dynamics in these plasmas have been limited to date. Here we report on a basic study of ion and neutral fluctuations as a function of background neutral gas pressure. These experiments have been conducted in helicon discharges in the HelCat (Helicon-Cathode) dual-source plasma device at the University of New Mexico. The goal is to measure changes in ion and neutral density fluctuations with pressure and to gain an improved understanding of plasma-neutral interactions. Langmuir probe, Ar-I LIF, and high-speed imaging measurements of the fluctuations will be presented. Supported by U.S. National Science Foundation Award 1500423 and The University of New Mexico School of Engineering.
The Plasma Environment at Enceladus
NASA Astrophysics Data System (ADS)
Rymer, Abigail; Morooka, Michiko; Persoon, Ann
2016-10-01
The plasma environment near Enceladus is complex. The well documented Enceladus plumes create a dusty, asymmetric exosphere in which electrons can attach to small ice particles - forming anions, and negatively charged nanograins and dust - to the extent that cations can be the lightest charged particles present and, as a result, the dominant current carriers. Several instruments on the Cassini spacecraft are able to measure this environment in both expected and unexpected ways. Cassini Plasma Spectrometer (CAPS) is designed and calibrated to measure the thermal plasma ions and electrons and also measures the energy/charge of charged nanograins when present. Cassini Radio Plasma Wave Sensor (RPWS) measures electron density as derived from the 'upper hybrid frequency' which is a function of the total free electron density and magnetic field strength and provides a vital ground truth measurement for Cassini calibration when the density is sufficiently high for it to be well measured. Cassini Langmuir Probe (LP) measures the electron density and temperature via direct current measurement, and both CAPS and LP can provide estimates for the spacecraft potential which we compare. Cassini Magnetospheric Imaging Instrument (MIMI) directly measures energetic particles that are manifest in the CAPS measurements as penetrating background in this region and, while not particularly efficient ionisers, create sputtering and surface weathering of Enceladus surface, MIMI also measures energetic neutral atoms produced during the charge exchange interactions in and near the plumes.In this presentation we exploit two almost identical Cassini-Enceladus flybys 'E17' and 'E18' which took place in March/April 2012. We present a detailed comparison of data from these Cassini sensors in order to assess the plasma environment observed by the different instruments, discuss what is consistent and otherwise, and the implications for the plasma environment at Enceladus in the context of work to date as well as implications for future studies.
Advanced Thomson scattering system for high-flux linear plasma generator.
van der Meiden, H J; Lof, A R; van den Berg, M A; Brons, S; Donné, A J H; van Eck, H J N; Koelman, P M J; Koppers, W R; Kruijt, O G; Naumenko, N N; Oyevaar, T; Prins, P R; Rapp, J; Scholten, J; Schram, D C; Smeets, P H M; van der Star, G; Tugarinov, S N; Zeijlmans van Emmichoven, P A
2012-12-01
An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f/3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n(e)) and temperature (T(e)) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n(e) and 6% in T(e) (at n(e) = 9.4 × 10(18) m(-3)) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n(e) > 2.8 × 10(20) m(-3). The minimum measurable density and temperature are n(e) < 1 × 10(17) m(-3) and T(e) < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n(0)) of the plasma can be measured with an accuracy of 25% (at n(0) = 1 × 10(20) m(-3)). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.
Production and study of high-beta plasma confined by a superconducting dipole magneta)
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Hansen, A.; Mauel, M. E.; Ortiz, E.; Boxer, A. C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.
2006-05-01
The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4GHz, and a population of energetic electrons, with mean energies above 50keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.
NASA Astrophysics Data System (ADS)
Miyake, Yohei; Usui, Hideyuki
It is necessary to predict the nature of spacecraft-plasma interactions in extreme plasma conditions such as in the near-Sun environment. The spacecraft environment immersed in the solar corona is characterized by the small Debye length due to dense (7000 mathrm{/cc}) plasmas and a large photo-/secondary electron emission current emitted from the spacecraft surfaces, which lead to distinctive nature of spacecraft-plasma interactions [1,2,3]. In the present study, electromagnetic field perturbation around the Solar Probe Plus (SPP) spacecraft is examined by using our original EM-PIC (electromagnetic particle-in-cell) plasma simulation code called EMSES. In the simulations, we consider the SPP spacecraft at perihelion (0.04 mathrm{AU} from the Sun) and important physical effects such as spacecraft charging, photoelectron and secondary electron emission, solar wind plasma flow including the effect of spacecraft orbital velocity, and the presence of a background magnetic field. Our preliminary results show that both photoelectrons and secondary electrons from the spacecraft are magnetized in a spatial scale of several meters, and make drift motion due the presence of the background convection electric field. This effect leads to non-axisymmetric distributions of the electron density and the resultant electric potential near the spacecraft. Our simulations predict that a strong (˜ 100 mathrm{mV/m}) spurious electric field can be observed by the probe measurement on the spacecraft due to such a non-axisymmetric effect. We also confirm that the large photo-/secondary electron current alters magnetic field intensity around the spacecraft, but the field variation is much smaller than the background magnetic field magnitude (a few mathrm{nT} compared to a few mathrm{mu T}). [1] Ergun et al., textit{Phys. Plasmas}, textbf{17}, 072903, 2010. [2] Guillemant et al., textit{Ann. Geophys.}, textbf{30}, 1075-1092, 2012. [3] Guillemant et al., textit{IEEE Trans. Plasma Sci.}, textbf{41}, 3338-3348, 2013.
Ladder Climbing and Autoresonant Acceleration of Plasma Waves
NASA Astrophysics Data System (ADS)
Barth, Ido; Dodin, Ilya; Fisch, Nathaniel
2015-11-01
When the background density in a bounded plasma is modulated in time, discrete modes become coupled. Interestingly, for appropriately chosen modulations, the average plasmon energy might be made to grow in a ladder-like manner, achieving up-conversion or down-conversion of the plasmon energy. This reversible process is identified as a classical analog of the effect known as quantum ladder climbing, so that the efficiency and the rate of this process can be written immediately by analogy to a quantum particle in a box. In the limit of densely spaced spectrum, ladder climbing transforms into continuous autoresonance; plasmons may then be manipulated by chirped background modulations much like electrons are autoresonantly manipulated by chirped fields. By formulating the wave dynamics within a universal Lagrangian framework, similar ladder climbing and autoresonance effects are predicted to be achievable with general linear waves in both plasma and other media. Supported by NNSA grant DE274-FG52-08NA28553, DOE contract DE-AC02-09CH11466, and DTRA grant HDTRA1-11-1-0037.
Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fubiani, Gwenael G.J.
2005-09-01
Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 10 18 - 10 19 cm -3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams wasmore » recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.« less
Transition from order to chaos, and density limit, in magnetized plasmas.
Carati, A; Zuin, M; Maiocchi, A; Marino, M; Martines, E; Galgani, L
2012-09-01
It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so-called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.
Dynamics of Exploding Plasma Within a Magnetized Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimonte, G; Dipeso, G; Hewett, D
2002-02-01
This memo describes several possible laboratory experiments on the dynamics of an exploding plasma in a background magnetized plasma. These are interesting scientifically and the results are applicable to energetic explosions in the earth's ionosphere (DOE Campaign 7 at LLNL). These proposed experiments are difficult and can only be performed in the new LAPD device at UCLA. The purpose of these experiments would be to test numerical simulations, theory and reduced models for systems performance codes. The experiments are designed to investigate the affect of the background plasma on (1) the maximum diamagnetic bubble radius given by Eq. 9; andmore » (2) the Alfven wave radiation efficiency produced by the induced current J{sub A} (Eqs. 10-12) These experiments involve measuring the bubble radius using a fast gated optical imager as in Ref [1] and the Alfven wave profile and intensity as in Ref [2] for different values of the exploding plasma energy, background plasma density and temperature, and background magnetic field. These experiments extend the previously successful experiments [2] on Alfven wave coupling. We anticipate that the proposed experiments would require 1-2 weeks of time on the LAPD. We would perform PIC simulations in support of these experiments in order to validate the codes. Once validated, the PIC simulations would then be able to be extended to realistic ionospheric conditions with various size explosions and altitudes. In addition to the Alfven wave coupling, we are interested in the magnetic containment and transport of the exploding ''debris'' plasma to see if the shorting of the radial electric field in the magnetic bubble would allow the ions to propagate further. This has important implications in an ionospheric explosion because it defines the satellite damage region. In these experiments, we would field fast gated optical cameras to obtain images of the plasma expansion, which could then be correlated with magnetic probe measurements. In this regard, it would be most helpful to have a more powerful laser more than 10J in order to increase the extent of the magnetic bubble.« less
USDA-ARS?s Scientific Manuscript database
Background-Low high-density lipoprotein cholesterol (HDL-C) is associated with an increased risk for atherosclerosis and concentrations are modulated by genetic and environmental factors such as smoking. Objective- To assess whether the association of common single nucleotide polymorphisms (SNPs...
Numerical studies of fast ion slowing down rates in cool magnetized plasma using LSP
NASA Astrophysics Data System (ADS)
Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Rognlien, Tom; Cohen, Bruce; Meier, Eric; Welch, Dale R.
2016-10-01
In MFE devices, rapid transport of fusion products from the core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. The first-orbit trajectories of most fusion products from small field-reversed configuration (FRC) devices will traverse the SOL, allowing those particles to deposit their energy in the SOL and be exhausted along the open field lines. Thus, the fast ion slowing-down time should affect the energy balance of an FRC reactor and its neutron emissions. However, the dynamics of fast ion energy loss processes under the conditions expected in the FRC SOL (with ρe <λDe) are analytically complex, and not yet fully understood. We use LSP, a 3D electromagnetic PIC code, to examine the effects of SOL density and background B-field on the slowing-down time of fast ions in a cool plasma. As we use explicit algorithms, these simulations must spatially resolve both ρe and λDe, as well as temporally resolve both Ωe and ωpe, increasing computation time. Scaling studies of the fast ion charge (Z) and background plasma density are in good agreement with unmagnetized slowing down theory. Notably, Z-scaling represents a viable way to dramatically reduce the required CPU time for each simulation. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.; Tritz, K.; Stutman, D.; Stratton, B.; Efthimion, P.
2016-11-01
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ, ΔZeff, and ne,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.
Fast-ion transport in low density L-mode plasmas at TCV using FIDA spectroscopy and the TRANSP code
NASA Astrophysics Data System (ADS)
Geiger, B.; Karpushov, A. N.; Duval, B. P.; Marini, C.; Sauter, O.; Andrebe, Y.; Testa, D.; Marascheck, M.; Salewski, M.; Schneider, P. A.; the TCV Team; the EUROfusion MST1 Team
2017-11-01
Experiments with the new neutral beam injection source of TCV have been performed with high fast-ion fractions (>20%) that exhibit a clear reduction of the loop voltage and a clear increase of the plasma pressure in on- and off-axis heating configurations. However, good quantitative agreement between the experimental data and TRANSP predictions is only found when including strong additional fast-ion losses. These losses could in part be caused by turbulence or MHD activity as, e.g. high frequency modes near the frequency of toroidicity induced Alfvén eignmodes are observed. In addition, a newly installed fast-ion D-alpha (FIDA) spectroscopy system measures strong passive radiation and, hence, indicates the presence of high background neutral densities such that charge-exchange losses are substantial. Also the active radiation measured with the FIDA diagnostic, as well as data from a neutral particle analyzer, suggest strong fast-ion losses and large neutral densities. The large neutral densities can be justified since high electron temperatures (3-4 keV), combined with low electron densities (about 2× {10}19 m-3) yield long mean free paths of the neutrals which are penetrating from the walls.
Dynamics of electron injection in a laser-wakefield accelerator
NASA Astrophysics Data System (ADS)
Xu, J.; Buck, A.; Chou, S.-W.; Schmid, K.; Shen, B.; Tajima, T.; Kaluza, M. C.; Veisz, L.
2017-08-01
The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way—called shock-front injection—utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.
The Charged Aerosol Release Experiment (CARE)
NASA Astrophysics Data System (ADS)
Bernhardt, P. A.; Ganguli, G.; Lampe, M.; Scales, W. A.
2005-12-01
The physics of radar scatter from charged particulates in the upper atmosphere will be studied with the Charged Aerosol Release Experiment (CARE). In 2008, two rocket payloads are being designed for launch North America. The purpose of the CARE program is to identify the mechanisms for radar scatter from polar mesospheric clouds. Polar mesospheric summer echoes (PMSE) are observed at high latitudes when small concentrations of electrons (one-thousand per cubic cm) become attached to sub-micron dust particles. Radar in the VHF (30-300 MHz) frequency range have seen 30 dB enhancements in radar echoes coincident with formation of ice near 85 km altitude. Radar echoes from electrons in the vicinity of charged dust have been observed for frequencies exceeding 1 GHz. Some fundamental questions that remain about the scatting process are: (1) What is the relative importance of turbulent scatter versus incoherent (i.e., Thompson) scatter from individual electrons? (2) What produces the inhomogeneous electron/dust plasma? (3) How is the radar scatter influenced by the density of background electrons, plasma instabilities and turbulence, and photo detachment of electrons from the particulates? These questions will be addressed when the CARE program releases 50 kg of dust particles in an expanding shell at about 300 km altitude. The dust will be manufactured by the chemical release payload to provide particulate sizes in the 10 to 1000 nm range. The expanding dust shell will collect electrons making dense, heavy particles the move the negative charges across magnetic field lines. Plasma turbulence and electron acceleration will be formed from the charge separation between the magnetized oxygen ions in the background ionosphere and the streaming negatively charged dust. Simulations of this process provide estimates of plasma structure which can scatter radar. As the particulates settle through the lower thermosphere into the mesosphere, artificial mesospheric clouds will be formed. Radar scatter form this artificial layer will be compared with natural PMSE observations. Along with the chemical release rocket, in situ probes with a separate instrumented payload will be used to measure dust density, electric fields, plasma density and velocity, and radio wave scattering.
Observation of the hot electron interchange instability in a high beta dipolar confined plasma
NASA Astrophysics Data System (ADS)
Ortiz, Eugenio Enrique
In this thesis the first study of the high beta, hot electron interchange (HEI) instability in a laboratory, dipolar confined plasma is presented. The Levitated Dipole Experiment (LDX) is a new research facility that explores the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. In initial experiments long-pulse, quasi-steady state microwave discharges lasting more than 10 sec have been produced with equilibria having peak beta values of 20%. Creation of high-pressure, high beta plasma is possible only when intense HEI instabilities are stabilized by sufficiently high background plasma density. LDX plasma exist within one of three regimes characterized by its response to heating and fueling. The observed HEI instability depends on the regime and can take one of three forms: as quasiperiodic bursts during the low density, low beta plasma regime, as local high beta relaxation events in the high beta plasma regime, and as global, intense energy relaxation bursts, both in the high beta and afterglow plasma regimes. Measurements of the HEI instability are made using high-impedance, floating potential probes and fast Mirnov coils. Analysis of these signals reveals the extent of the transport during high beta plasmas. During intense high beta HEI instabilities, fluctuations at the edge significantly exceed the magnitude of the equilibrium field generated by the high beta electrons and energetic electron confinement ends in under 100 musec. For heated plasmas, one of the consequences of the observed high beta transport is the presence of hysteresis in the neutral gas fueling required to stabilize and maintain the high beta plasma. Finally, a nonlinear, self-consistent numerical simulation of the growth and saturation of the HEI instability has been adapted for LDX and compared to experimental observations.
Production and Study of High-Beta Plasma Confined by a Superconducting Dipole Magnet
NASA Astrophysics Data System (ADS)
Garnier, Darren
2005-10-01
The Levitated Dipole Experiment (LDX)http://psfcwww2.psfc.mit.edu/ldx/ is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, MHD stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally-peaked plasma pressure that exceeds the local magnetic pressure (β> 1), and the absence of magnetic shear allows particle and energy confinement to decouple. In this presentation, the first experiments using the LDX facility are reported. Long-pulse, quasi-steady state microwave discharges lasting up to 12 seconds have been produced that are consistent with equilibria having peak beta values of 10%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports and later the coil will be magnetically levitated. The plasma was created by multi- frequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominated the plasma pressure. Creation of high-pressure, high-beta plasma is only possible when intense hot electron interchange instabilities are stabilized sufficiently by a high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma-fueling rate and confinement times are sufficiently long. External shaping coils are seen to modify the outer plasma boundary and affect the transition.
NASA Astrophysics Data System (ADS)
Hew, Y. M.; Linscott, I.; Close, S.
2015-12-01
Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.
Drift wave turbulence simulations in LAPD
NASA Astrophysics Data System (ADS)
Popovich, P.; Umansky, M.; Carter, T. A.; Auerbach, D. W.; Friedman, B.; Schaffner, D.; Vincena, S.
2009-11-01
We present numerical simulations of turbulence in LAPD plasmas using the 3D electromagnetic code BOUT (BOUndary Turbulence). BOUT solves a system of fluid moment equations in a general toroidal equlibrium geometry near the plasma boundary. The underlying assumptions for the validity of the fluid model are well satisfied for drift waves in LAPD plasmas (typical plasma parameters ne˜1x10^12cm-3, Te˜10eV, and B ˜1kG), which makes BOUT a perfect tool for simulating LAPD. We have adapted BOUT for the cylindrical geometry of LAPD and have extended the model to include the background flows required for simulations of recent bias-driven rotation experiments. We have successfully verified the code for several linear instabilities, including resistive drift waves, Kelvin-Helmholtz and rotation-driven interchange. We will discuss first non-linear simulations and quasi-stationary solutions with self-consistent plasma flows and saturated density profiles.
Nonlinear interaction of kinetic Alfven wave and whistler: Turbulent spectra and anisotropic scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar Dwivedi, Navin; Sharma, R. P.
2013-04-15
In this work, we are presenting the excitation of oblique propagating whistler wave as a consequence of nonlinear interaction between whistler wave and kinetic Alfven wave (KAW) in intermediate beta plasmas. Numerical simulation has been done to study the transient evolution of magnetic field structures of KAW when the nonlinearity arises due to ponderomotive effects by taking the adiabatic response of the background density. Weak oblique propagating whistler signals in these nonlinear plasma density filaments (produced by KAW localization) get amplified. The spectral indices of the power spectrum at different times are calculated with given initial conditions of the simulations.more » Anisotropic scaling laws for KAW and whistlers are presented. The relevance of the present investigation to solar wind turbulence and its acceleration is also pointed out.« less
Lagrangian methods in the analysis of nonlinear wave interactions in plasma
NASA Technical Reports Server (NTRS)
Galloway, J. J.
1972-01-01
An averaged-Lagrangian method is developed for obtaining the equations which describe the nonlinear interactions of the wave (oscillatory) and background (nonoscillatory) components which comprise a continuous medium. The method applies to monochromatic waves in any continuous medium that can be described by a Lagrangian density, but is demonstrated in the context of plasma physics. The theory is presented in a more general and unified form by way of a new averaged-Lagrangian formalism which simplifies the perturbation ordering procedure. Earlier theory is extended to deal with a medium distributed in velocity space and to account for the interaction of the background with the waves. The analytic steps are systematized, so as to maximize calculational efficiency. An assessment of the applicability and limitations of the method shows that it has some definite advantages over other approaches in efficiency and versatility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, T., E-mail: t.kluge@hzdr.de; Bussmann, M.; Huang, L. G., E-mail: lingen.huang@hzdr.de
Here, we propose to exploit the low energy bandwidth, small wavelength, and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominated by the free electron distribution. We propose that the ionic scattering signal becomes visible when the X-ray energy is in resonance with an electron transition between two bound states (resonant coherent X-ray diffraction). In this case, the scattering cross-section dramatically increases somore » that the signal of X-ray scattering from ions silhouettes against the free electron scattering background which allows to measure the opacity and derived quantities with high spatial and temporal resolution, being fundamentally limited only by the X-ray wavelength and timing. Deriving quantities such as ion spatial distribution, charge state distribution, and plasma temperature with such high spatial and temporal resolution will make a vast number of processes in shortpulse laser-solid interaction accessible for direct experimental observation, e.g., hole-boring and shock propagation, filamentation and instability dynamics, electron transport, heating, and ultrafast ionization dynamics.« less
St-Onge, Marie-Pierre; Farnworth, Edward R; Savard, Tony; Chabot, Denise; Mafu, Akier; Jones, Peter JH
2002-01-01
Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p < 0.05) fecal isobutyric, isovaleric and propionic acids as well as the total amount of fecal short chain fatty acids. Kefir supplementation resulted in increased fecal bacterial content in the majority of the subjects. Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent. PMID:11825344
VLA Measurements of Faraday Rotation through Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.; Spangler, Steven R.
2017-04-01
Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun, which play an important role in space weather. Faraday rotation is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma such as a CME. Faraday rotation is proportional to the path integral through the plasma of the electron density and the line-of-sight component of the magnetic field. Faraday-rotation observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch. We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made sensitive Very Large Array (VLA) full-polarization observations using 1 - 2 GHz frequencies of a constellation of radio sources through the solar corona at heliocentric distances that ranged from 6 - 15 R_{⊙}. Two sources (0842+1835 and 0900+1832) were occulted by a single CME, and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. ( Solar Phys., 98, 341, 1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the Large Angle and Spectrometric Coronagraph (LASCO) C3 instrument to determine the Thomson-scattering brightness [BT], providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation. A constant-density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on BT and Faraday rotation. The plasma densities (6 - 22×103 cm^{-3}) and axial magnetic-field strengths (2 - 12 mG) inferred from our models are consistent with the modeling work of Liu et al. ( Astrophys. J., 665, 1439, 2007) and Jensen and Russell ( Geophys. Res. Lett., 35, L02103, 2008), as well as previous CME Faraday-rotation observations by Bird et al. (1985).
Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikezoe, R., E-mail: ikezoe@prc.tsukuba.ac.jp; Ichimura, M.; Okada, T.
2015-09-15
A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in themore » magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, R.; Rudakov, D. L.; Stangeby, P. C.
Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. We have investigated different methods such as electrical biasing and local gas injection to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducingmore » the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH 4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. The inter-ELM W erosion we measured in H-mode plasmas, rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.« less
Burst temperature from conditional analysis in Texas Helimak and TCABR tokamak
NASA Astrophysics Data System (ADS)
Pereira, F. A. C.; Hernandez, W. A.; Toufen, D. L.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.
2018-04-01
The procedure to estimate the average local temperature, density, and plasma potential by conditionally selecting points of the Langmuir probe characteristic curve is revised and applied to the study of intermittent bursts in the Texas Helimak and TCABR tokamak. The improvements made allow us to distinguish the burst temperature from the turbulent background and to study burst propagation. Thus, in Texas Helimak, we identify important differences with respect to the burst temperature measured in the top and the bottom regions of the machine. While in the bottom region the burst temperatures are almost equal to the background, the bursts in the top region are hotter than the background with the temperature peak clearly shifted with respect to the density one. On the other hand, in the TCABR tokamak, we found that there is a temperature peak simultaneously with the density one. Moreover, the radial profile of bursts in the top region of Helimak and in the edge and scrape-off layer regions of TCABR shows that in both machines, there are spatial regions where the relative difference between the burst and the background temperatures is significant: up to 25% in Texas Helimak and around 50% in TCABR. However, in Texas Helimak, there are also regions where these temperatures are almost the same.
Advanced Thomson scattering system for high-flux linear plasma generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den
2012-12-15
An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels ofmore » about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.« less
Particle in cell simulation of instabilities in space and astrophysical plasmas
NASA Astrophysics Data System (ADS)
Tonge, John William
Several plasma instabilities relevant to space physics are investigated using the parallel PIC plasma simulation code P3arsec. This thesis addresses electrostatic micro-instabilities relevant to ion ring distributions, proceeds to electromagnetic micro-instabilities pertinent to streaming plasmas, and then to the stability of a plasma held in the field of a current rod. The physical relevance of each of these instabilities is discussed, a phenomenological description is given, and analytic and simulation results are presented and compared. Instability of a magnetized plasma with a portion of the ions in a velocity ring distribution around the magnetic field is investigated using simulation and analytic theory. The physics of this distribution is relevant to solar flares, x-ray emission by comets, and pulsars. Physical parameters, including the mass ratio, are near those of a solar flare in the simulation. The simulation and analytic results show agreement in the linear regime. In the nonlinear stage the simulation shows highly accelerated electrons in agreement with the observed spectrum of x-rays emitted by solar flares. A mildly relativistic streaming electron positron plasma with no ambient magnetic field is known to be unstable to electrostatic (two-stream/beam instability) and purely electromagnetic (Weibel) modes. This instability is relevant to highly energetic interstellar phenomena, including pulsars, supernova remnants, and the early universe. It is also important for experiments in which relativistic beams penetrate a background plasma, as in fast ignitor scenarios. Cold analytic theory is presented and compared to simulations. There is good agreement in the regime where cold theory applies. The simulation and theory shows that to properly characterize the instability, directions parallel and perpendicular to propagation of the beams must be considered. A residual magnetic field is observed which may be of astro-physical significance. The stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while the current rod is much easier to analyze theoretically and realize in simulations. The stability properties of a plasma confined in a dipole field are important for understanding a variety of space phenomena and the Levitated Dipole eXperiment (LDX). Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles ∝ r-10/3. The simulations also show that the density profile will be stationary as long as density ∝ r -2 even though the temperature profile may not be stable.
