NASA Astrophysics Data System (ADS)
Donzelli, S.; Maino, D.; Bersanelli, M.; Childers, J.; Figueiredo, N.; Lubin, P. M.; Meinhold, P. R.; O'Dwyer, I. J.; Seiffert, M. D.; Villela, T.; Wandelt, B. D.; Wuensche, C. A.
2006-06-01
We present the angular power spectrum of the cosmic microwave background (CMB) component extracted with FASTICA from the Background Emission Anisotropy Scanning Telescope (BEAST) data. BEAST is a 2.2-m off-axis telescope with a focal plane comprising eight elements at Q (38-45 GHz) and Ka (26-36 GHz) bands. It operates from the UC (University of California) White Mountain Research Station at an altitude of 3800 m. The BEAST CMB angular power spectrum has already been calculated by O'Dwyer et al. using only the Q-band data. With two input channels, FASTICA returns two possible independent components. We found that one of these two has an unphysical spectral behaviour, while the other is a reasonable CMB component. After a detailed calibration procedure based on Monte Carlo (MC) simulations, we extracted the angular power spectrum for the identified CMB component and found a very good agreement with the already published BEAST CMB angular power spectrum and with the Wilkinson Microwave Anisotropy Probe (WMAP) data.
Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed
2011-07-08
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.
Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido
2012-10-20
In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}< 10{sup 4} Mpc{sup -1}. Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of {mu} and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.
NASA Technical Reports Server (NTRS)
Wright, E. L.; Smoot, G. F.; Bennett, C. L.; Lubin, P. M.
1994-01-01
The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 2 yr maps produced by the Cosmic Background Explorer Satellite Differential Microwave Radiometer (COBE DMR)). The power spectrum of the real sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power-law form, with P(k) proportional to k(exp n). Within the limited range of spatial scales covered by the COBE DMR, corresponding to spherical harmonic indices 3 less than or = l is less than or approximately = 30, the best-fitting value of the spectral index is n = 1.25(sup +0.39 sub -0.44) with the Harrisson-Zel'dovich value n = 1 approximately 0.5 sigma below the best fit. For 3 less than or = l less than or approximately = 19, the best fit is n = 1.46(sup +0.39 sub -0.44). Comparing the COBE DMR delta-T/T at small l to the delta-T/T at l approximately = 50 from degree scale anisotropy experiments gives a smaller range of acceptable spectral indices which includes n = 1.
NASA Astrophysics Data System (ADS)
Wright, E. L.; Smoot, G. F.; Bennett, C. L.; Lubin, P. M.
1994-12-01
The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 2 yr maps produced by the Cosmic Background Explorer Satellite Differential Microwave Radiometer (COBE DMR)). The power spectrum of the real sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power-law form, with P(k) proportional to kn. Within the limited range of spatial scales covered by the COBE DMR, corresponding to spherical harmonic indices 3 less than or = l is less than or approximately = 30, the best-fitting value of the spectral index is n = 1.25+0.39-0.44 with the Harrisson-Zel'dovich value n = 1 approximately 0.5 sigma below the best fit. For 3 less than or = l less than or approximately = 19, the best fit is n = 1.46+0.39-0.44. Comparing the COBE DMR delta-T/T at small l to the delta-T/T at l approximately = 50 from degree scale anisotropy experiments gives a smaller range of acceptable spectral indices which includes n = 1.
Bayesian Analysis of the Power Spectrum of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; O'Dwyer, I. J.; Wandelt, B. D.
2005-01-01
There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background. The sky, when viewed in the microwave, is very uniform, with a nearly perfect blackbody spectrum at 2.7 degrees. Very small amplitude brightness fluctuations (to one part in a million!!) trace small density perturbations in the early universe (roughly 300,000 years after the Big Bang), which later grow through gravitational instability to the large-scale structure seen in redshift surveys... In this talk, I will discuss a Bayesian formulation of this problem; discuss a Gibbs sampling approach to numerically sampling from the Bayesian posterior, and the application of this approach to the first-year data from the Wilkinson Microwave Anisotropy Probe. I will also comment on recent algorithmic developments for this approach to be tractable for the even more massive data set to be returned from the Planck satellite.
Power spectrum of the cosmic infrared background at 60 and 100 \\umwith IRAS
NASA Astrophysics Data System (ADS)
Miville-Deschênes, M.-A.; Lagache, G.; Puget, J.-L.
2002-10-01
Based on a power spectrum analysis of the IRAS ISSA maps, we present the first detection of the Cosmic far-Infrared Background (CIB) fluctuations at 60 and 100 ~\\ump. The power spectrum of 12 low cirrus emission regions is characterized by a power excess at spatial frequencies higher than k ~ 0.02 arcmin-1. Most of this excess is due to noise and to nearby point sources with a flux stronger than 1 Jy. But we show that when these contributions are carefully removed, there is still a power excess that is the signature of the CIB fluctuations. The power spectrum of the CIB at 60 and 100 ~\\um is compatible with a Poissonian distribution, at spatial frequencies between 0.025 and 0.2 arcmin-1. The fluctuation level is ~ 1.6*E3 Jy2/sr and ~ 5.8*E3 Jy2/sr at 60 and 100 ~\\um respectively. The levels of the fluctuations are used in a larger framework, with other observationnal data, to constrain the evolution of IR galaxies (Lagache et al. 2002). The detections reported here, coupled with the level of the fluctuations at 170 mu m, give strong constraints on the evolution of the IR luminosity function. The combined results at 60, 100 and 170 mu m for the CIB and its fluctuations allows, on the CIB at 60 mu m, to put a firm upper limit of 0.27 MJy/sr and to give an estimate of 0.18 MJy/sr. Figures A.1 to A.9 are only available in electronic form at http://www.edpsciences.org
The Cosmic Microwave Background Anisotropy Power Spectrum from the BEAST Experiment
NASA Astrophysics Data System (ADS)
O'Dwyer, Ian J.; Bersanelli, Marco; Childers, Jeffrey; Figueiredo, Newton; Halevi, Doron; Huey, Greg; Lubin, Philip M.; Maino, Davide; Mandolesi, Nazzareno; Marvil, Joshua; Meinhold, Peter R.; Mejía, Jorge; Natoli, Paolo; O'Neill, Hugh; Pina, Agenor; Seiffert, Michael D.; Stebor, Nathan C.; Tello, Camilo; Villela, Thyrso; Wandelt, Benjamin D.; Williams, Brian; Wuensche, Carlos Alexandre
2005-05-01
The Background Emission Anisotropy Scanning Telescope (BEAST) is a 2.2 m off-axis telescope with an eight-element mixed Q-band (38-45 GHz) and Ka-band (26-36 GHz) focal plane, designed for balloon-borne and ground-based studies of the cosmic microwave background (CMB). Here we present the CMB angular power spectrum calculated from 682 hr of data observed with the BEAST instrument. We use a binned pseudo-Cl estimator (the MASTER method). We find results that are consistent with other determinations of the CMB anisotropy for angular wavenumbers l between 100 and 600. We also perform cosmological parameter estimation. The BEAST data alone produce a good constraint on Ωk≡1-Ωtot=-0.074+/-0.070, consistent with a flat universe. A joint parameter estimation analysis with a number of previous CMB experiments produces results consistent with previous determinations.
Araujo, D.; Dumoulin, R. N.; Newburgh, L. B.; Zwart, J. T. L.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.; Chinone, Y.; Cleary, K.; Reeves, R.; Naess, S. K.; Eriksen, H. K.; Wehus, I. K.; Bronfman, L.; Church, S. E.; Dickinson, C.; Gaier, T.; Collaboration: QUIET Collaboration; and others
2012-12-01
The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95 GHz. The 43 GHz results have been published in a previous paper, and here we report the measurement of CMB polarization power spectra using the 95 GHz data. This data set comprises 5337 hr of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 {mu}K{radical}s. Four low-foreground fields were observed, covering a total of {approx}1000 deg{sup 2} with an effective angular resolution of 12.'8, allowing for constraints on primordial gravitational waves and high signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-C {sub l} (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB, and BB power spectra between l = 25 and 975 and find that the EE spectrum is consistent with {Lambda}CDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r = 1.1{sup +0.9} {sub -0.8} (r < 2.8 at 95% C.L.) as derived by the ML pipeline, and r = 1.2{sup +0.9} {sub -0.8} (r < 2.7 at 95% C.L.) as derived by the PCL pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r = 0.01, the lowest level yet reported in the literature.
NASA Technical Reports Server (NTRS)
Netterfield, C. B.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C. R.; Crill, B. P.; Bernardis, P. de; Farese, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V. V.; Iacoangeli, A.; Jaffe, A. H.; Jones, W. C.; Lange, A. E.; Martinis, L.; Masi, S.; Mason, P.; Mauskopf, P.; Melchiorri, A.; Montroy, T.
2001-01-01
This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l = 75 to l = 1025 (10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations.
Power spectrum constraints from spectral distortions in the cosmic microwave background
NASA Technical Reports Server (NTRS)
Hu, Wayne; Scott, Douglas; Silk, Joseph
1994-01-01
Using recent experimental limits on chemical potential distortions from Cosmic Background Explorer (COBE) Far Infrared Astronomy Satellite (FIRAS), and the large lever-arm spanning the damping of sub-Jeans scale fluctuations to the COBE DMR fluctuations, we set a constraint on the slope of the primordial power spectrum n. It is possible to analytically calculate the contribution over the full range of scales and redshifts, correctly taking into account fluctuation growth and damping as well as thermalization processes. Assuming conservatively that mu is less than 1.76 x 10(exp -4), we find that the 95% upper limit on n is only weakly dependent on other cosmological parameters, e.g., n is less than 1.60 (h=0.5) and n is less than 1.63 (h=1.0) for Omega(sub 0) = 1, with marginally weaker constraints for Omega(sub 0) is less than 1 in a flat model with a cosmological constant.
Chiang, Lung-Yih; Chen, Fei-Fan
2012-05-20
The angular power spectrum of the cosmic microwave background temperature anisotropies is one of the most important characteristics in cosmology that can shed light on the properties of the universe such as its geometry and total density. Using flat sky approximation and Fourier analysis, we estimate the angular power spectrum from an ensemble of the least foreground-contaminated square patches from the Wilkinson Microwave Anisotropy Probe W and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking orthogonality in spherical harmonic analysis because we are able to mask out the bright Galactic plane region, thereby rendering a direct measurement of the angular power spectrum. We test and confirm the Gaussian statistical characteristic of the selected patches, from which the first and second acoustic peaks of the power spectrum are reproduced, and the third peak is clearly visible, albeit with some noise residual at the tail.
Probing Reionization with the Cross-power Spectrum of 21 cm and Near-infrared Radiation Backgrounds
NASA Astrophysics Data System (ADS)
Mao, Xiao-Chun
2014-08-01
The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |\\Delta ^2_{21,NIR}|\\sim 10^{-4} mK nW m-2 sr-1, reached at l ~ 1000 when the mean fraction of ionized hydrogen is \\bar{x}_{i}\\sim 0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10-4 to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the "missing" NIR background.
Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds
Mao, Xiao-Chun
2014-08-01
The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.
Fowler, J. W.; Appel, J. W.; Das, S.; Dunkley, J.; Essinger-Hileman, T.; Fisher, R. P.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Barrientos, L. F.; Duenner, R.; Amiri, M.; Battistelli, E. S.; Burger, B.; Bond, J. R.; Brown, B.; Chervenak, J.; Doriese, W. B.
2010-10-20
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.'4 angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg{sup 2} of the southern sky, in a 4.{sup 0}2 wide strip centered on declination 53{sup 0} south. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < l < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 < l < 1150. The power beyond the Silk damping tail of the CMB (l {approx} 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to {sigma}{sub 8} = 0.8. We constrain the model's amplitude A{sub SZ} < 1.63 (95% CL). If interpreted as a measurement of {sigma}{sub 8}, this implies {sigma}{sup SZ}{sub 8} < 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a six-parameter {Lambda}CDM model plus point sources and the SZ effect is consistent with these results.
Smidt, Joseph; Cooray, Asantha; Amblard, Alexandre; Joudaki, Shahab; Serra, Paolo; Munshi, Dipak; Santos, Mario G.
2011-02-10
The temperature fluctuations and polarization of the cosmic microwave background (CMB) are now a well-known probe of the universe at an infant age of 400,000 years. During the transit to us from the surface of last scattering, the CMB photons are expected to undergo modifications induced by the intervening large-scale structure. Among the expected secondary effects is the weak gravitational lensing of the CMB by the foreground dark matter distribution. We derive a quadratic estimator that uses the non-Gaussianities generated by the lensing effect at the four-point function level to extract the power spectrum of lensing potential fluctuations integrated out to z {approx} 1100 with peak contributions from potential fluctuations at z of 2-3. Using Wilkinson Microwave Anisotropy Probe seven-year temperature maps, we report the first direct constraints of this lensing potential power spectrum and find that it has an amplitude of A{sub L} = 0.96 {+-} 0.60, 1.06 {+-} 0.69, and 0.97 {+-} 0.47 using the W, V, and W + V bands, respectively.
Rath, Pranati K.; Mudholkar, Tanmay; Jain, Pankaj; Aluri, Pavan K.; Panda, Sukanta E-mail: mtanmay@iitk.ac.in E-mail: aluri@iiserb.ac.in
2013-04-01
We study several anisotropic inflationary models and their implications for the observed violation of statistical isotropy in the CMBR data. In two of these models the anisotropy decays very quickly during the inflationary phase of expansion. We explicitly show that these models lead to violation of isotropy only for low l CMBR modes. Our primary aim is to fit the observed alignment of l = 2,3 multipoles to the theoretical models. We use two measures, based on the power tensor, which contains information about the alignment of each multipole, to quantify the anisotropy in data. One of the measures uses the dispersion in eigenvalues of the power tensor. We also define another measure which tests the overall correlation between two different multipoles. We perturbatively compute these measures of anisotropy and fix the theoretical parameters by making a best fit to l = 2,3 multipoles. We show that some of the models studied are able to consistently explain the observed violation of statistical isotropy.
Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O
2014-07-11
Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.
NASA Technical Reports Server (NTRS)
Das, Sudeep; Marriage, Tobias A.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia A.; Bond, J. Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Devlin, Mark J.; Dicker, Simon R.; Doriese, W. Bertrand; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernandez-Monteagudo, Carlos; Wollack, Ed
2010-01-01
We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results dearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ACDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8(sigma) level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.
de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Contaldi, C.R.; Crill, B.P.; De Troia, G.; Farese, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Jones, W.C.; Lange, A.E.; Martinis, L.; Masi, S.; Mason, P.; Mauskopf, P.D.; Melchiorri, A.; Montroy, T.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Polenta,G.; Pongetti, F.; Prunet, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.
2001-05-17
Three peaks and two dips have been detected in the power spectrum of the cosmic microwave background from the BOOMERANG experiment, at {ell} {approx} 210, 540, 840 and {ell} {approx} 420, 750, respectively. Using model-independent analyses, we find that all five features are statistically significant and we measure their location and amplitude. These are consistent with the adiabatic inflationary model. We also calculate the mean and variance of the peak and dip locations and amplitudes in a large 7-dimensional parameter space of such models, which gives good agreement with the model-independent estimates, and forecast where the next few peaks and dips should be found if the basic paradigm is correct. We test the robustness of our results by comparing Bayesian marginalization techniques on this space with likelihood maximization techniques applied to a second 7-dimensional cosmological parameter space, using an independent computational pipeline, and find excellent agreement: {Omega}{sub tot} = 1.02{sub -0.05}{sup +0.06} vs. 1.04 {+-} 0.05, {Omega}{sub b}h{sup 2} = 0.022{sub -0.003}{sup +0.004} vs. 0.019{sub -0.004}{sup +0.005}, and n{sub s} = 0.96{sub -0.09}{sup +0.10} vs. 0.90 {+-} 0.08. The deviation in primordial spectral index n{sub s} is a consequence of the strong correlation with the optical depth.
NASA Technical Reports Server (NTRS)
Fowler, J. W.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Bassistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dunkley, J.; Duenner, R.; Essinger-Hileman, T.; Fisher, R. P.; Hajian, A.; Halpern, M.; Hasselfield, M.; Moseley, H.; Wollack, Ed
2010-01-01
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(sup 2) of the southern sky, in a 4 deg. 2-wide strip centered on declination 53 deg. South. The CMB at arc minute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy dusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 less than l less than 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 less than l less than 1150. The power beyond the Silk damping tail of the CMB (l approximately 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma 8 = 0.8. We constrain the model's amplitude A(sub sz) less than 1.63 (95% CL). If interpreted as a measurement of as, this implies sigma (sup SZ) (sub 8) less than 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a 6-parameter ACDM model plus point sources and the SZ effect is consistent with these results.
NASA Astrophysics Data System (ADS)
Hou, Z.; Reichardt, C. L.; Story, K. T.; Follin, B.; Keisler, R.; Aird, K. A.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Crawford, T. M.; Crites, A. T.; de Haan, T.; de Putter, R.; Dobbs, M. A.; Dodelson, S.; Dudley, J.; George, E. M.; Halverson, N. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Joy, M.; Knox, L.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Millea, M.; Mohr, J. J.; Montroy, T. E.; Padin, S.; Plagge, T.; Pryke, C.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Spieler, H. G.; Staniszewski, Z.; Stark, A. A.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.
2014-02-01
We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of H 0 and baryon acoustic oscillation (BAO). We check for consistency within ΛCDM between these data sets, and find some tension. The CMB alone gives weak support to physics beyond ΛCDM, due to a slight trend relative to ΛCDM of decreasing power toward smaller angular scales. While it may be due to statistical fluctuation, this trend could also be explained by several extensions. We consider running of the primordial spectral index (dns /dln k), as well as two extensions that modify the damping tail power (the primordial helium abundance Yp and the effective number of neutrino species N eff) and one that modifies the large-scale power due to the integrated Sachs-Wolfe effect (the sum of neutrino masses ∑m ν). These extensions have similar observational consequences and are partially degenerate when considered simultaneously. Of the six one-parameter extensions considered, we find CMB to have the largest preference for dns /dln k with -0.046 < dns /dln k < -0.003 at 95% confidence, which strengthens to a 2.7σ indication of dns /dln k < 0 from CMB+BAO+H 0. Detectable dns /dln k ≠ 0 is difficult to explain in the context of single-field, slow-roll inflation models. We find N eff = 3.62 ± 0.48 for the CMB, which tightens to N eff = 3.71 ± 0.35 from CMB+BAO+H 0. Larger values of N eff relieve the mild tension between CMB, BAO, and H 0. When the Sunyaev-Zel'dovich selected galaxy cluster abundances (SPT_{CL}) data are also included, we obtain N eff = 3.29 ± 0.31. Allowing for ∑m ν gives a 3.0σ detection of ∑m ν > 0 from CMB+BAO+H 0 +SPT_{CL}. The median value is (0.32 ± 0.11) eV, a factor of six above the lower bound set by neutrino oscillation observations. All data sets except H 0 show some preference for massive neutrinos; data combinations including H 0 favor nonzero
Primordial power spectrum from Planck
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org
2014-11-01
Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.
Primordial power spectrum from Planck
NASA Astrophysics Data System (ADS)
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun
2014-11-01
Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near l ~ 750-850 represents the most prominent feature in the data. Feature near l ~ 1800-2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ~ 2.5%. In this context low-l and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.
NASA Technical Reports Server (NTRS)
Zycki, Piotr T.; Zdziarski, Andrzej A.; Svensson, Roland
1991-01-01
We reconsider the recent model for the origin in the cosmic X-ray and gamma-ray background by Rogers and Field. The background in the model is due to an unresolved population of AGNs. An individual AGN spectrum contains three components: a power law with the energy index of alpha = 1.1, an enhanced reflection component, and a component from Compton scattering by relativistic electrons with a low energy cutoff at some minimum Lorentz factor, gamma(sub min) much greater than 1. The MeV bump seen in the gamma-ray background is then explained by inverse Compton emission by the electrons. We show that the model does not reproduce the shape of the observed X-ray and gamma-ray background below 10 MeV and that it overproduces the background at larger energies. Furthermore, we find the assumptions made for the Compton component to be physically inconsistent. Relaxing the inconsistent assumptions leads to model spectra even more different from that of the observed cosmic background. Thus, we can reject the hypothesis that the high-energy cosmic background is due to the described model.
Zhou Zhongxing; Gao Feng; Zhao Huijuan; Zhang Lixin
2011-03-15
Purpose: Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. Extensive works have been conducted to achieve accurate and precise measurement of NPS. One approach to improve the accuracy of the NPS measurement is to reduce the statistical variance of the NPS results by involving more data samples. However, this method is based on the assumption that the noise in a radiographic image is arising from stochastic processes. In the practical data, the artifactuals always superimpose on the stochastic noise as low-frequency background trends and prevent us from achieving accurate NPS. The purpose of this study was to investigate an appropriate background detrending technique to improve the accuracy of NPS estimation for digital x-ray systems. Methods: In order to achieve the optimal background detrending technique for NPS estimate, four methods for artifactuals removal were quantitatively studied and compared: (1) Subtraction of a low-pass-filtered version of the image, (2) subtraction of a 2-D first-order fit to the image, (3) subtraction of a 2-D second-order polynomial fit to the image, and (4) subtracting two uniform exposure images. In addition, background trend removal was separately applied within original region of interest or its partitioned sub-blocks for all four methods. The performance of background detrending techniques was compared according to the statistical variance of the NPS results and low-frequency systematic rise suppression. Results: Among four methods, subtraction of a 2-D second-order polynomial fit to the image was most effective in low-frequency systematic rise suppression and variances reduction for NPS estimate according to the authors' digital x-ray system. Subtraction of a low-pass-filtered version of the image led to NPS variance increment above low-frequency components because of the side lobe effects of frequency response of the boxcar filtering
NASA Technical Reports Server (NTRS)
Kashlinsky, A.
1992-01-01
It is shown here that, by using galaxy catalog correlation data as input, measurements of microwave background radiation (MBR) anisotropies should soon be able to test two of the inflationary scenario's most basic predictions: (1) that the primordial density fluctuations produced were scale-invariant and (2) that the universe is flat. They should also be able to detect anisotropies of large-scale structure formed by gravitational evolution of density fluctuations present at the last scattering epoch. Computations of MBR anisotropies corresponding to the minimum of the large-scale variance of the MBR anisotropy are presented which favor an open universe with P(k) significantly different from the Harrison-Zeldovich spectrum predicted by most inflationary models.
Dodelson, Scott; Shapiro, Charles; White, Martin J.; /UC, Berkeley, Astron. Dept. /UC, Berkeley
2005-08-01
Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.
Modelling the TSZ power spectrum
Bhattacharya, Suman; Shaw, Laurie D; Nagai, Daisuke
2010-01-01
The structure formation in university is a hierarchical process. As universe evolves, tiny density fluctuations that existed in the early universe grows under gravitational instability to form massive large scale structures. The galaxy clusters are the massive viralized objects that forms by accreting smaller clumps of mass until they collapse under their self-gravity. As such galaxy clusters are the youngest objects in the universe which makes their abundance as a function of mass and redshift, very sensitive to dark energy. Galaxy clusters can be detected by measuring the richness in optical waveband, by measuring the X-ray flux, and in the microwave sky using Sunyaev-Zel'dovich (SZ) effect. The Sunyaev-Zel'dovich (SZ) effect has long been recognized as a powerful tool for detecting clusters and probing the physics of the intra-cluster medium. Ongoing and future experiments like Atacama Cosmology Telescope, the South Pole Telescope and Planck survey are currently surveying the microwave sky to develop large catalogs of galaxy clusters that are uniformly selected by the SZ flux. However one major systematic uncertainties that cluster abundance is prone to is the connection between the cluster mass and the SZ flux. As shown by several simulation studies, the scatter and bias in the SZ flux-mass relation can be a potential source of systematic error to using clusters as a cosmology probe. In this study they take a semi-analytic approach for modeling the intra-cluster medium in order to predict the tSZ power spectrum. The advantage of this approach is, being analytic, one can vary the parameters describing gas physics and cosmology simultaneously. The model can be calibrated against X-ray observations of massive, low-z clusters, and using the SZ power spectrum which is sourced by high-z lower mass galaxy groups. This approach allows us to include the uncertainty in gas physics, as dictated by the current observational uncertainties, while measuring the cosmological
Spectrum of Wind Power Fluctuations
NASA Astrophysics Data System (ADS)
Bandi, M. M.
2017-01-01
Wind power fluctuations for an individual turbine and plant have been widely reported to follow the Kolmogorov spectrum of atmospheric turbulence; both vary with a fluctuation time scale τ as τ2 /3. Yet, this scaling has not been explained through turbulence theory. Using turbines as probes of turbulence, we show the τ2 /3 scaling results from a large scale influence of atmospheric turbulence. Owing to this long-range influence spanning 100s of kilometers, when power from geographically distributed wind plants is summed into aggregate power at the grid, fluctuations average (geographic smoothing) and their scaling steepens from τ2 /3→τ4 /3, beyond which further smoothing is not possible. Our analysis demonstrates grids have already reached this τ4 /3 spectral limit to geographic smoothing.
The EPIC-MOS Particle-Induced Background Spectrum
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2006-01-01
We have developed a method for constructing a spectrum of the particle-induced instrumental background of the XMM-Newton EPIC MOS detectors that can be used for observations of the diffuse background and extended sources that fill a significant fraction of the instrument field of view. The strength and spectrum of the particle-induced background, that is, the background due to the interaction of particles with the detector and the detector surroundings, is temporally variable as well as spatially variable over individual chips. Our method uses a combination of the filter-wheel-closed data and a database of unexposed-region data to construct a spectrum of the "quiescent" background. We show that, using this method of background subtraction, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear evidence of solar wind charge exchange emission. We use the blank sky observations to show that contamination by SWCX emission is a strong function of the solar wind proton flux, and that observations through the flanks of the magnetosheath appear to be contaminated only at much higher solar wind fluxes. We have also developed a spectral model of the residual soft proton flares, which allows their effects to be removed to a substantial degree during spectral fitting.
Hierarchical cosmic shear power spectrum inference
NASA Astrophysics Data System (ADS)
Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till
2016-02-01
We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.
Reconstruction of the primordial power spectrum from CMB data
Guo, Zong-Kuan; Zhang, Yuan-Zhong; Schwarz, Dominik J. E-mail: dschwarz@physik.uni-bielefeld.de
2011-08-01
Measuring the deviation from scale invariance of the primordial power spectrum is a critical test of inflation. In this paper we reconstruct the shape of the primordial power spectrum of curvature perturbations from the cosmic microwave background data, including the 7-year Wilkinson Microwave Anisotropy Probe data and the Atacama Cosmology Telescope 148 GHz data, by using a binning method of a cubic spline interpolation in log-log space. We find that the power-law spectrum is preferred by the data and that the Harrison-Zel'dovich spectrum is disfavored at 95% confidence level. These conclusions hold with and without allowing for tensor modes, however the simpler model without tensors is preferred by the data. We do not find evidence for a feature in the primordial power spectrum — in full agreement with generic predictions from cosmological inflation.
Observational aspects of the microwave cosmic background spectrum
NASA Astrophysics Data System (ADS)
Martin, D. H.
The state of the art in measuring and characterizing the cosmic microwave background radiation is assessed. Most measurements have concentrated on wavelengths longer than 3 mm, where the 3 K background Planckian spectrum displays negligible deviation from the Rayleigh-Jeans limit; greater deviations from the limit occur at bands lower than 3 mm. It is noted that techniques used in molecular-line astronomy to distinguish source from noise with precision cannot be used in actual characterization of the background. Radiometers with sensors cooled to liquid He temperatures can be used for more accurate delineation of features of the 3K background below 3 mm. Experiments with various antenna systems and radiometers and concommitant theoretical modeling of expected measurements are reviewed, including the results of tests on rocket-born trials. The design of a new cosmic background radiation antenna and radiometer are presented.
New Measurements of the Cosmic Background Radiation Spectrum
Smoot, G.F.; De Amici, G.; Levin, S.; Witebsky, C.
1984-12-01
We have continued our program to measure the long-wavelength spectrum of the cosmic background radiation. Our previous observations were at five wavelengths--0.33, 0.9, 3.0, 6.3, and 12.0 cm--and had a weighted average value of 2.73 {+-} 0.05 K and deviated from a Planckian spectrum by less than 6%. In August 1984, we repeated our observations at 3.0, 0.9, and 0.33 cm and made new observations with a radiometer tunable from 1.7 to 15 cm. Preliminary analysis indicate that the new data are consistent with our previous results.
Background X-ray Spectrum of Radioactive Samples
Shannon Yee; Dawn E. Janney
2008-02-01
An energy-dispersive X-ray spectrometer (EDS) is commonly used with a scanning electron microscope (SEM) to analyze the elemental compositions and microstructures of a variety of samples. For example, the microstructures of nuclear fuels are commonly investigated with this technique. However, the radioactivity of some materials introduces additional X-rays that contribute to the EDS background spectrum. These X-rays are generally not accounted for in spectral analysis software, and can cause misleading results. X-rays from internal conversion [1], Bremsstrahlung [2] radiation associated with alpha ionizations and beta particle interactions [3], and gamma rays from radioactive decay can all elevate the background of radioactive materials.
Precision prediction of the log power spectrum
NASA Astrophysics Data System (ADS)
Repp, A.; Szapudi, I.
2017-01-01
At translinear scales, the log power spectrum captures significantly more cosmological information than the standard power spectrum. At high wavenumbers k, the Fisher information in the standard power spectrum P(k) fails to increase in proportion to k, in part due to correlations between large- and small-scale modes. As a result, P(k) suffers from an information plateau on these translinear scales, so that analysis with the standard power spectrum cannot access the information contained in these small-scale modes. The log power spectrum PA(k), on the other hand, captures the majority of this otherwise lost information. Until now there has been no means of predicting the amplitude of the log power spectrum apart from cataloging the results of simulations. We here present a cosmology-independent prescription for the log power spectrum; this prescription displays accuracy comparable to that of Smith et al., over a range of redshifts and smoothing scales, and for wavenumbers up to 1.5 h Mpc-1.
Noncommutative geometry and the primordial dipolar imaginary power spectrum
NASA Astrophysics Data System (ADS)
Jain, Pankaj; Rath, Pranati K.
2015-03-01
We argue that noncommutative space-times lead to an anisotropic dipolar imaginary primordial power spectrum. We define a new product rule, which allows us to consistently extract the power spectrum in such space-times. The precise nature of the power spectrum depends on the model of noncommutative geometry. We assume a simple dipolar model which has a power dependence on the wave number, , with a spectral index, . We show that such a spectrum provides a good description of the observed dipole modulation in the cosmic microwave background radiation (CMBR) data with . We extract the parameters of this model from the data. The dipole modulation is related to the observed hemispherical anisotropy in the CMBR data, which might represent the first signature of quantum gravity.
On the omnipresent background gamma radiation of the continuous spectrum
NASA Astrophysics Data System (ADS)
Banjanac, R.; Maletić, D.; Joković, D.; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.
2014-05-01
The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m2s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m2s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the "skyshine radiation"), and to a far less extent to cosmic rays of degraded energy.
The Spectrum of Wind Power Fluctuations
NASA Astrophysics Data System (ADS)
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
Spectra: Time series power spectrum calculator
NASA Astrophysics Data System (ADS)
Gallardo, Tabaré
2017-01-01
Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.
The submillimeter spectrum of the cosmic background radiation
NASA Technical Reports Server (NTRS)
Matsumoto, T.; Hayakawa, S.; Matsuo, H.; Murakami, H.; Sato, S.
1988-01-01
The diffuse brightness of the sky has been measured in six submillimeter passbands, using a rocket-borne, liquid helium-cooled, absolute radiometer. The flux measured at 1160 microns is in good agreement with the average of longer wavelength measurements of the temperature of the cosmic background radiation. The fluxes measured at 709 microns and 481 microns show a rapid decrease toward shorter wavelength, but correspond to significantly higher temperatures. No local source of this excess flux has been identified. The spectrum of the excess significantly constrains cosmological models. Data at 262, 137, and 102 microns are consistent with emission from interstellar dust.
Probing the primordial power spectrum with cluster number counts
Chantavat, Teeraparb; Gordon, Christopher; Silk, Joseph
2009-04-15
We investigate how well galaxy cluster number counts can constrain the primordial power spectrum. Measurements of the primary anisotropies in the cosmic microwave background may be limited, by the presence of foregrounds from secondary sources, to probing the primordial power spectrum at wave numbers less than about 0.30h Mpc{sup -1}. We break up the primordial power spectrum into a number of nodes and interpolate linearly between each node. This allows us to show that cluster number counts could then extend the constraints on the form of the primordial power spectrum up to wave numbers of about 0.45h Mpc{sup -1}. We estimate combinations of constraints from PLANCK and SPT primary cosmic microwave background and their respective Sunyaev-Zeldovich surveys. We find that their constraining ability is limited by uncertainties in the mass-scaling relations. We also estimate the constraint from clusters detected from a SNAP-like gravitational lensing survey. As there is an unambiguous and simple relationship between the filtered shear of the lensing survey and the cluster mass, it may be possible to obtain much tighter constraints on the primordial power spectrum in this case.
DARK MATTER POWERED STARS: CONSTRAINTS FROM THE EXTRAGALACTIC BACKGROUND LIGHT
Maurer, A.; Raue, M.; Kneiske, T.; Horns, D.; Elsaesser, D.; Hauschildt, P. H.
2012-02-01
The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work, the possible contributions of dark matter powered stars (dark stars, DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to rule out some DS parameter sets.
Estimation of background spectrum in a shielded HPGe detector using Monte Carlo simulations.
Medhat, M E; Wang, Yifang
2014-02-01
Monte Carlo simulations are powerful tools used to estimate the background γ-radiation detected by high-resolution gamma-ray spectrometry systems with a HPGe (high purity germanium) detector contained inside a lead shield. The purpose of this work was to examine the applicability of Monte Carlo simulations to predict the optimal lead thickness necessary to reduce the background effect in spectrometer measurements. GEANT4 code was applied to simulate the background radiation spectrum at different thicknesses of lead. The simulated results were compared with experimental measurements of background radiation taken at the same shielding thickness. The results show that the background radiation detected depends on the thickness, size and lining of the shield. Simulation showed that 12 cm lead thick is the optimal shielding thickness.
Backscattering power spectrum for randomly moving vegetation
NASA Astrophysics Data System (ADS)
Jiankang, J.; Zhongzhi, Z.; Zhong, S.
1986-08-01
The vegetation backscattering power spectrum in the presence of winds is derived. The physical process of the action of stems and leaves of the vegetation is analyzed. A statistical distribution of the random velocity of stems and leaves is obtained, and the vegetation backscattering power spectral density which is dependent on the wind speed and direction as well as the incident wave parameters is given. In the case of uniform notion of vegetation in the direction of winds, the results provide a good interpretation of Fishbein's empirical model. The determination of the values of the equivalent parameters in the spectrum is discussed, and comparisons are made between the derived spectrum and measured published spectra with satisfactory consistence.
Generalized slow roll approximation for large power spectrum features
Dvorkin, Cora; Hu, Wayne
2010-01-15
We develop a variant of the generalized slow roll approach for calculating the curvature power spectrum that is well suited for order unity deviations in power caused by sharp features in the inflaton potential. As an example, we show that predictions for a step function potential, which has been proposed to explain order unity glitches in the cosmic microwave background temperature power spectrum at multipoles l=20-40, are accurate at the percent level. Our analysis shows that to good approximation there is a single source function that is responsible for observable features and that this function is simply related to the local slope and curvature of the inflaton potential. These properties should make the generalized slow roll approximation useful for inflation-model-independent studies of features, both large and small, in the observable power spectra.
Another look at distortions of the Cosmic Microwave Background spectrum
Zotti, G. De; Negrello, M.; Castex, G.; Lapi, A.; Bonato, M. E-mail: NegrelloM@cardiff.ac.uk E-mail: lapi@sissa.it
2016-03-01
We review aspects of Cosmic Microwave Background (CMB) spectral distortions which do not appear to have been fully explored in the literature. In particular, implications of recent evidences of heating of the intergalactic medium (IGM) by feedback from active galactic nuclei are investigated. Taking also into account the IGM heating associated to structure formation, we argue that values of the y parameter of several × 10{sup −6}, i.e. a factor of a few below the COBE/FIRAS upper limit, are to be expected. The Compton scattering by the re-ionized plasma also re-processes primordial distortions, adding a y-type contribution. Hence no pure Bose-Einstein-like distortions are to be expected. An assessment of Galactic and extragalactic foregrounds, taking into account the latest results from the Planck satellite as well as the contributions from the strong CII and CO lines from star-forming galaxies, demonstrates that a foreground subtraction accurate enough to fully exploit the PIXIE sensitivity will be extremely challenging. Motivated by this fact we also discuss methods to detect spectral distortions not requiring absolute measurements and show that accurate determinations of the frequency spectrum of the CMB dipole amplitude may substantially improve over COBE/FIRAS limits on distortion parameters. Such improvements may be at reach of next generation CMB anisotropy experiments. The estimated amplitude of the Cosmic Infrared Background (CIB) dipole might be detectable by careful analyses of Planck maps at the highest frequencies. Thus Planck might provide interesting constraints on the CIB intensity, currently known with a ≅ 30% uncertainty.
Enhancing the cosmic shear power spectrum
NASA Astrophysics Data System (ADS)
Simpson, Fergus; Harnois-Déraps, Joachim; Heymans, Catherine; Jimenez, Raul; Joachimi, Benjamin; Verde, Licia
2016-02-01
Applying a transformation to a non-Gaussian field can enhance the information content of the resulting power spectrum, by reducing the correlations between Fourier modes. In the context of weak gravitational lensing, it has been shown that this gain in information content is significantly compromised by the presence of shape noise. We apply clipping to mock convergence fields, a technique which is known to be robust in the presence of noise and has been successfully applied to galaxy number density fields. When analysed in isolation the resulting convergence power spectrum returns degraded constraints on cosmological parameters. However, substantial gains can be achieved by performing a combined analysis of the power spectra derived from both the original and transformed fields. Even in the presence of realistic levels of shape noise, we demonstrate that this approach is capable of reducing the area of likelihood contours within the Ωm - σ8 plane by more than a factor of 3.
A measurement of the low frequency spectrum of the cosmic microwave background radiation
Levin, S.M.
1987-04-01
As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs.
The Spectrum of the Cosmic X-ray Background Observed by RTXE/PCA
NASA Technical Reports Server (NTRS)
Revnivtsev, M.; Gilfanov, M.; Sunyaev, R.; Jahoda, K.; Markwardt, C.
2004-01-01
We have analyzed a large set of Rossi X-ray Timing Explorer/Proportional Counter Array (RXTE/PCA) scanning and slewing observations performed between April 1996 and March 1999. We obtained the 3-20 keV spectrum of the cosmic X-ray background (CXB) by subtracting Earth-occulted observations from observations of the X-ray sky at high galactic latitude and far away from sources. The sky coverage is approximately 22.6 x 10(exp 3) square degrees. The PCA spectrum of CXB in 3-20 keV energy band is adequately approximated by a single power law with photon index GAMMA approximately 1.4 and normalization at 1 keV approximately 9.5 phot/s/square centimeter/keV/sr. Instrumental background uncertainty precludes accurate RXTE/PCA measurements of the spectrum of cosmic X-ray background at energies above 15 keV and therefore we cannot detect the high energy cutoff observed by the High Energy Astronomical Observatory (HEAO)-1 A2 experiment. Deep observations of the 6 high latitude points used to model the PCA background provide a coarse measure of the spatial variation of the CXB. The CXB variations are consistent with a fixed spectral shape and variable normalization characterized by a fractional rms amplitude of approximately 7% on angular scales of approximately 1 square deg.
Smoothing spline primordial power spectrum reconstruction
Sealfon, Carolyn; Verde, Licia; Jimenez, Raul
2005-11-15
We reconstruct the shape of the primordial power spectrum (PPS) using a smoothing spline. Our adapted smoothing spline technique provides a complementary method to existing efforts to search for smooth features in the PPS, such as a running spectral index. With this technique we find no significant indication with Wilkinson Microwave Anisotropy Probe first-year data that the PPS deviates from a Harrison-Zeldovich spectrum and no evidence for loss of power on large scales. We also examine the effect on the cosmological parameters of the additional PPS freedom. Smooth variations in the PPS are not significantly degenerate with other cosmological parameters, but the spline reconstruction greatly increases the errors on the optical depth and baryon fraction.
Deconstructing the Spectrum of the Soft X-ray Background
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2000-01-01
The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.
Nonlinear evolution of f(R) cosmologies. II. Power spectrum
Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos
2008-12-15
We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.
Power spectrum analysis for defect screening in integrated circuit devices
Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.
2011-12-01
A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.
BASIC program for power spectrum estimation. Revision
Church, E.L.; Takacs, P.Z.
1994-05-01
A standard data set is presented to be used in testing routines that are developed for evaluating the one-dimensional periodogram spectral estimate of a series of uniformly spaced data points representing measurements of a surface profile. These data were generated using the GWBASIC program ``FFTPSD`` which is included in the Appendix of this report. The original purpose of this data set was to allow us to test and debug our own periodogram estimation routines, written in various programming, languages, against a standard data set. At the request of numerous individuals, we are making it available to others who may wish to do the same. We have also included a summary explanation of periodogram estimators and the various considerations that go into generating computer algorithms for power spectrum estimation.
THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM
Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Klein, Jeff; Duenner, Rolando; Gallardo, Patricio; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hughes, John P.; Irwin, Kent D.; and others
2012-04-10
We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT) in combination with measurements from the Wilkinson Microwave Anisotropy Probe and a prior on the Hubble constant. The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k {approx_equal} 0.2 Mpc{sup -1}. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from cosmic microwave background measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances, and weak-lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum.
Angular power spectrum of the FastICA CMB component from BEAST data
NASA Astrophysics Data System (ADS)
Donzelli, Simona
We present the angular power spectrum of the CMB component extracted with FASTICA from the data of the Background Emission Anisotropy Scanning Telescope (BEAST), operating in Q two input channels FASTICA returns two possible independent components. We found that one of them has an unphysical spectral behaviour, due to the poor S/N ratio, while the other is a reasonable CMB component. After a detailed calibration procedure based on Monte-Carlo (MC) simulations we extracted the angular power spectrum for the identified CMB component and found a very good agreement with the already published BEAST CMB angular power spectrum
Estimating the angular power spectrum of z > 2 BOSS QSOs using the MASTER method
NASA Astrophysics Data System (ADS)
Maldonado, Felipe; Huffenberger, Kevin; Rotti, Aditya
2016-01-01
We implement the MASTER method for angular power spectrum estimation and apply it to z > 2 quasars selected by the SDSS-III BOSS survey. Quasars are filtered for completeness and bad spectra, and include ~100,000 QSOs in the CORE sample and ~75,000 in the non-uniform BONUS sample. We estimate the angular power spectrum in redshift shells to constrain the matter power spectrum and quasar properties. In the future, we will jointly analyze overlapping Cosmic Microwave Background lensing maps from the Atacama Cosmology Telescope to place further constraints.
Wind speed power spectrum analysis for Bushland, Texas
Eggleston, E.D.
1996-12-31
Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.
EEG Power Spectrum Analysis in Children with ADHD
Kamida, Akira; Shimabayashi, Kenta; Oguri, Masayoshi; Takamori, Toshihiro; Ueda, Naoyuki; Koyanagi, Yuki; Sannomiya, Naoko; Nagira, Haruki; Ikunishi, Saeko; Hattori, Yuiko; Sato, Kengo; Fukuda, Chisako; Hirooka, Yasuaki; Maegaki, Yoshihiro
2016-01-01
Background Attention deficit disorder/hyperactivity disorder (ADHD) is a pathological condition that is not fully understood. In this study, we investigated electroencephalographic (EEG) power differences between children with ADHD and healthy control children. Methods EEGs were recorded as part of routine medical care received by 80 children with ADHD aged 4–15 years at the Department of Pediatric Neurology in Tottori University Hospital. Additionally, we recorded in 59 control children aged 4–15 years after obtaining informed consent. Specifically, awake EEG signals were recorded from each child using the international 10–20 system, and we used ten 3-s epochs on the EEG power spectrum to calculate the powers of individual EEG frequency bands. Results The powers of different EEG bands were significantly higher in the frontal brain region of those in the ADHD group compared with the control group. In addition, the power of the beta band in the ADHD group was significantly higher in all brain regions, except for the occipital region, compared with control children. With regard to developmental changes, the power of the alpha band in the occipital region showed an age-dependent decrease in both groups, with slightly lower power in the ADHD group. Additionally, the intergroup difference decreased in children aged 11 years or older. As with the alpha band in the occipital region, the beta band in the frontal region showed an age-dependent decrease in both groups. Unlike the alpha band, the power of the beta band was higher in the ADHD group than in the control group for children of all ages. Conclusion The observed intergroup differences in EEG power may provide insight into the brain function of children with ADHD. PMID:27493489
Estimating the Crustal Power Spectrum From Vector Magsat Data: Crustal Power Spectrum
NASA Technical Reports Server (NTRS)
Lowe, David A. J.; Parker, Robert L.; Purucker, Michael E.; Constable, Catherine G.
2000-01-01
The Earth's magnetic field can be subdivided into core and crustal components and we seek to characterize the crustal part through its spatial power spectrum (R(sub l)). We process vector Magsat data to isolate the crustal field and then invert power spectral densities of flight-local components along-track for R(sub l) following O'Brien et al. [1999]. Our model (LPPC) is accurate up to approximately degree 45 (lambda=900 km) - this is the resolution limit of our data and suggests that global crustal anomaly maps constructed from vector Magsat data should not contain features with wavelengths less than 900 km. We find continental power spectra to be greater than oceanic ones and attribute this to the relative thicknesses of continental and oceanic crust.
A Bayesian study of the primordial power spectrum from a novel closed universe model
NASA Astrophysics Data System (ADS)
Vázquez, J. Alberto; Lasenby, A. N.; Bridges, M.; Hobson, M. P.
2012-05-01
We constrain the shape of the primordial power spectrum using recent measurements of the cosmic microwave background (CMB) from the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data and other high-resolution CMB experiments. We also include observations of the matter power spectrum from the luminous red galaxy (LRG) subset DR7 of the Sloan Digital Sky Survey (SDSS). We consider two different models of the primordial power spectrum. The first is the standard nearly scale-invariant spectrum in the form of a generalized power-law parametrized in terms of the spectral amplitude As, the spectral index ns and (possibly) the running parameter nrun. The second spectrum is derived from the Lasenby and Doran (LD) model. The LD model is based on the restriction of the total conformal time available in a closed Universe and the predicted primordial power spectrum depends upon just two parameters. An important feature of the LD spectrum is that it naturally incorporates an exponential fall-off on large scales, which might provide a possible explanation for the lower-than-expected power observed at low multipoles in the CMB. In addition to parameter estimation, we compare both models using Bayesian model selection. We find there is a significant preference for the LD model over a simple power-law spectrum for a CMB-only data set, and over models with an equal number of parameters for all the data sets considered.
Bayesian Angular Power Spectrum Analysis of Interferometric Data
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Wandelt, Benjamin D.; Malu, Siddarth S.
2012-09-01
We present a Bayesian angular power spectrum and signal map inference engine which can be adapted to interferometric observations of anisotropies in the cosmic microwave background (CMB), 21 cm emission line mapping of galactic brightness fluctuations, or 21 cm absorption line mapping of neutral hydrogen in the dark ages. The method uses Gibbs sampling to generate a sampled representation of the angular power spectrum posterior and the posterior of signal maps given a set of measured visibilities in the uv-plane. We use a mock interferometric CMB observation to demonstrate the validity of this method in the flat-sky approximation when adapted to take into account arbitrary coverage of the uv-plane, mode-mode correlations due to observations on a finite patch, and heteroschedastic visibility errors. The computational requirements scale as {O}(n_p log n_p) where np measures the ratio of the size of the detector array to the inter-detector spacing, meaning that Gibbs sampling is a promising technique for meeting the data analysis requirements of future cosmology missions.
Background radiation measurements at high power research reactors
Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.
2015-10-23
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.
Background radiation measurements at high power research reactors
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.
2016-01-01
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.
Is natural background or radiation from nuclear power plants leukemogenic
Cronkite, E.P.
1989-01-01
The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab.
The REFLEX II galaxy cluster survey: power spectrum analysis
NASA Astrophysics Data System (ADS)
Balaguera-Antolínez, A.; Sánchez, Ariel G.; Böhringer, H.; Collins, C.; Guzzo, L.; Phleps, S.
