Sample records for background radiation exposure

  1. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990–2009

    PubMed Central

    Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline

    2016-01-01

    Background: Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. Methods: AL cases diagnosed over 1990–2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002–2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. Results: AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Conclusions: Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland. Citation: Demoury C, Marquant F, Ielsch G, Goujon S, Debayle C, Faure L, Coste A, Laurent O, Guillevic J, Laurier D, Hémon D, Clavel J

  2. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    PubMed Central

    Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2014-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors. PMID:19454802

  3. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990-2009.

    PubMed

    Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline

    2017-04-01

    Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. AL cases diagnosed over 1990-2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002-2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland.

  4. Association of Radon Background and Total Background Ionizing Radiation with Alzheimer's Disease Deaths in U.S. States.

    PubMed

    Lehrer, Steven; Rheinstein, Peter H; Rosenzweig, Kenneth E

    2017-01-01

    Exposure of the brain to ionizing radiation might promote the development of Alzheimer's disease (AD). Analysis of AD death rates versus radon background radiation and total background radiation in U.S. states. Total background, radon background, cosmic and terrestrial background radiation measurements are from Assessment of Variations in Radiation Exposure in the United States and Report No. 160 - Ionizing Radiation Exposure of the Population of the United States. 2013 AD death rates by U.S. state are from the Alzheimer's Association. Radon background ionizing radiation was significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.467, p = 0.001). Total background ionizing radiation was also significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.452, p = 0.001). Multivariate linear regression weighted by state population demonstrated that AD death rate was significantly correlated with radon background (β= 0.169, p < 0.001), age (β= 0.231, p < 0.001), hypertension (β= 0.155, p < 0.001), and diabetes (β= 0.353, p < 0.001). Our findings, like other studies, suggest that ionizing radiation is a risk factor for AD. Intranasal inhalation of radon gas could subject the rhinencephalon and hippocampus to damaging radiation that initiates AD. The damage would accumulate over time, causing age to be a powerful risk factor.

  5. A review on natural background radiation

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Setayandeh, Samaneh

    2013-01-01

    The world is naturally radioactive and approximately 82% of human-absorbed radiation doses, which are out of control, arise from natural sources such as cosmic, terrestrial, and exposure from inhalation or intake radiation sources. In recent years, several international studies have been carried out, which have reported different values regarding the effect of background radiation on human health. Gamma radiation emitted from natural sources (background radiation) is largely due to primordial radionuclides, mainly 232Th and 238U series, and their decay products, as well as 40K, which exist at trace levels in the earth's crust. Their concentrations in soil, sands, and rocks depend on the local geology of each region in the world. Naturally occurring radioactive materials generally contain terrestrial-origin radionuclides, left over since the creation of the earth. In addition, the existence of some springs and quarries increases the dose rate of background radiation in some regions that are known as high level background radiation regions. The type of building materials used in houses can also affect the dose rate of background radiations. The present review article was carried out to consider all of the natural radiations, including cosmic, terrestrial, and food radiation. PMID:24223380

  6. Public exposure due to external gamma background radiation in boundary areas of Iran.

    PubMed

    Pooya, S M Hosseini; Dashtipour, M R; Enferadi, A; Orouji, T

    2015-09-01

    A monitoring program in boundary areas of a country is an appropriate way to indicate the level of public exposure. In this research, gamma background radiation was measured using TL dosimeters at 12 boundary areas as well as in the capital city of Iran during the period 2010 to 2011. The measurements were carried out in semi-annual time intervals from January to June and July to December in each year. The maximum average dose equivalent value measured was approximately 70 μSv/month for Tehran city. Also, the average dose values obtained were less than 40 μSv/month for all the cities located at the sea level except that of high level natural radiation area of Ramsar, and more than 55 μSv/month for the higher elevation cities. The public exposure due to ambient gamma dose equivalent in Iran is within the levels reported by UNSCEAR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modeling background radiation in Southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Daniel A.; Burnley, Pamela C.; Adcock, Christopher T.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials by creating a high resolution background model. The intention is for this method to be used in an emergency response scenario where the background radiation envi-ronment is unknown. Two studymore » areas in Southern Nevada have been modeled using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas that are homogenous in terms of K, U, and Th, referred to as background radiation units, are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by the Department of Energy's Remote Sensing Lab - Nellis, allowing for the refinement of the technique. By using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide and define radiation background units within alluvium, successful models have been produced for Government Wash, north of Lake Mead, and for the western shore of Lake Mohave, east of Searchlight, NV.« less

  8. Modeling background radiation in Southern Nevada

    DOE PAGES

    Haber, Daniel A.; Burnley, Pamela C.; Adcock, Christopher T.; ...

    2017-02-06

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials by creating a high resolution background model. The intention is for this method to be used in an emergency response scenario where the background radiation envi-ronment is unknown. Two studymore » areas in Southern Nevada have been modeled using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas that are homogenous in terms of K, U, and Th, referred to as background radiation units, are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by the Department of Energy's Remote Sensing Lab - Nellis, allowing for the refinement of the technique. By using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide and define radiation background units within alluvium, successful models have been produced for Government Wash, north of Lake Mead, and for the western shore of Lake Mohave, east of Searchlight, NV.« less

  9. Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Hassan, W M S W; Lee, M H; Izham, A; Said, M N; Wagiran, H; Heryanshah, A

    2017-07-01

    Kuala Lumpur has been undergoing rapid urbanisation process, mainly in infrastructure development. The opening of new township and residential in former tin mining areas, particularly in the heavy mineral- or tin-bearing alluvial soil in Kuala Lumpur, is a contentious subject in land-use regulation. Construction practices, i.e. reclamation and dredging in these areas are potential to enhance the radioactivity levels of soil and subsequently, increase the existing background gamma radiation levels. This situation is worsened with the utilisation of tin tailings as construction materials apart from unavoidable soil pollutions due to naturally occurring radioactive materials in construction materials, e.g. granitic aggregate, cement and red clay brick. This study was conducted to assess the urbanisation impacts on background gamma radiation in Kuala Lumpur. The study found that the mean value of measured dose rate was 251±6nGyh -1 (156-392nGyh -1 ) and 4 times higher than the world average value. High radioactivity levels of 238 U (95±12Bqkg -1 ), 232 Th (191±23Bqkg -1 ,) and 40 K (727±130Bqkg -1 ) in soil were identified as the major source of high radiation exposure. Based on statistical ANOVA, t-test, and analyses of cumulative probability distribution, this study has statistically verified the dose enhancements in the background radiation. The effective dose was estimated to be 0.31±0.01mSvy -1 per man. The recommended ICRP reference level (1-20mSvy -1 ) is applicable to the involved existing exposure situation in this study. The estimated effective dose in this study is lower than the ICRP reference level and too low to cause deterministic radiation effects. Nevertheless based on estimations of lifetime radiation exposure risks, this study found that there was small probability for individual in Kuala Lumpur being diagnosed with cancer and dying of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Radiation protection aspects of the cosmic radiation exposure of aircraft crew.

    PubMed

    Bartlett, D T

    2004-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe.

  11. Effects of incomplete residential histories on studies of environmental exposure with application to childhood leukaemia and background radiation.

    PubMed

    Nikkilä, Atte; Kendall, Gerald; Raitanen, Jani; Spycher, Ben; Lohi, Olli; Auvinen, Anssi

    2018-06-22

    When evaluating environmental exposures, residential exposures are often most relevant. In most countries, it is impossible to establish full residential histories. In recent publications, childhood leukaemia and background radiation have been studied with and without full residential histories. This paper investigates the consequences of lacking such full data. Data from a nationwide Finnish Case-Control study of Childhood Leukaemia and gamma rays were analysed. This included 1093 children diagnosed with leukaemia in Finland in 1990-2011. Each case was matched by gender and year of birth to three controls. Full residential histories were available. The dose estimates were based on outdoor background radiation measurements. The indoor dose rates were obtained with a dwelling type specific conversion coefficient and the individual time-weighted mean red bone marrow dose rates were calculated using age-specific indoor occupancy and the age and gender of the child. Radiation from Chernobyl fallout was included and a 2-year latency period assumed. The median separation between successive dwellings was 3.4 km and median difference in red bone marrow dose 2.9 nSv/h. The Pearson correlation between the indoor red bone marrow dose rates of successive dwellings was 0.62 (95% CI 0.60, 0.64). The odds ratio for a 10 nSv/h increase in dose rate with full residential histories was 1.01 (95% CI 0.97, 1.05). Similar odds ratios were calculated with dose rates based on only the first dwelling (1.02, 95% CI 0.99, 1.05) and only the last dwelling (1.00, 95% CI 0.98, 1.03) and for subjects who had lived only in a single dwelling (1.05, 95% CI 0.98, 1.10). Knowledge of full residential histories would always be the option of choice. However, due to the strong correlation between exposure estimates in successive dwellings and the uncertainty about the most relevant exposure period, estimation of overall exposure level from a single address is also informative. Error in dose

  12. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative

  13. Background radiation: natural and man-made.

    PubMed

    Thorne, M C

    2003-03-01

    A brief overview and comparison is given of dose rates arising from natural background radiation and the fallout from atmospheric testing of nuclear weapons. Although there are considerable spatial variations in exposure to natural background radiation, it is useful to give estimates of worldwide average overall exposures from the various components of that background. Cosmic-ray secondaries of low linear energy transfer (LET), mainly muons and photons, deliver about 280 microSv a(-1). Cosmic-ray neutrons deliver about another 100 microSv a(-1). These low- and high-LET exposures are relatively uniform to the whole body. The effective dose rate from cosmogenic radionuclides is dominated by the contribution of 12 microSv a(-1) from 14C. This is due to relatively uniform irradiation of all organs and tissues from low-energy beta particles. Primordial radionuclides and their progeny (principally the 238U and 232Th series, and 40K) contribute about 480 microSv a(-1) of effective dose by external irradiation. This is relatively uniform photon irradiation of the whole body. Internally incorporated 40K contributes a further 165 microSv a(-1) of effective dose in adults, mainly from beta particles, but with a significant gamma component. Equivalent doses from 40K are somewhat higher in muscle than other soft tissues, but the distinction is less than a factor of three. Uranium and thorium series radionuclides give rise to an average effective dose rate of around 120 microSv a(-1). This includes a major alpha particle component, and exposures of radiosensitive tissues in lung, liver, kidney and the skeleton are recognised as important contributors to effective dose. Overall, these various sources give a worldwide average effective dose rate of about 1160 microSv a(-1). Exposure to 222Rn, 220Rn and their short-lived progeny has to be considered separately. This is very variable both within and between countries. For 222Rn and its progeny, a worldwide average effective dose

  14. Below-Background Ionizing Radiation as an Environmental Cue for Bacteria

    DOE PAGES

    Castillo, Hugo; Smith, Geoffrey B.

    2017-02-14

    All organisms on earth grow under the influence of a natural and relatively constant dose of ionizing radiation referred to as background radiation, and so cells have different mechanisms to prevent the accumulation of damage caused by its different components. However, current knowledge of the deleterious effects of radiation on cells is based on the exposure to acute and high or to chronic, above background doses of radiation and therefore is not appropriate to explain the cellular and biochemical mechanisms that cells employ to sense and respond to chronic below-background levels. Studies at below-background radiation doses can provide insight intomore » the biological role of radiation, as suggested by several examples of what appears to be a stress response in cells grown at doses that range from 10 to 79 times lower than background. Here, we discuss some of the technical constraints to shield cells from radiation to below-background levels, as well as different approaches used to detect and measure responses to such unusual environmental conditions. Then, we present data from Shewanella oneidensis and Deinococcus radiodurans experiments that show how two taxonomically distant bacterial species sense and respond to unnaturally low levels of radiation. Finally, in brief, we grew S. oneidensis and D. radiodurans in liquid culture at dose rates of 72.05 (control) and 0.91 (treatment) nGy hr -1 (including radon) for up to 72 h and measured cell density and the expression of stress-related genes. Our results suggest that a stress response is triggered in the absence of normal levels of radiation.« less

  15. Below-Background Ionizing Radiation as an Environmental Cue for Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, Hugo; Smith, Geoffrey B.

    All organisms on earth grow under the influence of a natural and relatively constant dose of ionizing radiation referred to as background radiation, and so cells have different mechanisms to prevent the accumulation of damage caused by its different components. However, current knowledge of the deleterious effects of radiation on cells is based on the exposure to acute and high or to chronic, above background doses of radiation and therefore is not appropriate to explain the cellular and biochemical mechanisms that cells employ to sense and respond to chronic below-background levels. Studies at below-background radiation doses can provide insight intomore » the biological role of radiation, as suggested by several examples of what appears to be a stress response in cells grown at doses that range from 10 to 79 times lower than background. Here, we discuss some of the technical constraints to shield cells from radiation to below-background levels, as well as different approaches used to detect and measure responses to such unusual environmental conditions. Then, we present data from Shewanella oneidensis and Deinococcus radiodurans experiments that show how two taxonomically distant bacterial species sense and respond to unnaturally low levels of radiation. Finally, in brief, we grew S. oneidensis and D. radiodurans in liquid culture at dose rates of 72.05 (control) and 0.91 (treatment) nGy hr -1 (including radon) for up to 72 h and measured cell density and the expression of stress-related genes. Our results suggest that a stress response is triggered in the absence of normal levels of radiation.« less

  16. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    PubMed Central

    Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931

  17. Thyroid nodularity and chromosome aberrations among women in areas of high background radiation in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.Y.; Boice, J.D. Jr.; Wei, L.X.

    1990-03-21

    Thyroid nodularity following continuous low-dose radiation exposure in China was determined in 1,001 women aged 50-65 years who resided in areas of high background radiation (330 mR/yr) their entire lives, and in 1,005 comparison subjects exposed to normal levels of radiation (114 mR/yr). Cumulative doses to the thyroid were estimated to be of the order of 14 cGy and 5 cGy, respectively. Personal interviews and physical examinations were conducted, and measurements were made of serum thyroid hormone levels, urinary iodine concentrations, and chromosome aberrations in circulating lymphocytes. For all nodular disease, the prevalences in the high background and control areasmore » were 9.5% and 9.3%, respectively. For single nodules, the prevalences were 7.4% in the high background area and 6.6% in the control area (prevalence ratio = 1.13; 95% confidence interval = 0.82-1.55). There were no differences found in serum levels of thyroid hormones. Women in the high background region, however, had significantly lower concentrations of urinary iodine and significantly higher frequencies of stable and unstable chromosome aberrations. Increased intake of allium vegetables such as garlic and onions was associated with a decreased risk of nodular disease, which seems consistent with experimental studies suggesting that allium compounds can inhibit tumor growth and proliferation. The prevalence of mild diffuse goiter was higher in the high background radiation region, perhaps related to a low dietary intake of iodine. These data suggest that continuous exposure to low-level radiation throughout life is unlikely to appreciably increase the risk of thyroid cancer. However, such exposure may cause chromosomal damage.« less

  18. Estimation of background radiation doses for the Peninsular Malaysia's population by ESR dosimetry of tooth enamel.

    PubMed

    Rodzi, Mohd; Zhumadilov, Kassym; Ohtaki, Megu; Ivannikov, Alexander; Bhattacharjee, Deborshi; Fukumura, Akifumi; Hoshi, Masaharu

    2011-08-01

    Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6-8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y(-1). This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia.

  19. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    2008-09-01

    The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200 400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3 4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation

  20. Initiation-promotion model of tumor prevalence in mice from space radiation exposures

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1995-01-01

    Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.

  1. Predictive modeling of terrestrial radiation exposure from geologic materials

    NASA Astrophysics Data System (ADS)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  2. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    The main long-term goal of the space exploration program is the colonization of the planets of the Solar System The high cosmic radiation equivalent dose rate represents a major problem for a stable and safe colonization of the planets The dose rate on Mars ranges between 60 and 150 mSv year depending on the Solar cycle and altitude and can reach values as high as 360 mSv year on the Moon The average dose rate on the Earth is about 3 mSv year reduced to about 1 mSv year excluding the internal exposure to Rn daughters However some areas of the Earth have anomalously high levels of background radiation Values 200-400 times higher than the world average are found in regions where monazite sand deposits are abundant Population in Tibet experience a high cosmic radiation background Epidemiological studies did not detect any adverse health effects in the populations living in those high-background radiation areas on Earth Chromosomal aberrations in the peripheral blood lymphocytes from the population living in the high-background radiation areas have been measured in several studies because the chromosomal damage represents an early biomarker of cancer risk Similar cytogenetic studies have been recently performed in cohort of astronauts involved in single or repeated space flights over many years A comparison of the cytogenetic findings in populations exposed at high dose rate on Earth or in space will be described

  3. Epidemiology of accidental radiation exposures.

    PubMed Central

    Cardis, E

    1996-01-01

    Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discuss information that could be obtained from studies of accidental exposures and the types of studies that are needed. PMID:8781398

  4. Backgrounds, radiation damage, and spacecraft orbits

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.

  5. IONIZING RADIATION EXPOSURE OF THE POPULATION OF THE U.S.

    EPA Science Inventory

    This report updates information published by the National Council on Radiation Protection and Measurements (NCRP) in 1987. NCRP reports are considered the authoritative reference for the sources and magnitude of average background exposure to the U.S. population.

  6. Health effects of prenatal radiation exposure.

    PubMed

    Williams, Pamela M; Fletcher, Stacy

    2010-09-01

    Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.

  7. Minimizing radiation exposure during percutaneous nephrolithotomy.

    PubMed

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  8. DOE 2011 occupational radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.« less

  9. Teaching about Natural Background Radiation

    ERIC Educational Resources Information Center

    Al-Azmi, Darwish; Karunakara, N.; Mustapha, Amidu O.

    2013-01-01

    Ambient gamma dose rates in air were measured at different locations (indoors and outdoors) to demonstrate the ubiquitous nature of natural background radiation in the environment and to show that levels vary from one location to another, depending on the underlying geology. The effect of a lead shield on a gamma radiation field was also…

  10. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    PubMed

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  11. Cancer risks after radiation exposure in middle age.

    PubMed

    Shuryak, Igor; Sachs, Rainer K; Brenner, David J

    2010-11-03

    Epidemiological data show that radiation exposure during childhood is associated with larger cancer risks compared with exposure at older ages. For exposures in adulthood, however, the relative risks of radiation-induced cancer in Japanese atomic bomb survivors generally do not decrease monotonically with increasing age of adult exposure. These observations are inconsistent with most standard models of radiation-induced cancer, which predict that relative risks decrease monotonically with increasing age at exposure, at all ages. We analyzed observed cancer risk patterns as a function of age at exposure in Japanese atomic bomb survivors by using a biologically based quantitative model of radiation carcinogenesis that incorporates both radiation induction of premalignant cells (initiation) and radiation-induced promotion of premalignant damage. This approach emphasizes the kinetics of radiation-induced initiation and promotion, and tracks the yields of premalignant cells before, during, shortly after, and long after radiation exposure. Radiation risks after exposure in younger individuals are dominated by initiation processes, whereas radiation risks after exposure at later ages are more influenced by promotion of preexisting premalignant cells. Thus, the cancer site-dependent balance between initiation and promotion determines the dependence of cancer risk on age at radiation exposure. For example, in terms of radiation induction of premalignant cells, a quantitative measure of the relative contribution of initiation vs promotion is 10-fold larger for breast cancer than for lung cancer. Reflecting this difference, radiation-induced breast cancer risks decrease with age at exposure at all ages, whereas radiation-induced lung cancer risks do not. For radiation exposure in middle age, most radiation-induced cancer risks do not, as often assumed, decrease with increasing age at exposure. This observation suggests that promotional processes in radiation carcinogenesis

  12. Factors Contributing to Background Television Exposure in Low-Income Mexican-American Preschoolers.

    PubMed

    Thompson, Darcy A; Tschann, Jeanne M

    2016-09-01

    Objective Background television (TV) exposure is harmful to young children, yet few studies have focused on predictors of exposure. This study's objectives were to elucidate demographic, environmental, and behavioral correlates of background TV exposure in low-income Mexican-American preschoolers and to explore caregiver beliefs about the impact of such exposure. Methods A convenience sample of low-income Mexican-American female primary caregivers of preschoolers (3-5 years old, n = 309), recruited in safety-net clinics, were surveyed by phone. Caregivers reported the frequency of their child's exposure to background TV and responded to questions on the home media environment, TV use, and whether they had thought about background TV exposure and its impact on their child. Results Background TV exposure was common; 43 % reported that their child was often, very often, or always exposed to background TV. More hours of TV viewing by the caregiver and greater frequency of TV viewing during meals were associated with an increased frequency of exposure to background TV. Only 49 % of participants had ever thought about the impact of background TV. Believing that background TV is not harmful was associated with higher levels of background TV exposure. Conclusions Findings suggest that background TV exposure is frequent and caregiver awareness of its potential impact is low in low-income Mexican-American families. Beliefs that background TV is not harmful may predict risk of exposure. Potential targets for interventions focused on reducing background TV exposure in this population include increasing caregiver awareness of the potential negative impact of such TV exposure.