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited).
Delgado-Aparicio, L F; Maddox, J; Pablant, N; Hill, K; Bitter, M; Rice, J E; Granetz, R; Hubbard, A; Irby, J; Greenwald, M; Marmar, E; Tritz, K; Stutman, D; Stratton, B; Efthimion, P
2016-11-01
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e , n Z , ΔZ eff , and n e,fast ). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.
Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, X. X.; University of Chinese Academy of Sciences, Beijing 100049; Zhong, J. Y., E-mail: jyzhong@bnu.edu.cn, E-mail: gzhao@bao.ac.cn
2016-03-15
We demonstrate a novel plasma device for magnetic reconnection, driven by Gekko XII lasers irradiating a double-turn Helmholtz capacitor-coil target. Optical probing revealed an accumulated plasma plume near the magnetic reconnection outflow. The background electron density and magnetic field were measured to be approximately 10{sup 18 }cm{sup −3} and 60 T by using Nomarski interferometry and the Faraday effect, respectively. In contrast with experiments on magnetic reconnection constructed by the Biermann battery effect, which produced high beta values, our beta value was much lower than one, which greatly extends the parameter regime of laser-driven magnetic reconnection and reveals its potential in astrophysicalmore » plasma applications.« less
Pressure profiles of plasmas confined in the field of a dipole magnet
NASA Astrophysics Data System (ADS)
Davis, Matthew Stiles
Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.
Interaction dynamics of high Reynolds number magnetized plasma flow on the CTIX plasma accelerator
NASA Astrophysics Data System (ADS)
Howard, Stephen James
The Compact Toroid Injection eXperiment, (CTIX), is a coaxial railgun that forms and accelerates magnetized plasma rings called compact toroids (CT's). CTIX consists of a pair of cylindrical coaxial electrodes with the region between them kept at high vacuum (2 m long, 15 cm outer diameter). Hydrogen is typically the dominant constituent of the CT plasma, however helium can also be used. The railgun effect that accelerates the CT can be accounted for by the Lorentz j x B force density created by the power input from a capacitor bank of roughly a Giga-Watt peak. The final velocity of the CT can be as high as 300 km/s, with an acceleration of about 3 billion times Earth's gravity. The compact toroid is able to withstand these forces because of a large internal magnetic field of about 1 Tesla. Understanding the nature of high speed flow of a magnetized plasma has been the primary challenge of this work. In this dissertation we will explore a sequence of fundamental questions regarding the plasma physics of CTIX. First we will go over some new results about the structure and dynamics of the compact toroid's magnetic field, and its electrical resistivity. Then we will present the results from a sequence of key experiments involving reconnection/compression and thermalization of the plasma during interaction of the CT with target magnetic fields of various geometries. Next, we look at the Doppler shift of a spectral line of the He II ion as a measurement of plasma velocity, and to gain insight into the ionization physics of helium in our plasma. These preliminary experiments provide the background for our primary experimental tool for investigating turbulence, a technique called Gas Puff Imaging (GPI) in which a cloud of helium can be used to enhance plasma brightness, allowing plasma density fluctuations to be imaged. We will conclude with an analysis of the images that show coherent density waves, as well as the transition to turbulence during the interaction with a wire target perturbation.
NASA Astrophysics Data System (ADS)
Danehkar, A.
2018-06-01
Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.
Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi
We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data ofmore » the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.« less
NASA Astrophysics Data System (ADS)
Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens
1995-03-01
The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
NASA Astrophysics Data System (ADS)
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.; Schaeffer, D. B.; Bondarenko, A. S.; Tripathi, S. K. P.; Van Compernolle, B.; Vincena, S.; Constantin, C. G.; Niemann, C.; Winske, D.
2018-03-01
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions were observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. We compared measurements to 2D hybrid simulations of the experiment.
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.; ...
2018-03-01
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions weremore » observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. To conclude, we compared measurements to 2D hybrid simulations of the experiment.« less
Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuer, P. V.; Weidl, M. S.; Dorst, R. S.
Collisionless coupling between super Alfvénic ions and an ambient plasma parallel to a background magnetic field is mediated by a set of electromagnetic ion/ion-beam instabilities including the resonant right hand instability (RHI). To study this coupling and its role in parallel shock formation, a new experimental configuration at the University of California, Los Angeles utilizes high-energy and high-repetition-rate lasers to create a super-Alfvénic field-aligned debris plasma within an ambient plasma in the Large Plasma Device. We used a time-resolved fluorescence monochromator and an array of Langmuir probes to characterize the laser plasma velocity distribution and density. The debris ions weremore » observed to be sufficiently super-Alfvénic and dense to excite the RHI. Measurements with magnetic flux probes exhibited a right-hand circularly polarized frequency chirp consistent with the excitation of the RHI near the laser target. To conclude, we compared measurements to 2D hybrid simulations of the experiment.« less
Modeling Laser-Plasma Interactions in a Magnetized Plasma
NASA Astrophysics Data System (ADS)
Los, Eva; Strozzi, D. J.; Chapman, T.; Farmer, W. A.; Cohen, B. I.
2017-10-01
We consider how laser-plasma interactions, namely stimulated Raman and Brillouin scattering, develop in the presence of a background magnetic field. Externally-launched waves in magnetized plasma have been studied in magnetic fusion devices for several decades, with relatively little work on their parametric decay. The topic has received scant attention in the laser-plasma and high-energy-density fields, but is becoming timely. The MagLIF pulsed-power scheme relies on an imposed axial field and laser-preheat [S. Slutz et al., Phys. Rev. Lett. 2012]. Imposing a field on a hohlraum to reduce hotspot losses has also been proposed [L. J. Perkins et al., Phys. Plasmas 2013]. We consider how the field affects the linear light waves in a plasma, e.g. by decoupling the left- and right- circular polarizations (Faraday rotation). Parametric instability growth rates are presented, as functions of plasma conditions, field strength, and geometry. The scattered-light spectrum, which is routinely measured, is also found. Work performed under auspices of US DoE by LLNL under Contract DE-AC52-07NA27344.
Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena
NASA Astrophysics Data System (ADS)
Ryutov, Livermore, Ca 94550, Usa, D. D.
2017-10-01
The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.
Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background
Floerchinger, Stefan; Martinez, Mauricio
2015-12-11
Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. Here, we examine how the time evolution of linear perturbations depends on the equation of statemore » as well as on shear viscosity, bulk viscosity, and heat conductivity for modes with different azimuthal, radial, and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.« less
Space-plasma campaign on UCLA's Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Koepke, M. E.; Finnegan, S. M.; Knudsen, D. J.; Vincena, S.
2007-05-01
Knudsen [JGR, 1996] describes a potential role for stationary Alfvén (StA) waves in auroral arcs' frequency dependence. Magnetized plasmas are predicted to support electromagnetic perturbations that are static in a fixed frame if there is uniform background plasma convection. These stationary waves should not be confused with standing waves that oscillate in time with a fixed, spatially varying envelope. Stationary waves have no time variation in the fixed frame. In the drifting frame, there is an apparent time dependence as plasma convects past fixed electromagnetic structures. We describe early results from an experimental campaign to reproduce in the lab the basic conditions necessary for the creation of StA waves, namely quasi-steady-state convection across magnetic field-aligned current channels. We show that an off-axis, fixed channel of electron current (and depleted density) is created in the Large Plasma Device Upgrade (LAPD) at UCLA, using a small, heated, oxide-coated electrode at one plasma-column end and we show that the larger plasma column rotates about its cylindrical axis from a radial electric field imposed by a special termination electrode on the same end. Initial experimentation with plasma-rotation-inducing termination electrodes began in May 2006 in the West Virginia Q Machine, leading to two designs that, in January 2007, were tested in LAPD. The radial profile of azimuthal velocity was consistent with predictions of rigid-body rotation. Current-channel experiments in LAPD, in August 2006, showed that inertial Alfvén waves could be concentrated in an off-axis channel of electron current and depleted plasma density. These experimental results will be presented and discussed. This research is supported by DOE and NSF.
Datte, P. S.; Ross, J. S.; Froula, D. H.; ...
2016-09-21
Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datte, P. S.; Ross, J. S.; Froula, D. H.
Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less
Surface Charging in the Auroral Zone on the DMSP Spacecraft in LEO
NASA Astrophysics Data System (ADS)
Anderson, Phillip C.
1998-11-01
A recent anomaly on the DMSP F13 spacecraft was attributed to an electrical malfunction caused by an electrostatic discharge on the vehicle associated with surface charging. It occurred during an intense energetic electron precipitation event (an auroral arc) within a region of very low plasma density in the auroral zone. A study of 1.5 year's worth of DMSP data from three satellites acquired during the recent minimum in the solar cycle has shown that such charging was a common occurrence with 704 charging events found. This is the result of significantly reduced background plasma densities associated with the solar minimum; smaller than ever previously experienced by the DMSP spacecraft. At times, the spacecraft charged for periods of 10s of seconds as they skimmed along an auroral arc instead of cutting across it. We show examples of the observed plasma density and the precipitating electron and ion spectra associated with the charging, and the MLT distribution and the seasonal distribution of the events. The preponderance of events occurred in the premidnight and morning sectors with two types of electron spectra being observed: a sharply peaked distribution indicative of field-aligned acceleration in the premidnight sector and a very hard distribution in the morning sector.
Dependence of electron beam instability growth rates on the beam-plasma system parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strangeway, R.J.
1982-02-01
Electron beam instabilites are studied by using a simple model for an electron beam streaming through a cold plasma, the beam being of finite width perpendicular to the ambient magnetic field. Through considerations of finite geometry and the coldness of the beam and background plasma, an instability similar to the two stream instability is assumed to be the means for wave growth in the system. Having found the maximum growth rate for one set of beam-plasma system parameters, this maximum growth rate is traced as these parameters are varied. The parameters that describe the system are the beam velocity (v/submore » b/), electron gyrofrequency to ambient electron plasma frequency ratio (..cap omega../sub e//..omega../sub p/e), the beam to background number density ratio (n/sub b//n/sub a/), and the beam width (a). When ..cap omega../sub e//..omega../sub p/e>1, a mode with ..cap omega../sub e/<..omega..<..omega../sub u/hr is found to be unstable, where ..cap omega.. is the wave frequency and ..omega../sub u/hr is the upper hybrid resonance frequency. For low values of n/sub b//n/sub a/ and ..cap omega../sub e/<..omega../sub p/e, this mode is still present with ..omega../sub p/e<..omega..<..omega../sub u/hr. If the beam density is large, n/sub b//n/sub a/approx. =1, the instability occures for frequencies just above the electron gyrofrequency. This mode may well be that observed in laboratory plasma before the system undergoes the beam-plasma discharge. There is another instability present, which occurs for ..omega..approx. =..omega../sub p/e. The growth rates for this mode, which are generally larger than those found for the ..omega..approx. =..omega..uhr mode, are only weakly dependent on ..cap omega../sub d//..omega../sub p/e. That this mode is not always observed in the laboratory implies that some factors not considered in the present theory suppress this mode, specifically, finite beam length.« less
Electron-acoustic solitary waves in dense quantum electron-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, A. P.; Shukla, P. K.; Bhowmik, C.
2007-08-15
A quantum hydrodynamic (QHD) model is used to investigate the propagation characteristics of nonlinear electron-acoustic solitary waves (EASWs) in a dense quantum plasma whose constituents are two groups of electrons: one inertial cold electrons and other inertialess hot electrons, and the stationary ions which form the neutralizing background. By using the standard reductive perturbation technique, a Kadomtsev-Petviashvili (KP) equation, which governs the dynamics of EASWs, is derived in both spherical and cylindrical geometry. The effects of cold electrons and the density correlations due to quantum fluctuations on the profiles of the amplitudes and widths of the solitary structures are examinedmore » numerically. The nondimensional parameter {delta}=n{sub c0}/n{sub h0}, which is the equilibrium density ratio of the cold to hot electron component, is shown to play a vital role in the formation of both bright and dark solitons. It is also found that the angular dependence of the physical quantities and the presence of cold electrons in a quantum plasma lead to the coexistence of some new interesting novel solitary structures quite distinctive from the classical ones.« less
Influence of Atmospheric Pressure and Composition on LIBS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatch, Jeremy J.; Scott, Jill R.; Effenberger, A. J. Jr.
2014-03-01
Most LIBS experiments are conducted at standard atmospheric pressure in air. However, there are LIBS studies that vary the pressure and composition of the gas. These studies have provided insights into fundamentals of the mechanisms that lead to the emission and methods for improving the quality of LIBS spectra. These atmospheric studies are difficult because the effects of pressure and gas composition and interconnected, making interpretation of the results difficult. The influence of pressures below and above 760 Torr have been explored. Performing LIBS on a surface at reduced pressures (<760 Torr) can result in enhanced spectra due to highermore » resolution, increased intensity, improved signal-to-noise (S/N), and increased ablation. Lower pressures produce increased resolution because the line width in LIBS spectra is predominantly due to Stark and Doppler broadening. Stark broadening is primarily caused from collisions between electrons and atoms, while Doppler broadening is proportional to the plasma temperature. Close examination using a high resolution spectrometer reveals that spectra show significant peak broadening and self-absorption as pressures increase, especially for pressures >760 Torr. During LIBS plasma expansion, energy is lost to the surrounding atmosphere, which reduces the lifetime of the laser plasma. Therefore, reducing the pressure increases the lifetime of the plasma, allowing more light from the laser plasma to be collected; thus, increasing the observed signal intensity. However, if pressures are too low (<10 Torr), then there is a steep drop in LIBS spectral intensity. This loss in intensity is mostly due to a disordered plasma that results from the lack of sufficient atmosphere to provide adequate confinement. At reduced pressures, the plasma expands into a less dense atmosphere, which results in a less dense shock wave. The reduced density in the shock wave results in reduced plasma shielding, allowing more photons to reach the sample. Increasing the number of photons interacting with the sample surface results in increased ablation, which can lead to increased intensity. The composition of the background gas has been shown to greatly influence the observed LIBS spectra by altering the plasma temperature, electron density, mass removal, and plasma shielding that impact the emission intensity and peak resolution. It has been reported that atmospheric Ar results in the highest plasma temperature and electron density, while a He atmosphere results in the lowest plasma temperatures and electron density. Studying temporal data, it was also found that Ar had the slowest decay of both electron density and plasma temperature, while He had the fastest decay in both parameters. The higher plasma temperature and electron density results in an increase in line broadenin, or poor resolution, for Ar compared to He. A rapidly developing LIBS plasma with a sufficient amount of electrons can absorb a significant portion of the laser pulse through inverse Bremsstahlung. Ar (15.8 eV ) is more easily ionized than He (24.4 eV). The breakdown threshold for He at 760 Torr is approximately 3 times greater than Ar and approximately 5 times greater at 100 Torr. The lower breakdown threshold in Ar, compared to He, creates an environment favorable for plasma shielding, which reduces sample vaporization and leads to a weaker LIBS signal.« less
Simulation of radial expansion of an electron beam injected into a background plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1989-01-01
A 2-D electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Characteristics of TIDs in Antarctic Peninsula region from HF and GNSS observations
NASA Astrophysics Data System (ADS)
Paznukhov, V.; Groves, K. M.; Yampolski, Y.; Sopin, A.; Zalizovski, A.; Kascheev, S. B.; Kashcheyev, A.; Kraemer, K.
2017-12-01
Data-acquisition system for coherent HF sounding of the ionosphere has been operating in Antarctic Peninsula since the summer of 2015. HF radar with sounding frequencies from 2 to 6 MHz operates in oblique and vertical sounding modes between Palmer (USA) and Vernadsky (Ukraine) Antarctic stations. The system is built on software defined radio USRP N210. Temporal variations of the ionospherically reflected HF signal parameters on this quasi-vertical radio paths are used for deriving TID characteristics with Frequency and Angular (FAS) technique. The observed climatology of ionospheric disturbances in Antarctic Peninsula region varies significantly through the analyzed period of 2015-2016 and appears to be mainly controlled by background plasma density and neutral wind direction. The most frequently observed periods of the disturbances range from about 20 min to almost an hour, with typical velocities of the order of 100-300 m/s, and spatial scales of several hundreds of kilometers. Analysis of the data shows that during the nighttime, TIDs are observed only about 30%, while during the daytime they were typically observed 70-80% of the time. The intensities of the daytime TIDs are also higher by almost a factor of 2. During the winter period disturbances are present mostly during the day time. During the summer part of the year, disturbances are present for the most part of the day, characterized by somewhat lower velocities and are absent near the minimum of the local plasma density of the ionosphere. The exact mechanism for such pattern and the role of the solar terminator needs further investigation, but it is clear that the main controlling factor is the background plasma density. The first results of the TID propagation direction analysis indicate that during the geomagnetically quiet time propagation direction varies through the day and follows the direction opposite to the background neutral wind flow. This is most likely the effect of the wind filtering of the gravity waves in the lower atmosphere which is the main source of the disturbances during the geomagnetically quiet periods.
NASA Astrophysics Data System (ADS)
Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2018-04-01
Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.
NASA Astrophysics Data System (ADS)
Weilacher, F.; Radha, P. B.; Forrest, C.
2018-04-01
Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium-tritium (D-T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. It is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D-D and D-T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D-D reaction, whereas they insignificantly influence the inferred D-T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. This code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryaev, F.; Slemzin, V.; Vainshtein, L.
2014-02-01
Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ☉}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 Rmore » {sub ☉}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ☉}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ☉} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ☉} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ≳ 2 R {sub ☉}.« less
Method of high-precision microsampled blood and plasma mass densitometry
NASA Technical Reports Server (NTRS)
Hinghofer-Szalkay, H.
1986-01-01
The reliability of the mechanical oscillator technique for blood and plasma density measurements on samples of volumes less than 0.1 ml is examined, and a precision of 0.001 g/l is found if plasma-isodensic heparin solution and siliconized densitometers are employed. Sources of measurement errors in the density determinations include storage of plasma samples, inhomogeneity of blood samples, and density reading before adequate temperature equilibration. In tests of plasma sample storage, the best reproducibility was obtained with samples kept at 4 C. Linear correlations were found between plasma density and plasma protein concentration, blood density and blood hemoglobin concentration, and erythrocyte density and MCHC.
JET disruption studies in support of ITER
NASA Astrophysics Data System (ADS)
Riccardo, V.; Arnoux, G.; Cahyna, P.; Hender, T. C.; Huber, A.; Jachmich, S.; Kiptily, V.; Koslowski, R.; Krlin, L.; Lehnen, M.; Loarte, A.; Nardon, E.; Paprok, R.; Tskhakaya (Sr, D.; contributors, JET-EFDA
2010-12-01
Plasma disruptions affect plasma-facing and structural components of tokamaks due to electromechanical forces, thermal loads and generation of high energy runaway electrons (REs). Asymmetries in poloidal halo and toroidal plasma current can now be routinely measured in four positions 90° apart. Their assessment is used to validate the design of the ITER vessel support system and its in-vessel components. The challenge of disruption thermal loads comes from both the short duration over which a large energy has to be lost and the potential for asymmetries. The focus of this paper will be on localized heat loads. Resonant magnetic perturbations failed to reduce the generation of REs in JET. An explanation of the limitations applying to these attempts is offered together with a minimum guideline. The REs generated by a moderate, but fast, Ar injection in limiter plasmas show evidence of milder and more efficient losses due to the high Ar background density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasyev, V. I.; Goncharov, P. R., E-mail: p.goncharov@spbstu.ru; Mironov, M. I.
2015-12-15
Results of numerical simulation of signals from neutral particle analyzers under injection of the heating and diagnostic neutral beams in different operating modes of the ITER tokamak are presented. The distribution functions of fast ions in plasma are simulated, and the corresponding neutral particle fluxes escaping from the plasma along the line of sight of the analyzers are calculated. It is shown that the injection of heating deuterium (D{sup 0}) beams results in the appearance of an intense background signal hampering measurements of the ratio between the densities of deuterium and tritium fuel ions in plasma in the thermal energymore » range. The injection of a diagnostic hydrogen (H{sup 0}) beam does not affect measurements owing to the high mass resolution of the analyzers.« less
Effect of ion-neutral collisions on the evolution of kinetic Alfvén waves in plasmas
NASA Astrophysics Data System (ADS)
Goyal, R.; Sharma, R. P.
2018-03-01
This paper studies the effect of ion-neutral collisions on the propagation of kinetic Alfvén waves (KAWs) in inhomogeneous magnetized plasma. The inhomogeneity in the plasma imposed by background density in a direction transverse as well as parallel to the ambient magnetic field plays a vital role in the localization process. The mass loading of ions takes place due to their collisions with neutral fluid leading to the damping of the KAWs. Numerical analysis of linear KAWs in inhomogeneous magnetized plasma is done for a fixed finite frequency taking into consideration the ion-neutral collisions. There is a prominent effect of collisional damping on the wave localization, wave magnetic field, and frequency spectrum. A semi-analytical technique has been employed to study the magnetic field amplitude decay process and the effect of wave frequency in the range of ion cyclotron frequency on the propagation of waves leading to damping.
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e, n Z, ΔZ eff, and n e,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well asmore » transient levels of metal contributions. As a result, this technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.« less
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; ...
2016-11-14
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e, n Z, ΔZ eff, and n e,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well asmore » transient levels of metal contributions. As a result, this technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.« less
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Khazanov, George; Liemohn, M. W.; Stone, N. H.; Coffey, V. N.
1997-01-01
In the auroral region, simultaneous occurrences of upward-flowing ions and field-aligned electrons have been observed by the Viking satellite. The occurrence is strongly correlated with large amplitude low frequency fluctuations of the electric field. Large-amplitude shear Alfven waves have also been observed by sounding rockets in the auroral ionosphere. When such LF waves are propagating in a plasma, a ponderomotive force and other types of waves are produced which may lead to significant effects on the plasma. This force is directed toward decreasing density, providing the electromagnetic lift of the background plasma and an increase of collisionless plasma expansion. We find that even for modest wave strengths, the influence on the outflowing oxygen ions can be dramatic, increasing the high-altitude density by orders of magnitude. It is also demonstrated that large-amplitude low-frequency waves (LFW) may generate lower hybrid waves (LHW) in the auroral zone. The excitation of LHW by a LF wave may lead to the appearance of an additional channel of energy transfer from, for example, Alfven or fast magnetosonic waves, to particles. This process then influences the formation of the plasma distribution function at the expense of acceleration in the tail of the distribution during the collapse of the LHW. The ion energization due to the LHW can be comparable with that produced by the ponderomotive force of the LFW. It is shown that the LH turbulence leads to equalization of the ponderomotive acceleration of the different ion species. The mechanism of LHW excitation due to the oxygen ion relative drift in a plasma subjected to low-frequency waves is used for analysis of Viking satellite data for events in the cusp/cleft region. It is found that, in some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed.
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
On the scaling of avaloids and turbulence with the average density approaching the density limit
NASA Astrophysics Data System (ADS)
Antar, G. Y.; Counsell, G.; Ahn, J.-W.