2011-05-01
We present the power spectrum of galaxy clusters measured from the new ROSAT-ESO Flux-Limited X-Ray (REFLEX II) galaxy cluster catalogue. This new sample extends the flux limit of the original REFLEX catalogue to 1.8 × 10-12 erg s-1 cm-2, yielding a total of 911 clusters with ≥94 per cent completeness in redshift follow-up. The analysis of the data is improved by creating a set of 100 REFLEX II-catalogue-like mock galaxy cluster catalogues built from a suite of large-volume Λ cold dark matter (ΛCDM) N-body simulations (L-BASICC II). The measured power spectrum is in agreement with the predictions from a ΛCDM cosmological model. The measurements show the expected increase in the amplitude of the power spectrum with increasing X-ray luminosity. On large scales, we show that the shape of the measured power spectrum is compatible with a scale-independent bias and provide a model for the amplitude that allows us to connect our measurements with a cosmological model. By implementing a luminosity-dependent power-spectrum estimator, we observe that the power spectrum measured from the REFLEX II sample is weakly affected by flux-selection effects. The shape of the measured power spectrum is compatible with a featureless power spectrum on scales k > 0.01 h Mpc-1 and hence no statistically significant signal of baryonic acoustic oscillations can be detected. We show that the measured REFLEX II power spectrum displays signatures of non-linear evolution.
The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology
NASA Astrophysics Data System (ADS)
Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.
2016-07-01
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.
Reference MWA EoR Power Spectrum analysis
NASA Astrophysics Data System (ADS)
Hazelton, Bryna; Pober, Jonathan; Beardsley, Adam; Morales, Miguel F.; Sullivan, Ian S.; MWA Collaboration
2015-01-01
Observations of the Epoch of Reionization using redshifted 21cm HI emission promise to provide sensitive new cosmological constraints in the next few years. The current generation of HI EoR telescopes are targeting a statistical detection of the EoR in the power spectrum of the 21cm emission. The principal challenge lies in extracting the faint cosmological signal in the face of bright foregrounds and instrumental systematics that threaten to overwhelm it.We present the UW EoR power spectrum code, the reference code for the MWA and the first power spectrum analysis to analytically propagate the error bars through the full data analysis pipeline. We demonstrate the sensitivity of the power spectrum as a diagnostic tool for identifying subtle systematics and show power spectra of the first season of MWA observations.
Power spectrum of passive scalars in two dimensional chaotic flows
NASA Astrophysics Data System (ADS)
Yuan, Guo-Cheng; Nam, Keeyeol; Antonsen, Thomas M.; Ott, Edward; Guzdar, Parvez N.
2000-03-01
In this paper the power spectrum of passive scalars transported in two dimensional chaotic fluid flows is studied theoretically. Using a wave-packet method introduced by Antonsen et al., several model flows are investigated, and the fact that the power spectrum has the k-1-scaling predicted by Batchelor is confirmed. It is also observed that increased intermittency of the stretching tends to make the roll-off of the power spectrum at the high k end of the k-1 scaling range more gradual. These results are discussed in light of recent experiments where a k-1 scaling range was not observed.
Cosmic background anisotropy induced by isotropic, flat-spectrum gravitational-wave perturbations
Starobinskii, A.A.
1985-05-01
A calculation is made of the temperature anisotropy that would be produced in the cosmic microwave background by an isotropic, stochastic ensemble of primordial gravitational waves having a flat initial spectrum. On angular scales THETA > 2 the anisotropy autocorrelation function has practically the same multipole dependence as previously established for the case of flat-spectrum adiabatic perturbations, while on scales THETA < 1 the anisotropy becomes insignificant. Upper limits are placed on the gravitational-wave amplitude and on the expected quadrupole anisotropy.
Background radiation measurements at high power research reactors
Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...
2015-10-23
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less
Spectrum management considerations of adaptive power control in satellite networks
NASA Technical Reports Server (NTRS)
Sawitz, P.; Sullivan, T.
1983-01-01
Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.
Long-Wavelength Measurements of the Cosmic Microwave BackgroundRadiation Spectrum
Smoot, G.F.; Bensadoun, M.; Bersanelli, M.; pDe Amici, G.; Kogut,A.; Levine, S.; Witebsky, C.
1987-02-01
We have measured the temperature of the cosmic microwave background radiation at wavelengths of 0.33, 3.0, 8.2 and 21.3 cm. These measurements represent a continuation of the work reported by Smoot et al. (1985). The new results have a weighted average of 2.70 {+-} 0.05 K and are consistent with past measurements. They limit the possible distortion of the cosmic microwave background radiation spectrum to less than 6%. The results of all measurements to date are consistent with a Planckian spectrum with temperature 2.74 {+-} 0.02 K spanning a wavelength range of 0.1 to 21 cm.
Generating the cosmic microwave background power asymmetry with gN L
NASA Astrophysics Data System (ADS)
Kenton, Zachary; Mulryne, David J.; Thomas, Steven
2015-07-01
We consider a higher-order term in the δ N expansion for the cosmic microwave background power asymmetry generated by a superhorizon isocurvature field fluctuation. The term can generate the asymmetry without requiring a large value of fNL. Instead it produces a nonzero value of gNL. A combination of constraints leads to an allowed region in fNL-gNL space. To produce the asymmetry with this term without a large value of fNL we find that the isocurvature field needs to contribute less than the inflation towards the power spectrum of the curvature perturbation.
On Removing Interloper Contamination from Intensity Mapping Power Spectrum Measurements
NASA Astrophysics Data System (ADS)
Lidz, Adam; Taylor, Jessie
2016-07-01
Line intensity mapping experiments seek to trace large-scale structures by measuring the spatial fluctuations in the combined emission, in some convenient spectral line, from individually unresolved galaxies. An important systematic concern for these surveys is line confusion from foreground or background galaxies emitting in other lines that happen to lie at the same observed frequency as the “target” emission line of interest. We develop an approach to separate this “interloper” emission at the power spectrum level. If one adopts the redshift of the target emission line in mapping from observed frequency and angle on the sky to co-moving units, the interloper emission is mapped to the wrong co-moving coordinates. Because the mapping is different in the line of sight and transverse directions, the interloper contribution to the power spectrum becomes anisotropic, especially if the interloper and target emission are at widely separated redshifts. This distortion is analogous to the Alcock-Paczynski test, but here the warping arises from assuming the wrong redshift rather than an incorrect cosmological model. We apply this to the case of a hypothetical [C ii] emission survey at z˜ 7 and find that the distinctive interloper anisotropy can, in principle, be used to separate strong foreground CO emission fluctuations. In our models, however, a significantly more sensitive instrument than currently planned is required, although there are large uncertainties in forecasting the high-redshift [C ii] emission signal. With upcoming surveys, it may nevertheless be useful to apply this approach after first masking pixels suspected of containing strong interloper contamination.
Effects of Background Noise on Cortical Encoding of Speech in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Russo, Nicole; Zecker, Steven; Trommer, Barbara; Chen, Julia; Kraus, Nina
2009-01-01
This study provides new evidence of deficient auditory cortical processing of speech in noise in autism spectrum disorders (ASD). Speech-evoked responses (approximately 100-300 ms) in quiet and background noise were evaluated in typically-developing (TD) children and children with ASD. ASD responses showed delayed timing (both conditions) and…
Model selection applied to reconstruction of the Primordial Power Spectrum
NASA Astrophysics Data System (ADS)
Vázquez, J. Alberto; Bridges, M.; Hobson, M. P.; Lasenby, A. N.
2012-06-01
The preferred shape for the primordial spectrum of curvature perturbations is determined by performing a Bayesian model selection analysis of cosmological observations. We first reconstruct the spectrum modelled as piecewise linear in log k between nodes in k-space whose amplitudes and positions are allowed to vary. The number of nodes together with their positions are chosen by the Bayesian evidence, so that we can both determine the complexity supported by the data and locate any features present in the spectrum. In addition to the node-based reconstruction, we consider a set of parameterised models for the primordial spectrum: the standard power-law parameterisation, the spectrum produced from the Lasenby & Doran (LD) model and a simple variant parameterisation. By comparing the Bayesian evidence for different classes of spectra, we find the power-law parameterisation is significantly disfavoured by current cosmological observations, which show a preference for the LD model.
NASA Astrophysics Data System (ADS)
Jimenez, Raul; Verde, Licia; Peiris, Hiranya; Kosowsky, Arthur
2004-07-01
We improve the algorithm of Kosowsky, Milosavljevic, and Jimenez for computing power spectra of the cosmic microwave background. The present algorithm computes not only the temperature power spectrum but also the E- and B-mode polarization and the temperature-polarization cross power spectra, providing the accuracy required for current cosmological parameter estimation. Both unlensed and lensed (with non-linear evolution) power spectra are provided up to l=3000 for temperature and polarization signals. We refine the optimum set of cosmological parameters for computing the power spectra as perturbations around a fiducial model, leading to an accuracy better than 0.5% for the temperature power spectrum throughout the region of parameter space within the Wilkinson Microwave Anisotropic Probe’s first-year 3σ confidence region. This accuracy is comparable to the difference between the widely used CMBFAST code of Seljak and Zaldarriaga and Boltzmann codes. Our algorithm (CMBWARP) makes possible a full exploration of the likelihood region for eight cosmological parameters in about one hour on a laptop computer. We provide the code to compute power spectra as well as the Markov chain Monte Carlo algorithm for cosmological parameters estimation at http://www.physics.upenn.edu/˜raulj/CMBwarp.
Analytical model for CMB temperature angular power spectrum from cosmic (super-)strings
Yamauchi, Daisuke; Yoo, Chul-Moon; Sasaki, Misao; Takahashi, Keitaro; Sendouda, Yuuiti
2010-09-15
We present a new analytical method to calculate the small angle cosmic microwave background (CMB) temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability P. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of P has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the case of conventional cosmic strings is in very good agreement with the numerical result obtained by Fraisse et al.. Then we estimate the upper bound on the dimensionless tension of the string for various values of P by assuming that the fraction of the CMB power spectrum due to cosmic (super-)strings is less than ten percent at various angular scales up to l=2000. We find that the amplitude of the spectrum increases as the intercommuting probability. As a consequence, strings with smaller intercommuting probabilities are found to be more tightly constrained.
The power spectrum of galaxies in the nearby universe
NASA Technical Reports Server (NTRS)
Da Costa, L. Nicolaci; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.; Park, Changbom
1994-01-01
We compute the power spectrum of galaxy density fluctuations in a recently completed Southern Sky Redshift Survey of optically selected galaxies (SSRS2). The amplitude and shape of the SSRS2 power spectrum are consistent with results of the Center for Astrophysics redshift survey of the northern hemisphere (CfA2), including the abrupt change of slope on a scale of 30-50/h Mpc; these results are reproducible for independent volumes of space, and variations are consistent with the errors estimated from mock surveys. Taken together, the SSRS2 and the CfA2 form a complete sample of 14,383 galaxies which covers one-third of the sky. The power spectrum of this larger sample continues to rise on scales up to approximately 200/h Mpc, with weak evidence for flattening on the largest scales. The SSRS2 + CfA2 power spectrum and the power spectrum constraints implied by COBE are well matched by an Omega(h) is approximately 0.2, Omega + lambda(sub 0) = 1 cold dark matter model with minimal biasing of optically selected galaxies.
Visibility moments and power spectrum of turbulence velocity
NASA Astrophysics Data System (ADS)
Dutta, Prasun
2016-02-01
Here we introduce moments of visibility function and discuss how those can be used to estimate the power spectrum of the turbulent velocity of external spiral galaxies. We perform numerical simulation to confirm the credibility of this method and found that for galaxies with lower inclination angles it works fine. The estimator outlined here is unbiased and has the potential to recover the turbulent velocity spectrum completely from radio interferometric observations.
Cosmological power spectrum in a noncommutative spacetime
NASA Astrophysics Data System (ADS)
Kothari, Rahul; Rath, Pranati K.; Jain, Pankaj
2016-09-01
We propose a generalized star product that deviates from the standard one when the fields are considered at different spacetime points by introducing a form factor in the standard star product. We also introduce a recursive definition by which we calculate the explicit form of the generalized star product at any number of spacetime points. We show that our generalized star product is associative and cyclic at linear order. As a special case, we demonstrate that our recursive approach can be used to prove the associativity of standard star products for same or different spacetime points. The introduction of a form factor has no effect on the standard Lagrangian density in a noncommutative spacetime because it reduces to the standard star product when spacetime points become the same. We show that the generalized star product leads to physically consistent results and can fit the observed data on hemispherical anisotropy in the cosmic microwave background radiation.
Statistical analysis of the cosmic microwave background: Power spectra and foregrounds
NASA Astrophysics Data System (ADS)
O'Dwyer, Ian J.
2005-11-01
In this thesis I examine some of the challenges associated with analyzing Cosmic Microwave Background (CMB) data and present a novel approach to solving the problem of power spectrum estimation, which is called MAGIC (MAGIC Allows Global Inference of Covariance). In light of the computational difficulty of a brute force approach to power spectrum estimation, I review several approaches which have been applied to the problem and show an example application of such an approximate method to experimental CMB data from the Background Emission Anisotropy Scanning Telescope (BEAST). I then introduce MAGIC, a new approach to power spectrum estimation; based on a Bayesian statistical analysis of the data utilizing Gibbs Sampling. I demonstrate application of this method to the all-sky Wilkinson Microwave Anistropy Probe WMAP data. The results are in broad agreement with those obtained originally by the WMAP team. Since MAGIC generates a full description of each C l it is possible to examine several issues raised by the best-fit WMAP power spectrum, for example the perceived lack of power at low ℓ. It is found that the distribution of C ℓ's at low l are significantly non-Gaussian and, based on the exact analysis presented here, the "low quadrupole issue" can be attributed to a statistical fluctuation. Finally, I examine the effect of Galactic foreground contamination on CMB experiments and describe the principle foregrounds. I show that it is possible to include the foreground components in a self-consistent fashion within the statistical framework of MAGIC and give explicit examples of how this might be achieved. Foreground contamination will become an increasingly important issue in CMB data analysis and the ability of this new algorithm to produce an exact power spectrum in a computationally feasible time, coupled with the foreground component separation and removal is an exciting development in CMB data analysis. When considered with current algorithmic developments
Power spectrum analysis of astronomical photographs digitised with small apertures.
NASA Astrophysics Data System (ADS)
Stobie, R. S.; Okamura, S.; Davenhall, A. C.; MacGillivray, H. T.
A total of 8 UK Schmidt Telescope plates, 2 Anglo-Australian Telescope prime focus plates and 2 Palomar Observatory Sky Survey (POSS) copies were measured with a scanning aperture of 11 μm and a pixel spacing of 16 μm. Power spectrum analysis of the resulting data shows the plate noise (with the exception of the POSS plates) to correspond to almost white noise over the frequency range 0.1 - 60 cycles mm-1. The signal-to-noise power spectrum is shown to be a useful tool for measuring the information content of an astronomical photograph. A comparison was made of the information content of a survey quality UKST IIIaJ plate and atlas quality copies on very fine-grained emulsion. Power spectrum analysis of exactly the same area on the original plate and copies showed no significant degradation in either emulsion noise or image content of the copy relative to the original.
The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation
NASA Astrophysics Data System (ADS)
Ressell, M. Ted; Turner, Michael S.
1989-10-01
The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 105 to 10-24 cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.
The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation
NASA Technical Reports Server (NTRS)
Ressell, M. Ted; Turner, Michael S.
1989-01-01
The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 10(exp 5) to 10(exp -24) cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.
Kolmogorov spectrum of renewable wind and solar power fluctuations
NASA Astrophysics Data System (ADS)
Tabar, M. Reza Rahimi; Anvari, M.; Lohmann, G.; Heinemann, D.; Wächter, M.; Milan, P.; Lorenz, E.; Peinke, Joachim
2014-10-01
With increasing the contribution of renewable energies in power production, the task of reducing dynamic instability in power grids must also be addressed from the generation side, because the power delivered from such sources is spatiotemporally stochastic in nature. Here we characterize the stochastic properties of the wind and solar energy sources by studying their spectrum and multifractal exponents. The computed power spectrum from high frequency time series of solar irradiance and wind power reveals a power-law behaviour with an exponent ˜ 5/3 (Kolmogorov exponent) for the frequency domain 0.001 Hz < f < 0.05 Hz, which means that the power grid is being fed by turbulent-like sources. Our results bring important evidence on the stochastic and turbulent-like behaviour of renewable power production from wind and solar energies, which can cause instability in power grids. Our statistical analysis also provides important information that must be used as a guideline for an optimal design of power grids that operate under intermittent renewable sources of power.
Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure
NASA Astrophysics Data System (ADS)
Ravenni, Andrea; Verde, Licia; Cuesta, Antonio J.
2016-08-01
We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.
Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation
DOE R&D Accomplishments Database
Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.
1983-06-01
We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.
Monte-Carlo Simulations of the Suzaku-XRS Residual Background Spectrum
NASA Technical Reports Server (NTRS)
Perinati, E.; Kilbourne, Caroline Anne; Colasanti, L.; Lotti, S.; Macculi, C.; Piro, L.; Mineo, T.; Mitsuda, K.; Bonardi, A.; Santangelo, A.
2012-01-01
Cryogenic micro-calorimeters are suitable to detect small amounts of energy deposited by electromagnetic and nuclear interactions, which makes them attractive in a variety of applications on ground and in space. The only X-ray microcalorimeter that operated in orbit to date is the X-Ray Spectrometer on-board of the Japanese Suzaku satellite. We discuss the analysis of the components of its residual background spectrum with the support of Monte-Carlo simulations.
Impact of massive neutrinos on the nonlinear matter power spectrum.
Saito, Shun; Takada, Masahiro; Taruya, Atsushi
2008-05-16
We present the first attempt to analytically study the nonlinear matter power spectrum for a mixed dark matter model containing neutrinos of total mass ~0.1 eV, based on cosmological perturbation theory. The suppression in the power spectrum amplitudes due to massive neutrinos is enhanced in the weakly nonlinear regime. We demonstrate that, thanks to this enhanced effect, the use of such a nonlinear model may enable a precision of sigma(m(nu,tot)) ~ 0.07 eV in constraining the total neutrino mass for the planned galaxy redshift survey, a factor of 2 improvement compared to the linear regime.
A neutrino model fit to the CMB power spectrum
NASA Astrophysics Data System (ADS)
Shanks, T.; Johnson, R. W. F.; Schewtschenko, J. A.; Whitbourn, J. R.
2014-12-01
The standard cosmological model, Λ cold dark matter (ΛCDM), provides an excellent fit to cosmic microwave background (CMB) data. However, the model has well-known problems. For example, the cosmological constant, Λ, is fine-tuned to 1 part in 10100 and the CDM particle is not yet detected in the laboratory. Shanks previously investigated a model which assumed neither exotic particles nor a cosmological constant but instead postulated a low Hubble constant (H0) to allow a baryon density compatible with inflation and zero spatial curvature. However, recent Planck results make it more difficult to reconcile such a model with CMB power spectra. Here, we relax the previous assumptions to assess the effects of assuming three active neutrinos of mass ≈5 eV. If we assume a low H0 ≈ 45 km s-1 Mpc-1 then, compared to the previous purely baryonic model, we find a significantly improved fit to the first three peaks of the Planck power spectrum. Nevertheless, the goodness of fit is still significantly worse than for ΛCDM and would require appeal to unknown systematic effects for the fit ever to be considered acceptable. A further serious problem is that the amplitude of fluctuations is low (σ8 ≈ 0.2), making it difficult to form galaxies by the present day. This might then require seeds, perhaps from a primordial magnetic field, to be invoked for galaxy formation. These and other problems demonstrate the difficulties faced by models other than ΛCDM in fitting ever more precise cosmological data.
The X-ray variability of NGC 6814 - Power spectrum
NASA Technical Reports Server (NTRS)
Done, C.; Madejski, G. M.; Mushotzky, R. F.; Turner, T. J.; Koyama, K.; Kunieda, H.
1992-01-01
The existence of the periodic component seen in NGC 6814 with Exosat at 12,000 +/- 100 s is confirmed by a power spectrum and folded light curve analysis of unevenly sampled Ginga data. A comparison of the power spectra produced from simulated light curves with that observed enables the intrinsic shape of the power spectrum of the source to be determined despite the distortions introduced by the window function. The best estimate for the period is 12,132 +/- 3 s, where the error is that derived from simulations. An upper limit to the rate of change of period of about 10 exp -9 is inferred if the light curves are truly phase-coherent, but as this is not required by the data, the conservative upper limit is not greater than 5 x 10 exp -7. The large amount of power in the periodic component and its stability both suggest occultation of the source as its origin.
COSMIC EMULATION: FAST PREDICTIONS FOR THE GALAXY POWER SPECTRUM
Kwan, Juliana; Heitmann, Katrin; Habib, Salman; Frontiere, Nicholas; Pope, Adrian; Padmanabhan, Nikhil; Lawrence, Earl; Finkel, Hal
2015-09-01
The halo occupation distribution (HOD) approach has proven to be an effective method for modeling galaxy clustering and bias. In this approach, galaxies of a given type are probabilistically assigned to individual halos in N-body simulations. In this paper, we present a fast emulator for predicting the fully nonlinear galaxy–galaxy auto and galaxy–dark matter cross power spectrum and correlation function over a range of freely specifiable HOD modeling parameters. The emulator is constructed using results from 100 HOD models run on a large ΛCDM N-body simulation, with Gaussian Process interpolation applied to a PCA-based representation of the galaxy power spectrum. The total error is currently ∼1% in the auto correlations and ∼2% in the cross correlations from z = 1 to z = 0, over the considered parameter range. We use the emulator to investigate the accuracy of various analytic prescriptions for the galaxy power spectrum, parametric dependencies in the HOD model, and the behavior of galaxy bias as a function of HOD parameters. Additionally, we obtain fully nonlinear predictions for tangential shear correlations induced by galaxy–galaxy lensing from our galaxy–dark matter cross power spectrum emulator. All emulation products are publicly available at http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html.
Measuring the power spectrum of dark matter substructure using strong gravitational lensing
NASA Astrophysics Data System (ADS)
Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert; Kisner, Theodore; Kuhlen, Michael; Perreault Levasseur, Laurence
2016-11-01
In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, and test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (~10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.
A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui
2014-12-01
Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.
SPECTRUM OF THE SUPERNOVA RELIC NEUTRINO BACKGROUND AND METALLICITY EVOLUTION OF GALAXIES
Nakazato, Ken’ichiro; Mochida, Eri; Suzuki, Hideyuki; Niino, Yuu
2015-05-01
The spectrum of the supernova relic neutrino (SRN) background from past stellar collapses including black hole formation (failed supernovae) is calculated. The redshift dependence of the black hole formation rate is considered on the basis of the metallicity evolution of galaxies. Assuming the mass and metallicity ranges of failed supernova progenitors, their contribution to SRNs is quantitatively estimated for the first time. Using this model, the dependences of SRNs on the cosmic star formation rate density (CSFRD), shock revival time, and equation of state (EOS) are investigated. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. The dependence on EOS is considered for failed supernovae, whose collapse dynamics and neutrino emission are certainly affected. It is found that the low-energy spectrum of SRNs is mainly determined by the CSFRD. These low-energy events will be observed in the Super-Kamiokande experiment with gadolinium-loaded water.
Power spectrum analysis of astronomical photographs digitised with small apertures
NASA Astrophysics Data System (ADS)
Stobie, R. S.; Okamura, S.; Davenhall, A. C.; MacGillivray, H. T.
1984-04-01
Noise characteristics of images on 8 UK Schmidt Telescope plates, 2 Anglo-Australian Telescope prime focus plates, and 2 Palomar Observatory Sky Survey (POSS) copies (comprising 3 different emulsion types) were measured with a scanning aperture of 11 microns and a pixel spacing of 16 microns. Power spectrum analysis shows plate noise (except POSS plates) to correspond to almost white noise over the frequency range 0.1 to 60 cycles/mm. The signal-to-noise power spectrum is shown to be a useful tool for measuring the information content of an astronomical photograph. Macronoise computed over 8 x 8 mm regions on the plates varies as the minus half power of the aperture area. Information content of a survey quality IIIa-J plate and atlas quality copies on very fine-grained emulsion were compared. Analysis shows no significant degradation in emulsion noise or image content of the copy relative to the original.
NASA Technical Reports Server (NTRS)
Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent D; Kosowsky, Arthur; Wollack, Ed
2014-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.
Das, Sudeep; Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D.; Addison, Graeme E.; Halpern, Mark; Battistelli, Elia S.; Crichton, Devin; Gralla, Megan; Devlin, Mark J.; Dicker, Simon; Dünner, Rolando; Fowler, Joseph W.; Hasselfield, Matthew; Hlozek, Renée; Hilton, Matt; and others
2014-04-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.
Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument
NASA Technical Reports Server (NTRS)
Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Meyer, S. S.; Noerdlinger, P. D.
1994-01-01
The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).
The power spectrum of the Point Source Catalogue redshift survey
NASA Astrophysics Data System (ADS)
Sutherland, W.; Tadros, H.; Efstathiou, G.; Frenk, C. S.; Keeble, O.; Maddox, S.; McMahon, R. G.; Oliver, S.; Rowan-Robinson, M.; Saunders, W.; White, S. D. M.
1999-09-01
We measure the redshift-space power spectrum P(k) for the recently completed IRAS Point Source Catalogue (PSC) redshift survey, which contains 14 500 galaxies over 84 per cent of the sky with 60-μm flux >=0.6 Jy. Comparison with simulations shows that our estimated errors on P(k) are realistic, and that systematic errors resulting from the finite survey volume are small for wavenumbers k >~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between those of the earlier QDOT and 1.2-Jy surveys, but with considerably smaller error bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like models using the Peacock-Dodds formula for non-linear evolution; the results are somewhat sensitive to the assumed small-scale velocity dispersion σ_V. Assuming a realistic σ_V ~ 300 km s^-1 yields a shape parameter Γ ~ 0.25 and normalization bσ_8 ~ 0.75; if σ_V is as high as 600 km s^-1 then Γ = 0.5 is only marginally excluded. There is little evidence for any `preferred scale' in the power spectrum or non-Gaussian behaviour in the distribution of large-scale power.
Automated FMV image quality assessment based on power spectrum statistics
NASA Astrophysics Data System (ADS)
Kalukin, Andrew
2015-05-01
Factors that degrade image quality in video and other sensor collections, such as noise, blurring, and poor resolution, also affect the spatial power spectrum of imagery. Prior research in human vision and image science from the last few decades has shown that the image power spectrum can be useful for assessing the quality of static images. The research in this article explores the possibility of using the image power spectrum to automatically evaluate full-motion video (FMV) imagery frame by frame. This procedure makes it possible to identify anomalous images and scene changes, and to keep track of gradual changes in quality as collection progresses. This article will describe a method to apply power spectral image quality metrics for images subjected to simulated blurring, blocking, and noise. As a preliminary test on videos from multiple sources, image quality measurements for image frames from 185 videos are compared to analyst ratings based on ground sampling distance. The goal of the research is to develop an automated system for tracking image quality during real-time collection, and to assign ratings to video clips for long-term storage, calibrated to standards such as the National Imagery Interpretability Rating System (NIIRS).
Choi, Kwang-Ho; Cho, Seong Jin; Kang, Suk-Yun; Ahn, Seong Hun
2016-01-01
To identify physical and sensory responses to acupuncture point stimulation (APS), nonacupuncture point stimulation (NAPS) and no stimulation (NS), changes in the high-frequency power spectrum before and after stimulation were evaluated with electroencephalography (EEG). A total of 37 healthy subjects received APS at the LI4 point, NAPS, or NS with their eyes closed. Background brain waves were measured before, during, and after stimulation using 8 channels. Changes in the power spectra of gamma waves and high beta waves before, during, and after stimulation were comparatively analyzed. After NAPS, absolute high beta power (AHBP), relative high beta power (RHBP), absolute gamma power (AGP), and relative gamma power (RGP) tended to increase in all channels. But no consistent notable changes were found for APS and NS. NAPS is believed to cause temporary reactions to stress, tension, and sensory responses of the human body, while APS responds stably compared to stimulation of other parts of the body. PMID:27818695
Decomposition of Heart Rate Variability Spectrum into a Power-Law Function and a Residual Spectrum.
Kuo, Jane; Kuo, Cheng-Deng
2016-01-01
The power spectral density (PSD) of heart rate variability (HRV) contains a power-law relationship that can be obtained by plotting the logarithm of PSD against the logarithm of frequency. The PSD of HRV can be decomposed mathematically into a power-law function and a residual HRV (rHRV) spectrum. Almost all rHRV measures are significantly smaller than their corresponding HRV measures except the normalized high-frequency power (nrHFP). The power-law function can be characterized by the slope and Y-intercept of linear regression. Almost all HRV measures except the normalized low-frequency power have significant correlations with the Y-intercept, while almost all rHRV measures except the total power [residual total power (rTP)] do not. Though some rHRV measures still correlate significantly with the age of the subjects, the rTP, high-frequency power (rHFP), nrHFP, and low-/high-frequency power ratio (rLHR) do not. In conclusion, the clinical significances of rHRV measures might be different from those of traditional HRV measures. The Y-intercept might be a better HRV measure for clinical use because it is independent of almost all rHRV measures. The rTP, rHFP, nrHFP, and rLHR might be more suitable for the study of age-independent autonomic nervous modulation of the subjects.
Electron density power spectrum in the local interstellar medium
NASA Technical Reports Server (NTRS)
Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.
1995-01-01
Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the
Nonisotropy in the CMB power spectrum in single field inflation
Donoghue, John F.; Dutta, Koushik; Ross, Andreas
2009-07-15
Contaldi et al.[C. R. Contaldi, M. Peloso, L. Kofman, and A. Linde, J. Cosmol. Astropart. Phys. 07 (2003) 002] have suggested that an initial period of kinetic energy domination in single field inflation may explain the lack of CMB power at large angular scales. We note that in this situation it is natural that there also be a spatial gradient in the initial value of the inflaton field, and that this can provide a spatial asymmetry in the observed CMB power spectrum, manifest at low values of l. We investigate the nature of this asymmetry and comment on its relation to possible anomalies at low l.
Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach
Perico, E.L.D.; Bernardini, A.E. E-mail: alexeb@ufscar.br
2011-06-01
Modifications on the predictions about the matter power spectrum based on the hypothesis of a tiny contribution from a degenerate Fermi gas (DFG) test-fluid to some dominant cosmological scenario are investigated. Reporting about the systematic way of accounting for all the cosmological perturbations, through the Boltzmann equation we obtain the analytical results for density fluctuation, δ, and fluid velocity divergence, θ, of the DFG. Small contributions to the matter power spectrum are analytically obtained for the radiation-dominated background, through an ultra-relativistic approximation, and for the matter-dominated and Λ-dominated eras, through a non-relativistic approximation. The results can be numerically reproduced and compared with those of considering non-relativistic and ultra-relativistic neutrinos into the computation of the matter power spectrum. Lessons concerning the formation of large scale structures of a DFG are depicted, and consequent deviations from standard ΛCDM predictions for the matter power spectrum (with and without neutrinos) are quantified.
Unbiased pseudo-Cℓ power spectrum estimation with mode projection
NASA Astrophysics Data System (ADS)
Elsner, Franz; Leistedt, Boris; Peiris, Hiranya V.
2017-02-01
With the steadily improving sensitivity afforded by current and future galaxy surveys, a robust extraction of two-point correlation function measurements may become increasingly hampered by the presence of astrophysical foregrounds or observational systematics. The concept of mode projection has been introduced as a means to remove contaminants for which it is possible to construct a spatial map, reflecting the expected signal contribution. Owing to its computational efficiency compared to minimum-variance methods, the sub-optimal pseudo-Cℓ (PCL) power spectrum estimator is a popular tool for the analysis of high-resolution data sets. Here, we integrate mode projection into the framework of PCL power spectrum estimation. In contrast to results obtained with optimal estimators, we show that the uncorrected projection of template maps leads to biased power spectra. Based on analytical calculations, we find exact closed-form expressions for the expectation value of the bias and demonstrate that they can be recast in a form which allows a numerically efficient evaluation, preserving the favourable O( ℓ_{max} ^3 ) time complexity of PCL estimator algorithms. Using simulated data sets, we assess the scaling of the bias with various analysis parameters and demonstrate that it can be reliably removed. We conclude that in combination with mode projection, PCL estimators allow for a fast and robust computation of power spectra in the presence of systematic effects - properties in high demand for the analysis of ongoing and future large-scale structure surveys.
Low-frequency measurements of the CMB (cosmic microwave background) spectrum
Kogut, A.; Bensadoun, M.; De Amici, G.; Levin, S.; Limon, M.; Smoot, G. ); Sironi, G. . Dipt. di Fisica); Bersanelli, M.; Bonelli, G. )
1989-10-01
As part of an extended program to characterize the spectrum of the cosmic microwave background (CMB) at low frequencies, we have performed multiple measurements from a high-altitude site in California. On average, these measurements suggest a CMB temperature slightly lower than measurements at higher frequencies. Atmospheric conditions and the encroachment of civilization are now significant limitations from our present observing site. In November 1989, we will make new measurements from the South Pole Amnudsen-Scott Station at frequencies 0.82 1.5, 2.5, 3.8, 7.5, and 90 GHz. We discuss recent measurements and indicate improvements from a polar observing site. 11 refs., 2 figs.
Distributed Energy Resources, Power Quality and Reliability - Background
Schienbein, Lawrence A.; DeSteese, John G.
2002-01-31
Power quality [PQ] and power reliability [PR] gained importance in the industrialized world as the pace of installation of sensitive appliances and other electrical loads by utility customers accelerated, beginning in the mid 1980s. Utility-grid-connected customers rapidly discovered that this equipment was increasingly sensitive to various abnormalities in the electricity supply.
Early Structure Formation from Primordial Density Fluctuations with a Blue, Tilted Power Spectrum
NASA Astrophysics Data System (ADS)
Hirano, Shingo; Zhu, Nick; Yoshida, Naoki; Spergel, David; Yorke, Harold W.
2015-11-01
While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as P(k)∼ {k}{m{{s}}} with ms > 1. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with ms > 1, star-forming gas clouds are formed at z > 100 when the formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while retaining a high temperature. The protostars formed in such “hot” clouds grow very rapidly through accretion to become extremely massive stars that may leave massive black holes with a few hundred solar masses at z > 100. The shape of the PPS critically affects the properties and the formation epoch of the first generation of stars. Future experiments on CMB polarization and spectrum distortion may provide important information on the nature of the first stars and their formation epoch, and hence on the shape of the small-scale power spectrum.
Galactic antiproton spectrum at high energies: Background expectation versus exotic contributions
Bringmann, Torsten; Salati, Pierre
2007-04-15
A new generation of upcoming space-based experiments will soon start to probe the spectrum of cosmic-ray antiparticles with an unprecedented accuracy and, in particular, will open up a window to energies much higher than those accessible so far. It is thus timely to carefully investigate the expected antiparticle fluxes at high energies. Here, we perform such an analysis for the case of antiprotons. We consider both standard sources as the collision of other cosmic rays with interstellar matter, as well as exotic contributions from dark matter annihilations in the galactic halo. Up to energies well above 100 GeV, we find that the background flux in antiprotons is almost uniquely determined by the existing low-energy data on various cosmic-ray species; for even higher energies, however, the uncertainties in the parameters of the underlying propagation model eventually become significant. We also show that if the dark matter is composed of particles with masses at the TeV scale, which is naturally expected in extra-dimensional models as well as in certain parameter regions of supersymmetric models, the annihilation flux can become comparable to--or even dominate--the antiproton background at the high energies considered here.
Influence of DBT reconstruction algorithm on power law spectrum coefficient
NASA Astrophysics Data System (ADS)
Vancamberg, Laurence; Carton, Ann-Katherine; Abderrahmane, Ilyes H.; Palma, Giovanni; Milioni de Carvalho, Pablo; Iordache, Rǎzvan; Muller, Serge
2015-03-01
In breast X-ray images, texture has been characterized by a noise power spectrum (NPS) that has an inverse power-law shape described by its slope β in the log-log domain. It has been suggested that the magnitude of the power-law spectrum coefficient β is related to mass lesion detection performance. We assessed β in reconstructed digital breast tomosynthesis (DBT) images to evaluate its sensitivity to different typical reconstruction algorithms including simple back projection (SBP), filtered back projection (FBP) and a simultaneous iterative reconstruction algorithm (SIRT 30 iterations). Results were further compared to the β coefficient estimated from 2D central DBT projections. The calculations were performed on 31 unilateral clinical DBT data sets and simulated DBT images from 31 anthropomorphic software breast phantoms. Our results show that β highly depends on the reconstruction algorithm; the highest β values were found for SBP, followed by reconstruction with FBP, while the lowest β values were found for SIRT. In contrast to previous studies, we found that β is not always lower in reconstructed DBT slices, compared to 2D projections and this depends on the reconstruction algorithm. All β values estimated in DBT slices reconstructed with SBP were larger than β values from 2D central projections. Our study also shows that the reconstruction algorithm affects the symmetry of the breast texture NPS; the NPS of clinical cases reconstructed with SBP exhibit the highest symmetry, while the NPS of cases reconstructed with SIRT exhibit the highest asymmetry.
CHIPS: The Cosmological H i Power Spectrum Estimator
NASA Astrophysics Data System (ADS)
Trott, C. M.; Pindor, B.; Procopio, P.; Wayth, R. B.; Mitchell, D. A.; McKinley, B.; Tingay, S. J.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; de Oliveira-Costa, A.; Dillon, Joshua S.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kim, H. S.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, Nithyanandan; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Pober, J. C.; Prabu, T.; Riding, J.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.
2016-02-01
Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization (EoR) and estimation of its basic physical parameters are principal scientific aims of many current low-frequency radio telescopes. Here we describe the Cosmological H i Power Spectrum Estimator (CHIPS), an algorithm developed and implemented with data from the Murchison Widefield Array, to compute the two-dimensional and spherically-averaged power spectrum of brightness temperature fluctuations. The principal motivations for CHIPS are the application of realistic instrumental and foreground models to form the optimal estimator, thereby maximizing the likelihood of unbiased signal estimation, and allowing a full covariant understanding of the outputs. CHIPS employs an inverse-covariance weighting of the data through the maximum likelihood estimator, thereby allowing use of the full parameter space for signal estimation (“foreground suppression”). We describe the motivation for the algorithm, implementation, application to real and simulated data, and early outputs. Upon application to a set of 3 hr of data, we set a 2σ upper limit on the EoR dimensionless power at k=0.05 {{h}} Mpc-1 of {{{Δ }}}k2\\lt 7.6× {10}4 mK2 in the redshift range z = [6.2-6.6], consistent with previous estimates.
NASA Technical Reports Server (NTRS)
1976-01-01
An analysis was made of the UF6 fueled gas core reactor as a function of cavity reactor criticality and fluid mechanics tests, investigations of uranium optical emission spectra, and radiant heat transfer power plant studies. Data are also given on nuclear and thermodynamic cycle analysis.
The Power Spectrum Dependence of Dark Matter Halo Concentrations
NASA Astrophysics Data System (ADS)
Eke, Vincent R.; Navarro, Julio F.; Steinmetz, Matthias
2001-06-01
High-resolution N-body simulations are used to examine the power spectrum dependence of the concentration of galaxy-sized dark matter halos. It is found that dark halo concentrations depend on the amplitude of mass fluctuations as well as on the ratio of power between small and virial mass scales. This finding is consistent with the original results of Navarro, Frenk, and White (NFW) and allows their model to be extended to include power spectra substantially different from cold dark matter (CDM). In particular, the single-parameter model presented here fits the concentration dependence on halo mass for truncated power spectra, such as those expected in the warm dark matter scenario, and predicts a stronger redshift dependence for the concentration of CDM halos than proposed by NFW. The latter conclusion confirms recent suggestions by Bullock and coworkers, although this new modeling differs from theirs in detail. These findings imply that observational limits on the concentration, such as those provided by estimates of the dark matter content within individual galaxies, may be used to constrain the amplitude of mass fluctuations on galactic and subgalactic scales. The constraints on ΛCDM models posed by the dark mass within the solar circle in the Milky Way and by the zero point of the Tully-Fisher relation are revisited, with the result that neither data set is clearly incompatible with the ``concordance'' (Ω0=0.3, Λ0=0.7, σ8=0.9) ΛCDM cosmogony. This conclusion differs from that reached recently by Navarro and Steinmetz, a disagreement that can be traced to inconsistencies in the normalization of the ΛCDM power spectrum used in that work.
Matter power spectrum and the challenge of percent accuracy
NASA Astrophysics Data System (ADS)
Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Onions, Julian; Reed, Darren S.; Smith, Robert E.; Springel, Volker; Pearce, Frazer R.; Scoccimarro, Roman
2016-04-01
Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N-body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N-body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k<=1 h Mpc-1 and to within three percent at k<=10 h Mpc-1. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k<= 2 h Mpc-1. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L=0.5 h-1Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of Mp=109 h-1Msolar is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.
IONOSPHERIC POWER-SPECTRUM TOMOGRAPHY IN RADIO INTERFEROMETRY
Koopmans, L. V. E.
2010-08-01
A tomographic method is described to quantify the three-dimensional power spectrum of the ionospheric electron-density fluctuations based on radio-interferometric observations by a two-dimensional planar array. The method is valid for the first-order Born approximation and might be applicable in correcting observed visibilities for phase variations due to the imprint of the full three-dimensional ionosphere. It is shown that the ionospheric electron-density distribution is not the primary structure to model in interferometry, but rather its autocorrelation function or equivalently its power spectrum. An exact mathematical expression is derived that provides the three-dimensional power spectrum of the ionospheric electron-density fluctuations directly from a rescaled scattered intensity field and an incident intensity field convolved with a complex unit phasor that depends on the w-term and is defined on the full sky pupil plane. In the limit of a small field of view, the method reduces to the single phase-screen approximation. Tomographic self-calibration can become important in high-dynamic range observations at low radio frequencies with wide-field antenna interferometers because a three-dimensional ionosphere causes a spatially varying convolution of the sky, whereas a single phase screen results in a spatially invariant convolution. A thick ionosphere can therefore not be approximated by a single phase screen without introducing errors in the calibration process. By applying a Radon projection and the Fourier projection-slice theorem, it is shown that the phase-screen approach in three dimensions is identical to the tomographic method. Finally, we suggest that residual speckle can cause a diffuse intensity halo around sources due to uncorrectable ionospheric phase fluctuations in the short integrations, which could pose a fundamental limit on the dynamic range in long-integration images.
Ultrasonic Inspection With Angular-Power-Spectrum Scanning
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
1994-01-01
Principal advantage of angular-power-spectrum scanning (APSS) is that, unlike x-radiography and prior ultrasonic techniques, it reveals subtle distributions of microstructural features; e.g., variations in densities of micropores or regions in which fibers and matrices are poorly bonded to each other. Potential applications include development and characterization of composite-material components of large structures, such as buildings and bridges; determination of quality and detection of damage in fiberglass hulls, surfboards, ladders, and scaffolds; and development of porous prosthetic skins and complicated "smart" materials. Superposed diffraction patterns give clues to internal structural features of ceramic composites.
Spectrum of power laws for curved hand movements.
Huh, Dongsung; Sejnowski, Terrence J
2015-07-21
In a planar free-hand drawing of an ellipse, the speed of movement is proportional to the -1/3 power of the local curvature, which is widely thought to hold for general curved shapes. We investigated this phenomenon for general curved hand movements by analyzing an optimal control model that maximizes a smoothness cost and exhibits the -1/3 power for ellipses. For the analysis, we introduced a new representation for curved movements based on a moving reference frame and a dimensionless angle coordinate that revealed scale-invariant features of curved movements. The analysis confirmed the power law for drawing ellipses but also predicted a spectrum of power laws with exponents ranging between 0 and -2/3 for simple movements that can be characterized by a single angular frequency. Moreover, it predicted mixtures of power laws for more complex, multifrequency movements that were confirmed with human drawing experiments. The speed profiles of arbitrary doodling movements that exhibit broadband curvature profiles were accurately predicted as well. These findings have implications for motor planning and predict that movements only depend on one radian of angle coordinate in the past and only need to be planned one radian ahead.
Peaks in the CMBR Power Spectrum II: Physical Interpretation for any Cosmological Scenario
NASA Astrophysics Data System (ADS)
López-Corredoira, Martín
2013-06-01
In a previous paper (part I), the mathematical properties of the cosmic microwave background radiation (CMBR) power spectrum which presents oscillations were discussed. Here, we discuss the physical interpretation: a power spectrum with oscillations is a rather normal characteristic expected from any fluid with clouds of overdensities that emit/absorb radiation or interact gravitationally with the photons, and with a finite range of sizes and distances for those clouds. The standard cosmological interpretation of "acoustic" peaks is just a particular case; peaks in the power spectrum might be generated in scenarios within some alternative cosmological model that have nothing to do with oscillations due to gravitational compression in a fluid. We also calculate the angular correlation function of the anisotropies from the Wilkinson Microwave Anisotropy Probe (WMAP)-7 yr and ACT data, in an attempt to derive the minimum number of parameters a polynomial function should have to fit it: a set of polynomial functions with a total of ≈ 6 free parameters, apart from the amplitude, is enough to reproduce the first two peaks. However, the standard model with six tunable free parameters also reproduces higher-order peaks, giving the standard model a higher confidence. At present, while no simple function with six free parameters is found to give a fit as good as the one given by the standard cosmological model, we may consider the predictive power of the standard model beyond an instrumentalist approach (such as the Ptolemaic astronomy model of the orbits of the planets).
State regulation and power plant productivity: background and recommendations
Not Available
1980-09-01
This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.
Reconstructing the primordial power spectrum from the CMB
NASA Astrophysics Data System (ADS)
Gauthier, Christopher; Bucher, Martin
2012-10-01
We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.
Unbiased contaminant removal for 3D galaxy power spectrum measurements
NASA Astrophysics Data System (ADS)
Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.
2016-11-01
We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (i) removing the contaminant signal, (ii) estimating the uncontaminated cosmological power spectrum and (iii) debiasing the resulting estimates. For (i), we show that removing the best-fitting contaminant (mode subtraction) and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (ii), performing a quadratic maximum likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants, is less severe than that commonly ignored due to the survey window.
Testing for new physics: neutrinos and the primordial power spectrum
NASA Astrophysics Data System (ADS)
Canac, Nicolas; Aslanyan, Grigor; Abazajian, Kevork N.; Easther, Richard; Price, Layne C.
2016-09-01
We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H0 and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in log k. Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H0. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H0 measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.
Joint Bayesian Component Separation and CMB Power Spectrum Estimation
NASA Technical Reports Server (NTRS)
Eriksen, H. K.; Jewell, J. B.; Dickinson, C.; Banday, A. J.; Gorski, K. M.; Lawrence, C. R.
2008-01-01
We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are (1) conditional sampling of foreground spectral parameters and (2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground- CMB posterior distribution and, therefore, all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multiresolution observations. To verify the method, we analyze simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3 yr WMAP data, downgraded to a common resolution of 3 deg FWHM. The results from the actual 3 yr WMAP temperature analysis are presented in a companion Letter.
NASA Astrophysics Data System (ADS)
Akylas, A.; Georgakakis, A.; Georgantopoulos, I.; Brightman, M.; Nandra, K.