  13. Factors contributing to background television exposure in low-income Mexican American preschoolers

    PubMed Central

    Thompson, Darcy A.; Tschann, Jeanne M.

    2016-01-01

    Objective Background television (TV) exposure is harmful to young children, yet few studies have focused on predictors of exposure. This study’s objectives were to elucidate demographic, environmental, and behavioral correlates of background TV exposure in low-income Mexican American preschoolers and to explore caregiver beliefs about the impact of such exposure. Methods A convenience sample of low-income Mexican American female primary caregivers of preschoolers (3–5 years old, n=309), recruited in safety-net clinics, were surveyed by phone. Caregivers reported the frequency of their child’s exposure to background TV and responded to questions on the home media environment, TV use, and whether they had thought about background TV exposure and its impact on their child. Results Background TV exposure was common; 43% reported that their child was often, very often, or always exposed to background TV. More hours of TV viewing by the caregiver and greater frequency of TV viewing during meals were associated with an increased frequency of exposure to background TV. Only 49% of participants had ever thought about the impact of background TV. Believing that background TV is not harmful was associated with higher levels of background TV exposure. Conclusions Findings suggest that background TV exposure is frequent and caregiver awareness of its potential impact is low in low-income Mexican American families. Beliefs that background TV is not harmful may predict risk of exposure. Potential targets for interventions focused on reducing background TV exposure in this population include increasing caregiver awareness of the potential negative impact of such TV exposure. PMID:27007983

  14. Radiation Exposure and Pregnancy

    MedlinePlus

    Fact Sheet Adopted: June 2010 Updated: June 2017 Health Physics Society Specialists in Radiation Safety Radiation Exposure and ... radiation and pregnancy can be found on the Health Physics Society " Ask the Experts" Web site. she should ...

  15. BOOK REVIEW: NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States

    NASA Astrophysics Data System (ADS)

    Thurston, Jim

    2010-10-01

    This report by Committee 6 of the Council is an extensive update of a previous report on the exposure of the US population to ionizing radiation sources from data gathered in the 1980s (published as Report 93 in 1987). It is combined with an update on the more in-depth assessment of data on medical exposures previously reported in 1989 (Report 100). Individual chapters in this new report are dedicated to specific sources of exposure to the US population—both from natural and artificial radiation—and the level of detail in each chapter is intended to reflect the significance of the contribution of each source to the total collective dose of the population. The first chapter is on the most significant contributor: background radiation. It expands on the concept of natural background radiation in Report 93, renaming it 'ubiquitous background', and describing in detail the contributions from both extra-terrestrial and terrestrial sources. The data demonstrates that the average dose from such exposure has varied little since the previous report (a slight increase from 3.0 mSv to 3.1 mSv). The next chapter is on medical radiation, i.e. the exposure to the population when attending as patients, not including occupational exposure to hospital workers. The most striking data published in the entire report is the increase in the contribution to the total US population dose attributed to such medical exposures. It is now as significant as that from background radiation: medical exposures now account for an average effective dose to the US citizen of 3.00 mSv, up from 0.53 mSv in 1992 (Report 100). The most important contribution to this increase is the 1.46 mSv from CT scanning alone. The nuclear medicine (including PET) contribution is up from 0.14 mSv to 0.77mSv. This evidently must be due to significant changes in medical radiological practice in the US tied to the increase in the availability of CT and PET imaging facilities. These increasing contributions have driven

  16. Investigation of background radiation levels and geologic unit profiles in Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, G.H.; Foutz, W.L.; Lesperance, L.R.

    1989-11-01

    As part of the Uranium Mill Tailings Remedial Action (UMTRA) Project, Oak Ridge National Laboratory (ORNL) has performed radiological surveys on 435 vicinity properties (VPs) in the Durango area. This study was undertaken to establish the background radiation levels and geologic unit profiles in the Durango VP area. During the months of May through June, 1986, extensive radiometric measurements and surface soil samples were collected in the Durango VP area by personnel from ORNL's Grand Junction Office. A majority of the Durango VP surveys were conducted at sites underlain by Quaternary alluvium, older Quaternary gravels, and Cretaceous Lewis and Mancosmore » shales. These four geologic units were selected to be evaluated. The data indicated no formation anomalies and established regional background radiation levels. Durango background radionuclide concentrations in surface soil were determined to be 20.3 {plus minus} 3.4 pCi/g for {sup 40}K, 1.6 {plus minus} 0.5 pCi/g for {sup 226}Ra, and 1.2 {plus minus} 0.3 pCi/g for {sup 232}Th. The Durango background gamma exposure rate was found to be 16.5 {plus minus} 1.3 {mu}R/h. Average gamma spectral count rate measurements for {sup 40}K, {sup 226}Ra and {sup 232}Th were determined to be 553, 150, and 98 counts per minute (cpm), respectively. Geologic unit profiles and Durango background radiation measurements are presented and compared with other areas. 19 refs., 15 figs., 5 tabs.« less

  17. [Creation of a crystalline lens radiation exposure defense cover and the effect of radiation exposure decrease on neuro-interventions].

    PubMed

    Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo

    2007-11-20

    A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.

  18. Background compensation for a radiation level monitor

    DOEpatents

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  19. Monitoring of fetal radiation exposure during pregnancy.

    PubMed

    Chandra, Venita; Dorsey, Chelsea; Reed, Amy B; Shaw, Palma; Banghart, Dawn; Zhou, Wei

    2013-09-01

    One unique concern of vascular surgeons and trainees is radiation exposure associated with increased endovascular practice. The safety of childbearing is a particular worry for current and future women in vascular surgery. Little is known regarding actual fetal radiation exposure. This multi-institutional study aimed to evaluate the radiation dosages recorded on fetal dosimeter badges and compare them to external badges worn by the same cohort of women. All women who declared pregnancy with potential radiation exposure were required to wear two radiation monitors at each institution, one outside and the other inside the lead apron. Maternal (external) and fetal monitor dosimeter readings were analyzed. Maternal radiation exposures prior to, during, and postpregnancy were also assessed to determine any associated behavior modification. Eighty-one women declared pregnancy from 2008 to 2011 and 32 had regular radiation exposure during pregnancy. Maternal whole-body exposures ranged from 21-731 mrem. The average fetal dosimeter recordings for the cohort rounded to zero. Only two women had positive fetal dosimeter recordings; one had a single recording of 3 mrem and the other had a single recording of 7 mrem. There was no significant difference between maternal exposures prior to, during, and postpregnancy. Lack of knowledge of fetal radiation exposure has concerned many vascular surgeons, prompting them to wear double lead aprons during pregnancy, and perhaps prevented numerous other women from entering the field. Our study showed negligible radiation exposure on fetal monitoring suggesting that with the appropriate safety precautions, these concerns may be unwarranted. Published by Mosby, Inc.

  20. Radiation exposure in the moon environment

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Matthiae, Daniel

    2012-12-01

    During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the

  1. The origin of the diffuse background gamma radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV, and evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of big-bang cosmology, and connect these processes with the galaxy formation theory. A test of the theory is in future observations of the background radiation in the 100 MeK to 100 GeV energy range which are made with large orbiting spark-chamber satellite detectors. The theoretical interpretations of present data, their connection with baryon-symmetric cosmology and galaxy formation theory, and the need for future observations are discussed.

  2. Malignant mesothelioma following radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antman, K.H.; Corson, J.M.; Li, F.P.

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommonmore » cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered.« less

  3. Measurement of background gamma radiation in the northern Marshall Islands.

    PubMed

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  4. Measurement of background gamma radiation in the northern Marshall Islands

    PubMed Central

    Bordner, Autumn S.; Crosswell, Danielle A.; Katz, Ainsley O.; Shah, Jill T.; Zhang, Catherine R.; Nikolic-Hughes, Ivana; Hughes, Emlyn W.; Ruderman, Malvin A.

    2016-01-01

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of 137Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <<0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered. PMID:27274073

  5. Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation

    DOE PAGES

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.; ...

    2015-02-04

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  6. Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  7. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A controlmore » group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.« less

  8. Radiative decays of massive relic particles and the submillimeter background

    NASA Technical Reports Server (NTRS)

    Field, George B.; Walker, Terry P.

    1989-01-01

    The interaction of the decay photons of an unstable relic particle species with the microwave background radiation is considered. The radiative decays of these particles delay recombination and serve as an energy source for the resultant plasma. Nonrelativistic Compton scattering by these electrons couples the decay photons to the microwave background, producing submillimeter distortions. If the decay products close the universe, they must decay with a radiative branching ratio larger than 2.5 x 10 to the -5th in order to produce recently observed excess submillimeter background radiation. To be consistent with measurements of the UV background, their mass m is much greater than 114 keV and their decay redshift z is much greater than 5200.

  9. The origin of the diffuse background gamma-radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation have been observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy fromation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given.

  10. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.

    PubMed

    Dörr, Harald; Meineke, Viktor

    2011-11-25

    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  11. Gamma-Radiation Background Onboard Russian Orbital Stations

    NASA Astrophysics Data System (ADS)

    Dmitrenko, V. V.; Galper, A. M.; Gratchev, V. M.; Kirillov-Ugryumov, V. G.; Krivov, S. V.; Moiseev, A. A.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.; Yurkin, Yn. T.

    Large manned space flight missions have several advantages for carrying out astrophysical and cosmic ray experiments, including the ability to install heavy instruments with large dimensions, increased electrical power and telemetry capacity, and the operation of fixed instruments by qualified personnel (astronauts). The main disadvantage in the use of heavy orbital stations for these experiments is the high level of background radiation generated by the interaction of station material with primary cosmic rays, high energy particles that exist in the magnetosphere of Earth, and albedo radiation from Earth. In some cases, additional radiation may originate from man-made radiation sources installed at the stations. For many years MEPhI have maintained experiments onboard manned Russian space flight missions to study primary gamma-rays at two energy intervals: 0.1 - 8 MeV and 30-600 MeV and electrons with energy more than 30 MeV. During these experiments significant time was spent investigating high energy background radiation onboard the stations. To measure 30-600 MeV gamma-rays, the gas-Cherenkov-scintillation telescope Elena was used. The angular view of this telescope was 10 deg, with a geometrical factor of 0.5 cm2sr. This telescope was operated onboard the orbital stations Salyut-6 and Salyut-7. Usually these stations were operated together with the space missions Soyuz and Progress. For background measurements, cosmonauts installed the telescope at various locations on Salyut, Soyuz and Progress, and oriented it in various directions respectively to the station's axes. During these experiments, the orbital stations were not oriented.

  12. Evaluation of background radiation dose contributions in the United Arab Emirates.

    PubMed

    Goddard, Braden; Bosc, Emmanuel; Al Hasani, Sarra; Lloyd, Cody

    2018-09-01

    The natural background radiation consists of three main components; cosmic, terrestrial, and skyshine. Although there are currently methods available to measure the total dose rate from background radiation, no established methods exist that allow for the measurement of each component the background radiation. This analysis consists of a unique methodology in which the dose rate contribution from each component of the natural background radiation is measured and calculated. This project evaluates the natural background dose rate in the Abu Dhabi City region from all three of these components using the developed methodology. Evaluating and understanding the different components of background radiation provides a baseline allowing for the detection, and possibly attribution, of elevated radiation levels. Measurements using a high-pressure ion chamber with different shielding configurations and two offshore measurements provided dose rate information that were attributed to the different components of the background radiation. Additional spectral information was obtained using an HPGe detector to verify and quantify the presence of terrestrial radionuclides. By evaluating the dose rates of the different shielding configurations the comic, terrestrial, and skyshine contribution in the Abu Dhabi City region were determined to be 33.0 ± 1.7, 15.7 ± 2.5, and 2.4 ± 2.1 nSv/h, respectively. Copyright © 2018. Published by Elsevier Ltd.

  13. Occupational Exposure to Ultraviolet Radiation and Risk of Non-Melanoma Skin Cancer in a Multinational European Study

    PubMed Central

    Surdu, Simona; Fitzgerald, Edward F.; Bloom, Michael S.; Boscoe, Francis P.; Carpenter, David O.; Haase, Richard F.; Gurzau, Eugen; Rudnai, Peter; Koppova, Kvetoslava; Févotte, Joëlle; Leonardi, Giovanni; Vahter, Marie; Goessler, Walter; Kumar, Rajiv; Fletcher, Tony

    2013-01-01

    Background Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation. Objectives We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia. Methods Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC. Results Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure. Conclusions The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned. PMID:23638051

  14. Background Ionizing Radiation and the Risk of Childhood Cancer: A Census-Based Nationwide Cohort Study

    PubMed Central

    Lupatsch, Judith E.; Zwahlen, Marcel; Röösli, Martin; Niggli, Felix; Grotzer, Michael A.; Rischewski, Johannes; Egger, Matthias; Kuehni, Claudia E.

    2015-01-01

    Background Exposure to medium or high doses of ionizing radiation is a known risk factor for cancer in children. The extent to which low-dose radiation from natural sources contributes to the risk of childhood cancer remains unclear. Objectives In a nationwide census-based cohort study, we investigated whether the incidence of childhood cancer was associated with background radiation from terrestrial gamma and cosmic rays. Methods Children < 16 years of age in the Swiss National Censuses in 1990 and 2000 were included. The follow-up period lasted until 2008, and incident cancer cases were identified from the Swiss Childhood Cancer Registry. A radiation model was used to predict dose rates from terrestrial and cosmic radiation at locations of residence. Cox regression models were used to assess associations between cancer risk and dose rates and cumulative dose since birth. Results Among 2,093,660 children included at census, 1,782 incident cases of cancer were identified including 530 with leukemia, 328 with lymphoma, and 423 with a tumor of the central nervous system (CNS). Hazard ratios for each millisievert increase in cumulative dose of external radiation were 1.03 (95% CI: 1.01, 1.05) for any cancer, 1.04 (95% CI: 1.00, 1.08) for leukemia, 1.01 (95% CI: 0.96, 1.05) for lymphoma, and 1.04 (95% CI: 1.00, 1.08) for CNS tumors. Adjustment for a range of potential confounders had little effect on the results. Conclusions Our study suggests that background radiation may contribute to the risk of cancer in children, including leukemia and CNS tumors. Citation Spycher BD, Lupatsch JE, Zwahlen M, Röösli M, Niggli F, Grotzer MA, Rischewski J, Egger M, Kuehni CE, for the Swiss Pediatric Oncology Group and the Swiss National Cohort. 2015. Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123:622–628; http://dx.doi.org/10.1289/ehp.1408548 PMID:25707026

  15. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    PubMed

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  16. STUDIES IN WORKMEN'S COMPENSATION AND RADIATION INJURY. VOLUME II, THE INCIDENCE, NATURE AND ADJUDICATION OF WORKMEN'S COMPENSATION CLAIMS INVOLVING RADIATION EXPOSURE AND DELAYED INJURY.

    ERIC Educational Resources Information Center

    O'TOOLE, THOMAS J.

    THE PURPOSE OF THE STUDY WAS TO PROVIDE A FACTUAL BACKGROUND AGAINST WHICH JUDGMENTS CAN BE MADE CONCERNING THE MAGNITUDE OF THE PROBLEM OF INJURY APPEARING SOME TIME AFTER THE EXPOSURE TO IONIZING RADIATION AND DETERMINE WHETHER EXISTING LAWS PERMIT A JUST AND EQUITABLE ADJUDICATION OF RADIATION COMPENSATION CLAIMS. THE STUDY WAS BASED UPON THE…

  17. Background radiation dose of dumpsites in Ota and Environs

    NASA Astrophysics Data System (ADS)

    Usikalu, M. R.; Ola, O. O.; Achuka, J. A.; Babarimisa, I. O.; Ayara, W. A.

    2017-05-01

    In-situ measurement of background radiation dose from selected dumpsites in Ota and its environs was done using Radialert Nuclear Radiation Monitor (Digilert 200). Ten measurements were taken from each dumpsite. The measured background radiation range between 0.015 mRhr-1 for AOD and 0.028 mRhr-1 for SUS dumpsites. The calculated annual equivalent doses vary between 1.31 mSvyr-1 for AOD and 2.28 mSv/yr for SUS dumpsites. The air absorbed dose calculated ranged from 150 nGyhr-1 to 280 nGy/hr for AOD and SUS dumpsites respectively with an average value of 217 nGyhr-1 for all the locations. All the estimated parameters were higher than permissible limit set for background radiation for the general public. Conclusively, the associated challenge and radiation burden posed by the wastes on the studied locations and scavengers is high. Therefore, there is need by the regulatory authorities to look into the way and how waste can be properly managed so as to alleviate the effects on the populace leaving and working in the dumpsites vicinity.

  18. Radiation exposure of the anesthesiologist in the neurointerventional suite.

    PubMed

    Anastasian, Zirka H; Strozyk, Dorothea; Meyers, Philip M; Wang, Shuang; Berman, Mitchell F

    2011-03-01

    Scatter radiation during interventional radiology procedures can produce cataracts in participating medical personnel. Standard safety equipment for the radiologist includes eye protection. The typical configuration of fluoroscopy equipment directs radiation scatter away from the radiologist and toward the anesthesiologist. This study analyzed facial radiation exposure of the anesthesiologist during interventional neuroradiology procedures. Radiation exposure to the forehead of the anesthesiologist and radiologist was measured during 31 adult neuroradiologic procedures involving the head or neck. Variables hypothesized to affect anesthesiologist exposure were recorded for each procedure. These included total radiation emitted by fluoroscopic equipment, radiologist exposure, number of pharmacologic interventions performed by the anesthesiologist, and other variables. Radiation exposure to the anesthesiologist's face averaged 6.5 ± 5.4 μSv per interventional procedure. This exposure was more than 6-fold greater (P < 0.0005) than for noninterventional angiographic procedures (1.0 ± 1.0) and averaged more than 3-fold the exposure of the radiologist (ratio, 3.2; 95% CI, 1.8-4.5). Multiple linear regression analysis showed that the exposure of the anesthesiologist was correlated with the number of pharmacologic interventions performed by the anesthesiologist and the total exposure of the radiologist. Current guidelines for occupational radiation exposure to the eye are undergoing review and are likely to be lowered below the current 100-150 mSv/yr limit. Anesthesiologists who spend significant time in neurointerventional radiology suites may have ocular radiation exposure approaching that of a radiologist. To ensure parity with safety standards adopted by radiologists, these anesthesiologists should wear protective eyewear.