2005-08-01
This article is dedicated to the characterization of turbulent transport in the scrape-off layer of the Mega Ampère Spherical Tokamak [A. Sykes et al., Phys. Plasmas 8, 2101 (2001)] as a function of the average density (nL). The aim is to answer a renewed interest in this subject since the bursty character of turbulence in the scrape-off layer was shown to be caused by large-scale events with high radial velocity reaching about 1/10th of the sound speed called avaloids [G. Antar et al., Phys. Rev. Lett 87, 065001 (2001)]. With increasing density, turbulence and transport increase nonlinearly at the midplane while remaining almost unchanged in the target region. Using various and complementary statistical analyses, the existence of a "critical" density, at nL/nG≃0.35 is emphasized; nG is the Greenwald density. Both above and below this density, intermittency decreases and avaloids play a decreasing role in the particle radial transport. This is interpreted as caused by the interplay between avaloids and the surrounding turbulent structures which mix them more efficiently with increasing density as the level of the background turbulence increases. The scaling of the different quantities with respect to the normalized density is obtained. It reveals that not only the level of turbulence and transport increase, but also the radial velocity and length scales. This increases the coupling between the hot plasma edge and the cold scrape-off layer that may explain the disruptive instability occurring at high densities.
Ding, R.; Rudakov, D. L.; Stangeby, P. C.; ...
2017-03-24
Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. We have investigated different methods such as electrical biasing and local gas injection to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducingmore » the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH 4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. The inter-ELM W erosion we measured in H-mode plasmas, rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.« less
NASA Astrophysics Data System (ADS)
Sands, Brian; Ganguly, Biswa
2011-10-01
For plasma processing applications of streamer-like atmospheric pressure plasma jets generated in a dielectric capillary, we have demonstrated that an admixture of Ar to the He gas flow greatly increases the lifetime of energetic species in the core flow through enhanced afterglow production of Ar 1s5 metastable species. To study this effect in more detail, we have used a closed-cell plasma jet that allows control over the background gas pressure and composition. We used a 20 ns risetime positive unipolar voltage pulse for excitation. A He flow with a 0-30% Ar admixture was studied using time-resolved emission and tunable diode laser absorption spectroscopy of the Ar 1s5 and He 23S metastable states. Nitrogen was used as the background gas. In pure He and pure Ar gases the He and Ar metastables respectively are produced in the first ~100 ns only in the active discharge. With Ar added to the He gas flow, He metastables produced in the active discharge are quickly quenched via Penning ionization of Ar while Ar 1s5 is enhanced over 1-2 μs in the afterglow, increasing the number density as high as 1013/cc and extending the effective lifetime up to 10 μs. This implies that He heavy particle kinetics are a key driver of enhanced afterglow plasma chemistry in plasma jets with rare gas mixtures.
Correlations and sum rules in a half-space for a quantum two-dimensional one-component plasma
NASA Astrophysics Data System (ADS)
Jancovici, B.; Šamaj, L.
2007-05-01
This paper is the continuation of a previous one (Šamaj and Jancovici, 2007 J. Stat. Mech. P02002); for a nearly classical quantum fluid in a half-space bounded by a plain plane hard wall (no image forces), we had generalized the Wigner Kirkwood expansion of the equilibrium statistical quantities in powers of Planck's constant \\hbar . As a model system for a more detailed study, we consider the quantum two-dimensional one-component plasma: a system of charged particles of one species, interacting through the logarithmic Coulomb potential in two dimensions, in a uniformly charged background of opposite sign, such that the total charge vanishes. The corresponding classical system is exactly solvable in a variety of geometries, including the present one of a half-plane, when βe2 = 2, where β is the inverse temperature and e is the charge of a particle: all the classical n-body densities are known. In the present paper, we have calculated the expansions of the quantum density profile and truncated two-body density up to order \\hbar ^2 (instead of only to order \\hbar as in the previous paper). These expansions involve the classical n-body densities up to n = 4; thus we obtain exact expressions for these quantum expansions in this special case. For the quantum one-component plasma, two sum rules involving the truncated two-body density (and, for one of them, the density profile) have been derived, a long time ago, by using heuristic macroscopic arguments: one sum rule concerns the asymptotic form along the wall of the truncated two-body density; the other one concerns the dipole moment of the structure factor. In the two-dimensional case at βe2 = 2, we now have explicit expressions up to order \\hbar^2 for these two quantum densities; thus we can microscopically check the sum rules at this order. The checks are positive, reinforcing the idea that the sum rules are correct.
Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.
Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M
1992-09-11
Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.
Turbulence experiments on the PKU Plasma Test (PPT) device
NASA Astrophysics Data System (ADS)
Xu, Tianchao; Xiao, Chijie; Yang, Xiaoyi; Chen, Yihang; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The PKU Plasma Test (PPT) device is a linear plasma device in Peking University, China. It has a vacuum chamber with 1000mm length and 500mm diameter. A pair of Helmholtz coils can generate toroidal magnetic field up to 2000 Gauss, and plasma was generated by a helicon source. Probes and fast camera were used to diagnose the parameters and got the turbulence spectrums, coherent structure, etc. The dynamics of turbulence, coherent structure and parameter profiles have been analyzed, and it has been found that the turbulence states are related to the equilibrium profiles; Some coherent structures exist and show strongly interactions with the background turbulences; The spatial and temporal evolutions of these coherent structures are related to the amplitude of the density gradient and electric field. These results will help on further studies of plasma transport. This work was supported by the National Natural Science Foundation of China under 11575014 and 11375053, CHINA MOST under 2012YQ030142 and ITER-CHINA program 2015GB120001.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.
2018-05-01
Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.
NASA Astrophysics Data System (ADS)
Kong, Linghan; Wang, Weizong; Murphy, Anthony B.; Xia, Guangqing
2017-04-01
Microdischarges are an important type of plasma discharge that possess several unique characteristics, such as the presence of a stable glow discharge, high plasma density and intense excimer radiation, leading to several potential applications. The intense and controllable gas heating within the extremely small dimensions of microdischarges has been exploited in micro-thruster technologies by incorporating a micro-nozzle to generate the thrust. This kind of micro-thruster has a significantly improved specific impulse performance compared to conventional cold gas thrusters, and can meet the requirements arising from the emerging development and application of micro-spacecraft. In this paper, we performed a self-consistent 2D particle-in-cell simulation, with a Monte Carlo collision model, of a microdischarge operating in a prototype micro-plasma thruster with a hollow cylinder geometry and a divergent micro-nozzle. The model takes into account the thermionic electron emission including the Schottky effect, the secondary electron emission due to cathode bombardment by the plasma ions, several different collision processes, and a non-uniform argon background gas density in the cathode-anode gap. Results in the high-pressure (several hundreds of Torr), high-current (mA) operating regime showing the behavior of the plasma density, potential distribution, and energy flux towards the hollow cathode and anode are presented and discussed. In addition, the results of simulations showing the effect of different argon gas pressures, cathode material work function and discharge voltage on the operation of the microdischarge thruster are presented. Our calculated properties are compared with experimental data under similar conditions and qualitative and quantitative agreements are reached.
Discharge dynamics and plasma density recovery by on/off switches of additional gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul
2016-06-15
Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less
Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.
2016-01-01
The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor
The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less
Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor
2017-01-01
The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity. PMID:28272450
Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor
2017-03-08
The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less
NASA Astrophysics Data System (ADS)
Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor
2017-03-01
The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.
Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas
NASA Astrophysics Data System (ADS)
Helal, Yaser H.
Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption signal was used to calculate absolute densities and temperatures of polar species. Measurements of molecular species were demonstrated for inductively coupled plasmas.
Alfven waves in spiral interplanetary field
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1973-01-01
A theoretical study is presented of the Alfven waves in the spiral interplanetary magnetic field. The Alfven waves under consideration are arbitrary, large amplitude, non-monochromatic, microscale waves of any polarization. They superpose on a mesoscale background flow of thermally anisotropic plasma. Using WKB approximation, an analytical solution for the amplitude vectors is obtained as a function of the background flow properties: density, velocity, Alfven speed, thermal anisotropy, and the spiral angel. The necessary condition for the validity of the WKB solution is discussed. The intensity of fluctuations is calculated as a function of heliocentric distance. Relative intensity of fluctuations as compared with the magnitude of the background field has its maximum in the region near l au. Thus outside of this region, the solar wind is less turbulent.
Monitoring nanoparticle synthesis in a carbon arc discharge environment, in situ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrani, James
This work presents experimental and theoretical studies of gas-phase synthesis of fullerenes and carbon nanoparticles in the presence of an atmospheric-pressure, arc discharge plasma. Carbon arc discharges have been used for synthesizing carbon nanotubes for over 25 years, and have the potential for economically synthesizing industrial-scale quantities of fullerenes. However, the efficiency and selectivity of fullerene synthesis with carbon arc discharges are quite low. Optimizing carbon arc discharges for fullerene synthesis requires a thorough understanding of the dynamics behind gas-phase nanoparticle synthesis in the presence of an arc discharge plasma. We built a carbon arc discharge setup to study nanoparticlemore » and fullerene synthesis. The laser-induced incandescence (LII) diagnostic was applied for monitoring nanoparticle synthesis, in situ. The LII diagnostic had previously been applied as a combustion diagnostic for in situ measurements of concentrations and sizes of soot particles in flame environments. Prior to the present study, it had never been applied for studying fullerenes, nor had it been applied to study nanoparticles in the presence of an atmospheric-pressure plasma. Therefore, experiments were designed that allowed for the calibration of the LII diagnostic with research-grade, arc-synthesized soot particles and carbon nanotubes. Additionally, the theory and models underpinning the LII diagnostic were adapted to include the presence of an atmospheric-pressure, arc-discharge plasma. Results presented in this work confirm the ability of the LII diagnostic to measure sizes of arc-synthesized nanoparticles in situ, and show the spatial location of high densities of arc-synthesized nanoparticles with respect to the arc discharge plasma. Determining the spatial location of nanoparticle synthesis and growth is crucial for understanding the background conditions (e.g. background gas temperature, electron densities ...) in which nanoparticles nucleate and grow in the arc discharge environment. Future work would involve combining the LII diagnostic with other laser-based diagnostics (e.g. Rayleigh scattering, laser-induced fluorescence) for a more comprehensive study of gas-phase nanoparticle synthesis and investigating fundamental basic-science questions related to low temperature plasma physics, and laser-nanoparticle interactions.« less
Monitoring Nanoparticle Synthesis in a Carbon Arc Discharge Environment, In Situ
NASA Astrophysics Data System (ADS)
Mitrani, James
This work presents experimental and theoretical studies of gas-phase synthesis of fullerenes and carbon nanoparticles in the presence of an atmospheric-pressure, arc discharge plasma. Carbon arc discharges have been used for synthesizing carbon nanotubes for over 25 years, and have the potential for economically synthesizing industrial-scale quantities of fullerenes. However, the efficiency and selectivity of fullerene synthesis with carbon arc discharges are quite low. Optimizing carbon arc discharges for fullerene synthesis requires a thorough understanding of the dynamics behind gas-phase nanoparticle synthesis in the presence of an arc discharge plasma. We built a carbon arc discharge setup to study nanoparticle and fullerene synthesis. The laser-induced incandescence (LII) diagnostic was applied for monitoring nanoparticle synthesis, in situ. The LII diagnostic had previously been applied as a combustion diagnostic for in situ measurements of concentrations and sizes of soot particles in flame environments. Prior to the present study, it had never been applied for studying fullerenes, nor had it been applied to study nanoparticles in the presence of an atmospheric-pressure plasma. Therefore, experiments were designed that allowed for the calibration of the LII diagnostic with research-grade, arc-synthesized soot particles and carbon nanotubes. Additionally, the theory and models underpinning the LII diagnostic were adapted to include the presence of an atmospheric-pressure, arc-discharge plasma. Results presented in this work confirm the ability of the LII diagnostic to measure sizes of arc-synthesized nanoparticles in situ, and show the spatial location of high densities of arc-synthesized nanoparticles with respect to the arc discharge plasma. Determining the spatial location of nanoparticle synthesis and growth is crucial for understanding the background conditions (e.g. background gas temperature, electron densities ...) in which nanoparticles nucleate and grow in the arc discharge environment. Future work would involve combining the LII diagnostic with other laser-based diagnostics (e.g. Rayleigh scattering, laser-induced fluorescence) for a more comprehensive study of gas-phase nanoparticle synthesis and investigating fundamental basic-science questions related to low temperature plasma physics, and laser-nanoparticle interactions.
Waves generated in the plasma plume of helicon magnetic nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen
2013-03-15
Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of themore » plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.« less
Faraday Rotation as a Probe of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Kooi, J. E.; Spangler, S. R.; Kassim, N. E.
2016-12-01
Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun that play an important role in space weather. Although CMEs have been an active field of research since their discovery in the 1970s, there is still much to understand about the plasma structure of CMEs. Faraday rotation (FR) is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma such as a CME. FR observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch. We made sensitive Very Large Array (VLA) full-polarization observations in August, 2012, using 1 — 2 GHz frequencies of a "constellation" of radio sources through the solar corona at heliocentric distances that ranged from 6 — 15 solar radii. Of the nine sources observed, three were occulted by CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. (1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the LASCO/C3 instrument to determine the Thomson scattering brightness, BT, providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation. A constant density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on BT and FR. The single flux rope model successfully reproduces the observed BT and FR profiles for two sources. The third source (0843+1547) was occulted by two CMEs and, therefore, we modeled observations of this source using two flux ropes embedded in the background corona. The two flux rope model successfully reproduces both BT and FR profiles for 0843+1547 and, in particular, the two flux rope model successfully replicates the appropriate slope in FR before and after occultation by the second CME and predicts the observed change in sign to FR > 0 at the end of the observing session. The plasma densities (6 — 22 × 103 cm-3) and axial magnetic field strengths (2 — 12 mG) inferred from our models are consistent with the modeling work of Liu et al. (2007) and Jensen et al. (2008), as well as previous CME FR observations by Bird et al. (1985). This work was supported at the University of Iowa by grant ATM09-56901.
NASA Astrophysics Data System (ADS)
Lind, F. D.; Erickson, P. J.; Bhatt, A.; Bernhardt, P. A.
2009-12-01
The Space Shuttle's Orbital Maneuvering System (OMS) engines have been used since the early days of the STS program for active ionospheric modification experiments designed to be viewed by ground based ionospheric radar systems. In 1995, the Naval Research Laboratory initiated the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) Program using dedicated Space Shuttle OMS burns scheduled through the US Department of Defense's Space Test Program. SIMPLEX objectives include generation of localized ion-acoustic turbulence and the formation of ionospheric density irregularities for injections perpendicular to the local magnetic field, creating structures which can scatter incident UHF radar signals. We discuss radar observations made during several recent SIMPLEX mid-latitude experiments conducted over the Millstone Hill incoherent scatter radar system in Westford, Massachusetts. OMS engine firings release 10 kg/s of CO2, H2, H2O, and N2 molecules which charge exchange with ambient O+ ions in the F region, producing molecular ions and long lived electron density depletions as recombination occurs with ambient electrons. Depending on the magnetic field angle, the high velocity of the injected reactive exhaust molecules relative to the background ionosphere can create longitudinal propagating ion acoustic waves with amplitudes well above normal thermal levels and stimulate a wide variety of plasma instability processes. These effects produce high radar cross section targets readily visible to the Millstone Hill system, a high power large aperture radar designed to measure very weak scatter from the quiescent background ionosphere. We will survey the plasma instability parameter space explored to date and discuss plans for future SIMPLEX observations.
Transport studies in high-performance field reversed configuration plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S., E-mail: sgupta@trialphaenergy.com; Barnes, D. C.; Dettrick, S. A.
2016-05-15
A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (butmore » with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.« less
Cosmic Ray Flux in the Presence of a Neutral Background
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, Arfin; Diaz, Abel
2007-01-01
The study of cosmic rays (CRs) is a very mature subject developed around the concept of radiative particle flux phi as a mono-variant function of energy E, that is phi = phi(E). This is based on the notion of the cosmos as being filled with cosmic radiation in the form of a collisionless exosphere of plasma. Neutrals, however, are likewise ubiquitous in space and planetary trapped-radiation belts. It will be shown that in the presence of a neutral background of density rho, flux phi is actually bivariant in energy E and rho, creating a surface phi(E,rho). This is an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present. The effect is produced by multiple scattering of charged particles off neutral and ionized atoms along with ionization loss where charged and neutral populations interact. For the harder portion of CR spectra, flux is mono-variant but at nonrelativistic energies (below approx, 350 MeV) it becomes sensitive to the presence of neutral backgrounds. The dependence of phi(E,rho) upon background neutrals is helpful in discussing the anomalous CR (ACR) flux made up of ionized components of the heliospheric neutral atmosphere.
Radiative precursors driven by converging blast waves in noble gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.
2014-03-15
A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20 km s{sup −1} blast waves through gases of densities of the order 10{sup −5} g cm{sup −3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicularmore » to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mottez, F.; Chanteur, G.; Roux, A.
1992-07-01
A two-dimensional, explicit, electrostatic particle code is used to investigate the nonlinear behavior of electrostatic ion waves generated by an ion beam flowing through a thermal ion and electron background in a strongly magnetized plasma ({omega}{sub ce} {much gt} {omega}{sub pe} where {omega}{sub ce} and {omega}{sub pe} are the electron gyrofrequency and the plasma frequency). To follow the nonlinear evolution of these ions waves, a long-lasting simulation is run with a large simulation grid: 128 {times} 512{lambda}{sub d}. Beam ions are shown to generate oblique waves. The nonlinear beatings between these oblique waves produce purely transverse waves, which leads tomore » a strong modulation of the density and of the electric potential in a direction transverse to the magnetic field. The transverse scale of these essentially field-aligned filaments is L{sub {perpendicular}} = 10 {rho}{sub i} where {rho}{sub i} is the ion Larmor radius of beam ions. Within these filaments, relatively stable field-aligned density and potential structures develop. The typical size, along the magnetic field, of these structures is L{sub {parallel}} = 10 {lambda}{sub d}, the density is modulated by 30%, and the electric potential is as large as T{sub e} within these structures. Unlike the potential structures that develop in a two-component plasma with downgoing electrons, these structures move upward. These characteristics are in good agreement with the weak double layers recently detected by Viking.« less
Wavefront-sensor-based electron density measurements for laser-plasma accelerators.
Plateau, G R; Matlis, N H; Geddes, C G R; Gonsalves, A J; Shiraishi, S; Lin, C; van Mourik, R A; Leemans, W P
2010-03-01
Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength and hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, offer greater phase sensitivity and straightforward analysis, improving shot-to-shot plasma density diagnostics.
Wavefront-sensor-based electron density measurements for laser-plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron
2010-02-20
Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.
Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet.
Li, Na; Bai, Ya; Miao, Tianshi; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2016-10-03
Contribution of plasma oscillation to the broadband terahertz (THz) emission is revealed by interacting two-color (ω/2ω) laser pulses with a supersonic jet of nitrogen molecules. Temporal and spectral shifts of THz waves are observed as the plasma density varies. The former owes to the changing refractive index of the THz waves, and the latter correlates to the varying plasma frequency. Simulation of considering photocurrents, plasma oscillation and decaying plasma density explains the broadband THz spectrum and the varying THz spectrum. Plasma oscillation only contributes to THz waves at low plasma density owing to negligible plasma absorption. At the longer medium or higher density, the combining effects of plasma oscillation and absorption results in the observed low-frequency broadband THz spectra.
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kegong; Wu, Yuchi; Zhu, Bin
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less
NASA Astrophysics Data System (ADS)
Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.
2018-02-01
We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.
Effects of chemical releases by the STS-3 Orbiter on the ionosphere
NASA Technical Reports Server (NTRS)
Pickett, J. S.; Murphy, G. B.; Kurth, W. S.; Goertz, C. K.; Shawhan, S. D.
1983-01-01
The Plasma Diagnostics Package, flown aboard STS-3 as part of the first Shuttle payload (OSS-1), recorded the effects of various chemical releases from the Orbiter. Changes in the plasma environment was observed during flash evaporator system releases, water dumps and maneuvering thruster operations. During flash evaporator operations, broadband Orbiter-generated electrostatic noise was enhanced and plasma density irregularities were observed to increase by 3 to 30 times with a spectrum which rose steeply and peaked below 6 Hz. In the case of water dumps, background electrostatic noise was enhanced at frequencies below about 3 kHz and suppressed at frequencies above 2 kHz. Thruster activity also stimulated electrostatic noise with a spectrum which peaked at approximately 0.5 kHz. In addition, ions with energies up to 1 keV were seen during some thruster events.
NASA Astrophysics Data System (ADS)
Thompson, Derek S.; Keniley, Shane; Curreli, Davide; Henriquez, Miguel F.; Caron, David D.; Jemiolo, Andrew J.; McLaughlin, Jacob W.; Dufor, Mikal T.; Neal, Luke A.; Scime, Earl E.; Siddiqui, M. Umair
2017-10-01
We present progress toward the first paired 3D laser induced fluorescence measurements of ion and neutral velocity distribution functions (I/NVDFs) in a magnetized plasma boundary. These measurements are performed in the presheath region of an absorbing boundary immersed in a background magnetic field that is obliquely incident to the boundary surface (ψ =74°). Parallel and perpendicular flow measurements demonstrate that cross-field ion flows occur and that ions within several gyro-radii of the surface are accelerated in the E-> × B-> direction. We present electrostatic probe measurements of electron temperature, plasma density, and electric potential in the same region. Ion, neutral and electron measurements are compared to Boltzmann simulations, allowing direct comparison between measured and theoretical distribution functions in the boundary region. NSF PHYS 1360278.
NASA Technical Reports Server (NTRS)
Kouznetsov, Igor; Lotko, William
1995-01-01
The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the fast mode cutoff that exists at larger radial distances.
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.
2013-01-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive magnetic dipole and low oceanic shell conductivity).
NASA Astrophysics Data System (ADS)
Chen, Xingyao; Kontar, Eduard P.; Yu, Sijie; Yan, Yihua; Huang, Jing; Tan, Baolin
2018-03-01
Solar radio type III bursts are believed to be the most sensitive signatures of near-relativistic electron beam propagation in the corona. A solar radio type IIIb-III pair burst with fine frequency structures, observed by the Low Frequency Array (LOFAR) with high temporal (∼10 ms) and spectral (12.5 kHz) resolutions at 30–80 MHz, is presented. The observations show that the type III burst consists of many striae, which have a frequency scale of about 0.1 MHz in both the fundamental (plasma) and the harmonic (double plasma) emission. We investigate the effects of background density fluctuations based on the observation of striae structure to estimate the density perturbation in the solar corona. It is found that the spectral index of the density fluctuation spectrum is about ‑1.7, and the characteristic spatial scale of the density perturbation is around 700 km. This spectral index is very close to a Kolmogorov turbulence spectral index of ‑5/3, consistent with a turbulent cascade. This fact indicates that the coronal turbulence may play the important role of modulating the time structures of solar radio type III bursts, and the fine structure of radio type III bursts could provide a useful and unique tool to diagnose the turbulence in the solar corona.
Large ionospheric disturbances produced by the HAARP HF facility
NASA Astrophysics Data System (ADS)
Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; McCarrick, Mike; Michell, Robert G.
2016-07-01
The enormous transmitter power, fully programmable antenna array, and agile frequency generation of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska have allowed the production of unprecedented disturbances in the ionosphere. Using both pencil beams and conical (or twisted) beam transmissions, artificial ionization clouds have been generated near the second, third, fourth, and sixth harmonics of the electron gyrofrequency. The conical beam has been used to sustain these clouds for up to 5 h as opposed to less than 30 min durations produced using pencil beams. The largest density plasma clouds have been produced at the highest harmonic transmissions. Satellite radio transmissions at 253 MHz from the National Research Laboratory TACSat4 communications experiment have been severely disturbed by propagating through artificial plasma regions. The scintillation levels for UHF waves passing through artificial ionization clouds from HAARP are typically 16 dB. This is much larger than previously reported scintillations at other HF facilities which have been limited to 3 dB or less. The goals of future HAARP experiments should be to build on these discoveries to sustain plasma densities larger than that of the background ionosphere for use as ionospheric reflectors of radio signals.
Full PIC simulations of solar radio emission
NASA Astrophysics Data System (ADS)
Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.
2017-12-01
Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.
A Thomson scattering diagnostic on the Pegasus Toroidal experiment.