2012-10-01
This paper investigates which constraints can be placed on the fraction of Compton-thick active galactic nuclei (AGN) in the Universe from modelling the spectrum of the diffuse X-ray background (XRB). We present a model for the synthesis of the XRB that uses as input a library of AGN X-ray spectra generated by Monte Carlo simulations. This is essential to account for the Compton scattering of X-ray photons in a dense medium and the impact of that process on the spectra of heavily obscured AGN. We identify a small number of input parameters to the XRB synthesis code that encapsulate the minimum level of uncertainty in reconstructing the XRB spectrum. These are the power-law index and high-energy cutoff of the intrinsic X-ray spectra of AGN, the level of the reflection component in AGN spectra, and the fraction of Compton-thick AGN in the Universe. We then map the volume of the space allowed to these parameters by current observational determinations of the XRB spectrum in the range 3-100 keV. One of the least-constrained parameters is the fraction of Compton-thick AGN. Statistically acceptable fits to the XRB spectrum at the 68% confidence level can be obtained for Compton-thick AGN fractions in the range 5-50%. This is because of degeneracies among input parameters to the XRB synthesis code and uncertainties in the modelling of AGN spectra (e.g. level of reflection fraction). The most promising route for constraining the fraction of Compton-thick AGN in the Universe is via the direct detection of those sources in high-energy (≳ 10 keV) surveys. We show that the observed fraction of Compton-thick sources identified in the Swift/BAT serendipitous survey limits the intrinsic fraction of Compton-thick AGN, at least at low redshift, to 10-20% (68% confidence level). We also make predictions on the number density of Compton-thick sources that current and future X-ray missions are expected to discover. Testing those predictions with data will place tight constraints on
No evidence for the blue-tilted power spectrum of relic gravitational waves
Huang, Qing-Guo; Wang, Sai E-mail: wangsai@itp.ac.cn
2015-06-01
In this paper, we constrain the tilt of the power spectrum of relic gravitational waves by combining the data from BICEP2/Keck Array and Planck (BKP) and the Laser Interferometer Gravitational-Waves Observatory (LIGO). Supposing the linearly uniform priors for both the tensor-to-scalar ratio r and the tensor tilt n{sub t}, we find n{sub t}=0.66{sup +1.83}{sub −1.44} at the 68% confidence level from the data of BKP B-modes. By further adding the LIGO upper limit on the intensity of stochastic gravitational-wave background, the constraint becomes n{sub t}=−0.76{sup +1.37}{sub −0.52} at the 68% confidence level by assuming that the tensor amplitude has the similar order of the upper bounds from current CMB experiments. We find that there is no evidence for a blue-tilted power spectrum of relic gravitational waves and either sign of the index of tensor power spectrum is compatible with the current data.
Increased photovoltaic power output via diffractive spectrum separation.
Kim, Ganghun; Dominguez-Caballero, Jose A; Lee, Howard; Friedman, Daniel J; Menon, Rajesh
2013-03-22
In this Letter, we report the preliminary demonstration of a new paradigm for photovoltaic power generation that utilizes a broadband diffractive-optical element (BDOE) to efficiently separate sunlight into laterally spaced spectral bands. These bands are then absorbed by single-junction photovoltaic cells, whose band gaps correspond to the incident spectral bands. We designed such BDOEs by utilizing a modified version of the direct-binary-search algorithm. Gray scale lithography was used to fabricate these multilevel optics. They were experimentally characterized with an overall optical efficiency of 70% over a wavelength range of 350-1100 nm, which was in excellent agreement with simulation predictions. Finally, two prototype devices were assembled: one with a pair of copper indium gallium selenide based photovoltaic devices, and another with GaAs and c-Si photovoltaic devices. These devices demonstrated an increase in output peak electrical power of ∼ 42% and ∼ 22%, respectively, under white-light illumination. Because of the optical versatility and manufacturability of the proposed BDOEs, the reported spectrum-splitting approach provides a new approach toward low-cost solar power.
Neutrino mass limits: Robust information from the power spectrum of galaxy surveys
NASA Astrophysics Data System (ADS)
Cuesta, Antonio J.; Niro, Viviana; Verde, Licia
2016-09-01
We present cosmological upper limits on the sum of active neutrino masses using large-scale power spectrum data from the WiggleZ Dark Energy Survey and from the Sloan Digital Sky Survey - Data Release 7 (SDSS-DR7) sample of Luminous Red Galaxies (LRG). Combining measurements on the Cosmic Microwave Background temperature and polarisation anisotropies by the Planck satellite together with WiggleZ power spectrum results in a neutrino mass bound of 0.37 eV at 95% C.L., while replacing WiggleZ by the SDSS-DR7 LRG power spectrum, the 95% C.L. bound on the sum of neutrino masses is 0.38 eV. Adding Baryon Acoustic Oscillation (BAO) distance scale measurements, the neutrino mass upper limits greatly improve, since BAO data break degeneracies in parameter space. Within a ΛCDM model, we find an upper limit of 0.13 eV (0.14 eV) at 95% C.L., when using SDSS-DR7 LRG (WiggleZ) together with BAO and Planck. The addition of BAO data makes the neutrino mass upper limit robust, showing only a weak dependence on the power spectrum used. We also quantify the dependence of neutrino mass limit reported here on the CMB lensing information. The tighter upper limit (0.13 eV) obtained with SDSS-DR7 LRG is very close to that recently obtained using Lyman-alpha clustering data, yet uses a completely different probe and redshift range, further supporting the robustness of the constraint. This constraint puts under some pressure the inverted mass hierarchy and favours the normal hierarchy.
Power Spectrum Density of Long-Term MAXI Data
NASA Astrophysics Data System (ADS)
Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro
Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.
Displacement power spectrum measurement by CPMG in constant gradient
NASA Astrophysics Data System (ADS)
Lasič, Samo; Stepišnik, Janez; Mohorič, Aleš
2006-10-01
The modulation of spin phase produced by Carr-Purcell-Meiboom-Gill (CPMG) sequence in combination with constant magnetic field gradient is appropriate to probe the displacement power spectrum (DPS). The spin-echo attenuation is directly proportional to the DPS value at the applied modulation frequency. Relaxation and selective excitation effects can be factored out while probing the DPS. The modulation frequency is adjusted by varying the pulse separation time while the gradient strength and the time of acquisition are kept constant. In designing the experiment gradient strength limitations, imposed by off-resonance effects, as well as limitations arising from using Gaussian phase approximation must be considered. An effective experimental strategy is presented, supported by experimental results for free and restricted diffusion.
Measuring the VIPERS galaxy power spectrum at z∼1
NASA Astrophysics Data System (ADS)
Rota, Stefano; Bel, Julien; Granett, Ben; Guzzo, Luigi
2016-10-01
The VIMOS Public Extragalactic Redshift Survey [VIPERS, Guzzo et al. 2014] is using the VIMOS spectrograph at the ESO VLT to measure redshifts for ~ 100,000 galaxies with IAB < 22.5 and 0.5 < z < 1.2, over an area of 24 deg2 (split over the W1 and W4 fields of CFHTLS). VIPERS currently provides, at such redshifts, the best compromise between volume, number of galaxies and dense spatial sampling. We present here the first estimate of the power spectrum of the galaxy distribution, P(k), at redshifts z ~ 0.75 and z ~ 1, obtained from the ~ 55,000 redshifts of the PDR-1 data release. We discuss first constraints on cosmological quantities, as the matter density and the baryonic fraction, obtained for the first time at an epoch when the Universe was about half its current age.
Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology
NASA Technical Reports Server (NTRS)
Puget, J. L.
1973-01-01
An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.
The thermal Sunyaev-Zel'dovich effect power spectrum in light of Planck
NASA Astrophysics Data System (ADS)
McCarthy, I. G.; Le Brun, A. M. C.; Schaye, J.; Holder, G. P.
2014-06-01
The amplitude of the thermal Sunyaev-Zel'dovich effect (tSZ) power spectrum is extremely sensitive to the abundance of the most massive dark matter haloes (galaxy clusters) and therefore to fundamental cosmological parameters that control their growth, such as σ8 and Ωm. Here we explore the sensitivity of the tSZ power spectrum to important non-gravitational (`subgrid') physics by employing the cosmo-OWLS suite of large-volume cosmological hydrodynamical simulations, run in both the Planck and 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) best-fitting cosmologies. On intermediate and small angular scales (ℓ ≳ 1000, or θ≲10 arcmin), accessible with the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT), the predicted tSZ power spectrum is highly model dependent, with gas ejection due to active galactic nuclei (AGN) feedback having a particularly large effect. However, at large scales, observable with the Planck telescope, the effects of subgrid physics are minor. Comparing the simulated tSZ power spectra with observations, we find a significant amplitude offset on all measured angular scales (including large scales), if the Planck best-fitting cosmology is assumed by the simulations. This is shown to be a generic result for all current models of the tSZ power spectrum. By contrast, if the WMAP7 cosmology is adopted, there is full consistency with the Planck tSZ power spectrum measurements on large scales and agreement at the 2σ level with the SPT and ACT measurements at intermediate scales for our fiducial AGN model, which Le Brun et al. have shown reproduces the `resolved' properties of the Local Group and cluster population remarkably well. These findings strongly suggest that there are significantly fewer massive galaxy clusters than expected for the Planck best-fitting cosmology, which is consistent with recent measurements of the tSZ number counts. Our findings therefore pose a significant challenge to the cosmological
Einasto profiles and the dark matter power spectrum
NASA Astrophysics Data System (ADS)
Ludlow, Aaron D.; Angulo, Raúl E.
2017-02-01
We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.
Unscreening Modified Gravity in the Matter Power Spectrum
NASA Astrophysics Data System (ADS)
Lombriser, Lucas; Simpson, Fergus; Mead, Alexander
2015-06-01
Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N -body simulations of f (R ) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k <0.3 h /Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism.
NASA Astrophysics Data System (ADS)
Cappelluti, Nico; Li, Yanxia; Ricarte, Angelo; Agarwal, Bhaskar; Allevato, Viola; Tasnim Ananna, Tonima; Ajello, Marco; Civano, Francesca; Comastri, Andrea; Elvis, Martin; Finoguenov, Alexis; Gilli, Roberto; Hasinger, Günther; Marchesi, Stefano; Natarajan, Priyamvada; Pacucci, Fabio; Treister, E.; Urry, C. Megan
2017-03-01
Using Chandra observations in the 2.15 deg2 COSMOS-legacy field, we present one of the most accurate measurements of the Cosmic X-ray Background (CXB) spectrum to date in the [0.3–7] keV energy band. The CXB has three distinct components: contributions from two Galactic collisional thermal plasmas at kT ∼ 0.27 and 0.07 keV and an extragalactic power law with a photon spectral index Γ = 1.45 ± 0.02. The 1 keV normalization of the extragalactic component is 10.91 ± 0.16 keV cm‑2 s‑1 sr‑1 keV‑1. Removing all X-ray-detected sources, the remaining unresolved CXB is best fit by a power law with normalization 4.18 ± 0.26 keV cm‑2 s‑1 sr‑1 keV‑1 and photon spectral index Γ = 1.57 ± 0.10. Removing faint galaxies down to {i}{AB}∼ 27{--}28 leaves a hard spectrum with {{Γ }}∼ 1.25 and a 1 keV normalization of ∼1.37 keV cm‑2 s‑1 sr‑1 keV‑1. This means that ∼91% of the observed CXB is resolved into detected X-ray sources and undetected galaxies. Unresolved sources that contribute ∼8%–9% of the total CXB show marginal evidence of being harder and possibly more obscured than resolved sources. Another ∼1% of the CXB can be attributed to still undetected star-forming galaxies and absorbed active galactic nuclei. According to these limits, we investigate a scenario where early black holes totally account for non-source CXB fraction and constrain some of their properties. In order to not exceed the remaining CXB and the z∼ 6 accreted mass density, such a population of black holes must grow in Compton-thick envelopes with {N}H > 1.6 × 1025 cm‑2 and form in extremely low-metallicity environments ({Z}ȯ )∼ {10}-3.
The Knotted Sky II: does BICEP2 require a nontrivial primordial power spectrum?
Abazajian, Kevork N.; Aslanyan, Grigor; Easther, Richard; Price, Layne C. E-mail: g.aslanyan@auckland.ac.nz E-mail: lpri691@aucklanduni.ac.nz
2014-08-01
An inflationary gravitational wave background consistent with BICEP2 is difficult to reconcile with a simple power-law spectrum of primordial scalar perturbations. Tensor modes contribute to the temperature anisotropies at multipoles with l∼< 100, and this effect — together with a prior on the form of the scalar perturbations — was the source of previous bounds on the tensor-to-scalar ratio. We compute Bayesian evidence for combined fits to BICEP2 and Planck for three nontrivial primordial spectra: a) a running spectral index, b) a cutoff at fixed wavenumber, and c) a spectrum described by a linear spline with a single internal knot. We find no evidence for a cutoff, weak evidence for a running index, and significant evidence for a ''broken'' spectrum. Taken at face-value, the BICEP2 results require two new inflationary parameters in order to describe both the broken scale invariance in the perturbation spectrum and the observed tensor-to-scalar ratio. Alternatively, this tension may be resolved by additional data and more detailed analyses.
Application of beam deconvolution technique to power spectrum estimation for CMB measurements
NASA Astrophysics Data System (ADS)
Keihänen, E.; Kiiveri, K.; Kurki-Suonio, H.; Reinecke, M.
2017-04-01
We present two novel methods for the estimation of the angular power spectrum of cosmic microwave background (CMB) anisotropies. We assume an absolute CMB experiment with arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from the earlier ones in that the power spectrum is estimated directly from the time-ordered data, without first compressing the data into a sky map, and they take into account the effect of asymmetric beams. In particular, they correct the beam-induced leakage from temperature to polarization. The methods are applicable to a case where part of the sky has been masked out to remove foreground contamination, leaving a pure CMB signal, but incomplete sky coverage. The first method (deconvolution quadratic maximum likelihood) is derived as the optimal quadratic estimator, which simultaneously yields an unbiased spectrum estimate and minimizes its variance. We successfully apply it to multipoles up to ℓ = 200. The second method is derived as a weak-signal approximation from the first one. It yields an unbiased estimate for the full multipole range, but relaxes the requirement of minimal variance. We validate the methods with simulations for the 70 GHz channel of Planck surveyor, and demonstrate that we are able to correct the beam effects in the TT, EE, BB and TE spectra up to multipole ℓ = 1500. Together, the two methods cover the complete multipole range with no gap in between.
Roundoff noise analysis for digital signal power processors using Welch's power spectrum estimation
NASA Technical Reports Server (NTRS)
Chi, Chong-Yung; Long, David; Li, Fuk-Kwok
1987-01-01
The noise due to finite-word-length effects is analyzed for digital-signal power processors using Welch's power-spectrum estimation technique to measure the power of Gaussian random signals over a frequency band of interest. The input of the digital signal processor contains a finite-length time interval in which the true Gaussian signal is contaminated by Gaussian noise. The roundoff noise-to-signal ratio in the measurement of the signal power is derived, and computer simulations which validate the analytical results are presented. These results can be used in tradeoff studies of hardware design, such as the number of bits required at each processing stage. The results presented in this paper are currently being used in the design of a digital Doppler processor (Chi et al., 1986) for a radar scatterometer.
Tissue type characterization using photoacoustic power spectrum, a feasibility study
NASA Astrophysics Data System (ADS)
Tavakoli, Behnoosh; Goldstein, Seth D.; Kang, Jin U.; Choti, Michaal; Boctor, Emad M.
2015-03-01
The development of technologies capable of non-invasive characterization of tissue has the potential to significantly improve diagnostic and therapeutic medical interventions. In this study we investigated the feasibility of a noninvasive photoacoustic (PA) approach for characterizing biological tissues. The measurement was performed in the transmission mode with a wideband hydrophone while a tunable Q-switched Nd:YAG pulsed laser was used for illumination. The power spectrum of photoacoustic signal induced by a pulsed laser light from tissue was analyzed and features were extracted to study their correlation with tissue biomechanical properties. For a controlled study, tissue mimicking gelatin phantoms with different densities and equivalent optical absorptions were used as targets. The correlation between gelatin concentration of such phantoms and their mechanical properties were validated independently with a dynamic mechanical analyzer capable of calculating complex loss and storage moduli between two compression plates. It was shown that PA spectrums were shifted towards higher frequencies by increasing gelatin concentration. In order to quantify this effect, signal energy in two intervals of low and high frequency ranges were calculated. Gelatin concentration was correlated with PA energy in high frequency range with R2=0.94. Subsequently, PA signals generated from freshly resected human thyroid specimens were measured and analyzed in a similar fashion. We found that in aggregate, malignant thyroid tissue contains approximately 1.6 times lower energy in the high frequency range in comparison to normal thyroid tissue (p<0.01). This ratio increased with increasing illumination wavelength from 700 nm to 900nm. In summary, this study demonstrated the feasibility of using photoacoustic technique for characterizing tissue on the basis of viscoelastic properties of the tissue.
Testing the cosmological principle of isotropy: local power-spectrum estimates of the WMAP data
NASA Astrophysics Data System (ADS)
Hansen, F. K.; Banday, A. J.; Górski, K. M.
2004-11-01
We apply the Gabor transform methodology proposed by Hansen et al. to the WMAP data in order to test the statistical properties of the cosmic microwave background (CMB) fluctuation field and specifically to evaluate the fundamental assumption of cosmological isotropy. In particular, we apply the transform with several apodization scales, thus allowing the determination of the positional dependence of the angular power spectrum with either high spatial localization or high angular resolution (i.e. narrow bins in multipole space). Practically, this implies that we estimate the angular power spectrum locally in discs of various sizes positioned in different directions: small discs allow the greatest sensitivity to positional dependence, whereas larger discs allow greater sensitivity to variations over different angular scales. In addition, we determine whether the spatial position of a few outliers in the angular power spectrum could suggest the presence of residual foregrounds or systematic effects. For multipoles close to the first peak, the most deviant local estimates from the best-fitting WMAP model are associated with a few particular areas close to the Galactic plane. Such deviations also include the `dent' in the spectrum just shortward of the first peak which was remarked upon by the WMAP team. Estimating the angular power spectrum excluding these areas gives a slightly higher first Doppler peak amplitude. Finally, we probe the isotropy of the largest angular scales by estimating the power spectrum on hemispheres and reconfirm strong indications of a north-south asymmetry previously reported by other authors. Indeed, there is a remarkable lack of power in a region associated with the North ecliptic Pole. With the greater fidelity in l-space allowed by this larger sky coverage, we find tentative evidence for residual foregrounds in the range l= 2-4, which could be associated with the low measured quadrupole amplitudes and other anomalies on these angular
Non-detection of a statistically anisotropic power spectrum in large-scale structure
Pullen, Anthony R.; Hirata, Christopher M. E-mail: chirata@tapir.caltech.edu
2010-05-01
We search a sample of photometric luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS) for a quadrupolar anisotropy in the primordial power spectrum, in which P( k-vector ) is an isotropic power spectrum P-bar (k) multiplied by a quadrupolar modulation pattern. We first place limits on the 5 coefficients of a general quadrupole anisotropy. We also consider axisymmetric quadrupoles of the form P( k-vector ) = P-bar (k)(1+g{sub *}[( k-circumflex ⋅ n-circumflex ){sup 2}−(1/3)]) where n-circumflex is the axis of the anisotropy. When we force the symmetry axis n-circumflex to be in the direction (l,b) = (94°,26°) identified in the recent Groeneboom et al. analysis of the cosmic microwave background, we find g{sub *} = 0.006±0.036 (1σ). With uniform priors on n-circumflex and g{sub *} we find that −0.41 < g{sub *} < +0.38 with 95% probability, with the wide range due mainly to the large uncertainty of asymmetries aligned with the Galactic Plane. In none of these three analyses do we detect evidence for quadrupolar power anisotropy in large scale structure.
Periodic power spectrum with applications in detection of latent periodicities in DNA sequences.
Yin, Changchuan; Wang, Jiasong
2016-11-01
Periodic elements play important roles in genomic structures and functions, yet some complex periodic elements in genomes are difficult to detect by conventional methods such as digital signal processing and statistical analysis. We propose a periodic power spectrum (PPS) method for analyzing periodicities of DNA sequences. The PPS method employs periodic nucleotide distributions of DNA sequences and directly calculates power spectra at specific periodicities. The magnitude of a PPS reflects the strength of a signal on periodic positions. In comparison with Fourier transform, the PPS method avoids spectral leakage, and reduces background noise that appears high in Fourier power spectrum. Thus, the PPS method can effectively capture hidden periodicities in DNA sequences. Using a sliding window approach, the PPS method can precisely locate periodic regions in DNA sequences. We apply the PPS method for detection of hidden periodicities in different genome elements, including exons, microsatellite DNA sequences, and whole genomes. The results show that the PPS method can minimize the impact of spectral leakage and thus capture true hidden periodicities in genomes. In addition, performance tests indicate that the PPS method is more effective and efficient than a fast Fourier transform. The computational complexity of the PPS algorithm is [Formula: see text]. Therefore, the PPS method may have a broad range of applications in genomic analysis. The MATLAB programs for implementing the PPS method are available from MATLAB Central ( http://www.mathworks.com/matlabcentral/fileexchange/55298 ).
Perturbative approach to covariance matrix of the matter power spectrum
Mohammed, Irshad; Seljak, Uros; Vlah, Zvonimir
2016-06-30
We evaluate the covariance matrix of the matter power spectrum using perturbation theory up to dominant terms at 1-loop order and compare it to numerical simulations. We decompose the covariance matrix into the disconnected (Gaussian) part, trispectrum from the modes outside the survey (beat coupling or super-sample variance), and trispectrum from the modes inside the survey, and show how the different components contribute to the overall covariance matrix. We find the agreement with the simulations is at a 10\\% level up to $k \\sim 1 h {\\rm Mpc^{-1}}$. We show that all the connected components are dominated by the large-scale modes ($k<0.1 h {\\rm Mpc^{-1}}$), regardless of the value of the wavevectors $k,\\, k'$ of the covariance matrix, suggesting that one must be careful in applying the jackknife or bootstrap methods to the covariance matrix. We perform an eigenmode decomposition of the connected part of the covariance matrix, showing that at higher $k$ it is dominated by a single eigenmode. The full covariance matrix can be approximated as the disconnected part only, with the connected part being treated as an external nuisance parameter with a known scale dependence, and a known prior on its variance for a given survey volume. Finally, we provide a prescription for how to evaluate the covariance matrix from small box simulations without the need to simulate large volumes.
Perturbative approach to covariance matrix of the matter power spectrum
NASA Astrophysics Data System (ADS)
Mohammed, Irshad; Seljak, Uroš; Vlah, Zvonimir
2017-04-01
We evaluate the covariance matrix of the matter power spectrum using perturbation theory up to dominant terms at 1-loop order and compare it to numerical simulations. We decompose the covariance matrix into the disconnected (Gaussian) part, trispectrum from the modes outside the survey (supersample variance) and trispectrum from the modes inside the survey, and show how the different components contribute to the overall covariance matrix. We find the agreement with the simulations is at a 10 per cent level up to k ∼ 1 h Mpc-1. We show that all the connected components are dominated by the large-scale modes (k < 0.1 h Mpc-1), regardless of the value of the wave vectors k, k΄ of the covariance matrix, suggesting that one must be careful in applying the jackknife or bootstrap methods to the covariance matrix. We perform an eigenmode decomposition of the connected part of the covariance matrix, showing that at higher k, it is dominated by a single eigenmode. The full covariance matrix can be approximated as the disconnected part only, with the connected part being treated as an external nuisance parameter with a known scale dependence, and a known prior on its variance for a given survey volume. Finally, we provide a prescription for how to evaluate the covariance matrix from small box simulations without the need to simulate large volumes.
Matter density perturbation and power spectrum in running vacuum model
NASA Astrophysics Data System (ADS)
Geng, Chao-Qiang; Lee, Chung-Chi
2017-01-01
We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model, with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub-interaction and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behaviour as that in the Λ cold dark model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > (<)0 due to the couplings between radiation, matter and dark energy. It is clear that the observational data rule out the cases with ν < 0 and ν + σ < 0, while the allowed window for the model parameters is extremely narrow with ν , |σ | ≲ O(10^{-7}).
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
NASA Technical Reports Server (NTRS)
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum
NASA Technical Reports Server (NTRS)
Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Bond, J. Richard; Carvalho, C. Sofia; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Gallardo, Patricio; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hughes, John P.; Irwin, Kent D.; Klein, Jeff; Kosowsky, Arthur; Marriage, Tobias A.; Marsden, Danica; Menanteau, Felipe; Wollack, Ed
2011-01-01
We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k approx. = 0.2 Mp/c. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in thc linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurement.s of the matter power spectrum.
STRUCTURE FORMATION BY FIFTH FORCE: POWER SPECTRUM FROM N-BODY SIMULATIONS
Zhao Hongsheng; Feix, Martin; Maccio, Andrea V.; Li Baojiu; Hoekstra, Henk
2010-04-01
We lay out the framework to numerically study nonlinear structure formation in the context of scalar-field-coupled cold dark matter models ({psi}CDM models) where the scalar field {psi} serves as dynamical dark energy. Adopting parameters for the scalar field that leave negligible effects on the cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations. The simulations follow the spatial distributions of dark matter and the scalar field, solving their equations of motion using a multilevel adaptive grid technique. We show that the spatial configuration of the scalar field depends sensitively on the local density field. The {psi}CDM model differs from standard {lambda}CDM at small scales with observable modifications of, e.g., the mass function of halos as well as the matter power spectrum. Nevertheless, the predictions of both models for the Hubble expansion and the CMB spectrum are virtually indistinguishable. Hence, galaxy cluster counts and weak lensing observations, which probe structure formation at small scales, are needed to falsify this class of models.
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum
NASA Technical Reports Server (NTRS)
Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Bertrand Doriese, W.; Dunner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hajian, A.; Moseley, H.; Wollack, E.
2011-01-01
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 < l < 10,000. We fit a model for the lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. At l = 3000, about half the power at 148 GHz comes from primary CMB after masking bright radio sources. The power from thermal and kinetic SZ is estimated to be Beta(sub 3000) is identical to 6.8 +/- 2.9 mu K (exp 2), where Beta (sub l) is identical to l(l + 1) C(sub l)/2pi. The IR Poisson power at 148 GHz is Bewta(sub 3000) 7.8 +/- 0.7 muK(exp 2) (C(sub l) = 5.5 +/- 0.5 nK(exp 2)), and a clustered IR component is required with Beta (sub 3000) = 4.6 +/- 0.9 muK(exp 2), assuming an analytic model for its power spectrum shape. At 218 GHz only about 15% of the power, approximately 27 mu K(exp 2), is CMB anisotropy at l = 3000. The remaining 85% is attributed to IR sources (approximately 50% Poisson and 35% clustered), with spectral index alpha = 3.69 +/- 0.14 for flux scaling as S(nu) varies as nu(sup alpha). We estimate primary cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological
THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM
Dunkley, J.; Hlozek, R.; Sievers, J.; Bond, J. R.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Barrientos, L. F.; Duenner, R.; Amiri, M.; Battistelli, E. S.; Burger, B.; Appel, J. W.; Das, S.; Essinger-Hileman, T.; Brown, B.; Chervenak, J.; Doriese, W. Bertrand
2011-09-20
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg{sup 2} with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 < l < 10, 000. We fit a model for the lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. At l = 3000, about half the power at 148 GHz comes from primary CMB after masking bright radio sources. The power from thermal and kinetic SZ is estimated to be B{sub 3000} = 6.8 {+-} 2.9 {mu}K{sup 2}, where B{sub l}{identical_to}l(l + 1)C{sub l}/2{pi}. The IR Poisson power at 148 GHz is B{sub 3000} = 7.8 {+-} 0.7 {mu}K{sup 2} (C{sub l} = 5.5 {+-} 0.5 nK{sup 2}), and a clustered IR component is required with B{sub 3000} = 4.6 {+-} 0.9 {mu}K{sup 2}, assuming an analytic model for its power spectrum shape. At 218 GHz only about 15% of the power, approximately 27 {mu}K{sup 2}, is CMB anisotropy at l = 3000. The remaining 85% is attributed to IR sources (approximately 50% Poisson and 35% clustered), with spectral index {alpha} = 3.69 {+-} 0.14 for flux scaling as S({nu}){proportional_to}{nu}{sup {alpha}}. We estimate primary cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The {Lambda}CDM cosmological model is a good fit to the data ({chi}{sup 2}/dof = 29/46), and {Lambda}CDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n{sub s} = 1 excluded at 99.7% confidence level (CL) (3{sigma}). A model with no CMB lensing is disfavored at 2.8{sigma}. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on
Anisotropic power spectrum and bispectrum in the f(ϕ)F2 mechanism
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo
2013-01-01
A suitable coupling of the inflaton φ to a vector kinetic term F2 gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ˜5 e-folds (˜50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL˜3(˜30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.
Statistical characteristics of the observed Ly-α forest and the shape of initial power spectrum
NASA Astrophysics Data System (ADS)
Demiański, M.; Doroshkevich, A. G.; Turchaninov, V.
2003-04-01
Properties of approximately 4500 observed Ly α absorbers are investigated using the model of formation and evolution of dark matter (DM) structure elements based on the modified Zel'dovich theory. This model is generally consistent with simulations of absorber formation, describes the large-scale structure (LSS) observed in the galaxy distribution at small redshifts reasonably well and emphasizes the generic similarity of the LSS and absorbers. The simple physical model of absorbers asserts that they are composed of DM and gaseous matter. It allows us to estimate the column density and overdensity of DM and gaseous components and the entropy of the gas trapped within the DM potential wells. The parameters of the DM component are found to be consistent with theoretical expectations for the Gaussian initial perturbations with the warm dark matter-like power spectrum. The basic physical factors responsible for the evolution of the absorbers are discussed. The analysis of redshift distribution of absorbers confirms the self-consistency of the adopted physical model, Gaussianity of the initial perturbations and allows one to estimate the shape of the initial power spectrum at small scales that, in turn, restricts the mass of the dominant fraction of DM particles to MDM>= 1.5-5 keV. Our results indicate a possible redshift variations of intensity of the ultraviolet background by approximately a factor of 2-3 at redshifts z~ 2-3.
Anisotropic power spectrum and bispectrum in the f(Φ)F² mechanism
Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; ...
2013-01-04
A suitable coupling of the inflaton φ to a vector kinetic term F² gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ~5 e-folds (~50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis,more » for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL~3(~30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.« less
Anisotropic power spectrum and bispectrum in the f(Φ)F² mechanism
Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo
2013-01-04
A suitable coupling of the inflaton φ to a vector kinetic term F² gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ~5 e-folds (~50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local f_{NL}~3(~30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.
Tension between the power spectrum of density perturbations measured on large and small scales
NASA Astrophysics Data System (ADS)
Battye, Richard A.; Charnock, Tom; Moss, Adam
2015-05-01
There is a tension between measurements of the amplitude of the power spectrum of density perturbations inferred using the cosmic microwave background (CMB) and directly measured by large-scale structure (LSS) on smaller scales. We show that this tension exists, and is robust, for a range of LSS indicators including clusters, lensing and redshift space distortions and using CMB data from either Planck or WMAP +SPT /ACT . One obvious way to try to reconcile this is the inclusion of a massive neutrino which could be either active or sterile. Using Planck and a combination of all the LSS data we find that (i) for an active neutrino ∑mν=(0.357 ±0.099 ) eV and (ii) for a sterile neutrino msterileeff=(0.67 ±0.18 ) eV and Δ Neff=0.32 ±0.20 . This is, however, at the expense of a degraded fit to Planck temperature data, and we quantify the residual tension at 2.5 σ and 1.6 σ for massive and sterile neutrinos, respectively. We also consider alternative explanations including a lower redshift for reionization that would be in conflict with polarization measurements made by WMAP and ad hoc modifications to the primordial power spectrum.
NASA Astrophysics Data System (ADS)
Moskaletz, O. D.; Paraskun, A. S.; Vaganov, M. A.
2016-08-01
The problem of receiving of an energy spectrum estimation of optical radiations in the new analyzer of optical signals is considered. It is the parallel resonant optical spectrum analyzer (SPECTRUM ANALYZER). Its resolving system is a set of narrow-band optical resonators in the form of interference filters. Each optical resonator is equivalent to a system with lumped parameters. This allows us to consider only oscillations of an optical field in the form of a scalar functions and adopt as a model of analyzed signal harmonized scalar random process. The photodetector operation and average of photocurrent using an integrator and integrating circuit is considered too. On the basis of the application prolate entire spheroidal wave function theory energy spectrum estimation by the integral of photocurrent is obtained. This energy spectrum estimation is consistent and asymptotically unbiased.
The Knotted Sky I: Planck constraints on the primordial power spectrum
Aslanyan, Grigor; Price, Layne C.; Easther, Richard; Abazajian, Kevork N. E-mail: lpri691@aucklanduni.ac.nz E-mail: r.easther@auckland.ac.nz
2014-08-01
Using the temperature data from Planck we search for departures from a power-law primordial power spectrum, employing Bayesian model-selection and posterior probabilities. We parametrize the spectrum with n knots located at arbitrary values of logk, with both linear and cubic splines. This formulation recovers both slow modulations and sharp transitions in the primordial spectrum. The power spectrum is well-fit by a featureless, power-law at wavenumbers k>10{sup -3} Mpc{sup -1}. A modulated primordial spectrum yields a better fit relative to ΛCDM at large scales, but there is no strong evidence for a departure from a power-law spectrum. Moreover, using simulated maps we show that a local feature at k ∼ 10{sup -3} Mpc{sup -1} can mimic the suppression of large-scale power. With multi-knot spectra we see only small changes in the posterior distributions for the other free parameters in the standard ΛCDM universe. Lastly, we investigate whether the hemispherical power asymmetry is explained by independent features in the primordial power spectrum in each ecliptic hemisphere, but find no significant differences between them.
Power spectrum analysis of polarized emission from the Canadian galactic plane survey
Stutz, R. A.; Rosolowsky, E. W.; Kothes, R.; Landecker, T. L.
2014-05-20
Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg{sup 2}. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ ≈ 60 to ℓ ≈ 10{sup 4} and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.
Flat-spectrum radio source C1 in M33 is a background radio galaxy
Reynolds, S.P.; Fix, J.D.
1988-10-01
A candidate Crab-like supernova remnant in M33 discovered in a high-resolution survey of compact radio sources (Reynolds and Fix, 1987) has been observed. VLA observations at 1465 and 4885 MHz show that it is simply the flat-spectrum core of a completely normal double-lobed radio galaxy. This eliminates the last candidate Crab-like object in M33 whose size and brightness do not at all resemble those of the Crab Nebula, and confirms the dearth of Crab-like supernova remnants reported earlier. 7 references.
Technology Transfer Automated Retrieval System (TEKTRAN)
The choice of the type of background spectrum affects the credibility of open-path Fourier transform infrared (OP/FT-IR) spectroscopic data, and consequently the quality of data analysis. We systematically investigated several properties of the background spectrum. The results show that a short-pa...
Konoplya, R. A.
2006-01-15
We consider the perturbations of the massive vector field around Schwarzschild, Schwarzschild-de Sitter, and Schwarzschild-anti-de Sitter black holes. Equations for a spherically symmetric massive vector perturbation can be reduced to a single wavelike equation. We have proved the stability against these perturbations and investigated the quasinormal spectrum. The quasinormal behavior for Schwarzschild black hole is quite unexpected: the fundamental mode and higher overtones show totally different dependence on the mass of the field m: as m is increasing, the damping rate of the fundamental mode is decreasing, what results in appearing of the infinitely long living modes, while, on the contrary, damping rate of all higher overtones are increasing, and their real oscillation frequencies gradually go to tiny values. Thereby, for all higher overtones, almost nonoscillatory, damping modes can exist. In the limit of asymptotically high damping, Re{omega} goes to ln3/(8{pi}M), while imaginary part shows equidistant behavior with spacing Im{omega}{sub n+1}-Im{omega}{sub n}=1/4M. In addition, we have found quasinormal spectrum of massive vector field for Schwarzschild-anti-de Sitter black hole.
Gao, Xian; Langlois, David; Mizuno, Shuntaro E-mail: langlois@apc.univ-paris7.fr
2013-10-01
In the context of two-field inflation characterized by a light direction and a heavy direction, we revisit the question of the impact of the massive modes on the power spectrum produced after a turn in the inflationary trajectory. We consider in particular the resonant effect due to the background oscillations following a sharp turn. Working in the mass basis, i.e. in the basis spanned by the eigenvectors of the effective mass matrix for the perturbations, we provide an analytical estimate of the resonant effect, using the in-in formalism. In comparison with earlier estimates, we find the same the spectral dependence but a smaller amplitude. We also compute, again via the in-in formalism, the effect of the direct coupling between the light and heavy modes at the instant of the turn and confirm our previous results obtained via a different method.
First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.
2003-01-01
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.
NASA Astrophysics Data System (ADS)
Liang, B.; Iwnicki, S. D.; Zhao, Y.
2013-08-01
The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.
The visibility-based tapered gridded estimator (TGE) for the redshifted 21-cm power spectrum
NASA Astrophysics Data System (ADS)
Choudhuri, Samir; Bharadwaj, Somnath; Chatterjee, Suman; Ali, Sk. Saiyad; Roy, Nirupam; Ghosh, Abhik
2016-12-01
We present an improved visibility-based tapered gridded estimator (TGE) for the power spectrum of the diffuse sky signal. The visibilities are gridded to reduce the total computation time for the calculation, and tapered through a convolution to suppress the contribution from the outer regions of the telescope's field of view. The TGE also internally estimates the noise bias, and subtracts this out to give an unbiased estimate of the power spectrum. An earlier version of the 2D TGE for the angular power spectrum Cℓ is improved and then extended to obtain the 3D TGE for the power spectrum P(k) of the 21-cm brightness temperature fluctuations. Analytic formulas are also presented for predicting the variance of the binned power spectrum. The estimator and its variance predictions are validated using simulations of 150-MHz Giant Metrewave Radio Telescope (GMRT) observations. We find that the estimator accurately recovers the input model for the 1D spherical power spectrum P(k) and the 2D cylindrical power spectrum P(k⊥, k∥), and that the predicted variance is in reasonably good agreement with the simulations.
Significance tests for the wavelet power and the wavelet power spectrum
NASA Astrophysics Data System (ADS)
Ge, Z.
2007-11-01
Significance tests usually address the issue how to distinguish statistically significant results from those due to pure randomness when only one sample of the population is studied. This issue is also important when the results obtained using the wavelet analysis are to be interpreted. Torrence and Compo (1998) is one of the earliest works that has systematically discussed this problem. Their results, however, were based on Monte Carlo simulations, and hence, failed to unveil many interesting and important properties of the wavelet analysis. In the present work, the sampling distributions of the wavelet power and power spectrum of a Gaussian White Noise (GWN) were derived in a rigorous statistical framework, through which the significance tests for these two fundamental quantities in the wavelet analysis were established. It was found that the results given by Torrence and Compo (1998) are numerically accurate when adjusted by a factor of the sampling period, while some of their statements require reassessment. More importantly, the sampling distribution of the wavelet power spectrum of a GWN was found to be highly dependent on the local covariance structure of the wavelets, a fact that makes the significance levels intimately related to the specific wavelet family. In addition to simulated signals, the significance tests developed in this work were demonstrated on an actual wave elevation time series observed from a buoy on Lake Michigan. In this simple application in geophysics, we showed how proper significance tests helped to sort out physically meaningful peaks from those created by random noise. The derivations in the present work can be readily extended to other wavelet-based quantities or analyses using other wavelet families.
NASA Astrophysics Data System (ADS)
Yang, Chunhui; Su, Zhixiong; Wang, Yuqing; Liu, Yiqun; Qi, Yongwei
2017-03-01
Investment management is an important part of Power Grid Corp. The new electricity reform put forward the general idea of "three release, three strengthening, one independence", which brings new risks to the investment management of the Power Grid Corp. First, the paper analyzes the new risks faced by the Power Grid Corp investment under the background of the electricity reform. Second, the AHP-Fuzzy evaluation model of investment risk of Power Grid Corp is established, and taking Shenzhen Power Supply Bureau as an example, the paper evaluated its risk level of investment plan in 2017. Finally, in the context of the electricity reform, the strategy of the Power Grid Corp's investment risk is proposed.
Effects of horseback riding exercise on the relative alpha power spectrum in the elderly.
Cho, Sung-Hyoun
The present study aimed to identify the effects of horseback riding and mechanical horseback riding exercise on the relative α-power spectrum in the elderly. A total of 31 healthy elderly were randomly divided into horseback riding (n=15) and mechanical horseback riding exercise groups (n=16). The horseback riding exercise program was conducted for 25min twice a week for 12 weeks. Two-way repeated analysis of variance was used to identify the changes in measured variables before the exercise program, and after 6 and 12 weeks of the program. The horseback riding exercise group showed an increase in relative fast alpha power in the background electroencephalogram, and the mechanical horseback riding exercise group showed an increase in relative slow alpha power. Both horseback riding and mechanical horseback riding exercises activated the EEG in all domains, thus increasing concentration and restfulness. The results suggested that horseback riding and mechanical horseback riding exercise may have a positive effect on psychological stability in the elderly.
Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir; Souradeep, Tarun E-mail: shafieloo@kasi.re.kr E-mail: tarun@iucaa.ernet.in
2015-02-01
Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ΛCDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ΛCDM angular power spectrum to remove foreground contributions from the data at multipoles ℓ ≥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to ℓ ∼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ΛCDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ΛCDM cosmology.
Wind tunnel study of the power output spectrum in a micro wind farm
NASA Astrophysics Data System (ADS)
Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan
2016-09-01
Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies.
The BaR-SPOrt experiment: measuring the CMBP E-mode power spectrum from Dome C
NASA Astrophysics Data System (ADS)
Carretti, E.; Cortiglioni, S.; Bernardi, G.; Casarini, L.; Cecchini, S.; Macculi, C.; Ramponi, M.; Sbarra, C.; Ventura, G.; Monari, J.; Poloni, M.; Poppi, S.; Baralis, M.; Peverini, O. A.; Tascone, R.; Virone, G.; Zannoni, M.; Bonometto, S.; Colombo, L.; Gervasi, M.; Sironi, G.; Fabbri, R.; Natale, V.; Nesti, R.; Nicastro, L.; de Bernardis, P.; Masi, S.; de Petris, M.; Boscaleri, A.; Sazhin, M.; Vinyajkin, E.
The BaR-SPOrt experiment is designed to measure the E-mode power spectrum of the Cosmic Microwave Background Polarization (CMBP) in the multipole range 50 < ℓ < 1000. In the current configuration at 32 GHz it can explore up to ℓ = 400. Recent low frequency observations of the target region show that the synchrotron emission should not contamine the CMBP already at 32 GHz. A 6-month observation of a 6° × 6° sky area during the polar night, in ideal environmental conditions, will allow the Italian-French collaboration to both measure the E mode power spectrum with appropriate sensitivity and perform important tests of the anomalous dust emission. The BaR-SPOrt 32 GHz instrument, now under test and ready for operations by Spring 2005, is proposed for 1 2 years Winter operations at Dome C.
Langner, Oliver; Wiese, Holger; Redies, Christoph
2015-01-01
We investigated whether low-level processed image properties that are shared by natural scenes and artworks – but not veridical face photographs – affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess – compared to face images – a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope – in contrast to the other tested image properties – did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis. PMID:25835539
Menzel, Claudia; Hayn-Leichsenring, Gregor U; Langner, Oliver; Wiese, Holger; Redies, Christoph
2015-01-01
We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope - in contrast to the other tested image properties - did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis.
Ionospheric wave measurements with satellite-borne cross-power spectrum analyzers
NASA Technical Reports Server (NTRS)
Harker, K. J.; Crawford, F. W.
1980-01-01
The paper studies the feasibility of using the cross-power spectrum analyzer on a satellite such as the Space Shuttle to measure the spectrum of potential and charged particle density fluctuations and macroscopic parameters in the ionosphere. The integration time required to make a measurement of a cross-power spectral density to a given accuracy, or its equivalent, the spatial resolution of a measurement to a given accuracy is examined.
Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets
NASA Astrophysics Data System (ADS)
Hunt, Paul; Sarkar, Subir
2014-01-01
Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large-scale structure. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given by a convolution of the primordial perturbations with some smoothing kernel which depends on both the assumed world model and the matter content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallow's Cp method give optimal results. We apply our inversion procedure to data from the Wilkinson Microwave Anisotropy Probe, other ground-based small angular scale CMB experiments, and the Sloan Digital Sky Survey. The reconstructed spectrum (assuming the standard ΛCDM cosmology) is not scale-free but has an infrared cutoff at klesssim5 × 10-4 Mpc-1 (due to the anomalously low CMB quadrupole) and several features with ~ 2σ significance at k/Mpc-1 ~ 0.0013-0.0025, 0.0362-0.0402 and 0.051-0.056, reflecting the `WMAP glitches'. To test whether these are indeed real will require more accurate data, such as from the Planck satellite and new ground-based experiments.
Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets
Hunt, Paul; Sarkar, Subir E-mail: s.sarkar@physics.ox.ac.uk
2014-01-01
Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism ('inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large-scale structure. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given by a convolution of the primordial perturbations with some smoothing kernel which depends on both the assumed world model and the matter content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that 'Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallow's C{sub p} method give optimal results. We apply our inversion procedure to data from the Wilkinson Microwave Anisotropy Probe, other ground-based small angular scale CMB experiments, and the Sloan Digital Sky Survey. The reconstructed spectrum (assuming the standard ΛCDM cosmology) is not scale-free but has an infrared cutoff at k∼<5 × 10{sup −4} Mpc{sup −1} (due to the anomalously low CMB quadrupole) and several features with ∼ 2σ significance at k/Mpc{sup −1} ∼ 0.0013–0.0025, 0.0362–0.0402 and 0.051–0.056, reflecting the 'WMAP glitches'. To test whether these are indeed real will require more accurate data, such as from the Planck satellite and new ground-based experiments.
Correlation between ultrasonic power spectrum and bone density on the heel.
Xu, Yubing; Xu, Yang; Ding, Zenghui; Chen, Yanyan; Su, Benyue; Ma, Zuchang; Sun, Yi-Ning
2017-01-01
The purposes of this paper were to evaluate the correlation between ultrasonic power spectrum and bone density and to extract the effectiveness of parameters from power spectrum for evaluating bone density. A total of 50 persons 24-72years of age were recruited. All study participants underwent bone mineral density (BMD) measurements of the lumbar spine (vertebral levels L1-L4). The participants also underwent calcaneal measurements to determine ultrasonic power spectrum with central frequencies of 0.5MHz. Three parameters from normalized power spectrum, called principle frequency (PF), frequency band (FB), and amplitude for principle frequency (APF), were chosen and be evaluated the correlation with the lumbar spine BMD. The correlation coefficient of PF, FB and APF with BMD was r=-0.48 (p<0.001), r=0.48 (p<0.001), and r=-0.71 (p<0.001), respectively. The results showed that the correlation between APF and BMD was better than the correlation among PF, FB and BMD, and APF have a significant correlation with BMD. In conclusion, the correlations among the parameters of ultrasonic power spectrum and BMD are significant, and especially APF performs better than PF and FB in evaluating bone density of participants. These results suggest that ultrasonic power spectrum may contain substantial information not already contained in BUA and SOS. A multiple regression model including all three QUS variables was somewhat more predictive of BMD than a model including only BUA and SOS.
Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation
NASA Astrophysics Data System (ADS)
Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.
2015-11-01
We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.
The power spectrum and bispectrum of SDSS DR11 BOSS galaxies - II. Cosmological interpretation
NASA Astrophysics Data System (ADS)
Gil-Marín, Héctor; Verde, Licia; Noreña, Jorge; Cuesta, Antonio J.; Samushia, Lado; Percival, Will J.; Wagner, Christian; Manera, Marc; Schneider, Donald P.
2015-09-01
We examine the cosmological implications of the measurements of the linear growth rate of cosmological structure obtained in a companion paper from the power spectrum and bispectrum monopoles of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 11, CMASS galaxies. This measurement was of f 0.43σ8, where σ8 is the amplitude of dark matter density fluctuations, and f is the linear growth rate, at the effective redshift of the survey, zeff = 0.57. In conjunction with cosmic microwave background (CMB) data, interesting constraints can be placed on models with non-standard neutrino properties and models where gravity deviates from General Relativity on cosmological scales. In particular, the sum of the masses of the three species of the neutrinos is constrained to mν < 0.49 eV (at 95 per cent confidence level) when the f 0.43σ8 measurement is combined with state-of-the-art CMB measurements. Allowing the effective number of neutrinos to vary as a free parameter does not significantly change these results. When we combine the measurement of f 0.43σ8 with the complementary measurement of fσ8 from the monopole and quadrupole of the two-point correlation function, we are able to obtain an independent measurements of f and σ8. We obtain f = 0.63 ± 0.16 and σ8 = 0.710 ± 0.086 (68 per cent confidence level). This is the first time when these parameters have been able to be measured independently using the redshift-space power spectrum and bispectrum measurements from galaxy clustering data only.
Neutrino masses and cosmology with Lyman-alpha forest power spectrum
NASA Astrophysics Data System (ADS)
Palanque-Delabrouille, Nathalie; Yèche, Christophe; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David
2015-11-01
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the ΛCDM model, using the one-dimensional Lyα-forest power spectrum measured by [1] from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III), complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by [2] by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ns. Combining BOSS Lyα with Planck CMB constrains the sum of neutrino masses to ∑ mν < 0.12 eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Lyα data to CMB data reduces the uncertainties on the optical depth to reionization τ, through the correlation of τ with σ8. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations r. The tension on ns can be accommodated by allowing for a running dns/d ln k. Allowing running as a free parameter in the fits does not change the limit on ∑ mν. We discuss possible interpretations of these results in the context of slow-roll inflation.