  19. Cosmic microwave background radiation of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  20. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsac, Kara E.; Burnley, Pamela C.; Adcock, Christopher T.

    Here, this study compares high-resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (Nationalmore » Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age.« less

  1. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona

    DOE PAGES

    Marsac, Kara E.; Burnley, Pamela C.; Adcock, Christopher T.; ...

    2016-09-16

    Here, this study compares high-resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (Nationalmore » Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age.« less

  2. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  3. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  4. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  5. CERN-derived analysis of lunar radiation backgrounds

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Svoboda, Robert

    1993-01-01

    The Moon produces radiation which background-limits scientific experiments there. Early analyses of these backgrounds have either failed to take into consideration the effect of charm in particle physics (because they pre-dated its discovery), or have used branching ratios which are no longer strictly valid (due to new accelerator data). We are presently investigating an analytical program for deriving muon and neutrino spectra generated by the Moon, converting an existing CERN computer program known as GEANT which does the same for the Earth. In so doing, this will (1) determine an accurate prompt neutrino spectrum produced by the lunar surface; (2) determine the lunar subsurface particle flux; (3) determine the consequence of charm production physics upon the lunar background radiation environment; and (4) provide an analytical tool for the NASA astrophysics community with which to begin an assessment of the Moon as a scientific laboratory versus its particle radiation environment. This will be done on a recurring basis with the latest experimental results of the particle data groups at Earth-based high-energy accelerators, in particular with the latest branching ratios for charmed meson decay. This will be accomplished for the first time as a full 3-dimensional simulation.

  6. A Comparison between High-Energy Radiation Background Models and SPENVIS Trapped-Particle Radiation Models

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2013-01-01

    We have been assessing the effects of background radiation in low-Earth orbit for the next generation of X-ray and Cosmic-ray experiments, in particular for International Space Station orbit. Outside the areas of high fluxes of trapped radiation, we have been using parameterizations developed by the Fermi team to quantify the high-energy induced background. For the low-energy background, we have been using the AE8 and AP8 SPENVIS models to determine the orbit fractions where the fluxes of trapped particles are too high to allow for useful operation of the experiment. One area we are investigating is how the fluxes of SPENVIS predictions at higher energies match the fluxes at the low-energy end of our parameterizations. I will summarize our methodology for background determination from the various sources of cosmogenic and terrestrial radiation and how these compare to SPENVIS predictions in overlapping energy ranges.

  7. Influence of various factors on individual radiation exposure from the chernobyl disaster

    PubMed Central

    Zamostian, Pavlo; Moysich, Kirsten B; Mahoney, Martin C; McCarthy, Philip; Bondar, Alexandra; Noschenko, Andrey G; Michalek, Arthur M

    2002-01-01

    Background The explosion at the Chernobyl Nuclear Power Plant was one of the greatest known nuclear disasters of the 20th century. To reduce individual exposure to ionizing radiation the Soviet Union government introduced a number of counter-measures. This article presents a description of how historical events conspired to disrupt these efforts and affect residents in exposed areas. Methods This study employed an extensive review of data on radionuclide deposition, contamination patterns and lifestyle characteristics. Data were obtained from the Ukraine Ministry of Health and the Ukraine Research Center for Radiation Medicine. Results Data are presented on annual contamination rates in selected locales as well as data on local food consumption patterns. Historical factors including economic and political circumstances are also highlighted. Results show the diminution of individual doses between 1987 and 1991 and then an increase between 1991 and 1994 and the relationship between this increase and changes in the lifestyle of the local population. Conclusion A number of factors played direct and indirect roles in contributing to the populace's cumulative radiation exposure. Future post-contamination studies need to consider these factors when estimating individual exposures. PMID:12495449

  8. Radiation dose in the high background radiation area in Kerala, India.

    PubMed

    Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P

    2012-03-01

    A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.

  9. Overview of Radiation Environments and Human Exposures

    NASA Technical Reports Server (NTRS)

    Wilson, John W.

    2004-01-01

    Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by the Earth s atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high altitude and space operations.

  10. Exposure to indoor background radiation and urinary concentrations of 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage.

    PubMed Central

    Sperati, A; Abeni, D D; Tagesson, C; Forastiere, F; Miceli, M; Axelson, O

    1999-01-01

    We investigated whether exposure to indoor [gamma]-radiation and radon might be associated with enough free radical formation to increase urinary concentrations of 8-hydroxydeoxyguanosine (8-OHdG), a sensitive marker of DNA damage, due to a hydroxyl radical attack at the C8 of guanine. Indoor radon and [gamma]-radiation levels were measured in 32 dwellings for 6 months by solid-state nuclear track detectors and thermoluminescent dosimeters, respectively. Urine samples for 8-OHdG determinations were obtained from 63 healthy adult subjects living in the measured dwellings. An overall tendency toward increasing levels of 8-OHdG with increasing levels of radon and [gamma]-radiation was seen in the females, presumably due to their estimated longer occupancy in the dwellings measured. Different models were considered for females, with the steepest slopes obtained for [gamma]-radiation with a coefficient of 0.500 (log nmol/l of 8-OHdG for each unit increase of [gamma]-radiation on a log scale) (p<0.01), and increasing to 0.632 (p = 0.035), but with larger variance, when radon was included in the model. In conclusion, there seems to be an effect of indoor radioactivity on the urinary excretion of 8-OHdG for females, who are estimated to have a higher occupancy in the dwellings measured than for males, for whom occupational and other agents may also influence 8-OHdG excretion. ree radicals; [gamma]-radiation; radon. PMID:10064551

  11. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona.

    PubMed

    Marsac, Kara E; Burnley, Pamela C; Adcock, Christopher T; Haber, Daniel A; Malchow, Russell L; Hausrath, Elisabeth M

    2016-12-01

    This study compares high resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (National Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Cancer.gov

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  13. Childhood cancer and occupational radiation exposure in parents.

    PubMed

    Hicks, N; Zack, M; Caldwell, G G; Fernbach, D J; Falletta, J M

    1984-04-15

    To test the hypothesis that a parent's job exposure to radiation affects his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR) = infinity, one-sided 95% lower limit = 1.5; P = 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR = 2.73; P = 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations.

  14. Radiation Exposure from Medical Exams and Procedures

    MedlinePlus

    Fact Sheet Adopted: January 2010 Health Physics Society Specialists in Radiation Safety Radiation Exposure from Medical Exams and Procedures Ionizing radiation is used daily in hospitals and clinics ...

  15. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  16. Concern over radiation exposure and psychological distress among rescue workers following the Great East Japan Earthquake

    PubMed Central

    2012-01-01

    Background On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. Methods One month after the disaster, 424 of 1816 (24%) disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6), depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D), fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI), and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R). Results Radiation exposure was a concern for 39 (9.2%) respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. Conclusion The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers. PMID:22455604

  17. Risk of whole body radiation exposure and protective measures in fluoroscopically guided interventional techniques: a prospective evaluation.

    PubMed

    Manchikanti, Laxmaiah; Cash, Kim A; Moss, Tammy L; Rivera, Jose; Pampati, Vidyasagar

    2003-08-06

    BACKGROUND: Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. METHODS: Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. RESULTS: The average exposure per procedure was 12.0 PlusMinus; 9.8 seconds, 9.0 PlusMinus; 0.37 seconds, and 7.5 PlusMinus; 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 PlusMinus; 0.29 seconds for caudal/interlaminar epidurals to 61.0 PlusMinus; 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II.Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with

  18. Measurements of the cosmic background radiation

    NASA Technical Reports Server (NTRS)

    Lubin, P.; Villela, T.

    1987-01-01

    Maps of the large scale structure (theta is greater than 6 deg) of the cosmic background radiation covering 90 percent of the sky are now available. The data show a very strong 50-100 sigma (statistical error) dipole component, interpreted as being due to our motion, with a direction of alpha = 11.5 + or - 0.15 hours, sigma = -5.6 + or - 2.0 deg. The inferred direction of the velocity of our galaxy relative to the cosmic background radiation is alpha = 10.6 + or - 0.3 hours, sigma = -2.3 + or - 5 deg. This is 44 deg from the center of the Virgo cluster. After removing the dipole component, the data show a galactic signature but no apparent residual structure. An autocorrelation of the residual data, after substraction of the galactic component from a combined Berkeley (3 mm) and Princeton (12 mm) data sets, show no apparent structure from 10 to 180 deg with a rms of 0.01 mK(sup 2). At 90 percent confidence level limit of .00007 is placed on a quadrupole component.

  19. Radiation exposure in gastroenterology: improving patient and staff protection.

    PubMed

    Ho, Immanuel K H; Cash, Brooks D; Cohen, Henry; Hanauer, Stephen B; Inkster, Michelle; Johnson, David A; Maher, Michael M; Rex, Douglas K; Saad, Abdo; Singh, Ajaypal; Rehani, Madan M; Quigley, Eamonn M

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  20. Radiation exposure to sonographers from nuclear medicine patients: A review.

    PubMed

    Earl, Victoria Jean; Badawy, Mohamed Khaldoun

    2018-06-01

    Following nuclear medicine scans a patient can be a source of radiation exposure to the hospital staff, including sonographers. Sonographers are not routinely monitored for occupational radiation exposure as they do not commonly interact with radioactive patients or other sources of ionizing radiation. This review aims to find evidence relating to the risk and amount of radiation the sonographer is exposed to from nuclear medicine patients. It is established in the literature that the radiation exposure to the sonographer following diagnostic nuclear medicine studies is low and consequently the risk is not significant. Nevertheless, it is paramount that basic radiation safety principles are followed to ensure any exposure to ionizing radiation is kept as low as reasonably achievable. Practical recommendations are given to assist the sonographer in radiation protection. Nuclear medicine therapy procedures may place the sonographer at higher risk and as such consultation with a Radiation Safety Officer or Medical Physicist as to the extent of exposure is recommended. © 2018 The Royal Australian and New Zealand College of Radiologists.

  1. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behne, Patrick Alan

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulationmore » potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.« less

  2. Impact of climate change on occupational exposure to solar radiation.

    PubMed

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  3. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  4. Cosmic radiation exposure during air travel.

    DOT National Transportation Integrated Search

    1980-03-01

    In 1967 the FAA appointed an advisory committee on radiation biology aspects of SST flight. Some of the committee members were subsequently appointed to a working group to study radiation exposure during air travel in conventional jet aircraft. : Pre...

  5. Assessment of Health Consequences of Steel Industry Welders’ Occupational Exposure to Ultraviolet Radiation

    PubMed Central

    Zamanian, Zahra; Mortazavi, Saied Mohammad Javad; Asmand, Ebrahim; Nikeghbal, Kiana

    2015-01-01

    Background: Welding is among the most important frequently used processes in the industry with a wide range of applications from the food industry to aerospace and from precision tools to shipbuilding. The aim of this study was to assess the level of steel industry welders’ exposure to ultraviolet (UV) radiation and to investigate the health impacts of these exposures. Methods: In this case–control study, we measured the intensity of UV at the workers’ wrist in Fars Steel Company through manufacture of different types of heavy metal structures, using UV-meter model 666230 made by Leybold Co., from Germany. Results: The population under the study comprised 400 people including 200 welders as the exposed group and 200 nonwelders as the unexposed group. The results of the questionnaire were analyzed using SPSS software, version 19. The average, standard deviation, maximum and minimum of the UV at the welders’ wrist were 0.362, 0.346, 1.27, and 0.01 μW/cm2, respectively. There was a significantly (P < 0.01) higher incidence of cataracts, keratoconjunctivitis, dermatitis and erythema in welders than in their nonwelders. Conclusions: This study showed that the time period of UV exposure in welders is higher than the permissible contact threshold level. Therefore, considering the outbreak of the eye and skin disorders in the welders, decreasing exposure time, reducing UV radiation level, and using personal protective equipment seem indispensable. As exposure to UV radiation can be linked to different types of skin cancer, skin aging, and cataract, welders should be advised to decrease their occupational exposures. PMID:26900437

  6. Radiation exposure of air carrier crewmembers II.

    DOT National Transportation Integrated Search

    1992-01-01

    The cosmic radiation environment at air carrier flight altitudes is described and estimates given of the amounts of galactic cosmic radiation received on a wide variety of routes to and from, and within the contiguous United States. Radiation exposur...

  7. Radiation exposure of U.S. military individuals.

    PubMed

    Blake, Paul K; Komp, Gregory R

    2014-02-01

    The U.S. military consists of five armed services: the Army, Navy, Marine Corps, Air Force, and Coast Guard. It directly employs 1.4 million active duty military, 1.3 million National Guard and reserve military, and 700,000 civilian individuals. This paper describes the military guidance used to preserve and maintain the health of military personnel while they accomplish necessary and purposeful work in areas where they are exposed to radiation. It also discusses military exposure cohorts and associated radiogenic disease compensation programs administered by the U.S. Department of Veterans Affairs, the U.S. Department of Justice, and the U.S. Department of Labor. With a few exceptions, the U.S. military has effectively employed ionizing radiation since it was first introduced during the Spanish-American War in 1898. The U.S military annually monitors 70,000 individuals for occupational radiation exposure: ~2% of its workforce. In recent years, the Departments of the Navy (including the Marine Corps), the Army, and the Air Force all have a low collective dose that remains close to 1 person-Sv annually. Only a few Coast Guard individuals are now routinely monitored for radiation exposure. As with the nuclear industry as a whole, the Naval Reactors program has a higher collective dose than the remainder of the U.S. military. The U.S. military maintains occupational radiation exposure records on over two million individuals from 1945 through the present. These records are controlled in accordance with the Privacy Act of 1974 but are available to affected individuals or their designees and other groups performing sanctioned epidemiology studies.Introduction of Radiation Exposure of U.S. Military Individuals (Video 2:19, http://links.lww.com/HP/A30).

  8. Quantum effects in the cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Messer, J.

    1990-11-01

    Based on the quantum correlated general relativistic Vlasov equations in an Einstein-de Sitter universe, we show that quantum effects are beyond measurability in the cosmic microwave background radiation.

  9. Radiation exposure from fluoroscopy during orthopedic surgical procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, S.A.

    1989-11-01

    The use of fluoroscopy has enabled orthopedic surgeons to become technically more proficient. In addition, these surgical procedures tend to have less associated patient morbidity by decreasing operative time and minimizing the area of the operative field. The trade-off, however, may be an increased risk of radiation exposure to the surgeon on an annual or lifetime basis. The current study was designed to determine the amount of radiation received by the primary surgeon and the first assistant during selected surgical procedures involving the use of fluoroscopy. Five body sites exposed to radiation were monitored for dosage. The results of thismore » study indicate that with appropriate usage, (1) radiation exposure from fluoroscopy is relatively low; (2) the surgeon's dominant hand receives the most exposure per case; and (3) proper maintenance and calibration of fluoroscopic machines are important factors in reducing exposure risks. Therefore, with proper precautions, the use of fluoroscopy in orthopedic procedures can remain a safe practice.« less

  10. A method to characterise site, urban and regional ambient background radiation.

    PubMed

    Passmore, C; Kirr, M

    2011-03-01

    Control dosemeters are routinely provided to customers to monitor the background radiation so that it can be subtracted from the gross response of the dosemeter to arrive at the occupational dose. Landauer, the largest dosimetry processor in the world with subsidiaries in Australia, Brazil, China, France, Japan, Mexico and the UK, has clients in approximately 130 countries. The Glenwood facility processes over 1.1 million controls per year. This network of clients around the world provides a unique ability to monitor the world's ambient background radiation. Control data can be mined to provide useful historical information regarding ambient background rates and provide a historical baseline for geographical areas. Historical baseline can be used to provide site or region-specific background subtraction values, document the variation in ambient background radiation around a client's site or provide a baseline for measuring the efficiency of clean-up efforts in urban areas after a dirty bomb detonation.

  11. [Effects of exposure frequency and background information on preferences for photographs of cars in different locations].

    PubMed

    Matsuda, Ken; Kusumi, Takashi; Hosomi, Naohiro; Osa, Atsushi; Miike, Hidetoshi

    2014-08-01

    This study examined the influence of familiarity and novelty on the mere exposure effect while manipulating the presentation of background information. We selected presentation stimuli that integrated cars and backgrounds based on the results of pilot studies. During the exposure phase, we displayed the stimuli successively for 3 seconds, manipulating the background information (same or different backgrounds with each presentation) and exposure frequency (3, 6, and 9 times). In the judgment phase, 18 participants judged the cars in terms of preference, familiarity, and novelty on a 7-point scale. As the number of stimulus presentations increased, the preference for the cars increased during the different background condition and decreased during the same background condition. This increased preference may be due to the increase in familiarity caused by the higher exposure frequency and novelty resulting from the background changes per exposure session. The rise in preference judgments was not seen when cars and backgrounds were presented independently. Therefore, the addition of novel features to each exposure session facilitated the mere exposure effect.

  12. Radiation exposure and lung disease in today's nuclear world.

    PubMed

    Deas, Steven D; Huprikar, Nikhil; Skabelund, Andrew

    2017-03-01

    Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.

  13. Comparison of Measured Galactic Background Radiation at L-Band with Model

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten

    2004-01-01

    Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;

  14. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCTmore » dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.« less

  15. The interaction of natural background gamma radiation with depleted uranium micro-particles in the human body.

    PubMed

    Pattison, John E

    2013-03-01

    In this study, some characteristics of the photo-electrons produced when natural background gamma radiation interacts with micron-sized depleted uranium (DU) particles in the human body have been estimated using Monte Carlo simulations. In addition, an estimate has been made of the likelihood of radiological health effects occurring due to such an exposure. Upon exposure to naturally occurring background gamma radiation, DU particles in the body will produce an enhancement of the dose to the tissue in the immediate vicinity of the particles due to the photo-electric absorption of the radiation in the particle. In this study, the photo-electrons produced by a 10 μm-size particle embedded in tissue at the centre of the human torso have been investigated. The mean energies of the photo-electrons in the DU particle and in the two consecutive immediately surrounding 2 μm-wide tissue shells around the particle were found to be 38, 49 and 50 keV, respectively, with corresponding ranges of 1.3, 38 and 39 μm, respectively. The total photo-electron fluence-rates in the two consecutive 2 μm-wide tissue layers were found to be 14% and 7% of the fluence-rate in the DU particle, respectively. The estimated dose enhancement due to one 10 μm-sized DU particle in 1 cm(3) of tissue was less than 2 in 10 million of the dose received by the tissue without a particle being present. The increase in risk of death from cancer due to this effect is consequently insignificant.

  16. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  17. Control of excessive lead exposure in radiator repair workers.

    PubMed

    1991-03-01

    In 1988, 83 automotive repair workers with blood lead levels (BLLs) greater than 25 micrograms/dL were reported to state health departments in the seven states that collaborated with CDC's National Institute for Occupational Safety and Health (NIOSH) in maintaining registries of elevated BLLs in adults. In 18 (22%) of these 83 persons, BLLs were greater than 50 micrograms/dL. Among automotive repair workers for whom a job category was specified, radiator repair work was the principal source of lead exposure. The major sources of exposure for radiator repair workers are lead fumes generated during soldering and lead dust produced during radiator cleaning. This report summarizes current BLL surveillance data for radiator repair workers and describes three control technologies that are effective in reducing lead exposures in radiator repair shops.

  18. The Cosmic Microwave Background Radiation and its Polarization

    NASA Astrophysics Data System (ADS)

    Wollack, Edward

    2016-03-01

    The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).