Schlossberg, D J; Schoenbeck, N L; Dowd, A S; Fonck, R J; Moritz, J I; Thome, K E; Winz, G R
2012-10-01
By exploiting advances in high-energy pulsed lasers, volume phase holographic diffraction gratings, and image intensified CCD cameras, a new Thomson scattering system has been designed to operate from 532 - 592 nm on the Pegasus Toroidal Experiment. The system uses a frequency-doubled, Q-switched Nd:YAG laser operating with an energy of 2 J at 532 nm and a pulse duration of 7 ns FWHM. The beam path is < 7m, the beam diameter remains ≤ 3 mm throughout the plasma, and the beam dump and optical baffling is located in vacuum but can be removed for maintenance by closing a gate valve. A custom lens system collects scattered photons from 15 cm < R(maj) < 85 cm at ~F∕6 with 14 mm radial resolution. Initial measurements will be made at 12 spatial locations with 12 simultaneous background measurements at corresponding locations. The estimated signal at the machine-side collection optics is ~3.5 × 10(4) photons for plasma densities of 10(19) m(-3). Typical plasmas measured will range from densities of mid-10(18) to mid-10(19) m(-3) with electron temperatures from 10 to 1000 eV.
NASA Astrophysics Data System (ADS)
Idris, Nasrullah; Pardede, Marincan; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On
2018-05-01
We report the result of an experimental study that shows the remarkable benefits of generating a micro shock wave plasma by low energy (800 μJ) nanosecond (ns) Nd:YAG laser irradiation on a solid target in open air and the efficient detection of the induced plasma emission. The very low irradiation power density of 0.8 MW/cm2 produced by the slightly defocused laser beam gives the additional advantage of rather wide crater size of 400 μm on the sample surface, thus enabling average analysis and reducing the ion production responsible for the undesirable emission background as well as the Stark broadening effect, and thus leading to largely improved spectral quality. This is corroborated by the result of spectra measured from a number of metal samples which display the sharp emission lines with low background. Specifically, its application to Cr analysis of a series of low alloy steel samples with different Cr concentrations is shown to yield a linear calibration line of adequate dynamical range and an estimated detection limit of about 10 ppm.
Martinez-Haro, Monica; Green, Andy J; Mateo, Rafael
2011-05-01
Medina lagoon in Andalusia has one of the highest densities of spent lead (Pb) shot in Europe. Blood samples from waterbirds were collected in 2006-2008 to measure Pb concentration (PbB), δ-aminolevulinic acid dehydratase (ALAD), oxidative stress biomarkers and plasma biochemistry. PbB above background levels (>20 μg/dl) was observed in 19% (n=59) of mallards (Anas platyrhynchos) and in all common pochards (Aythya ferina) (n=4), but common coots (Fulica atra) (n=37) and moorhens (Gallinula chloropus) (n=12) were all <20 μg/dl. ALAD ratio in mallards and coots decreased with PbB levels >6 μg/dl. In mallards, an inhibition of glutathione peroxidase (GPx) and an increased level of oxidized glutathione (oxGSH) in red blood cells (RBC) were associated with PbB levels >20 μg/dl. In coots, PbB levels were negatively related to vitamin A and carotenoid levels in plasma, and total glutathione in RBCs; and positively related with higher superoxide dismutase and GPx activities and % oxGSH in RBCs. Overall, the results indicate that previously assumed background levels of PbB for birds need to be revised. Copyright © 2011 Elsevier Inc. All rights reserved.
Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses
Hartig, K. C.; Colgan, J.; Kilcrease, D. P.; ...
2015-07-30
Here, we report on a laser-induced breakdown spectroscopy (LIBS) experiment driven by mid-infrared (2.05-μm) fs pulses, in which time-resolved emission spectra of copper were studied. Ab-initio modeling is consistent with the results of new fs measurements at 2.05 μm and traditional 800-nm fs-LIBS. Ablation by mid-infrared fs pulses results in a plasma with a lower plasma density and temperature compared to fs-LIBS performed at shorter laser wavelength. LIBS driven by mid-infrared fs pulses results in a signal-to-background ratio ~50% greater and a signal-to-noise ratio ~40% lower than fs-LIBS at near-infrared laser wavelength.
Küster, Alice; Guignard, Nadia; Alexandre–Gouabau, Marie-Cécile; Darmaun, Dominique; Robins, Richard J.
2012-01-01
Background Adequate foetal growth is primarily determined by nutrient availability, which is dependent on placental nutrient transport and foetal metabolism. We have used 1H nuclear magnetic resonance (NMR) spectroscopy to probe the metabolic adaptations associated with premature birth. Methodology The metabolic profile in 1H NMR spectra of plasma taken immediately after birth from umbilical vein, umbilical artery and maternal blood were recorded for mothers delivering very-low-birth-weight (VLBW) or normo-ponderal full-term (FT) neonates. Principal Findings Clear distinctions between maternal and cord plasma of all samples were observed by principal component analysis (PCA). Levels of amino acids, glucose, and albumin-lysyl in cord plasma exceeded those in maternal plasma, whereas lipoproteins (notably low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) and lipid levels were lower in cord plasma from both VLBW and FT neonates. The metabolic signature of mothers delivering VLBW infants included decreased levels of acetate and increased levels of lipids, pyruvate, glutamine, valine and threonine. Decreased levels of lipoproteins glucose, pyruvate and albumin-lysyl and increased levels of glutamine were characteristic of cord blood (both arterial and venous) from VLBW infants, along with a decrease in levels of several amino acids in arterial cord blood. Conclusion These results show that, because of its characteristics and simple non-invasive mode of collection, cord plasma is particularly suited for metabolomic analysis even in VLBW infants and provides new insights into the materno-foetal nutrient exchange in preterm infants. PMID:22291897
Design of a novel high efficiency antenna for helicon plasma sources
NASA Astrophysics Data System (ADS)
Fazelpour, S.; Chakhmachi, A.; Iraji, D.
2018-06-01
A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.
NASA Astrophysics Data System (ADS)
Totsuji, Hiroo
2008-07-01
The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.
Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere
Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun
2015-01-01
By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH wavesmore » can be localized in different locations along the field line.« less
Directional power absorption in helicon plasma sources excited by a half-helix antenna
NASA Astrophysics Data System (ADS)
Afsharmanesh, Mohsen; Habibi, Morteza
2017-10-01
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 {{MHz}}. The simulations were carried out by means of a code, HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from {10}11 {{{cm}}}-3 to {10}13 {{{cm}}}-3. The magnetic field was 200, 400, 600 and 1000 {{G}}. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece-Gould (TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile. Power deposition was considerably asymmetric when the \\tfrac{n}{{B}0} ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately {n}0={10}11 {{{cm}}}-3, irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was {10}12 {{{cm}}}-3. The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.
Plasma ignition and steady state simulations of the Linac4 H- ion source
NASA Astrophysics Data System (ADS)
Mattei, S.; Ohta, M.; Yasumoto, M.; Hatayama, A.; Lettry, J.; Grudiev, A.
2014-02-01
The RF heating of the plasma in the Linac4 H- ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.
Canonical angular momentum compression near the Brillouin limit
NASA Astrophysics Data System (ADS)
Jeong, E.; Gilson, E.; Fajans, J.
2000-10-01
Near the Brillouin limit, the angular momentum of a trapped, T=0, pure-electron plasma approaches zero. If the plasma expands axially, its density would appear to drop. However, the plasma's canonical angular momentum is not changed by an axial expansion, so the plasma must stay near the Brillouin limit; thus the plasma's density cannot change when it is expanded. The only way for the plasma density to remain constant as the plasma length increases is for the plasma radius to decrease. Dynamically, this decrease is caused by the polarization drift induced by a small decrease in the density. In this poster we present preliminary experimental evidence demonstrating this radial compression. This work was supported by the ONR.
Two families of astrophysical diverging lens models
NASA Astrophysics Data System (ADS)
Er, Xinzhong; Rogers, Adam
2018-03-01
In the standard gravitational lensing scenario, rays from a background source are bent in the direction of a foreground lensing mass distribution. Diverging lens behaviour produces deflections in the opposite sense to gravitational lensing, and is also of astrophysical interest. In fact, diverging lensing due to compact distributions of plasma has been proposed as an explanation for the extreme scattering events that produce frequency-dependent dimming of extragalactic radio sources, and may also be related to the refractive radio wave phenomena observed to affect the flux density of pulsars. In this work we study the behaviour of two families of astrophysical diverging lenses in the geometric optics limit, the power law, and the exponential plasma lenses. Generally, the members of these model families show distinct behaviour in terms of image formation and magnification, however the inclusion of a finite core for certain power-law lenses can produce a caustic and critical curve morphology that is similar to the well-studied Gaussian plasma lens. Both model families can produce dual radial critical curves, a novel distinction from the tangential distortion usually produced by gravitational (converging) lenses. The deflection angle and magnification of a plasma lens vary with the observational frequency, producing wavelength-dependent magnifications that alter the amplitudes and the shape of the light curves. Thus, multiwavelength observations can be used to physically constrain the distribution of the electron density in such lenses.
The optical method for investigation of the peritonitis progressing process
NASA Astrophysics Data System (ADS)
Guminetskiy, S. H.; Ushenko, O. G.; Polyanskiy, I. P.; Motrych, A. V.; Grynchuk, F. V.
2008-05-01
There have been given the results of the spectrophotometric examination of the dogs' and rats' venous and whole blood plasma taken in the process of the peritonitis progressing within the spectral interval λ = 220 - 320 nm (for plasma) and λ = 350 - 610 nm (for the whole blood). It has been defined that D-optical density values in the field of the long-waved maximum of plasma absorption intensity of the venous blood at λ = 280 nm depend upon the intensity of the inflammatory process and also upon the circumstances against the background of which it started to progress. It was found out that the dynamics of D= values changes for λ = 540 (or 570) nm in the process of the peritonitis progressing in case of the whole blood taken from a portal vein is a mirror symmetrical if to compare to the same dynamics for the blood from cava inferior. The defined conformities with regularities may have a diagnostic meaning. It was also found out that the biggest influence upon the dynamics of D-values at λ = 280nm of the venous blood plasma has the content of the circulating immune complexes, necrosis factor of α-tumors and interleukin - 2, the changes of which explain for almost on 100% the distribution of the optical density parameters and what proves a possible immunologic explanation of its changes.
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Wagner, William (Technical Monitor)
2003-01-01
Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. The goal of the proposal is to make use of ion fractions observed in situ in the solar wind to learn about both, the plasma conditions in the inner corona and the expansion and ion formation itself. This study is carried out using solar wind models, coronal observations, and ion fraction calculations in conjunction with the in situ observations.
Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)
NASA Astrophysics Data System (ADS)
Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa
2017-10-01
The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.
NASA Technical Reports Server (NTRS)
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Multiprobe characterization of plasma flows for space propulsion
NASA Astrophysics Data System (ADS)
Damba, Julius; Argente, P.; Maldonado, P. E.; Cervone, A.; Domenech-Garret, J. L.; Conde, L.
2018-02-01
Plasma engines for space propulsion generate plasma jets (also denominated plasma plumes) having supersonic ion groups with typical speeds in the order of tens of kilometers per second, which lies between electron and ion thermal speeds. Studies of the stationary plasma expansion process using a four-grid retarding field energy analyzer (RFEA), an emissive probe (EP) and a Langmuir probe (LP), all mounted on a three dimensionally (3D) displaced multiprobe structure are discussed. Specifically, the determination of plasma beam properties from the RFEA current-voltage (IV) characteristic curves is presented. The experimental results show the ion energy spectra to be essentially unchanged over 300 mm along the plasma-jet expansion axis of symmetry. The measured ion velocity distribution function (IVDF) results from the superposition of different ion groups and has two dominant populations: A low-energy group constituted of ions from the background plasma is produced by the interaction of the plasma jet with the walls of the vacuum chamber. The fast-ion population is composed of ions from the plasma beam moving at supersonic speeds with respect to the low-energy ions. The decreasing spatial profiles of the plasma-jet current density are compared with those of the low-energy ion group, which are not uniform along the axis of symmetry because of the small contributions from other ion populations with intermediate speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.; Chan, V. S.; Chiu, S. C.
2000-11-01
Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect ofmore » small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses prevent late-time electron runaway.« less
Neutral-depletion-induced axially asymmetric density in a helicon source and imparted thrust
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Takao, Yoshinori; Ando, Akira
2016-02-01
The high plasma density downstream of the source is observed to be sustained only for a few hundreds of microsecond at the initial phase of the discharge, when pulsing the radiofrequency power of a helicon plasma thruster. Measured relative density of argon neutrals inside the source implies that the neutrals are significantly depleted there. A position giving a maximum plasma density temporally moves to the upstream side of the source due to the neutral depletion and then the exhausted plasma density significantly decreases. The direct thrust measurement demonstrates that the higher thrust-to-power ratio is obtained by using only the initial phase of the high density plasma, compared with the steady-state operation.
Generating Long Scale-Length Plasma Jets Embedded in a Uniform, Multi-Tesla Magnetic-Field
NASA Astrophysics Data System (ADS)
Manuel, Mario; Kuranz, Carolyn; Rasmus, Alex; Klein, Sallee; Fein, Jeff; Belancourt, Patrick; Drake, R. P.; Pollock, Brad; Hazi, Andrew; Park, Jaebum; Williams, Jackson; Chen, Hui
2013-10-01
Collimated plasma jets emerge in many classes of astrophysical objects and are of great interest to explore in the laboratory. In many cases, these astrophysical jets exist within a background magnetic field where the magnetic pressure approaches the plasma pressure. Recent experiments performed at the Jupiter Laser Facility utilized a custom-designed solenoid to generate the multi-tesla fields necessary to achieve proper magnetization of the plasma. Time-gated interferometry, Schlieren imaging, and proton radiography were used to characterize jet evolution and collimation under varying degrees of magnetization. Experimental results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, by the National Laser User Facility Program, grant number DE-NA0000850, by the Predictive Sciences Academic Alliances Program in NNSA-ASC, grant number DEFC52-08NA28616, and by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.
Laser beat wave excitation of terahertz radiation in a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com
2014-10-15
Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasmamore » boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ∼10{sup 17 }W/cm{sup 2} at 1 μm, one obtains the THz intensity ∼1 GW/cm{sup 2} at 3 THz radiation frequency.« less
Turbulence and transport in high density, increased β LAPD plasmas
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Carter, Troy; Guice, Danny
2014-10-01
A new LaB6 cathode plasma source has recently been deployed on the Large Plasma Device (LAPD), allowing for the production of significantly higher plasma density (ne ~ 3 ×1013 cm-3) and temperature (Te ~ 12 eV and Ti ~ 6 eV). This source produces a smaller core plasma (~20cm diameter) that can be embedded in the lower temperature, lower density standard LAPD plasma (60 cm diameter, 1012 cm-3, Te ~ 5 eV, Ti ~ 1 eV). We will present first results from experiments exploring the nature of turbulence and transport produced by this high density core plasma. In contrast to the edge of the standard LAPD plasma, coherent fluctuations are observed in the edge of the high density core plasma. These coherent modes are dominant at low field (~400 G) with a transition to a more broadband spectrum at higher fields (~1 kG). The combination of increased density and temperature with lowered field in LAPD leads to significant increases in plasma β (in fact β ~ 1 can be achieved for B ~ 100 G). As the field is lowered, the strength of correlated magnetic fluctuations increases substantially.
Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2017-10-01
There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.
Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster
2014-06-01
Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weilacher, F.; Radha, P. B.; Forrest, C.
Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.« less
Weilacher, F.; Radha, P. B.; Forrest, C.
2018-04-26
Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.« less
Dusty Plasmas on the Lunar Surface
NASA Astrophysics Data System (ADS)
Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.
2006-12-01
The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment
Nonlinear gyrokinetics: a powerful tool for the description of microturbulence in magnetized plasmas
NASA Astrophysics Data System (ADS)
Krommes, John A.
2010-12-01
Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and difficulties) of deriving nonlinear gyrofluid equations suitable for rapid numerical solution—although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.
Effect of lithium in the DIII-D SOL and plasma-facing surfaces
NASA Astrophysics Data System (ADS)
Jackson, G. L.; Chrobak, C. P.; McLean, A. G.; Maingi, R.; Mansfield, D. K.; Roquemore, A. L.; Diwakar, P.; Hassanein, A.; Lietz, A.; Rudakov, D. L.; Sizyuk, T.; Tripathi, J.
2015-08-01
Lithium has been introduced into the DIII-D tokamak, and migration and retention in graphite have been characterized since no lithium was present in DIII-D initially. A new regime with an enhanced edge electron pedestal and H98y2 ⩽ 2 has been obtained with lithium. Lithium deposition was not uniform, but rather preferentially deposited near the strike points, consistent with previous 13C experiments. Edge visible lithium light (LiI) remained well above the previous background during the entire DIII-D campaign, decaying with a 2600 plasma-second e-fold, but plasma performance was only affected on the discharge with lithium injection. Lithium injection demonstrated the capability of reducing hydrogenic recycling, density, and ELM frequency. Graphite and silicon samples were exposed to a lithium-injected discharge, using the DiMES system and then removed for ex-situ analysis. The deposited lithium layer remained detectable to a depth up to 1 μm.
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Wagner, William (Technical Monitor); Esser, Ruth
2004-01-01
The scope of the investigation is to extract information on the properties of the bulk solar wind from the minor ion observations that are provided by instruments on board NASA space craft and theoretical model studies. Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. This study is carried out using solar wind models, coronal observations, and ion calculations in conjunction with the in situ observations.
Magnetic Field Fluctuations in Saturn's Magnetosphere
NASA Astrophysics Data System (ADS)
von Papen, Michael; Saur, Joachim; Alexandrova, Olga
2013-04-01
In the framework of turbulence, we analyze the statistical properties of magnetic field fluctuations measured by the Cassini spacecraft inside Saturn's plasma sheet. In the spacecraft-frame power spectra of the fluctuations we identify two power-law spectral ranges seperated by a spectral break around ion gyro-frequencies of O+ and H+. The spectral indices of the low frequency power-law are found to be between 5-3 (for fully developed cascades) and 1 (during energy input on the corresponding scales). Above the spectral break there is a constant power-law with mean spectral index ~2.5 indicating a permament turbulent cascade in the kinetic range. An increasing non-gaussian probability density with frequency indicates the build-up of intermittency. Correlations of plasma parameters with the spectral indices are examined and it is found that the power-law slope depends on background magnetic field strength and plasma beta.
Electron density and plasma dynamics of a colliding plasma experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.
2016-07-15
We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor ofmore » 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.« less
Calibrating ion density profile measurements in ion thruster beam plasma
NASA Astrophysics Data System (ADS)
Zhang, Zun; Tang, Haibin; Ren, Junxue; Zhang, Zhe; Wang, Joseph
2016-11-01
The ion thruster beam plasma is characterized by high directed ion velocity (104 m/s) and low plasma density (1015 m-3). Interpretation of measurements of such a plasma based on classical Langmuir probe theory can yield a large experimental error. This paper presents an indirect method to calibrate ion density determination in an ion thruster beam plasma using a Faraday probe, a retarding potential analyzer, and a Langmuir probe. This new method is applied to determine the plasma emitted from a 20-cm-diameter Kaufman ion thruster. The results show that the ion density calibrated by the new method can be as much as 40% less than that without any ion current density and ion velocity calibration.
NASA Astrophysics Data System (ADS)
Tooley, M. P.; Ersfeld, B.; Yoffe, S. R.; Noble, A.; Brunetti, E.; Sheng, Z. M.; Islam, M. R.; Jaroszynski, D. A.
2017-07-01
Self-injection in a laser-plasma wakefield accelerator is usually achieved by increasing the laser intensity until the threshold for injection is exceeded. Alternatively, the velocity of the bubble accelerating structure can be controlled using plasma density ramps, reducing the electron velocity required for injection. We present a model describing self-injection in the short-bunch regime for arbitrary changes in the plasma density. We derive the threshold condition for injection due to a plasma density gradient, which is confirmed using particle-in-cell simulations that demonstrate injection of subfemtosecond bunches. It is shown that the bunch charge, bunch length, and separation of bunches in a bunch train can be controlled by tailoring the plasma density profile.
Plasma distributions in meteor head echoes and implications for radar cross section interpretation
NASA Astrophysics Data System (ADS)
Marshall, Robert A.; Brown, Peter; Close, Sigrid
2017-09-01
The derivation of meteoroid masses from radar measurements requires conversion of the measured radar cross section (RCS) to meteoroid mass. Typically, this conversion passes first through an estimate of the meteor plasma density derived from the RCS. However, the conversion from RCS to meteor plasma density requires assumptions on the radial electron density distribution. We use simultaneous triple-frequency measurements of the RCS for 63 large meteor head echoes to derive estimates of the meteor plasma size and density using five different possible radial electron density distributions. By fitting these distributions to the observed meteor RCS values and estimating the goodness-of-fit, we determine that the best fit to the data is a 1 /r2 plasma distribution, i.e. the electron density decays as 1 /r2 from the center of the meteor plasma. Next, we use the derived plasma distributions to estimate the electron line density q for each meteor using each of the five distributions. We show that depending on the choice of distribution, the line density can vary by a factor of three or more. We thus argue that a best estimate for the radial plasma distribution in a meteor head echo is necessary in order to have any confidence in derived meteoroid masses.
NASA Astrophysics Data System (ADS)
Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William
2017-10-01
We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Gauniyal, Rakhi
2016-01-15
The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically tomore » study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam.« less
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Kaushik; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in
2016-04-15
An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have beenmore » obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.« less
Current drive at plasma densities required for thermonuclear reactors.
Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A
2010-08-10
Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.
Statistical results from 10 years of Cassini Langmuir probe plasma measurements
NASA Astrophysics Data System (ADS)
Holmberg, M.; Shebanits, O.; Wahlund, J. E.; Morooka, M.; Andre, N.
2016-12-01
We use a new analysis method to obtain 10 years of Cassini RPWS Langmuir probe (LP) measurements to study the structure and dynamics of the inner plasma disk of Saturn. The LP plasma density measurements show good agreement with electron densities derived from the RPWS electric field power spectra and confirms and/or improves a number of previous findings about the structure of the plasma disk. E.g., the Enceladus plume is detected as a localised density maximum at the orbit of Enceladus, but the peak density of the inner plasma disk, excluding Enceladus plume passages, is located closer to 4.7 Rs. No density peaks are recorded at the orbits of the moons Mimas, Tethys, Dione, and Rhea. We confirm the previously detected plasma density dayside/nightside asymmetry, which is likely due to a particle drift in the dusk to dawn direction. Presented is also the LP result on the seasonal dependence of the plasma disk within Enceladus' orbit.
Transition from wakefield generation to soliton formation.
Holkundkar, Amol R; Brodin, Gert
2018-04-01
It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.
Impact of the Hall effect on high-energy-density plasma jets.
Gourdain, P-A; Seyler, C E
2013-01-04
Using a 1-MA, 100 ns-rise-time pulsed power generator, radial foil configurations can produce strongly collimated plasma jets. The resulting jets have electron densities on the order of 10(20) cm(-3), temperatures above 50 eV and plasma velocities on the order of 100 km/s, giving Reynolds numbers of the order of 10(3), magnetic Reynolds and Péclet numbers on the order of 1. While Hall physics does not dominate jet dynamics due to the large particle density and flow inside, it strongly impacts flows in the jet periphery where plasma density is low. As a result, Hall physics affects indirectly the geometrical shape of the jet and its density profile. The comparison between experiments and numerical simulations demonstrates that the Hall term enhances the jet density when the plasma current flows away from the jet compared to the case where the plasma current flows towards it.
A high power, high density helicon discharge for the plasma wakefield accelerator experiment AWAKE
NASA Astrophysics Data System (ADS)
Buttenschön, B.; Fahrenkamp, N.; Grulke, O.
2018-07-01
A plasma cell prototype for the plasma wakefield accelerator experiment AWAKE based on a helicon discharge is presented. In the 1 m long prototype module a multiple antenna helicon discharge with an rf power density of 100 MW m‑3 is established. Based on the helicon dispersion relation, a linear scaling of plasma density with magnetic field is observed for rf frequencies above the lower hybrid frequency, ω LH ≤ 0.8ω rf. Density profiles are highest on the device axis and show shallow radial gradients, thus providing a relatively constant plasma density in the center over a radial range of Δr ≈ 10 mm with less than 10% variation. Peak plasma densities up to 7 × 1020 m‑3 are transiently achieved with a reproducibility that is sufficient for AWAKE. The results are in good agreement with power balance calculations.
Transition from wakefield generation to soliton formation
NASA Astrophysics Data System (ADS)
Holkundkar, Amol R.; Brodin, Gert
2018-04-01
It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.