Neutrino masses and cosmology with Lyman-alpha forest power spectrum
Palanque-Delabrouille, Nathalie; Yèche, Christophe; Baur, Julien; Magneville, Christophe; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Lesgourgues, Julien; Viel, Matteo; Weinberg, David E-mail: christophe.yeche@cea.fr E-mail: christophe.magneville@cea.fr E-mail: Julien.Lesgourgues@cern.ch
2015-11-01
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the ΛCDM model, using the one-dimensional Lyα-forest power spectrum measured by [1] from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III), complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by [2] by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index n{sub s}. Combining BOSS Lyα with Planck CMB constrains the sum of neutrino masses to ∑ m{sub ν} < 0.12 eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Lyα data to CMB data reduces the uncertainties on the optical depth to reionization τ, through the correlation of τ with σ{sub 8}. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations r. The tension on n{sub s} can be accommodated by allowing for a running dn{sub s}/d ln k. Allowing running as a free parameter in the fits does not change the limit on ∑ m{sub ν}. We discuss possible interpretations of these results in the context of slow-roll inflation.
Saito, Shun; Takada, Masahiro; Taruya, Atsushi
2011-02-15
We compare the model power spectrum, computed based on perturbation theory, with the power spectrum of luminous red galaxies (LRG) measured from the Sloan Digital Sky Survey Data Release 7 catalog, assuming a flat, cold dark matter-dominated cosmology. The model includes the effects of massive neutrinos, nonlinear matter clustering and nonlinear, scale-dependent galaxy bias in a self-consistent manner. We first test the accuracy of the perturbation theory model by comparing the model predictions with the halo power spectrum in real- and redshift-space, measured from 70 simulation realizations for a cold dark matter model without massive neutrinos. We show that the perturbation theory model with bias parameters being properly adjusted can fairly well reproduce the simulation results. As a result, the best-fit parameters obtained from the hypothetical parameter fitting recover, within statistical uncertainties, the input cosmological parameters in simulations, including an upper bound on neutrino mass, if the power spectrum information up to k{approx_equal}0.15 hMpc{sup -1} is used. However, for the redshift-space power spectrum, the best-fit cosmological parameters show a sizable bias from the input values if using the information up to k{approx_equal}0.2 hMpc{sup -1}, probably due to nonlinear redshift distortion effect. Given these tests, we decided, as a conservative choice, to use the LRG power spectrum up to k=0.1 hMpc{sup -1} in order to minimize possible unknown nonlinearity effects. In combination with the recent results from Wilkinson Microwave Background Anisotropy Probe (WMAP), we derive a robust upper bound on the sum of neutrino masses, given as (95% C.L.), marginalized over other parameters including nonlinear bias parameters and dark energy equation of state parameter. The upper bound is only slightly improved to if including the LRG spectrum up to k=0.2 hMpc{sup -1}, due to severe parameter degeneracies, although the constraint may be biased as
Contribution of strong discontinuities to the power spectrum of the solar wind.
Borovsky, Joseph E
2010-09-10
Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.
Power spectrum tomography of dark matter annihilation with local galaxy distribution
Ando, Shin'ichiro
2014-10-01
Cross-correlating the gamma-ray background with local galaxy catalogs potentially gives stringent constraints on dark matter annihilation. We provide updated theoretical estimates of sensitivities to the annihilation cross section from gamma-ray data with Fermi telescope and 2MASS galaxy catalogs, by elaborating the galaxy power spectrum and astrophysical backgrounds, and adopting the Markov-Chain Monte Carlo simulations. In particular, we show that taking tomographic approach by dividing the galaxy catalogs into more than one redshift slice will improve the sensitivity by a factor of a few to several. If dark matter halos contain lots of bright substructures, yielding a large annihilation boost (e.g., a factor of ∼100 for galaxy-size halos), then one may be able to probe the canonical annihilation cross section for thermal production mechanism up to masses of ∼700 GeV. Even with modest substructure boost (e.g., a factor of ∼10 for galaxy-size halos), on the other hand, the sensitivities could still reach a factor of three larger than the canonical cross section for dark matter masses of tens to a few hundreds of GeV.
NASA Astrophysics Data System (ADS)
Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku
2014-12-01
Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.
NASA Astrophysics Data System (ADS)
Li, Yuehua; Gao, Duntang; Shen, Qinghong; Li, Xingguo
2001-11-01
The method of range profile for step frequency MMW radar targets based on wavelet transform power spectrum estimator is studied. We show how the Fourier power spectrum can be detected by using the wavelet function coefficients (WFC) of the DWT. This method can successfully measure the power spectrum in samples for which traditional methods often fail because the sample are finite sized, have a complex geometry, or are varyingly sampled. We demonstrate that the spectrum features, such as the power law index, the magnitude, and the typical scales can be determined by the DWT reconstructed spectrum. We apply this method to the practical step frequency MMW radar target echo signals, and on the condition of the same sampling frequency and sampling data length, it can achieve one dimensional range profile with profile"s resolution superior to FFT"s, so the one dimensional range profile of targets can be analyzed with high resolution, the detail algorithm of range profiles spectrum estimation based on wavelet transforming multirange cells is proposed. Compare with FFT algorithm, using wavelet spectrum estimator of short data series, we can achieves high resolution, high accuracy, and low SNR threshold. The Experiment results make clear that the DWT estimator is a sensitive tool in range profile of step frequency MMW radar.
Fractal analysis of surface electromyography signals: a novel power spectrum-based method.
Talebinejad, Mehran; Chan, Adrian D C; Miri, Ali; Dansereau, Richard M
2009-10-01
This paper presents a novel power spectrum-based method for fractal analysis of surface electromyography signals. This method, named the bi-phase power spectrum method, provides a bi-phase power-law which represents a multi-scale statistically self-affine signal. This form of statistical self-affinity provides an accurate approximation for stochastic signals originating from a strong non-linear combination of a number of similar distributions, such as surface electromyography signals which are formed by the summation of a number of single muscle fiber action potentials. This power-law is characterized by a set of spectral indicators, which are related to distributional and geometrical characteristics of the electromyography signal's interference pattern. These novel spectral indicators are capable of sensing the effects of motor units' recruitment and shape separately by exploiting the geometry of the interference pattern. The bi-phase power spectrum method is compared to geometrical techniques and the 1/f(alpha) approach for fractal analysis of electromyography signals. The extracted indicators using the bi-phase power spectrum method are evaluated in the context of force and joint angle and the results of a human study are presented. Results demonstrate that the bi-phase power spectrum method provides reliable information, consisting of components capable of sensing force and joint angle effects separately, which could be used as complementary information for confounded conventional measures.
NASA Astrophysics Data System (ADS)
van Engelen, A.; Bhattacharya, S.; Sehgal, N.; Holder, G. P.; Zahn, O.; Nagai, D.
2014-05-01
The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to the Atacama Cosmology Telescope and the South Pole Telescope. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on σ8 and an uncertainty on the total neutrino mass of ~50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M vir = 1014 M ⊙. To achieve such percent level bias, we find that only modes up to a maximum multipole of l max ~ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.
Van Engelen, A.; Sehgal, N.; Bhattacharya, S.; Holder, G. P.; Zahn, O.; Nagai, D.
2014-05-01
The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to the Atacama Cosmology Telescope and the South Pole Telescope. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on σ{sub 8} and an uncertainty on the total neutrino mass of ∼50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M {sub vir} = 10{sup 14} M {sub ☉}. To achieve such percent level bias, we find that only modes up to a maximum multipole of l {sub max} ∼ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Technical Reports Server (NTRS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T.
2011-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the 2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Technical Reports Server (NTRS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T.
2010-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed
NASA Astrophysics Data System (ADS)
Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał; Dietz, Barbara; Sirko, Leszek
2016-09-01
We present experimental studies of the power spectrum and other fluctuation properties in the spectra of microwave networks simulating chaotic quantum graphs with violated time reversal invariance. On the basis of our data sets, we demonstrate that the power spectrum in combination with other long-range and also short-range spectral fluctuations provides a powerful tool for the identification of the symmetries and the determination of the fraction of missing levels. Such a procedure is indispensable for the evaluation of the fluctuation properties in the spectra of real physical systems like, e.g., nuclei or molecules, where one has to deal with the problem of missing levels.
Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał; Dietz, Barbara; Sirko, Leszek
2016-09-30
We present experimental studies of the power spectrum and other fluctuation properties in the spectra of microwave networks simulating chaotic quantum graphs with violated time reversal invariance. On the basis of our data sets, we demonstrate that the power spectrum in combination with other long-range and also short-range spectral fluctuations provides a powerful tool for the identification of the symmetries and the determination of the fraction of missing levels. Such a procedure is indispensable for the evaluation of the fluctuation properties in the spectra of real physical systems like, e.g., nuclei or molecules, where one has to deal with the problem of missing levels.
NASA Astrophysics Data System (ADS)
Marengo, Edwin A.; Khodja, Mohamed R.
2006-09-01
The nonrelativistic Larmor radiation formula, giving the power radiated by an accelerated charged point particle, is generalized for a spatially extended particle in the context of the classical charged harmonic oscillator. The particle is modeled as a spherically symmetric rigid charge distribution that possesses both translational and spinning degrees of freedom. The power spectrum obtained exhibits a structure that depends on the form factor of the particle, but reduces, in the limit of an infinitesimally small particle and for the charge distributions considered, to Larmor’s familiar result. It is found that for finite-duration small-enough accelerations as well as perpetual uniform accelerations the power spectrum of the spatially extended particle reduces to that of a point particle. It is also found that when the acceleration is violent or the size parameter of the particle is very large compared to the wavelength of the emitted radiation the power spectrum is highly suppressed. Possible applications are discussed.
NASA Astrophysics Data System (ADS)
Liu, Jia; Hill, J. Colin; Sherwin, Blake D.; Petri, Andrea; Böhm, Vanessa; Haiman, Zoltán
2016-11-01
Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB stage III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use N -body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function and provide specific forecasts for the ongoing stage III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 9 σ (PDF) and 6 σ (peaks) detections of these statistics with AdvACT. Our simulation pipeline fully accounts for the non-Gaussianity of the lensing reconstruction noise, which is significant and cannot be neglected. Combining the power spectrum, PDF, and peak counts for AdvACT will tighten cosmological constraints in the Ωm-σ8 plane by ≈30 %, compared to using the power spectrum alone.
Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor
NASA Technical Reports Server (NTRS)
Mayo, W.; Lantz, E.
1973-01-01
A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.
NASA Astrophysics Data System (ADS)
Paul, Sourabh; Sethi, Shiv K.; Morales, Miguel F.; Dwarkanath, K. S.; Udaya Shankar, N.; Subrahmanyan, Ravi; Barry, N.; Beardsley, A. P.; Bowman, Judd D.; Briggs, F.; Carroll, P.; de Oliveira-Costa, A.; Dillon, Joshua S.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Gaensler, B. M.; Hazelton, B. J.; Hewitt, J. N.; Hurley-Walker, N.; Jacobs, D. J.; Kim, Han-Seek; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; McKinley, B.; Mitchell, D. A.; Neben, A. R.; Offringa, A. R.; Pindor, B.; Pober, J. C.; Procopio, P.; Riding, J.; Sullivan, I. S.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Wayth, R. B.; Webster, R. L.; Wyithe, J. S. B.; Cappallo, Roger; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Srivani, K. S.; Williams, A.; Williams, C. L.
2016-12-01
The detection of redshifted 21 cm emission from the epoch of reionization (EoR) is a challenging task owing to strong foregrounds that dominate the signal. In this paper, we propose a general method, based on the delay spectrum approach, to extract H i power spectra that are applicable to tracking observations using an imaging radio interferometer ("Delay Spectrum with Imaging Arrays"). Our method is based on modeling the H i signal taking into account the impact of wide field effects such as the w-term, which are then used as appropriate weights in cross-correlating the measured visibilities. Our method is applicable to any radio interferometer that tracks a phase center and could be utilized for arrays such as the Murchison Widefield Array (MWA), Low Frequency Array (LOFAR), Giant Meterwave Radio Telescope (GMRT), Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), and HERA. In the literature the delay spectrum approach has been implemented for near-redundant baselines using drift scan observations. In this paper we explore the scheme for non-redundant tracking arrays. This is the first application of delay spectrum methodology to such data to extract the H i signal. We analyze 3 hr of MWA tracking data on the EoR1 field. We present both two-dimensional ({k}\\parallel ,{k}\\perp ) and one-dimensional (k) power spectra from the analysis. Our results are in agreement with the findings of other pipelines developed to analyze the MWA EoR data.
EEG power spectrum analysis for monitoring depth of anaesthesia during experimental surgery.
Otto, Klaus A
2008-01-01
The first attempts to introduce computerized power spectrum analysis of the electroencephalogram (EEG) as an intraoperative anaesthesia monitoring device started approximately 30 years ago. Since that time, the effects of various anaesthetic agents, sedative and analgesic drugs on the EEG pattern have been addressed in numerous studies in human patients and different animal species. These studies revealed dose-dependent changes in the EEG power spectrum for many intravenous and volatile anaesthetics. Moreover, EEG responses evoked by surgical stimuli during relative light levels of surgical anaesthesia have been classified as 'arousal' and 'paradoxical arousal' reaction, previously referred to as 'desynchronization' and 'synchronization', respectively. Contrasting reports on the correlation between quantitative EEG (QEEG) variables derived from power spectrum analysis (i.e. spectral edge frequency, median frequency) and simultaneously recorded clinical signs such as movement and haemodynamic responses, however, limited the routine use of intraoperative EEG monitoring. In addition, the appearance of EEG burst suppression pattern and isoelectricity at clinically relevant concentrations/doses of newer general anaesthetics (i.e. isoflurane, sevoflurane, propofol) may have weakened the dose-related EEG changes previously reported. Despite these findings, the EEG power spectrum analysis may still provide valuable information during intraoperative monitoring in the individual subject. The information obtained from EEG power spectrum analysis may be further supplemented by newer EEG indices such as bispectral index and approximate entropy or other neurophysiological monitors including auditory evoked potentials or somatosensory evoked potentials.
PkANN: Non-Linear Matter Power Spectrum Interpolation through Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Agarwal, Shankar
We investigate the interpolation of power spectra of matter fluctuations using artificial neural networks (ANNs). We present a new approach to confront small-scale non-linearities in the matter power spectrum. This ever-present and pernicious uncertainty is often the Achilles' heel in cosmological studies and must be reduced if we are to see the advent of precision cosmology in the late-time Universe. We detail how an accurate interpolation of the matter power spectrum is achievable with only a sparsely sampled grid of cosmological parameters. We show that an optimally trained ANN, when presented with a set of cosmological parameters (Omh2 , Obh2, ns, w0, sigma8, sum mnu and z), can provide a worst-case error ≤ 1 per cent (for redshift z ≤ 2) fit to the non-linear matter power spectrum deduced through large-scale N-body simulations, for modes up to k ≤ 0.9 hMpc-1 . Our power spectrum interpolator, which we label 'PkANN', is designed to simulate a range of cosmological models including massive neutrinos and dark energy equation of state w 0 ≠ -1. PkANN is accurate in the quasi-non-linear regime (0.1 hMpc-1 ≤ k ≤ 0.9 hMpc -1) over the entire parameter space and marks a significant improvement over some of the current power spectrum calculators. The response of the power spectrum to variations in the cosmological parameters is explored using PkANN. Using a compilation of existing peculiar velocity surveys, we investigate the cosmic Mach number statistic and show that PkANN not only successfully accounts for the non-linear motions on small scales, but also, unlike N-body simulations which are computationally expensive and/or infeasible, it can be an extremely quick and reliable tool in interpreting cosmological observations and testing theories of structure-formation.
Power spectrum of electrical discharges seen on earth and at Saturn
NASA Astrophysics Data System (ADS)
Warwick, J. W.
1989-07-01
A technique is described for deriving the radio spectrum of electrical discharges by using the properties of the time series of charges crossing the discharge gap. The method was applied to the spectrum of lightning and to the Saturn's electrical discharges (SEDs). It is shown that the occurrence and the power density of SEDs have subtle, but important, differences from these observables described in the last five years. The reasons for these differences are discussed.
Sensitivity of neutrinos to the supernova turbulence power spectrum: Point source statistics
Kneller, James P.; Kabadi, Neel V.
2015-07-16
The neutrinos emitted from the proto-neutron star created in a core-collapse supernova must run through a significant amount of turbulence before exiting the star. Turbulence can modify the flavor evolution of the neutrinos imprinting itself upon the signal detected here at Earth. The turbulence effect upon individual neutrinos, and the correlation between pairs of neutrinos, might exhibit sensitivity to the power spectrum of the turbulence, and recent analysis of the turbulence in a two-dimensional hydrodynamical simulation of a core-collapse supernova indicates the power spectrum may not be the Kolmogorov 5 /3 inverse power law as has been previously assumed. In this paper we study the effect of non-Kolmogorov turbulence power spectra upon neutrinos from a point source as a function of neutrino energy and turbulence amplitude at a fixed postbounce epoch. We find the two effects of turbulence upon the neutrinos—the distorted phase effect and the stimulated transitions—both possess strong and weak limits in which dependence upon the power spectrum is absent or evident, respectively. Furthermore, since neutrinos of a given energy will exhibit these two effects at different epochs of the supernova each with evolving strength, we find there is sensitivity to the power spectrum present in the neutrino burst signal from a Galactic supernova.
Sensitivity of neutrinos to the supernova turbulence power spectrum: Point source statistics
Kneller, James P.; Kabadi, Neel V.
2015-07-16
The neutrinos emitted from the proto-neutron star created in a core-collapse supernova must run through a significant amount of turbulence before exiting the star. Turbulence can modify the flavor evolution of the neutrinos imprinting itself upon the signal detected here at Earth. The turbulence effect upon individual neutrinos, and the correlation between pairs of neutrinos, might exhibit sensitivity to the power spectrum of the turbulence, and recent analysis of the turbulence in a two-dimensional hydrodynamical simulation of a core-collapse supernova indicates the power spectrum may not be the Kolmogorov 5 /3 inverse power law as has been previously assumed. Inmore » this paper we study the effect of non-Kolmogorov turbulence power spectra upon neutrinos from a point source as a function of neutrino energy and turbulence amplitude at a fixed postbounce epoch. We find the two effects of turbulence upon the neutrinos—the distorted phase effect and the stimulated transitions—both possess strong and weak limits in which dependence upon the power spectrum is absent or evident, respectively. Furthermore, since neutrinos of a given energy will exhibit these two effects at different epochs of the supernova each with evolving strength, we find there is sensitivity to the power spectrum present in the neutrino burst signal from a Galactic supernova.« less
The non-linear power spectrum of the Lyman alpha forest
Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue E-mail: miralda@icc.ub.edu E-mail: cen@astro.princeton.edu
2015-12-01
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.
The non-linear power spectrum of the Lyman alpha forest
NASA Astrophysics Data System (ADS)
Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue
2015-12-01
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z~ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.
Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds
NASA Astrophysics Data System (ADS)
Sims, Peter H.; Lentati, Lindley; Alexander, Paul; Carilli, Chris L.
2016-11-01
We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model-dependent region of optimal signal estimation for our foreground and EoR models, within which the spatial power in the EoR signal relative to the foregrounds is maximized. We identify a target field-dependent region, in k-space, of intrinsic foreground power spectral contamination at low k⊥ and k∥ and a transition to a relatively foreground-free intrinsic EoR window in the complement to this region. The contaminated region of k-space demonstrates that simultaneous estimation of the EoR and foregrounds is important for obtaining statistically robust estimates of the EoR power spectrum; biased results will be obtained from methodologies that ignore their covariance. Using simulated observations with frequency-dependent uv-coverage and primary beam, with the former derived for the Hydrogen Epoch of Reionization Array in 37-antenna and 331-antenna configuration, we recover instrumental power spectra consistent with their intrinsic counterparts. We discuss the implications of these results for optimal strategies for unbiased estimation of the EoR power spectrum.
Calculation of power spectrums from digital time series with missing data points
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.
1980-01-01
Two algorithms are developed for calculating power spectrums from the autocorrelation function when there are missing data points in the time series. Both methods use an average sampling interval to compute lagged products. One method, the correlation function power spectrum, takes the discrete Fourier transform of the lagged products directly to obtain the spectrum, while the other, the modified Blackman-Tukey power spectrum, takes the Fourier transform of the mean lagged products. Both techniques require fewer calculations than other procedures since only 50% to 80% of the maximum lags need be calculated. The algorithms are compared with the Fourier transform power spectrum and two least squares procedures (all for an arbitrary data spacing). Examples are given showing recovery of frequency components from simulated periodic data where portions of the time series are missing and random noise has been added to both the time points and to values of the function. In addition the methods are compared using real data. All procedures performed equally well in detecting periodicities in the data.
The Angular Power Spectrum from SDSS Galaxies at 0.2 < z < 0.6
NASA Astrophysics Data System (ADS)
Schlegel, D. J.; Padmanabhan, N.; Finkbeiner, D. P.; Blanton, M. R.; Eisenstein, D. J.; Hogg, D. W.; Seljak, U.
2003-12-01
We present a preliminary measurement of the luminous red galaxy (LRG) power spectrum between redshifts 0.2 and 0.6 in the Sloan Digital Sky Survey (SDSS). The SDSS has observed these luminous objects out to z=0.6 over 5500 deg2, and a recent recalibration of these data has reduced systematic errors in relative photometry to a level of 1 percent. This precision photometry combined with a prominent 4000A break in the LRG spectrum allows us to estimate photometric redshifts to an accuracy of 0.025 RMS. This allows us to divide the galaxies into distinct redshift slices from which we measure the angular power spectrum as a function of redshift. Baryons affect the shape of the power spectrum roll-off on the largest (>100 Mpc) scales, and imprint ``wiggles" on smaller scales corresponding to acoustic oscillations. These features appear at specific physical scales; tracking their angular size as a function of redshift provides a direct measure of the recent evolution of the Universe. We examine the constraints provided by the LRG power spectrum in the latest SDSS data.
Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data
NASA Astrophysics Data System (ADS)
Dossett, Jason; Hu, Bin; Parkinson, David
2014-03-01
In order to explain cosmic acceleration without invoking ``dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B0, we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B0 by an order of magnitude, giving log10(B0) < -4.07 at 95% confidence limit. Finally, we test whether the effect of adding the lensing amplitude ALens and the sum of the neutrino mass ∑mν is able to reconcile current tensions present in these parameters, but find f(R) gravity an inadequate explanation.
Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data
Dossett, Jason; Parkinson, David; Hu, Bin E-mail: hu@lorentz.leidenuniv.nl
2014-03-01
In order to explain cosmic acceleration without invoking ''dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B{sub 0}, we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B{sub 0} by an order of magnitude, giving log{sub 10}(B{sub 0}) < −4.07 at 95% confidence limit. Finally, we test whether the effect of adding the lensing amplitude A{sub Lens} and the sum of the neutrino mass ∑m{sub ν} is able to reconcile current tensions present in these parameters, but find f(R) gravity an inadequate explanation.
Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT
Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew
2013-01-15
Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical
Power spectrum of flow fluctuations in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Saumia, P. S.; Srivastava, Ajit M.
2016-10-01
We carry out hydrodynamical simulation of the evolution of fluid in relativistic heavy-ion collisions with random initial fluctuations. The time evolution of power spectrum of momentum anisotropies shows very strong correspondence with the physics of cosmic microwave anisotropies as was earlier predicted by us. In particular, our results demonstrate suppression of superhorizon fluctuations and the correspondence between the location of the first peak in the power spectrum of momentum anisotropies and the length scale of fluctuations and expected freeze-out time-scale (more precisely, the sound horizon size at freeze-out).
General requirements on matter power spectrum predictions for cosmology with weak lensing tomography
Hearin, Andrew P.; Zentner, Andrew R.; Ma, Zhaoming E-mail: zentner@pitt.edu
2012-04-01
Forthcoming projects such as DES, LSST, WFIRST, and Euclid aim to measure weak lensing shear correlations with unprecedented precision, constraining the dark energy equation of state at the percent level. Reliance on photometrically-determined redshifts constitutes a major source of uncertainty for these surveys. Additionally, interpreting the weak lensing signal requires a detailed understanding of the nonlinear physics of gravitational collapse. We present a new analysis of the stringent calibration requirements for weak lensing analyses of future imaging surveys that addresses both photo-z uncertainty and errors in the calibration of the matter power spectrum. We find that when photo-z uncertainty is taken into account the requirements on the level of precision in the prediction for the matter power spectrum are more stringent than previously thought. Including degree-scale galaxy clustering statistics in a joint analysis with weak lensing not only strengthens the survey's constraining power by ∼ 20%, but can also have a profound impact on the calibration demands, decreasing the degradation in dark energy constraints with matter power spectrum uncertainty by a factor of 2-5. Similarly, using galaxy clustering information significantly relaxes the demands on photo-z calibration. We compare these calibration requirements to the contemporary state-of-the-art in photometric redshift estimation and predictions of the power spectrum and suggest strategies to utilize forthcoming data optimally.
Measurements and implications of the SDSS DR7 galaxy angular power spectrum
NASA Astrophysics Data System (ADS)
Hayes, Brett P.
We calculate the angular power spectrum of galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) by using a quadratic estimation method with KLcompression. The primary data sample includes over 18 million galaxies covering more than 5,700 square degrees after masking areas with bright objects, reddening greater than 0.2 magnitudes, and seeing of more than 1.5 arcseconds. We also construct a volume-limited sample of 3.2 million galaxies in the same area, consisting of galaxies with absolute r-band magnitudes Mr < --21.2 and photometric redshifts z < 0.4. We test for systematic effects by calculating the angular power spectrum on simulated data and by SDSS stripe, and we find that these measurements are minimally affected by seeing and reddening. We calculate the angular power spectrum for ℓ ≤ 200 multipoles by using 40 bands for the full area data, ℓ ≤ 1000 multipoles using 50 bands for individual stripes, and ℓ ≤ 1600 multipoles using 64 bands for a selected area near the North Galactic Pole at high resolution. We also calculate the angular power spectra for the main galaxy sample separated into 3 magnitude bins, as well as the volume-limited sample separated into 2 redshift shells and early- and late-type galaxies to examine the evolution of the angular power spectrum. We determine the theoretical linear angular power spectrum by projecting the 3D power spectrum to two dimensions for a basic comparison to our observational results for the SDSS DR7 main galaxy sample and subsamples separated by magnitude. For our high resolution and volume-limited samples, we generate nonlinear angular power spectra using CAMB nonlinear 3D matter power spectra for our projections. By minimizing the chi2 fit between these data and the theoretical angular power spectra, we measure a fit of Om = +0.18-0.11 with a linear bias of b = 0.94 +/- 0.04 for the entire SDSS DR7 main galaxy sample, Om = 0.267 +/- 0.038, Ob = 0.045 +/- 0.012, and b = 1
Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.
Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian
2016-11-10
An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.
NASA Astrophysics Data System (ADS)
Cole, Shaun; Percival, Will J.; Peacock, John A.; Norberg, Peder; Baugh, Carlton M.; Frenk, Carlos S.; Baldry, Ivan; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Cross, Nicholas J. G.; Dalton, Gavin; Eke, Vincent R.; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Jenkins, Adrian; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith
2005-09-01
We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations' that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial ns= 1 spectrum, h= 0.72 and negligible neutrino mass, the preferred parameters are Ωmh= 0.168 +/- 0.016 and a baryon fraction Ωb/Ωm= 0.185 +/- 0.046 (1σ errors). The value of Ωmh is 1σ lower than the 0.20 +/- 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ωm= 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ωm= 0.231 +/- 0.021.
Noise correction in power spectrum and image reconstruction with speckle holography.
NASA Astrophysics Data System (ADS)
Qiu, Yao-Hui; Zhang, Rui-Long; Lou, Ke; Lu, Ru-Wei; Liu, Zhong
At first, the principle of speckle holography is introduced briefly, then some influences upon power spectrum arised from the noise in real data is analysed and a method to correct the noise bias is discussed. At last, a high resolution image reconstruction experiment for two double stars is reported.
Interference detection and correction applied to incoherent-scatter radar power spectrum measurement
NASA Technical Reports Server (NTRS)
Ying, W. P.; Mathews, J. D.; Rastogi, P. K.
1986-01-01
A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid.
Optimal Load and Power Spectrum During Jerk and Back Jerk in Competitive Weightlifters.
Flores, Francisco Javier; Sedano, Silvia; Redondo, Juan C
2017-03-01
Flores, FJ, Sedano, S, and Redondo, JC. Optimal load and power spectrum during jerk and back jerk in competitive weightlifters. J Strength Cond Res 31(3): 809-816, 2017-Although the ability to develop high levels of power is considered as a key component of success in many sporting activities, the optimal load (Pmax load) that maximizes power output (Pmax) remains controversial mainly during weightlifting movements. The aim of the present study was to determine Pmax load and optimal power spectrum (OPS) required to elicit Pmax by comparing jerk and back jerk exercises in competitive weightlifters. Thirteen male competitive weightlifters participated in 2 testing sessions. The first session involved performing one repetition maximum (1RM) in the back jerk and jerk and the second session assessed a power test across a spectrum of loads (30-90%) of each subject's 1RM in the predetermined exercises tested. Relative load had a significant effect on peak power, with Pmax load being obtained at 90% of the subjects' 1RM in both exercises assessed. There was no significant difference between the power outputs at 80% of 1RM compared with 90% of 1RM. Furthermore, Pmax load and OPS were the same for jerk and back jerk, whereas peak power in the back jerk demonstrated no significant increases in every load of the power-load curve. We can conclude that it may be advantageous to use loads equivalent to 80-90% of the 1RM in jerk and back jerk in competitive weightlifters when training to maximize power.
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; ...
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ωm, σ8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator thatmore » interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ωm, σ8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ωm, σ8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ8(Ωm/0.27)0.63 = 0.85+0.03-0.03.« less
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ω_{m}, σ_{8}, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ω_{m}, σ_{8}, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ω_{m}, σ_{8}) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ_{8}(Ω_{m}/0.27)0.63 = 0.85^{+0.03}_{-0.03}.
The Trial Software version for DEMETER power spectrum files visualization and mapping
NASA Astrophysics Data System (ADS)
Lozbin, Anatoliy; Inchin, Alexander; Shpadi, Maxim
2010-05-01
In the frame of Kazakhstan's Scientific Space System creation for earthquakes precursors research, the hardware and software of DEMETER satellite was investigated. The data processing Software of DEMETER is based on package SWAN under IDL Virtual machine and realizes many features, but we can't find an important tool for the spectrograms analysis - space-time visualization of power spectrum files from electromagnetic devices as ICE and IMSC. For elimination of this problem we have developed Software which is offered to use. The DeSS (DEMETER Spectrogram Software) - it is Software for visualization, analysis and a mapping of power spectrum data from electromagnetic devices ICE and IMSC. The Software primary goal is to give the researcher friendly tool for the analysis of electromagnetic data from DEMETER Satellite for earthquake precursors and other ionosphere events researches. The Input data for DeSS Software is a power spectrum files: - Power spectrum of 1 component of the electric field in the VLF range (APID 1132); - Power spectrum of 1 component of the electric field in the HF range (APID 1134); - Power spectrum of 1 component of the magnetic field in the VLF range (APID 1137). The main features and operations of the software is possible: - various time and frequency filtration; - visualization of time dependence of signal intensity on fixed frequency; - spectral density visualization for fixed frequency range; - spectrogram autosize and smooth spectrogram; - the information in each point of the spectrogram: time, frequency and intensity; - the spectrum information in the separate window, consisting of 4 blocks; - data mapping with 6 range scale. On the map we can browse next information: - satellite orbit; - conjugate point at the satellite altitude; - north conjugate point at the altitude 110 km; - south conjugate point at the altitude 110 km. This is only trial software version to help the researchers and we always ready collaborate with scientists for
Cosmology with anisotropic galaxy clustering from the combination of power spectrum and bispectrum
Song, Yong-Seon; Taruya, Atsushi; Oka, Akira E-mail: ataruya@yukawa.kyoto-u.ac.jp
2015-08-01
The apparent anisotropies of the galaxy clustering in observable redshift space provide a unique opportunity to simultaneously probe cosmic expansion and gravity on cosmological scales via the Alcock-Paczynski effect and redshift-space distortions. While the improved theoretical models have been proposed and developed to describe the apparent anisotropic clustering at weakly non-linear scales, the applicability of these models is still limited in the presence of the non-perturbative smearing effect caused by the randomness of the relative velocities. Although the cosmological constraint from the anisotropic clustering will be improved with a more elaborate theoretical model, here we consider an alternative approach using the statistical power of both the power spectrum and bispectrum at large scales. Based on the Fisher matrix analysis, we estimate the benefit of combining the power spectrum and bispectrum, finding that for the future spectroscopy survey DESI (Dark Energy Spectroscopy Instrument), the constraints on the cosmic expansion and growth of structure will be improved by a factor of two. This approach compensates for the loss of constraining power, using the power spectrum alone, due to the randomness of the relative velocities.
Wong, Yvonne Y Y
2008-10-15
We present the first systematic derivation of the one-loop correction to the large scale matter power spectrum in a mixed cold + hot dark matter cosmology with subdominant massive neutrino hot dark matter. Starting with the equations of motion for the density and velocity fields, we derive perturbative solutions to these quantities and construct recursion relations for the interaction kernels, noting and justifying all approximations along the way. We find interaction kernels similar to those for a cold dark matter only universe, but with additional dependences on the neutrino energy density fraction f{sub {nu}} and the linear growth functions of the incoming wavevectors. Compared with the f{sub {nu}} = 0 case, the one-loop corrected matter power spectrum for a mixed dark matter cosmology exhibits a decrease in small scale power exceeding the canonical {approx}8f{sub {nu}} suppression predicted by linear theory, a feature also seen in multi-component N-body simulations.
Ultrasound characterization of the infertile male testis with rf power spectrum analysis
NASA Astrophysics Data System (ADS)
Coleman, Jonathan A.; Silverman, Ronald H.; Rondeau, Mark; Coleman, D. J.; Schlegel, Peter
2002-04-01
Objective: To investigate and diagnose testicular pathology in patients with testicular dysfunction using the technique of ultrasound power spectrum analysis. Methods: Testicular ultrasound studies with power spectrum tissue characterization analysis were performed on men with testicular abnormalities as well as normal controls. Semen analysis, biopsy data, microscopic intra-operative findings and data pertaining to testicular function were collected for each surgically evaluated subject. Ultrasound data were analyzed for power spectrum characteristics of microscopic scatterer size and concentration within discrete areas of testicular tissue. Results: Patients with varicoceles and greater than 2x106 sperm/ml on semen analysis had larger average scatterer size (107.7 micrometers ) and lower scatterer concentration (-15.02 dB) than non-obstructed, azoospermic patients with varicoceles (92.4 micrometers and -11.41 dB, respectively). Subjects with obstructed azoospermia had slightly larger average tissue scatterer size (108.1 micrometers ) and lower concentration (-15.73 dB) while normal control data revealed intermediate values of size (102.3 micrometers ) and concentration (-13.1 dB) of scatterers. Spectral data from pure testicular seminoma lesions had the lowest average scatterer size (82.3 micrometers ) with low relative concentration (-14.7 dB). Summary: Ultrasound tissue characterization based on RF spectrum analysis may distinguish different types of testicular pathology including obstructed and non-obstructed azoospermia and tissue changes due to varicocele and tumor.
Dependence of the non-linear mass power spectrum on the equationof state of dark energy
NASA Astrophysics Data System (ADS)
McDonald, Patrick; Trac, Hy; Contaldi, Carlo
2006-02-01
We present N-body simulation calculations of the dependence of the power spectrum of non-linear cosmological mass density fluctuations on the equation of state of the dark energy, w=p/ρ. At fixed linear theory power, increasing w leads to an increase in non-linear power, with the effect increasing with k. By k= 10hMpc-1, a model with w=-0.75 has ~12 per cent more power than a standard cosmological constant model (w=-1), while a model with w=-0.5 has ~33 per cent extra power (at z= 0). The size of the effect increases with increasing dark energy fraction, and to a lesser extent increasing power spectrum normalization, but is insensitive to the power spectrum shape (the numbers above are for Ωm= 0.281 and σ8= 0.897). A code quantifying the non-linear effect of varying w, as a function of k, z and other cosmological parameters, which should be accurate to a few per cent for k<~ 10hMpc-1 for models that fit the current observations, is available at http://www.cita.utoronto.ca/~pmcdonal/code.html. This paper also serves as an example of a detailed exploration of the numerical convergence properties of ratios of power spectra for different models, which can be useful because some kinds of numerical error cancel in a ratio. When precision calculations based on numerical simulations are needed for many different models, efficiency may be gained by breaking the problem into a calculation of the absolute prediction at a central point, and calculations of the relative change in the prediction with model parameters.
NASA Astrophysics Data System (ADS)
Lübcke, Peter; Lampel, Johannes; Bobrowski, Nicole; Arellano, Santiago; Galle, Bo; Garzón, Gustavo; Hidalgo, Silvana; Vogel, Leif; Warnach, Simon; Platt, Ulrich
2015-04-01
SO2 emission rates are monitored using Differential Optical Absorption Spectroscopy (DOAS) in the UV at an increasing number of volcano observatories. The Network for Observation of Volcanic and Atmospheric Change (NOVAC) has currently installed 80 scanning DOAS instruments at 30 volcanoes world-wide. One important question for the evaluation of spectra using DOAS is the availability of background spectra that are not influenced by volcanic gas emissions. An SO2 contaminated background spectrum would lead to a negative offset of the retrieved SO2 column densities, and thus to an underestimation of the volcanic SO2 emission rate. In NOVAC this problem is approached by performing a scan, e.g. through a plane from one horizon to the other horizon, and defining the average of the 20% spectra with the lowest SO2 content as the zero-baseline value, which is assumed to be gas free. To verify this assumption we revisit the idea of evaluating spectra using the DOAS method with a modeled background spectrum based on a high-resolution solar atlas. One challenge when evaluating spectra with a modeled background spectrum is properly accounting for instrumental effects that are usually removed when calculating the measured optical density relative to a measured background spectrum. We present our approach to handle these instrumental effects, showing that we gain a similar fit quality to the method using a measured reference spectrum. For example, wavelength dependent structures in the spectrum due to the spectrometer (e.g., quantum efficiency of the detector and grating efficiency) were identified with help of a principal component analysis of an SO2 free subset of the residual spectra. These structures were included in a second iteration of the fit in order to improve the evaluation. We further discuss influences like strong ozone absorption and the instrument temperature on the quality of the SO2 fit using a modeled background spectrum. The new evaluation scheme was applied
NASA Astrophysics Data System (ADS)
Nasir, Fahad; Bolton, James S.; Becker, George D.
2016-12-01
We use cosmological hydrodynamical simulations to assess the feasibility of constraining the thermal history of the intergalactic medium during reionization with the Lyα forest at z ≃ 5. The integrated thermal history has a measurable impact on the transmitted flux power spectrum that can be isolated from Doppler broadening at this redshift. We parametrize this using the cumulative energy per proton, u0, deposited into a gas parcel at the mean background density, a quantity that is tightly linked with the gas density power spectrum in the simulations. We construct mock observations of the line-of-sight Lyα forest power spectrum and use a Markov Chain Monte Carlo approach to recover u0 at redshifts 5 ≲ z ≲ 12. A statistical uncertainty of ˜20 per cent is expected (at 68 per cent confidence) at z ≃ 5 using high-resolution spectra with a total redshift path length of Δz = 4 and a typical signal-to-noise ratio of 15 per pixel. Estimates for the expected systematic uncertainties are comparable, such that existing data should enable a measurement of u0 to within ˜30 per cent. This translates to distinguishing between reionization scenarios with similar instantaneous temperatures at z ≃ 5, but with an energy deposited per proton that differs by 2-3 eV over the redshift interval 5 ≲ z ≲ 12. For an initial temperature of T ˜ 104 K following reionization, this corresponds to the difference between early (zre = 12) and late (zre = 7) reionization in our models.
Sound power spectrum and wave drag of a propeller in flight
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1989-01-01
Theory is presented for the sound power and sound power spectrum of a single rotation propeller in forward flight. Calculations are based on the linear wave equation with sources distributed over helicoidal surfaces to represent effects of blade thickness and steady loading. Sound power is distributed continuously over frequecy, as would be expected from Doppler effects, rather than in discrete harmonics. The theory is applied to study effects of sweep and Mach number in propfans. An acoustic efficiency is defined as the ratio of radiated sound power to shaft input power. This value is the linear estimate of the effect of wave drag due to the supersonic blade section speeds. It is shown that the acoustic efficiency is somewhat less than 1 percent for a well designed propfan.
Power outputs of a machine squat-jump across a spectrum of loads.
Harris, Nigel K; Cronin, John B; Hopkins, Will G
2007-11-01
The load that maximizes mechanical power output (Pmax) has received considerable research attention owing to its perceived importance to training prescription. However, it may be that identifying Pmax is of little importance if the difference in power output about Pmax is insubstantial. Additionally, comparing the effect of load on power output between studies is problematic due to various methodological differences. The purpose of this study therefore was to quantify the concentric power output for a machine squat-jump across a spectrum of loads (10-100% of 1 repetition maximum [1RM]). To estimate Pmax load and proximate loads a quadratic was fitted to the power output (Watts) and load (% of 1RM) of 18 well-trained rugby athletes. Pmax for peak and mean power output occurred at 21.6 +/- 7.1% of 1RM (mean +/- SD) and 39.0 +/- 8.6% of 1RM, respectively. A 20% change in load either side of the maximum resulted in a mean decrease of only 9.9% (90% confidence limits +/-2.4%) and 5.4% (+/-0.9%) in peak and mean power respectively; standard deviations about these means (representing individual differences in the decrease) were 6.0% and 2.1%, respectively (90% confidence limits x//1.34). It appears that most athletes have a broad peak in their power profile for peak or mean power. The preoccupation of identifying one load for maximizing power output would seem less meaningful than many practitioners and scientists believe.
The Lyman-alpha forest power spectrum from the XQ-100 Legacy Survey
NASA Astrophysics Data System (ADS)
Iršič, Vid; Viel, Matteo; Berg, Trystyn A. M.; D'Odorico, Valentina; Haehnelt, Martin G.; Cristiani, Stefano; Cupani, Guido; Kim, Tae-Sun; López, Sebastian; Ellison, Sara; Becker, George D.; Christensen, Lise; Denney, Kelly D.; Worseck, Gábor; Bolton, James S.
2016-12-01
We present the Lyman-α flux power spectrum measurements of the XQ-100 sample of quasar spectra obtained in the context of the European Southern Observatory Large Programme "Quasars and their absorption lines: a legacy survey of the high redshift universe with VLT/XSHOOTER". Using 100 quasar spectra with medium resolution and signal-to-noise ratio we measure the power spectrum over a range of redshifts z = 3 - 4.2 and over a range of scales k = 0.003 - 0.06 km-1 s. The results agree well with the measurements of the one-dimensional power spectrum found in the literature. The data analysis used in this paper is based on the Fourier transform and has been tested on synthetic data. Systematic and statistical uncertainties of our measurements are estimated, with a total error (statistical and systematic) comparable to the one of the BOSS data in the overlapping range of scales, and smaller by more than 50% for higher redshift bins (z > 3.6) and small scales (k > 0.01 km-1 s). The XQ-100 data set has the unique feature of having signal-to-noise ratios and resolution intermediate between the two data sets that are typically used to perform cosmological studies, i.e. BOSS and high-resolution spectra (e.g. UVES/VLT or HIRES). More importantly, the measured flux power spectra span the high redshift regime which is usually more constraining for structure formation models.
Power spectrum of small-scale density irregularities in the interstellar medium
NASA Technical Reports Server (NTRS)
Armstrong, J. W.; Rickett, B. J.
1981-01-01
Observations of the interstellar scintillation of radiation from 17 pulsars are reported which are used to place limits on the power spectrum of small-scale electron density irregularities in the interstellar medium. Measurements made at 340, 408, and 450 MHz in the dispersion measure range 3-57/cu cm pc of the time-dependent radio frequency spectrum of interstellar scintillations were analyzed to determine the scintillation index and a scintillation frequency-correlation scale based on the autocorrelation function in radio frequency of the fluctuations in scintillation. The dispersion-measure dependence of the scintillation frequency correlation scale is found to be consistent with both Gaussian model interstellar medium spectra and power-law spectra with indices between 3.0 and 4, while the radio-frequency scaling of the frequency correlation scale is consistent with power law indices between 2.8 and 3.9. However comparison of the shape of the radio-frequency autocorrelation function with model calculations indicates power law models with indices greater than 3.6 are possible. Data are also consistent with a local three-dimensional density spectrum at a wave number of 10 to the -9th/m of 3 x 10 to the 28th to 3 x 10 to the 29th/cu m.
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-15
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Time-variant power spectrum analysis for the detection of transient episodes in HRV signal.
Bianchi, A M; Mainardi, L; Petrucci, E; Signorini, M G; Mainardi, M; Cerutti, S
1993-02-01
A time-variant algorithm of autoregressive (AR) identification is introduced and applied to the heart rate variability (HRV) signal. The power spectrum is calculated from the AR coefficients derived from each single RR interval considered. Time-variant AR coefficients are determined through adaptive parametric identification with a forgetting factor which obtains weighed values on a running temporal window of 50 preceding measurements. Power spectrum density (PSD) is hence obtained at each cardiac cycle, making it possible to follow the dynamics of the spectral parameters on a beat-by-beat basis. These parameters are mainly the LF (low frequency) and the HF (high frequency) powers, and their ratio LF/HF. These together account for the balanced sympatho-vagal control mechanism affecting the heart rate. This method is applied to subjects suffering from transient ischemic attacks. The time variant spectral parameters suggest an early activation of LF component in the HRV power spectrum. It precedes by approximately 1.5-2 min the tachycardia and the ST displacement, generally indicative of the onset of an ischemic episode. The results suggest an arousal of sympathetic system before the acute attack.
Chiang, Lung-Yih; Chen, Fei-Fan
2011-09-10
The cross-power spectrum is a quadratic estimator between two maps that can provide unbiased estimate of the underlying power spectrum of the correlated signals, which is therefore used for extracting the power spectrum in the Wilkinson Microwave Anisotropy Probe (WMAP) data. In this paper, we discuss the limit of the cross-power spectrum and derive the residual from the uncorrelated signal, which is the source of error in power spectrum extraction. We employ the estimator to extract window functions by crossing pairs of extragalactic point sources. We demonstrate its usefulness in WMAP difference assembly maps where the window functions are measured via Jupiter and then extract the window functions of the five WMAP frequency band maps.
First limits on the 21 cm power spectrum during the Epoch of X-ray heating
NASA Astrophysics Data System (ADS)
Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.
2016-08-01
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 h of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 h Mpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.
Spectrum Resolving Power of Hearing: Measurements, Baselines, and Influence of Maskers
Supin, Alexander Ya.
2011-01-01
Contemporary methods of measurement of frequency resolving power in the auditory system are reviewed. Majority of classical methods are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate). Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is a convenient measure of the spectrum resolving power (SRP). To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers. PMID:26557320
Spectrum Resolving Power of Hearing: Measurements, Baselines, and Influence of Maskers.
Supin, Alexander Ya
2011-07-01
Contemporary methods of measurement of frequency resolving power in the auditory system are reviewed. Majority of classical methods are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate). Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is a convenient measure of the spectrum resolving power (SRP). To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers.
NASA Astrophysics Data System (ADS)
Negro, Francesco; Keenan, Kevin; Farina, Dario
2015-06-01
Objective. The identification of common oscillatory inputs to motor neurons in the electromyographic (EMG) signal power spectrum is often preceded by EMG rectification for enhancing the low-frequency oscillatory components. However, rectification is a nonlinear operator and its influence on the EMG signal spectrum is not fully understood. In this study, we aim at determining when EMG rectification is beneficial in the study of oscillatory inputs to motor neurons. Approach. We provide a full mathematical description of the power spectrum of the rectified EMG signal and the influence of the average shape of the motor unit action potentials on it. We also provide a validation of these theoretical results with both simulated and experimental EMG signals. Main results. Simulations using an advanced computational model and experimental results demonstrated the accuracy of the theoretical derivations on the effect of rectification on the EMG spectrum. These derivations proved that rectification is beneficial when assessing the strength of low-frequency (delta and alpha bands) common synaptic inputs to the motor neurons, when the duration of the action potentials is short, and when the level of cancellation is relatively low. On the other hand, rectification may distort the estimation of common synaptic inputs when studying higher frequencies (beta and gamma), in a way dependent on the duration of the action potentials, and may introduce peaks in the coherence function that do not correspond to physiological shared inputs. Significance. This study clarifies the conditions when rectifying the surface EMG is appropriate for studying neural connectivity.