  19. Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave

    Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.

  20. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    PubMed

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cosmic radiation exposure and persistent cognitive dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  2. Cosmic radiation exposure and persistent cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K; Chmielewski, Nicole N; Giedzinski, Erich; Acharya, Munjal M; Britten, Richard A; Baulch, Janet E; Limoli, Charles L

    2016-10-10

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain.

  3. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980-2006.

    PubMed

    Kendall, G M; Little, M P; Wakeford, R; Bunch, K J; Miles, J C H; Vincent, T J; Meara, J R; Murphy, M F G

    2013-01-01

    We conducted a large record-based case-control study testing associations between childhood cancer and natural background radiation. Cases (27,447) born and diagnosed in Great Britain during 1980-2006 and matched cancer-free controls (36,793) were from the National Registry of Childhood Tumours. Radiation exposures were estimated for mother's residence at the child's birth from national databases, using the County District mean for gamma rays, and a predictive map based on domestic measurements grouped by geological boundaries for radon. There was 12% excess relative risk (ERR) (95% CI 3, 22; two-sided P=0.01) of childhood leukaemia per millisievert of cumulative red bone marrow dose from gamma radiation; the analogous association for radon was not significant, ERR 3% (95% CI -4, 11; P=0.35). Associations for other childhood cancers were not significant for either exposure. Excess risk was insensitive to adjustment for measures of socio-economic status. The statistically significant leukaemia risk reported in this reasonably powered study (power ~50%) is consistent with high-dose rate predictions. Substantial bias is unlikely, and we cannot identify mechanisms by which confounding might plausibly account for the association, which we regard as likely to be causal. The study supports the extrapolation of high-dose rate risk models to protracted exposures at natural background exposure levels.

  4. Lead exposure in radiator repair workers: a survey of Washington State radiator repair shops and review of occupational lead exposure registry data.

    PubMed

    Whittaker, Stephen G

    2003-07-01

    Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.

  5. Background radiation measurements at high power research reactors

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.; Prospect Collaboration

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  6. Modelling of aircrew radiation exposure during solar particle events

    NASA Astrophysics Data System (ADS)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  7. The Use of Gamma-H2AX as a Biodosimeter for Total-Body Radiation Exposure in Non-Human Primates

    DTIC Science & Technology

    2010-11-23

    Services University, Bethesda, Maryland, United States of America Abstract Background: There is a crucial shortage of methods capable of determining the...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Background: There is a crucial shortage of methods capable of... Veterinarian , Dr. Jennifer Mitchell, and her colleagues in AFRRI’s Veterinary Science Department, radiation exposure and dosimetry support from AFRRI’s

  8. Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment

    NASA Astrophysics Data System (ADS)

    Ono-Ogasawara, Mariko; Serita, Fumio; Takaya, Mitsutoshi

    2009-10-01

    As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.

  9. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  10. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  11. Decreasing radiation exposure on pediatric portable chest radiographs.

    PubMed

    Hawking, Nancy G; Sharp, Ted D

    2013-01-01

    To determine whether additional shielding designed for pediatric patients during portable chest exams that ascertain endotracheal tube placement would significantly decrease the amount of scatter radiation. Children aged 24 months or younger were intubated and received daily morning chest radiographs to determine endotracheal tube placement. For each measurement, the amount of scatter radiation decreased by more than 20% from a nonshielded exposure to a shielded exposure. There was a significant decrease in scatter radiation when using the lead shielding device along with appropriate collimation vs appropriate collimation alone. These results suggest that applying additional shielding to appropriately collimated chest radiographs could significantly reduce scatter radiation and therefore the overall dose to young children.

  12. Exposure assessment of aluminum arc welding radiation.

    PubMed

    Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong

    2007-10-01

    The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.

  13. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006

    PubMed Central

    Kendall, Gerald M.; Little, Mark P.; Wakeford, Richard; Bunch, Kathryn J.; Miles, Jon C.H.; Vincent, Timothy J.; Meara, Jill R.; Murphy, Michael F.G.

    2014-01-01

    We conducted a large record-based case-control study testing associations between childhood cancer and natural background radiation. Cases (27 447) born and diagnosed in Great Britain during 1980–2006 and matched cancer-free controls (36 793) were from the National Registry of Childhood Tumours. Radiation exposures were estimated for mother’s residence at the child’s birth from national databases, using the County District mean for gamma-rays, and a predictive map based on domestic measurements grouped by geological boundaries for radon. There was 12% excess relative risk (95% CI 3, 22; 2-sided p=0.01) of childhood leukaemia per millisievert of cumulative red-bone-marrow dose from gamma-radiation; the analogous association for radon was not significant, excess relative risk 3% (95% CI −4, 11; p=0.35). Associations for other childhood cancers were not significant for either exposure. Excess risk was insensitive to adjustment for measures of socio-economic status. The statistically significant leukaemia risk reported in this reasonably-powered study (power ~50%) is consistent with high dose-rate predictions. Substantial bias is unlikely, and we cannot identify mechanisms by which confounding might plausibly account for the association, which we regard as likely to be causal. The study supports the extrapolation of high dose-rate risk models to protracted exposures at natural background exposure levels. PMID:22766784

  14. Estimation of Whole Body Radiation Exposure to Nuclear Medicine Personnel During Synthesis of 177Lutetium-labeled Radiopharmaceuticals

    PubMed Central

    Arora, Geetanjali; Mishra, Rajesh; Kumar, Praveen; Yadav, Madhav; Ballal, Sanjana; Bal, Chandrasekhar; Damle, Nishikant Avinash

    2017-01-01

    Purpose of the Study: With rapid development in the field of nuclear medicine therapy, radiation safety of the personnel involved in synthesis of radiopharmaceuticals has become imperative. Few studies have been done on estimating the radiation exposure of personnel involved in the radio labeling of 177Lu-compounds in western countries. However, data from the Indian subcontinent are limited. We have estimated whole body radiation exposure to the radiopharmacist involved in the labeling of: 177Lu-DOTATATE, 177Lu-PSMA-617, and 177Lu-EDTMP. Materials and Methods: Background radiation was measured by keeping a pocket dosimeter around the workbench when no radioactive work was conducted. The same pocket dosimeter was given to the radiopharmacist performing the labeling of 177Lu-compounds. All radiopharmaceuticals were synthesized by the same radiopharmacist with 3, 1 and 3 year experience, respectively, in radiolabeling the above compounds. Results: One Curie (1 Ci) of 177Lu was received fortnightly by our department. Data were collected for 12 syntheses of 177Lu-DOTATATE, 8 syntheses of 177Lu-PSMA-617, and 3 syntheses of 177Lu-EDTMP. Mean time required to complete the synthesis was 0.81, 0.65, and 0.58 h, respectively. Mean whole body radiation exposure was 0.023 ± 0.01 mSv, 0.01 ± 0.002 mSv, and 0.002 ± 0.0006 mSv, respectively. Overall mean radiation dose for all the three 177Lu-compounds was 0.014 mSv. Highest exposure was obtained during the synthesis of 177Lu-DOTATATE. Conclusion: Our data suggest that the manual radiolabeling of 177Lu compounds is safe, and the whole body radiation exposure to the involved personnel is well within prescribed limits. PMID:28533634

  15. Mitigation strategies against radiation-induced background for space astronomy missions

    NASA Astrophysics Data System (ADS)

    Davis, C. S. W.; Hall, D.; Keelan, J.; O'Farrell, J.; Leese, M.; Holland, A.

    2018-01-01

    The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission is a major upcoming space-based X-ray observatory due to be launched in 2028 by ESA, with the purpose of mapping the early universe and observing black holes. Background radiation is expected to constitute a large fraction of the total system noise in the Wide Field Imager (WFI) instrument on ATHENA, and designing an effective system to reduce the background radiation impacting the WFI will be crucial for maximising its sensitivity. Significant background sources are expected to include high energy protons, X-ray fluorescence lines, 'knock-on' electrons and Compton electrons. Due to the variety of the different background sources, multiple shielding methods may be required to achieve maximum sensitivity in the WFI. These techniques may also be of great interest for use in future space-based X-ray experiments. Simulations have been developed to model the effect of a graded-Z shield on the X-ray fluorescence background. In addition the effect of a 90nm optical blocking filter on the secondary electron background has been investigated and shown to modify the requirements of any secondary electron shielding that is to be used.

  16. NTPR Radiation Exposure Reports

    Science.gov Websites

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Detonations 1945-1962, Vol II: Oceanic Test Series DNA-6041F For the Record - A History of the Nuclear Test

  17. [Effects of radiation exposure on human body].

    PubMed

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  18. Diagnostic radiation exposure in pediatric trauma patients.

    PubMed

    Brunetti, Marissa A; Mahesh, Mahadevappa; Nabaweesi, Rosemary; Locke, Paul; Ziegfeld, Susan; Brown, Robert

    2011-02-01

    The amount of imaging studies performed for disease diagnosis has been rapidly increasing. We examined the amount of radiation exposure that pediatric trauma patients receive because they are an at-risk population. Our hypothesis was that pediatric trauma patients are exposed to high levels of radiation during a single hospital visit. Retrospective review of children who presented to Johns Hopkins Pediatric Trauma Center from July 1, 2004, to June 30, 2005. Radiographic studies were recorded for each patient and doses were calculated to give a total effective dose of radiation. All radiographic studies that each child received during evaluation, including any associated hospital admission, were included. A total of 945 children were evaluated during the study year. A total of 719 children were included in the analysis. Mean age was 7.8 (±4.6) years. Four thousand six hundred three radiographic studies were performed; 1,457 were computed tomography (CT) studies (31.7%). Average radiation dose was 12.8 (±12) mSv. We found that while CT accounted for only 31.7% of the radiologic studies performed, it accounted for 91% of the total radiation dose. Mean dose for admitted children was 17.9 (±13.8) mSv. Mean dose for discharged children was 8.4 (±7.8) mSv (p<0.0001). Burn injuries had the lowest radiation dose [1.2 (±2.6) mSv], whereas motor vehicle collision victims had the highest dose [18.8 (±14.7) mSv]. When the use of radiologic imaging is considered essential, cumulative radiation exposure can be high. In young children with relatively long life spans, the benefit of each imaging study and the cumulative radiation dose should be weighed against the long-term risks of increased exposure.

  19. Assessment of natural background radiation in one of the highest regions of Ecuador

    NASA Astrophysics Data System (ADS)

    Pérez, Mario; Chávez, Estefanía; Echeverría, Magdy; Córdova, Rafael; Recalde, Celso

    2018-05-01

    Natural background radiation was measured in the province of Chimborazo (Ecuador) with the following reference coordinates 1°40'00''S 78°39'00''W, where the furthest point to the center of the planet is located. Natural background radiation measurements were performed at 130 randomly selected sites using a Geiger Müller GCA-07W portable detector; these measurements were run at 6 m away from buildings or walls and 1 m above the ground. The global average natural background radiation established by UNSCEAR is 2.4 mSv y-1. In the study area measurements ranged from 0.57 mSv y-1 to 3.09 mSv y-1 with a mean value of 1.57 mSv y-1, the maximum value was recorded in the north of the study area at 5073 metres above sea level (m.a.s.l.), and the minimum value was recorded in the southwestern area at 297 m.a.s.l. An isodose map was plotted to represent the equivalent dose rate due to natural background radiation. An analysis of variance (ANOVA) between the data of the high and low regions of the study area showed a significant difference (p < α), in addition a linear correlation coefficient of 0.92 was obtained, supporting the hypothesis that in high altitude zones extraterrestrial radiation contributes significantly to natural background radiation.

  20. Exposing exposure: automated anatomy-specific CT radiation exposure extraction for quality assurance and radiation monitoring.

    PubMed

    Sodickson, Aaron; Warden, Graham I; Farkas, Cameron E; Ikuta, Ichiro; Prevedello, Luciano M; Andriole, Katherine P; Khorasani, Ramin

    2012-08-01

    To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. This institutional review board-approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality control and optimization, and cumulative

  1. Research on cloud background infrared radiation simulation based on fractal and statistical data

    NASA Astrophysics Data System (ADS)

    Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing

    2018-02-01

    Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.

  2. Fluoroscopic radiation exposure: are we protecting ourselves adequately?

    PubMed

    Hoffler, C Edward; Ilyas, Asif M

    2015-05-06

    While traditional intraoperative fluoroscopy protection relies on thyroid shields and aprons, recent data suggest that the surgeon's eyes and hands receive more exposure than previously appreciated. Using a distal radial fracture surgery model, we examined (1) radiation exposure to the eyes, thyroid, chest, groin, and hands of a surgeon mannequin; (2) the degree to which shielding equipment can decrease exposure; and (3) how exposure varies with fluoroscopy unit size. An anthropomorphic model was fit with radiation-attenuating glasses, a thyroid shield, an apron, and gloves. "Exposed" thermoluminescent dosimeters overlaid the protective equipment at the eyes, thyroid, chest, groin, and index finger while "shielded" dosimeters were placed beneath the protective equipment. Fluoroscopy position and settings were standardized. The mini-c-arm milliampere-seconds were fixed based on the selection of the kilovolt peak (kVp). Three mini and three standard c-arms scanned a model of the patient's wrist continuously for fifteen minutes each. Ten dosimeter exposures were recorded for each c-arm. Hand exposure averaged 31 μSv/min (range, 22 to 48 μSv/min), which was 13.0 times higher than the other recorded exposures. Eye exposure averaged 4 μSv/min, 2.2 times higher than the mean thyroid, chest, and groin exposure. Gloves reduced hand exposure by 69.4%. Glasses decreased eye exposure by 65.6%. There was no significant difference in exposure between mini and standard fluoroscopy. Surgeons' hands receive the most radiation exposure during distal radial plate fixation under fluoroscopy. There was a small but insignificant difference in mean exposure between standard fluoroscopy and mini-fluoroscopy, but some standard units resulted in lower exposure than some mini-units. On the basis of these findings, we recommend routine protective equipment to mitigate exposure to surgeons' hands and eyes, in addition to the thyroid, chest, and groin, during fluoroscopy procedures

  3. Approximating the Probability of Mortality Due to Protracted Radiation Exposures

    DTIC Science & Technology

    2016-06-01

    syndrome of acute radiation sickness. In the MARCELL model, radiation exposure dynamically depletes the bone marrow cell population, the underpinning of...Protracted Radiation Exposures DTRA-TR-16-054 HDTRA1-14-D-0003; 0005 Prepared by: Applied Research Associates, Inc. 801 N. Quincy Street...Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation curie (Ci) [activity of radionuclides] 3.7 × 1010 per second (s–1

  4. Space Radiation and Human Exposures, A Primer.

    PubMed

    Nelson, Gregory A

    2016-04-01

    The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates.

  5. Long-range correlation in cosmic microwave background radiation.

    PubMed

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  6. Scattered radiation doses absorbed by technicians at different distances from X-ray exposure: Experiments on prosthesis.

    PubMed

    Chiang, Hsien-Wen; Liu, Ya-Ling; Chen, Tou-Rong; Chen, Chun-Lon; Chiang, Hsien-Jen; Chao, Shin-Yu

    2015-01-01

    This work aimed to investigate the spatial distribution of scattered radiation doses induced by exposure to the portable X-ray, the C-arm machine, and to simulate the radiologist without a shield of lead clothing, radiation doses absorbed by medical staff at 2 m from the central exposure point. With the adoption of the Rando Phantom, several frequently X-rayed body parts were exposed to X-ray radiation, and the scattered radiation doses were measured by ionization chamber dosimeters at various angles from the patient. Assuming that the central point of the X-ray was located at the belly button, five detection points were distributed in the operation room at 1 m above the ground and 1-2 m from the central point horizontally. The radiation dose measured at point B was the lowest, and the scattered radiation dose absorbed by the prosthesis from the X-ray's vertical projection was 0.07 ±0.03 μGy, which was less than the background radiation levels. The Fluke biomedical model 660-5DE (400 cc) and 660-3DE (4 cc) ion chambers were used to detect air dose at a distance of approximately two meters from the central point. The AP projection radiation doses at point B was the lowest (0.07±0.03 μGy) and the radiation doses at point D was the highest (0.26±0.08 μGy) .Only taking the vertical projection into account, the radiation doses at point B was the lowest (0.52 μGy), and the radiation doses at point E was the highest (4 μGy).The PA projection radiation at point B was the lowest (0.36 μGy) and the radiation doses at point E was the highest(2.77 μGy), occupying 10-32% of the maximum doses. The maximum dose in five directions was nine times to the minimum dose. When the PX and the C-arm machine were used, the radiation doses at a distance of 2 m were attenuated to the background radiation level. The radiologist without a lead shield should stand at point B of patient's feet. Accordingly, teaching materials on radiation safety for radiological interns and clinical

  7. Radiation exposures due to fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  8. Sensitivity to Antibiotics of Bacteria Exposed to Gamma Radiation Emitted from Hot Soils of the High Background Radiation Areas of Ramsar, Northern Iran.

    PubMed

    Mortazavi, Seyed Mohammad Javad; Zarei, Samira; Taheri, Mohammad; Tajbakhsh, Saeed; Mortazavi, Seyed Alireza; Ranjbar, Sahar; Momeni, Fatemeh; Masoomi, Samaneh; Ansari, Leila; Movahedi, Mohammad Mehdi; Taeb, Shahram; Zarei, Sina; Haghani, Masood

    2017-04-01

    Over the past several years our laboratories have investigated different aspects of the challenging issue of the alterations in bacterial susceptibility to antibiotics induced by physical stresses. To explore the bacterial susceptibility to antibiotics in samples of Salmonella enterica subsp. enterica serovar Typhimurium ( S. typhimurium ), Staphylococcus aureus , and Klebsiella pneumoniae after exposure to gamma radiation emitted from the soil samples taken from the high background radiation areas of Ramsar, northern Iran. Standard Kirby-Bauer test, which evaluates the size of the zone of inhibition as an indicator of the susceptibility of different bacteria to antibiotics, was used in this study. The maximum alteration of the diameter of inhibition zone was found for K. pneumoniae when tested for ciprofloxacin. In this case, the mean diameter of no growth zone in non-irradiated control samples of K. pneumoniae was 20.3 (SD 0.6) mm; it was 14.7 (SD 0.6) mm in irradiated samples. On the other hand, the minimum changes in the diameter of inhibition zone were found for S. typhimurium and S. aureus when these bacteria were tested for nitrofurantoin and cephalexin, respectively. Gamma rays were capable of making significant alterations in bacterial susceptibility to antibiotics. It can be hypothesized that high levels of natural background radiation can induce adaptive phenomena that help microorganisms better cope with lethal effects of antibiotics.

  9. Single-centre experience of radiation exposure in acute surgical patients: assessment of therapeutic impact and future recommendations.