Optimizing Dense Plasma Focus Neutron Yields With Fast Gas Jets
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Stein, Elizabeth; Higginson, Drew; Kueny, Christopher; Link, Anthony; Schmidt, Andrea
2017-10-01
We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high-density jets are modeled in the large-eddy Navier-Stokes code CharlesX, which is suitable for modeling both sub-sonic and supersonic gas flow. The gas pattern, which is essentially static on z-pinch time scales, is imported from CharlesX to LSP for neutron yield predictions. Fast gas puffs allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of a subsonic jet increases relative to the background fill, we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density via super-sonic flow (also known as Mach diamonds) allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration and the necessary jet conditions for increasing neutron yield and reducing yield variability are explored. Simulations of realistic jet profiles are performed and compared to the ideal scenario. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zheng; Gohil, Punit; McKee, George R.
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Yan, Zheng; Gohil, Punit; McKee, George R.; ...
2017-09-18
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.
Multi-field plasma sandpile model in tokamaks and applications
NASA Astrophysics Data System (ADS)
Peng, X. D.; Xu, J. Q.
2016-08-01
A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.
2013-01-01
Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061
Plasma density injection and flow during coaxial helicity injection in a tokamak
NASA Astrophysics Data System (ADS)
Hooper, E. B.
2018-02-01
Whole device, resistive MHD simulations of spheromaks and tokamaks have used a large diffusion coefficient that maintains a nearly constant density throughout the device. In the present work, helicity and plasma are coinjected into a low-density plasma in a tokamak with a small diffusion coefficient. As in previous simulations [Hooper et al., Phys. Plasmas 20, 092510 (2013)], a flux bubble is formed, which expands to fill the tokamak volume. The injected plasma is non-uniform inside the bubble. The flow pattern is analyzed; when the simulation is not axisymmetric, an n = 1 mode on the surface of the bubble generates leakage of plasma into the low-density volume. Closed flux is generated following injection, as in experiments and previous simulations. The result provides a more detailed physics analysis of the injection, including density non-uniformities in the plasma that may affect its use as a startup plasma [Raman et al., Phys. Rev. Lett. 97, 175002 (2006)].
Stable solitary waves in super dense plasmas at external magnetic fields
NASA Astrophysics Data System (ADS)
Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen
2015-07-01
Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.
Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma
NASA Astrophysics Data System (ADS)
Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.
2012-12-01
The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.
Electron density measurements in STPX plasmas
NASA Astrophysics Data System (ADS)
Clark, Jerry; Williams, R.; Titus, J. B.; Mezonlin, E. D.; Akpovo, C.; Thomas, E.
2017-10-01
Diagnostics have been installed to measure the electron density of Spheromak Turbulent Physics Experiment (STPX) plasmas at Florida A. & M. University. An insertable probe, provided by Auburn University, consisting of a combination of a triple-tipped Langmuir probe and a radial array consisting of three ion saturation current / floating potential rings has been installed to measure instantaneous plasma density, temperature and plasma potential. As the ramp-up of the experimental program commences, initial electron density measurements from the triple-probe show that the electron density is on the order of 1019 particles/m3. For a passive measurement, a CO2 interferometer system has been designed and installed for measuring line-averaged densities and to corroborate the Langmuir measurements. We describe the design, calibration, and performance of these diagnostic systems on large volume STPX plasmas.
Microwave Interferometric Density Measurements of a Pulsed Helicon Source
NASA Astrophysics Data System (ADS)
Scime, Ethan; Scime, Earl; Thompson, Derek
2017-10-01
The intense rf environment of a helicon plasma source is problematic for electrostatic probe measurements of plasma density, particularly at low neutral pressures. Here we present measurements of the line-integrated plasma density in a helicon plasma source using a multi-frequency (20-40 GHz) microwave interferometer. The design of the diagnostic and the data acquisition system are presented, as well as a comparison to density profiles obtained with a moveable electrostatic probe. A parametric fit to the probe profile measurements is used to determine the peak density from the microwave density measurements. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.
Electron density measurement in gas discharge plasmas by optical and acoustic methods
NASA Astrophysics Data System (ADS)
Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-08-01
Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.
NASA Astrophysics Data System (ADS)
Amin, Saba; Bashir, Shazia; Anjum, Safia; Akram, Mahreen; Hayat, Asma; Waheed, Sadia; Iftikhar, Hina; Dawood, Assadullah; Mahmood, Khaliq
2017-08-01
Optical emission spectra of a laser induced plasma of vanadium pentoxide (V2O5) using a Nd:YAG laser (1064 nm, 10 ns) in the presence and absence of the magnetic field of 0.45 T have been investigated. The effect of the magnetic field (B) on the V2O5 plasma at various laser irradiances ranging from 0.64 GW cm-2 to 2.56 GW cm-2 is investigated while keeping the pressure of environmental gases of Ar and Ne constant at 100 Torr. The magnetic field effect on plasma parameters of V2O5 is also explored at different delay times ranging from 0 μs to 10 μs for both environmental gases of Ar and Ne at the laser irradiance of 1.28 GW cm-2. It is revealed that both the emission intensity and electron temperature of the vanadium pentoxide plasma initially increase with increasing irradiance due to the enhanced energy deposition and mass ablation rate. After achieving a certain maximum, both exhibit a decreasing trend or saturation which is attributable to the plasma shielding effect. However, the electron density shows a decreasing trend with increasing laser irradiance. This trend remains the same for both cases, i.e., in the presence and in the absence of magnetic field and for both background gases of Ar and Ne. However, it is revealed that both the electron temperature and electron density of the V2O5 plasma are significantly enhanced in the presence of the magnetic field for both environments at all laser irradiances and delay times, and more pronounced effects are observed at higher irradiances. The enhancement in plasma parameters is attributed to the confinement as well as Joule heating effects caused by magnetic field employment. The confinement of the plasma is also confirmed by the analytically calculated value of magnetic pressure β, which is smaller than plasma pressure at all irradiances and delay times, and therefore confirms the validity of magnetic confinement of the V2O5 plasma.
Relation of Plasma Lipids to Alzheimer Disease and Vascular Dementia
Reitz, Christiane; Tang, Ming-Xin; Luchsinger, Jose; Mayeux, Richard
2009-01-01
Background The relation between plasma lipid levels and Alzheimer disease (AD) and vascular dementia (VaD), and the impact of drugs to lower lipid levels remains unclear. Objective To investigate the relation between plasma lipid levels and the risk of AD and VaD and the impact of drugs to lower lipid levels on this relationship. Design and Setting Cross-sectional and prospective community-based cohort studies. Participants Random sample of 4316 Medicare recipients, 65 years and older, residing in northern Manhattan, NY. Main Outcome Measures Vascular dementia and AD according to standard criteria. Results Elevated levels of non–high-density lipoprotein (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and decreased levels of HDL-C were weak risk factors for VaD in either cross-sectional or prospective analyses. Higher levels of total cholesterol were associated with a decreased risk of incident AD after adjustment for demographics, apolipoprotein E genotype, and cardiovascular risk factors. Treatment with drugs to lower lipid levels did not change the disease risk of either disorder. Conclusions We found a weak relation between non–HDL-C, LDL-C, and HDL-C levels and the risk of VaD. Lipid levels and the use of agents to lower them do not seem to be associated with the risk of AD. PMID:15148148
Adaptive Identification and Characterization of Polar Ionization Patches
NASA Technical Reports Server (NTRS)
Coley, W. R.; Heelis, R. A.
1995-01-01
Dynamics Explorer 2 (DE 2) spacecraft data are used to detect and characterize polar cap 'ionization patches' loosely defined as large-scale (greater than 100 km) regions where the F region plasma density is significantly enhanced (approx greater than 100%) above the background level. These patches are generally believed to develop in or equatorward of the dayside cusp region and then drift in an antisunward direction over the polar cap. We have developed a flexible algorithm for the identification and characterization of these structures, as a function of scale-size and density enhancement, using data from the retarding potential analyzer, the ion drift meter, and the langmuir probe on board the DE 2 satellite. This algorithm was used to study the structure and evolution of ionization patches as they cross the polar cap. The results indicate that in the altitude region from 240 to 950 km ion density enhancements greater than a factor of 3 above the background level are relatively rare. Further, the ionization patches show a preferred horizontal scale size of 300-400 km. There exists a clear seasonal and universal time dependence to the occurrence frequency of patches with a northern hemisphere maximum centered on the winter solstice and the 1200-2000 UT interval.
Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk
NASA Astrophysics Data System (ADS)
Holmberg, M. K. G.; Shebanits, O.; Wahlund, J.-E.; Morooka, M. W.; Vigren, E.; André, N.; Garnier, P.; Persoon, A. M.; Génot, V.; Gilbert, L. K.
2017-12-01
We present statistical results from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe measurements recorded during the time interval from orbit 3 (1 February 2005) to 237 (29 June 2016). A new and improved data analysis method to obtain ion density from the Cassini LP measurements is used to study the asymmetries and modulations found in the inner plasma disk of Saturn, between 2.5 and 12 Saturn radii (1 RS=60,268 km). The structure of Saturn's plasma disk is mapped, and the plasma density peak, nmax, is shown to be located at ˜4.6 RS and not at the main neutral source region at 3.95 RS. The shift in the location of nmax is due to that the hot electron impact ionization rate peaks at ˜4.6 RS. Cassini RPWS plasma disk measurements show a solar cycle modulation. However, estimates of the change in ion density due to varying EUV flux is not large enough to describe the detected dependency, which implies that an additional mechanism, still unknown, is also affecting the plasma density in the studied region. We also present a dayside/nightside ion density asymmetry, with nightside densities up to a factor of 2 larger than on the dayside. The largest density difference is found in the radial region 4 to 5 RS. The dynamic variation in ion density increases toward Saturn, indicating an internal origin of the large density variability in the plasma disk rather than being caused by an external source origin in the outer magnetosphere.
Development of plasma cathode electron guns
NASA Astrophysics Data System (ADS)
Oks, Efim M.; Schanin, Peter M.
1999-05-01
The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.
Particle transport in DIII-D plasmas
NASA Astrophysics Data System (ADS)
Kress, Peter; Mordijck, Saskia
2017-10-01
By analyzing the plasma opacity and density evolution during the ELM cycle in DIII-D H-mode plasmas in which the amount of gas fueling was altered, we find evidence for an inward particle pinch at the plasma edge which seems to become more pronounced at higher density. Furthermore, at the plasma edge we find a correlation between the pedestal density and opacity, which measures neutral penetration depth. The changes in edge opacity during an ELM cycle were calculated by using a detailed time history of measured plasma profiles. At the same time, the density evolution during an ELM cycle was investigated. We find that if the edge density increases through an increase in gas fueling, then opacity increases and neutral fueling penetration depth decreases. We also find that density at the top of the pedestal recovers faster following an ELM when the overall density level is higher, leading to a hollow profile inside of the pedestal top. All these results indicate that there must be an inward particle pinch in the pedestal which will be crucial in the fueling of future burning plasma devices. Supported by US DOE DE-SC0007880, DIII-D Grant Number DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Powis, Andrew T.; Shneider, Mikhail N.
2018-05-01
Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.
Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source
NASA Astrophysics Data System (ADS)
Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN
2018-06-01
Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.
Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang
2014-05-01
In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.
Mode conversion at density irregularities in the LAPD
NASA Astrophysics Data System (ADS)
Kersten, Kristopher; Cattell, Cynthia; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Steve
2010-11-01
Mode conversion of electrostatic plasma oscillations to electromagnetic radiation is commonly observed in space plasmas as Type II and III radio bursts. Much theoretical work has addressed the phenomenon, but due to the transient nature and generation location of the bursts, experimental verification via in situ observation has proved difficult. The Large Plasma Device (LAPD) provides a reproducible plasma environment that can be tailored for the study of space plasma phenomena. A highly configurable axial magnetic field and flexible diagnostics make the device well suited for the study of plasma instabilities at density gradients. We present preliminary results of mode conversion studies performed at the LAPD. The studies employed an electron beam source configured to drive Langmuir waves towards high density plasma near the cathode discharge. Internal floating potential probes show the expected plasma oscillations ahead of the beam cathode, and external microwave antenna signals reveal a strong band of radiation near the plasma frequency that persists into the low density plasma afterglow.
NASA Astrophysics Data System (ADS)
Sibeck, David G.; Allen, R.; Aryan, H.; Bodewits, D.; Brandt, P.; Branduardi-Raymont, G.; Brown, G.; Carter, J. A.; Collado-Vega, Y. M.; Collier, M. R.; Connor, H. K.; Cravens, T. E.; Ezoe, Y.; Fok, M.-C.; Galeazzi, M.; Gutynska, O.; Holmström, M.; Hsieh, S.-Y.; Ishikawa, K.; Koutroumpa, D.; Kuntz, K. D.; Leutenegger, M.; Miyoshi, Y.; Porter, F. S.; Purucker, M. E.; Read, A. M.; Raeder, J.; Robertson, I. P.; Samsonov, A. A.; Sembay, S.; Snowden, S. L.; Thomas, N. E.; von Steiger, R.; Walsh, B. M.; Wing, S.
2018-06-01
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind's interaction with solar system obstacles like Earth's magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1-2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles. The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (˜1 keV) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers. Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth's exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV "lobster-eye" telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers.
Beam deviation method as a diagnostic tool for the plasma focus.
Schmidt, H; Rückle, B
1978-04-15
The application of an optical method for density measurements in cylindrical plasmas is described. The angular deviation of a probing light beam sent through a plasma is proportional to the maximum of the density in the plasma column. The deviation does not depend on the plasma dimensions; however, it is influenced to a certain degree by the density profile. The method is successfully applied to the investigation of a dense plasma focus with a time resolution of 2 nsec and a spatial resolution (in axial direction) of 2 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltanmoradi, Elmira; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir; Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19839-63113
Gigahertz electromagnetic wave scattering from an inhomogeneous collisional plasma layer with bell-like and Epstein electron density distributions is studied by the Green's function volume integral equation method to find the reflectance, transmittance, and absorbance coefficients of this inhomogeneous plasma. Also, the effects of the frequency of the electromagnetic wave, plasma parameters, such as collision frequency, electron density, and plasma thickness, and the effects of the profile of the electron density on the electromagnetic wave scattering from this plasma slab are investigated. According to the results, when the electron density, collision frequency, and plasma thickness are increased, collisional absorbance is enhanced,more » and as a result, the absorbance bandwidth of plasma is broadened. Moreover, this broadening is more evident for plasma with bell-like electron density profile. Also, the bandwidth of the frequency and the range of pressure in which plasma behaves as a good reflector are determined in this article. According to the results, the bandwidth of the frequency is decreased for thicker plasma with bell-like profile, while it does not vary for a different plasma thickness with Epstein profile. Moreover, the range of the pressure is decreased for bell-like profile in comparison with Epstein profile. Furthermore, due to the sharp inhomogeneity of the Epstein profile, the coefficients of plasma that are uniform for plasma with bell-like profile are changed for plasma with Epstein profile, and some perturbations are seen.« less
VASIMR VX-200 thruster throttling optimization from 30 to 200 kW
NASA Astrophysics Data System (ADS)
Squire, Jared; Olsen, Chris; Chang-Diaz, Franklin; Longmier, Benjamin; Ballenger, Maxwell; Carter, Mark; Glover, Tim; McCaskill, Greg
2012-10-01
The VASIMR^ VX-200 experimental plasma thruster incorporates a 40 kW helicon plasma source with a 180 kW Ion Cyclotron Heating (ICH) acceleration stage integrated in a superconducting magnet. Argon propellant mass flow is injected up to 140 mg/s. Rapid plasma start up (< 100 ms) and high pumping speed (> 10^5 liters/s) in a 150 m^3 vacuum chamber achieve performance measurements with the charge exchange mean-free-path greater than 1 m in the background neutral gas (pressure < 10-5 Torr). The thruster efficiency at 200 kW total power is 72 ± 9%, the ratio of effective jet power to input RF power, with an Isp = 4900 ± 300 seconds (flow velocity of 49 km/s), and an ion flux of 1.7 ± 0.1 x 10^21/s. The thrust increases steadily with power to 5.8 ± 0.4 N until the power is maximized and there is no indication of saturation. The plasma density near the device exit exceeds 10^18 m-3 with a power density over 5 MW/m^2. An extensive study of thruster performance, efficiency and thrust-to-power ratio, as a function of Ar propellant flow rate and ICH-to-helicon RF power ratio has been carried out over a total power range of 30 to 200 kW. Optimized throttling set points are determined. The experimental configuration and results of this study are presented.
Heliospheric current sheet and effects of its interaction with solar cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malova, H. V., E-mail: hmalova@yandex.ru; Popov, V. Yu.; Grigorenko, E. E.
2016-08-15
The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in themore » given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.« less
NASA Astrophysics Data System (ADS)
Bondarenko, Anton; Schaeffer, Derek; Everson, Erik; Vincena, Stephen; van Compernolle, Bart; Constantin, Carmen; Clark, Eric; Niemann, Christoph
2013-10-01
Emission spectroscopy is currently being utilized in order to assess collision-less momentum and energy coupling between explosive debris plasmas and ambient, magnetized background plasmas of astrophysical relevance. In recent campaigns on the Large Plasma Device (LAPD) (nelec =1012 -1013 cm-3, Telec ~ 5 eV, B0 = 200 - 400 G) utilizing the new Raptor laser facility (1053 nm, 100 J per pulse, 25 ns FWHM), laser-ablated carbon debris plasmas were generated within ambient, magnetized helium background plasmas and prominent spectral lines of carbon and helium ions were studied in high spectral (0 . 01 nm) and temporal (50 ns) resolution. Time-resolved velocity components extracted from Doppler shift measurements of the C+4 227 . 1 nm spectral line along two perpendicular axes reveal significant deceleration as the ions stream and gyrate within the helium background plasma, indicating collision-less momentum coupling. The He+1 320 . 3 nm and 468 . 6 nm spectral lines of the helium background plasma are observed to broaden and intensify in response to the carbon debris plasma, indicative of strong electric fields (Stark broadening) and energetic electrons. The experimental results are compared to 2D hybrid code simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ofman, Leon, E-mail: Leon.Ofman@nasa.gov; NASA Goddard Space Flight Center, Greenbelt, MD; Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv
Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects ofmore » background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.« less
Research progress on ionic plasmas generated in an intense hydrogen negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeiri, Y., E-mail: takeiri@nifs.ac.jp; Tsumori, K.; Nagaoka, K.
2015-04-08
Characteristics of ionic plasmas, observed in a high-density hydrogen negative ion source, are investigated with a multi-diagnostics system. The ionic plasma, which consists of hydrogen positive- and negative-ions with a significantly low-density of electrons, is generated in the ion extraction region, from which the negative ions are extracted through the plasma grid. The negative ion density, i.e., the ionic plasma density, as high as the order of 1×10{sup 17}m{sup −3}, is measured with cavity ring-down spectroscopy, while the electron density is lower than 1×10{sup 16}m{sup −3}, which is confirmed with millimeter-wave interferometer. Reduction of the negative ion density is observedmore » at the negative ion extraction, and at that time the electron flow into the ionic plasma region is observed to conserve the charge neutrality. Distribution of the plasma potential is measured in the extraction region in the direction normal to the plasma grid surface with a Langmuir probe, and the results suggest that the sheath is formed at the plasma boundary to the plasma grid to which the bias voltage is applied. The beam extraction should drive the negative ion transport in the ionic plasma across the sheath formed on the extraction surface. Larger reduction of the negative ions at the beam extraction is observed in a region above the extraction aperture on the plasma grid, which is confirmed with 2D image measurement of the Hα emission and cavity ring-down spectroscopy. The electron distribution is also measured near the plasma grid surface. These various properties observed in the ionic plasma are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C. S.; Tripathi, V. K.
An intense machining laser beam, impinged on a gas jet target, causes space periodic ionization of the gas and heats the electrons. The nonuniform plasma pressure leads to atomic density redistribution. When, after a suitable time delay, a second more intense laser pulse is launched along the periodicity wave vector q-vector, a plasma density ripple n{sub q} is instantly created, leading to resonant third harmonic generation when q=4{omega}{sub p}{sup 2}/(3{omega}c{gamma}{sub 0}), where {omega}{sub p} is the plasma frequency, {omega} is the laser frequency, and {gamma}{sub 0} is the electron Lorentz factor. The third harmonic is produced through the beating ofmore » ponderomotive force induced second harmonic density oscillations and the quiver velocity of electrons at the fundamental. The relativistic mass nonlinearity plays no role in resonant coupling. The energy conversion efficiency scales as the square of plasma density and square of depth of density ripple, and is {approx}0.2% for normalized laser amplitude a{sub o}{approx}1 in a plasma of 1% critical density with 20% density ripple. The theory explains several features of a recent experiment.« less
Flute Instability of Expanding Plasma Cloud
NASA Astrophysics Data System (ADS)
Dudnikova, Galina; Vshivkov, Vitali
2000-10-01
The expansion of plasma against a magnetized background where collisions play no role is a situation common to many plasma phenomena. The character of interaction between expanding plasma and background plasma is depending of the ratio of the expansion velocity to the ambient Alfven velocity. If the expansion speed is greater than the background Alfven speed (super-Alfvenic flows) a collisionless shock waves are formed in background plasma. It is originally think that if the expansion speed is less than Alfvenic speed (sub-Alfvenic flows) the interaction of plasma flows will be laminar in nature. However, the results of laboratory experiments and chemical releases in magnetosphere have shown the development of flute instability on the boundary of expanding plasma (Rayleigh-Taylor instability). A lot of theoretical and experimental papers have been devoted to study the Large Larmor Flute Instability (LLFI) of plasma expanding into a vacuum magnetic field. In the present paper on the base of computer simulation of plasma cloud expansion in magnetizied background plasma the regimes of development and stabilization LLFI for super- and sub-Alfvenic plasma flows are investigated. 2D hybrid numerical model is based on kinetic Vlasov equation for ions and hydrodynamic approximation for electrons. The similarity parameters characterizing the regimes of laminar flows are founded. The stabilization of LLFI takes place with the transition from sub- to super-Alfvenic plasma cloud expansion. The results of the comparision between computer simulation and laboratory simulation are described.
NASA Technical Reports Server (NTRS)
Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.
2009-01-01
DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients
The effect of the isotope on the H-mode density limit
NASA Astrophysics Data System (ADS)
Huber, A.; Wiesen, S.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Abreu, P.; Boboc, A.; Brix, M.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Guillemaut, C.; Jachmich, S.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph.; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; contributors, JET; ASDEX Upgrade Team
2017-08-01
In order to understand the mechanisms for the H-mode density limit in machines with fully metallic walls, systematic investigations of H-mode density limit plasmas in experiments with deuterium and hydrogen external gas fuelling have been performed on JET-ILW. The observed H-mode density limit on JET in D- as well as in H-plasmas demonstrates similar operation phases: the stable H-mode phase, degrading H-mode, breakdown of the H-mode with energy confinement deterioration accompanied by a dithering cycling phase, followed by the L-mode phase. The density limit is not related to an inward collapse of the hot core plasma due to an overcooling of the plasma periphery by radiation. Indeed, independently of the isotopic effect, the total radiated power stay almost constant during the H-mode phase until the H-L back transition. It was observed in D- and H-plasmas that neither detachment, nor the X-point MARFE itself do trigger the H-L transition and that they thus do not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the H-mode DL. By comparing similar discharges but fuelled with either deuterium or hydrogen, we have found that the H-mode density limit exhibits a dependence on the isotope mass: the density limit is up to 35% lower in hydrogen compared to similar deuterium plasma conditions (the obtained density limit is in agreement with the Greenwald limit for D-plasma). In addition, the density limit is nearly independent of the applied power both in deuterium or hydrogen fuelling conditions. The measured Greenwald fractions are consistent with the predictions from a theoretical model based on an MHD instability theory in the near-SOL. The JET operational domains are significantly broadened when increasing the plasma effective mass (e.g. tritium or deuterium-tritium operation), i.e. the L to H power threshold is reduced whereas the density limit for the L-mode back transition is increased.
Ionospheric scintillation observations over Kenyan region - Preliminary results
NASA Astrophysics Data System (ADS)
Olwendo, O. J.; Xiao, Yu; Ming, Ou
2016-11-01
Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.
A model for chorus associated electrostatic bursts
NASA Technical Reports Server (NTRS)
Grabbe, C. L.