Power-Law Entanglement Spectrum in Many-Body Localized Phases
NASA Astrophysics Data System (ADS)
Serbyn, Maksym; Michailidis, Alexios A.; Abanin, Dmitry A.; Papić, Z.
2016-10-01
The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.
Power-Law Entanglement Spectrum in Many-Body Localized Phases.
Serbyn, Maksym; Michailidis, Alexios A; Abanin, Dmitry A; Papić, Z
2016-10-14
The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.
Alvarez-Estrada, R. F.; Pastor, I.; Guasp, J.; Castejon, F.
2012-06-15
The classical nonlinear incoherent Thomson scattering power spectrum from a single relativistic electron with incoming laser radiation of any intensity, investigated numerically by the present authors in a previous publication, displayed both an approximate quadratic behavior in frequency and a redshift of the power spectrum for high intensity incoming radiation. The present work is devoted to justify, in a more general setup, those numerical findings. Those justifications are reinforced by extending suitably analytical approaches, as developed by other authors. Moreover, our analytical treatment exhibits differences between the Doppler-like frequencies for linear and circular polarization of the incoming radiation. Those differences depend nonlinearly on the laser intensity and on the electron initial velocity and do not appear to have been displayed by previous authors. Those Doppler-like frequencies and their differences are validated by new Monte Carlo computations beyond our previuos ones and reported here.
NASA Astrophysics Data System (ADS)
Lacot, Eric; Houchmandzadeh, Bahram; Girardeau, Vadim; Hugon, Olivier; Jacquin, Olivier
2016-09-01
In this article, we study the nonlinear coupling between the stationary (i.e., the beating modulation signal) and transient (i.e., the laser quantum noise) dynamics of a laser subjected to frequency-shifted optical feedback. We show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are modified under different optical feedback conditions. Specifically we study the influence of (i) the amount of light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal, and the shape of the noise power spectrum gives an image of the transfer modulation function (i.e., of the amplification gain) of the nonlinear-laser dynamics. The theoretical predictions, confirmed by numerical resolutions, are in good agreement with the experimental data.
Revisiting a pre-inflationary radiation era and its effect on the CMB power spectrum
Das, Suratna; Goswami, Gaurav; Rangarajan, Raghavan; Prasad, Jayanti E-mail: gaugo@prl.res.in E-mail: raghavan@prl.res.in
2015-06-01
We revisit the scenario where inflation is preceded by a radiation era by considering that the inflaton too could have been in thermal equilibrium early in the radiation era. Hence we take into account not only the effect of a pre-inflationary era on the inflaton mode functions but also that of a frozen thermal distribution of inflaton quanta. We initially discuss in detail the issues relevant to our scenario of a pre-inflationary radiation dominated era and then obtain the scalar power spectrum for this scenario. We find that the power spectrum is free from infrared divergences. We then use the WMAP and Planck data to determine the constraints on the inflaton comoving 'temperature' and on the duration of inflation. We find that the best fit value of the duration of inflation is less than 1 e-folding more than what is required to solve cosmological problems, while only an upper bound on the inflaton temperature can be obtained.
Comparison of Two Methods of Noise Power Spectrum Determinations of Medical Radiography Systems
Hassan, Wan Muhamad Saridan Wan; Ahmed Darwish, Zeki
2011-03-30
Noise in medical images is recognized as an important factor that determines the image quality. Image noise is characterized by noise power spectrum (NPS). We compared two methods of NPS determination namely the methods of Wagner and Dobbins on Lanex Regular TMG screen-film system and Hologic Lorad Selenia full field digital mammography system, with the aim of choosing the better method to use. The methods differ in terms of various parametric choices and algorithm implementations. These parameters include the low pass filtering, low frequency filtering, windowing, smoothing, aperture correction, overlapping of region of interest (ROI), length of fast Fourier transform, ROI size, method of ROI normalization, and slice selection of the NPS. Overall, the two methods agreed to the practical value of noise power spectrum between 10{sup -3}-10{sup -6} mm{sup 2} over spatial frequency range 0-10 mm{sup -1}.
A perturbative approach to the redshift space power spectrum: beyond the Standard Model
NASA Astrophysics Data System (ADS)
Bose, Benjamin; Koyama, Kazuya
2016-08-01
We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.
Analyses of DNA Base Sequences for Eukaryotes in Terms of Power Spectrum Method
NASA Astrophysics Data System (ADS)
Isohata, Yasuhiko; Hayashi, Masaki
2005-02-01
By adopting a power spectrum method we have analyzed long-range correlations in the gene base sequences, exons and introns for five or six eukaryote species. As a measure of the long-range correlations, we have used an exponent α in 1/fα, which is an approximation of a power spectrum in a low-frequency region. We have analyzed frequency distributions of α and the dependence of its average values <α> on the sequence length for the five or six species, paying particular attention to the species dependence. We have shown that long-range correlations have been formed mainly due to the intron's elongation as well as by the sequence structures of introns acquired over the course of evolution.
Comparison of Two Methods of Noise Power Spectrum Determinations of Medical Radiography Systems
NASA Astrophysics Data System (ADS)
Hassan, Wan Muhamad Saridan Wan; Ahmed Darwish, Zeki
2011-03-01
Noise in medical images is recognized as an important factor that determines the image quality. Image noise is characterized by noise power spectrum (NPS). We compared two methods of NPS determination namely the methods of Wagner and Dobbins on Lanex Regular TMG screen-film system and Hologic Lorad Selenia full field digital mammography system, with the aim of choosing the better method to use. The methods differ in terms of various parametric choices and algorithm implementations. These parameters include the low pass filtering, low frequency filtering, windowing, smoothing, aperture correction, overlapping of region of interest (ROI), length of fast Fourier transform, ROI size, method of ROI normalization, and slice selection of the NPS. Overall, the two methods agreed to the practical value of noise power spectrum between 10-3-10-6 mm2 over spatial frequency range 0-10 mm-1.
Extragalactic gamma-ray signal from dark matter annihilation: a power spectrum based computation
NASA Astrophysics Data System (ADS)
Serpico, P. D.; Sefusatti, E.; Gustafsson, M.; Zaharijas, G.
2012-03-01
We revisit the computation of the extragalactic gamma-ray signal from cosmological dark matter annihilations. The prediction of this signal is notoriously model-dependent, due to different descriptions of the clumpiness of the dark matter distribution at small scales, responsible for an enhancement with respect to the smoothly distributed case. We show how a direct computation of this 'flux multiplier' in terms of the non-linear power spectrum offers a conceptually simpler approach and may ease some problems, such as the extrapolation issue. In fact, very simple analytical recipes to construct the power spectrum yield results similar to the popular Halo Model expectations, with a straightforward alternative estimate of errors. For this specific application, one also obviates the need of identifying (often literature-dependent) concepts entering the Halo Model, to compare different simulations.
NASA Technical Reports Server (NTRS)
Woo, R.; Armstrong, J. W.
1979-01-01
Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2-215 solar radii and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances of about 20 solar radii the equivalent spacecraft-measured one-dimensional density spectrum is well modeled by a single power law in the frequency range 0.0001-0.05 Hz. The flattening of the density spectrum within 20 solar radii is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind.
Reconstruction of a nonminimal coupling theory with scale-invariant power spectrum
Qiu, Taotao
2012-06-01
A nonminimal coupling single scalar field theory, when transformed from Jordan frame to Einstein frame, can act like a minimal coupling one. Making use of this property, we investigate how a nonminimal coupling theory with scale-invariant power spectrum could be reconstructed from its minimal coupling counterpart, which can be applied in the early universe. Thanks to the coupling to gravity, the equation of state of our universe for a scale-invariant power spectrum can be relaxed, and the relation between the parameters in the action can be obtained. This approach also provides a means to address the Big-Bang puzzles and anisotropy problem in the nonminimal coupling model within Jordan frame. Due to the equivalence between the two frames, one may be able to find models that are free of the horizon, flatness, singularity as well as anisotropy problems.
The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipoles
NASA Astrophysics Data System (ADS)
Hahn, ChangHoon; Scoccimarro, Roman; Blanton, Michael R.; Tinker, Jeremy L.; Rodríguez-Torres, Sergio
2017-01-01
Fiber-fed multi-object spectroscopic surveys, with their ability to collect an unprecedented number of redshifts, currently dominate large-scale structure studies. However, physical constraints limit these surveys from successfully collecting redshifts from galaxies too close to each other on the focal plane. This ultimately leads to significant systematic effects on galaxy clustering measurements. Using simulated mock catalogs, we demonstrate that fiber collisions have a significant impact on the power spectrum, P(k), monopole and quadrupole that exceeds sample variance at scales smaller than k ˜ 0.1 h/Mpc. We present two methods to account for fiber collisions in the power spectrum. The first, statistically reconstructs the clustering of fiber collided galaxy pairs by modeling the distribution of the line-of-sight displacements between them. It also properly accounts for fiber collisions in the shot-noise correction term of the P(k) estimator. Using this method, we recover the true P(k) monopole of the mock catalogs with residuals of <0.5% at k = 0.3 h/Mpc and <4% at k = 0.83 h/Mpc - a significant improvement over existing correction methods. The quadrupole, however, does not improve significantly. The second method models the effect of fiber collisions on the power spectrum as a convolution with a configuration space top-hat function that depends on the physical scale of fiber collisions. It directly computes theoretical predictions of the fiber-collided P(k) multipoles and reduces the influence of smaller scales to a set of nuisance parameters. Using this method, we reliably model the effect of fiber collisions on the monopole and quadrupole down to the scale limits of theoretical predictions. The methods we present in this paper will allow us to robustly analyze galaxy power spectrum multipole measurements to much smaller scales than previously possible.
Hierarchical Bayesian analysis of the velocity power spectrum in supersonic turbulence
NASA Astrophysics Data System (ADS)
Konstandin, L.; Shetty, R.; Girichidis, P.; Klessen, R. S.
2015-01-01
Turbulence is a dominant feature operating in gaseous flows across nearly all scales in astrophysical environments. Accordingly, accurately estimating the statistical properties of such flows is necessary for developing a comprehensive understanding of turbulence. We develop and employ a hierarchical Bayesian fitting method to estimate the parameters describing the scaling relationships of the velocity power spectra of supersonic turbulence. We demonstrate the accuracy and other advantages of this technique compared with ordinary linear regression methods. Using synthetic power spectra, we show that the Bayesian method provides accurate parameter and error estimates. Commonly used normal linear regression methods can provide estimates that fail to recover the underlying slopes, up to 70 per cent of the instances, even when considering the 2σ uncertainties. Additionally, we apply the Bayesian methods to analyse the statistical properties of compressible turbulence in three-dimensional numerical simulations. We model driven, isothermal, turbulence with root-mean-square Mach numbers in the highly supersonic regime {M}≈ 15. We study the influence of purely solenoidal (divergence-free) and purely compressive (curl-free) forcing on the scaling exponent of the power spectrum. In simulations with solenoidal forcing and 10243 resolution, our results indicate that there is no extended inertial range with a constant scaling exponent. The bottleneck effect results in a curved power spectrum at all wave numbers and is more pronounced in the transversal modes compared with the longitudinal modes. Therefore, this effect is stronger in stationary turbulent flows driven by solenoidal forcing compared to the compressive one. The longitudinal spectrum driven with compressive forcing is the only spectrum with constant scaling exponent ζ = -1.94 ± 0.01, corresponding to slightly shallower slopes than the Burger prediction.
Double Power Laws in the Event-integrated Solar Energetic Particle Spectrum
NASA Astrophysics Data System (ADS)
Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K.
2016-04-01
A double power law or a power law with exponential rollover at a few to tens of MeV nucleon-1 of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon-1 is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.
Heitmann, Katrin; White, Martin; Higdon, David; Wagner, Christian; Lawrence, Earl; Habib, Salman; Williams, Brian
2009-01-01
Ongoing and future large scale structure surveys targeted at the investigation of dark energy will enter the nonlinear regime of structure formation. In order to fully exploit the newly available information from this regime and to extract cosmological constraints. very accurate theoretical predictions are needed. Such predictions can currently only be obtained from costly precision N-body simulations. We have recently shown that it is possible to obtain predictions for the nonlinear matter power spectrum at the level of one-percent accuracy and that we can build a precise prediction scheme for the nonlinear power spectrum from a small set of cosmological models. In this paper we introduce the 'Coyote Universe' simulation suite which comprises more than 800 N-body simulations at different force and mass resolutions, spanning 38 wCDM cosmologies. This large simulation suite enables us to construct a prediction scheme for the nonlinear matter power spectrum accurate at the 1% level out to k {approx_equal} 1 hMpc{sup -1}.
Park, I H; McCall, W D; Chung, J W
2012-09-01
The relationship between temporomandibular joints (TMJ) osteoarthritis and masticatory muscle disorders is poorly understood. The data are sparse, the results are conflicting, and electromyographic (EMG) power spectrum analysis has not been used. The aims of this study were to compare the differences in EMG power spectrum during, and pressure pain thresholds (PPTs) before and after, sustained clenching in patients with unilateral TMJ osteoarthritis and healthy control subjects. Nineteen patients with unilateral TMJ osteoarthritis without masticatory muscle pain and 20 control subjects were evaluated. We measured EMG amplitudes at maximum voluntary contraction, median frequency from the EMG power spectrum during sustained clenching at 70% and PPTs before and after the clenching in both temporalis and masseter muscles. There were no significant differences in PPT decrease between muscles or between groups during sustained clenching. There were no significant differences in maximum voluntary contraction EMG activity ratios of affected to unaffected sides between groups, or of masseter to temporalis muscles between affected and unaffected side of patients with TMJ osteoarthritis. Median frequencies decreased from the beginning to the end of the sustained clench, and the interaction between group and clench was significant: the median frequency decrease was larger in the osteoarthritis group. Our results suggested that masticatory muscles of patients with unilateral TMJ osteoarthritis are more easily fatigued during sustained clenching than normal subjects.
Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum
NASA Astrophysics Data System (ADS)
Mead, A. J.
2017-01-01
I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo-finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power-spectrum predictions for dark energy models for k ≤ 5 h Mpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the Appendix, I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.
Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements
NASA Astrophysics Data System (ADS)
Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan
2016-05-01
We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.
Hemispherical power asymmetry: parameter estimation from cosmic microwave background WMAP5 data
Lew, Bartosz
2008-09-15
We re-examine the evidence for hemispherical power asymmetry, detected in the cosmic microwave background (CMB) WMAP (Wilkinson Microwave Anisotropy Probe) data using a new method. We use a data filtering, preprocessing, and a statistical approach different from those used previously, and pursue an independent method of parameter estimation. First, we analyze the hemispherical variance ratios and compare these with simulated distributions. Secondly, working within a previously proposed CMB bipolar modulation model, we constrain model parameters: the amplitude and the orientation of the modulation field, as a function of various multipole bins. Finally, we select three ranges of multipoles leading to the most anomalous signals, and we process a hundred corresponding Gaussian random field (GRF) simulations, treated as observational data, to further test the statistical significance and robustness of the hemispherical power asymmetry. For our analysis we use the Internally Linearly Coadded (ILC) full sky map, and the KQ75 cut sky V channel foreground reduced map of the WMAP five-year data (V5). We constrain the modulation parameters using a generic maximum a posteriori method. In particular, we find differences in hemispherical power distribution, which when described in terms of a model with a bipolar modulation field, exclude the field amplitude value of the isotropic model, A = 0, at the confidence level of {approx}99.5% ({approx}99.4%) in the multipole range l element of [7,19] (l element of [7,79]) for the V5 data, and at the confidence level of {approx}99.9% in the multipole range l element of [7,39] for the ILC5 data, with best-fit (modal probability distribution function) values in these particular multipole ranges of A = 0.21 (A = 0.21) and A = 0.15 respectively. However, we also point out that similar or larger significances (in terms of rejecting the isotropic model) and large best-fit modulation amplitudes are obtained in GRF simulations as well, which
Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink
NASA Technical Reports Server (NTRS)
Ho, C.; Wheelon, A.
2004-01-01
Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0
NASA Astrophysics Data System (ADS)
Kikuchi, Tsuneo; Nakazawa, Toshihiro; Furukawa, Tetsuo; Higuchi, Toshiyuki; Maruyama, Yukio; Sato, Sojun
1995-05-01
This paper describes the quantitative measurement of the amount of fibrosis in the rat liver using the fractal dimension of the shape of power spectrum. The shape of the power spectrum of the scattered echo from biotissues is strongly affected by its internal structure. The fractal dimension, which is one of the important parameters of the fractal theory, is useful to express the complexity of shape of figures such as the power spectrum. From in vitro experiments using rat liver, it was found that this method can be used to quantitatively measure the amount of fibrosis in the liver, and has the possibility for use in the diagnosis of human liver cirrhosis.
NASA Astrophysics Data System (ADS)
Pühlhofer, Gerd; Benbow, Wystan; Costamante, Luigi; Sol, Helene; Boisson, Catherine; Emmanoulopoulos, Dimitrios; Wagner, Stefan; Horns, Dieter; Giebels, Berrie
VHE observations of the distant (z=0.186) blazar 1ES 1101-232 with H.E.S.S. are used to constrain the extragalactic background light (EBL) in the optical to near infrared band. As the EBL traces the galaxy formation history of the universe, galaxy evolution models can therefore be tested with the data. In order to measure the EBL absorption effect on a blazar spectrum, we assume that usual constraints on the hardness of the intrinsic blazar spectrum are not violated. We present an update of the VHE spectrum obtained with H.E.S.S. and the multifrequency data that were taken simultaneously with the H.E.S.S. measurements. The data verify that the broadband characteristics of 1ES 1101-232 are similar to those of other, more nearby blazars, and strengthen the assumptions that were used to derive the EBL upper limit.
So You Think the Crab is Described by a Power-Law Spectrum
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2008-01-01
X-ray observations of the Crab Nebula and its pulsar have played a prominent role in the history of X-ray astronomy. Discoveries range from the detection of the X-ray Nebula and pulsar and the measurement of the Nebula-averaged X-ray polarization, to the observation of complex X-ray morphology, including jets emanating from the pulsar and the ring defining the shocked pulsar wind. The synchrotron origin of much of the radiation has been deduced by detailed studies across the electromagnetic spectrum, yet has fooled many X-ray astronomers into believing that the integrated spectrum from this system ought to be a power law. In many cases, this assumption has led observers to adjust the experiment response function(s) to guarantee such a result. We shall discuss why one should not observe a power-law spectrum, and present simulations using the latest available response matrices showing what should have been observed for a number of representative cases including the ROSAT IPC, XMM-Newton, and RXTE. We then discuss the implications, if any, for current calibrations.
Perturbation theory, effective field theory, and oscillations in the power spectrum
NASA Astrophysics Data System (ADS)
Vlah, Zvonimir; Seljak, Uroš; Yat Chu, Man; Feng, Yu
2016-03-01
We explore the relationship between the nonlinear matter power spectrum and the various Lagrangian and Standard Perturbation Theories (LPT and SPT). We first look at it in the context of one dimensional (1-d) dynamics, where 1LPT is exact at the perturbative level and one can exactly resum the SPT series into the 1LPT power spectrum. Shell crossings lead to non-perturbative effects, and the PT ignorance can be quantified in terms of their ratio, which is also the transfer function squared in the absence of stochasticity. At the order of PT we work, this parametrization is equivalent to the results of effective field theory (EFT), and can thus be expanded in terms of the same parameters. We find that its radius of convergence is larger than the SPT loop expansion. The same EFT parametrization applies to all SPT loop terms and if stochasticity can be ignored, to all N-point correlators. In 3-d, the LPT structure is considerably more complicated, and we find that LPT models with parametrization motivated by the EFT exhibit running with k and that SPT is generally a better choice. Since these transfer function expansions contain free parameters that change with cosmological model their usefulness for broadband power is unclear. For this reason we test the predictions of these models on baryonic acoustic oscillations (BAO) and other primordial oscillations, including string monodromy models, for which we ran a series of simulations with and without oscillations. Most models are successful in predicting oscillations beyond their corresponding PT versions, confirming the basic validity of the model. We show that if primordial oscillations are localized to a scale q, the wiggles in power spectrum are approximately suppressed as exp[-k2Σ2(q)/2], where Σ(q) is rms displacement of particles separated by q, which saturates on large scales, and decreases as q is reduced. No oscillatory features survive past k ~ 0.5h/Mpc at z = 0.
Chien, C; Elgorriaga, I; McConaghy, C
2001-07-03
Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mW for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.
Phase scintillations due to equatorial F region irregularities with two-component power law spectrum
NASA Astrophysics Data System (ADS)
Bhattacharyya, A.; Rastogi, R. G.
1986-10-01
Power spectra of weak phase scintillations on a 140-MHz signal, transmitted from the geostationary satellite ATS 6 and observed during premidnight and postmidnight periods at an equatorial station Ootacamund (magnetic dip 6 N), show that the nighttime equatorial F region irregularities in the wavelength range of about hundred meters to a few kilometers exhibit a two-component power law spectrum. The long- and short-wavelength spectral indices and the break scale at which the transition from a shallow to a steep slope occurs are determined self-consistently using both the phase and amplitude scintillation data. As the power spectra of phase scintillations do not exhibit the effect of Fresnel filtering, they provide fairly accurate estimates of the spectral indices and the break scale. These estimated parameters are utilized in a model calculation of the dependence of the S4 index on signal frequency based on weak scattering theory.
The power spectrum of the solar wind speed for periods greater than 10 days
NASA Technical Reports Server (NTRS)
Fenimore, E. E.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.
1978-01-01
The use of the more than 11 years of solar wind speed data obtained by Vela 2-6 and Imp 6-8 to study the power spectrum of speed variations in the range near the solar rotational frequency is discussed. The broad bands of power near periods of 27 days (corresponding to the rotational period of the sun), 13.5 days, and higher harmonics are characterized, and it is suggested that the described individual peaks in both the solar wind and the geomagnetic spectra are probably not due to differential rotation. The alternate explanation is that the multipeak nature of the power spectra are explained by a wave packet concept in which recurring highspeed streams are described as a series of pulses (separated by a constant period) that last for a varying number of solar rotations.
Characteristics of the Velocity Power Spectrum as a Function of Taylor Reynolds Number
NASA Astrophysics Data System (ADS)
Puga, Alejandro J.
An understanding of the wide range of scales present in a turbulent flow as well as the turbulence kinetic energy associated with those scales can provide significant insight into the modeling of such flows. Since turbulence is a stochastic process, statistical quantities such as mean, root mean square, correlations and spectra are used to identify and understand the evolution of turbulent flows. Time-resolved velocity measurements presented herein are obtained using hot-wire anemometry in nearly homogeneous, isotropic and moderately high Taylor Reynolds number, Rlambda , flow downstream of an active grid. Velocity power spectra presented herein are show that the slope, n, of the inertial subrange, where the inertial subrange is defined as the wavenumber range where the power spectrum scales as kappa--n, varies with R lambda as n = 1.69 -- 5.86 Rlambda--0.645. This variation in the slope of the inertial subrange is consistent with measurements presented by Mydlarski and Warhaft (1996) in an active grid flow and Saddoughi and Veeravalli (1994) in a turbulent boundary layer. The effectiveness of velocity power spectrum normalizations proposed by Kolmogorov (1963), Von Karman and Howarth (1938), and George (1992) are compared qualitatively and quantitatively. The effectiveness of these normalizations suggests how the turbulent scales make specific portions of the velocity spectrum self-similar. It is found that the relation between the large and small scales is also shown by the normalized dissipation rate, which is defined as the dissipation rate normalized by the ratio of the turbulence kinetic energy to the time scale of the large scale structure is shown to be a constant with respect to R lambda for Rlambda ≥ 450. A modified model of the one-dimensional velocity power spectrum is proposed that is based on a model proposed by Pope (2000), which has been demonstrated to model power spectra at high value of Rlambda where the slope of the inertial subrange is very
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
Okumura, Teppei; Hand, Nick; Seljak, Uros; Vlah, Zvonimir; Desjacques, Vincent
2015-11-19
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k^{2}R^{2} term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k^{2} type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
NASA Astrophysics Data System (ADS)
Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent
2015-11-01
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
Okumura, Teppei; Hand, Nick; Seljak, Uros; ...
2015-11-19
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the
THE TURBULENCE VELOCITY POWER SPECTRUM OF NEUTRAL HYDROGEN IN THE SMALL MAGELLANIC CLOUD
Chepurnov, A.; Lazarian, A.; Stanimirovic, S.; Burkhart, B.
2015-09-01
We present the results of the Velocity Coordinate Spectrum (VCS) technique to calculate the velocity power spectrum of turbulence in the Small Magellanic Cloud (SMC) in 21 cm emission. We present an updated version of the VCS technique that takes into account regular motions, which is an important factor in our SMC VCS analysis. We have obtained a velocity spectral index of −3.85, a cold phase sonic Mach number of 5.6, and an injection scale of 2.3 kpc. The spectral index is steeper than the Kolmogorov index, which is expected for shock-dominated turbulence. The injection scale of 2.3 kpc suggests that HI supershells or tidal interactions with the Large Magellanic Cloud are the dominant drivers of turbulence in this dwarf galaxy. This implies that turbulence may be driven by multiple mechanisms in galaxies and that galaxy–galaxy interactions may play an important role in addition to supernova feedback.
Distributed joint power and access control algorithm for secondary spectrum sharing
NASA Astrophysics Data System (ADS)
Li, Hongyan; Chen, Enqing; Fu, Hongliang
2010-08-01
Based on interference temperature model, the problem of efficient secondary spectrum sharing is formulated as a power optimization problem with some constraints at physical layer. These constraints and optimization objective limit a feasible power vector set which leads to the need of access control besides power control. In this paper, we consider the decentralized cognitive radio network scenario where short-term data service is required, and the problem of distributed joint power and access control is studied to maximize the total secondary system throughput, subject to Quality of Service (QoS) constraints from individual secondary users and interference temperature limit (ITL) from primary system. Firstly, a pricing-based game model was used to solve distributed power allocation optimization problem in both high and low signal to interference noise ratio (SINR) scenarios. Secondly, when not all the secondary links can be supported with their QoS requirement and ITL, a distributed joint power and access control algorithm was introduced to find the allowable links which results in maximum network throughput with all the constraints satisfied, and the convergence performance is tested by simulations.
Tore Supra LH transmitter upgrade, a new RF driver for the power spectrum
Berger-By, G.; Achard, J.; Armitano, A.; Bouquey, F.; Corbel, E.; Delpech, L.; Ekedahl, A.; Lombard, G.; Magne, R.; Mollard, P.; Pagano, M.; Prou, M.; Samaille, F.; Volpe, D.; Volpe, R.
2011-12-23
New real time tools have been developed for testing new 700kW/3.7GHz/CW klystrons and for the operations on very long plasma shots. After the commissioning of the 18 series tubes on the high power test bed facility, the installation of the first 8 klystrons in the Tore Supra transmitter and the adjustment tests on load, this upgrade work has been materialized during the last 2010 campaign by a successful operation on the Full Active Multijunction (FAM) C3 antenna, with new performances: 3.5MW/40s on plasma. The RF output power control in amplitude and phase has been improved for a better control of the wave spectrum launched into the plasma. The new klystrons have no modulating anode and the high cathode voltage must be adjusted with the RF input power in order to optimize the RF output power with a minimization of the thermal power losses in the collector. A new phase correction, depending on the 3 RF output power ranges used, has been introduced. The improvements made in 2009 and 2010 on the generic phase loop and the procedures used during the real time tests of the RF transfer functions in amplitude and phase are detailed below. All RF measurements systems, RF safety systems and the RF calibration procedures have been revised in order to have the best consistency, reproducibility and with a measurement error against the calorimetry measurement lower than 10%.
Küssner, Mats B; de Groot, Annette M B; Hofman, Winni F; Hillen, Marij A
2016-01-01
As tantalizing as the idea that background music beneficially affects foreign vocabulary learning may seem, there is-partly due to a lack of theory-driven research-no consistent evidence to support this notion. We investigated inter-individual differences in the effects of background music on foreign vocabulary learning. Based on Eysenck's theory of personality we predicted that individuals with a high level of cortical arousal should perform worse when learning with background music compared to silence, whereas individuals with a low level of cortical arousal should be unaffected by background music or benefit from it. Participants were tested in a paired-associate learning paradigm consisting of three immediate word recall tasks, as well as a delayed recall task one week later. Baseline cortical arousal assessed with spontaneous EEG measurement in silence prior to the learning rounds was used for the analyses. Results revealed no interaction between cortical arousal and the learning condition (background music vs. silence). Instead, we found an unexpected main effect of cortical arousal in the beta band on recall, indicating that individuals with high beta power learned more vocabulary than those with low beta power. To substantiate this finding we conducted an exact replication of the experiment. Whereas the main effect of cortical arousal was only present in a subsample of participants, a beneficial main effect of background music appeared. A combined analysis of both experiments suggests that beta power predicts the performance in the word recall task, but that there is no effect of background music on foreign vocabulary learning. In light of these findings, we discuss whether searching for effects of background music on foreign vocabulary learning, independent of factors such as inter-individual differences and task complexity, might be a red herring. Importantly, our findings emphasize the need for sufficiently powered research designs and exact replications
de Groot, Annette M. B.; Hofman, Winni F.; Hillen, Marij A.
2016-01-01
As tantalizing as the idea that background music beneficially affects foreign vocabulary learning may seem, there is—partly due to a lack of theory-driven research—no consistent evidence to support this notion. We investigated inter-individual differences in the effects of background music on foreign vocabulary learning. Based on Eysenck’s theory of personality we predicted that individuals with a high level of cortical arousal should perform worse when learning with background music compared to silence, whereas individuals with a low level of cortical arousal should be unaffected by background music or benefit from it. Participants were tested in a paired-associate learning paradigm consisting of three immediate word recall tasks, as well as a delayed recall task one week later. Baseline cortical arousal assessed with spontaneous EEG measurement in silence prior to the learning rounds was used for the analyses. Results revealed no interaction between cortical arousal and the learning condition (background music vs. silence). Instead, we found an unexpected main effect of cortical arousal in the beta band on recall, indicating that individuals with high beta power learned more vocabulary than those with low beta power. To substantiate this finding we conducted an exact replication of the experiment. Whereas the main effect of cortical arousal was only present in a subsample of participants, a beneficial main effect of background music appeared. A combined analysis of both experiments suggests that beta power predicts the performance in the word recall task, but that there is no effect of background music on foreign vocabulary learning. In light of these findings, we discuss whether searching for effects of background music on foreign vocabulary learning, independent of factors such as inter-individual differences and task complexity, might be a red herring. Importantly, our findings emphasize the need for sufficiently powered research designs and exact
Tan, Liying; Zhai, Chao; Yu, Siyuan; Ma, Jing; Lu, Gaoyuan
2015-05-04
In the past decades, both the increasing experimental evidence and some results of theoretical investigation on non-Kolmogorov turbulence have been reported. This has prompted the study of optical propagation in non-Kolmogorov atmospheric turbulence. In this paper, based on the thin phase screen model and a non-Kolmogorov power spectrum which owns a generalized power law instead of standard Kolmogorov power law value 11/3 and a generalized amplitude factor instead of constant value 0.033, the temporal power spectrum of irradiance fluctuations for a Gaussian-beam wave is derived in the weak fluctuation regime for a horizontal path. The analytic expressions are obtained and then used to analyze the influence of spectral power law variations on the temporal power spectrum of irradiance fluctuations.
Scintillation noise power spectrum and its impact on high-redshift 21-cm observations
NASA Astrophysics Data System (ADS)
Vedantham, H. K.; Koopmans, L. V. E.
2016-05-01
Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low-frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EoR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well-known wedge-like structure in the cylindrical (two-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.
NASA Astrophysics Data System (ADS)
Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Rouillé d'Orfeuil, B.; Spinelli, M.; Tristram, M.
2017-01-01
The angular power spectra of the cosmic microwave background (CMB) temperature anisotropies reconstructed from Planck data seem to present "too much" gravitational lensing distortion. This is quantified by the control parameter AL that should be compatible with unity for a standard cosmology. With the class Boltzmann solver and the profile-likelihood method, for this parameter we measure a 2.6σ shift from 1 using the Planck public likelihoods. We show that, owing to strong correlations with the reionization optical depth τ and the primordial perturbation amplitude As, a 2σ tension on τ also appears between the results obtained with the low (ℓ ≤ 30) and high (30 < ℓ ≲ 2500) multipoles likelihoods. With Hillipop, another high-ℓ likelihood built from Planck data, this difference is lowered to 1.3σ. In this case, the AL value is still in disagreement with unity by 2.2σ, suggesting a non-trivial effect of the correlations between cosmological and nuisance parameters. To better constrain the nuisance foregrounds parameters, we include the very-high-ℓ measurements of the Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) experiments and obtain AL = 1.03 ± 0.08. The Hillipop+ACT+SPT likelihood estimate of the optical depth is τ = 0.052 ± 0.035, which is now fully compatible with the low-ℓ likelihood determination. After showing the robustness of our results with various combinations, we investigate the reasons for this improvement that results from a better determination of the whole set of foregrounds parameters. We finally provide estimates of the Λ cold dark matter parameters with our combined CMB data likelihood.
DOUBLE POWER LAWS IN THE EVENT-INTEGRATED SOLAR ENERGETIC PARTICLE SPECTRUM
Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K.
2016-04-10
A double power law or a power law with exponential rollover at a few to tens of MeV nucleon{sup −1} of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon{sup −1} is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.
NASA Astrophysics Data System (ADS)
Li, Zhigang; Jing, Y. P.; Zhang, Pengjie; Cheng, Dalong
2016-12-01
We present a measurement of the two-dimensional (2D) redshift-space power spectrum for the Baryon Oscillation Spectroscopic Survey Data Release 11 CMASS galaxies in the northern Galactic cap based on the method developed by Jing & Börner. In this method, we first measure the 2D redshift-space correlation function and obtain the 2D power spectrum based on Fourier transform of the correlation function. The method is tested with an N-body mock galaxy catalog, which demonstrates that the method can yield an accurate and unbiased measurement of the redshift-space power spectrum given that the input 2D correlation function is correct. Compared with previous measurements in literature that are usually based on direct Fourier transform in redshift space, our method has the advantages that the window function and shot noise are fully corrected. Thus, our measurement can facilitate a direct comparison with the theoretical predictions. Our 2D power spectrum, by construction, can reproduce the 2D correlation function, and it can reproduce, for example, the 2D power spectrum of Beutler et al. accurately if ours is convolved with the window function they provided. We then develop a method to measure the structure growth rate, by separating the anisotropic redshift-space power spectrum from the isotropic real-space power spectrum. We have carefully corrected for the nonlinearities in the mapping from real space to redshift space, according to the theoretical model of Zhang et al. Finally, we obtain the measurement of structure growth rate f({z}{eff})σ 8({z}{eff}) = 0.438 ± 0.037 at the effective redshift {z}{eff} = 0.57. The result is useful for constraining cosmological parameters. The measurements of the 2D power spectrum will be released soon.
Computation of the power spectrum in chaotic ¼λφ{sup 4} inflation
Rojas, Clara; Villalba, Víctor M. E-mail: Victor.Villalba@monash.edu
2012-01-01
The phase-integral approximation devised by Fröman and Fröman, is used for computing cosmological perturbations in the quartic chaotic inflationary model. The phase-integral formulas for the scalar power spectrum are explicitly obtained up to fifth order of the phase-integral approximation. As in previous reports (Rojas 2007b, 2007c and 2009), we point out that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform approximation methods.
NASA Astrophysics Data System (ADS)
Fornasa, Mattia; Cuoco, Alessandro; Zavala, Jesús; Gaskins, Jennifer M.; Sánchez-Conde, Miguel A.; Gomez-Vargas, German; Komatsu, Eiichiro; Linden, Tim; Prada, Francisco; Zandanel, Fabio; Morselli, Aldo
2016-12-01
The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. We analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 months of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. We find that the derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Moreover, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above ˜2 GeV . Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extra-Galactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background.
1989-04-01
The 10,000-kilowatt Salton Sea Unit 1 power plant was designed to demonstrate that electrical power generation, using the highly saline brines from the Salton Sea geothermal reservoir, was technically and economically feasible. Unit 1, owned by Earth Energy, a Unocal subsidiary, began operating in 1982, initiating an intensive testing program which established the design criteria necessary to construct the larger 47,500-kilowatt Unit 3 power plant, unit 3 contains many of the proprietary or patented technological innovations developed during this program. Design, construction and start-up of the Unit 3 power generating facility began in December, 1986, and was completed in 26 months. By the end of 1988, the brine handling system was in full operation, and the turbine had been tested at design speed. Desert Power Company, a Unocal subsidiary, owns the power generating facility. Unocal owns the brine resource production facility. Power is transmitted by the Imperial Irrigation District to Southern California Edison Company.
Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin
2014-01-01
A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network.
NASA Astrophysics Data System (ADS)
Hurier, G.; Douspis, M.; Aghanim, N.; Pointecouteau, E.; Diego, J. M.; Macias-Perez, J. F.
2015-04-01
We present the first detection of the cross-correlation angular power spectrum between the thermal Sunyaev-Zel'dovich (tSZ) effect and the X-ray emission over the full sky. The tSZ effect and X-rays are produced by the same hot gas within groups and clusters of galaxies, which creates a naturally strong correlation between them that can be used to boost the joint signal and derive cosmological parameters. We computed the correlation between the ROSAT All Sky Survey in the 0.5-2 keV energy band and the tSZ effect reconstructed from six Planck all-sky frequency maps between 70 and 545 GHz. We detect a significant correlation over a wide range of angular scales. In the range 50 <ℓ< 2000, the cross-correlation of X-rays to tSZ is detected at an overall significance of 28σ. As part of our systematic study, we performed a multi-frequency modelling of the AGN contamination and the correlation between cosmic infra-red background and X-rays. Taking advantage of the strong dependence of the cross-correlation signal on the amplitude of the power spectrum, we constrained σ8 = 0.804 ± 0.037, where modelling uncertainties dominate statistical and systematic uncertainties. We also derived constraints on the mass indices of scaling relations between the halo mass and X-ray luminosity, L500 - M500, and SZ signal, Y500 - M500, asz + ax = 3.37 ± 0.09, and on the indices of the extra-redshift evolution, βsz + βx = 0.4+0.4_{-0.5}.
Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin
2014-01-01
A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network. PMID:25278869
Nonlinear modulation of the HI power spectrum on ultra-large scales. I
Umeh, Obinna; Maartens, Roy; Santos, Mario E-mail: roy.maartens@gmail.com
2016-03-01
Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they may bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates the nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolution bias. It also introduces a term that mimics white noise. These effects may influence forecasting analysis on ultra-large scales.
Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology
NASA Technical Reports Server (NTRS)
Puget, J. L.
1973-01-01
An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.
First Season MWA EoR Power spectrum Results at Redshift 7
NASA Astrophysics Data System (ADS)
Beardsley, A. P.; Hazelton, B. J.; Sullivan, I. S.; Carroll, P.; Barry, N.; Rahimi, M.; Pindor, B.; Trott, C. M.; Line, J.; Jacobs, Daniel C.; Morales, M. F.; Pober, J. C.; Bernardi, G.; Bowman, Judd D.; Busch, M. P.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, Joshua S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, H. S.; Kratzenberg, E.; Lenc, E.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Thyagarajan, Nithyanandan; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.
2016-12-01
The Murchison Widefield Array (MWA) has collected hundreds of hours of Epoch of Reionization (EoR) data and now faces the challenge of overcoming foreground and systematic contamination to reduce the data to a cosmological measurement. We introduce several novel analysis techniques, such as cable reflection calibration, hyper-resolution gridding kernels, diffuse foreground model subtraction, and quality control methods. Each change to the analysis pipeline is tested against a two-dimensional power spectrum figure of merit to demonstrate improvement. We incorporate the new techniques into a deep integration of 32 hours of MWA data. This data set is used to place a systematic-limited upper limit on the cosmological power spectrum of {{{Δ }}}2≤slant 2.7× {10}4 mK2 at k = 0.27 h Mpc-1 and z = 7.1, consistent with other published limits, and a modest improvement (factor of 1.4) over previous MWA results. From this deep analysis, we have identified a list of improvements to be made to our EoR data analysis strategies. These improvements will be implemented in the future and detailed in upcoming publications.
On the soft limit of the large scale structure power spectrum: UV dependence
Garny, Mathias; Konstandin, Thomas; Sagunski, Laura; Porto, Rafael A. E-mail: thomas.konstandin@desy.de E-mail: laura.sagunski@desy.de
2015-11-01
We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∼ 10% effect, and plausibly smaller.
More on loops in reheating: non-gaussianities and tensor power spectrum
Katırcı, Nihan; Kaya, Ali; Tarman, Merve
2014-06-11
We consider the single field chaotic m{sup 2}ϕ{sup 2} inflationary model with a period of preheating, where the inflaton decays to another scalar field χ in the parametric resonance regime. In a recent work, one of us has shown that the χ modes circulating in the loops during preheating notably modify the <ζζ> correlation function. We first rederive this result using a different gauge condition hence reconfirm that superhorizon ζ modes are affected by the loops in preheating. Further, we examine how χ loops give rise to non-gaussianity and affect the tensor perturbations. For that, all cubic and some higher order interactions involving two χ fields are determined and their contribution to the non-gaussianity parameter f{sub NL} and the tensor power spectrum are calculated at one loop. Our estimates for these corrections show that while a large amount of non-gaussianity can be produced during reheating, the tensor power spectrum receive moderate corrections. We observe that the loop quantum effects increase with more χ fields circulating in the loops indicating that the perturbation theory might be broken down. These findings demonstrate that the loop corrections during reheating are significant and they must be taken into account for precision inflationary cosmology.
Fuentes, N O; Favret, E A
2002-04-01
This work introduces a new imaging technique, Rotated Image with Maximum Average Power Spectrum (RIMAPS), for use in determining orientation and characteristics of surface topography. It consists of computing the maximum value of the averaged power spectrum, given by one step of the two-dimensional Fourier transform, for each angle of rotation of a digitized image. The basic measurement science of this technique is described and different cases are studied. The characterization of simple geometrical figures explains the meaning of peaks and their angular positions given by RIMAPS analysis. A known surface pattern made on a sample of pure copper, mechanically ground, is used to study reproducibility, dependence on image quality and topography scale relative to pixel size and magnification. Samples of pure zinc, mechanically ground and chemically etched, were used to show the main features of RIMAPS analysis when characterizing a more complicated pattern on a real surface. All the studies performed under different conditions for observation and acquisition of images give strong evidence of the stability and robustness of RIMAPS as a technique for the characterization of topography.
NASA Astrophysics Data System (ADS)
Chen, Lin; Abbey, Craig K.; Boone, John M.
2013-03-01
Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p < 0.001 in all cases. The value of β was also found to be associated with patient age and
Borde, Arnaud; Palanque-Delabrouille, Nathalie; Rossi, Graziano; Yèche, Christophe; LeGoff, Jean-Marc; Rich, Jim; Bolton, James S. E-mail: nathalie.palanque-delabrouille@cea.fr E-mail: matteoviel@gmail.com E-mail: christophe.yeche@cea.fr E-mail: james.rich@cea.fr
2014-07-01
Current experiments are providing measurements of the flux power spectrum from the Lyman-α forests observed in quasar spectra with unprecedented accuracy. Their interpretation in terms of cosmological constraints requires specific simulations of at least equivalent precision. In this paper, we present a suite of cosmological N-body simulations with cold dark matter and baryons, specifically aiming at modeling the low-density regions of the inter-galactic medium as probed by the Lyman-α forests at high redshift. The simulations were run using the GADGET-3 code and were designed to match the requirements imposed by the quality of the current SDSS-III/BOSS or forthcoming SDSS-IV/eBOSS data. They are made using either 2 × 768{sup 3} ≅ 1 billion or 2 × 192{sup 3} ≅ 14 million particles, spanning volumes ranging from (25 Mpc h{sup −1}){sup 3} for high-resolution simulations to (100 Mpc h{sup −1}){sup 3} for large-volume ones. Using a splicing technique, the resolution is further enhanced to reach the equivalent of simulations with 2 × 3072{sup 3} ≅ 58 billion particles in a (100 Mpc h{sup −1}){sup 3} box size, i.e. a mean mass per gas particle of 1.2 × 10{sup 5}M{sub ⊙} h{sup −1}. We show that the resulting power spectrum is accurate at the 2% level over the full range from a few Mpc to several tens of Mpc. We explore the effect on the one-dimensional transmitted-flux power spectrum of four cosmological parameters (n{sub s}, σ{sub 8}, Ω{sub m} and H{sub 0}) and two astrophysical parameters (T{sub 0} and γ) that are related to the heating rate of the intergalactic medium. By varying the input parameters around a central model chosen to be in agreement with the latest Planck results, we built a grid of simulations that allows the study of the impact on the flux power spectrum of these six relevant parameters. We improve upon previous studies by not only measuring the effect of each parameter individually, but also probing the impact of the
The X-ray Variability of NGC 4945: Characterizing the Power Spectrum through Light Curve Simulations
Mueller, M
2003-12-17
For light curves sampled on an uneven grid of observation times, the shape of the power density spectrum (PDS) includes severe distortion effects due to the window function, and simulations of light curves are indispensable to recover the true PDS. We present an improved method for comparing light curves generated from a PDS model to the measured data and apply it to a 50-day long RXTE observations of NGC 4945, a Seyfert 2 galaxy with well-determined mass from megamaser observations. The improvements over previously reported investigations include the adjustment of the PDS model normalization for each simulated light curve in order to directly investigate how well the chosen PDS shape describes the source data. We furthermore implement a robust goodness-of-fit measure that does not depend on the form of the variable used to describe the power in the periodogram. We conclude that a knee-type function (smoothly broken power law) describes the data better than a simple power law; the best-fit break frequency is {approx} 10{sup -6} Hz.
Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal
Wen, Haiguang; Liu, Zhongming
2015-01-01
Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the Irregular-Resampling Auto-Spectral Analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography (ECoG) and human magnetoencephalography (MEG) data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions. PMID:26318848
Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal.
Wen, Haiguang; Liu, Zhongming
2016-01-01
Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography and human magnetoencephalography data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions.
Jupiter's Tropospheric Thermal Emission. II. Power Spectrum Analysis and Wave Search
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Dowling, Timothy E.; Baron, Richard L.
1996-11-01
We study power spectra and search for planetary waves in images of Jupiter's cloud opacity. The observation wavelength of 4.9 μm senses thermal emission from the ∼5-bar level; overlying clouds attenuate the emission. Our companion paper (J. Harrington, T. E. Dowling, and R. L. Baron, 1996,Icarus124, 22-31) describes 19 nights of observations (6 with 360° longitude coverage) and new reduction techniques. Atmospheric seeing limits resolution to ∼2500 km. Zonal power spectral density at planetary wavenumbers higher than ∼25 follows a power law in the wavenumber. Eastward jet-power laws average -2.71 ± 0.07 and westward jet-power laws, excluding cloud-obscured regions, average -3.14 ± 0.12. Wavenumbers 1-24 roughly follow power laws near -0.7 for both jet directions, but with many superposed discrete features. The meridional spectrum similarly breaks around wavenumber 25, with power law trends of -0.36 and -3.27. However, a pattern of undulations is superposed over its linear trends. L. D. Travis (1978,J. Atmos. Sci.35, 1584-1595) established an empirical correspondence between power spectra of atmospheric kinetic energy and those of cloud opacities for the Earth and analyzed Venus cloud data under this assumption. We do the same for Jupiter. If the Rossby deformation radius,Ld, were an energy input scale, as baroclinic instability theory predicts, one would expect energy and enstrophy cascades (power laws of -5/3 and -3, respectively) on opposite sides of the wavenumber corresponding toLd. If the top of our high-wavenumber power law isLd, its value is ∼2100 km at 45° latitude. Our spectra show persistent features with phases moving linearly over the 99-day observation period. Some of these can be identified with periodic features such as vortex chains and the equatorial plumes. The origin of others is less certain. We present a table of our best wave candidates.