    PubMed

    Fitzmaurice, Gerard J; Brown, Robin; Cranley, Brian; Conlon, Enda F; Todd, R Alan J; O'Donnell, Mark E

    2010-09-01

    Radiological investigations have become a key adjunct in patient management and consequently radiation exposure to patients is increasing. The study objectives were to examine the use of radiological investigations in the management of acute surgical patients and to assess whether a guideline-based radiation exposure risk/benefit analysis can aid in the choice of radiological investigation used. A prospective observational study was completed over a 12-week period from April to July 2008 for all acute surgical admissions. Data recorded included demographics, clinical presentation, differential diagnosis, investigations, surgical interventions, and final clinical outcome. The use of radiological investigative modalities as an adjunct to clinical assessment was then evaluated against The Royal College of Radiologists (RCR) guidelines. A total of 380 acute surgical admissions (M = 174, F = 185, children = 21) were assessed during the study period. Seven hundred thirty-four radiological investigations were performed with a mean of 1.93 investigations per patient. Based on the RCR guidelines, 680 (92.6%) radiological investigations were warranted and included 142 CT scans (19.3%), 129 chest X-rays (17.6%), and 85 abdominal X-rays (11.6%). Clinically, radiological imaging complemented surgical management in 326 patients (85.8%) and the management plan remained unchanged for the remaining 54 patients (14.2%). This accounted for an average radiation dose of 4.18 millisievert (mSv) per patient or 626 days of background radiation exposure. CT imaging was responsible for the majority of the radiation exposure, with a total of 1310 mSv (82.6%) of the total radiation exposure being attributed to CT imaging in 20.8% of acute admissions. Subgroup analysis demonstrated that 92.8% of the CT scans performed were appropriate. Radiation exposure was generally low for the majority of acute surgical admissions. However, it is recommended that CT imaging requests be evaluated carefully

  10. Monitoring Energy Calibration Drift Using the Scintillator Background Radiation

    NASA Astrophysics Data System (ADS)

    Conti, Maurizio; Eriksson, Lars; Hayden, Charles

    2011-06-01

    Scintillating materials commonly used in nuclear medicine can contain traces of isotopes that naturally emit gamma or beta radiation. Examples of these are 138La contained in LaBr3 and other Lanthanum based scintillators, and 176Lu contained in LSO, LYSO, LuYAP and other Lutetium based scintillators. In particular,176Lu decays into 176Hf and emits a beta particle with maximum energy 589 keV, and a cascade of gamma rays of energies 307 keV, 202 keV and 88 keV. We propose to use the background radiation for monitoring of detector calibration drift and for self-calibration of detectors in complex detector systems. A calibration drift due to random or systematic changes in photomultiplier tube (PMT) gain was studied in a Siemens PET scanner, based on LSO blocks. Both a conventional radioactive source (68Ge, 511 keV photons from electron-positron annihilation) and the LSO background radiation were used for calibration. The difference in the calibration peak shift at 511 keV estimated with the two methods was less than 10%.

  11. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  12. Occupational radiation exposure in nuclear medicine department in Kuwait

    NASA Astrophysics Data System (ADS)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  13. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2011-01-01

    Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.

  14. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    NASA Technical Reports Server (NTRS)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  15. The relationship between ultraviolet radiation exposure and vitamin D status.

    PubMed

    Engelsen, Ola

    2010-05-01

    This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.

  16. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morikawa, Yoshitake

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolantmore » system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.« less

  17. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  18. Exposing Exposure: Automated Anatomy-specific CT Radiation Exposure Extraction for Quality Assurance and Radiation Monitoring

    PubMed Central

    Warden, Graham I.; Farkas, Cameron E.; Ikuta, Ichiro; Prevedello, Luciano M.; Andriole, Katherine P.; Khorasani, Ramin

    2012-01-01

    Purpose: To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. Materials and Methods: This institutional review board–approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Results: Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality

  19. A study of smart card for radiation exposure history of patient.

    PubMed

    Rehani, Madan M; Kushi, Joseph F

    2013-04-01

    The purpose of this article is to undertake a study on developing a prototype of a smart card that, when swiped in a system with access to the radiation exposure monitoring server, will locate the patient's radiation exposure history from that institution or set of associated institutions to which it has database access. Like the ATM or credit card, the card acts as a secure unique "token" rather than having cash, credit, or dose data on the card. The system provides the requested radiation history report, which then can be printed or sent by e-mail to the patient. The prototype system is capable of extending outreach to wherever the radiation exposure monitoring server extends, at county, state, or national levels. It is anticipated that the prototype shall pave the way for quick availability of patient exposure history for use in clinical practice for strengthening radiation protection of patients.

  20. Medical management of three workers following a radiation exposure incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.A.; Sax, S.E.; Rumack, E.R.

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experiencedmore » somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.« less

  1. Ultraviolet Radiation: Human Exposure and Health Risks.

    ERIC Educational Resources Information Center

    Tenkate, Thomas D.

    1998-01-01

    Provides an overview of human exposure to ultraviolet radiation and associated health effects as well as risk estimates for acute and chronic conditions resulting from such exposure. Demonstrates substantial reductions in health risk that can be achieved through preventive actions. Also includes a risk assessment model for skin cancer. Contains 36…

  2. Diagnostic medical imaging radiation exposure and risk of development of solid and hematologic malignancy.

    PubMed

    Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A

    2012-05-01

    Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice. Copyright 2012, SLACK Incorporated.

  3. Ionizing radiation exposure of LDEF (pre-recovery estimates)

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.

  4. Cumulative radiation exposure and cancer risk estimation in children with heart disease.

    PubMed

    Johnson, Jason N; Hornik, Christoph P; Li, Jennifer S; Benjamin, Daniel K; Yoshizumi, Terry T; Reiman, Robert E; Frush, Donald P; Hill, Kevin D

    2014-07-08

    Children with heart disease are frequently exposed to imaging examinations that use ionizing radiation. Although radiation exposure is potentially carcinogenic, there are limited data on cumulative exposure and the associated cancer risk. We evaluated the cumulative effective dose of radiation from all radiation examinations to estimate the lifetime attributable risk of cancer in children with heart disease. Children ≤6 years of age who had previously undergone 1 of 7 primary surgical procedures for heart disease at a single institution between 2005 and 2010 were eligible for the study. Exposure to radiation-producing examinations was tabulated, and cumulative effective dose was calculated in millisieverts. These data were used to estimate lifetime attributable risk of cancer above baseline using the approach of the Committee on Biological Effects of Ionizing Radiation VII. The cohort included 337 children exposed to 13 932 radiation examinations. Conventional radiographs represented 92% of examinations, whereas cardiac catheterization and computed tomography accounted for 81% of cumulative exposure. Overall median cumulative effective dose was 2.7 mSv (range, 0.1-76.9 mSv), and the associated lifetime attributable risk of cancer was 0.07% (range, 0.001%-6.5%). Median lifetime attributable risk of cancer ranged widely depending on surgical complexity (0.006%-1.6% for the 7 surgical cohorts) and was twice as high in females per unit exposure (0.04% versus 0.02% per 1-mSv effective dose for females versus males, respectively; P<0.001). Overall radiation exposures in children with heart disease are relatively low; however, select cohorts receive significant exposure. Cancer risk estimation highlights the need to limit radiation dose, particularly for high-exposure modalities. © 2014 American Heart Association, Inc.

  5. Age at exposure to ionising radiation and cancer mortality among Hanford workers: follow up through 1994

    PubMed Central

    Wing, S; Richardson, D

    2005-01-01

    Background: Studies of workers at the plutonium production factory in Hanford, WA have led to conflicting conclusions about the role of age at exposure as a modifier of associations between ionising radiation and cancer. Aims: To evaluate the influence of age at exposure on radiation risk estimates in an updated follow up of Hanford workers. Methods: A cohort of 26 389 workers hired between 1944 and 1978 was followed through 1994 to ascertain vital status and causes of death. External radiation dose estimates were derived from personal dosimeters. Poisson regression was used to estimate associations between mortality and cumulative external radiation dose at all ages, and in specific age ranges. Results: A total of 8153 deaths were identified, 2265 of which included cancer as an underlying or contributory cause. Estimates of the excess relative risk per Sievert (ERR/Sv) for cumulative radiation doses at all ages combined were negative for all cause and leukaemia and positive for all cancer and lung cancer. Cumulative doses accrued at ages below 35, 35–44, and 45–54 showed little association with mortality. For cumulative dose accrued at ages 55 and above (10 year lag), the estimated ERR/Sv for all cancers was 3.24 (90% CI: 0.80 to 6.17), primarily due to an association with lung cancer (ERR/Sv: 9.05, 90% CI: 2.96 to 17.92). Conclusions: Associations between radiation and cancer mortality in this cohort are primarily a function of doses at older ages and deaths from lung cancer. The association of older age radiation exposures and cancer mortality is similar to observations from several other occupational studies. PMID:15961623

  6. Risk Assessment of Radiation Exposure using Molecular Biodosimetry

    NASA Technical Reports Server (NTRS)

    Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.

    2007-01-01

    Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.

  7. Digital methods for reducing radiation exposure during medical fluoroscopy

    NASA Astrophysics Data System (ADS)

    Edmonds, Ernest W.; Rowlands, John A.; Hynes, David M.; Toth, B. D.; Porter, Anthony J.

    1990-07-01

    There is increased concern over radiation exposure to the general population from many sources. One of the most significant sources is that received by the patient during medical diagnostic procedures, and of these, the procedure with the greatest potential hazard is fluoroscopy. The legal limit for fluoroscopy in most jurisdictions is SR per minute skin exposure rate. Fluoroscopes are often operated in excess of this figure, and in the case of interventional procedures, fluorocopy times may exceed 20 minutes. With improvements in medical technology these procedures are being performed more often, and also are being carried out on younger age groups. Radiation exposure during fluoroscopy, both to patient and operator, is therefore becoming a matter of increasing concern to regulating authorities, and it is incumbent on us to develop digital technology to minimise the radiation hazard in these procedures. This paper explores the technical options available for radiation exposure reduction, including pulsed fluoroscopy, digital noise reduction, or simple reduction in exposure rate to the x-ray image intensifier. We also discuss educational aspects of fluoroscopy which radiologists should be aware of which can be more important than the technological solutions. A "work in progress" report gives a completely new approach to the implementation of a large number of possible digital algorithms, for the investigation of clinical efficacy.

  8. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  9. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  10. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.

    PubMed

    Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  11. [Cutaneous radiation syndrome after accidental skin exposure to ionizing radiation].

    PubMed

    Peter, R U

    2013-12-01

    Accidental exposure of the human skin to single doses of ionizing radiation greater than 3 Gy results in a distinct clinical picture, which is characterized by a transient and faint erythema after a few hours, then followed by severe erythema, blistering and necrosis. Depending on severity of damage, the latter generally occurs 10-30 days after exposure, but in severe cases may appear within 48 hrs. Between three and 24 months after exposure, epidermal atrophy combined with progressive dermal and subcutaneous fibrosis is the predominant clinical feature. Even years and decades after exposure, atrophy of epidermis, sweat and sebaceous glands; telangiectases; and dermal and subcutaneous fibrosis may be found and even continue to progress. For this distinct pattern of deterministic effects following cutaneous accidental radiation exposure the term "cutaneous radiation syndrome (CRS)" was coined in 1993 and has been accepted by all international authorities including IAEA and WHO since 2000. In contrast to the classical concept that inhibition of epidermal stem cell proliferation accounts for the clinical symptomatology, research of the last three decades has demonstrated the additional crucial role of inflammatory processes in the etiology of both acute and chronic sequelae of the CRS. Therefore, therapeutic approaches should include topical and systemic anti-inflammatory measures at the earliest conceivable point, and should be maintained throughout the acute and subacute stages, as this reduces the need for surgical intervention, once necrosis has occurred. If surgical intervention is planned, it should be executed with a conservative approach; no safety margins are needed. Antifibrotic measures in the chronic stage should address the chronic inflammatory nature of this process, in which over-expression TGF beta-1 may be a target for therapeutic intervention. Life-long follow-up often is required for management of delayed effects and for early detection of secondary

  12. Cosmic microwave background radiation anisotropies in brane worlds.

    PubMed

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  13. Hand and body radiation exposure with the use of mini C-arm fluoroscopy.

    PubMed

    Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H

    2011-04-01

    To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body.

    PubMed

    Pattison, John E; Hugtenburg, Richard P; Green, Stuart

    2010-04-06

    Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to the third to fourth power of the atomic number. In such a case, the more heavily ionizing low-energy recoil electrons are preferentially produced; these cause dose enhancement in the immediate vicinity of the particles. It has been claimed that upon exposure to naturally occurring background gamma-radiation, particles of DU in the human body would produce dose enhancement by a factor of 500-1000, thereby contributing a significant radiation dose in addition to the dose received from the inherent radioactivity of the DU. In this study, we used the Monte Carlo code EGSnrc to accurately estimate the likely maximum dose enhancement arising from the presence of micrometre-sized uranium particles in the body. We found that although the dose enhancement is significant, of the order of 1-10, it is considerably smaller than that suggested previously.

  15. Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body

    PubMed Central

    Pattison, John E.; Hugtenburg, Richard P.; Green, Stuart

    2010-01-01

    Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to the third to fourth power of the atomic number. In such a case, the more heavily ionizing low-energy recoil electrons are preferentially produced; these cause dose enhancement in the immediate vicinity of the particles. It has been claimed that upon exposure to naturally occurring background gamma-radiation, particles of DU in the human body would produce dose enhancement by a factor of 500–1000, thereby contributing a significant radiation dose in addition to the dose received from the inherent radioactivity of the DU. In this study, we used the Monte Carlo code EGSnrc to accurately estimate the likely maximum dose enhancement arising from the presence of micrometre-sized uranium particles in the body. We found that although the dose enhancement is significant, of the order of 1–10, it is considerably smaller than that suggested previously. PMID:19776147

  16. Ionizing radiation exposure as a result of diagnostic imaging in patients with lymphoma.

    PubMed

    Crowley, M P; O'Neill, S B; Kevane, B; O'Neill, D C; Eustace, J A; Cahill, M R; Bird, B; Maher, M M; O'Regan, K; O'Shea, D

    2016-05-01

    Survival rates among patients with lymphoma continue to improve. Strategies aimed at reducing potential treatment-related toxicity are increasingly prioritized. While radiological procedures play an important role, ionizing radiation exposure has been linked to an increased risk of malignancy, particularly among individuals whose cumulative radiation exposure exceeds a specific threshold (75 millisieverts). Within this retrospective study, the cumulative radiation exposure dose was quantified for 486 consecutive patients with lymphoma. The median estimated total cumulative effective dose (CED) of ionizing radiation per subject was 69 mSv (42-118). However, younger patients (under 40 years) had a median CED of 89 mSv (55-124). This study highlights the considerable radiation exposure occurring among patients with lymphoma as a result of diagnostic imaging. To limit the risk of secondary carcinogenesis, consideration should be given to monitoring cumulative radiation exposure in individual patients as well as considering imaging modalities, which do not impart an ionizing radiation dose.

  17. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. Link to an... execution, or 952.223-72, Radiation protection and nuclear criticality: Preservation of Individual...

  18. Does exposure to GSM 900 MHz mobile phone radiation affect short-term memory of elementary school students?

    PubMed Central

    Movvahedi, M. M.; Tavakkoli-Golpayegani, A.; Mortazavi, S. A. R.; Haghani, M.; Razi, Z.; Shojaie-fard, M. B.; Zare, M.; Mina, E.; Mansourabadi, L.; Nazari-Jahromi; Safari, A.; Shokrpour, N.; Mortazavi, S. M. J.

    2014-01-01

    Background: Now-a-days, children are exposed to mobile phone radiation at a very early age. We have previously shown that a large proportion of children in the city of Shiraz, Iran use mobile phones. Furthermore, we have indicated that the visual reaction time (VRT) of university students was significantly affected by a 10 min real/sham exposure to electromagnetic fields emitted by mobile phone. We found that these exposures decreased the reaction time which might lead to a better response to different hazards. We have also revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. The purpose of this study was to investigate whether short-term exposure of elementary school students to radiofrequency (RF) radiation leads to changes in their reaction time and short-term memory. Materials and Methods: A total of 60 elementary school children ages ranging from 8 to 10 years studying at a public elementary school in Shiraz, Iran were enrolled in this study. Standardized computer-based tests of VRT and short-term memory (modified for children) were administered. The students were asked to perform some preliminary tests for orientation with the VRT test. After orientation, to reduce the random variation of measurements, each test was repeated ten times in both real and sham exposure phases. The time interval between the two subsequent sham and real exposure phases was 30 min. Results: The mean ± standard deviation reaction times after a 10 min talk period and after a 10 min sham exposure (switched off mobile) period were 249.0 ± 82.3 ms and 252.9 ± 68.2 ms (P = 0.629), respectively. On the other hand, the mean short-term memory scores after the talk and sham exposure periods were 1062.60 ± 305.39, and 1003.84 ± 339.68 (P = 0.030), respectively. Conclusion: To the best of our knowledge, this is the first study to show that short-term exposure of elementary school students to RF radiation leads to the better performance of

  19. Lead exposure in Mexican radiator repair workers.

    PubMed

    Dykeman, Ronald; Aguilar-Madrid, Guadalupe; Smith, Tom; Juárez-Pérez, Cuauhtemoc Arturo; Piacitelli, Gregory M; Hu, Howard; Hernandez-Avila, Mauricio

    2002-03-01

    Lead exposure was investigated among 73 Mexican radiator repair workers (RRWs), 12 members of their family (4 children and 8 wives), and 36 working controls. RRWs were employed at 4 radiator repair shops in Mexico City and 27 shops in Cuernavaca and surrounding areas. Exposure was assessed directly through the use of personal air sampling and hand wipe samples. In addition, industrial hygiene inspections were performed and detailed questionnaires were administered. Blood lead levels were measured by graphite furnace atomic absorption spectroscopy (AAS). The mean (SD) values for blood lead of the RRWs, 35.5 (13.5) microg/dl, was significantly greater than the same values for the working controls, 13.6 (8.7) microg/dl; P < 001. After excluding a single outlier (247 microg/m(3)), air lead levels ranged from 0 to 99 microg/m(3) with a mean (SD) value of 19 (23) microg/m(3) (median = 7.9 microg/m(3)). In a final multivariate regression model of elevated blood lead levels, the strongest predictors were smoking (vs. non-smoking), the number of radiators repaired per day on average, and the use (vs. non-use) of a uniform while at work, which were associated with blood lead elevations of 11.4 microg/dl, 1.95 microg/dl/radiator/day, and 16.4 microg/dl, respectively (all P <.05). Uniform use was probably a risk factor because they were not laundered regularly and consequently served as reservoir of contamination on which RRWs frequently wiped their hands. Lead exposure is a significant problem of radiator repair work, a small industry that is abundant in Mexico and other developing countries. Copyright 2002 Wiley-Liss, Inc.

  20. Buccal mucosa micronuclei counts in relation to exposure to low dose-rate radiation from the Chornobyl nuclear accident and other medical and occupational radiation exposures.

    PubMed

    Bazyka, D; Finch, S C; Ilienko, I M; Lyaskivska, O; Dyagil, I; Trotsiuk, N; Gudzenko, N; Chumak, V V; Walsh, K M; Wiemels, J; Little, M P; Zablotska, L B

    2017-06-23

    Ionizing radiation is a well-known carcinogen. Chromosome aberrations, and in particular micronuclei represent an early biological predictor of cancer risk. There are well-documented associations of micronuclei with ionizing radiation dose in some radiation-exposed groups, although not all. That associations are not seen in all radiation-exposed groups may be because cells with micronuclei will not generally pass through mitosis, so that radiation-induced micronuclei decay, generally within a few years after exposure. Buccal samples from a group of 111 male workers in Ukraine exposed to ionizing radiation during the cleanup activities at the Chornobyl nuclear power plant were studied. Samples were taken between 12 and 18 years after their last radiation exposure from the Chornobyl cleanup. The frequency of binucleated micronuclei was analyzed in relation to estimated bone marrow dose from the cleanup activities along with a number of environmental/occupational risk factors using Poisson regression adjusted for overdispersion. Among the 105 persons without a previous cancer diagnosis, the mean Chornobyl-related dose was 59.5 mSv (range 0-748.4 mSv). There was a borderline significant increase in micronuclei frequency among those reporting work as an industrial radiographer compared with all others, with a relative risk of 6.19 (95% CI 0.90, 31.08, 2-sided p = 0.0729), although this was based on a single person. There was a borderline significant positive radiation dose response for micronuclei frequency with increase in micronuclei per 1000 scored cells per Gy of 3.03 (95% CI -0.78, 7.65, 2-sided p = 0.1170), and a borderline significant reduction of excess relative MN prevalence with increasing time since last exposure (p = 0.0949). There was a significant (p = 0.0388) reduction in MN prevalence associated with bone X-ray exposure, but no significant trend (p = 0.3845) of MN prevalence with numbers of bone X-ray procedures. There are indications of

  1. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  2. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  3. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  4. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  5. Role of Ionizing Radiation in Neurodegenerative Diseases

    PubMed Central

    Sharma, Neel K.; Sharma, Rupali; Mathur, Deepali; Sharad, Shashwat; Minhas, Gillipsie; Bhatia, Kulsajan; Anand, Akshay; Ghosh, Sanchita P.