1984-01-01
The linear theory of the generation of electrostatic bursts of noise by electrons trapped in chorus wave packets is developed for a finite temperature electron beam and a Maxwellian elecron and ion background. The growth rates determined qualitatively in good agreement with those obtained by previous authors from a more idealized model. Two connected instability mechanisms seem to be occurring: a beam plasma (electron-ion two-stream) instability commonly associated with intensification of the chorus power levels, and a transitional or borderline resistive medium instability commonly associated with chorus hooks. The physical reasons for the two mechanisms is discussed. In the second case electron beams are difficult to identify in the particle data. An expression is obtained for the maximum growth rate in terms of the ratios of the beam and electron thermal velocities to the beam velocity, and of the beam density to plasma density. It is anticipated that this may allow the observed peak in the electrostatic noise spectrum to be used as a diagnostic for the beam characteristics. Previously announced in STAR as N84-12832
MacDonald, M. J.; Gorkhover, T.; Bachmann, B.; ...
2016-08-08
Atomic clusters can serve as ideal model systems for exploring ultrafast (~100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally-resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities and ionization. Single shot x-ray Thomson scatterings signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. As a result, such measurements are important for understanding collective effects in laser-matter interactions on femtosecond timescales, opening new routes for the development of schemes for their ultrafast control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Gorkhover, T.
2016-11-15
Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.« less
NASA Astrophysics Data System (ADS)
Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi
2017-10-01
Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).
NASA Astrophysics Data System (ADS)
Sahai, Aakash A.
2013-10-01
Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from laser's push is controlled by the electrostatic space-charge pull by the immobile background ions. In the rest-frame of the laser, the electrostatic-potential that the ions create to balance the ponderomotive force on e-s, scales as the effective vector potential, aplasma . This potential hill, due to snowplowed e-s, co-propagating with the rising laser can reflect protons and light-ions (Relativistically Induced Transparency Acceleration, RITA). Desired proton or light-ion energies can be achieved by controlling the velocity of the snowplow, which is shown to scale inversely with the rise-time of the laser (higher energies for shorter pulses) and directly with the scale-length of the plasma density gradient. Similar acceleration can be produced by controlling the increase of the laser frequency (Chirp Induced Transparency Acceleration, ChITA). Work supported by the National Science Foundation under NSF- PHY-0936278. Also, NSF-PHY-0936266 and NSF-PHY-0903039; the US Department of Energy under DEFC02-07ER41500, DE- FG02-92ER40727 and DE-FG52-09NA29552.
NASA Astrophysics Data System (ADS)
Yan, Z.; Gohil, P.; McKee, G. R.; Eldon, D.; Grierson, B.; Rhodes, T.; Petty, C. C.
2017-12-01
Measurements of long wavelength ({{k}\\bot }{{ρ }i} < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 1019 m-3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 1019 m-3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 1019 m-3, where P LH is similar for both D and H plasmas. The increased edge fluctuations, increased flow shear, and the dual-band nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of P LH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtsu, Y., E-mail: ohtsuy@cc.saga-u.ac.jp; Matsumoto, N.; Schulze, J.
2016-03-15
Spatial structures of the electron density and temperature in ring-shaped hollow cathode capacitive rf plasma with a single narrow trench of 2 mm width have been investigated at various trench depths of D = 5, 8, 10, 12, and 15 mm. It is found that the plasma density is increased in the presence of the trench and that the radial profile of the plasma density has a peak around the narrow hollow trench near the cathode. The density becomes uniform further away from the cathode at all trench depths, whereas the electron temperature distribution remains almost uniform. The measured radial profiles of the plasmamore » density are in good agreement with a theoretical diffusion model for all the trench depths, which explains the local density increase by a local enhancement of the electron heating. Under the conditions investigated, the trench of 10 mm depth is found to result in the highest plasma density at various axial and radial positions. The results show that the radial uniformity of the plasma density at various axial positions can be improved by using structured electrodes of distinct depths rather than planar electrodes.« less
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.
2011-01-01
In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.
NASA Astrophysics Data System (ADS)
Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John
2015-09-01
Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.
NASA Astrophysics Data System (ADS)
Kartashov, I. N.; Kuzelev, M. V.; Strelkov, P. S.; Tarakanov, V. P.
2018-02-01
Dependence of the shape of a microwave pulse in a plasma relativistic microwave amplifier (PRMA) on the initial plasma electron density in the system is detected experimentally. Depending on the plasma density, fast disruption of amplification, stable operation of the amplifier during the relativistic electron beam (REB) pulse, and its delayed actuation can take place. A reduction in the output signal frequency relative to the input frequency is observed experimentally. The change in the shape of the microwave signal and the reduction in its frequency are explained by a decrease in the plasma density in the system. The dynamics of the plasma density during the REB pulse is determined qualitatively from the experimental data by using the linear theory of a PRMA with a thin-wall hollow electron beam. The processes in a PRMA are analyzed by means of the KARAT particle-in-cell code. It is shown that REB injection is accompanied by an increase in the mean energy of plasma electrons and a significant decrease in their density.
Modeling plasma-assisted growth of graphene-carbon nanotube hybrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewari, Aarti
2016-08-15
A theoretical model describing the growth of graphene-CNT hybrid in a plasma medium is presented. Using the model, the growth of carbon nanotube (CNT) on a catalyst particle and thereafter the growth of the graphene on the CNT is studied under the purview of plasma sheath and number density kinetics of different plasma species. It is found that the plasma parameter such as ion density; gas ratios and process parameter such as source power affect the CNT and graphene dimensions. The variation in growth rates of graphene and CNT under different plasma power, gas ratios, and ion densities is analyzed.more » Based on the results obtained, it can be concluded that higher hydrocarbon ion densities and gas ratios of hydrocarbon to hydrogen favor the growth of taller CNTs and graphene, respectively. In addition, the CNT tip radius reduces with hydrogen ion density and higher plasma power favors graphene with lesser thickness. The present study can help in better understanding of the graphene-CNT hybrid growth in a plasma medium.« less
Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L
2016-02-01
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
Triton burnup in plasma focus plasmas
NASA Astrophysics Data System (ADS)
Brzosko, Jan S.; Brzosko, Jan R., Jr.; Robouch, Benjamin V.; Ingrosso, Luigi
1995-04-01
Pure deuterium plasma discharge from plasma focus breeds 1.01 MeV tritons via the D(d,p)T fusion branch, which has the same cross section as the D(d,n)3He (En=2.45 MeV) fusion branch. Tritons are trapped in and collide with the background deuterium plasma, producing 14.1 MeV neutrons via the D(t,n)4He reaction. The paper presents published in preliminary form as well as unpublished experimental data and theoretical studies of the neutron yield ratio R=Yn(14.1 MeV)/Yn(2.45 MeV). The experimental data were obtained from 1 MJ Frascati plasma focus operated at W=490 kJ with pure deuterium plasma (in the early 1980s). Neutrons were monitored using the nuclear activation method and nuclear emulsions. The present theoretical analysis of the experimental data is based on an exact adaptation of the binary encounter theory developed by Gryzinski. It is found that the experimentally defined value 1ṡ10-3
Coppi, B.; Montgomery, D.B.
1973-12-11
A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)
K-shell spectroscopy of silicon ions as diagnostic for high electric fields
NASA Astrophysics Data System (ADS)
Loetzsch, R.; Jäckel, O.; Höfer, S.; Kämpfer, T.; Polz, J.; Uschmann, I.; Kaluza, M. C.; Förster, E.; Stambulchik, E.; Kroupp, E.; Maron, Y.
2012-11-01
We developed a detection scheme, capable of measuring X-ray line shape of tracer ions in μm thick layers at the rear side of a target foil irradiated by ultra intense laser pulses. We performed simulations of the effect of strong electric fields on the K-shell emission of silicon and developed a spectrometer dedicated to record this emission. The combination of a cylindrically bent crystal in von Hámos geometry and a CCD camera with its single photon counting capability allows for a high dynamic range of the instrument and background free spectra. This approach will be used in future experiments to study electric fields of the order of TV/m at high density plasmas close to solid density.
Kinetic Theory and Fast Wind Observations of the Electron Strahl
NASA Astrophysics Data System (ADS)
Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan
2017-10-01
Measurements of the electron velocity distribution function (eVDF) in the solar wind exhibit a high-energy, field-aligned beam of electrons, known as the ``strahl''. We develop a kinetic model for the strahl population, based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature, and the strength of the magnetic field decline as power-laws of the distance along a magnetic flux tube. We compare our model with the eVDF measured by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width of the strahl for the Wind data at 1 AU, in particular, the scaling of the width with particle energy and background density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Growden, Tyler A.; Fakhimi, Parastou; Berger, Paul R., E-mail: pberger@ieee.org
AlN/GaN resonant tunneling diodes grown on low dislocation density semi-insulating bulk GaN substrates via plasma-assisted molecular-beam epitaxy are reported. The devices were fabricated using a six mask level, fully isolated process. Stable room temperature negative differential resistance (NDR) was observed across the entire sample. The NDR exhibited no hysteresis, background light sensitivity, or degradation of any kind after more than 1000 continuous up-and-down voltage sweeps. The sample exhibited a ∼90% yield of operational devices which routinely displayed an average peak current density of 2.7 kA/cm{sup 2} and a peak-to-valley current ratio of ≈1.15 across different sizes.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Gilmore, Mark; Hsu, Scott C.; Fisher, Dustin M.; Lynn, Alan G.
2017-11-01
We report experimental results on the injection of a magnetized plasma jet into a transverse background magnetic field in the HelCat linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81(1), 345810104 (2015)]. After the plasma jet leaves the plasma-gun muzzle, a tension force arising from an increasing curvature of the background magnetic field induces in the jet a sheared axial-flow gradient above the theoretical kink-stabilization threshold. We observe that this emergent sheared axial flow stabilizes the n = 1 kink mode in the jet, whereas a kink instability is observed in the jet when there is no background magnetic field present.
Coupling of RF antennas to large volume helicon plasma
NASA Astrophysics Data System (ADS)
Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang
2018-04-01
Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.
Results from colliding magnetized plasma jet experiments executed at the Trident laser facility
NASA Astrophysics Data System (ADS)
Manuel, M. J.-E.; Rasmus, A. M.; Kurnaz, C. C.; Klein, S. R.; Davis, J. S.; Drake, R. P.; Montgomery, D. S.; Hsu, S. C.; Adams, C. S.; Pollock, B. B.
2015-11-01
The interaction of high-velocity plasma flows in a background magnetic field has applications in pulsed-power and fusion schemes, as well as astrophysical environments, such as accretion systems and stellar mass ejections into the magnetosphere. Experiments recently executed at the Trident Laser Facility at the Los Alamos National Laboratory investigated the effects of an expanding aluminum plasma flow into a uniform 4.5-Tesla magnetic field created using a solenoid designed and manufactured at the University of Michigan. Opposing-target experiments demonstrate interesting collisional behavior between the two magnetized flows. Preliminary interferometry and Faraday rotation measurements will be presented and discussed. This work is funded by the U.S Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under contract NAS8-03060.
Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.
1984-01-01
An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Ren, A.; Zhang, Y. S.
1991-01-01
In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.
Evaluation of pressure in a plasma produced by laser ablation of steel
NASA Astrophysics Data System (ADS)
Hermann, Jörg; Axente, Emanuel; Craciun, Valentin; Taleb, Aya; Pelascini, Frédéric
2018-05-01
We investigated the time evolution of pressure in the plume generated by laser ablation with ultraviolet nanosecond laser pulses in a near-atmospheric argon atmosphere. These conditions were previously identified to produce a plasma of properties that facilitate accurate spectroscopic diagnostics. Using steel as sample material, the present investigations benefit from the large number of reliable spectroscopic data available for iron. Recording time-resolved emission spectra with an echelle spectrometer, we were able to perform accurate measurements of electron density and temperature over a time interval from 200 ns to 12 μs. Assuming local thermodynamic equilibrium, we computed the plasma composition within the ablated vapor material and the corresponding kinetic pressure. The time evolution of plume pressure is shown to reach a minimum value below the pressure of the background gas. This indicates that the process of vapor-gas interdiffusion has a negligible influence on the plume expansion dynamics in the considered timescale. Moreover, the results promote the plasma pressure as a control parameter in calibration-free laser-induced breakdown spectroscopy.
Alpha particles diffusion due to charge changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R.
2015-12-15
Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processormore » unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.« less
Nonstationary magnetosonic wave dynamics in plasmas exhibiting collapse.
Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans
2013-08-01
In a Lagrangian fluid approach, an explicit method has been presented previously to obtain an exact nonstationary magnetosonic-type wave solution in compressible magnetized plasmas of arbitrary resistivity showing competition among hydrodynamic convection, magnetic field diffusion, and dispersion [Chakrabarti et al., Phys. Rev. Lett. 106, 145003 (2011)]. The purpose of the present work is twofold: it serves (i) to describe the physical and mathematical background of the involved magnetosonic wave dynamics in more detail, as proposed by our original Letter, and (ii) to present an alternative approach, which utilizes the Lagrangian mass variable as a new spatial coordinate [Schamel, Phys. Rep. 392, 279 (2004)]. The obtained exact nonlinear wave solutions confirm the correctness of our previous results, indicating a collapse of the magnetic field irrespective of the presence of dispersion and resistivity. The mean plasma density, on the other hand, is less singular, showing collapse only when dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas, and they are expected to be of special importance in the astrophysical context of magnetic star formation.
Time-resolved optical emission spectroscopic studies of picosecond laser produced Cr plasma
NASA Astrophysics Data System (ADS)
Rao, Kavya H.; Smijesh, N.; Klemke, N.; Philip, R.; Litvinyuk, I. V.; Sang, R. T.
2018-06-01
Time-resolved optical emission spectroscopic measurements of a plasma generated by irradiating a Cr target using 60 picosecond (ps) and 300 ps laser pulses are carried out to investigate the variation in the line width (δλ) of emission from neutrals and ions for increasing ambient pressures. Measurements ranging from 10-6 Torr to 102 Torr show a distinctly different variation in the δλ of neutrals (Cr I) compared to that of singly ionized Cr (Cr II), for both irradiations. δλ increases monotonously with pressure for Cr II, but an oscillation is evident at intermediate pressures for Cr I. This oscillation does not depend on the laser pulse widths used. In spite of the differences in the plasma formation mechanisms, it is experimentally found that there is an optimum intermediate background pressure for which δλ of neutrals drops to a minimum. Importantly, these results underline the fact that for intermediate pressures, the usual practice of calculating the plasma number density from the δλ of neutrals needs to be judiciously done, to avoid reaching inaccurate conclusions.
NASA Astrophysics Data System (ADS)
Istomin, Ya. N.; Sob'yanin, D. N.
2011-10-01
The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning—a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 1028. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).
A statistical survey of heat input parameters into the cusp thermosphere
NASA Astrophysics Data System (ADS)
Moen, J. I.; Skjaeveland, A.; Carlson, H. C.
2017-12-01
Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.
In-flight calibration of mesospheric rocket plasma probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havnes, Ove; University Studies Svalbard; Hartquist, Thomas W.
Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effectivemore » cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.« less
In-flight calibration of mesospheric rocket plasma probes.
Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E
2011-07-01
Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.
Dark energy and key physical parameters of clusters of galaxies
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Chernin, A. D.
2012-04-01
We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.
Time-dependent Cooling in Photoionized Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnat, Orly, E-mail: orlyg@phys.huji.ac.il
I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts ( z = 0 − 3), for a range of temperatures (10{sup 8}–10{sup 4} K), densities (10{sup −7}–10{sup 3} cm{sup −3}), and metallicities (10{sup −3}–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibriummore » (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).« less
Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie
2015-01-01
It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Analysis of density effects in plasmas and their influence on electron-impact cross sections
NASA Astrophysics Data System (ADS)
Belkhiri, M.; Poirier, M.
2014-12-01
Density effects in plasmas are analyzed using a Thomas-Fermi approach for free electrons. First, scaling properties are determined for the free-electron potential and density. For hydrogen-like ions, the first two terms of an analytical expansion of this potential as a function of the plasma coupling parameter are obtained. In such ions, from these properties and numerical calculations, a simple analytical fit is proposed for the plasma potential, which holds for any electron density, temperature, and atomic number, at least assuming that Maxwell-Boltzmann statistics is applicable. This allows one to analyze perturbatively the influence of the plasma potential on energies, wave functions, transition rates, and electron-impact collision rates for single-electron ions. Second, plasmas with an arbitrary charge state are considered, using a modified version of the Flexible Atomic Code (FAC) package with a plasma potential based on a Thomas-Fermi approach. Various methods for the collision cross-section calculations are reviewed. The influence of plasma density on these cross sections is analyzed in detail. Moreover, it is demonstrated that, in a given transition, the radiative and collisional-excitation rates are differently affected by the plasma density. Some analytical expressions are proposed for hydrogen-like ions in the limit where the Born or Lotz approximation applies and are compared to the numerical results from the FAC.
Measurements of Plasma Density in a Fast and Compact Plasma Focus Operating at Hundreds of Joules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavez, Cristian; Universidad de Concepcion, Facultad de Ciencias, Departamento de Fisica, Concepcion; Silva, Patricio
2006-12-04
It is known that there are plasma parameters that remain relatively constant for plasma focus facilities operating in a wide range of de energy, from 1kJ to 1MJ, such as: electron density, temperature and plasma energy density. Particularly the electron density is of the order of 1025m-3. Recently the experimental studies in plasma focus has been extended to devices operating under 1kJ, in the range of hundreds and tens of joules. In this work an optical refractive system was implemented in order to measure the electron density in a plasma focus devices of hundred of joules, PF-400J (880 nF, 30more » kV, 120 kA, 400 J, 300 ns time to peak current, dI/dt{approx}4x1011 A/s. The plasma discharge was synchronized with a pulsed Nd-YAG laser ({approx}6ns FWHM at 532nm) in order to obtain optical diagnostics as interferometry and Schlieren. An electron density of (0.9{+-}0.25)x1025m-3 was obtained at the axis of the plasma column close to the pinch time. This value is of the same order that the obtained in devices oparating in the energy range of 1kJ to 1MJ.« less
NASA Astrophysics Data System (ADS)
Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun
2015-02-01
The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.
Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.
2014-01-01
During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.
Plasma oscillations in spherical Gaussian shaped ultracold neutral plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li
2016-04-15
The collective plasma oscillations are investigated in ultracold neutral plasma with a non-uniform density profile. Instead of the plane configuration widely used, we derive the plasma oscillation equations with spherically symmetric distribution and Gaussian density profile. The damping of radial oscillation is found. The Tonks–Dattner resonances of the ultracold neutral plasma with an applied RF field are also calculated.
NASA Astrophysics Data System (ADS)
Tsujii, Naoto; Takase, Yuichi; Ejiri, Akira; Shinya, Takahiro; Yajima, Satoru; Yamazaki, Hibiki; Togashi, Hiro; Moeller, Charles P.; Roidl, Benedikt; Takahashi, Wataru; Toida, Kazuya; Yoshida, Yusuke
2017-10-01
Removal of the central solenoid is essential to realize an economical spherical tokamak fusion reactor, but non-inductive plasma start-up is a challenge. On the TST-2 spherical tokamak, non-inductive plasma start-up using lower-hybrid (LH) waves has been investigated. Using the capacitively-coupled combline (CCC) antenna installed at the outboard midplane, fully non-inductive plasma current ramp-up up to a quarter of that of the typical Ohmic discharges has been achieved. Although it was desirable to keep the density low during the plasma current ramp-up to avoid the LH density limit, it was recognized that there was a maximum current density that could be carried by a given electron density. Since the density needed to increase as the plasma current was ramped-up, the achievable plasma current was limited by the maximum operational toroidal field of TST-2. The top-launch CCC antenna was installed to access higher density with up-shift of the parallel index of refraction. Numerical analysis of LH current drive with the outboard-launch and top-launch antennas was performed and the results were qualitatively consistent with the experimental observations.
Longitudinal gas-density profilometry for plasma-wakefield acceleration targets
NASA Astrophysics Data System (ADS)
Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens
2014-03-01
Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.
High-power, kilojoule laser interactions with near-critical density plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willingale, L.; Thomas, A. G. R.; Maksimchuk, A.
Experiments were performed using the Omega EP laser, which provided pulses containing 1kJ of energy in 9ps and was used to investigate high-power, relativistic intensity laser interactions with near-critical density plasmas, created from foam targets with densities of 3-100 mg/cm{sup 3}. The effect of changing the plasma density on both the laser light transmitted through the targets and the proton beam accelerated from the interaction was investigated. Two-dimensional particle-in-cell simulations enabled the interaction dynamics and laser propagation to be studied in detail. The effect of the laser polarization and intensity in the two-dimensional simulations on the channel formation and electronmore » heating are discussed. In this regime, where the plasma density is above the critical density, but below the relativistic critical density, the channel formation speed and therefore length are inversely proportional to the plasma density, which is faster than the hole boring model prediction. A general model is developed to describe the channel length in this regime.« less
NASA Astrophysics Data System (ADS)
Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas
2014-10-01
Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., < 1 k/shot) may be achieved with excellent diagnostic access, thus enabling a rapid learning rate. After some background on PJMIF and its prospects for reactor-relevant energy gain, this poster describes the physics objectives and design of a proposed 60-gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.
NASA Astrophysics Data System (ADS)
Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico
2016-10-01
Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).
Microwave Assisted Helicon Plasmas
NASA Astrophysics Data System (ADS)
McKee, John; Caron, David; Jemiolo, Andrew; Scime, Earl
2017-10-01
The use of two (or more) rf sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f0 = 13.56 MHz. Microwaves of frequency f1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via X-mode Electron Cyclotron Heating (ECH) at the upper hybrid resonance, providing additional energy input into the electrons. The effects of this secondary-source heating on electron density, temperature, and energy distribution function are examined and compared to helicon-only single source plasmas as well as numeric models suggesting that the heating is not evenly distributed. Optical Emission Spectroscopy (OES) is used to examine the impact of the energetic tail of the electron distribution on ion and neutral species via collisional excitation. Large enhancements of neutral spectral lines are observed in both Ar and He. While small enhancement of ion lines is seen in Ar, ion lines not normally present in He are observed during microwave injection. U.S. National Science Foundation Grant No. PHY-1360278.
NASA Astrophysics Data System (ADS)
Ohta, M.; Mattei, S.; Yasumoto, M.; Hatayama, A.; Lettry, J.
2014-02-01
In the Linac4 H- ion source, the plasma is generated by an RF antenna operated at 2 MHz. In order to investigate the conditions necessary for ramping up the plasma density of the Linac4 H- ion source in the low plasma density, a numerical study has been performed for a wide range of parameter space of RF coil current and initial pressure from H2 gas injection. We have employed an Electromagnetic Particle in Cell model, in which the collision processes have been calculated by a Monte Carlo method. The results have shown that the range of initial gas pressure from 2 to 3 Pa is suitable for ramping up plasma density via inductive coupling.
Long-term stability of the Io high-temperature plasma torus
NASA Technical Reports Server (NTRS)
Moos, H. W.; Skinner, T. E.; Durrance, S. T.; Feldman, P. D.; Festou, M. C.
1985-01-01
The short wavelength camera of the International Ultraviolet Explorer satellite was used to measure S II 1256, S III 1199, semiforbidden S III 1729, and semiforbidden S IV 1406 emission from the high-temperature region of the Io plasma torus. Observations over a period of five years (1979-1984) indicate that the Io plasma parameters have relatively small variations, particularly in the case of the mixing ratio for the dominant constituent S(++), and electron temperature. A simple three-dimensional model of the plasma torus was used to obtain the ion mixing ratios and the plasma density for each observation. The results are compared with Voyager 1 data for mixing ratio (ion density divided by electron density); ionization balance; and plasma density. The results of the comparison are discussed in detail.