Perturbation theory, effective field theory, and oscillations in the power spectrum
Vlah, Zvonimir; Seljak, Uroš; Chu, Man Yat; Feng, Yu E-mail: useljak@berkeley.edu E-mail: yfeng1@berkeley.edu
2016-03-01
We explore the relationship between the nonlinear matter power spectrum and the various Lagrangian and Standard Perturbation Theories (LPT and SPT). We first look at it in the context of one dimensional (1-d) dynamics, where 1LPT is exact at the perturbative level and one can exactly resum the SPT series into the 1LPT power spectrum. Shell crossings lead to non-perturbative effects, and the PT ignorance can be quantified in terms of their ratio, which is also the transfer function squared in the absence of stochasticity. At the order of PT we work, this parametrization is equivalent to the results of effective field theory (EFT), and can thus be expanded in terms of the same parameters. We find that its radius of convergence is larger than the SPT loop expansion. The same EFT parametrization applies to all SPT loop terms and if stochasticity can be ignored, to all N-point correlators. In 3-d, the LPT structure is considerably more complicated, and we find that LPT models with parametrization motivated by the EFT exhibit running with k and that SPT is generally a better choice. Since these transfer function expansions contain free parameters that change with cosmological model their usefulness for broadband power is unclear. For this reason we test the predictions of these models on baryonic acoustic oscillations (BAO) and other primordial oscillations, including string monodromy models, for which we ran a series of simulations with and without oscillations. Most models are successful in predicting oscillations beyond their corresponding PT versions, confirming the basic validity of the model. We show that if primordial oscillations are localized to a scale q, the wiggles in power spectrum are approximately suppressed as exp[−k{sup 2}Σ{sup 2}(q)/2], where Σ(q) is rms displacement of particles separated by q, which saturates on large scales, and decreases as q is reduced. No oscillatory features survive past k ∼ 0.5h/Mpc at z = 0.
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2010-03-29
entered service in 1959, retired in 1988-1990. A non-nuclear-powered, non-combat auxiliary research submarine, the Dolphin (AGSS-555), was...and extended combat operations; (I) power for advanced sensors and weapons, including electromagnetic guns and lasers ; (J) survivability due to
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2010-06-10
submarine, the Dolphin (AGSS-555), was procured in FY1961, entered service in 1968, and retired in January 2007. Navy Nuclear-Powered Surface Ships...and lasers ; (J) survivability due to increased performance and reduced signatures; (K) high power density propulsion; (L) operational tempo; (M
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2010-09-29
FY1956, entered service in 1959, retired in 1988-1990. A non-nuclear-powered, non-combat auxiliary research submarine, the Dolphin (AGSS-555), was...forward presence, and extended combat operations; (I) power for advanced sensors and weapons, including electromagnetic guns and lasers ; (J
THE POWER SPECTRUM OF THE MILKY WAY: VELOCITY FLUCTUATIONS IN THE GALACTIC DISK
Bovy, Jo; Bird, Jonathan C.; Pérez, Ana E. García; Majewski, Steven R.; Nidever, David L.; Zasowski, Gail
2015-02-20
We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc){sup 2} bins. The solar motion V{sub ☉} {sub –} {sub c} with respect to the circular velocity V{sub c} is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V{sub ☉} {sub –} {sub c} = 24 ± 1 (ran.) ± 2 (syst. [V{sub c} ]) ± 5 (syst.[large-scale]) km s{sup –1}, where the systematic uncertainty is due to (1) a conservative 20 km s{sup –1} uncertainty in V{sub c} and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc{sup –1} ≤ k ≤ 40 kpc{sup –1}. Most of the power is contained in a broad peak between 0.2 kpc{sup –1} < k < 0.9 kpc{sup –1}. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s{sup –1} on ≳ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.
ERIC Educational Resources Information Center
Campbell, Abbi; Tincani, Matt
2011-01-01
The Power Card strategy is a strength-based intervention to promote social skills of children with autism spectrum disorders (ASD) by capitalizing on their special interests. Although preliminary studies have shown that the Power Card strategy is a promising approach to teach social skills, additional research is needed. The purpose of this study…
Berge, Joel; Refregier, Alexandre
2010-04-01
We compare the efficiency of weak-lensing-selected galaxy cluster counts and of the weak-lensing bispectrum at capturing non-Gaussian features in the dark matter distribution. We use the halo model to compute the weak-lensing power spectrum, the bispectrum, and the expected number of detected clusters, and derive constraints on cosmological parameters for a large, low systematic weak-lensing survey, by focusing on the OMEGA{sub m}-sigma{sub 8} plane and on the dark energy equation of state. We separate the power spectrum into the resolved and the unresolved parts of the data, the resolved part being defined as detected clusters, and the unresolved part as the rest of the field. We consider four kinds of clusters counts, taking into account different amount of information: signal-to-noise ratio peak counts, counts as a function of clusters' mass, counts as a function of clusters' redshift, and counts as a function of clusters' mass and redshift. We show that when combined with the power spectrum, those four kinds of counts provide similar constraints, thus allowing one to perform the most direct counts, signal-to-noise peak counts, and get percent level constraints on cosmological parameters. We show that the weak-lensing bispectrum gives constraints comparable to those given by the power spectrum and captures non-Gaussian features as well as cluster counts, its combination with the power spectrum giving errors on cosmological parameters that are similar to, if not marginally smaller than, those obtained when combining the power spectrum with cluster counts. We finally note that in order to reach its potential, the weak-lensing bispectrum must be computed using all triangle configurations, as equilateral triangles alone do not provide useful information. The appendices summarize the halo model, and the way the power spectrum and bispectrum are computed in this framework.
The one-dimensional Lyα forest power spectrum from BOSS
Palanque-Delabrouille, Nathalie; Yèche, Christophe; Borde, Arnaud; ...
2013-11-19
For this research, we have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman-α forest. The first method is based on a Fourier transform and the second on a maximum-likelihood estimator. The two methods are independent and have different systematic uncertainties. Determination of the noise level in the data spectra was subject to a new treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13 821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60 000 spectra on the basismore » of their high quality, high signal-to-noise ratio (S/N), and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from = 2.2 to = 4.4, and scales from 0.001 km s-1 to 0.02 km s-1. We determined the methodological andinstrumental systematic uncertainties of our measurements. We provide a preliminary cosmological interpretation of our measurements using available hydrodynamical simulations. The improvement in precision over previously published results from SDSS is a factor 2–3 for constraints on relevant cosmological parameters. For a ΛCDM model and using a constraint on H0 that encompasses measurements based on the local distance ladder and on CMB anisotropies, we infer σ8 = 0.83 ± 0.03 and ns = 0.97 ± 0.02 based on Hi absorption in the range 2.1 < z < 3.7.« less
The one-dimensional Lyα forest power spectrum from BOSS
Palanque-Delabrouille, Nathalie; Bautista, Julian; Bolton, Adam; Bolton, James S.; Busca, Nicolás G.; A. C. Croft, Rupert; Dawson, Kyle S.; Delubac, Timothée; Ho, Shirley; Kirkby, David; Lee, Khee-Gan; Margala, Daniel; Miralda-Escudé, Jordi; Myers, Adam D.; Noterdaeme, Pasquier; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M.; Rich, James; Ross, Nicholas P.; Schlegel, David J.; Schneider, Donald P.; Slosar, Anže; Weinberg, David H.
2013-11-19
For this research, we have developed two independent methods for measuring the one-dimensional power spectrum of the transmitted flux in the Lyman-α forest. The first method is based on a Fourier transform and the second on a maximum-likelihood estimator. The two methods are independent and have different systematic uncertainties. Determination of the noise level in the data spectra was subject to a new treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13 821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60 000 spectra on the basis of their high quality, high signal-to-noise ratio (S/N), and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from
Constraining the intracluster pressure profile from the thermal SZ power spectrum
NASA Astrophysics Data System (ADS)
Ramos-Ceja, M. E.; Basu, K.; Pacaud, F.; Bertoldi, F.
2015-11-01
The angular power spectrum of the thermal Sunyaev-Zel'dovich (tSZ) effect is highly sensitive to cosmological parameters such as σ8 and Ωm, but its use as a precision cosmological probe is hindered by the astrophysical uncertainties in modeling the gas pressure profile in galaxy groups and clusters. In this paper we assume that the relevant cosmological parameters are accurately known and explore the ability of current and future tSZ power spectrum measurements to constrain the intracluster gas pressure or the evolution of the gas mass fraction, fgas. We use the CMB bandpower measurements from the South Pole Telescope and a Bayesian Markov chain Monte Carlo (MCMC) method to quantify deviations from the standard, universal gas pressure model. We explore analytical model extensions that bring the predictions for the tSZ power into agreement with experimental data. We find that a steeper pressure profile in the cluster outskirts or an evolving fgas have mild-to-severe conflicts with experimental data or simulations. Varying more than one parameter in the pressure model leads to strong degeneracies that cannot be broken with current observational constraints. We use simulated bandpowers from future tSZ survey experiments, in particular a possible 2000 deg2 CCAT survey, to show that future observations can provide almost an order of magnitude better precision on the same model parameters. This will allow us to break the current parameter degeneracies and place simultaneous constraints on the gas pressure profile and its redshift evolution, for example.
The power spectrum of galaxies in the 2dF 100k redshift survey
NASA Astrophysics Data System (ADS)
Tegmark, Max; Hamilton, Andrew J. S.; Xu, Yongzhong
2002-10-01
We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h Mpc-1 < k < 0.8 h Mpc-1. We find no significant detection of baryonic wiggles, although our results are consistent with a standard flat ΩΛ= 0.7`concordance' model and previous tantalizing hints of baryonic oscillations. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β= 0.49 +/- 0.16 for r= 1 (β= 0.47 +/- 0.16 without finger-of-god compression). Since this is an apparent-magnitude limited sample, luminosity-dependent bias may cause a slight red-tilt in the power spectrum. A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean, free of systematic errors at the level to which our tests are sensitive. Our measurements and window functions are available at
Whicker, Jeffrey J; Martin, Luis M; Field, Jason P; Villegas, Juan C; Brehsears, David D; Law, Darin J; Urgeghe, Anna M
2009-01-01
Dust emission rates vary temporally and with particle size. Many studies of dust emission focus on a particular temporal scale and the portion of the particle-size spectrum associated with a single instrument; fewer studies have assessed dust emission across the particle-size spectrum and associated temporal scales using multiple instruments. Particularly lacking are measurements following disturbances such as fire that are high-resolution and focused on finer particles - those with direct implications for human health and potential for long-distance biogeochemical transport - during less windy but more commonly occurring background conditions. We measured dust emissions in unburned and burned semiarid grassland using four different instruments spanning different combinations of temporal resolution and particle-size spectrum: Big Springs Number Eight (BSNE) and Sensit instruments for larger saltating particles, DustTrak instruments for smaller suspended particles, and Total Suspended Particulate (TSP) samplers for measuring the entire range of particle sizes. Unburned and burned sites differed in vegetation cover and aerodynamic roughness, yet surprisingly differences in dust emission rates were only detectable for saltation using BSNE and for smaller aerosols using DustTrak. Our results, surprising in the lack of consistently detected differences, indicate that high-resolution DustTrak measurements offered the greatest promise for detecting differences in background emission rates and that BSNE samplers, which integrate across height, were effective for longer intervals. More generally, our results suggest that interplay between particle size, temporal resolution, and integration across time and height can be complex and may need to be considered more explicitly for effective sampling for background dust emissions.
Regularized cosmological power spectrum and correlation function in modified gravity models
NASA Astrophysics Data System (ADS)
Taruya, Atsushi; Nishimichi, Takahiro; Bernardeau, Francis; Hiramatsu, Takashi; Koyama, Kazuya
2014-12-01
Based on the multipoint propagator expansion, we present resummed perturbative calculations for cosmological power spectra and correlation functions in the context of modified gravity. In a wide class of modified gravity models that have a screening mechanism to recover general relativity (GR) on small scales, we apply the eikonal approximation to derive the governing equation for resummed propagator that partly includes the nonperturbative effect in the high-k limit. The resultant propagator in the high-k limit contains the new corrections arising from the screening mechanism as well as the standard exponential damping. We explicitly derive the expression for new high-k contributions in specific modified gravity models, and find that in the case of f (R ) gravity for a currently constrained model parameter, the corrections are basically of the subleading order and can be neglected. Thus, in f (R ) gravity, similarly to the GR case, we can analytically construct the regularized propagator that reproduces both the resummed high-k behavior and the low-k results computed with standard perturbation theory, consistently taking account of the nonlinear modification of gravity valid at large scales. With the regularized multipoint propagators, we give predictions for power spectrum and correlation function at one-loop order, and compare those with N -body simulations in f (R ) gravity model. As an important application, we also discuss the redshift-space distortions and compute the anisotropic power spectra and correlation functions.
Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua
2014-03-10
A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.
Intercomparison of methods for image quality characterization. II. Noise power spectrum
Dobbins, James T. III; Samei, Ehsan; Ranger, Nicole T.; Chen Ying
2006-05-15
Second in a two-part series comparing measurement techniques for the assessment of basic image quality metrics in digital radiography, in this paper we focus on the measurement of the image noise power spectrum (NPS). Three methods were considered: (1) a method published by Dobbins et al. [Med. Phys. 22, 1581-1593 (1995)] (2) a method published by Samei et al. [Med. Phys. 30, 608-622 (2003)], and (3) a new method sanctioned by the International Electrotechnical Commission (IEC 62220-1, 2003), developed as part of an international standard for the measurement of detective quantum efficiency. In addition to an overall comparison of the estimated NPS between the three techniques, the following factors were also evaluated for their effect on the measured NPS: horizontal versus vertical directional dependence, the use of beam-limiting apertures, beam spectrum, and computational methods of NPS analysis, including the region-of-interest (ROI) size and the method of ROI normalization. Of these factors, none was found to demonstrate a substantial impact on the amplitude of the NPS estimates ({<=}3.1% relative difference in NPS averaged over frequency, for each factor considered separately). Overall, the three methods agreed to within 1.6%{+-}0.8% when averaged over frequencies >0.15 mm{sup -1}.
Rolling Element Bearing Fault Diagnosis Using Laplace-Wavelet Envelope Power Spectrum
NASA Astrophysics Data System (ADS)
Al-Raheem, Khalid F.; Roy, Asok; Ramachandran, K. P.; Harrison, D. K.; Grainger, Steven
2007-12-01
The bearing characteristic frequencies (BCF) contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations. They are difficult to find in their frequency spectra when using the common technique of fast fourier transforms (FFT). Therefore, Envelope Detection (ED) has always been used with FFT to identify faults occurring at the BCF. However, the computation of the ED is suffering to strictly define the resonance frequency band. In this paper, an alternative approach based on the Laplace-wavelet enveloped power spectrum is proposed. The Laplace-Wavelet shape parameters are optimized based on Kurtosis maximization criteria. The results for simulated as well as real bearing vibration signal show the effectiveness of the proposed method to extract the bearing fault characteristic frequencies from the resonant frequency band.
Rapid modelling of the redshift-space power spectrum multipoles for a masked density field
NASA Astrophysics Data System (ADS)
Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S.
2017-01-01
In this work, we reformulate the forward modelling of the redshift-space power spectrum multipole moments for a masked density field, as encountered in galaxy redshift surveys. Exploiting the symmetries of the redshift-space correlation function, we provide a masked-field generalization of the Hankel transform relation between the multipole moments in real and Fourier space. Using this result, we detail how a likelihood analysis requiring computation for a broad range of desired P(k) models may be executed 103-104 times faster than with other common approaches, together with significant gains in spectral resolution. We present a concrete application to the complex angular geometry of the VIMOS Public Extragalactic Redshift Survey PDR-1 release and discuss the validity of this technique for finite-angle surveys.
Paar, Vladimir; Pavin, Nenad; Basar, Ivan; Rosandić, Marija; Glunčić, Matko; Paar, Nils
2008-01-01
Background Identification of approximate tandem repeats is an important task of broad significance and still remains a challenging problem of computational genomics. Often there is no single best approach to periodicity detection and a combination of different methods may improve the prediction accuracy. Discrete Fourier transform (DFT) has been extensively used to study primary periodicities in DNA sequences. Here we investigate the application of DFT method to identify and study alphoid higher order repeats. Results We used method based on DFT with mapping of symbolic into numerical sequence to identify and study alphoid higher order repeats (HOR). For HORs the power spectrum shows equidistant frequency pattern, with characteristic two-level hierarchical organization as signature of HOR. Our case study was the 16 mer HOR tandem in AC017075.8 from human chromosome 7. Very long array of equidistant peaks at multiple frequencies (more than a thousand higher harmonics) is based on fundamental frequency of 16 mer HOR. Pronounced subset of equidistant peaks is based on multiples of the fundamental HOR frequency (multiplication factor n for nmer) and higher harmonics. In general, nmer HOR-pattern contains equidistant secondary periodicity peaks, having a pronounced subset of equidistant primary periodicity peaks. This hierarchical pattern as signature for HOR detection is robust with respect to monomer insertions and deletions, random sequence insertions etc. For a monomeric alphoid sequence only primary periodicity peaks are present. The 1/fβ – noise and periodicity three pattern are missing from power spectra in alphoid regions, in accordance with expectations. Conclusion DFT provides a robust detection method for higher order periodicity. Easily recognizable HOR power spectrum is characterized by hierarchical two-level equidistant pattern: higher harmonics of the fundamental HOR-frequency (secondary periodicity) and a subset of pronounced peaks corresponding to
A new method to quantify the effects of baryons on the matter power spectrum
Schneider, Aurel; Teyssier, Romain E-mail: teyssier@physik.uzh.ch
2015-12-01
Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3- central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.
Statistical connection of peak counts to power spectrum and moments in weak-lensing field
NASA Astrophysics Data System (ADS)
Shirasaki, Masato
2017-02-01
The number density of local maxima of weak-lensing field, referred to as weak-lensing peak counts, can be used as a cosmological probe. However, its relevant cosmological information is still unclear. We study the relationship between the peak counts and other statistics in weak-lensing field by using 1000 ray-tracing simulations. We construct a local transformation of lensing field K to a new Gaussian field y, named local-Gaussianized transformation. We calibrate the transformation with numerical simulations so that the one-point distribution and the power spectrum of K can be reproduced from a single Gaussian field y and monotonic relation between y and K. Therefore, the correct information of two-point clustering and any order of moments in weak-lensing field should be preserved under local-Gaussianized transformation. We then examine if local-Gaussianized transformation can predict weak-lensing peak counts in simulations. The local-Gaussianized transformation is insufficient to explain weak-lensing peak counts in the absence of shape noise. The prediction by local-Gaussianized transformation underestimates the simulated peak counts with a level of ∼20-30 per cent over a wide range of peak heights. Local-Gaussianized transformation can predict the weak-lensing peak counts with an ∼10 per cent accuracy in the presence of shape noise. Our analyses suggest that the cosmological information beyond power spectrum and its moments would be necessary to predict the weak-lensing peak counts with a percent-level accuracy, which is an expected statistical uncertainty in upcoming wide-field galaxy surveys.
Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum
Jennings, Elise; Wechsler, Risa H.
2015-08-07
We present the nonlinear 2D galaxy power spectrum, P(k, µ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual µ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the µ < 0.2 simulation data, which we show is not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual µ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low µ simulation data to constrain the nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual µ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each µ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxy–dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.
Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies
NASA Astrophysics Data System (ADS)
Pinol, Lucas; Cahn, Robert N.; Hand, Nick; Seljak, Uroš; White, Martin
2017-04-01
The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with a typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P(k,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of vec k. We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.
VizieR Online Data Catalog: The cosmic TeV gamma-ray background spectrum (Inoue+, 2016)
NASA Astrophysics Data System (ADS)
Inoue, Y.; Tanaka, Y. T.
2016-05-01
We select 35 known extragalactic TeV sources which are located at Galactic latitude |b|>=10° and whose low activity state flux is available, since our aim is to give conservative constraints on the total cosmic gamma-ray background (CGB) in the TeV band. For each source, we select the lowest fluxes among several TeV measurements by modern imaging atmospheric Cherenkov telescopes (IACTs; H.E.S.S., MAGIC, and VERITAS) and further restrict samples showing no significant variability in the TeV band during observations. The sample contains 30 blazars, 3 radio galaxies, and 2 starburst galaxies from the default TeVcat catalog (Wakely & Horan 2008ICRC....3.1341W) which include published sources only. We also include the Fermi third source (3FGL) catalog data (Acero et al. 2015, J/ApJS/218/23) to cover GeV gamma-ray spectra. The 3FGL catalog is based on its first 48 months of survey data. All of our sample have counterparts in the 3FGL catalog. (2 data files).
Burda, C.; Link, S.; Green, T.C.; El-Sayed, M.A.
1999-12-09
The power dependence of the transient absorption spectrum of CdSe nanoparticle colloids with size distribution of 4.0 {+-} 0.4 nm diameter is studied with femtosecond pump-probe techniques. At the lowest pump laser power, the absorption bleaching (negative spectrum) characteristic of the exciton spectrum is observed with maxima at 560 and 480 nm. As the pump laser power increases, two new transient absorptions at 510 and 590 nm with unresolved fast rise (<100 fs) and long decay times ({much{underscore}gt}150 ps) are observed. The energy of each of the positive absorption is red shifted from that of the bleach bands by {approximately}120 MeV. The origin of this shift is discussed in terms of the effect of the internal electric field of the many electron-hole pairs formed within the quantum dot at the high pump intensity, absorption from a metastable excited state or the formation of biexcitons.
Limits on the Polarized Power Spectrum at 126 and 164 MHz from PAPER South Africa 32-Element Data
NASA Astrophysics Data System (ADS)
Aguirre, James E.; Moore, David; Paper Collaboration
2015-01-01
Faraday-rotated, polarized emission represents a potential contaminating foreground for measurements of the highly redshifted 21 cm power spectrum. There are few existing measurements of polarized foreground emission at meter wavelengths (e.g. Bernardi et al 2013, Jelic et al 2014) and its actual effect on the measured Stokes I spectrum from reionization is unclear. We present new limits on the power spectrum of Stokes Q, U, and V emission at 126 and 164 MHz using PAPER South Africa 32-element data, to supplement existing results for Stokes I (Parsons et al 2014, Jacobs et al 2014). We use upper limits on the Q power spectra to place upper limits on the average polarization fraction of point sources.
Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon
2007-03-15
We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension {mu} required to normalize to the WMAP 3-year data at multipole l=10 is G{mu}=[2.04{+-}0.06(stat.){+-}0.12(sys.)]x10{sup -6}, where we have quoted statistical and systematic errors separately, and G is Newton's constant. This is a factor 2-3 higher than values in current circulation.
NASA Astrophysics Data System (ADS)
Kim, Jaiseung; Naselsky, Pavel
2010-09-01
It is natural to assume a parity-neutral Universe and accordingly no particular parity preference in the cosmic microwave background sky. However, our investigation based on the WMAP 7-year power spectrum shows there exists a large-scale odd-parity preference with high statistical significance. We also find that the odd-parity preference in WMAP7 data is slightly higher than earlier releases. We have investigated possible origins, and ruled out various noncosmological origins. We also find that the primordial origin requires |Re[Φ(k)]|≪|Im[Φ(k)]| for k≲22/η0, where η0 is the present conformal time. In other words, it requires translational invariance in the primordial Universe to be violated on scales larger than 4Gpc. The Planck surveyor, which possesses wide frequency coverage and systematics distinct from the WMAP, may allow us to resolve the mystery of the anomalous odd-parity preference. Furthermore, polarization maps of large-sky coverage will reduce degeneracy in cosmological origins.
NASA Technical Reports Server (NTRS)
Battistoni, G.; Bellotti, E.; Bloise, C.; Bologna, G.; Campana, P.; Castagnoli, C.; Castellina, A.; Chiarella, V.; Ciocio, A.; Cundy, D.
1985-01-01
A primary cosmic ray spectrum was derived which fits both experimental multiple muon rates and the all-nucleon flux derived from the single muon intensities underground. In the frame of the interaction model developed by Gaisser, Elbert and Stanev, it is possible to reproduce NUSEX muon data with a primary composition in which the iron spectrum is only slightly flatter than the proton one. This result rules out the popular idea that the primary composition varies drastically with increasing energy, leading to the dominance of heavier nuclei at energies 10 to the 15th power to 10 to the 16th power eV.
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2009-12-23
to explore the use of molten salt reactors for commercial power generation, the use of molten salt reactors on naval vessels is not currently...technically feasible and a requirement to perform a study on the use of molten salt reactors is premature. This is due to technology challenges with...material construction ( molten salt reactors are inherently corrosive to metals), storage of the liquid fuel, and radiation shielding for the crew from a
A power line data communication interface using spread spectrum technology in home automation
Shwehdi, M.H.; Khan, A.Z.
1996-07-01
Building automation technology is rapidly developing towards more reliable communication systems, devices that control electronic equipments. These equipment if controlled leads to efficient energy management, and savings on the monthly electricity bill. Power Line communication (PLC) has been one of the dreams of the electronics industry for decades, especially for building automation. It is the purpose of this paper to demonstrate communication methods among electronic control devices through an AC power line carrier within the buildings for more efficient energy control. The paper outlines methods of communication over a powerline, namely the X-10 and CE bus. It also introduces the spread spectrum technology as to increase speed to 100--150 times faster than the X-10 system. The powerline carrier has tremendous applications in the field of building automation. The paper presents an attempt to realize a smart house concept, so called, in which all home electronic devices from a coffee maker to a water heater microwave to chaos robots will be utilized by an intelligent network whenever one wishes to do so. The designed system may be applied very profitably to help in energy management for both customer and utility.
NASA Astrophysics Data System (ADS)
Sturrock, P. A.; Bertello, L.
2010-12-01
This paper presents a power-spectrum analysis of 39,024 measurements of the solar diameter made at the Mount Wilson Observatory from 1968.670 to 1997.965. This power spectrum contains a number of very strong peaks. We find that eight of these peaks agree closely with the frequencies of r-mode oscillations for a region of the Sun where the sidereal rotation frequency is 12.08 year-1. We estimate that there is less than one chance in 106 of finding this pattern by chance.
Sturrock, P. A.; Bertello, L.
2010-12-10
This paper presents a power-spectrum analysis of 39,024 measurements of the solar diameter made at the Mount Wilson Observatory from 1968.670 to 1997.965. This power spectrum contains a number of very strong peaks. We find that eight of these peaks agree closely with the frequencies of r-mode oscillations for a region of the Sun where the sidereal rotation frequency is 12.08 year{sup -1}. We estimate that there is less than one chance in 10{sup 6} of finding this pattern by chance.
Power- and space-efficient image computation with compressive processing: I. Background and theory
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.
2000-11-01
Surveillance imaging applications on small autonomous imaging platforms present challenges of highly constrained power supply and form factor, with potentially demanding specifications for target detection and recognition. Absent of significant advances in image processing hardware, such power and space restrictions can imply severely limited computational capabilities. This holds especially for compute-intensive algorithms with high-precision fixed- or floating- point operations in deep pipelines that process large data streams. Such algorithms tend not to be amenable to small or simplified architectures involving (for example) reduced precision, reconfigurable logic, low-power gates, or energy recycling schemes. In this series of two papers, a technique of reduced-power computing called compressive processing (CXP) is presented and applied to several low- and mid-level computer vision operations. CXP computes over compressed data without resorting to intermediate decompression steps. As a result of fewer data due to compression, fewer operations are required by CXP than are required by computing over the corresponding uncompressed image. In several cases, CXP techniques yield speedups on the order of the compression ratio. Where lossy high-compression transforms are employed, it is often possible to use approximations to derive CXP operations to yield increased computational efficiency via a simplified mix of operations. The reduced work requirement, which follows directly from the presence of fewer data, also implies a reduced power requirement, especially if simpler operations are involved in compressive versus noncompressive operations. Several image processing algorithms (edge detection, morphological operations, and component labeling) are analyzed in the context of three compression transforms: vector quantization (VQ), visual pattern image coding (VPIC), and EBLAST. The latter is a lossy high-compression transformation developed for underwater
NASA Astrophysics Data System (ADS)
Zeng, Hong-Li; Zhu, Chen-Ping; Guo, Yan-Dong; Teng, Ao; Jia, Jing; Kong, Hui; Zhou, Rui; Yang, Juan-Ping; Li, Su-Quan
2015-04-01
A co-evolutionary neuronal network model based on previous ones is proposed, and both functional and structural properties are numerically calculated. Recent experiments have revealed power-law behavior in electrocorticogram (ECoG) spectrum related with synaptic plasticity and reorganization. In the present neuronal network model, the network starts its evolution from the initial configuration of random network which is the least biased and without special structure, and the interaction rules among neurons are modified from both models by Bornholdt's and Arcangelis' groups to simulate the process of synaptic development and maturation. The system exhibits dynamic small-world structure which is the result of evolution instead of the assumption beforehand. Meanwhile, the power spectrum of electrical signals reproduces the power-law behavior with the exponent 2.0 just as what is experimentally measured in ECoG spectrum. Moreover, the power spectrum of the average degree per neuron over time also exhibits power-law behavior, with the exponent 2.0 again over more than 5 orders of magnitude. Different from previous results, our network exhibits assortative degree-degree correlation which is expected to be checked by experiments.
NASA Technical Reports Server (NTRS)
Kesley, D. A.
1980-01-01
The observed power spectrum of the solar five minute oscillations is discussed from the viewpoint that the oscillations are excited by turbulent convection. The observations place significant constraints on the theory and suggest constraints on the solar model structure. It is shown that the steep low frequency side of the peak in the power spectrum is more readily explained if the mixing length is greater than one scale height. The high frequency end of the power spectrum is also discussed.
Tao, Shuping; Jin, Guang; Zhang, Xuyan; Qu, Hongsong; An, Yuan
2012-07-20
A novel autofocusing algorithm using the directional wavelet power spectrum is proposed for time delayed and integration charge coupled device (TDI CCD) space cameras, which overcomes the difficulty of focus measure for the real-time change of imaging scenes. Using the multiresolution and band-pass characteristics of wavelet transform to improve the power spectrum based on fast Fourier transform (FFT), the wavelet power spectrum is less sensitive to the variance of scenes. Moreover, the new focus measure can effectively eliminate the impact of image motion mismatching by the directional selection. We test the proposed method's performance on synthetic images as well as a real ground experiment for one TDI CCD prototype camera, and compare it with the focus measure based on the existing FFT spectrum. The simulation results show that the new focus measure can effectively express the defocused states for the real remote sensing images. The error ratio is only 0.112, while the prevalent algorithm based on the FFT spectrum is as high as 0.4. Compared with the FFT-based method, the proposed algorithm performs at a high reliability in the real imaging experiments, where it reduces the instability from 0.600 to 0.161. Two experimental results demonstrate that the proposed algorithm has the characteristics of good monotonicity, high sensitivity, and accuracy. The new algorithm can satisfy the autofocusing requirements for TDI CCD space cameras.
NASA Astrophysics Data System (ADS)
Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Mellema, G.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.
2013-07-01
Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21 cm emission is initially correlated with haloes on large scales (≳30 Mpc), anticorrelated on intermediate (˜5 Mpc) and uncorrelated on small (≲3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anticorrelated on large scales. The normalization of the cross-power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a powerful tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21 cm signal the noise expected from the LOw Frequency ARray (LOFAR) telescope, we find that while the normalization of the cross-power spectrum remains a useful tool for probing reionization, its shape becomes too noisy to be informative. On the other hand, for an Lyα Emitter (LAE) survey both the normalization and the shape of the cross-power spectrum are suitable probes of reionization. A closer look at a specific planned LAE observing program using Subaru Hyper-Suprime Cam reveals concerns about the strength of the 21 cm signal at the planned redshifts. If the ionized fraction at z ˜ 7 is lower than the one estimated here, then using the cross-power spectrum may be a useful exercise given that at higher redshifts and neutral fractions it is able to distinguish between two toy models with different topologies.
The multifrequency angular power spectrum of the epoch of reionization 21-cm signal
NASA Astrophysics Data System (ADS)
Datta, Kanan K.; Choudhury, T. Roy; Bharadwaj, Somnath
2007-06-01
Observations of redshifted 21-cm radiation from neutral hydrogen (HI) at high redshifts is an important future probe of reionization. We consider the multifrequency angular power spectrum (MAPS) to quantify the statistics of the HI signal as a joint function of the angular multipole l and frequency separation Δν. The signal at two different frequencies is expected to decorrelate as Δν is increased, and quantifying this is particularly important in deciding the frequency resolution for future HI observations. This is also expected to play a very crucial role in extracting the signal from foregrounds as the signal is expected to decorrelate much faster than the foregrounds (which are largely continuum sources) with increasing Δν. In this paper, we develop formulae relating MAPS to different components of the 3D HI power spectrum taking into account HI peculiar velocities. We show that the flat-sky approximation provides a very good representation over the angular scales of interest, and a final expression which is very simple to calculate and interpret. We present results for z = 10 assuming a neutral hydrogen fraction of 0.6 considering two models for the HI distribution, namely, (i) DM: where HI traces the dark matter and (ii) PR: where the effects of patchy reionization are incorporated through two parameters which are the bubble size and the clustering of the bubble centres relative to the dark matter (bias), respectively. We find that while the DM signal is largely featureless, the PR signal peaks at the angular scales of the individual bubbles where it is Poisson fluctuation dominated, and the signal is considerably enhanced for large bubble size. For most cases of interest at l ~ 100 the signal is uncorrelated beyond Δν ~ 1MHz or even less, whereas this occurs around ~0.1MHz at l ~ 103. The Δν dependence also carries an imprint of the bubble size and the bias, and is expected to be an important probe of the reionization scenario. Finally, we find
Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum
Jennings, Elise; Wechsler, Risa H.
2015-08-07
We present the nonlinear 2D galaxy power spectrum, P(k, µ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual µ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the µ < 0.2 simulation data, which we show ismore » not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual µ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low µ simulation data to constrain the nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual µ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each µ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxy–dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.« less
NASA Astrophysics Data System (ADS)
Ushakov, Y. V.; Dubkov, A. A.; Spagnolo, B.
2013-01-01
In this work we develop an analytical approach for calculation of the all-order interspike interval density (AOISID), show its connection with the autocorrelation function, and try to explain the discovered resemblance of AOISID to the power spectrum of the same spike train.
NASA Astrophysics Data System (ADS)
Roy, A.; André, Ph.; Arzoumanian, D.; Peretto, N.; Palmeirim, P.; Könyves, V.; Schneider, N.; Benedettini, M.; Di Francesco, J.; Elia, D.; Hill, T.; Ladjelate, B.; Louvet, F.; Motte, F.; Pezzuto, S.; Schisano, E.; Shimajiri, Y.; Spinoglio, L.; Ward-Thompson, D.; White, G.
2015-12-01
A complete understanding of the origin of the prestellar core mass function (CMF) is crucial. Two major features of the prestellar CMF are 1) a broad peak below 1 M⊙, presumably corresponding to a mean gravitational fragmentation scale, and 2) a characteristic power-law slope, very similar to the Salpeter slope of the stellar initial mass function (IMF) at the high-mass end. While recent Herschel observations have shown that the peak of the prestellar CMF is close to the thermal Jeans mass in marginally supercritical filaments, the origin of the power-law tail of the CMF/IMF at the high-mass end is less clear. In 2001, Inutsuka proposed a theoretical scenario in which the origin of the power-law tail can be understood as resulting from the growth of an initial spectrum of density perturbations seeded along the long axis of star-forming filaments by interstellar turbulence. Here, we report the statistical properties of the line-mass fluctuations of filaments in the Pipe, Taurus, and IC 5146 molecular clouds observed with Herschel for a sample of subcritical or marginally supercritical filaments using a 1D power spectrum analysis. The observed filament power spectra were fitted by a power-law function (Ptrue(s) ∝ sα) after removing the effect of beam convolution at small scales. A Gaussian-like distribution of power-spectrum slopes was found, centered at α̅corr = -1.6 ± 0.3. The characteristic index of the observed power spectra is close to that of the 1D velocity power spectrum generated by subsonic Kolomogorov turbulence (-1.67). Given the errors, the measured power-spectrum slope is also marginally consistent with the power spectrum index of -2 expected for supersonic compressible turbulence. With such a power spectrum of initial line-mass fluctuations, Inutsuka's model would yield a mass function of collapsed objects along filaments approaching dN/dM ∝ M- 2.3 ± 0.1 at the high-mass end (very close to the Salpeter power law) after a few free-fall times
Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model
Rallapalli, Varsha H.
2016-01-01
Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.
A Microthermal Device for Measuring the Spatial Power Spectrum of Atmospheric Optical Turbulence
NASA Astrophysics Data System (ADS)
Turner, Jonathan; McGraw, J.; Zimmer, P.; Williams, T.; Claver, C.; Krabbendam, V.; Wiecha, O.; Andrew, J.; Warner, M.
2010-01-01
The Measurement Astrophysics group at UNM designed and built a novel microthermal device for characterizing atmospheric optical turbulence at astronomical observatories. This instrument is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors. The device makes differential temperature measurements which are directly related to the index of refraction structure constant, Cn2, which quantifies the strength of optical turbulence. The device is designed to work in two modes. In horizontal mode temperature differentials are measured between adjacent sensors. Measurements are combined to recover the differences over all pairwise sensor baselines. These measurements result in a spatial spectrum of turbulence. Measured turbulent spectra are then fit to standard turbulence models which yield estimates of the outer scale of turbulence and the slope of the power spectra. In vertical mode the device operates with pairs of microthermal sensors distributed vertically, each pair being separated horizontally by approximately one meter. Sensor pairs are suspended at multiple heights above the ground allowing measurement of atmospheric turbulence power as a function of altitude. This device was used to monitor optical turbulence during a site testing campaign at the future LSST site on Cerro Pachón. We present preliminary results from operation in both vertical and horizontal modes from October 2008 to December 2009. The microthermal array remains in operation on Cerro Pachón, and continues to produce valuable atmospheric measurements. Our results support the conclusion that Cerro Pachón is an excellent observatory site. The vertical turbulence profile decreases monotonically with height as expected, and the surface layer does not contribute a significant amount to the overall seeing measured at the site. This work was supported by Air Force Grant No. FA9451-04-2-0355. Instrumentation and travel support was provided in part by
Power Spectrum and Mutual Information Analyses of DNA Base (Nucleotide) Sequences
NASA Astrophysics Data System (ADS)
Isohata, Yasuhiko; Hayashi, Masaki
2003-03-01
On the basis of the power spectrum analyses for the base (nucleotide) sequences of various genes, we have studied long-range correlations in total base sequences which are expressed as 1/fα, behaviour of the exponent α for the accumulated base sequences as well as periodicities at short range. In particular from the analysis of content rate distributions of α we have obtained the average value \\barα=0.40± 0.01 and \\barα=0.20± 0.01 for the human genes and S. cerevisiae genes, respectively. We have also performed the analyses using the mutual information function. We show that there exists a clear difference between the content rate distributions of correlation lengths for the sample human genes and the S. cerevisiae genes. We are led to a conjecture that the elongation of the correlation length in the base sequences of genes from the early eukaryote (S. cerevisiae) to the late eukaryote (human) should be the definite reflection of the evolutionary process.
Huang, Qing-Guo; Wang, Sai; Zhao, Wen E-mail: wangsai@itp.ac.cn
2015-10-01
By taking into account the contamination of foreground radiations, we employ the Fisher matrix to forecast the future sensitivity on the tilt of power spectrum of primordial tensor perturbations for several ground-based (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloon-borne (EBEX, Spider) and satellite (CMBPol, COrE, LiteBIRD) experiments of B-mode polarizations. For the fiducial model n{sub t}=0, our results show that the satellite experiments give good sensitivity on the tensor tilt n{sub t} to the level σ{sub n{sub t}}∼<0.1 for r∼>2×10{sup −3}, while the ground-based and balloon-borne experiments give worse sensitivity. By considering the BICEP2/Keck Array and Planck (BKP) constraint on the tensor-to-scalar ratio r, we see that it is impossible for these experiments to test the consistency relation n{sub t}=−r/8 in the canonical single-field slow-roll inflation models.
Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum
Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.
2015-05-20
X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s^{-1} on ~20–30 kpc scales and 70–100 km s^{-1} on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.
VizieR Online Data Catalog: 1D Lya forest power spectrum (Palanque-Delabrouille+, 2013)
NASA Astrophysics Data System (ADS)
Palanque-Delabrouille, N.; Yeche, C.; Borde, A.; Le Goff, J.-M.; Rossi, G.; Viel, M.; Aubourg, E.; Bailey, S.; Bautista, J.; Blomqvist, M.; Bolton, A.; Bolton, J. S.; Busca, N. G.; Carithers, B.; Croft, R. A. C.; Dawson, K. S.; Delubac, T.; Font-Ribera, A.; Ho, S.; Kirkby, D.; Lee, K.-G.; Margala, D.; Miralda-Escude, J.; Muna, D.; Myers, A. D.; Noterdaeme, P.; Paris, I.; Petitjean, P.; Pieri, M. M.; Rich, J.; Rollinde, E.; Ross, N. P.; Schlegel, D. J.; Schneider, D. P.; Slosar, A.; Weinberg, D. H.
2013-09-01
The files contain the data describing the measured 1D power spectrum and the correlations between bins from the BOSS Lyman-alpha data. table4a.dat and table5a.dat: P1D results obtained with the Fourier transform and the likelihood method respectively, for each k and z bin. cct4b*.dat and cct5b*.dat: Correlation matrices between k bins for each z bin, for the Fourier transform and the likelihood method respectively. There are 12 HDUs, one for each redshift bin from
Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array
NASA Astrophysics Data System (ADS)
Loi, Shyeh Tjing; Trott, Cathryn M.; Murphy, Tara; Cairns, Iver H.; Bell, Martin; Hurley-Walker, Natasha; Morgan, John; Lenc, Emil; Offringa, A. R.; Feng, L.; Hancock, P. J.; Kaplan, D. L.; Kudryavtseva, N.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.
2015-07-01
Low-frequency, wide field-of-view (FOV) radio telescopes such as the Murchison Widefield Array (MWA) enable the ionosphere to be sampled at high spatial completeness. We present the results of the first power spectrum analysis of ionospheric fluctuations in MWA data, where we examined the position offsets of radio sources appearing in two data sets. The refractive shifts in the positions of celestial sources are proportional to spatial gradients in the electron column density transverse to the line of sight. These can be used to probe plasma structures and waves in the ionosphere. The regional (10-100 km) scales probed by the MWA, determined by the size of its FOV and the spatial density of radio sources (typically thousands in a single FOV), complement the global (100-1000 km) scales of GPS studies and local (0.01-1 km) scales of radar scattering measurements. Our data exhibit a range of complex structures and waves. Some fluctuations have the characteristics of traveling ionospheric disturbances, while others take the form of narrow, slowly drifting bands aligned along the Earth's magnetic field.
A new probe of the magnetic field power spectrum in cosmic web filaments
NASA Astrophysics Data System (ADS)
Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.
2015-08-01
Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.
Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum
NASA Astrophysics Data System (ADS)
Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.
2015-07-01
X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ˜10-30 kpc within radii of 30-220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90-140 km s-1 on ˜20-30 kpc scales and 70-100 km s-1 on smaller scales ˜7-10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7-8 per cent for radii ˜30-220 kpc from the centre, leading to a density bias of less than 3-4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density-velocity perturbation relation and further reduce systematic uncertainties in this analysis.
PAPER-128 Status Update: Towards a 21cm Power Spectrum Detection
NASA Astrophysics Data System (ADS)
Cheng, Carina; Jacobs, Danny; Aryeh Kohn, Saul; Parsons, Aaron; PAPER Collaboration
2016-01-01
The Epoch of Reionization (EoR) represents an unexplored phase in cosmic history when UV photons from the first galaxies ionized the majority of the hydrogen in the intergalactic medium. The Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) is a dedicated experiment that aims to measure EoR fluctuations by mapping the red-shifted 21cm hyperfine transition of neutral hydrogen. While PAPER-64 put the most constraining upper limits on the 21cm power spectrum to date, PAPER-128 is forecast to offer a factor of 4 increase in sensitivity, putting it in the range of plausible predicted signal levels. We present a status update of our ongoing PAPER-128 data analysis efforts, including new insights into data quality assessment, calibration, and foreground removal. As we continue our pursuit of the cosmological signal, the lessons we have learned with PAPER are an integral component for next generation 21cm experiments like the Hydrogen Epoch of Reionization Array (HERA).
Imprint of DESI fiber assignment on anisotropic power spectrum of emission line galaxies
NASA Astrophysics Data System (ADS)
Cahn, Robert N.; Pinol, Lucas; Hand, Nicholas; McDonald, Patrick; Seljak, Uros
2017-01-01
The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor, and show that this method reduces, but does not eliminate the effect. The angular dependence of the contaminating signal is mostly in purely transverse modes. We find that the effect can be mitigated by binning in angle and excluding contributions near the transverse direction. This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Zhang, Junhong; Wang, Jian; Lin, Jiewei; Bi, Fengrong; Guo, Qian; Chen, Kongwu; Ma, Liang
2015-09-01
As the essential foundation of noise reduction, many noise source identification methods have been developed and applied to engineering practice. To identify the noise source in the board-band frequency of different engine parts at various typical speeds, this paper presents an integrated noise source identification method based on the ensemble empirical mode decomposition (EEMD), the coherent power spectrum analysis, and the improved analytic hierarchy process (AHP). The measured noise is decomposed into several IMFs with physical meaning, which ensures the coherence analysis of the IMFs and the vibration signals are meaningful. An improved AHP is developed by introducing an objective weighting function to replace the traditional subjective evaluation, which makes the results no longer dependent on the subject performances and provides a better consistency in the meantime. The proposed noise identification model is applied to identifying a diesel engine surface radiated noise. As a result, the frequency-dependent contributions of different engine parts to different test points at different speeds are obtained, and an overall weight order is obtained as oil pan > left body > valve chamber cover > gear chamber casing > right body > flywheel housing, which provides an effectual guidance for the noise reduction.
The Angular Power Spectrum of BATSE 3B Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Tegmark, Max; Hartmann, Dieter H.; Briggs, Michael S.; Meegan, Charles A.
1996-01-01
We compute the angular power spectrum C(sub l) from the BATSE 3B catalog of 1122 gamma-ray bursts and find no evidence for clustering on any scale. These constraints bridge the entire range from small scales (which probe source clustering and burst repetition) to the largest scales (which constrain possible anisotropics from the Galactic halo or from nearby cosmological large-scale structures). We develop an analysis technique that takes the angular position errors into account. For specific clustering or repetition models, strong upper limits can be obtained down to scales l approx. equal to 30, corresponding to a couple of degrees on the sky. The minimum-variance burst weighting that we employ is visualized graphically as an all-sky map in which each burst is smeared out by an amount corresponding to its position uncertainty. We also present separate bandpass-filtered sky maps for the quadrupole term and for the multipole ranges l = 3-10 and l = 11-30, so that the fluctuations on different angular scales can be inspected separately for visual features such as localized 'hot spots' or structures aligned with the Galactic plane. These filtered maps reveal no apparent deviations from isotropy.
Reheating effects in the matter power spectrum and implications for substructure
Erickcek, Adrienne L.; Sigurdson, Kris
2011-10-15
The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > or approx. 0.1M{sub +} at z{approx_equal}100, compared to a fraction of {approx}10{sup -10} in the standard case. In this scenario, ultradense substructures may constitute a large fraction of dark matter in galaxies today.
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Puget, J. L.
1972-01-01
Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.
Giavazzi, Fabio; Vailati, Alberto
2009-07-01
We investigate pattern formation in the very early stages of solutal convective instabilities in a suspension of highly thermophilic nanoparticles heated from above. The processing of shadowgraph images allows us to recover the spatial power spectrum of the excitations at the onset. Remarkably, the power spectra obtained at large solutal Rayleigh numbers 2.56 x 10;{6}< or =Ra_{s}< or =4.53 x 10;{8} scale onto a single curve without adjustable parameters. The critical wave number exhibits power-law scaling with exponent 1/4 as a function of Ra_{s} , in excellent agreement with recent theoretical predictions.
NASA Astrophysics Data System (ADS)
Alisultanov, Z. Z.; Meilanov, R. P.
2012-10-01
We consider the problem of the effective interaction potential in a quantum many-particle system leading to the fractional-power dispersion law. We show that passing to fractional-order derivatives is equivalent to introducing a pair interparticle potential. We consider the case of a degenerate electron gas. Using the van der Waals equation, we study the equation of state for systems with a fractional-power spectrum. We obtain a relation between the van der Waals constant and the phenomenological parameter α, the fractional-derivative order. We obtain a relation between energy, pressure, and volume for such systems: the coefficient of the thermal energy is a simple function of α. We consider Bose—Einstein condensation in a system with a fractional-power spectrum. The critical condensation temperature for 1 < α < 2 is greater in the case under consideration than in the case of an ideal system, where α = 2.