    2018-01-01

    Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR. PMID:29867445

  6. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  7. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  8. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2010-01-01 2010-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  9. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2012-01-01 2012-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  10. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2011-01-01 2011-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  11. A translatable predictor of human radiation exposure.

    PubMed

    Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  12. Current methods of monitoring radiation exposure from CT.

    PubMed

    Talati, Ronak K; Dunkin, Jared; Parikh, Shrujal; Moore, William H

    2013-09-01

    Increased public and regulatory scrutiny of imaging-related radiation exposure requires familiarity with current dose-monitoring techniques and best practices. CT-related ionizing radiation exposure has been cited as the largest and fastest growing source of population-wide iatrogenic ionizing radiation exposure. Upcoming federal regulations require imaging centers to familiarize themselves with available dose-monitoring techniques and implement comprehensive strategies to track patient dose, with particular emphasis on CT. Because of institution-specific and vendor-specific technologies, there are significant barriers to adoption and implementation. In this article, the authors outline the core components of a universal dose-monitoring strategy and detail a few of the many available commercial platforms. In addition, the authors introduce a cloud-based hybrid model dose-tracking system with the goal of rapid implementation, multicenter scalability, real-time dose feedback for technologists, cumulative dose monitoring, and optional dose communication to patients and into the record; doing so results in improved patient loyalty, referring physician satisfaction, and opportunity for repeat business. Copyright © 2013 American College of Radiology. All rights reserved.

  13. Health transitions, fast and nasty: the case of Marshallese exposure to nuclear radiation.

    PubMed

    Pollock, Nancy J

    2002-09-01

    The concept of health transitions assumes that health status improves with the introduction of western medicine. In this paper I demonstrate that the health of the people of Rongelap, Marshall Islands, has undergone serious damage as a result of nuclear testing, and that women in particular have suffered unduly. Exposure to nuclear radiation over a period of almost fifty years has been recognised by US authorities as a major contributory cause to the high rates of cancers and birth defects suffered by the Rongelap people. Women's reproduction has been severely affected, as evidenced by the many stillbirths and small stature of children born alive. Two generations have been exposed to both background radiation and to radiation ingested with the local foods on which they rely in the absence of other food sources. Clean up has commenced only after this and other communities sought compensation from the United States. The Rongelap people will live with the effects of radiation for generations to come. This transition to ongoing health problems is thus a negative outcome of modern health transition.

  14. Radiation exposure from Chest CT: Issues and Strategies

    PubMed Central

    Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.

    2004-01-01

    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885

  15. DNA Topoisomerase IB as a Potential Ionizing Radiation Exposure and Dose Biomarker.

    PubMed

    Daudee, Rotem; Gonen, Rafi; German, Uzi; Orion, Itzhak; Alfassi, Zeev B; Priel, Esther

    2018-06-01

    In radiation exposure scenarios where physical dosimetry is absent or inefficient, dose estimation must rely on biological markers. A reliable biomarker is of utmost importance in correlating biological system changes with radiation exposure. Human DNA topoisomerase ІB (topo І) is a ubiquitous nuclear enzyme, which is involved in essential cellular processes, including transcription, DNA replication and DNA repair, and is the target of anti-cancer drugs. It has been shown that the cellular activity of this enzyme is significantly sensitive to various DNA lesions, including radiation-induced DNA damages. Therefore, we investigated the potential of topo I as a biomarker of radiation exposure and dose. We examined the effect of exposure of different human cells to beta, X-ray and gamma radiation on the cellular catalytic activity of topo I. The results demonstrate a significant reduction in the DNA relaxation activity of topo I after irradiation and the level of the reduction was correlated with radiation dose. In normal human peripheral blood lymphocytes, exposure for 3 h to an integral dose of 0.065 mGy from tritium reduced the enzyme activity to less than 25%. In MG-63 osteoblast-like cells and in human pulmonary fibroblast (HPF) cells exposed to gamma radiation from a 60 Co source (up to 2 Gy) or to X rays (up to 2.8 Gy), a significant decrease in topo I catalytic activity was also observed. We observed that the enzyme-protein level was not altered but was partially posttranslational modified by ADP-ribosylation of the enzyme protein that is known to reduce topo I activity. The results of this study suggest that the decrease in the cellular topo I catalytic activity after low-dose exposure to different radiation types may be considered as a novel biomarker of ionizing radiation exposure and dose. For this purpose, a suitable ELISA-based method for large-scale analysis of radiation-induced topo I modification is under development.

  16. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure

    PubMed Central

    2012-01-01

    Background According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Results Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). Conclusions At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed. PMID:22540409

  17. Prospective Measurement of Patient Exposure to Radiation During Pediatric Ureteroscopy

    PubMed Central

    Kokorowski, Paul J.; Chow, Jeanne S.; Strauss, Keith; Pennison, Melanie; Routh, Jonathan C.; Nelson, Caleb P.

    2013-01-01

    Objective Little data have been reported regarding radiation exposure during pediatric endourologic procedures, including ureteroscopy (URS). We sought to measure radiation exposure during pediatric URS and identify opportunities for exposure reduction. Methods We prospectively observed URS procedures as part of a quality improvement initiative. Pre-operative patient characteristics, operative factors, fluoroscopy settings and radiation exposure were recorded. Our outcomes were entrance skin dose (ESD, in mGy) and midline dose (MLD, in mGy). Specific modifiable factors were identified as targets for potential quality improvement. Results Direct observation was performed on 56 consecutive URS procedures. Mean patient age was 14.8 ± 3.8 years (range 7.4 to 19.2); 9 children were under age 12 years. Mean ESD was 46.4 ± 48 mGy. Mean MLD was 6.2 ± 5.0 mGy. The most important major determinant of radiation dose was total fluoroscopy time (mean 2.68 ± 1.8 min) followed by dose rate setting, child anterior-posterior (AP) diameter, and source to skin distance (all p<0.01). The analysis of factors affecting exposure levels found that the use of ureteral access sheaths (p=0.01) and retrograde pyelography (p=0.04) were significantly associated with fluoroscopy time. We also found that dose rate settings were higher than recommended in up to 43% of cases and ideal C-arm positioning could have reduced exposure 14% (up to 49% in some cases). Conclusions Children receive biologically significant radiation doses during URS procedures. Several modifiable factors contribute to dose and could be targeted in efforts to implement dose reduction strategies. PMID:22341275

  18. Sensitive Detection of Radiation-Induced Medulloblastomas after Acute or Protracted Gamma-Ray Exposures in Ptch1 Heterozygous Mice Using a Radiation-Specific Molecular Signature.

    PubMed

    Tsuruoka, Chizuru; Blyth, Benjamin J; Morioka, Takamitsu; Kaminishi, Mutsumi; Shinagawa, Mayumi; Shimada, Yoshiya; Kakinuma, Shizuko

    2016-10-01

    Recently reported studies have led to a heightened awareness of the risks of cancer induced by diagnostic radiological imaging, and in particular, the risk of brain cancer after childhood CT scans. One feature of Ptch1 +/- mice is their sensitivity to radiation-induced medulloblastomas (an embryonic cerebellar tumor) during a narrow window of time centered on the days around birth. Little is known about the dynamics of how dose protraction interacts with such narrow windows of sensitivity in individual tissues. Using medulloblastomas from irradiated Ptch1 +/- mice with a hybrid C3H × C57BL/6 F1 genetic background, we previously showed that the alleles retained on chromosome 13 (which harbors the Ptch1 gene) reveal two major mechanisms of loss of the wild-type allele. The loss of parental alleles from the telomere extending up to or past the Ptch1 locus by recombination (spontaneous type) accounts for almost all medulloblastomas in nonirradiated mice, while tumors in irradiated mice often exhibited interstitial deletions, which start downstream of the wild-type Ptch1 and extend up varying lengths towards the centromere (radiation type). In this study, Ptch1 +/- mice were exposed to an acute dose of either 100 or 500 mGy gamma rays in utero or postnatally, or the same radiation doses protracted over a four-day period, and were monitored for medulloblastoma development. The results showed dose- and age-dependent radiation-induced type tumors. Furthermore, the size of the radiation-induced deletion differed with the dose rate. The results of this work suggest that tumor latency may be related to the size of the deletion. In this study, 500 mGy exposure produced radiation-induced type tumors at all ages and dose rates, while 100 mGy exposure did not significantly produce radiation-induced type tumors. The radiation signature allows for unique mechanistic insight into the action of radiation to induce DNA lesions with known causal relationship to a specific tumor type

  19. Ionizing Radiation Environments and Exposure Risks

    NASA Astrophysics Data System (ADS)

    Kim, M. H. Y.

    2015-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.

  20. Exposure of airport workers to radiation from shipments of radioactive materials. A review of studies conducted at six major airports. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, J.

    1976-02-01

    The radiation exposure of airport workers handling shipments of radioactive materials was studied at six airports. Descriptions were obtained of the handling and arrangement of the packages, dose distributions were mapped around groupings of packages, and doses received by workers were evaluated both on the basis of time-motion studies and through readings of personal monitoring devices. Results of dosimeters worn over extended periods indicated that no workers were expected to receive exposures in excess of 500 millirems per year and most were expected to receive less than 100 millirems per year. No evidence was found in any of the sixmore » airport studies to suggest that members of the public received any exposure of significance relative to the natural background radiation.« less

  1. Summary of retrospective asbestos and welding fume exposure estimates for a nuclear naval shipyard and their correlation with radiation exposure estimates.

    PubMed

    Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P

    2009-07-01

    In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to

  2. Infrared radiation scene generation of stars and planets in celestial background

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Hong, Yaohui; Xu, Xiaojian

    2014-10-01

    An infrared (IR) radiation generation model of stars and planets in celestial background is proposed in this paper. Cohen's spectral template1 is modified for high spectral resolution and accuracy. Based on the improved spectral template for stars and the blackbody assumption for planets, an IR radiation model is developed which is able to generate the celestial IR background for stars and planets appearing in sensor's field of view (FOV) for specified observing date and time, location, viewpoint and spectral band over 1.2μm ~ 35μm. In the current model, the initial locations of stars are calculated based on midcourse space experiment (MSX) IR astronomical catalogue (MSX-IRAC) 2 , while the initial locations of planets are calculated using secular variations of the planetary orbits (VSOP) theory. Simulation results show that the new IR radiation model has higher resolution and accuracy than common model.

  3. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  4. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  5. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  6. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  7. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...

  8. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  9. Rain-induced increase in background radiation detected by Radiation Portal Monitors.

    PubMed

    Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A

    2014-11-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Perioperative patient radiation exposure in the endoscopic removal of upper urinary tract calculi.

    PubMed

    Jamal, Joseph E; Armenakas, Noel A; Sosa, R Ernest; Fracchia, John A

    2011-11-01

    The efficacy of computed tomography (CT) in detailing upper urinary tract calculi is well established. There is no established acceptable annual recommended limit for medical exposure, yet the global accepted upper limit for occupational radiation exposure is <50 millisieverts (mSv) in any one year. We sought to appreciate the CT and fluoroscopic radiation exposure to our patients undergoing endoscopic removal of upper tract calculi during the periprocedure period. All patients undergoing upper urinary endoscopic stone removal between 2005 and 2009 were identified. To calculate the cumulative radiation exposure, we included all ionizing radiation imaging performed during a periprocedure period, which we defined as ≤90 days pre- and post-therapeutic procedure. A total of 233 upper urinary tract therapeutic patient stone procedures were identified; 127 patients underwent ureteroscopy (URS) and 106 patients underwent percutaneous nephrolithotomy (PCNL). A mean 1.58 CTs were performed per patient. Ninety (38.6%) patients underwent ≥2 CTs in the periprocedure period, with an average number in this group of 2.49 CT/patient, resulting in approximately 49.8 mSv of CT radiation exposure. Patients who were undergoing URS were significantly more likely to have multiple CTs (P=0.003) than those undergoing PCNL. Median fluoroscopic procedure exposures were 43.3 mGy for patients who were undergoing PCNL and 27.6 mGy for those patients undergoing URS. CT radiation exposure in the periprocedure period for patients who were undergoing endoscopic upper tract stone removal is considerable. Added to this is the procedure-related fluoroscopic radiation exposure. Urologic surgeons should be aware of the cumulative amount of ionizing radiation received by their patients from multiple sources.

  11. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...

  12. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...

  13. Radiation Exposure and Attributable Cancer Risk in Patients With Esophageal Atresia.

    PubMed

    Yousef, Yasmine; Baird, Robert

    2018-02-01

    Cases of esophageal carcinoma have been documented in survivors of esophageal atresia (EA). Children with EA undergo considerable amounts of diagnostic imaging and consequent radiation exposure potentially increasing their lifetime cancer mortality risk. This study evaluates the radiological procedures performed on patients with EA and estimates their cumulative radiation exposure and attributable lifetime cancer mortality risk. Medical records of patients with EA managed at a tertiary care center were reviewed for demographics, EA subtype, and number and type of radiological investigations. Existing normative data were used to estimate the cumulative radiation exposure and lifetime cancer risk per patient. The present study included 53 patients with a mean follow-up of 5.7 years. The overall median and maximum estimated effective radiation dose in the neonatal period was 5521.4 μSv/patient and 66638.6 μSv/patient, respectively. This correlates to a median and maximum estimated cumulative lifetime cancer mortality risk of 1:1530 and 1:130, respectively. Hence, radiation exposure in the neonatal period increased the cumulative cancer mortality risk a median of 130-fold and a maximum of 1575-fold in EA survivors. Children with EA are exposed to significant amounts of radiation and an increased estimated cumulative cancer mortality risk. Efforts should be made to eliminate superfluous imaging.

  14. Fetal Implications of Diagnostic Radiation Exposure During Pregnancy: Evidence-based Recommendations.

    PubMed

    Rimawi, Bassam H; Green, Victoria; Lindsay, Michael

    2016-06-01

    The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.

  15. Radiation Exposure in Transjugular Intrahepatic Portosystemic Shunt Creation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miraglia, Roberto, E-mail: rmiraglia@ismett.edu; Maruzzelli, Luigi, E-mail: lmaruzzelli@ismett.edu; Cortis, Kelvin, E-mail: kelvincortis@ismett.edu

    2016-02-15

    PurposeTransjugular intrahepatic portosystemic shunt (TIPS) creation is considered as being one of the most complex procedures in abdominal interventional radiology. Our aim was twofold: quantification of TIPS-related patient radiation exposure in our center and identification of factors leading to reduced radiation exposure.Materials and methodsThree hundred and forty seven consecutive patients underwent TIPS in our center between 2007 and 2014. Three main procedure categories were identified: Group I (n = 88)—fluoroscopic-guided portal vein targeting, procedure done in an image intensifier-based angiographic system (IIDS); Group II (n = 48)—ultrasound-guided portal vein puncture, procedure done in an IIDS; and Group III (n = 211)—ultrasound-guided portal vein puncture, procedure donemore » in a flat panel detector-based system (FPDS). Radiation exposure (dose-area product [DAP], in Gy cm{sup 2} and fluoroscopy time [FT] in minutes) was retrospectively analyzed.ResultsDAP was significantly higher in Group I (mean ± SD 360 ± 298; median 287; 75th percentile 389 Gy cm{sup 2}) as compared to Group II (217 ± 130; 178; 276 Gy cm{sup 2}; p = 0.002) and Group III (129 ± 117; 70; 150 Gy cm{sup 2}p < 0.001). The difference in DAP between Groups II and III was also significant (p < 0.001). Group I had significantly longer FT (25.78 ± 13.52 min) as compared to Group II (20.45 ± 10.87 min; p = 0.02) and Group III (19.76 ± 13.34; p < 0.001). FT was not significantly different between Groups II and III (p = 0.73).ConclusionsReal-time ultrasound-guided targeting of the portal venous system during TIPS creation results in a significantly lower radiation exposure and reduced FT. Further reduction in radiation exposure can be achieved through the use of modern angiographic units with FPDS.« less

  16. Cancer risk estimation caused by radiation exposure during endovascular procedure

    NASA Astrophysics Data System (ADS)

    Kang, Y. H.; Cho, J. H.; Yun, W. S.; Park, K. H.; Kim, H. G.; Kwon, S. M.

    2014-05-01

    The objective of this study was to identify the radiation exposure dose of patients, as well as staff caused by fluoroscopy for C-arm-assisted vascular surgical operation and to estimate carcinogenic risk due to such exposure dose. The study was conducted in 71 patients (53 men and 18 women) who had undergone vascular surgical intervention at the division of vascular surgery in the University Hospital from November of 2011 to April of 2012. It had used a mobile C-arm device and calculated the radiation exposure dose of patient (dose-area product, DAP). Effective dose was measured by attaching optically stimulated luminescence on the radiation protectors of staff who participates in the surgery to measure the radiation exposure dose of staff during the vascular surgical operation. From the study results, DAP value of patients was 308.7 Gy cm2 in average, and the maximum value was 3085 Gy cm2. When converted to the effective dose, the resulted mean was 6.2 m Gy and the maximum effective dose was 61.7 milliSievert (mSv). The effective dose of staff was 3.85 mSv; while the radiation technician was 1.04 mSv, the nurse was 1.31 mSv. All cancer incidences of operator are corresponding to 2355 persons per 100,000 persons, which deemed 1 of 42 persons is likely to have all cancer incidences. In conclusion, the vascular surgeons should keep the radiation protection for patient, staff, and all participants in the intervention in mind as supervisor of fluoroscopy while trying to understand the effects by radiation by themselves to prevent invisible danger during the intervention and to minimize the harm.

  17. An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.

    2015-01-01

    The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.

  18. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation.