Density and beta limits in the Madison Symmetric Torus Reversed-Field Pinch
NASA Astrophysics Data System (ADS)
Caspary, Kyle Jonathan
Operational limits and the underlying physics are explored on the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP) using deuterium pellet fueling. The injection of a fast pellet provides a large source of fuel in the plasma edge upon impact with the vessel wall, capable of triggering density limit terminations for the full range of plasma current, up to 600 kA. As the pellet size and plasma density increase, approaching the empirical Greenwald limit, plasma degradation is observed in the form of current decay, increased magnetic activity in the edge and core, increased radiation and plasma cooling. The complete termination of the plasma is consistent with the Greenwald limit; however, a slightly smaller maximum density is observed in discharges without toroidal field reversal. The plasma beta is the ratio of the plasma pressure to the confining magnetic pressure. Beta limits are known to constrain other magnetic confinement devices, but no beta limit has yet been established on the RFP. On MST, the highest beta values are obtained in improved confinement discharges with pellet fueling. By using pellet injection to scan the plasma density during PPCD, we also achieve a scan of Ohmic input power due to the increase in plasma resistivity. We observe a factor of 3 or more increase in Ohmic power as we increase the density from 1*1019 to 3*10 19 m-3. Despite this increased Ohmic power, the electron contribution to beta is constant, suggesting a confinement limited beta for the RFP. The electrons and ions are classically well coupled in these cold, dense pellet fueled plasmas, so the increase in total beta at higher density is primarily due to the increased ion contribution. The interaction of pellet fueling and NBI heating is explored. Modeling of MST's neutral heating beam suggests an optimal density for beam power deposition of 2-3*1019 m-3. Low current, NBI heated discharges show evidence of an increased electron beta in this density range. Additionally, the fast ion population can enhance ablation as well as cause pellet deflection. Other exploratory experiments with the pellet injection system explore additional injection scenarios and expand the injector capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less
Plasma Synthesis and Sintering of Advanced Ceramics
1990-09-15
CONTENTS Page LIST OF TABLES iv OBJECTIVES 1 COLLOIDAL PLASMA PROCESSING: CONCEPTS 1 BACKGROUND 2 Ultrafine Particles 2 Colloidal Plasma 3 Particle...colloidal plasma processing of ceramics. COLLOIDAL PLASMA PROCESSING: CONCEPTS It is well known that ultrafine particles prepared in gas plasmas agglomerate...BACKGROUND Ultrafine Particles . There are well recognized advantages to using small particles in ceramic processing. The instantaneous densification
Extreme plasma states in laser-governed vacuum breakdown.
Efimenko, Evgeny S; Bashinov, Aleksei V; Bastrakov, Sergei I; Gonoskov, Arkady A; Muraviev, Alexander A; Meyerov, Iosif B; Kim, Arkady V; Sergeev, Alexander M
2018-02-05
Triggering vacuum breakdown at laser facility is expected to provide rapid electron-positron pair production for studies in laboratory astrophysics and fundamental physics. However, the density of the produced plasma may cease to increase at a relativistic critical density, when the plasma becomes opaque. Here, we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow generating plasma in a small focal volume much less than λ 3 and creating extreme plasma states in terms of density and produced currents. These states can be regarded to be a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate a possibility of reaching densities over 10 25 cm -3 , which is an order of magnitude higher than expected earlier. Controlling the process via initial target parameters provides an opportunity to reach the discovered plasma states at the upcoming laser facilities.
Probing a dusty magnetized plasma with self-excited dust-density waves
NASA Astrophysics Data System (ADS)
Tadsen, Benjamin; Greiner, Franko; Piel, Alexander
2018-03-01
A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.
Device and method for electron beam heating of a high density plasma
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow
NASA Astrophysics Data System (ADS)
Shneider, Mikhail
2014-10-01
Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.
2016-11-01
a few nanoseconds. The challenge remains to diagnose plasmas via the free electron density in this short window of time and often in a small volume ...Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...US Army Research Laboratory Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser
Device and method for imploding a microsphere with a fast liner
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner to drive the fast liner to implode a microsphere.
Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-09-01
Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.
Modeling of thermalization phenomena in coaxial plasma accelerators
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.
2018-05-01
Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.
NASA Astrophysics Data System (ADS)
Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.
2018-05-01
In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.
Measurements of neutral helium density in helicon plasmas.
Houshmandyar, Saeid; Sears, Stephanie H; Thakur, Saikat Chakraborty; Carr, Jerry; Galante, Matthew E; Scime, Earl E
2010-10-01
Laser-induced-fluorescence (LIF) is used to measure the density of helium atoms in a helicon plasma source. For a pump wavelength of 587.725 nm (vacuum) and laser injection along the magnetic field, the LIF signal exhibits a signal decrease at the Doppler shifted central wavelength. The drop in signal results from the finite optical depth of the plasma and the magnitude of the decrease is proportional to the density of excited state neutral atoms. Using Langmuir probe measurements of plasma density and electron temperature and a collisional-radiative model, the absolute ground state neutral density is calculated from the optical depth measurements. Optimal plasma performance, i.e., the largest neutral depletion on the axis of the system, is observed for antenna frequencies of 13.0 and 13.5 MHz and magnetic field strengths of 550-600 G.
Fine Structure of a Laser-Plasma Filament in Air
NASA Astrophysics Data System (ADS)
Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie
2007-04-01
The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.
Atomic oxygen behavior at downstream of AC excited atmospheric pressure He plasma jet
NASA Astrophysics Data System (ADS)
Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Sekine, Makoto; Hori, Masaru
2016-09-01
Applications of atmospheric pressure plasma jets (APPJ) have been investigated in the plasma medical fields such as cancer therapy, blood coagulation, etc. Reactive species generated by the plasma jet interacts with the biological surface. Therefore, the issue attracts much attentions to investigate the plasma effects on targets. In our group, a spot-size AC excited He APPJ have been used for the plasma medicine. From diagnostics of the APPJ using optical emission spectroscopy, the gas temperature and the electron density was estimated to be 299 K and 3.4 ×1015 cm-3. The AC excited He APPJ which affords high density plasma at room temperature is considered to be a powerful tool for the medical applications. In this study, by using vacuum ultraviolet absorption spectroscopy, the density of atomic oxygen on a floating copper as a target irradiated by the He APPJ was measured as a function of the distance between the plasma source and the copper wire. The measured density became a maximum value around 8 ×1013 cm-3 at 12 mm distance, and then decreased over the distance. It is considered that the behavior was due to the changes in the plasma density on the copper wire and influence of ambient air.
Radiative transition of hydrogen-like ions in quantum plasma
NASA Astrophysics Data System (ADS)
Hu, Hongwei; Chen, Zhanbin; Chen, Wencong
2016-12-01
At fusion plasma electron temperature and number density regimes of 1 × 103-1 × 107 K and 1 × 1028-1 × 1031/m3, respectively, the excited states and radiative transition of hydrogen-like ions in fusion plasmas are studied. The results show that quantum plasma model is more suitable to describe the fusion plasma than the Debye screening model. Relativistic correction to bound-state energies of the low-Z hydrogen-like ions is so small that it can be ignored. The transition probability decreases with plasma density, but the transition probabilities have the same order of magnitude in the same number density regime.
Brightening and Darkening of the Extended Solar Corona during the Superflares of September 2017
NASA Astrophysics Data System (ADS)
Goryaev, Farid F.; Slemzin, Vladimir A.; Rodkin, Denis G.; D’Huys, Elke; Podladchikova, O.; West, Matthew J.
2018-04-01
On 2017 September 6 and 10, the strongest X9.3 and X8.2 flares of the decade occurred in the active region NOAA Active Region 12673. During these flares, the Sun Watcher with Active Pixels and Image Processing (SWAP) telescope on board the Project for Onboard Autonomy 2 (PROBA2) satellite registered the unusual alternate brightening and darkening of the western corona at the heliocentric distances ≈1.2–1.7 R ⊙. The X9.3 flare on 2017 September 6 was accompanied by coronal brightening up to 30%–45% at distances ≈1.35–1.7 R ⊙. Numerical simulations showed that this brightening might be produced by resonant scattering of the flare radiation by the Fe IX–Fe XI ions in the coronal plasma at the temperature T ∼ 0.8–1 MK, and the densities seriously reduced in comparison with the typical values for the quiet background corona probably moving outward with velocities of 30–40 km s‑1. At the maximum of the flare and one hour later, two coronal mass ejections (CMEs) originated, which dimmed the coronal emission in the SWAP 174 Å passband above the western limb by 20%–30%. The X8.2 flare on September 10 was accompanied by a CME, which rose up and progressively dimmed the western part of the corona up to 60%. An hour later the darkening, produced by a global rearrangement of the magnetic field structure and an evacuation of a significant part of the coronal plasma, extended over the complete western limb. A differential emission measure (DEM) analysis showed a decrease in the electron density of the background plasma with T ∼ 1–2 MK at distances 1.24–1.33 R ⊙ by 2–3.5 times after the CME. At the same time, an additional DEM peak at T ≈ 0.8 MK appeared, which may be associated with an additional emission in the SWAP passband produced by the flare radiation resonantly scattered by the coronal plasma.
Plasma Disks and Rings with ``High'' Magnetic Energy Densities
NASA Astrophysics Data System (ADS)
Coppi, B.; Rousseau, F.
2006-04-01
The nonlinear theory of rotating axisymmetric thin structures in which the magnetic field energy density is comparable with the thermal plasma energy density is formulated. The only flow velocity included in the theory is the velocity of rotation around a central object whose gravity is dominant. The periodic sequence, in the radial direction, of pairs of opposite current channels that can form is shown to lead to relatively large plasma density and pressure modulations, while the relevant magnetic surfaces can acquire a ``crystal structure.'' A new class of equilibria consisting of a series of plasma rings is identified, in the regimes where the plasma pressure is comparable to the magnetic pressure associated with the fields produced by the internal currents. The possible relevance of this result to the formation of dusty plasma rings is pointed out.
Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod
NASA Astrophysics Data System (ADS)
Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.
2003-09-01
The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.
NASA Astrophysics Data System (ADS)
Garanin, Sergey G.; Kir'yanov, Yu F.; Kochemasov, G. G.
1990-06-01
A theoretical investigation is reported of the deformation of the density profile of a plasma by a ponderomotive force under transient conditions. Initially, the structure of the density profile near the critical point coincides exactly with the solution of the steady-state problem. Plasma expansion is accompanied by growth of a spiky instability in the form of stimulated Brillouin scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Yongpeng; Shi, Zongqian; Jia, Shenli
2015-02-15
The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay inmore » the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Ding, R.; Stangeby, P. C.
The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less
NASA Astrophysics Data System (ADS)
Govender, G.; Moolla, S.
2018-07-01
Low-frequency ion-acoustic waves are analysed on the ion time-scale, in a three-component electron-ion space plasma. The solitary waves propagate in the positive x direction relative to an ambient magnetic field ěc {B}_0 which forms static background for a configuration consisting of cool fluid ions and both warm and hot Boltzmann-distributed electrons with temperatures T_{ic}, T_{ew} and T_{eh}, respectively. We derive linear dispersion relation for the waves by introducing first-order density, pressure and velocity perturbations into the ion fluid equations. Additionally, the variation in the nonlinear structure of the waves are investigated by carrying out a full parametric analysis utilising our numerical code. Our results reveal that ion-acoustic waves exhibit well-defined nonlinear spikes at speeds of M≥ 2.25 and an electric field amplitude of E_0=0.85. It is also shown that low wave speeds (M≤ 2), higher densities of the hot electrons, antiparallel drifting of the cool fluid ions, and increased ion temperatures all lead to significant dispersive effects. The ion-acoustic plasma waves featured in this paper have forms that are consistent with those classified as the type-A and type-B broadband electrostatic noise (BEN) observed in the data obtained from earlier satellite missions.
NASA Astrophysics Data System (ADS)
Makarevich, Roman A.
2016-04-01
A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.
Nichols, J. H.; Jaworski, M. A.; Schmid, K.
2017-03-09
The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, J. H.; Jaworski, M. A.; Schmid, K.
The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less
Charlton-Menys, Valentine; Chobotova, Jelena; Durrington, Paul N
2008-01-01
Isolation of different density lipoproteins by ultracentrifugation can require lengthy centrifugation times and freeze/thawing of plasma may influence recovery. We isolated a range of lipoproteins using a preparative ultracentrifuge and the TLX micro-ultracentrifuge and determined the effect of freeze/thawing of plasma beforehand. In fresh plasma, there was no significant difference in results for small-dense low-density lipoprotein apolipoprotein B (LDL apoB) (density >1.044 g/mL) or cholesterol at density >1.006 g/mL. Freeze/thawing had no effect on closely correlated results for small-dense LDL apoB (r=0.85; p<0.0001) or high-density lipoprotein (r=0.93; p<0.0001). The TLX micro-ultracentrifuge is a reliable alternative to the preparative ultracentrifuge and freeze/thawing has only a small effect on small-dense LDL apoB or high-density lipoprotein cholesterol.
Surface density of accumulated electrons on walls in contact with a plasma
NASA Technical Reports Server (NTRS)
De, B. R.
1975-01-01
It is shown that the surface density of accumulated electrons on a wall in contact with a plasma can be expressed as a simple function of the Debye shielding distance in the plasma. The result may have applications to problems involving objects immersed in a space plasma.
NASA Astrophysics Data System (ADS)
Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.
2017-10-01
Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar + 0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.
Determination of plasma density from data on the ion current to cylindrical and planar probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.
2016-12-15
To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models weremore » used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.« less
High energy density Z-pinch plasmas using flow stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. Amore » sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.« less
Formation of Plasma Around a Small Meteoroid: Simulation and Theory
NASA Astrophysics Data System (ADS)
Sugar, G.; Oppenheim, M. M.; Dimant, Y. S.; Close, S.
2018-05-01
High-power large-aperture radars detect meteors by reflecting radio waves off dense plasma that surrounds a hypersonic meteoroid as it ablates in the Earth's atmosphere. If the plasma density profile around the meteoroid is known, the plasma's radar cross section can be used to estimate meteoroid properties such as mass, density, and composition. This paper presents head echo plasma density distributions obtained via two numerical simulations of a small ablating meteoroid and compares the results to an analytical solution found in Dimant and Oppenheim (2017a, https://doi.org/10.1002/2017JA023960, 2017b, https://doi.org/10.1002/2017JA023963). The first simulation allows ablated meteoroid particles to experience only a single collision to match an assumption in the analytical solution, while the second is a more realistic simulation by allowing multiple collisions. The simulation and analytical results exhibit similar plasma density distributions. At distances much less than λT, the average distance an ablated particle travels from the meteoroid before a collision with an atmospheric particle, the plasma density falls off as 1/R, where R is the distance from the meteoroid center. At distances substantially greater than λT, the plasma density profile has an angular dependence, falling off as 1/R2 directly behind the meteoroid, 1/R3 in a plane perpendicular to the meteoroid's path that contains the meteoroid center, and exp[-1.5(R/λT2/3)]/R in front of the meteoroid. When used for calculating meteoroid masses, this new plasma density model can give masses that are orders of magnitude different than masses calculated from a spherically symmetric Gaussian distribution, which has been used to calculate masses in the past.
NASA Technical Reports Server (NTRS)
Bernhardt, Paul A.; Scales, W. A.
1990-01-01
Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.
Optimization of laser-plasma injector via beam loading effects using ionization-induced injection
NASA Astrophysics Data System (ADS)
Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.
2018-05-01
Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .
Plasma density limits for hole boring by intense laser pulses.
Iwata, Natsumi; Kojima, Sadaoki; Sentoku, Yasuhiko; Hata, Masayasu; Mima, Kunioki
2018-02-12
High-power lasers in the relativistic intensity regime with multi-picosecond pulse durations are available in many laboratories around the world. Laser pulses at these intensities reach giga-bar level radiation pressures, which can push the plasma critical surface where laser light is reflected. This process is referred to as the laser hole boring (HB), which is critical for plasma heating, hence essential for laser-based applications. Here we derive the limit density for HB, which is the maximum plasma density the laser can reach, as a function of laser intensity. The time scale for when the laser pulse reaches the limit density is also derived. These theories are confirmed by a series of particle-in-cell simulations. After reaching the limit density, the plasma starts to blowout back toward the laser, and is accompanied by copious superthermal electrons; therefore, the electron energy can be determined by varying the laser pulse length.
Space-dependent characterization of laser-induced plasma plume during fiber laser welding
NASA Astrophysics Data System (ADS)
Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo
2016-12-01
The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.
Electron density and gas density measurements in a millimeter-wave discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.
2016-08-15
Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal tomore » the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.« less
NASA Astrophysics Data System (ADS)
Chen, Jikun; Stender, Dieter; Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander
2013-08-01
Oxygen is one of the most commonly used background gases for pulsed laser deposition of oxide thin films. In this work the properties of a 308 nm laser-induced La0.4Ca0.6MnO3 plasma were analyzed using a quadrupole mass spectrometer combined with an energy analyzer, to investigate the interaction between the various plasma species and the background gas. The composition and kinetic energies of the plasma species were compared in vacuum and an O2 background gas at different pressures. It has been observed that the O2 background gas decreases the kinetic energy of the positively charged atomic plasma species. In addition, the interaction with the O2 background gas causes the generation of positive diatomic oxide species of LaO+, CaO+ and MnO+. The amount of negatively charged diatomic or tri-atomic oxide species decreases in the O2 background compared to vacuum, while the amount of O2- increases strongly.
Observation of 1-D time dependent non-propagating laser plasma structures using fluid and PIC codes
NASA Astrophysics Data System (ADS)
Verma, Deepa; Bera, Ratan Kumar; Kumar, Atul; Patel, Bhavesh; Das, Amita
2017-12-01
The manuscript reports the observation of time dependent localized and non-propagating structures in the coupled laser plasma system through 1-D fluid and Particle-In-Cell (PIC) simulations. It is reported that such structures form spontaneously as a result of collision amongst certain exact solitonic solutions. They are seen to survive as coherent entities for a long time up to several hundreds of plasma periods. Furthermore, it is shown that such time dependence can also be artificially recreated by significantly disturbing the delicate balance between the radiation and the density fields required for the exact non-propagating solution obtained by Esirkepov et al., JETP 68(1), 36-41 (1998). The ensuing time evolution is an interesting interplay between kinetic and field energies of the system. The electrostatic plasma oscillations are coupled with oscillations in the electromagnetic field. The inhomogeneity of the background and the relativistic nature, however, invariably produces large amplitude density perturbations leading to its wave breaking. In the fluid simulations, the signature of wave breaking can be discerned by a drop in the total energy which evidently gets lost to the grid. The PIC simulations are observed to closely follow the fluid simulations till the point of wave breaking. However, the total energy in the case of PIC simulations is seen to remain conserved throughout the simulations. At the wave breaking, the particles are observed to acquire thermal kinetic energy in the case of PIC. Interestingly, even after wave breaking, compact coherent structures with trapped radiation inside high-density peaks continue to exist both in PIC and fluid simulations. Although the time evolution does not exactly match in the two simulations as it does prior to the process of wave breaking, the time-dependent features exhibited by the remnant structures are characteristically similar.
SAMI3 Simulations of the Persistent May 1994 Plasmasphere Plume
NASA Astrophysics Data System (ADS)
Krall, J.; Huba, J.; Borovsky, J.
2017-12-01
We use the Naval Research Laboratory SAMI3 ionosphere/plasmasphere model[1] to explore the physics of a long-lived plasmasphere plume. A plasmasphere plume is a storm feature that extends the cold plasma that is normally trapped by the geomagnetic field (the plasmasphere) outward towards the bow shock. In the case of the May 1994 storm, the storm and the plume continued for 12 days. For the model storm, we imposed a Kp-driven Volland/Stern-Maynard/Chen potential [2-4]. Results are compared to measurements of the cold ion density from the 1989-046 spacecraft in geosynchronous orbit [5]. We find that many details of the observed plume are reproduced by SAMI3, but only if a background magnetosphere density is included as a boundary condition. We also find that high-speed, field aligned plasma flows contribute significantly to the observed plume density. [1] Huba, J. and J. Krall (2013), Modeling the plasmasphere with SAMI3, Geophys. Res. Lett., 40, 6-10, doi:10.1029/2012GL054300 [2] Volland, H. (1973), A semiempirical model of large-scale magnetospheric electric fields, Journal of Geophysical Research, 78, 171-180, doi:10.1029/JA078i001p00171 [3] Stern, D.P. (1975), The motion of a proton in the equatorial magnetosphere, Journal of Geophysical Research, 80, 595-599, doi:10.1029/JA080i004p00595 [4] Maynard, N.C., and A.J. Chen (1975), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, Journal of Geophysical Research, 80, 1009-1013, doi:10.1029/JA080i007p01009 [5] Borovsky, J.E., D.T. Welling, M.F. Thomsen, and M.H. Denton (2014), Long-lived plasmaspheric drainage plumes: Where does the plasma come from?, Journal of Geophysical Research: Space Physics, 119, 6496-6520, doi:10.1002/2014JA020228 Research supported by NRL base funds.
Low-Density Lipoprotein Electronegativity Is a Novel Cardiometabolic Risk Factor
Lu, Jonathan; Chen, Shu-Hua; Chen, Fang-Yu; Chen, Ching-Chu; Chen, Jeffrey L.; Elayda, MacArthur; Ballantyne, Christie M.; Shayani, Steven; Chen, Chu-Huang
2014-01-01
Background Low-density lipoprotein (LDL) plays a central role in cardiovascular disease (CVD) development. In LDL chromatographically resolved according to charge, the most electronegative subfraction–L5–is the only subfraction that induces atherogenic responses in cultured vascular cells. Furthermore, increasing evidence has shown that plasma L5 levels are elevated in individuals with high cardiovascular risk. We hypothesized that LDL electronegativity is a novel index for predicting CVD. Methods In 30 asymptomatic individuals with metabolic syndrome (MetS) and 27 healthy control subjects, we examined correlations between plasma L5 levels and the number of MetS criteria fulfilled, CVD risk factors, and CVD risk according to the Framingham risk score. Results L5 levels were significantly higher in MetS subjects than in control subjects (21.9±18.7 mg/dL vs. 11.2±10.7 mg/dL, P:0.01). The Jonckheere trend test revealed that the percent L5 of total LDL (L5%) and L5 concentration increased with the number of MetS criteria (P<0.001). L5% correlated with classic CVD risk factors, including waist circumference, body mass index, waist-to-height ratio, smoking status, blood pressure, and levels of fasting plasma glucose, triglyceride, and high-density lipoprotein. Stepwise regression analysis revealed that fasting plasma glucose level and body mass index contributed to 28% of L5% variance. The L5 concentration was associated with CVD risk and contributed to 11% of 30-year general CVD risk variance when controlling the variance of waist circumference. Conclusion Our findings show that LDL electronegativity was associated with multiple CVD risk factors and CVD risk, suggesting that the LDL electronegativity index may have the potential to be a novel index for predicting CVD. Large-scale clinical trials are warranted to test the reliability of this hypothesis and the clinical importance of the LDL electronegativity index. PMID:25203525
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
A microwave interferometer for small and tenuous plasma density measurements.
Tudisco, O; Lucca Fabris, A; Falcetta, C; Accatino, L; De Angelis, R; Manente, M; Ferri, F; Florean, M; Neri, C; Mazzotta, C; Pavarin, D; Pollastrone, F; Rocchi, G; Selmo, A; Tasinato, L; Trezzolani, F; Tuccillo, A A
2013-03-01
The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10(16) m(-3) and 10(19) m(-3)) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small (λ = 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02° has been used, corresponding to a density of 0.5 × 10(16) m(-3).
Multiple Magnetic Storm Study of the High-Altitude Redistribution of Equatorial Plasma
NASA Astrophysics Data System (ADS)
Bust, G. S.; Crowley, G.; Curtis, N.; Anderson, D.
2008-12-01
During geomagnetic storms, particularly when prompt penetration electric fields (PPE) occur, the equatorial plasma can be lifted to very high altitudes and then diffuse along magnetic field lines to higher than normal latitudes. During these cases very high plasma density (total electron content (TEC) greater than 200 TECU) can be found at these higher latitudes. Shortly after the PPE lifts the equatorial plasma to higher altitudes, at least in the US sector, phenomena known as storm-enhanced density (SED) can occur. SEDs occur in the post-noon time frame and consist of a very high density bulge that seems to occur in the southern USA and Caribbean region, followed by a narrow plume of high density plasma that flows into the high-latitude throat near local noon, and across the polar cap. An outstanding research question is: Exactly how is the high density SED plasma, particularly in the bulge related to the PPE and lifting of the equatorial plasma? Ionospheric imaging of electron density and TEC seem to show a gap in density between the poleward extent of the equatorial plasma and the equatorial extent of the SED plasma. Further, there are magnetic storm events where SEDs do not form (November 2004 as a good example). This paper will investigate the relationship between the equatorial high altitude plasma distribution during magnetic storms, and the initiation and evolution of the SED feature. We will examine eight separate storms from 2003-2006 using the ionospheric data assimilation algorithm IDA4D. In particular we will focus on time periods when LEO satellite GPS TEC data is available from CHAMP, SACC, GRACE and the COSMIC constellation (2006 and beyond). These data sets directly measure the TEC above the satellites, and therefore are good tracers of the high altitude plasma distribution. IDA4D ingests these data sets and uses them to get an improved image of the plasma density for the topside ionosphere and plasmasphere. The resulting 4D images of high altitude densities will be cross compared for the various storms and the similarities and differences will be studied and correlated with various geophysical parameters such as the interplanetary magnetic field (Bz), Dst, hemispheric power, cross cap potential, PPE, equatorial vertical drifts, and the interplanetary electric field. The overall objective is to elucidate the physical relationships that govern the redistribution of equatorial plasma during storms, and the generation and evolution of SEDs.