Song, Yang; Zang, Da-Wei; Jin, Yan-Yu; Wang, Zhi-Jun; Ni, Hong-Yan; Yin, Jian-Zhong; Ji, Dong-Xu
2015-04-01
In clinical settings, cerebral infarct is a common disease of older adults, which usually increases the risk of cognitive impairment. This study aims to assess the quantitative electroencephalography (qEEG) as a predictive biomarker for the development of cognitive impairment, post-cerebral infarcts, in subjects from the Department of Neurology. They underwent biennial EEG recording. Cerebral infarct subjects, with follow-up cognitive evaluation, were analyzed for qEEG measures of background rhythm frequency (BRF) and relative δ, θ, α, and β band power. The relationship between cognitive impairment and qEEG, and other possible predictors, was assessed by Cox regression. The results showed that the risk hazard of developing cognitive impairment was 14 times higher for those with low BRF than for those with high BRF (P < .001). Hazard ratio (HR) was also significant for more than median θ band power (HR = 5, P = .002) compared with less than median θ band power. The HRs for δ, α, and β bands were equal to the baseline demographic, and clinical characteristics were not significantly different. In conclusion, qEEG measures of BRF, and relative power in θ band, are potential predictive biomarkers for cognitive impairment in patients with cerebral infarcts. These biomarkers might be valuable in early prediction of cognitive impairment in patients with cerebral infarcts.
Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.; Smith, K. M.; Chinone, Y.; Cleary, K.; Reeves, R.; Dumoulin, R. N.; Newburgh, L. B.; Zwart, J. T. L.; Monsalve, R.; Bustos, R.; Naess, S. K.; Eriksen, H. K.; Wehus, I. K.; Zuntz, J. A.; Bronfman, L.; Church, S. E.; Dickinson, C.
2011-11-10
The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering Almost-Equal-To 1000 deg{sup 2}. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 {mu}K{radical}s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range l = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3{sigma} significance, the E-mode spectrum is consistent with the {Lambda}CDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35{sup +1.06}{sub -0.87}. The combination of a new time-stream 'double-demodulation' technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r
Nishimaru, Eiji; Ichikawa, Katsuhiro; Hara, Takanori; Terakawa, Shoichi; Yokomachi, Kazushi; Fujioka, Chikako; Kiguchi, Masao; Ishifuro, Minoru
2012-01-01
Adaptive iterative reconstruction techniques (IRs) can decrease image noise in computed tomography (CT) and are expected to contribute to reduction of the radiation dose. To evaluate the performance of IRs, the conventional two-dimensional (2D) noise power spectrum (NPS) is widely used. However, when an IR provides an NPS value drop at all spatial frequency (which is similar to NPS changes by dose increase), the conventional method cannot evaluate the correct noise property because the conventional method does not correspond to the volume data natures of CT images. The purpose of our study was to develop a new method for NPS measurements that can be adapted to IRs. Our method utilized thick multi-planar reconstruction (MPR) images. The thick images are generally made by averaging CT volume data in a direction perpendicular to a MPR plane (e.g. z-direction for axial MPR plane). By using this averaging technique as a cutter for 3D-NPS, we can obtain adequate 2D-extracted NPS (eNPS) from 3D NPS. We applied this method to IR images generated with adaptive iterative dose reduction 3D (AIDR-3D, Toshiba) to investigate the validity of our method. A water phantom with 24 cm-diameters was scanned at 120 kV and 200 mAs with a 320-row CT (Acquilion One, Toshiba). From the results of study, the adequate thickness of MPR images for eNPS was more than 25.0 mm. Our new NPS measurement method utilizing thick MPR images was accurate and effective for evaluating noise reduction effects of IRs.
Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons
NASA Astrophysics Data System (ADS)
Schlaich, Andreas; Gantenbein, Gerd; Kern, Stefan; Thumm, Manfred
2012-09-01
At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X) and coaxial cavity (2 MW shortpulse at 170 GHz for ITER) for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT) is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 - 12) to convert the signal from RF millimeter wave frequencies (full D-Band, 110 - 170 GHz) to IF (0 - 3 GHz). For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation, and lowfrequency
Lensing corrections to features in the angular two-point correlation function and power spectrum
LoVerde, Marilena; Hui, Lam; Gaztanaga, Enrique
2008-01-15
It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, the galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.
A Microthermal Device for Measuring the Spatial Power Spectrum of Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Turner, Jonathan; McGraw, J.; Zimmer, P.; Williams, T.; Claver, C.; Krabbendam, V.; Wiecha, O.; Andrew, J.; Warner, M.
2009-01-01
The Measurement Astrophysics group at UNM designed and built a novel microthermal device for the purpose of characterizing atmospheric turbulence at astronomical observatories. This instrument is based on the Wheatstone bridge and uses fine wire tungsten filaments as resistance temperature detectors. The device is designed to work in two data taking modes: with a horizontal array of microthermal sensors, or with a vertical array of sensors. In horizontal mode differential measurements are made between adjacent sensors, then these measurements are combined to recover the differences between all non-adjacent sensor pairs. The result of these measurements is microthermal data over many independent baselines which comprise a spatial spectrum of turbulence. The measured turbulent spectra are then fit to standard turbulence models which yield estimates of the outer scale of turbulence and the slope of the power spectra. Measurements in horizontal mode are made with 14 sensors over baselines of up to 30 meters. In addition probes can be repositioned to provide additional baselines. In vertical mode the device operates as microthermals traditionally have in the past: differential measurements are made between a pair of resistance temperature detectors. Sensor pairs are suspended at different heights above the ground allowing measurement of atmospheric turbulence as a function of altitude. Measurements in vertical mode are made with 14 sensor pairs which can be elevated up to 30 meters above ground. Data were taken with the device in a variety of test configurations, and the device is being used in a site testing campaign at Cerro Pachon. We will present the design, prototyping, and testing of this instrument as well as preliminary results from our campaign on Cerro Pachon.
NASA Astrophysics Data System (ADS)
Campbell, Sheldon; Dutta, Bhaskar
2011-10-01
We present a formalism for estimating the angular power spectrum of extragalactic gamma-rays produced by dark matter annihilating with any general velocity-dependent cross section. The relevant density and velocity distribution of dark matter is modeled as an ensemble of smooth, universal, rigid, disjoint, spherical halos with distribution and universal properties constrained by simulation data. We apply this formalism to theories of dark matter with p-wave annihilation, for which the relative-velocity-weighted annihilation cross section is σv=a+bv2. We determine that this significantly increases the gamma-ray power if b/a≳106. The effect of p-wave annihilation on the angular power spectrum is very similar for the sample of particle physics models we explored, suggesting that the important effect for a given b/a is largely determined by the cosmic dark matter distribution. If the dark matter relic from strong p-wave theories is thermally produced, the intensities of annihilation gamma-rays are strongly p-wave suppressed, making them difficult to observe. If an angular power spectrum consistent with a strong p wave were to be observed, it would likely indicate nonthermal production of dark matter in the early Universe.
Mohammad, Nabil; Wang, Peng; Friedman, Daniel J.; Menon, Rajesh
2014-09-17
We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output power density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. As a result, the potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.
Mohammad, Nabil; Wang, Peng; Friedman, Daniel J; Menon, Rajesh
2014-10-20
We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output power density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. The potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.
NASA Technical Reports Server (NTRS)
Dwek, Eli; Slavin, Jonathan
1994-01-01
In a recent paper Stecker, De Jager, & Salamon have suggested using the observed approximately MeV to TeV spectra of extragalactic gamma-ray sources as probes of the local density of the cosmic infrared background radiation (CIBR) and have subsequently claimed a first possible measurement of the CIBR from the analysis of the gamma-ray spectrum of Mrk 421 (De Jager, Stecker, & Salamon). The CIBR from normal galaxies consists of two components: a stellar emission component (CIBRs), and a thermal dust emission component (CIBRd). Photons with energies in the approximately 0.1-2 TeV range interact primarily with the CIBRs, whereas interactions with CIBRd dominate the absorption of photons in the approximately 2-100 TeV energy range. SDS 92 and DSS94 considered only the interaction of the gamma-rays with the dust emission component of the CIBR. We present here an improved analysis of the absorption of extragalactic TeV gamma rays by the CIBR, taking the dual nature of its origin into account. Applying the analysis to the observed gamma-ray spectrum of Mrk 421, a BL Lac object at z = 0.031, we find agreement with DSS94 tentative evidence for absorption by the CINRs. Our analysis therefore limits the detection of the CIBR to the approximately 15-40 micron wavelength regime which, considering the uncertainties in the highest energy (greater than 4 TeV) data and ion the possibility of absorption inside the source, many turn out to be an upper limit on its energy density. At shorter wavelengths (lambda approximately = 1-15 microns), where the gamma-ray interactions are dominated by the CIBRs, our analysis definitely yields only an upper limit on the energy density of the CIBR. In contrast, DSS94 have claimed a possible first measurement of the CIBR over the entire 1-120 micron wavelength region. The upper limit on the CIBRs and tentative detection of the CIBRd are consistent with normal galaxies contributing most of the energy to the CIBR, and constrain the contribution of
Zhang, Jiang; Yuan, Zhen; Huang, Jin; Yang, Qin; Chen, Huafu
2014-12-01
Motor imagery is an experimental paradigm implemented in cognitive neuroscience and cognitive psychology. To investigate the asymmetry of the strength of cortical functional activity due to different single-hand motor imageries, functional magnetic resonance imaging (fMRI) data from right handed normal subjects were recorded and analyzed during both left-hand and right-hand motor imagery processes. Then the average power of blood oxygenation level-dependent (BOLD) signals in temporal domain was calculated using the developed tool that combines Welch power spectrum and the integral of power spectrum approach of BOLD signal changes during motor imagery. Power change analysis results indicated that cortical activity exhibited a stronger power in the precentral gyrus and medial frontal gyrus with left-hand motor imagery tasks compared with that from right-hand motor imagery tasks. These observations suggest that right handed normal subjects mobilize more cortical nerve cells for left-hand motor imagery. Our findings also suggest that the approach based on power differences of BOLD signals is a suitable quantitative analysis tool for quantification of asymmetry of brain activity intensity during motor imagery tasks.
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Neben, Abraham R.; Hewitt, Jacqueline N.; Tegmark, Max; Barry, N.; Beardsley, A. P.; Bowman, J. D.; Briggs, F.; Carroll, P.; de Oliveira-Costa, A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hernquist, L.; Hurley-Walker, N.; Jacobs, D. C.; Kim, H. S.; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; McKinley, B.; Mitchell, D. A.; Morales, M. F.; Offringa, A. R.; Paul, S.; Pindor, B.; Pober, J. C.; Procopio, P.; Riding, J.; Sethi, S.; Shankar, N. Udaya; Subrahmanyan, R.; Sullivan, I.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C.; Wayth, R. B.; Webster, R. L.; Wyithe, S.; Bernardi, G.; Cappallo, R. J.; Deshpande, A. A.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Srivani, K. S.; Williams, A.; Williams, C. L.
2015-06-01
The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the "EoR window" from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of Δ2(k )<3.7 ×104 mK2 at comoving scale k =0.18 h Mpc-1 and at z =6.8 , consistent with existing limits.
NASA Astrophysics Data System (ADS)
Tadros, H.; Ballinger, W. E.; Taylor, A. N.; Heavens, A. F.; Efstathiou, G.; Saunders, W.; Frenk, C. S.; Keeble, O.; McMahon, R.; Maddox, S. J.; Oliver, S.; Rowan-Robinson, M.; Sutherland, W. J.; White, S. D. M.
1999-05-01
We apply the formalism of spherical harmonic decomposition to the galaxy density field of the IRAS PSCz redshift survey. The PSCz redshift survey has almost all-sky coverage and includes IRAS galaxies to a flux limit of 0.6 Jy. Using maximum likelihood methods to examine (to first order) the distortion of the galaxy pattern resulting from redshift coordinates, we have measured the parameter beta=Omega^{0.6}/b. We also simultaneously measure either (a) the undistorted amplitude of perturbations in the galaxy distribution when a parametrized power spectrum is assumed, or (b) the shape and amplitude of the real-space power spectrum if the band-power in a set of passbands is measured in a step-wise fashion. These methods are extensively tested on a series of CDM, Lambda CDM and MDM simulations and are found to be unbiased. We obtain consistent results for the subset of the PSCz catalogue with flux above 0.75 Jy, but inclusion of galaxies to the formal flux limit of the catalogue gives variations which are larger than our internal errors. For the 0.75-Jy catalogue we find, in the case of a parametrized power spectrum, beta=0.58+/-0.26 and the amplitude of the real-space power measured at wavenumber k=0.1h Mpc^-1 is Delta_0.1=0.42+/-0.03. Freeing the shape of the power spectrum we find that beta=0.47+/-0.16 (conditional error) and Delta_0.1=0.47+/-0.03. The shape of the real-space power spectrum is consistent with a Gamma=0.2 CDM-like model, but does not strongly rule out a number of other models. Finally by combining our estimate of the amplitude of galaxy clustering and the distortion parameter we find the amplitude of mass fluctuations on a scale k=0.1h Mpc^-1 is Delta_rho=0.24Omega_0^-0.6, with an uncertainty of 50 per cent.
Liu, Xin
2015-01-01
In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability. PMID:26528987
Liu, Xin
2015-10-30
In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.
NASA Astrophysics Data System (ADS)
Stevens, R. G.; Pierce, J. R.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.
2011-12-01
New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM). The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the effective downwind plume aerosol emissions can be greatly modified by both meteorological and background aerosol conditions. In general, new particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.
NASA Astrophysics Data System (ADS)
Stevens, R. G.; Pierce, J. R.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.
2012-01-01
New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM). The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.
NASA Astrophysics Data System (ADS)
Stevens, R. G.; Pierce, J. R.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.
2011-09-01
New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10 s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM). The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.
NASA Astrophysics Data System (ADS)
Droste, Felix; Lindner, Benjamin
2017-01-01
The response properties of excitable systems driven by colored noise are of great interest, but are usually mathematically only accessible via approximations. For this reason, dichotomous noise, a rare example of a colored noise leading often to analytically tractable problems, has been extensively used in the study of stochastic systems. Here, we calculate exact expressions for the power spectrum and the susceptibility of a leaky integrate-and-fire neuron driven by asymmetric dichotomous noise. While our results are in excellent agreement with simulations, they also highlight a limitation of using dichotomous noise as a simple model for more complex fluctuations: Both power spectrum and susceptibility exhibit an undamped periodic structure, the origin of which we discuss in detail.
Droste, Felix; Lindner, Benjamin
2017-01-01
The response properties of excitable systems driven by colored noise are of great interest, but are usually mathematically only accessible via approximations. For this reason, dichotomous noise, a rare example of a colored noise leading often to analytically tractable problems, has been extensively used in the study of stochastic systems. Here, we calculate exact expressions for the power spectrum and the susceptibility of a leaky integrate-and-fire neuron driven by asymmetric dichotomous noise. While our results are in excellent agreement with simulations, they also highlight a limitation of using dichotomous noise as a simple model for more complex fluctuations: Both power spectrum and susceptibility exhibit an undamped periodic structure, the origin of which we discuss in detail.
What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization
Pober, Jonathan C.; Morales, Miguel F.; Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R.; Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max; Aguirre, James E.; Bowman, Judd D.; Jacobs, Daniel C.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Werthimer, Dan J.
2014-02-20
A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km{sup 2} collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km{sup 2} of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1981-01-01
A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.
Ermeev, I.S.; Eremenko, V.A.; Makarov, Y.A.; Matueev, V.V.; Zhernov, V.S.
1986-05-01
Rapid developments in nuclear power have stimulated research on monitoring and forecasting environmental radiation pollution (ERP), and in particular the amounts, compositions, and distributions of radionuclides in the environment. A conceptual model is presented for hybrid environmental radiation pollution monitoring. When there is an emergency, the model operates in a fashion most closely corresponding to the actual meteorological conditions, and the ERP data given by the model enable one to distinguish changes due to the man-made component from random fluctuations in the natural background. The measurement system in general includes mobile and stationary data-acquisition facilities linked by wire or radio to the central point. The system also accumulates and stores data on the radiation environment, which are edited on the basis of radioactive, chemical, and other transformations. The purpose of hybrid monitoring is ultimately to analyze trends in order to detect elevated discharges and thus to output data to the regional monitoring system.
Mohammad, Nabil; Wang, Peng; Friedman, Daniel J.; ...
2014-09-17
We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output powermore » density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. As a result, the potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.« less
Caliandro, G.A.; Torres, D.F.; Rea, N. E-mail: dtorres@aliga.ieec.uab.es
2013-07-01
Here, we present a new method to evaluate the expectation value of the power spectrum of a time series. A statistical approach is adopted to define the method. After its demonstration, it is validated showing that it leads to the known properties of the power spectrum when the time series contains a periodic signal. The approach is also validated in general with numerical simulations. The method puts into evidence the importance that is played by the probability density function of the phases associated to each time stamp for a given frequency, and how this distribution can be perturbed by the uncertainties of the parameters in the pulsar ephemeris. We applied this method to solve the power spectrum in the case the first derivative of the pulsar frequency is unknown and not negligible. We also undertook the study of the most general case of a blind search, in which both the frequency and its first derivative are uncertain. We found the analytical solutions of the above cases invoking the sum of Fresnel's integrals squared.
NASA Astrophysics Data System (ADS)
Callaghan, S. A.; Inglis, I.; Hansell, P.
2009-06-01
Adaptive transmit power control (ATPC) can be used to improve the spectrum efficiency of terrestrial point-to-point fixed links by limiting the transmit power to that required to maintain a constant bit error rate regardless of the propagation conditions. This results in a reduced transmit power being used during clear-sky conditions, lowering the interference resulting from the ATPC link. This improves the frequency reuse factor associated with a given band and geographic area, providing a spectrum efficiency gain. The project described in this paper found that implementing ATPC in the 38 GHz terrestrial fixed links band gives significant improvements in spectrum efficiency as measured by the increase in the number of links assigned to channel 1 (from ˜50% to ˜70%) and the decrease in the maximum bandwidth used (from ˜300 MHz to ˜180 MHz). However, a model plan exposed to an exceptionally intense frontal rain event showed a number of additional outages caused by ATPC, amounting to approximately 12% of the number of outages caused directly by rain. In comparison, when exposed to an annualized simulated rain database the number of extra outages in this case falls to 2.6%.
NASA Astrophysics Data System (ADS)
Yuan, Yi; Lu, Cheng-Biao; Li, Xiao-Li
2015-08-01
Local field potential (LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation (FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases. Project supported by the National Natural Science Foundation of China (Grant No. 61273063), China Postdoctoral Science Foundation (Grant No. 2013M540215), and the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161).
NASA Technical Reports Server (NTRS)
Gregory, A. G.; Patterson, J. R.; Protheroe, R. J.
1985-01-01
A new Cerenkov photon density spectrum measurement is reported. The derivation of the primary cosmic ray energy spectrum for energies from 3x10 to the 15th power eV to 3x10 to the 16th power eV are presented.
NASA Technical Reports Server (NTRS)
Kashlinsky, A.
1993-01-01
Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.
Sinha, Rakesh Kumar
2007-01-01
A method has been presented for an effective application of backpropagation artificial neural network (ANN) in establishment of electro-encephalogram (EEG) power spectra as an index of stress in hot environment. The power spectrum data for slow wave sleep (SWS), rapid eye movement (REM) sleep and awake (AWA) states in three groups of rats (acute heat stress, chronic heat stress and the normal) were tested by an ANN, containing 60 nodes in input layer, weighted from power spectrum data from 0 to 30 Hz, 18 nodes in hidden layer and an output node. The target output values for this network were determined with another five-layered neural network (with the structure of 3-12-1-12-3). The input and output of this network was assigned with the three well-established heat stress indices (body temperature, body weight and plasma corticosterone). The most important feature for acute stress, chronic stress and normal conditions were extracted from the third layer single neuron and used for the target value for the three-layered neural network. The ANN was found effective in recognising the EEG power spectra with an average of 96.67% for acute heat stress, 97.17% for chronic heat stress and 98.5% for normal subjects.
Not Available
2010-12-01
When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.
The Cosmic Infrared Background Experiment
NASA Astrophysics Data System (ADS)
Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.
2009-01-01
We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.
Engelbrecht, N. E.; Burger, R. A.
2015-12-01
In this study, a novel ab initio cosmic ray (CR) modulation code that solves a set of stochastic transport equations equivalent to the Parker transport equation, and that uses output from a turbulence transport code as input for the diffusion tensor, is introduced. This code is benchmarked with a previous approach to ab initio modulation. The sensitivity of computed galactic CR proton spectra at Earth to assumptions made as to the low-wavenumber behavior of the two-dimensional (2D) turbulence power spectrum is investigated using perpendicular mean free path expressions derived from two different scattering theories. Constraints on the low-wavenumber behavior of the 2D power spectrum are inferred from the qualitative comparison of computed CR spectra with spacecraft observations at Earth. Another key difference from previous studies is that observed and inferred CR intensity spectra at 73 AU are used as boundary spectra instead of the usual local interstellar spectrum. Furthermore, the results presented here provide a tentative explanation as to the reason behind the unusually high galactic proton intensity spectra observed in 2009 during the recent unusual solar minimum.
Statistical characteristics of the observed Lyα forest and the shape of the initial power spectrum
NASA Astrophysics Data System (ADS)
Demiański, M.; Doroshkevich, A. G.; Turchaninov, V. I.
2006-09-01
We analyse the basic properties of about 6000 Lyman α absorbers observed in the high-resolution spectra of 19 quasars. We compare their observed characteristics with the predictions of our model of formation and evolution of absorbers and dark matter (DM) pancakes and voids based on the Zel'dovich theory of gravitational instability. This model asserts that absorbers are formed in the course of both linear and non-linear adiabatic and shock compression of DM and gaseous matter. Our model is consistent with simulations of structure formation, describes reasonably well the large-scale structure (LSS) observed in the distribution of galaxies at small redshifts, and emphasizes the generic similarity of the process of formation of LSS and absorbers. Using this model, we are able to link the column density and overdensity of the DM and gaseous components with the observed column density of neutral hydrogen, redshifts and Doppler parameters of absorbers. We show that the colder absorbers are associated with rapidly expanded underdense regions of galactic scale. We extend an existing method of measuring the power spectrum of initial perturbations. The observed separations between absorbers and their DM column density are linked with the correlation function of the initial velocity field. Applying this method to our sample of absorbers, we recover the cold dark matter (CDM) like power spectrum at scales of 10h-1 >= D >= 0.15h-1Mpc with a precision of ~15 per cent. However, at scales of ~3-150h-1kpc, the measured and CDM-like spectra are different. This result suggests a possible complex inflation with generation of excess power at small scales. Both confirmation of the CDM-like shape of the initial power spectrum and detection of its distortions at small scales are equally important for the widely discussed problems of physics of the early Universe, galaxy formation, and reheating of the Universe.
ERIC Educational Resources Information Center
Ekas, Naomi V.; Timmons, Lisa; Pruitt, Megan; Ghilain, Christine; Alessandri, Michael
2015-01-01
The current study uses the actor-partner interdependence model to examine the predictors of relationship satisfaction for mothers and fathers of children with autism spectrum disorder. Sixty-seven couples completed measures of optimism, benefit finding, coping strategies, social support, and relationship satisfaction. Results indicated that…
Harnessing the Power of Play: Opportunities for Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Mastrangelo, Sonia
2009-01-01
Play is a complex phenomenon that occurs naturally for most children; they move through the various stages of play development and are able to add complexity, imagination, and creativity to their thought processes and actions. However, for many children with autism spectrum disorders (ASD), the various stages of play never truly develop, or occur…
Gravitino decay and the cosmic gamma-ray background
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1986-01-01
It is argued that the cosmic gamma-ray background (CGB) spectrum does not exhibit evidence for the decay of light gravitinos, in contradiction to the suggestion by Olive and Silk (1985), who observed a bump near 1 MeV in the CGB radiation spectrum. It is suggested that better fits to the CGB spectrum would be provided by mechanisms generating a power-law spectrum which is flattened below about 2 MeV. Olive and Silk maintain that the decays of a long-lived particle such as the gravitino may be responsible for features in the gamma-ray spectrum near 1 MeV.
Parsons, Aaron; Pober, Jonathan; McQuinn, Matthew; Jacobs, Daniel; Aguirre, James
2012-07-01
Telescopes aiming to measure 21 cm emission from the Epoch of Reionization must toe a careful line, balancing the need for raw sensitivity against the stringent calibration requirements for removing bright foregrounds. It is unclear what the optimal design is for achieving both of these goals. Via a pedagogical derivation of an interferometer's response to the power spectrum of 21 cm reionization fluctuations, we show that even under optimistic scenarios first-generation arrays will yield low-signal-to-noise detections, and that different compact array configurations can substantially alter sensitivity. We explore the sensitivity gains of array configurations that yield high redundancy in the uv-plane-configurations that have been largely ignored since the advent of self-calibration for high-dynamic-range imaging. We first introduce a mathematical framework to generate optimal minimum-redundancy configurations for imaging. We contrast the sensitivity of such configurations with high-redundancy configurations, finding that high-redundancy configurations can improve power-spectrum sensitivity by more than an order of magnitude. We explore how high-redundancy array configurations can be tuned to various angular scales, enabling array sensitivity to be directed away from regions of the uv-plane (such as the origin) where foregrounds are brighter and instrumental systematics are more problematic. We demonstrate that a 132 antenna deployment of the Precision Array for Probing the Epoch of Reionization observing for 120 days in a high-redundancy configuration will, under ideal conditions, have the requisite sensitivity to detect the power spectrum of the 21 cm signal from reionization at a 3{sigma} level at k < 0.25 h Mpc{sup -1} in a bin of {Delta}ln k = 1. We discuss the tradeoffs of low- versus high-redundancy configurations.
Murder on the mind: tyranical power and other points along the perverse spectrum.
Tuch, Richard
2010-02-01
This paper illustrates the breadth and depth of the spectrum of perversion and perversity as currently represented in the psychoanalytic literature, raises questions about recent tendencies to include a host of diverse-seeming phenomena under the same conceptual umbrella, and strives to demonstrate what these phenomena have in common that justifies lumping them together under the same rubric. One end of this spectrum is represented by the employment of simple fetishes introduced into a sexual scene in order to promote sexual arousal. Moving along the continuum, one encounters increasing complex behavioral patterns including the enactment of scripts that actualize one's perverse fantasies, including the assumption of complementary roles (e.g. sadomasochism) that equally serve the needs, and represent the desires, of both parties involved. A unique clinical entity, 'perverse modes of relatedness,' lies on the extreme end of the spectrum, representing the reification of the relationship as it becomes little more than a vehicle to take possession and control one's object for the gratification of one's sole needs and desires. What each of these phenomena share in common is both the insertion of a thing or condition - ranging from a simple fetishistic object to an elaborate style of relating that reduces the other into pawn played upon the pervert's chessboard, between the two 'relating' objects as well as a less than honest relationship with reality.
Signatures of modified gravity on the 21 cm power spectrum at reionisation
Brax, Philippe
2013-01-01
Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.
Li, He-yan; Wang, Li-yong; Ma, Biao; Zheng, Chang-song; Chen, Man
2009-04-01
The running-in process wear rule of power-shift steering transmission can be studied conveniently and timely by using spectral analysis of oil. The configuration characteristic and the running-in mechanism of power-shift steering transmission were introduced firstly in the present paper. According to the discussion of running-in wear factors such as load, rotation speed, time, oil temperature, shifting number and original concentration of running-in oil, the wear calculation mode was established. The no-load running-in experiments of two power-shift steering transmissions were done, with different rotation speed and time. Based on the spectrum analysis of experiment result, the function relation between running-in wear and the oil original concentration and running-in speed was obtained, so the no-load running-in process wear calculation mode of power-shift steering transmission was confirmed. Through the experiment of other two power-shift steering transmissions, it was validated that the Cu element concentration can be calculated accurately by the wear calculation mode, which included the parameters such as oil original concentration, running-in speed, running-in time and gear shift alternate time. So the reference to evaluate the running-in quality and to constitute running-in regulations was gained.
Power spectrum and fractal dimension of laser backscattering from the ocean.
Churnside, James H; Wilson, James J
2006-11-01
We flew an airborne lidar perpendicular to the coastline along straight-line transects that varied in length between 230 and 280 km. The sample spacing was approximately 3 m, so we sampled almost five decades of spatial scales. Except for the return from right at the surface, the power spectra of backscattered power had a power-law dependence on spatial frequency, with a slope of approximately 1.49. This corresponds to a fractal dimension of 1.76. This implies that the distribution is not as patchy as that of a purely turbulent process.
Nakajima, Kohei; Haruna, Taichi
2011-09-01
In this paper, we propose a new class of cellular automata based on the modification of its state space. It is introduced to model a computation which is exposed to an environment. We formalized the computation as extension and projection processes of its state space and resulting misidentifications of the state. This is motivated to embed the role of an environment into the system itself, which naturally induces self-organized internal perturbations rather than the usual external perturbations. Implementing this structure into the elementary cellular automata, we characterized its effect by means of input entropy and power spectral analysis. As a result, the cellular automata with this structure showed robust class IV behavior and a 1/f power spectrum in a wide range of rule space comparative to the notion of the edge of chaos.
A MODEL FOR THE NON-UNIVERSAL POWER LAW OF THE SOLAR WIND SUB-ION-SCALE MAGNETIC SPECTRUM
Passot, T.; Sulem, P. L. E-mail: sulem@oca.eu
2015-10-20
A phenomenological turbulence model for kinetic Alfvén waves in a magnetized collisionless plasma that is able to reproduce the non-universal power-law spectra observed at the sub-ion scales in the solar wind and the terrestrial magnetosphere is presented. The process of temperature homogenization along distorted magnetic field lines, induced by Landau damping, affects the turbulence transfer time and results in a steepening of the sub-ion power-law spectrum of critically balanced turbulence, whose exponent is sensitive to the ratio between the Alfvén wave period and the nonlinear timescale. Transition from large-scale weak turbulence to smaller scale strong turbulence is captured and nonlocal interactions, relevant in the case of steep spectra, are accounted for.
Not Available
2010-12-01
Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.
NASA Astrophysics Data System (ADS)
Wan, Baikun; Ming, Dong; Fu, Xiaomeng; Yang, Chunmei; Qi, Hongzhi; Chen, Binjin
2006-03-01
Our objective was to investigate the quantitative electroencephalogram (EEG) power spectrum typical of Chinese Han ethnic Alzheimer's disease (AD) patients. A study on the resting EEG was carried out on 103 local AD (NINCDS-ADRDA criteria) patients, and 124 age-matched normal elderly subjects served as controls. A novel multi-resolution decomposition algorithm based on Daubechies wavelet transform was employed for EEG spectral analysis. This algorithm decomposed recorded EEG signals into components with five frequency subbands, which especially provided more electroneural activity details in comparison with the conventional four subbands. A significant prevalence of an EEG spectrum characterized by increased slow activity with decreased fast activity was found in these patients. Moreover, the spectral power increase/decrease was mainly centralized in the below-2 Hz/over-8 Hz band, whereas the 2-8 Hz band did not show any widespread change. In conclusion, this study may provide some evidence of specific spectral changes of EEG affected by AD in China.
Sadygov, Rovshan G; Zhao, Yingxin; Haidacher, Sigmund J; Starkey, Jonathan M; Tilton, Ronald G; Denner, Larry
2010-08-06
We describe a method for ratio estimations in (18)O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allow commonly used ion trap mass spectrometers to attain isotopic resolution, which makes them amenable to use in labeling schemes such as (18)O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach that may be uniquely suited to these data types. The software implementation uses a power spectrum to remove high-frequency noise and band-filter contributions from coeluting species of differing charge states. From the elemental composition of a peptide sequence, we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer.
NASA Astrophysics Data System (ADS)
Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Walsh, Jonathan R.; Zurek, Kathryn M.
2016-06-01
We compute the non-Gaussian contribution to the covariance of the matter power spectrum at one-loop order in standard perturbation theory (SPT), using the framework of the effective field theory (EFT) of large scale structure (LSS). The complete one-loop contributions are evaluated for the first time, including the leading EFT corrections that involve seven independent operators, of which four appear in the power spectrum and bispectrum. We compare the non-Gaussian part of the one-loop covariance computed with both SPT and EFT of LSS to two separate simulations. In one simulation, we find that the one-loop prediction from SPT reproduces the simulation well to ki+kj˜0.25 h /Mpc , while in the other simulation we find a substantial improvement of EFT of LSS (with one free parameter) over SPT, more than doubling the range of k where the theory accurately reproduces the simulation. The disagreement between these two simulations points to unaccounted for systematics, highlighting the need for improved numerical and analytic understanding of the covariance.
Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals
NASA Astrophysics Data System (ADS)
Schmittfull, Marcel; Vlah, Zvonimir
2016-11-01
Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.
Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad
2016-06-11
It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum Cℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of Cℓ.
NASA Astrophysics Data System (ADS)
Adams, Fred C.; Bond, J. Richard; Freese, Katherine; Frieman, Joshua A.; Olinto, Angela V.
1993-01-01
We discuss the particle physics basis for models of natural inflation with pseudo Nambu-Goldstone bosons and study the consequences for large-scale structure of the nonscale-invariant density fluctuation spectra that arise in natural inflation and other models. A pseudo Nambu-Goldstone boson, with a potential of the form V(φ)=Λ4[1+/-cos(φ/f)], can naturally give rise to an epoch of inflation in the early Universe, if f~MPl and Λ~MGUT. Such mass scales arise in particle physics models with a gauge group that becomes strongly interacting at the grand unified theory scale. We work out a specific particle physics example based on the multiple gaugino condensation scenario in superstring theory. We then study the cosmological evolution of and constraints upon these inflation models numerically and analytically. To obtain sufficient inflation with a probability of order 1 and a high enough post-inflation reheat temperature for baryogenesis, we require f>~0.3MPl. The primordial density fluctuation spectrum generated by quantum fluctuations in φ is a non-scale-invariant power law P(k)~kns, with ns~=1-(M2Pl/8πf2) leading to more power on large length scales than the ns=1 Harrison-Zeldovich spectrum. (For the reader primarily interested in large-scale structure, the discussion of this topic is presented in Sec. IV and is intended to be nearly self-contained.) We pay special attention to the prospects of using the enhanced power to explain the otherwise puzzling large-scale clustering of galaxies and clusters and their flows. We find that the standard cold dark matter (CDM) model with 0<~ns<~0.6 could in principle explain these data. However, the microwave background anisotropies recently detected by the Cosmic Background Explorer (COBE) imply such low primordial amplitudes for these CDM models (that is, bias factors b8>~2 for ns<~0.6) that galaxy formation would occur too late to be viable and the large-scale galaxy velocities would be too small. In fact, combining the
Block, David L.; Puerari, Ivanio; Elmegreen, Bruce G.; Bournaud, Frederic
2010-07-20
Power spectra of Large Magellanic Cloud (LMC) emission at 24, 70, and 160 {mu}m observed with the Spitzer Space Telescope have a two-component power-law structure with a shallow slope of -1.6 at low wavenumber, k, and a steep slope of -2.9 at high k. The break occurs at k {sup -1} {approx} 100-200 pc, which is interpreted as the line-of-sight thickness of the LMC disk. The slopes are slightly steeper for longer wavelengths, suggesting the cooler dust emission is smoother than the hot emission. The power spectrum (PS) covers {approx}3.5 orders of magnitude, and the break in the slope is in the middle of this range on a logarithmic scale. Large-scale driving from galactic and extragalactic processes, including disk self-gravity, spiral waves, and bars, presumably causes the low-k structure in what is effectively a two-dimensional geometry. Small-scale driving from stellar processes and shocks causes the high-k structure in a three-dimensional geometry. This transition in dimensionality corresponds to the observed change in PS slope. A companion paper models the observed power law with a self-gravitating hydrodynamics simulation of a galaxy like the LMC.
Ebihara, Akira; Tanaka, Yuichi; Konno, Takehiko; Kawasaki, Shingo; Fujiwara, Michiyuki; Watanabe, Eiju
2013-10-01
The diagnosis and medical treatment of cerebral ischemia are becoming more important due to the increase in the prevalence of cerebrovascular disease. However, conventional methods of evaluating cerebral perfusion have several drawbacks: they are invasive, require physical restraint, and the equipment is not portable, which makes repeated measurements at the bedside difficult. An alternative method is developed using near-infrared spectroscopy (NIRS). NIRS signals are measured at 44 positions (22 on each side) on the fronto-temporal areas in 20 patients with cerebral ischemia. In order to extract the pulse-wave component, the raw total hemoglobin data recorded from each position are band-pass filtered (0.8 to 2.0 Hz) and subjected to a fast Fourier transform to obtain the power spectrum of the pulse wave. The ischemic region is determined by single-photon emission computed tomography. The pulse-wave power in the ischemic region is compared with that in the symmetrical region on the contralateral side. In 17 cases (85%), the pulse-wave power on the ischemic side is significantly lower than that on the contralateral side, which indicates that the transmission of the pulse wave is attenuated in the region with reduced blood flow. Pulse-wave power might be useful as a noninvasive marker of cerebral ischemia.
Axicons for power conversion efficiency enhancement in solar cells for the visible spectrum
NASA Astrophysics Data System (ADS)
Podlipnov, V. V.; Porfirev, A. P.; Khonina, S. N.
2016-08-01
We investigate the possibility of using diffractive microaxicons with different periods for power conversion efficiency enhancement in solar cells. The microaxicons were manufactured by using electron beam lithography. The parameters of the manufactured microaxicons were measured using scanning electron microscopy (SEM). For imitation of solar light, we utilised a tunable laser (the used wavelength range is from 400 nm to 800 nm). Experimentally measured dependence of solar cell efficiency for the case of a combination of a solar cell and microaxicons of various types demonstrates a power conversion efficiency enhancement in the case of using such structures.
NASA Technical Reports Server (NTRS)
Krasilnikov, D. D.; Knurenko, S. P.; Krasilnikov, A. D.; Pavlov, V. N.; Sleptsov, I. Y.; Yegorova, V. P.
1985-01-01
The extensive air showers spectrum on scintillation desity Rko in primary energy region E sub approx. 10 to the 15th power - 10 to the 20th power eV on the Yakutsk array data and recent results of the Akeno is given.
Application of Monte Carlo algorithms to the Bayesian analysis of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, J.; Levin, S.; Anderson, C. H.
2004-01-01
Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB).
Optical tuning of the fluorescence spectrum of a π-conjugated polymer through excitation power.
Deichmann, Vitor Angelo Fonseca; Yakutkin, Vladimir; Baluschev, Stanislav; Akcelrud, Leni
2011-05-26
The photophysical properties of a π-conjugated polymer containing 2,2'-bipyridyl alternated with 2,5-dihexyloxyphenylene units (PBPyDHP) are investigated experimentally in terms of the conditions used (solvent, concentration, presence or absence of molecular oxygen, and optical excitation power). The experimental results have suggested that the fluorescence from PBPyDHP can be tuned by proper selection of the experimental conditions showing only one or two emission peaks: 445 nm (blue) and 555 nm (green). The observed effects were interpreted in terms of the twisted intramolecular charge transfer (TICT) theory. This is the first experimental report showing the interconversion of an usual fluorescence, called locally emission state (LE), to a TICT state in second scale time by varying the excitation power; that is, even though the torsion of only one fluorophore occurs in a nano or picosecond scale, the global change (the interconversion for all fluorophores) has occurred in the second time scale.
Neckelmann, D; Bjorvatn, B; Bjørkum, A A; Ursin, R
1996-09-01
The sleep/wake effects of the selective serotonin re-uptake inhibitor citalopram were studied in both a single-dose study with three dose levels (0.5, 2.0 and 5.0 mg/kg), and a 5-week chronic administration study (15 mg/kg/24 h). Single doses of citalopram resulted in a dose-dependent inhibition of rapid eye movement (REM) sleep. After chronic citalopram treatment there was a sustained REM sleep inhibition. Single doses of citalopram resulted in only minor changes in non-REM (NREM) sleep as well as in NREM EEG power spectral density. Chronic administration resulted in a major shift from SWS-2 to SWS-1. The observed corresponding changes in EEG power density were regional. A 30 to 40 percent reduction of power density in the 0.5-15 Hz range in the fronto-parietal EEG derivation was seen for the whole 8-h registration period. In the fronto-frontal EEG derivation only minor changes were seen. A decreasing trend in NREM sleep power density between 0.5 and 7 Hz, usually seen during the course of the light period, was not observed in the chronic condition, but was seen in control and single-dose condition, suggesting altered diurnal distribution of slow wave activity in the chronic condition. The data indicate that acute and chronic administration of citalopram shows clear differences in sleep effect, which may be caused by alteration of serotonergic transmission, and may be related to the antidepressant effect.
Warm dark matter signatures on the 21cm power spectrum: intensity mapping forecasts for SKA
Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo; Lapi, Andrea E-mail: villaescusa@oats.inaf.it E-mail: lapi@sissa.it
2015-07-01
We investigate the impact that warm dark matter (WDM) has in terms of 21 cm intensity mapping in the post-reionization Universe at z=3−5. We perform hydrodynamic simulations for 5 different models: cold dark matter and WDM with 1,2,3,4 keV (thermal relic) mass and assign the neutral hydrogen a-posteriori using two different methods that both reproduce observations in terms of column density distribution function of neutral hydrogen systems. Contrary to naive expectations, the suppression of power present in the linear and non-linear matter power spectra, results in an increase of power in terms of neutral hydrogen and 21 cm power spectra. This is due to the fact that there is a lack of small mass halos in WDM models with respect to cold dark matter: in order to distribute a total amount of neutral hydrogen within the two cosmological models, a larger quantity has to be placed in the most massive halos, that are more biased compared to the cold dark matter cosmology. We quantify this effect and address significance for the telescope SKA1-LOW, including a realistic noise modeling. The results indicate that we will be able to rule out a 4 keV WDM model with 5000 hours of observations at z>3, with a statistical significance of >3 σ, while a smaller mass of 3 keV, comparable to present day constraints, can be ruled out at more than 2 σ confidence level with 1000 hours of observations at z>5.
Warm dark matter signatures on the 21cm power spectrum: intensity mapping forecasts for SKA
NASA Astrophysics Data System (ADS)
Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo; Lapi, Andrea
2015-07-01
We investigate the impact that warm dark matter (WDM) has in terms of 21 cm intensity mapping in the post-reionization Universe at z=3-5. We perform hydrodynamic simulations for 5 different models: cold dark matter and WDM with 1,2,3,4 keV (thermal relic) mass and assign the neutral hydrogen a-posteriori using two different methods that both reproduce observations in terms of column density distribution function of neutral hydrogen systems. Contrary to naive expectations, the suppression of power present in the linear and non-linear matter power spectra, results in an increase of power in terms of neutral hydrogen and 21 cm power spectra. This is due to the fact that there is a lack of small mass halos in WDM models with respect to cold dark matter: in order to distribute a total amount of neutral hydrogen within the two cosmological models, a larger quantity has to be placed in the most massive halos, that are more biased compared to the cold dark matter cosmology. We quantify this effect and address significance for the telescope SKA1-LOW, including a realistic noise modeling. The results indicate that we will be able to rule out a 4 keV WDM model with 5000 hours of observations at z>3, with a statistical significance of >3 σ, while a smaller mass of 3 keV, comparable to present day constraints, can be ruled out at more than 2 σ confidence level with 1000 hours of observations at z>5.
Yuvaraj, R; Murugappan, M; Ibrahim, Norlinah Mohamed; Omar, Mohd Iqbal; Sundaraj, Kenneth; Mohamad, Khairiyah; Palaniappan, R; Satiyan, M
2014-03-01
Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13-30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The
NASA Technical Reports Server (NTRS)
Szabo, Adam; Koval, A.
2011-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the similar observations made by the MESSENGER spacecraft in the inner heliosphere affords an opportunity to compare magnetic field power spectral density variations as a function of radial distance from the Sun under different solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The powe'r spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. Wind and MESSENGER magnetic fluctuations are compared for times when the two spacecraft are close to radial and Parker field alignment. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
Upper limits on the 21 cm power spectrum at z = 5.9 from quasar absorption line spectroscopy
NASA Astrophysics Data System (ADS)
Pober, Jonathan C.; Greig, Bradley; Mesinger, Andrei
2016-11-01
We present upper limits on the 21 cm power spectrum at z = 5.9 calculated from the model-independent limit on the neutral fraction of the intergalactic medium of x_{H I} < 0.06 + 0.05 (1σ ) derived from dark pixel statistics of quasar absorption spectra. Using 21CMMC, a Markov chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of Δ2(k) < 10-20 mK2 over a range of k from 0.5 to 2.0 h Mpc-1, with the exact limit dependent on the sampled k mode. This limit can be used as a null test for 21 cm experiments: a detection of power at z = 5.9 in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.
Boedeker, K L; Cooper, V N; McNitt-Gray, M F
2007-07-21
Dose reduction efforts in diagnostic CT have brought the tradeoff of dose versus image quality to the forefront. The need for meaningful characterization of image noise beyond that offered by pixel standard deviation is becoming increasingly important. This work aims to study the implementation of the noise power spectrum (NPS) and noise equivalent quanta (NEQ) on modern, multislice diagnostic CT scanners. The details of NPS and NEQ measurement are outlined and special attention is paid to issues unique to multislice CT. Aliasing, filter design and effects of acquisition geometry are investigated. While it was found that both metrics can be implemented in modern CT, it was discovered that NEQ cannot be aptly applied with certain non-traditional reconstruction filters or in helical mode. NPS and NEQ under a variety of conditions are examined. Extensions of NPS and NEQ to uses in protocol standardization are also discussed.
A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane.
Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin
2013-02-08
A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.
NASA Astrophysics Data System (ADS)
Patra, Sankar Narayan; Bhattacharya, Gautam; Ghosh, Koushik; Raychaudhuri, Probhas
2009-11-01
The solar irradiance data plays a very important role for understanding of Solar internal Structure and the solar terrestrial relationships. The Total Solar Irradiance (TSI) is integrated solar energy flux over the entire spectrum which arrives at the top of the atmosphere at the mean sun earth distance. TSI has been monitored from several satellites, e.g. Nimbus 7, Solar Maximum Mission (SMM), The NASA, Earth Radiation Budget Satellite (ERBS), NOAA9, NOAA10, Eureca and the Upper Atmospheric Research Satellite (UARS) etc. From these observations it reveals that the total solar irradiance varies about a small fraction of 0.1 over solar cycle being higher during maximum solar activity condition. In the present paper we have analysed the solar irradiance data from ERBS during the time period from October 15, 1984 to October 15, 2003. First filtering the data by Simple Exponential Smoothing we have applied the Rayleigh Power Spectrum Analysis on the processed data in order to search for its time variation. Study exhibits multi-periodicities on these data around 7, 11, 42, 80, 104, 130, 160, 254, 536, 752, 1142, 1388, 2474 and 4951 days with very high confidence levels (more than 95%). Apart from these strong periods there are some other weak periods around 22, 47, 53, 67, 69, 149, 167, 365, 489 and 683 days. These periods are significantly similar with the periods of other solar activities which may suggest that solar irradiance may be associated with other solar activities.
NASA Astrophysics Data System (ADS)
Afdala, Adfal; Nuryani, Nuryani; Satrio Nugroho, Anto
2017-01-01
Atrial fibrillation (AF) is a disorder of the heart with fairly high mortality in adults. AF is a common heart arrythmia which is characterized by a missing or irregular contraction of atria. Therefore, finding a method to detect atrial fibrillation is necessary. In this article a system to detect atrial fibrillation has been proposed. Detection system utilized backpropagation artifical neural network. Data input in this method includes power spectrum density of R-peaks interval of electrocardiogram which is selected by wrapping method. This research uses parameter learning rate, momentum, epoch and hidden layer. System produces good performance with accuracy, sensitivity, and specificity of 83.55%, 86.72 % and 81.47 %, respectively.
NASA Astrophysics Data System (ADS)
Lell, R. M.; Hanan, N. A.
Effects of multigroup neutron cross section generation procedures on core physics parameters for compact fast spectrum reactors were examined. Homogeneous and space dependent multigroup cross section set were generated in 11 and 27 groups for a representative fast reactor core. These cross sections were used to compute various reactor physics parameters for the reference core. Coarse group structure and neglect of space dependence in the generation procedure resulted in inaccurate computations of reactor flux and power distributions and in significant errors regarding estimates of core reactivity and control system worth. Delayed neutron fraction was insensitive to cross section treatment, and computed reactivity coefficients were only slightly sensitive. However, neutron lifetime was found to be very sensitive to cross section treatment. Deficiencies in multigroup cross sections are reflected in core nuclear design and, consequently, in system mechanical design.