    PubMed

    Mendelsohn, Daniel; Strelzow, Jason; Dea, Nicolas; Ford, Nancy L; Batke, Juliet; Pennington, Andrew; Yang, Kaiyun; Ailon, Tamir; Boyd, Michael; Dvorak, Marcel; Kwon, Brian; Paquette, Scott; Fisher, Charles; Street, John

    2016-03-01

    Imaging modalities used to visualize spinal anatomy intraoperatively include X-ray studies, fluoroscopy, and computed tomography (CT). All of these emit ionizing radiation. Radiation emitted to the patient and the surgical team when performing surgeries using intraoperative CT-based spine navigation was compared. This is a retrospective cohort case-control study. Seventy-three patients underwent CT-navigated spinal instrumentation and 73 matched controls underwent spinal instrumentation with conventional fluoroscopy. Effective doses of radiation to the patient when the surgical team was inside and outside of the room were analyzed. The number of postoperative imaging investigations between navigated and non-navigated cases was compared. Intraoperative X-ray imaging, fluoroscopy, and CT dosages were recorded and standardized to effective doses. The number of postoperative imaging investigations was compared with the matched cohort of surgical cases. A literature review identified historical radiation exposure values for fluoroscopic-guided spinal instrumentation. The 73 navigated operations involved an average of 5.44 levels of instrumentation. Thoracic and lumbar instrumentations had higher radiation emission from all modalities (CT, X-ray imaging, and fluoroscopy) compared with cervical cases (6.93 millisievert [mSv] vs. 2.34 mSv). Major deformity and degenerative cases involved more radiation emission than trauma or oncology cases (7.05 mSv vs. 4.20 mSv). On average, the total radiation dose to the patient was 8.7 times more than the radiation emitted when the surgical team was inside the operating room. Total radiation exposure to the patient was 2.77 times the values reported in the literature for thoracolumbar instrumentations performed without navigation. In comparison, the radiation emitted to the patient when the surgical team was inside the operating room was 2.50 lower than non-navigated thoracolumbar instrumentations. The average total radiation

  19. Overview on association of different types of leukemias with radiation exposure.

    PubMed

    Gluzman, D F; Sklyarenko, L M; Zavelevich, M P; Koval, S V; Ivanivska, T S; Rodionova, N K

    2015-06-01

    Exposure to ionizing radiation is associated with increasing risk of various types of hematological malignancies. The results of major studies on association of leukemias and radiation exposure of large populations in Japan and in Ukraine are analyzed. The patterns of different types of leukemia in 295 Chernobyl clean-up workers diagnosed according to the criteria of up-to-date World Health Organization classification within 10-25 years following Chernobyl catastrophe are summarized. In fact, a broad spectrum of radiation-related hematological malignancies has been revealed both in Life Span Study in Japan and in study of Chernobyl clean-up workers in Ukraine. The importance of the precise diagnosis of tumors of hematopoietic and lymphoid tissues according to up-to-date classifications for elucidating the role of radiation as a causative factor of leukemias is emphasized. Such studies are of high importance since according to the recent findings, radiation-associated excess risks of several types of leukemias seem to persist throughout the follow-up period up to 55 years after the radiation exposure.

  20. Impact of a Disposable Sterile Radiation Shield on Operator Radiation Exposure During Percutaneous Coronary Intervention of Chronic Total Occlusions.

    PubMed

    Shorrock, Deborah; Christopoulos, Georgios; Wosik, Jedrek; Kotsia, Anna; Rangan, Bavana; Abdullah, Shuaib; Cipher, Daisha; Banerjee, Subhash; Brilakis, Emmanouil S

    2015-07-01

    Daily radiation exposure over many years can adversely impact the health of medical professionals. Operator radiation exposure was recorded for 124 percutaneous coronary interventions (PCIs) performed at our institution between August 2011 and May 2013: 69 were chronic total occlusion (CTO)-PCIs and 55 were non-CTO PCIs. A disposable radiation protection sterile drape (Radpad; Worldwide Innovations & Technologies, Inc) was used in all CTO-PCI cases vs none of the non-CTO PCI cases. Operator radiation exposure was compared between CTO and non-CTO PCIs. Mean age was 64.6 ± 6.2 years and 99.2% of the patients were men. Compared with non-CTO PCI, patients undergoing CTO-PCI were more likely to have congestive heart failure, to be current smokers, and to have longer lesions, and less likely to have prior PCI and a saphenous vein graft target lesion. CTO-PCI cases had longer procedural time (median: 123 minutes [IQR, 85-192 minutes] vs 27 minutes [IQR, 20-44 minutes]; P<.001), fluoroscopy time (35 minutes [IQR, 19-54 minutes] vs 8 minutes [IQR, 5-16 minutes]; P<.001), number of stents placed (2.4 ± 1.5 vs 1.7 ± 0.9; P<.001), and patient air kerma radiation exposure (3.92 Gray [IQR, 2.48-5.86 Gray] vs 1.22 Gray [IQR, 0.74-1.90 Gray]; P<.001), as well as dose area product (267 Gray•cm² [IQR, 163-4.25 Gray•cm²] vs 84 Gray•cm² [IQR, 48-138 Gray•cm²]; P<.001). In spite of higher patient radiation exposure, operator radiation exposure was similar between the two groups (20 μSv [IQR, 9.5-31 μSv] vs 15 μSv [IQR, 7-23 μSv]; P=.07). Operator radiation exposure during CTO-PCI can be reduced to levels similar to less complicated cases with the use of a disposable sterile radiation protection shield.

  1. Comparative occupational radiation exposure between fixed and mobile imaging systems.

    PubMed

    Kendrick, Daniel E; Miller, Claire P; Moorehead, Pamela A; Kim, Ann H; Baele, Henry R; Wong, Virginia L; Jordan, David W; Kashyap, Vikram S

    2016-01-01

    Endovascular intervention exposes surgical staff to scattered radiation, which varies according to procedure and imaging equipment. The purpose of this study was to determine differences in occupational exposure between procedures performed with fixed imaging (FI) in an endovascular suite compared with conventional mobile imaging (MI) in a standard operating room. A series of 116 endovascular cases were performed over a 4-month interval in a dedicated endovascular suite with FI and conventional operating room with MI. All cases were performed at a single institution and radiation dose was recorded using real-time dosimetry badges from Unfors RaySafe (Hopkinton, Mass). A dosimeter was mounted in each room to establish a radiation baseline. Staff dose was recorded using individual badges worn on the torso lead. Total mean air kerma (Kar; mGy, patient dose) and mean case dose (mSv, scattered radiation) were compared between rooms and across all staff positions for cases of varying complexity. Statistical analyses for all continuous variables were performed using t test and analysis of variance where appropriate. A total of 43 cases with MI and 73 cases with FI were performed by four vascular surgeons. Total mean Kar, and case dose were significantly higher with FI compared with MI. (mean ± standard error of the mean, 523 ± 49 mGy vs 98 ± 19 mGy; P < .00001; 0.77 ± 0.03 mSv vs 0.16 ± 0.08 mSv, P < .00001). Exposure for the primary surgeon and assistant was significantly higher with FI compared with MI. Mean exposure for all cases using either imaging modality, was significantly higher for the primary surgeon and assistant than for support staff (ie, nurse, radiology technologist) beyond 6 feet from the X-ray source, indicated according to one-way analysis of variance (MI: P < .00001; FI: P < .00001). Support staff exposure was negligible and did not differ between FI and MI. Room dose stratified according to case complexity (Kar) showed statistically significantly

  2. In utero exposure to radiation and haematological malignancies: pooled analysis of Southern Urals cohorts

    PubMed Central

    Schüz, Joachim; Deltour, Isabelle; Krestinina, Lyudmila Y; Tsareva, Yulia V; Tolstykh, Evgenia I; Sokolnikov, Mikhail E; Akleyev, Alexander V

    2017-01-01

    Background: It is scientifically uncertain whether in utero exposure to low-dose ionising radiation increases the lifetime risk of haematological malignancies. Methods: We pooled two cohorts from the Southern Urals comprising offspring of female workers of a large nuclear facility (the Mayak Production Association) and of women living in areas along the Techa River contaminated by nuclear accidents/waste from the same facility, with detailed dosimetry. Results: The combined cohort totalled 19 536 subjects with 700 504 person-years at risk over the period of incidence follow-up, and slightly more over the period of mortality follow-up, yielding 58 incident cases and 36 deaths up to age 61 years. Risk was increased in subjects who received in utero doses of ⩾80 mGy (excess relative risk (ERR): 1.27; 95% confidence interval (CI): −0.20 to 4.71), and the risk increased consistently per 100 mGy of continuous exposure in utero (ERR: 0.77; CI: 0.02 to 2.56). No association was apparent in mortality-based analyses. Results for leukaemia and lymphoma were similar. A very weak positive association was observed between incidence and postnatal exposure. Conclusions: In summary, the results suggest a positive association between in utero exposure to ionising radiation and risk of haematological malignancies, but the small number of outcomes and inconsistent incidence and mortality findings preclude firm conclusions. PMID:27855443

  3. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    NASA Astrophysics Data System (ADS)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  4. Factors modifying the response of large animals to low-intensity radiation exposure

    NASA Technical Reports Server (NTRS)

    Page, N. P.; Still, E. T.

    1972-01-01

    In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.

  5. Cosmological implication of a new measurement of the submillimeter background radiation

    NASA Technical Reports Server (NTRS)

    Hayakawa, Satio; Matsumoto, Toshio; Matsuo, Hiroshi; Murakami, Hiroshi; Sato, Shinji

    1987-01-01

    A new submillimeter measurement of the cosmic background radiation (T. Matsumoto et al., 1988) reveals excess brightness between 1000 and 300 microns. The excess corresponds to about 10 percent of the undistorted blackbody radiation. The observed excess is consistent with thermal emission from dust with a relative density of 0.0001-0.00001, if the dust is heated at a redshift z of about 10-40.

  6. Radiation exposure of patient and surgeon in minimally invasive kidney stone surgery.

    PubMed

    Demirci, A; Raif Karabacak, O; Yalçınkaya, F; Yiğitbaşı, O; Aktaş, C

    2016-05-01

    Percutaneous nephrolithotomy (PNL) and retrograde intrarenal surgery (RIRS) are the standard treatments used in the endoscopic treatment of kidney stones depending on the location and the size of the stone. The purpose of the study was to show the radiation exposure difference between the minimally invasive techniques by synchronously measuring the amount of radiation the patients and the surgeon received in each session, which makes our study unique. This is a prospective study which included 20 patients who underwent PNL, and 45 patients who underwent RIRS in our clinic between June 2014 and October 2014. The surgeries were assessed by dividing them into three steps: step 1: the access sheath or ureter catheter placement, step 2: lithotripsy and collection of fragments, and step 3: DJ catheter or re-entry tube insertion. For the PNL and RIRS groups, mean stone sizes were 30mm (range 16-60), and 12mm (range 7-35); mean fluoroscopy times were 337s (range 200-679), and 37s (range 7-351); and total radiation exposures were 142mBq (44.7 to 221), and 4.4mBq (0.2 to 30) respectively. Fluoroscopy times and radiation exposures at each step were found to be higher in the PNL group compared to the RIRS group. When assessed in itself, the fluoroscopy time and radiation exposure were stable in RIRS, and the radiation exposure was the highest in step 1 and the lowest in step 3 in PNL. When assessed for the 19 PNL patients and the 12 RIRS patients who had stone sizes≥2cm, the fluoroscopy time in step 1, and the radiation exposure in steps 1 and 2 were found to be higher in the PNL group than the RIRS group (P<0.001). Although there is need for more prospective randomized studies, RIRS appears to be a viable alternate for PNL because it has short fluoroscopy time and the radiation exposure is low in every step. 4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Method for minimizing the radiation exposure from scoliosis radiographs. [X ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Smet, A.A.; Fritz, S.L.; Asher, M.A.

    1981-01-01

    The radiation exposure resulting from standard scoliosis radiographs was determined for eighteen adolescent girls. The risk of inducing breast cancer was estimated from the skin-exposure doses. The average skin exposure to the breasts was 59.6 millirads (0.59 mGy) for the anteroposterior radiograph. Assuming a total of twenty-two anteroposterior radiographs during a course of treatment, the cumulative exposure would result in a 1.35% relative increase in the risk of development of breast cancer. By utilizing collimation of the x-ray beam and proper selection of grids, films, and screens, the radiation risk of scoliosis radiographs is minimized.

  8. Reprocessing WFC3/IR Exposures Affected by Time-Variable Backgrounds

    NASA Astrophysics Data System (ADS)

    Brammer, G.

    2016-11-01

    The background seen in WFC3/IR observations frequently shows strong time-dependent behavior above the constant flux expected for zodiacal continuum light. This is often caused by an emission line of helium at 1.083 μm excited in the sun-illuminated upper atmosphere, when seen in the filters (F105W, F110W) and grisms (G102, G141) sensitive to the feature. The default behavior of the calwf3 pipeline assumes constant source-plus-background fluxes when it performs up-the-ramp fitting to identify cosmic rays and determine the average count rate within a MULTIACCUM IR exposure. calwf3 provides undesirable results in the presence of strongly variable backgrounds, primarily in the form of elevated and non-Gaussian noise in the FLT products. Here we describe methods to improve the noise properties of the reduced products. In the first, we simply turn off the calwf3 crcorr step, treating the IR detector as if it were a CCD, i.e., accumulating flux and reading it out at the end of the exposure. Next, we artificially flatten the ramps in the IMA products and then allow calwf3 to proceed as normal fitting the ramp and identifying CRs. Either of these procedures enable recovery of datasets otherwise corrupted beyond repair and have no discernible effects on photometry of sources in deep combined images.

  9. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  10. Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.

    PubMed

    Daniels, Robert D; Kubale, Travis L; Spitz, Henry B

    2005-03-01

    Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.

  11. Exposure to mobile phone radiation opens new horizons in Alzheimer's disease treatment.

    PubMed

    Mortazavi, Sar; Shojaei-Fard, Mb; Haghani, M; Shokrpour, N; Mortazavi, Smj

    2013-09-01

    Alzheimer's disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer's disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer's disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease.

  12. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, V. E.

    2012-01-01

    Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.

  13. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    NASA Astrophysics Data System (ADS)

    Marica, Lucia; Moraru, Luminita

    2011-12-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  14. Risk assessment and management of radiofrequency radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  15. Risk assessment and management of radiofrequency radiation exposure

    NASA Astrophysics Data System (ADS)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  16. Case Study of the Minimum Provable Risk Considering the Variation in Background Risk: Effect of Residual Risk on Epidemiological Studies and a Comparative Assessment of Fatal Disease Risk Due to Radiation Exposure.

    PubMed

    Sasaki, Michiya; Ogino, Haruyuki; Hattori, Takatoshi

    2018-06-08

    In order to prove a small increment in a risk of concern in an epidemiological study, a large sample of a population is generally required. Since the background risk of an end point of interest, such as cancer mortality, is affected by various factors, such as lifestyle (diet, smoking, etc.), adjustment for such factors is necessary. However, it is impossible to inclusively and completely adjust for such factors; therefore, uncertainty in the background risk remains for control and exposed populations, indicating that there is a minimum limit to the lower bound for the provable risk regardless of the sample size. In this case study, we developed and discussed the minimum provable risk considering the uncertainty in background risk for hypothetical populations by referring to recent Japanese statistical information to grasp the extent of the minimum provable risk. Risk of fatal diseases due to radiation exposure, which has recently been the focus of radiological protection, was also examined by comparative assessment of the minimum provable risk for cancer and circulatory diseases. It was estimated that the minimum provable risk for circulatory disease mortality was much greater than that for cancer mortality, approximately five to seven times larger; circulatory disease mortality is more difficult to prove as a radiation risk than cancer mortality under the conditions used in this case study.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  17. Computer Aided Dosimetry and Verification of Exposure to Radiation

    DTIC Science & Technology

    2002-06-01

    Event matrix 2. Hematopoietic * Absolute blood counts * Relative blood counts 3. Dosimetry * TLD * EPDQuantitative * Radiation survey * Whole body...EI1 Defence Research and Recherche et developpement Development Canada pour la d6fense Canada DEFENCE •mI•DEFENSE Computer Aided Dosimetry and...Aided Dosimetry and Verification of Exposure to Radiation Edward Waller SAIC Canada Robert Z Stodilka Radiation Effects Group, Space Systems and

  18. Mars Radiation Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Nealy, John E.

    2007-01-01

    NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.

  19. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  20. Radiation exposure and radiation protection of the physician in iodine-131 Lipiodol therapy of liver tumours.

    PubMed

    Risse, J H; Ponath, C; Palmedo, H; Menzel, C; Grünwald, F; Biersack, H J

    2001-07-01

    Intra-arterial iodine-131 labelled Lipiodol therapy for liver cancer has been investigated for safety and efficacy over a number of years, but data on radiation exposure of personnel have remained unavailable to date. The aim of this study was to assess the radiation exposure of the physician during intra-arterial 131I-Lipiodol therapy for liver malignancies and to develop appropriate radiation protection measures and equipment. During 20 intra-arterial administrations of 131I-Lipiodol (1110-1924 MBq), radiation dose equivalents (RDE) to the whole body, fingers and eyes of the physician were determined for (a) conventional manual administration through a shielded syringe, (b) administration with an automatic injector and (c) administration with a lead container developed in-house. Administration by syringe resulted in a finger RDE of 19.5 mSv, an eye RDE of 130-140 microSv, and a whole-body RDE of 108-119 microSv. The injector reduced the finger RDE to 5 mSv. With both technique (a) and technique (b), contamination of angiography materials was observed. The container allowed safe transport and administration of the radiopharmaceutical from 4 m distance and reduced the finger RDE to <3 microSv and the eye RDE to <1 microSv during injection. During femoral artery compression, radiation exposure to the fingers reached 170 microSv, but the whole-body dose could be reduced from a mean RDE of 114 microSv to 14 microSv. No more contamination occurred. In conclusion, radiation exposure was high when 131I-Lipiodol was administered by syringe or injector, but was significantly reduced with the lead container.

  1. Effect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats

    PubMed Central

    Mokarram, P.; Sheikhi, M.; Mortazavi, S.M.J.; Saeb, S.; Shokrpour, N.

    2017-01-01

    Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). Material and Method: 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Results: Our finding showed that exposure to GSM cell phone RF radiation was

  2. Chromosome aberrations in peripheral blood lymphocytes of individuals living in high background radiation areas of Ramsar, Iran.

    PubMed

    Zakeri, F; Rajabpour, M R; Haeri, S A; Kanda, R; Hayata, I; Nakamura, S; Sugahara, T; Ahmadpour, M J

    2011-11-01

    In order to investigate the biological effects of exposure to low-dose radiation and to assess the dose-effect relationship in residents of high background radiation areas (HBRAs) of Ramsar, cytogenetic investigation of unstable-type aberrations was performed in 15 healthy elderly women in a HBRA of Ramsar, Talesh mahalle, and in 10 elderly women living in a nearby control area with normal background radiation. In total, 77,714 cells were analyzed; 48,819 cells in HBRA residents and 28,895 cells in controls. On average, 3,108 cells per subject were analyzed (range 1,475-5,007 cells). Significant differences were found in the frequency of dicentric plus centric rings in 100 cells (0.207 ± 0.103 vs. 0.047 ± 0.027, p < 0.0005), total chromosome-type aberrations per 100 cells (0.86 ± 0.44 vs. 0.23 ± 0.17, p < 0.0005), and chromatid-type aberrations per 100 cells (3.31 ± 2.01 vs. 1.66 ± 0.63, p = 0.01) by the Mann-Whitney U test between HBRA and the control, respectively. Using chromosomal aberrations as the main endpoint to assess the dose-effect relationship in residents of HBRAs in Ramsar, no positive correlation was found between the frequency of dicentric plus centric ring aberrations and the cumulative dose of the inhabitants estimated by direct individual dosimetry; however, obvious trends of increase with age appeared in the control group. Based on these results, individuals residing in HBRAs of Ramsar have an increased frequency of detectable abnormalities in unstable aberrations.

  3. External radiation dose and cancer mortality among French nuclear workers: considering potential confounding by internal radiation exposure.

    PubMed

    Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K

    2016-11-01

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  4. On the detection of a stochastic background of gravitational radiation by the Doppler tracking of spacecraft

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.; Grishchuk, L. P.

    1980-01-01

    Consideration is given to the possibility of detection of an isotropic background gravitational radiation of a stochastic nature by the method of Doppler tracking of spacecraft. Attention is given in the geometrical optics limit, to the general formula for the frequency shift of an electromagnetic signal in the gravitational radiation field, and it is shown to be gauge independent. The propagation of a free electromagnetic wave in a gravitational radiation field is examined with the conclusion that no resonance phenomena can be expected. Finally, the 'Doppler noise' due to a stochastic background is evaluated, and it is shown to depend on the total energy density of the background and a parameter that is a characteristic of the radiation spectrum and the detection system used.