NASA Astrophysics Data System (ADS)
Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.
2018-02-01
Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma and for /k c ω p < 4 in linear polarized plasma. Therefore, the shear stress and density gradient tend to stabilize the Weibel instability for /k c ω p < 4 in linear polarized plasma. Also, the shear stress and density gradient tend to stabilize the Weibel instability for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.
Dense simple plasmas as high-temperature liquid simple metals
NASA Technical Reports Server (NTRS)
Perrot, F.
1990-01-01
The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.
X-Ray Shadowing Experiments Toward Infrared Dark Clouds
NASA Technical Reports Server (NTRS)
Anderson, L. E.; Snowden, S.; Bania, T. M.
2009-01-01
We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.
Stabilization of beam-weibel instability by equilibrium density ripples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, S. K., E-mail: nishfeb@gmail.com; Kaw, Predhiman; Das, A.
In this paper, we present an approach to achieve suppression/complete stabilization of the transverse electromagnetic beam Weibel instability in counter streaming electron beams by modifying the background plasma with an equilibrium density ripple, shorter than the skin depth; this weakening is more pronounced when thermal effects are included. On the basis of a linear two stream fluid model, it is shown that the growth rate of transverse electromagnetic instabilities can be reduced to zero value provided certain threshold values for ripple parameters are exceeded. We point out the relevance of the work to recent experimental investigations on sustained (long length)more » collimation of fast electron beams and integral beam transport for laser induced fast ignition schemes, where beam divergence is suppressed with the assistance of carbon nano-tubes.« less
Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field
NASA Astrophysics Data System (ADS)
Zhang, Yue
2017-10-01
A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation under Grant No. AST-0613577 and the Army Research Office under Award No. W911NF1510480. This work performed in collaboration with D. Fisher, A. G. Lynn, M Gilmore, and S. C. Hsu.
NASA Astrophysics Data System (ADS)
Shneider, Mikhail N.
2017-10-01
The ponderomotive perturbation in the interaction region of laser radiation with a low density and low-temperature plasma is considered. Estimates of the perturbation magnitude are determined from the plasma parameters, geometry, intensity, and wavelength of laser radiation. It is shown that ponderomotive perturbations can lead to large errors in the electron density when measured using Thomson scattering.
Studies of small scale irregularities in the cusp ionosphere using sounding rockets: recent results
NASA Astrophysics Data System (ADS)
Spicher, A.; Ilyasov, A. A.; Miloch, W. J.; Chernyshov, A. A.; Moen, J.; Clausen, L. B. N.; Saito, Y.
2017-12-01
Plasma irregularities occurring over many scale sizes are common in the ionosphere. Understanding and characterizing the phenomena responsible for these irregularities is not only important from a theoretical point of view, but also in the context of space weather, as the irregularities can disturb HF communication and Global Navigation Satellite Systems signals. Overall, research about the small-scale turbulence has not progressed as fast for polar regions as for the equatorial ones, and for the high latitude ionosphere there is still no agreement nor detailed explanation regarding the formation of irregularities. To investigate plasma structuring at small scales in the cusp ionosphere, we use high resolution measurements from the Investigation of Cusp Irregularities (ICI) sounding rockets, and investigate a region associated with density enhancements and a region characterized by flow shears. Using the ICI-2 electron density data, we give further evidence of the importance of the gradient drift instability for plasma structuring inside the polar cap. In particular, using higher-order statistics, we provide new insights into the nature of the resulting plasma structures and show that they are characterized by intermittency. Using the ICI-3 data, we show that the entire region associated with a reversed flow event (RFE), with the presence of meter-scale irregularities, several flow shears and particle precipitation, is highly structured. By performing a numerical stability analysis, we show that the inhomogeneous-energy-density-driven instability (IEDDI) may be active in relation to RFEs at the rocket's altitude. In particular, we show that the presence of particle precipitation decreases the growth rates of IEDDI and, using a Local Intermittency Measure, we observe a correlation between IEDDI growth rates and electric field fluctuations over several scales. These findings support the view that large-scale inhomogeneities may provide a background for the development of micro-scale instabilities. Such interplay between macro- and micro-processes might be an important mechanism for the development of small-scale plasma gradients, and as a source for ion heating in the cusp ionosphere.
Presheath and Double Layer Structures in an Argon Helicon Plasma Source
NASA Astrophysics Data System (ADS)
Siddiqui, M. Umair
Ion velocities and temperatures, plasma density, potential, and electron temperatures are measured in a 13.56 MHz helicon produced argon plasma upstream from a grounded plate inside a 10 cm ID cylindrical Pyrex vacuum chamber. The plate is held at psi = 0° → 60° relative to the background axial magnetic field in the system. For the psi = 0° experiment, two distinct helicon discharge equilibria are observed at 500 W rf power, 900 G magnetic field, and a neutral pressure of 3 → 4 mTorr. Both modes exhibit a localized region of hot electrons (Th ≈ 10 eV, Tc ≈ 3.5 eV). For the first mode the hot electrons are confined by a localized potential structure and the density decreases monotonically towards the grounded plate. For the second mode the hot electrons cool off gradually in space due to heat conduction generating a downstream density peak and no major potential structures are observed. It is found that the type of discharge mode is determined by the location of the grounded plate, the length of the presheath, and the rf electron heating mechanism. For the psi = 16° → 60° plate positions, ion flow to the boundary where a 1 kG magnetic field is obliquely incident is measured at 1, 3, and 6.5 mTorr neutral pressure and 450 → 750 W rf power. The results are compared to the magnetic presheath models put forth by Chodura [Phys. Fluids 25, 1628 (1982)], Riemann [Phys. Plasmas 1, 552 (1994)], and Ahedo [Phys. Plasmas 4, 4419 (1997)]. The 1 mTorr dataset is used to benchmark a one-dimensional fluid model for the ion flow in the presheath. Definitions of the "magnetic presheath" are discussed. The fluid model in conjuction with the data show that the ion velocities in the E x B direction can be 10% → 40% percent of the sound speed for the angles investigated. Ion flow to fusion experiment boundaries and Hall thruster walls is discussed.
Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes
NASA Astrophysics Data System (ADS)
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2016-10-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.
Effect of platelet activating factor on endothelial permeability to plasma macromolecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handley, D.A.; Arbeeny, C.M.; Lee, M.L.
The effect of intrajugular administration of platelet activating factor (PAF-C16) on vascular permeability was examined in the guinea pig. To examine the loss of selective endothelial permeability, the extravasative effect of PAF was assessed by monitoring hemoconcentration and the plasma loss of /sup 125/I-albumin (6.7 nm), /sup 125/I-low density lipoproteins (22.0 nm) or /sup 125/I-very low density lipoproteins (62.1 nm). Extravasation was dose-dependent and began 1 min after PAF administration, continuing for 5-7 min. During extravasation, there was no evidence for selective plasma retention of any of the labeled plasma tracers, as measured by plasma radioactivity. These results suggest thatmore » PAF-induced extravasation is dose-dependent, with increases in vascular permeability sufficient to permit similar plasma efflux rates of albumin, low density lipoproteins and very low density lipoproteins.« less
Investigation of surface boundary conditions for continuum modeling of RF plasmas
NASA Astrophysics Data System (ADS)
Wilson, A.; Shotorban, B.
2018-05-01
This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.
Mode conversion in cold low-density plasma with a sheared magnetic field
Dodin, I. Y.; Ruiz, D. E.; Kubo, S.
2017-12-19
Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less
Choksawangkarn, Waeowalee; Kim, Sung-Kyoung; Cannon, Joe R.; Edwards, Nathan J.; Lee, Sang Bok; Fenselau, Catherine
2013-01-01
Proteomic and other characterization of plasma membrane proteins is made difficult by their low abundance, hydrophobicity, frequent carboxylation and dynamic population. We and others have proposed that underrepresentation in LC-MS/MS analysis can be partially compensated by enriching the plasma membrane and its proteins using cationic nanoparticle pellicles. The nanoparticles increase the density of plasma membrane sheets and thus enhance separation by centrifugation from other lysed cellular components. Herein we test the hypothesis that the use of nanoparticles with increased densities can provide enhanced enrichment of plasma membrane proteins for proteomic analysis. Multiple myeloma cells were grown and coated in suspension with three different pellicles of three different densities and both pellicle coated and uncoated suspensions analyzed by high-throughput LC-MS/MS. Enrichment was evaluated by the total number and the spectral counts of identified plasma membrane proteins. PMID:23289353
Mode conversion in cold low-density plasma with a sheared magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodin, I. Y.; Ruiz, D. E.; Kubo, S.
Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less
Electrostatic Debye layer formed at a plasma-liquid interface
NASA Astrophysics Data System (ADS)
Rumbach, Paul; Clarke, Jean Pierre; Go, David B.
2017-05-01
We construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ˜1019m-3 and an electric field of ˜104V /m on the liquid side of the interface. Because our theory is based firmly on fundamental physics, we believe it can be widely applied to many emerging technologies involving the interaction of low-temperature, nonequilibrium plasma with aqueous media, including plasma medicine and various plasma chemical synthesis techniques.
The study of helicon plasma source.
Miao, Ting-Ting; Zhao, Hong-Wei; Liu, Zhan-Wen; Shang, Yong; Sun, Liang-Ting; Zhang, Xue-Zhen; Zhao, Huan-Yu
2010-02-01
Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10(13) cm(-3) have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10(-3) Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.
Chung, B H; Segrest, J P; Franklin, F
1998-12-01
As a model for the formation of beta-very low density lipoproteins (VLDL) and small, dense LDL by the intraplasma metabolic activities in vivo, lipoproteins in fresh plasma were interacted in vitro with endogenous lecithin:cholesterol acyltransferase (LCAT) and cholesterylester transfer proteins (CETP) and subsequently with purified lipoprotein lipase (LpL). The LCAT and CETP reactions in a mildly hypertriglyceridemic (HTG) plasma at 37 degrees C for 18 h resulted in (1) esterification of about 45% plasma unesterified cholesterol (UC), (2) a marked increase in cholesterylester (CE) (+129%) and a decrease in triglyceride (TG) (-45%) in VLDL, and (3) a marked increase of TG (+ 341%) with a small net decrease of CE (-3.6%) in LDL, causing a significant alteration in the TG/CE of VLDL (from 8.0 to 1.9) and of LDL (from 0.20 to 0.93). The LDL in LCAT and CETP-reacted plasma is larger and more buoyant than that in control plasma. In vitro lipolysis of control and LCAT and CETP-reacted plasma by LpL, which hydrolyzed >90% of VLDL-TG and about 50-60% of LDL-TG, converted most of VLDL in control plasma (>85%) but less than half (40%) of VLDL in LCAT and CETP-reacted plasma into the IDL-LDL density fraction and transformed the large, buoyant LDL in the LCAT and CETP-reacted plasma into particles smaller and denser than those in the control plasma. The remnants that accumulated in the VLDL density region of the postlipolysis LCAT and CETP-reacted plasma contained apo B-100 and E but little or no detectable apo Cs and consisted of particles having pre-beta and beta-electrophoretic mobilities. The inhibition of LCAT during incubation of plasma, which lessened the extent of alteration in VLDL and LDL core lipids, increased the extent of lipolytic removal of VLDL from the VLDL density region but lowered the extent of alteration in the size and density of LDL. The LCAT, CETP and/or LpL-mediated alterations in the density of LDL in normolipidemic fasting plasma were less pronounced than that in mildly HTG plasma, but they became highly pronounced upon increase of its TG-rich lipoprotein level by the addition of preisolated VLDL or by the induction of postprandial lipemia. Although the effect of LCAT, CETP and LpL reactions in non-circulating plasma in vitro may be different from that in vivo, the above data suggests that the plasma TG-rich lipoprotein level and the extent of intraplasma LCAT, CETP, LpL and likely hepatic lipase (HL) reactions in vivo may play a role in determining the LDL phenotype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripin, B.H.; Grun, J.; Herbst, M.J.
Laser plasma interaction experiments have now advanced to the point where very quantitative measurements are required to elucidate the physic issues important for laser fusion and other applications. Detailed time-resolved knowledge of the plasma density, temperature, velocity gradients, spatial structure, heat flow characteristics, radiation emission, etc, are needed over tremendou ranges of plasma density and temperature. Moreover, the time scales are very short, aggrevating the difficulty of the measurements further. Nonetheless, such substantial progress has been made in diagnostic development during the past few years that we are now able to do well diagnosed experiments. In this paper the authorsmore » review recent diagnostic developments for laser-plasma interactions, outline their regimes of applicability, and show examples of their utility. In addition to diagnostics for the high densities and temperature characteristic of laser fusion physics studies, diagnostics designed to study the two-stream interactions of laser created plasma flowing through an ambient low density plasma will be described.« less
Local thermodynamic equilibrium in rapidly heated high energy density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslanyan, V.; Tallents, G. J.
Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates.more » The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.« less
NASA Technical Reports Server (NTRS)
Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.
2012-01-01
A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.
NASA Astrophysics Data System (ADS)
Towle, D. M.
1980-02-01
A series of measurements of the properties of equatorial ionospheric irregularities were made at Kwajalein, Marshall Islands (M.I.) in August 1977 and July-August 1978. These measurements, sponsored by the Defense Nuclear Agency (DNA), involved coordinated ground-based and in situ sensors. The ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR), operated by Lincoln Laboratory, obtained backscatter and transmission data during five nights in August 1977 and eight nights in July-August 1978. This report describes the ALTAIR data from the night of August 11, 1978, which yield direct quantitative measurements of 1-m and 3/8-m irregularities and of plasma depleted regions. These plasma depleted regions, previously predicted on the basis of theoretical analysis and in situ data, were observed during the decay phase and not the generative phase of the field-aligned irregularities.
Constance mirror program: Progress and plans
NASA Technical Reports Server (NTRS)
Klinkowstein, R. E.; Mauel, M. E.; Irby, J. H.; Smullin, L. D.; Voldman, S. H.
1981-01-01
The current state of the mechanics of the Constance II experiment, the physics results gathered, the motivation background, and future plans for the Constance II experiment are reviewed. Several improvements have been made and several experimental investigations have been completed. These include the construction/installation/testing of: (1) liquid-nitrogen cooled, Ioffe bars installed, (2) a diverter coil (3) the 100 kW ICRF generator, (4) the data acquisition system, and (5) the optimum hot-iron operation of the machine with Titanium and pulsed-gas plasma guns. Measurements were made of the density, temperature, and radius of the plasma. Ion-cyclotron fluctuations were observed, their bandwidth measured, and data collected demonstrating resonance heating. New X-ray diagnostics were designed and purchased, and progress on the Thomson scattering was made. Finally, a new hot cathode gun was designed and constructed.
A contoured gap coaxial plasma gun with injected plasma armature.
Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond
2009-08-01
A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.
NASA Astrophysics Data System (ADS)
Zhang, Yunchao; Charles, Christine; Boswell, Roderick W.
2017-07-01
This experimental study shows the validity of Sheridan's method in determining plasma density in low pressure, weakly magnetized, RF plasmas using ion saturation current data measured by a planar Langmuir probe. The ion density derived from Sheridan's method which takes into account the sheath expansion around the negatively biased probe tip, presents a good consistency with the electron density measured by a cylindrical RF-compensated Langmuir probe using the Druyvesteyn theory. The ion density obtained from the simplified method which neglects the sheath expansion effect, overestimates the true density magnitude, e.g., by a factor of 3 to 12 for the present experiment.
Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites.
van Baar, Annieke C G; Prodan, Andrei; Wahlgren, Camilla D; Poulsen, Steen S; Knop, Filip K; Groen, Albert K; Bergman, Jacques J; Nieuwdorp, Max; Levin, Evgeni
2018-05-01
Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS) and fasting plasma metabolites. We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven) pathophysiology behind insulin resistance in human obesity. © 2018 The authors.
Yonemori, Seiya; Ono, Ryo
2015-06-01
The atmospheric-pressure helium plasma jet is an emerging technology for plasma biomedical applications. In this paper, the authors focus on the effect of discharge polarity on propagation of the discharge and the densities of OH, NO, and O radicals. The plasma jet is applied to a glass surface placed on a grounded metal plate. Positive or negative voltage pulses with 25 μs duration, 8 kV amplitude, and 10 kpps repetition rate are used for the plasma jet. The plasma propagation is measured using a short-gated ICCD camera. The light emission intensity of the discharge generated at the rising phase of the voltage pulse is approximately equivalent for both polarities, while that generated during the falling phase is much higher for the negative discharge than the positive one. The shape of the discharge changes with the discharge polarity. The OH, NO, and O densities in the plasma jet are also measured for both polarities. It is found that the OH density is almost the same regardless the discharge polarity. Conversely, the negative discharge produces more O atoms and the positive discharge produces more NO molecules. These results indicate that the polarity of the discharge affects the densities of some reactive species produced in the plasma jet.
Study of ND3-enhanced MAR processes in D2-N2 plasmas to induce plasma detachment
NASA Astrophysics Data System (ADS)
Abe, Shota; Chakraborty Thakur, Saikat; Doerner, Russ; Tynan, George
2017-10-01
The Molecular Assisted Recombination (MAR) process is thought to be a main channel of volumetric recombination to induce the plasma detachment operation. Authors have focused on a new plasma recombination process supported by ammonia molecules, which will be formed by impurity seeding of N2 for controlling divertor plasma temperature and heat loads in ITER. This ammonia-enhanced MAR process would occur throughout two steps. In this study, the first step of the new MAR process is investigated in low density plasmas (Ne 1016 m-3, Te 4 eV) fueled by D2 and N2. Ion and neutral densities are measured by a calibrated Electrostatic Quadrupole Plasma (EQP) analyzer, combination of an ion energy analyzer and mass spectrometer. The EQP shows formation of ND3 during discharges. Ion densities calculated by a rate equation model are compared with experimental results. We find that the model can reproduce the observed ion densities in the plasma. The model calculation shows that the dominant neutralization channel of Dx+(x =1-3) ions in the volume is the formation of NDy+(y =3 or 4) throughout charge/D+ exchange reactions with ND3. Furthermore, high density plasmas (Ne 1016 m-3) have been achieved to investigate electron-impact dissociative recombination processes of formed NDy+,which is the second step of this MAR process.
Zhang, Shucha; Bhadelia, Rafeeque A; Johnson, Elizabeth J; Lichtenstein, Alice H; Rogers, Gail T; Rosenberg, Irwin H; Smith, Caren E; Zeisel, Steven H
2017-01-01
Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology. Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain (n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography–stable-isotope dilution–multiple-reaction monitoring–mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology. Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable profile (higher LDL cholesterol and triglycerides). Conclusion: Choline and its metabolites have differential associations with cardiometabolic risk factors and subtypes of vascular disease, thereby suggesting differing roles in the pathogenesis of cardiovascular and cerebral large-vessel disease compared with that of small-vessel disease. PMID:28356272
NASA Astrophysics Data System (ADS)
Tsujii, N.; Takase, Y.; Ejiri, A.; Shinya, T.; Togashi, H.; Yajima, S.; Yamazaki, H.; Moeller, C. P.; Roidl, B.; Sonehara, M.; Takahashi, W.; Toida, K.; Yoshida, Y.
2017-12-01
Non-inductive plasma start-up is a critical issue for spherical tokamaks since there is not enough room to provide neutron shielding for the center solenoid. Start-up using lower hybrid (LH) waves has been studied on the TST-2 spherical tokamak. Because of the low magnetic field of a spherical tokamak, the plasma density needs to be kept at a very low value during the plasma current ramp-up so that the plasma core remains accessible to the LH waves. However, we have found that higher density was required to sustain larger plasma current. The achievable plasma current was limited by the maximum operational toroidal field of TST-2. The existence of an optimum density for LH current drive and its toroidal field dependence is explained through a numerical simulation based on a ray tracing code and a Fokker-Planck solver. In order to access higher density at the same magnetic field, a top-launch antenna was recently installed in addition to the existing outboard-launch antenna. Increase in the density limit was observed when the power was launched from the top antenna, consistently with the numerical predictions.
Ultra-High Intensity Magnetic Field Generation in Dense Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, Nathaniel J.
2014-01-08
The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-energy-density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-energy-density plasma the ideas for steady-state current drive developed for low-energy-density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-energy-density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new formsmore » of current drive in regimes appropriate for new fusion concepts.« less
Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation
NASA Astrophysics Data System (ADS)
Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2015-10-01
Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.
The current-density distribution in a pulsed dc magnetron deposition discharge
NASA Astrophysics Data System (ADS)
Vetushka, Alena; Bradley, James W.
2007-04-01
Using a carefully constructed magnetic probe (a B-dot probe) the spatial and temporal evolution of the perturbation in the magnetic field ΔB in an unbalanced pulsed dc magnetron has been determined. The plasma was run in argon at a pressure of 0.74 Pa and the plasma ions sputtered a pure graphite target. The pulse frequency and duty were set at 100 kHz and 55%, respectively. From the ΔB measurements (measured with magnitudes up to about 0.01 mT) the axial, azimuthal and radial components of the total current density j in the plasma bulk were determined. In the plasma 'on' phase, the axial current density jz has a maximum value of approximately 200 A m-2 above the racetrack region, while high values in the azimuthal current density jΦ are distributed in a region from 1 to 3 cm into the bulk plasma with jΦ exceeding 350 A m-2. In the 'off' phase of the plasma, jz decays almost instantaneously (at least within the 100 ns time-resolution of the ΔB measurements) as the electric field collapses; however, jΦ decays with a characteristic time constant of about 1 µs. This slow decay can be attributed to the presence of decaying Grad-B and curvature drifts, with their rates controlled by the decay in the plasma density. A comparison between axial and azimuthal current densities in the plasma 'on' time, when the plasma is being driven, strongly indicates that classical transport does not operate in the magnetron discharge.
Electron density and plasma dynamics of a spherical theta pinch
NASA Astrophysics Data System (ADS)
Teske, C.; Liu, Y.; Blaes, S.; Jacoby, J.
2012-03-01
A spherical theta pinch for plasma stripper applications has been developed and investigated regarding the electron density and the plasma confinement during the pinching sequence. The setup consists of a 6 μH induction coil surrounding a 4000 ml spherical discharge vessel and a capacitor bank with interchangeable capacitors leading to an overall capacitance of 34 μF and 50 μF, respectively. A thyristor switch is used for driving the resonant circuit. Pulsed coil currents reached values of up to 26 kA with maximum induction of 500 mT. Typical gas pressures were 0.7 Pa up to 120 Pa with ArH2 (2.8% H2)-gas as a discharge medium. Stark broadening measurements of the Hβ emission line were carried out in order to evaluate the electron density of the discharge. In accordance with the density measurements, the transfer efficiency was estimated and a scaling law between electron density and discharge energy was established for the current setup. The densities reached values of up to 8 × 1022 m-3 for an energy of 1.6 kJ transferred into the plasma. Further, the pinching of the discharge plasma was documented and the different stages of the pinching process were analyzed. The experimental evidence suggests that concerning the recent setup of the spherical theta pinch, a linear scaling law between the transferred energy and the achievable plasma density can be applied for various applications like plasma strippers and pulsed ion sources.
Development of a High Energy Density Capacitor for Plasma Thrusters.
1980-10-01
AD-A091 839 MAXWELL LAOS INC SAN DIEGO CA FIG 81/3 DEVELOPMENT OF A HIGH ENERGY DENSITY CAPACITOR FOR PLASMA THRUS--ETC(U) OCT 80 A RAMRUS FO*611-77...of the program was the investigation of certain capacitor impregnants and their influence on high energy density capacitors which are employed in...PERIOD 1704,60~ 13 DEVELOPMENT OF A HIGH ENERGY DENSITY CAPA- Final Technical Report CITOR FOR PLASMA THRUSTERS July 1977 - May 1980 6 PERFORMING
A study of single and binary ion plasma expansion into laboratory-generated plasma wakes
NASA Technical Reports Server (NTRS)
Wright, Kenneth Herbert, Jr.
1988-01-01
Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.