Entropy information of heart rate variability and its power spectrum during day and night
NASA Astrophysics Data System (ADS)
Jin, Li; Jun, Wang
2013-07-01
Physiologic systems generate complex fluctuations in their output signals that reflect the underlying dynamics. We employed the base-scale entropy method and the power spectral analysis to study the 24 hours heart rate variability (HRV) signals. The results show that such profound circadian-, age- and pathologic-dependent changes are accompanied by changes in base-scale entropy and power spectral distribution. Moreover, the base-scale entropy changes reflect the corresponding changes in the autonomic nerve outflow. With the suppression of the vagal tone and dominance of the sympathetic tone in congestive heart failure (CHF) subjects, there is more variability in the date fluctuation mode. So the higher base-scale entropy belongs to CHF subjects. With the decrease of the sympathetic tone and the respiratory frequency (RSA) becoming more pronounced with slower breathing during sleeping, the base-scale entropy drops in CHF subjects. The HRV series of the two healthy groups have the same diurnal/nocturnal trend as the CHF series. The fluctuation dynamics trend of data in the three groups can be described as “HF effect”.
Time Resolved Spectroscopy, High Sensitivity Power Spectrum & a Search for the X-Ray QPO in NGC 5548
NASA Astrophysics Data System (ADS)
Yaqoob, Tahir
1999-09-01
Controversy surrounds the EXOSAT discovery of a QPO (period ~500 s) in NGC 5548 due to the data being plagued by high background and instrumental systematics. If the NGC 5548 QPO is real, the implications for the physics of the X-ray emission mechanism and inner-most disk/black-hole system are enormous. AXAF provides the first opportunity to settle the issue, capable of yielding power spectra with unprecedented sensitivity, pushing the limit on finding new features. Using HETG/ACIS we will also perform time-resolved spectroscopy of the ionized absorption features and Fe-K emission line, search for energy-dependent time lags in the continuum, between the continuum and spectral features, and between the spectral features. These data will provide powerful constraints on models of AGN.
Concepts of EEG processing: from power spectrum to bispectrum, fractals, entropies and all that.
Schwilden, Helmut
2006-03-01
Over the past two decades, methods of processing the EEG for monitoring anaesthesia have greatly expanded. Whereas power spectral analysis was once the most important tool for extracting EEG monitoring variables, higher-order spectra, wavelet decomposition and especially methods used in the analysis of complex dynamical systems such as non-linear dissipative systems are nowadays attracting much attention. This chapter reviews some of these methods in brief. However, a comparison of some of the newer approaches with the more traditional ones with respect to clinical end-points by association measures and to the signal-to-noise ratio raises some doubt over whether the newer EEG-processing techniques really do better than the more traditional ones.
Hamann, Jan; Hannestad, Steen; Sloth, Martin S; Wong, Yvonne Y Y E-mail: sth@phys.au.dk E-mail: ywong@mppmu.mpg.de
2008-09-15
We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter {epsilon} ({approx}>0.001), a positive detection of trans-Planckian ripples can be made even if the amplitude is as low as 10{sup -4}. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound, a scale of new physics as high as {approx}0.2 M{sub P} could lead to observable signatures.
Novel, High-power, Mid-infrared Optical Source for the 5-12 Micron Spectrum
2011-12-01
mid‐IR nonlinear crystals of MgO:PPLN, MgO:sPPLT, and CdSiP2 together with fiber and solid‐ state laser technology at 1064 nm as the pump source...power scaling, we deployed cw Yb fiber laser technology at 1064 nm as the primary laser pump source. In our early effort in this direction, we...phase-matched (QPM) nonlinear material, MgO:PPLN, as the gain medium [1]. Using a single-frequency, cw Yb fiber laser at 1064 nm and a 50-mm-long
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
NASA Astrophysics Data System (ADS)
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r < 20 kpc) ≈ 0.2 per cent] assuming that the Pal 5 stream is 5 Gyr old. Improved data will allow measurements of the subhalo mass function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.
Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.
Roman-Liu, Danuta; Konarska, Maria
2009-10-01
The aim of the study was to quantify changes in PSDF frequency bands of the EMG signal and EMG parameters such as MF, MPF and zero crossing, with an increase in the level of muscle contractions in the range from 0.5% to 30% RMS(max) and to determine the frequency bands with the lowest dependency on RMS level so that this could be used in investigating muscle fatigue. Sixteen men, aged from 23 to 33 years old (mean 26.1), who participated in the study performed two force exertion tests. Fragments of EMG which corresponded to the levels of muscle contraction of 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30% RMS(max) registered from left and right trapezius pars descendents (TP) and left and right extensor digitorum superficialis (ED) muscles were selected for analysis. The analysis included changes in standard parameters of the EMG signal and changes in PSDF frequency bands, which occurred across muscle contraction levels. To analyze changes in PSDF across the level of muscle contraction, the spectrum was divided into six frequency bandwidths. The analysis of parameters focused on the differences in those parameters between the analyzed muscles, at different levels of muscle contraction. The study revealed that, at muscle contraction levels below 5% RMSmax, contraction level influences standard parameters of the EMG signal and that at such levels of muscle contraction every change in muscle contraction level (recruitment of additional MUs) is reflected in PSDF. The frequency band with the lowest dependency on contraction level was 76-140 Hz for which in both muscles no contraction level effect was detected for contraction levels above 5% RMS(max). The reproducibility of the results was very high, since the observations in of the left and right muscles were almost equal. The other factor, which strongly influences PSDF of the EMG signal, is probably the examined muscle structure (muscle morphology, size, function, subcutaneous layer, cross talk). It seems that low
Messiaen, A. Ongena, J.; Vervier, M.; Swain, D.
2015-12-10
The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V{sub max} amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V{sub max} of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k{sub //} computed by means of the coupling code ANTITER II remains small for the considered cases.
Messiaen, Andre; Swain, David W; Ongena, Jef; Vervier, Michael
2015-01-01
The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V-max amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V-max of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is +/- 20 degrees, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k//computed by means of the coupling code ANTITER II remains small for the considered cases. [GRAPHICS] .
A Cutoff in the X-Ray Fluctuation Power Density Spectrum of the Seyfert 1 Galaxy NGC 3516
NASA Technical Reports Server (NTRS)
Edelson, Rick; Nandra, Kirpal
1999-01-01
During 1997 March-July, RXTE observed the bright, strongly variable Seyfert 1 galaxy NGC 3516 once every approx. 12.8 hr for 4.5 months and nearly continuously (with interruptions due to SAA passage but not Earth occultation) for a 4.2 day period in the middle. These were followed by ongoing monitoring once every approx. 4.3 days. These data are used to construct the first well-determined X-ray fluctuation power density spectrum (PDS) of an active galaxy to span more than 4 decades of usable temporal frequency. The PDS shows no signs of any strict or quasi-periodicity, but does show a progressive flattening of the power-low slope from -1.74 at short time scales to -0.73 at longer time scales. This is the clearest observation to date of the long-predicted cutoff in the PDS. The characteristic variability time scale corresponding to this cutoff temporal frequency is approx. 1 month. Although it is unclear how this time scale may be interpreted in terms of a physical size or process, there are several promising candidate models. The PDS appears similar to those seen for Galactic black hole candidates such as Cyg X-1, suggesting that these two classes of objects with very different luminosities and putative black hole masses (differing by more than a factor of 10(exp 5)) may have similar X-ray generation processes and structures.
NASA Astrophysics Data System (ADS)
Kashima, Susumu; Nishihara, Minoru; Takemoto, Yoshihiro; Osawa, Toshihiko
1990-09-01
The laser scattering characteristics from tissue microvasculature have been made clear by means of theoretical and experimental approaches. Our results show that the integrated intensity of the power spectrum correlates linearly with the volume of red blood cells in a given tissue provided the average collision number (\\bar{m}) between photons and moving red blood cells is less than unity. Also, the integrated intensity of the power spectrum is proportional to tissue blood volume if the density of red blood cells in blood (hematocrit) is constant.
Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR
NASA Astrophysics Data System (ADS)
Patil, A. H.; Yatawatta, S.; Koopmans, L. V. E.; de Bruyn, A. G.; Brentjens, M. A.; Zaroubi, S.; Asad, K. M. B.; Hatef, M.; Jelić, V.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Vedantham, H.; Abdalla, F. B.; Brouw, W. N.; Chapman, E.; Ciardi, B.; Gehlot, B. K.; Ghosh, A.; Harker, G.; Iliev, I. T.; Kakiichi, K.; Majumdar, S.; Mellema, G.; Silva, M. B.; Schaye, J.; Vrbanec, D.; Wijnholds, S. J.
2017-03-01
We present the first limits on the Epoch of Reionization 21 cm H i power spectra, in the redshift range z = 7.9–10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero {{{Δ }}}{{I}}2={(56+/- 13{mK})}2 (1-σ) excess variance and a best 2-σ upper limit of {{{Δ }}}212< {(79.6{mK})}2 at k = 0.053 h cMpc‑1 in the range z = 9.6–10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to nonlinear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
Bilayer Polymer Solar Cells with Improved Power Conversion Efficiency and Enhanced Spectrum Coverage
Kekuda, Dhananjaya; Chu, Chih-Wei
2011-10-20
We demonstrate the construction of an efficient bilayer polymer solar cell comprising of Poly(3-hexylthiophene)(P3HT) as a p-type semiconductor and asymmetric fullerene (C{sub 70}) as n-type counterparts. The bilayer configuration was very efficient compared to the individual layer performance and it behaved like a regular p-n junction device. The photovoltaic characteristic of the bilayers were studied under AM 1.5 solar radiation and the optimized device parameters are the following: Voc = 0.5V, Jsc = 10.1 mA/cm{sup 2}, FF = 0.60 and power conversion efficiency of 3.6 %. A high fill factor of {approx}0.6 was achieved, which is only slightly reduced at very intense illumination. Balanced mobility between p-and n-layers is achieved which is essential for achieving high device performance. Correlation between the crystallinity, morphology and the transport properties of the active layers is established. The External quantum efficiency (EQE) spectral distribution of the bilayer devices with different processing solvents correlates well with the trends of short circuit current densities (J{sub sc}) measured under illumination. Efficiency of the bilayer devices with rough P3HT layer was found to be about 3 times higher than those with a planar P3HT surface. Hence it is desirable to have a larger grains with a rough surface of P3HT layer for providing larger interfacial area for the exciton dissociation.
Application of Bayesian model averaging to measurements of the primordial power spectrum
Parkinson, David; Liddle, Andrew R.
2010-11-15
Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940
Multifractal estimates of monofractality in RR-heart series in power spectrum ranges
NASA Astrophysics Data System (ADS)
Makowiec, Danuta; Dudkowska, Aleksandra; Gałaşka, Rafał; Rynkiewicz, Andrzej
2009-09-01
Two popular estimators of multifractal properties: the Wavelet Transform Modulus Maxima method and Multifractal Detrended Fluctuation Analysis are applied to investigate signals consisting of normal RR-series in 39 healthy subjects and 90 patients suffering from systolic dysfunction of the left ventricle. However, differently from standards for multifractal analysis the scaling is performed separately in intervals corresponding to standard power spectral bands: low (LF), very low (VLF) and ultra low frequencies (ULF). Tests on fractional Brownian motions (fBm) are done to quantify properties of the estimators as detectors of monofractality in LF, VLF and ULF bands. Arguments are given that multifractal analysis of RR-series performed in these bands has a physiological meaning. The increased activation of the sympathetic nervous system caused by heart disease is detected evidently only by analysis in LF. The transition in multifractal characteristics between diurnal and nocturnal activity takes place when the analysis moves from LF and VLF to ULF. Only in ULF, the diurnal heart rate variability can be approximated by fBm with a self-similarity index of H=0.20.
Cosmic Microwave Background Anisotropy: Python V Results
NASA Astrophysics Data System (ADS)
Coble, K.; Dragovan, M.; Kovac, J.; Halverson, N. W.; Holzapfel, W. L.; Knox, L.; Dodelson, S.; Ganga, K.; Peterson, J. B.; Alvarez, D.; Griffin, G.; Newcomb, M.; Miller, K.; Platt, S. R.; Novak, G.
1999-05-01
Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier-based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a 0.91 x 1.02 deg beam the instrument fully sampled 598 deg(2) of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in multipole bands up to l ~ 260. The observed spectrum is consistent with both the COBE experiment and previous Python results. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large (l ~ 40) to small (l ~ 200) angular scales.
X-ray variability of 104 active galactic nuclei. XMM-Newton power-spectrum density profiles
NASA Astrophysics Data System (ADS)
Gonzalez-Martin, Omaira; Vaughan, Simon; de la Cierva, Juan
2012-09-01
Active galactic nuclei (AGN), powered by accretion onto supermassive black holes (SMBHs), are thought to be scaled up versions of Galactic black hole X-ray binaries (BH-XRBs). In the past few years evidence of such correspondence include similarities in the broadband shape of the X-ray variability power spectra, with characteristic bend times-cales scaling with mass. We have characterized the X-ray temporal properties of a sample of AGN to study the connection among different classes of AGN and their connection with BH-XRBs. We have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z<0.4) AGN using 209 XMM-Newton/pn observations (Gonzalez-Martin & Vaughan 2012, A&A accepted). Among the entire sample, ~70% show significant variability in at least one of the three bands tested. A high percentage of low-luminosity AGN do not show any significant variability (~90% of LINERs). The PSD of the majority of the variable AGN was well described by a simple power-law with a mean index of ~2. In 15 sources we found that the bending power law model was preferred with a mean slope of 2.8 and a mean bend frequency of nu(break) = 2x 10E-04 Hz. Only KUG 1031+398 (RE J1034+396) shows evidence for quasi-periodic oscillations. The "fundamental plane" relating variability timescale, black hole mass, and luminosity is studied using the new X-ray timing results presented here together with a compilation of the previously detected timescales from the literature. Both quantitative (i.e. scaling with BH mass) and qualitative (overall PSD shapes) found in this sample of AGN are in agreement with the expectations for the SMBHs and BH-XRBs being the same phenomenon scaled-up with the size of the BH. The steep PSD slopes above the high frequency bend bear a closer resemblance to those of the "soft/thermal dominated" BH- XRB states than other states.
ERIC Educational Resources Information Center
Burke, Lindsey M.; Marshall, Jennifer A.
2010-01-01
American education needs to be fixed, but national standards and testing are not the way to do it. The problems that need fixing are too deeply ingrained in the power and incentive structure of the public education system, and the renewed focus on national standards threatens to distract from the fundamental issues. Besides, federal control over…
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range
Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation
Bess, John D.; Marshall, Margaret A.; Briggs, J. Blair; Tsiboulia, Anatoli; Rozhikhin, Yevgeniy; Mihalczo, John T.
2015-03-01
A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, one was performed that consisted of uranium metal annuli surrounding a potassium-filled, stainless steel can. The outer diameter of the annuli was approximately 13 inches (33.02 cm) with an inner diameter of 7 inches (17.78 cm). The diameter of the stainless steel can was 7 inches (17.78 cm). The critical height of the configurations was approximately 5.6 inches (14.224 cm). The uranium annulus consisted of multiple stacked rings, each with radial thicknesses of 1 inch (2.54 cm) and varying heights. A companion measurement was performed using empty stainless steel cans; the primary purpose of these experiments was to test the fast neutron cross sections of potassium as it was a candidate for coolant in some early space power reactor designs.The experimental measurements were performed on July 11, 1963, by J. T. Mihalczo and M. S. Wyatt (Ref. 1) with additional information in its corresponding logbook. Unreflected and unmoderated experiments with the same set of highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in the International Handbook for Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) with the identifier HEU MET FAST 051. Thin
NASA Astrophysics Data System (ADS)
Bochkarev, S. V.
2014-02-01
A new method is proposed and elaborated for investigating complex or real trigonometric series with various spectra. It is based on new multiplicative inequalities which give a lower bound for the integral norm of the de la Vallée-Poussin means and are themselves based on results establishing corresponding analogues of the Littlewood-Paley theorem in the BMO, Hardy, and Lorentz spaces. For spectra with power-like density a description of the class of absolute values of coefficients such that the corresponding complex or real trigonometric series are Fourier series is found which depends on the arithmetic characteristics of the spectrum and is sharp in limiting cases. Furthermore, for the quadratic spectrum some results of Hardy and Littlewood on elliptic theta functions are generalized and refined. For the quadratic spectrum and power-like spectra with non-integer exponents new lower bounds are found for the integral norms of exponential sums. Bibliography: 41 titles.
1974-12-01
AD-A079 602 STANFORD RESEARCH INST MENLO PARK CALIF STRATEGIC S--ETC F/S 5/4 GREAT POWER INTERESTS AND CONFLICTING OBJECTIVES IN THE MEDITER--EYTC(U...D.C. 20310 1 jF-fl -U Ir ! CONTRACT DAAG39 --74- C 0082 LJU~ ±Li’AELNT A 1-.1pblic releaaej lion Unlimted SRI STANFORD RESEARCH INSTITUTE Menlo Park...California 94025 • U.S.A. 80 1 15 076 I Report Categories.":;i The research output by the Strategic Studies Center is published in four formats: 1
Shima, K; Mihara, T; Umetani, K; Mikumo, T
1980-08-01
Observation of gamma-ray background has been done by using a Ge(Li) semiconductor detector when it was placed inside the lead shielding material. With the aid of a very simple model calculation, the concentration of 210Pb radioisotope embedded in the lead material has been estimated to be 0.1-0.4 (Bq/Pb-g) (3-12 (pCi/Pb-g). The origin of Pb-KX-ray emission, the highest peak in the background spectrum, has been investigated by comparing the 210Pb-47 keV gamma-ray and Pb-KX-ray peak counts. As the results, about 50 +/- 30% of Pb-KX-ray production is estimated to be due to the Pb-K shell photoionization which is induced by the bremsstrahlung of 210Bi beta-ray.
NASA Astrophysics Data System (ADS)
Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.
2008-07-01
We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.
Kengne, Jacques; Kenmogne, Fabien
2014-12-15
The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by using time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.
Anghaie, S.; Feller, G.J. ); Peery, S.D.; Parsley, R.C. )
1992-01-01
The advanced propulsion group at Pratt Whitney has developed a nuclear thermal rocket concept, the XNR2000, for use on lunear, Mars, and deep-space planetary missions. The XNR2000 engine is powered by a fast spectrum cermet-fueled nuclear reactor that heats up hydrogen propellant to a maximum of 2850 K. An expander cycle is used to deliver 12 kg/s hydrogen to the core, producing 25,000 lb[sub f] thrust at 944 s of specific impulse. The reactor comprises a beryllium-reflected outer annulus core and an inner core with the hydrogen propellant entering from the bottom of the outer core and exiting from the bottom part of the inner core to the thrust chamber. Both the outer and inner cores are loaded with prismatic cermet fuel elements. The baseline XNR2000 reactor core consists of 90 fuel elements in the outer core and 61 in the inner core, arranged in the pattern. This paper focuses on the neutronic analysis of the baseline XNR2000 reactor.
Hennig, Thomas; Maass, Philipp; Hayano, Junichiro; Heinrichs, Stefan
2006-11-01
The statistical properties of heart beat intervals of 130 long-term surface electrocardiogram recordings during atrial fibrillation (AF) are investigated. We find that the distribution of interbeat intervals exhibits a characteristic exponential tail, which is absent during sinus rhythm, as tested in a corresponding control study with 72 healthy persons. The rate gamma of the exponential decay lies in the range 3-12 Hz and shows diurnal variations. It equals, up to statistical uncertainties, the level of the previously uncovered white noise part of the power spectrum, which is also characteristic for AF. The overall statistical features can be described by decomposing the intervals into two statistically independent times, where the first one is associated with a correlated process with 1/f noise characteristics, while the second one belongs to an uncorrelated process and is responsible for the exponential tail. It is suggested to use gamma as a further parameter for a better classification of AF and for the medical diagnosis. The relevance of the findings with respect to a general understanding of AF is discussed.
Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M; Setten, Lorena M
2008-10-01
During the last few years, RIMAPS technique has been used to characterize the micro-relief of metallic surfaces and recently also applied to biological surfaces. RIMAPS is an image analysis technique which uses the rotation of an image and calculates its average power spectrum. Here, it is presented as a tool for describing the morphology of the trichodium net found in some grasses, which is developed on the epidermal cells of the lemma. Three different species of grasses (herbarium samples) are analyzed: Podagrostis aequivalvis (Trin.) Scribn. & Merr., Bromidium hygrometricum (Nees) Nees & Meyen and Bromidium ramboi (Parodi) Rúgolo. Simple schemes representing the real microstructure of the lemma are proposed and studied. RIMAPS spectra of both the schemes and the real microstructures are compared. These results allow inferring how similar the proposed geometrical schemes are to the real microstructures. Each geometrical pattern could be used as a reference for classifying other species. Finally, this kind of analysis is used to determine the morphology of the trichodium net of Agrostis breviculmis Hitchc. As the dried sample had shrunk and the microstructure was not clear, two kinds of morphology are proposed for the trichodium net of Agrostis L., one elliptical and the other rectilinear, the former being the most suitable.
Constraint on Matter Power Spectrum on 106–109 M⊙ Scales from τ e
NASA Astrophysics Data System (ADS)
Cen, Renyue
2017-02-01
An analysis of the physics-rich endgame of reionization at z = 5.7 is performed, jointly utilizing the observations of the Lyα forest, the mean free path (mfp) of ionizing photons, the luminosity function of galaxies, and new physical insight. We find that an upper limit on τ e provides a constraint on the minimum mfp (of ionizing photons) that is primarily due to dwarf galaxies, which in turn yields a new, yet strongest constraint on the matter power spectrum on 106–109 {M}ȯ scales. With the latest Planck measurements of τ e = 0.055 ± 0.009, we can place an upper limit of (8.9 × 106, 3.8 × 107, 4.2 × 108) {M}ȯ on the lower cutoff mass of the halo-mass function, or equivalently, a lower limit on warm dark matter particle mass m x ≥ (15.1, 9.8, 4.6) keV or on sterile neutrino mass m s ≥ (161, 90, 33) keV at the (1, 1.4, 2.2)σ confidence level, respectively.
NASA Astrophysics Data System (ADS)
Kengne, Jacques; Kenmogne, Fabien
2014-12-01
The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by using time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.
A noise power spectrum study of a new model-based iterative reconstruction system: Veo 3.0.
Li, Guang; Liu, Xinming; Dodge, Cristina T; Jensen, Corey T; Rong, X John
2016-09-08
The purpose of this study was to evaluate performance of the third generation of model-based iterative reconstruction (MBIR) system, Veo 3.0, based on noise power spectrum (NPS) analysis with various clinical presets over a wide range of clinically applicable dose levels. A CatPhan 600 surrounded by an oval, fat-equivalent ring to mimic patient size/shape was scanned 10 times at each of six dose levels on a GE HD 750 scanner. NPS analysis was performed on images reconstructed with various Veo 3.0 preset combinations for comparisons of those images reconstructed using Veo 2.0, filtered back projection (FBP) and adaptive statistical iterative reconstruc-tion (ASiR). The new Target Thickness setting resulted in higher noise in thicker axial images. The new Texture Enhancement function achieved a more isotropic noise behavior with less image artifacts. Veo 3.0 provides additional reconstruction options designed to allow the user choice of balance between spatial resolution and image noise, relative to Veo 2.0. Veo 3.0 provides more user selectable options and in general improved isotropic noise behavior in comparison to Veo 2.0. The overall noise reduction performance of both versions of MBIR was improved in comparison to FBP and ASiR, especially at low-dose levels.
Binder, Tobias; Covi, Laura; Kamada, Ayuki; Murayama, Hitoshi; Takahashi, Tomo; Yoshida, Naoki
2016-11-21
Dark Matter (DM) models providing possible alternative solutions to the small-scale crisis of the standard cosmology are nowadays of growing interest. We consider DM interacting with light hidden fermions via well-motivated fundamental operators showing the resultant matter power spectrum is suppressed on subgalactic scales within a plausible parameter region. Our basic description of the evolution of cosmological perturbations relies on a fully consistent first principles derivation of a perturbed Fokker-Planck type equation, generalizing existing literature. The cosmological perturbation of the Fokker-Planck equation is presented for the first time in two different gauges, where the results transform into each other according to the rules of gauge transformation. Furthermore, our focus lies on a derivation of a broadly applicable and easily computable collision term showing important phenomenological differences to other existing approximations. As one of the main results and concerning the small-scale crisis, we show the equal importance of vector and scalar boson mediated interactions between the DM and the light fermions.
1989-03-01
Armando M. P. Jesus SequeiraI DirccAo do Serviqo de Instruqo e Treino Edificio da Adrniiriistra~ao Central de Marinha Pra~a do Coni~rcio 1100 Lisboa...Portugal 11. Dirccqdo do Servi~o de Instruqo e TreinoI Edificio da Adrninistraqdo Central de Marinha Praqa do Cornercio 1100 Lisboa Portugal 12. Lt...Lisboa Portugal 89 12. Lt. Paulo M. D. NM6nica de Oliveira2 Direc Ao do Servi~o de 1nstruqao e Treino Edificio da Adnistraqo Central de Marinha Praoa do Comercio 1 100 Lisboa Portuoal 89
PRISM: Recovery of the primordial spectrum from Planck data
NASA Astrophysics Data System (ADS)
Lanusse, F.; Paykari, P.; Starck, J.-L.; Sureau, F.; Bobin, J.; Rassat, A.
2014-11-01
Aims: The primordial power spectrum describes the initial perturbations that seeded the large-scale structure we observe today. It provides an indirect probe of inflation or other structure-formation mechanisms. In this Letter, we recover the primordial power spectrum from the Planck PR1 dataset, using our recently published algorithm PRISM. Methods: PRISM is a sparsity-based inversion method that aims at recovering features in the primordial power spectrum from the empirical power spectrum of the cosmic microwave background (CMB). This ill-posed inverse problem is regularised using a sparsity prior on features in the primordial power spectrum in a wavelet dictionary. Although this non-parametric method does not assume a strong prior on the shape of the primordial power spectrum, it is able to recover both its general shape and localised features. As a results, this approach presents a reliable way of detecting deviations from the currently favoured scale-invariant spectrum. Results: We applied PRISM to 100 simulated Planck data to investigate its performance on Planck-like data. We then applied PRISM to the Planck PR1 power spectrum to recover the primordial power spectrum. We also tested the algorithm's ability to recover a small localised feature at k ~ 0.125 Mpc-1, which caused a large dip at ℓ ~ 1800 in the angular power spectrum. Conclusions: We find no significant departures from the fiducial Planck PR1 near scale-invariant primordial power spectrum with As = 2.215 × 10-9 and ns = 0.9624.
NASA Astrophysics Data System (ADS)
Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi
2011-07-01
Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.
NASA Astrophysics Data System (ADS)
Ali, Sk. Saiyad; Bharadwaj, Somnath; Choudhuri, Samir; Ghosh, Abhik; Roy, Nirupam
2016-12-01
The Diffuse Galactic Syncrotron Emission (DGSE) is the most important diffuse foreground component for future cosmological 21-cm observations. The DGSE is also an important probe of the cosmic ray electron and magnetic field distributions in the turbulent interstellar medium (ISM) of our galaxy. In this paper we briefly review the Tapered Gridded Estimator (TGE) which can be used to quantify the angular power spectrum C ℓ of the sky signal directly from the visibilities measured in radio-interferometric observations. The salient features of the TGE are: (1) it deals with the gridded data which makes it computationally very fast, (2) it avoids a positive noise bias which normally arises from the system noise inherent to the visibility data, and (3) it allows us to taper the sky response and thereby suppresses the contribution from unsubtracted point sources in the outer parts and the side lobes of the antenna beam pattern. We also summarize earlier work where the TGE was used to measure the C ℓ of the DGSE using 150 MHz GMRT data. Earlier measurements of C ℓ are restricted to ℓ ≤ ℓ _{max } ˜ 103 for the DGSE, the signal at the larger ℓ values is dominated by the residual point sources after source subtraction. The higher sensitivity of the upcoming SKA1 Low will allow the point sources to be subtracted to a fainter level than possible with existing telescopes. We predict that it will be possible to measure the C ℓ of the DGSE to larger values of ℓ _{max } with SKA1 Low. Our results show that it should be possible to achieve ℓ _{max }˜ 104 and ˜105 with 2 minutes and 10 hours of observations respectively.
Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model.
Dean, David S; Iorio, Antonio; Marinari, Enzo; Oshanin, Gleb
2016-09-01
The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f) of the diffusive process x(t) in such a potential. We show that for most of realizations of x(t) in a given realization of the potential, the low-frequency behavior is S(f)∼A/f^{2}, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t).
SU-C-304-05: Use of Local Noise Power Spectrum and Wavelets in Comprehensive EPID Quality Assurance
Lee, S; Gopal, A; Yan, G; Bassett, P; Park, C; Samant, S
2015-06-15
Purpose: As EPIDs are increasingly used for IMRT QA and real-time treatment verification, comprehensive quality assurance (QA) of EPIDs becomes critical. Current QA with phantoms such as the Las Vegas and PIPSpro™ can fail in the early detection of EPID artifacts. Beyond image quality assessment, we propose a quantitative methodology using local noise power spectrum (NPS) to characterize image noise and wavelet transform to identify bad pixels and inter-subpanel flat-fielding artifacts. Methods: A total of 93 image sets including bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Quantitative metrics such as modulation transform function (MTF), NPS and detective quantum efficiency (DQE) were computed for each image set. Local 2D NPS was calculated for each subpanel. A 1D NPS was obtained by radial averaging the 2D NPS and fitted to a power-law function. R-square and slope of the linear regression analysis were used for panel performance assessment. Haar wavelet transformation was employed to identify pixel defects and non-uniform gain correction across subpanels. Results: Overall image quality was assessed with DQE based on empirically derived area under curve (AUC) thresholds. Using linear regression analysis of 1D NPS, panels with acceptable flat fielding were indicated by r-square between 0.8 and 1, and slopes of −0.4 to −0.7. However, for panels requiring flat fielding recalibration, r-square values less than 0.8 and slopes from +0.2 to −0.4 were observed. The wavelet transform successfully identified pixel defects and inter-subpanel flat fielding artifacts. Standard QA with the Las Vegas and PIPSpro phantoms failed to detect these artifacts. Conclusion: The proposed QA methodology is promising for the early detection of imaging and dosimetric artifacts of EPIDs. Local NPS can accurately characterize the noise level within each subpanel, while the wavelet transforms can detect bad pixels and
NASA Technical Reports Server (NTRS)
Klann, P. G.; Lantz, E.
1973-01-01
A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.
Zhao, Gong-Bo
2014-04-01
Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ≤ 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ≤ 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivity study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.
NASA Technical Reports Server (NTRS)
Szalay, Alexander S.; Jain, Bhuvnesh; Matsubara, Takahiko; Scranton, Ryan; Vogeley, Michael S.; Connolly, Andrew; Dodelson, Scott; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.
2003-01-01
We present measurements of parameters of the three-dimensional power spectrum of galaxy clustering from 222 square degrees of early imaging data in the Sloan Digital Sky Survey (SDSS). The projected galaxy distribution on the sky is expanded over a set of Karhunen-Loeve (KL) eigenfunctions, which optimize the signal-to-noise ratio in our analysis. A maximum likelihood analysis is used to estimate parameters that set the shape and amplitude of the three-dimensional power spectrum of galaxies in the SDSS magnitude-limited sample with r* less than 21. Our best estimates are gamma = 0.188 +/- 0.04 and sigma(sub 8L) = 0.915 +/- 0.06 (statistical errors only), for a flat universe with a cosmological constant. We demonstrate that our measurements contain signal from scales at or beyond the peak of the three-dimensional power spectrum. We discuss how the results scale with systematic uncertainties, like the radial selection function. We find that the central values satisfy the analytically estimated scaling relation. We have also explored the effects of evolutionary corrections, various truncations of the KL basis, seeing, sample size, and limiting magnitude. We find that the impact of most of these uncertainties stay within the 2 sigma uncertainties of our fiducial result.
NASA Astrophysics Data System (ADS)
Sarkar, Anjan Kumar; Bharadwaj, Somnath; Ali, Sk. Saiyad
2017-03-01
We use the Fisher matrix formalism to predict the prospects of measuring the redshifted 21-cm power spectrum in different k-bins using observations with the upcoming Ooty Wide Field Array (OWFA) which will operate at 326.5 MHz. This corresponds to neutral hydrogen (HI) at z = 3.35, and a measurement of the 21-cm power spectrum provides a unique method to probe the large-scale structures at this redshift. Our analysis indicates that a 5 σ detection of the binned power spectrum is possible in the k range 0.05 ≤ k ≤ 0.3 Mpc-1 with 1000 hours of observation. We find that the signal- to-noise ratio (SNR) peaks in the k range 0.1-0.2 Mpc-1 where a 10 σ detection is possible with 2000 hours of observations. Our analysis also indicates that it is not very advantageous to observe beyond 1000 h in a single field-of-view as the SNR increases rather slowly beyond this in many of the small k-bins. The entire analysis reported here assumes that the foregrounds have been completely removed.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Yang, Bo; Fu, Xiouhua
2007-01-01
The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called "convectively-coupled Kelvin (mixed Rossby-gravity) waves" are presented as existing only in the symmetric (antisymmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of "convectively-coupled Kelvin waves," which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, "convectively-coupled Kelvin waves" do show anti-symmetric components, and "convectively-coupled mixed Rossby-gravity waves (also known as Yanai waves)" do show a hint of symmetric components. These results bolster a published proposal that these waves be called "chimeric Kelvin waves," "chimeric mixed Rossby-gravity waves," etc. This revised method of presenting power spectrum diagrams offers a more rigorous means of comparing the General Circulation Models (GCM) output with observations by calling attention to the capability of GCMs in correctly simulating the asymmetric characteristics of the equatorial waves.
Frequency spectrum analysis for spectrum stabilization in airborne gamma-ray spectrometer.
Zeng, Guoqiang; Tan, Chengjun; Ge, Liangquan; Zhang, Qingxian; Gu, Yi
2014-02-01
Abnormal multi-crystal spectral drifts often can be observed when power on the airborne gamma-ray spectrometer. Currently, these spectral drifts of each crystal are generally eliminated through manual adjustment, which is time-consuming and labor-ineffective. To realize this quick automatic spectrum stabilization of multi-crystal, a frequency spectrum analysis method for natural gamma-ray background spectrum is put forward in this paper to replace traditional spectrum stabilization method used characteristic peak. Based on the polynomial fitting of high harmonics in frequency spectrum and gamma-ray spectral drift, it calculates overall spectral drift of natural gamma-ray spectrum and adjusts the gain of spectrometer by this spectral drift value, thus completing quick spectrum stabilization in the power on stage of spectrometer. This method requires no manual intervention and can obtain the overall spectral drift value automatically under no time-domain pre-processing to the natural gamma-ray spectra. The spectral drift value calculated by this method has an absolute error less than five channels (1024 resolution) and a relative error smaller than 0.80%, which can satisfy the quick automatic spectrum stabilization requirement when power on the airborne gamma-ray spectrometer instead of manual operation.
NASA Astrophysics Data System (ADS)
Siegel, Edward; Nabarro, Frank; Brailsford, Alan; Tatro, Clement
2011-06-01
NON-shock-plasticity/fracture BAE[E.S.:MSE 8,310(71);PSS:(a)5,601/607(71);Xl.-Latt. Defects 5,277(74);Scripta Met.:6,785(72); 8,587/617(74);3rd Tokyo AE Symp.(76);Acta Met. 25,383(77);JMMM 7,312(78)] ``1''/ ω-``noise'' power-spectrum ``pink''-Zipf-(NOT ``red''-Pareto) power-law UNIVERSALITY is manifestly-demonstrated in two distinct ways to be nothing but Newton Law of Motion F = ma REdiscovery!!!(aka ``Bak''(1988)-``SOC'':1687 < < < 1988: 1988-1687=301-years!!! PHYSICS:(1687) cross-multiplied F=ma rewritten as 1/m=a/F=OUTPUT/IN-PUT=EFFECT/CAUSE=inverse-mass mechanical-susceptibility=X(`` ω'') X(`` ω '') ~(F.-D. thm.) ~P(`` ω'') ``noise'' power-spectrum; (``Max & Al show''): E ~ ω , & E ~(or any/all media with upper-limiting-speeds) ~m. Thus: ω ~ E ~m inverting: 1/ ω ~ 1/E ~1/m ~a/F= X(`` ω'') ~ P(`` ω'') thus: F=ma integral-transform(I-T) is ```SOC'''s'' P(ω) ~ 1/ ω !!!; ``PURE''-MATHS: F=ma DOUBLE-integral time-series(T-S) s(t)=[v0t+(1/2)at2] I-T formally defines power-spectrum:
Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, Götz; Sumpf, Bernd; Petersen, Paul Michael
2011-01-01
High-power narrow-spectrum diode laser systems based on tapered gain media in an external cavity are demonstrated at 675 nm. Two 2 mm long amplifiers are used, one with a 500 μm long ridge-waveguide section (device A), the other with a 750 μm long ridge-waveguide section (device B). Laser system A based on device A is tunable from 663 to 684 nm with output power higher than 0.55 W in the tuning range; as high as 1.25 W output power is obtained at 675.34 nm. The emission spectral bandwidth is less than 0.05 nm throughout the tuning range, and the beam quality factor M(2) is 2.07 at an output power of 1.0 W. Laser system B based on device B is tunable from 666 to 685 nm. As high as 1.05 W output power is obtained around 675.67 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M(2) is 1.13 at an output power of 0.93 W. Laser system B is used as a pump source for the generation of 337.6 nm UV light by single-pass frequency doubling in a bismuth triborate (BIBO) crystal. An output power of 109 μW UV light, corresponding to a conversion efficiency of 0.026% W(-1), is attained.
All particle energy spectrum of cosmic rays in 10 to the 15th power - 10 to the 20th power eV region
NASA Technical Reports Server (NTRS)
Krasilnikov, D. D.; Dyakonov, M. N.; Ivanov, A. A.; Kolosov, V. A.; Lischenyuk, F. F.; Sleptsov, I. Y.
1985-01-01
Average estimations of the shower energy components are presented and their sum gives E sub 0 (Rho sub 600) - an average function of the relation of E sub 0 with the shower size parameter Rho sub 600 measured at the Yakutsk extensive air showers (EAS) array. Using this relation to the EAS spectrum obtained at the Akeno and Yakutsk arrays the energy spectrum of the cosmic ray total flux within 15 lg (E sub 0,eV) 20 by the EAS methods is recovered.
Li, G; Miao, B; Hu, Q; Qin, G
2011-03-25
The MHD turbulence theory developed by Iroshnikov and Kraichnan predicts a k(-1.5) power spectrum. Solar wind observations, however, often show a k(-5/3) Kolmogorov scaling. Based on 3 years worth of Ulysses magnetic field data where over 28,000 current sheets are identified, we propose that the current sheet is the cause of the Kolmogorov scaling. We show that for 5 longest current-sheet-free periods the magnetic field power spectra are all described by the Iroshnikov-Kraichnan scaling. In comparison, for 5 periods that have the most number of current sheets, the power spectra all exhibit Kolmogorov scaling. The implication of our results is discussed.
Extragalactic background light measurements and applications
Cooray, Asantha
2016-01-01
This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB. PMID:27069645
Extragalactic background light measurements and applications.
Cooray, Asantha
2016-03-01
This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB.
NASA Astrophysics Data System (ADS)
Stevens, R. G.; Lonsdale, C. L.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.; Pierce, J. R.
2012-04-01
New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulphur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometres and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this presentation, we focus on sub-grid sulphate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. Based on the results of the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM) with online TwO Moment Aerosol Sectional (TOMAS) microphysics, we develop a computationally efficient, but physically based, parameterization that predicts the characteristics of aerosol formed within coal-fired power plant plumes based on parameters commonly available in global and regional-scale models. Given large-scale mean meteorological parameters, emissions from the power plant, mean background condensation sink, and the desired distance from the source, the parameterization will predict the fraction of the emitted SO2 that is oxidized to H2SO4, the fraction of that H2SO4 that forms new particles instead of condensing onto preexisting particles, the median diameter of the newly-formed particles, and the number of newly-formed particles per kilogram SO2 emitted. We perform a sensitivity analysis of these characteristics of the aerosol size distribution to the meteorological parameters, the condensation sink, and the emissions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large preexisting aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the
Tolkunov, Denis; Rubin, Denis; Mujica-Parodi, LR
2010-01-01
In a well-regulated control system, excitatory and inhibitory components work closely together with minimum lag; in response to inputs of finite duration, outputs should show rapid rise and, following the input's termination, immediate return to baseline. The efficiency of this response can be quantified using the power spectrum density's scaling parameter β, a measure of self-similarity, applied to the first-derivative of the raw signal. In this study, we adapted power spectrum density methods, previously used to quantify autonomic dysregulation (heart rate variability), to neural time-series obtained via functional MRI. The negative feedback loop we investigated was the limbic system, using affect-valent faces as stimuli. We hypothesized that trait anxiety would be related to efficiency of regulation of limbic responses, as quantified by power law scaling of fMRI time series. Our results supported this hypothesis, showing moderate to strong correlations of β (r = 0.4–0.54) for the amygdala, orbitofrontal cortex, hippocampus, superior temporal gyrus, posterior insula, and anterior cingulate. Strong anticorrelations were also found between the amygdala's β and wake heart rate variability (r = −0.61), suggesting a robust relationship between dysregulated limbic outputs and their autonomic consequences. PMID:20025979
Cosmic Microwave Background Data Analysis
NASA Astrophysics Data System (ADS)
Paykari, Paniez; Starck, Jean-Luc Starck
2012-03-01
About 400,000 years after the Big Bang the temperature of the Universe fell to about a few thousand degrees. As a result, the previously free electrons and protons combined and the Universe became neutral. This released a radiation which we now observe as the cosmic microwave background (CMB). The tiny fluctuations* in the temperature and polarization of the CMB carry a wealth of cosmological information. These so-called temperature anisotropies were predicted as the imprints of the initial density perturbations which gave rise to the present large-scale structures such as galaxies and clusters of galaxies. This relation between the present-day Universe and its initial conditions has made the CMB radiation one of the most preferred tools to understand the history of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the Big Bang theory and ruled out the only other available theory at that time - the steady-state theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]- orbited in 1989-1996. COBE made the most accurate measurements of the CMB frequency spectrum and confirmed it as being a black-body to within experimental limits. This made the CMB spectrum the most precisely measured black-body spectrum in nature. The CMB has a thermal black-body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9mmwavelength. The results of COBE inspired a series of ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 5.1) was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported
Neckelmann, D; Bjørkum, A A; Bjorvatn, B; Ursin, R
1996-02-01
The sleep and waking and EEG power spectrum effects of the putative 5-HT1A antagonist NAN-190 (0.5 mg/kg, i.p.) were studied alone and in co-administration with the selective serotonin re-uptake inhibitor citalopram (5.0 mg/kg, i.p.) in the rat. Citalopram, as in a prior dose-response study, reduced REM sleep. In addition, a slight increase in NREM sleep was observed. Citalopram reduced NREM fronto-parietal (FP) EEG power density in the 5-20 Hz range. When administered alone, NAN-190 suppressed REM sleep in the first 2 h, and reduced SWS-2 in the first 4 after administration. NAN-190 also suppressed selectively NREM sleep slow-wave activity in both fronto-frontal (FF) and FP EEG power spectrum. When administered in combination with citalopram, an attenuation of the power density reduction in the 7-15 Hz range in the FF EEG of citalopram alone, was observed. However, the EEG power spectral density and REM sleep suppressive effects of NAN-190 were both augmented. The results are compatible with the notion that serotonin is involved in the modulation of the slow wave activity in the EEG during NREM sleep. The results are cordant with other data suggesting that postsynaptic 5-HT1A stimulation might increase slow wave activity in the NREM EEG, and that serotonergic stimulation of other receptor subtypes (possibly 5-HT2) may decrease slow wave activity in the NREM EEG.
NASA Astrophysics Data System (ADS)
Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline N.
2014-06-01
The 21 cm forest, the absorption by the intergalactic medium (IGM) towards a high redshift radio-loud source, is a probe of the thermal state of the IGM. To date, the literature has focused on line-of-sight spectral studies of a single quasar known to have a large redshift. We instead examine many sources in a wide field of view, and show that the imprint from the 21 cm forest absorption of these sources is detectible in the power spectrum. The properties of the power spectrum can reveal information on the population of the earliest radio loud sources that may have existed during the pre-reionization epoch at z>10.Using semi-numerical simulations of the IGM and a semi-empirical source population, we show that the 21 cm forest dominates, in a distinctive region of Fourier space, the brightness temperature power spectrum that many contemporary experiments aim to measure. In particular, the forest dominates the diffuse emission on smaller spatial scales along the line of sight. Exploiting this separation, one may constrain the IGM thermal history, such as heating by the first X-ray sources, on large spatial scales and the absorption of radio loud active galactic nuclei on small ones.Using realistic simulations of noise and foregrounds, we show that planned instruments on the scale of the Hydrogen Epoch of Reionization Array (HERA) with a collecting area of one tenth of a square kilometer can detect the 21cm forest in this small spatial scale region with high signal to noise. We develop an analytic toy model for the signal and explore its detectability over a large range of thermal histories and potential high redshift source scenarios.
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo; Page, Don N.
1992-05-01
The expansion of the wave function of a quantum Friedmann-Robertson-Walker cosmology minimally coupled to a scalar field with a power-law potential by its scalar-field part decouples the gravitational-field part into an infinite system of linear homogeneous differential equations (equivalent to a matrix equation). The solutions for the gravitational-field part are found in the product integral formulation. It is shown that there exists a spectrum of the wave functions exponentially damped for large three-geometries under the condition that the cosmological constant should vanish. These are interpeted as the Hawking-Page wormholes.
Yamamoto, Kazuhiro; Nakamura, Gen; Narikawa, Tatsuya; Sato, Takahiro; Huetsi, Gert
2010-05-15
A constraint on the viable f(R) model is investigated by confronting theoretical predictions with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky Survey, data release 7. We obtain a constraint on the Compton wavelength parameter of the f(R) model on the scales of cosmological large-scale structure. A prospect of constraining the Compton wavelength parameter with a future redshift survey is also investigated. The usefulness of the redshift-space distortion for testing the gravity theory on cosmological scales is demonstrated.
NASA Astrophysics Data System (ADS)
Caini, Carlo; Corazza, Giovanni E.; Falciasecca, Gabriele; Ruggieri, Marina; Vatalaro, Francesco
1992-10-01
An EHF satellite system for land-mobile applications to be integrated with a terrestrial cellular system is described in the paper. An approach to evaluate the carrier-to-cochannel interference occurring in a multispot satellite coverage adopting frequency reuse is introduced and results from the analysis are shown. Criteria for spectrum efficiency evaluation are also outlined along with traffic and link budget estimates. Possible options for payload implementation and mobile terminal design are presented.
Srivastava, Abhishek; Sankar, Nithin; Chatterjee, Baibhab; Das, Devarshi; Ahmad, Meraj; Kukkundoor, Rakesh; Saraf, Vivek; Jayachandran, Ananthpadmanabhan; Sharma, Dinesh; Baghini, Maryam
2016-12-14
This paper presents a low power integrated wireless telemetry system (Bio-WiTel) for healthcare applications in 401- 406 MHz frequency band of Medical Device RadioCommunication (MedRadio) spectrum. In this work, necessary design considerations for telemetry system for short range (upto 3 m) communication of bio-signals are presented. These considerations greatly help in taking important design decisions, which eventually lead to a simple, low power, robust and reliable wireless system implementation. Transmitter (TX) and receiver (RX) of Bio-WiTel system have been fabricated in 180 nm mixed mode CMOS technology. While radiating -18 dBm output power to a 50 antenna, the packaged TX IC consumes 250 μW power in 100% on state from 1 V supply whereas the RX IC consumes 990 μW power from 1.8 V supply with a sensitivity of -75 dBm. Measurement results show that TX fulfils the spectral mask requirement at a maximum data rate of 72 kbps. The measured bit error rate of RX is less than 10-4 for a data rate of 200 kbps. The proposed Bio-WiTel system is tested successfully in home and hospital environments for the communication of electrocardiogram (ECG) and photoplethysmogram (PPG) signals at a data rate of 57.6 kbps with a measured BER of < 10-4 for a maximum distance of 3 m.
High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission
Wang, Huolei; Yu, Hongyan; Zhou, Xuliang; Kan, Qiang; Yuan, Lijun; Wang, Wei; Pan, Jiaoqing; Chen, Weixi; Ding, Ying
2014-10-06
We report the demonstration of