  5. Cell phone radiation exposure on brain and associated biological systems.

    PubMed

    Kesari, Kavindra Kumar; Siddiqui, Mohd Haris; Meena, Ramovatar; Verma, H N; Kumar, Shivendra

    2013-03-01

    Wireless technologies are ubiquitous today and the mobile phones are one of the prodigious output of this technology. Although the familiarization and dependency of mobile phones is growing at an alarming pace, the biological effects due to the exposure of radiations have become a subject of intense debate. The present evidence on mobile phone radiation exposure is based on scientific research and public policy initiative to give an overview of what is known of biological effects that occur at radiofrequency (RF)/ electromagnetic fields (EMFs) exposure. The conflict in conclusions is mainly because of difficulty in controlling the affecting parameters. Biological effects are dependent not only on the distance and size of the object (with respect to the object) but also on the environmental parameters. Health endpoints reported to be associated with RF include childhood leukemia, brain tumors, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, infertility and some cardiovascular effects. Most of the reports conclude a reasonable suspicion of mobile phone risk that exists based on clear evidence of bio-effects which with prolonged exposures may reasonably be presumed to result in health impacts. The present study summarizes the public issue based on mobile phone radiation exposure and their biological effects. This review concludes that the regular and long term use of microwave devices (mobile phone, microwave oven) at domestic level can have negative impact upon biological system especially on brain. It also suggests that increased reactive oxygen species (ROS) play an important role by enhancing the effect of microwave radiations which may cause neurodegenerative diseases.

  6. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, M.W.; Mak, H.K.; Lachman, R.S.

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  7. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery.

    PubMed

    Herman, M W; Mak, H K; Lachman, R S

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  8. Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar

    NASA Astrophysics Data System (ADS)

    Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken

    1997-02-01

    On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.

  9. Elastomeric Seal Performance after Terrestrial Ultraviolet Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.; Dunlap, Patrick H.

    2015-01-01

    Ultraviolet radiation was evaluated to determine its negative effects on the performance of elastomeric gas pressure seals. The leak rates of the silicone elastomer S0383-70 O-ring test articles were used to quantify the degradation of the seals after exposure to vacuum-ultraviolet and/or middle-to-near-ultraviolet wavelength radiation. Three groups of seals were exposed in terrestrial facilities to 115-165 nm wavelength radiation, 230-500 nm wavelength radiation, or both spectrums, for an orbital spaceflight equivalent of 125 hours. The leak rates of the silicone elastomer S0383-70 seals were quantified and compared to samples that received no radiation. Each lot contained six samples and statistical t-tests were used to determine the separate and combined influences of exposure to the two wavelength ranges. A comparison of the mean leak rates of samples exposed to 115-165 nm wavelength radiation to the control specimens showed no difference, suggesting that spectrum was not damaging. The 230-500 nm wavelength appeared to be damaging, as the mean leak rates of the specimens exposed to that range of wavelengths, and those exposed to the combined 115-165 nm and 230-500 nm spectrums, were significantly different from the leak rates of the control specimens. Most importantly, the test articles exposed to both wavelength spectrums exhibited mean leak rates two orders of magnitude larger than any other exposed specimens, which suggested that both wavelength spectrums are important when simulating the orbital environment.

  10. Limited Internal Radiation Exposure Associated with Resettlements to a Radiation-Contaminated Homeland after the Fukushima Daiichi Nuclear Disaster

    PubMed Central

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12–30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers’ resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309–1050 Bq/kg), and 5.3 Bq/kg (range, 5.1–18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10-2 mSv/y (range, 1.0 x 10-2-4.1 x 10-2 mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure. PMID:24312602

  11. Limited internal radiation exposure associated with resettlements to a radiation-contaminated homeland after the Fukushima Daiichi nuclear disaster.

    PubMed

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12-30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers' resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309-1050 Bq/kg), and 5.3 Bq/kg (range, 5.1-18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10(-2) mSv/y (range, 1.0 x 10(-2)-4.1 x 10(-2) mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure.

  12. Ocular ultraviolet radiation exposure of welders.

    PubMed

    Tenkate, Thomas D

    2017-05-01

    I read with interest a recent paper in your journal by Slagor et al on the risk of cataract in relation to metal arc welding (1). The authors highlight that even though welders are exposed to substantial levels of ultraviolet radiation (UVR), "no studies have reported data on how much UVR welders' eyes are exposed to during a working day. Thus, we do not know whether welders are more or less exposed to UVR than outdoor workers" (1, p451). Undertaking accurate exposure assessment of UVR from welding arcs is difficult, however, two studies have reported ocular/facial UVR levels underneath welding helmets (2, 3). In the first paper, UVR levels were measured using polysulphone film dosimeters applied to the cheeks of a patient who suffered from severe facial dermatitis (2). UVR levels of four times the American Conference of Governmental Industrial Hygienists (ACGIH) maximum permissible exposure (MPE) (4) were measured on the workers left cheek and nine times the MPE on the right cheek. The authors concluded that the workers dermatitis was likely to have been due to the UVR exposure received during welding. In the other paper, a comprehensive exposure assessment of personal UVR exposure of workers in a welding environment was reported (3). The study was conducted at a metal fabrication workshop with participants being welders, boilermakers and non-welders (eg, supervisors, fitters, machinists). Polysulphone film dosimeters were again used to measure UVR exposure of the workers, with badges worn on the clothing of workers (in the chest area), on the exterior of welding helmets, attached to 11 locations on the inside of welding helmets, and on the bridge and side-shields of safety spectacles. Dosimeters were also attached to surfaces throughout the workshop to measure ambient UVR levels. For welding subjects, mean 8-hour UVR doses within the welding helmets ranged from around 9 mJ/cm 2 (3×MPE) on the inside of the helmets to around 15 mJ/cm 2 (5×MPE) on the headband (a

  13. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  14. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  15. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  16. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  17. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  18. Federal Guidance Report No. 2: Background Material for the Development of Radiation Protection Standards (Federal Radiation Council)

    EPA Pesticide Factsheets

    This report discusses how to provide guidance for Federal agencies in activities designed to limit exposure of members of population groups to radiation from radioactive materials deposited in the body as a result of their occurrence in the environment.

  19. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  20. Maser radiometer for cosmic background radiation anisotropy measurements

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Wilkinson, D. T.

    1982-01-01

    A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated.

  1. Personalized technologist dose audit feedback for reducing patient radiation exposure from CT.

    PubMed

    Miglioretti, Diana L; Zhang, Yue; Johnson, Eric; Lee, Choonsik; Morin, Richard L; Vanneman, Nicholas; Smith-Bindman, Rebecca

    2014-03-01

    The aim of this study was to determine whether providing radiologic technologists with audit feedback on doses from CT examinations they conduct and education on dose-reduction strategies reduces patients' radiation exposure. This prospective, controlled pilot study was conducted within an integrated health care system from November 2010 to October 2011. Ten technologists at 2 facilities received personalized dose audit reports and education on dose-reduction strategies; 9 technologists at a control facility received no intervention. Radiation exposure was measured by the dose-length product (DLP) from CT scans performed before (n = 1,630) and after (n = 1,499) the intervention and compared using quantile regression. Technologists were surveyed before and after the intervention. For abdominal CT, DLPs decreased by 3% to 12% at intervention facilities but not at the control facility. For brain CT, DLPs significantly decreased by 7% to 12% at one intervention facility; did not change at the second intervention facility, which had the lowest preintervention DLPs; and increased at the control facility. Technologists were more likely to report always thinking about radiation exposure and associated cancer risk and optimizing settings to reduce exposure after the intervention. Personalized audit feedback and education can change technologists' attitudes about, and awareness of, radiation and can lower patient radiation exposure from CT imaging. Copyright © 2014 American College of Radiology. All rights reserved.

  2. Tracking Cumulative Radiation Exposure in Orthopaedic Surgeons and Residents: What Dose Are We Getting?

    PubMed

    Gausden, Elizabeth B; Christ, Alexander B; Zeldin, Roseann; Lane, Joseph M; McCarthy, Moira M

    2017-08-02

    The purpose of this study was to determine the amount of cumulative radiation exposure received by orthopaedic surgeons and residents in various subspecialties. We obtained dosimeter measures over 12 months on 24 residents and 16 attending surgeons. Monthly radiation exposure was measured over a 12-month period for 24 orthopaedic residents and 16 orthopaedic attending surgeons. The participants wore a Landauer Luxel dosimeter on the breast pocket of their lead apron. The dosimeters were exchanged every rotation (5 to 7 weeks) for the resident participants and every month for the attending surgeon participants. Radiation exposure was compared by orthopaedic subspecialty, level of training, and type of fluoroscopy used (regular C-arm compared with mini C-arm). Orthopaedic residents participating in this study received monthly mean radiation exposures of 0.2 to 79 mrem/month, lower than the dose limits of 5,000 mrem/year recommended by the United States Nuclear Regulatory Commission (U.S. NRC). Senior residents rotating on trauma were exposed to the highest monthly radiation (79 mrem/month [range, 15 to 243 mrem/month]) compared with all other specialty rotations (p < 0.001). Similarly, attending orthopaedic surgeons who specialize in trauma or deformity surgery received the highest radiation exposure of their peers, and the mean exposure was 53 mrem/month (range, 0 to 355 mrem/month). Residents and attending surgeons performing trauma or deformity surgical procedures are exposed to significantly higher doses of radiation compared with all other subspecialties within orthopaedic surgery, but the doses are still within the recommended limits. The use of ionizing radiation in the operating room has become an indispensable part of orthopaedic surgery. Although all surgeons in our study received lower than the yearly recommended dose limit, it is important to be aware of how much radiation we are exposed to as surgeons and to take measures to further limit that exposure.

  3. Effect of Vascular Access Site Choice on Radiation Exposure During Coronary Angiography: The REVERE Trial (Randomized Evaluation of Vascular Entry Site and Radiation Exposure).

    PubMed

    Pancholy, Samir B; Joshi, Pankaj; Shah, Sanjay; Rao, Sunil V; Bertrand, Olivier F; Patel, Tejas M

    2015-08-17

    This study sought to perform a randomized noninferiority trial of radiation exposure during cardiac catheterization comparing femoral access (FA) with left radial access (LRA) and right radial access (RRA). Increased radiation exposure with radial approach compared with femoral approach remains a controversial issue. This study randomized 1,493 patients undergoing cardiac catheterization at a tertiary care center to FA, LRA, and RRA in a 1:1:1 fashion. The primary endpoint was air kerma. The secondary endpoints included dose-area product, fluoroscopy time and operator dose per procedure, number of cineangiograms, and number of catheters. Baseline and procedural characteristics were similar among groups. No significant differences were observed in air kerma (medians: FA: 421 mGy [interquartile range (IQR): 337 to 574 mGy], LRA: 454 mGy [IQR: 331 to 643 mGy], and RRA: 483 mGy [IQR: 382 to 592 mGy], p = 0.146), dose-area product (medians: FA: 25.5 Gy cm(2) [IQR: 19.6 to 34.5 Gy cm(2)], LRA: 26.6 Gy cm(2) [IQR: 19.5 to 37.5 Gy cm(2)], and RRA: 27.7 Gy cm(2) [IQR: 21.9 to 34.4 Gy cm(2)], p = 0.40), or fluoroscopy time (medians: FA: 1.3 min [IQR: 1.0 to 1.7 min], LRA: 1.3 min [IQR: 1.0 to 1.7 min], and RRA: 1.32 min [IQR: 1.0 to 1.7 min], p = 0.19) among the 3 access sites. Median operator exposure was higher in the LRA group (3 mrem [IQR: 2 to 5 mrem], p = 0.001 vs. FA, and p = 0.0001 vs. RRA) compared with the FA (2 mrem [IQR: 2 to 4 mrem] and RRA groups (3 mrem [IQR: 2 to 5 mrem]). Radiation exposure to patients was similar during diagnostic coronary angiography with FA, RRA, and LRA. However, LRA was associated with significantly higher operator radiation exposure than were FA and RRA procedures. (Randomized Evaluation of Vascular Entry Site and Radiation Exposure [REVERE]; NCT01677481). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Lexical analysis suggests differences between subgroups in anxieties over radiation exposure in Fukushima

    PubMed Central

    Hasegawa, Arifumi; Takahashi, Manami; Nemoto, Mami; Ohba, Takashi; Yamada, Chieri; Matsui, Shiro; Fujino, Mitsuko; Satoh, Kenichi

    2018-01-01

    Abstract Although many experts have attempted communication about radiation risk, fears about radiation exposure stemming from the Fukushima Daiichi Nuclear Power Plant accident remain deeply rooted. The characteristics of the anxiety vary with social background, which makes it difficult to alleviate with one approach. Our ultimate goal is therefore to create risk-communication materials tailored to various groups with differing social backgrounds. Towards that end, the purpose of the present study was to clarify potential factors associated with radiation-related anxieties within these groups. After obtaining informed consent, we conducted focus group interviews (FGIs) with Fukushima residents from various social groups, including evacuees, emergency responders, government personnel, medical staff, and decontamination workers. We obtained narrative comments specifically related to the following two themes: (i) lessons learned (at work or home) in light of one’s position in society, and (ii) health issues. After transcribing the comments, we examined potential factors associated with radiation-related anxieties using both quantitative and qualitative study methods simultaneously, using the KH Coder software and the Steps for Coding and Theorization (SCAT) method respectively. FGIs were undertaken with 141 persons. Categories, words and storylines extracted in this study might indicate potential anxieties that are unique to each group, but our analysis also suggested that some anxieties were common to all groups. We expect to continue the analyses and, ultimately, to establish group-tailored risk-communication materials for achieving our final goal of adapting and better managing risk-communication efforts to help people deal more effectively with the scientific, technological and societal changes that came about after the disaster. PMID:29648605

  5. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  6. Occupational radiation exposure experience: Paducah Gaseous Diffusion Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.C.

    1975-01-01

    The potential for significant uranium exposure in gaseous diffusion plants is very low. The potential for significant radiation exposure in uranium hexafluoride manufacturing is very real. Exposures can be controlled to low levels only through the cooperation and commitment of facility management and operating personnel. Exposure control can be adequately monitored by a combination of air analyses, urinalyses, and measurements of internal deposition as obtained by the IVRML. A program based on control of air-borne uranium exposure has maintained the internal dose of the Paducah Gaseous Diffusion Plant workman to less than one-half the RPG dose to the lung (15more » rem/year) and probably to less than one-fourth that dose. (auth)« less

  7. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marica, Lucia; Moraru, Luminita

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performedmore » on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.« less

  8. Effectiveness of Fluorography versus Cineangiography at Reducing Radiation Exposure During Diagnostic Coronary Angiography

    PubMed Central

    Shah, Binita; Mai, Xingchen; Tummala, Lakshmi; Kliger, Chad; Bangalore, Sripal; Miller, Louis H.; Sedlis, Steven P.; Feit, Frederick; Liou, Michael; Attubato, Michael; Coppola, John; Slater, James

    2014-01-01

    Coronary angiography is the gold standard for defining obstructive coronary disease. However, radiation exposure remains an unwanted hazard. Patients referred for coronary angiography with abdominal circumference <45 inches and glomerular filtration rate >60mL/min were randomized to the Fluorography (n=25) or Cineangiography (n=25) group. Patients in the Fluorography group underwent coronary angiography using retrospectively-stored fluorography with repeat injection under cineangiography only when needed for better resolution per operator’s discretion. Patients in the Cineangiography group underwent coronary angiography using routine cineangiography. The primary endpoint was patient radiation exposure measured by radiochromic film. Secondary endpoints included the radiation output measurement of kerma-area product (KAP) and air kerma at the interventional reference point (Ka,r), and operator radiation exposure measured by dosimeter. Patient radiation exposure (158.2mGy [76.5–210.2] vs 272.5mGy [163.3–314.0], p=0.001), KAP (1323μGy m2 [826–1765] vs 3451μGy m2 [2464–4818], p<0.001), and Ka,r (175 mGy [112–252] vs 558 mGy [313–621], p<0.001)was significantly lower in the Fluorography compared with Cineangiography group (42%, 62%, and 69% relative reduction, respectively). Operator radiation exposure trended in the same direction though statistically non-significant (Fluorography 2.35 μGy [1.24–6.30] vs Cineangiography 5.03μGy [2.48–7.80], p=0.059). In conclusion, the use of fluorography in a select group of patients during coronary angiography with repeat injection under cineangiography only when needed was efficacious at reducing patient radiation exposure. PMID:24513469

  9. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  10. Stress induction in the bacteria Shewanella oneidensis and Deinococcus radiodurans in response to below-background ionizing radiation.

    PubMed

    Castillo, Hugo; Schoderbek, Donald; Dulal, Santosh; Escobar, Gabriela; Wood, Jeffrey; Nelson, Roger; Smith, Geoffrey

    2015-01-01

    The 'Linear no-threshold' (LNT) model predicts that any amount of radiation increases the risk of organisms to accumulate negative effects. Several studies at below background radiation levels (4.5-11.4 nGy h(-1)) show decreased growth rates and an increased susceptibility to oxidative stress. The purpose of our study is to obtain molecular evidence of a stress response in Shewanella oneidensis and Deinococcus radiodurans grown at a gamma dose rate of 0.16 nGy h(-1), about 400 times less than normal background radiation. Bacteria cultures were grown at a dose rate of 0.16 or 71.3 nGy h(-1) gamma irradiation. Total RNA was extracted from samples at early-exponential and stationary phases for the rt-PCR relative quantification (radiation-deprived treatment/background radiation control) of the stress-related genes katB (catalase), recA (recombinase), oxyR (oxidative stress transcriptional regulator), lexA (SOS regulon transcriptional repressor), dnaK (heat shock protein 70) and SOA0154 (putative heavy metal efflux pump). Deprivation of normal levels of radiation caused a reduction in growth of both bacterial species, accompanied by the upregulation of katB, recA, SOA0154 genes in S. oneidensis and the upregulation of dnaK in D. radiodurans. When cells were returned to background radiation levels, growth rates recovered and the stress response dissipated. Our results indicate that below-background levels of radiation inhibited growth and elicited a stress response in two species of bacteria, contrary to the LNT model prediction.

  11. Concerns with low-level ionizing radiation.

    PubMed

    Yalow, R S

    1994-05-01

    To clarify the effects of ionizing radiation and to dispel fear associated with the use of radioactivity in medical diagnosis and therapy. Studies of populations in geographic areas of increased cosmic radiation and high natural background radiation, radiation-exposed workers, patients with medical exposure to radioactivity, and accidental exposure are reviewed. No reproducible evidence shows harmful effects associated with increases in background radiation of 3 to 10 times the usual levels. American military personnel who participated in nuclear testing had no increase in leukemia or other cancers. Among 22,000 patients with hyperthyroidism treated with 131I (mean dose, 10 rem), no increased incidence of leukemia was found in comparison with 14,000 similar patients who received other treatment. A 20-year follow-up of 35,000 patients who underwent 131I uptake tests for evaluation of thyroid function revealed that those studied for other than a suspected tumor had only 60% of the thyroid cancers expected in a control group. Although early studies showed that high exposures to miners to radon and its daughters resulted in a substantial increase in lung cancer, no evidence exists for an increase in lung cancer among nonsmokers exposed to increased radon levels in the home. Perhaps the association of radiation with the atomic bomb has created a climate of fear about the possible dangers of radiation at any level; however, no evidence indicates that current radiation exposures associated with medical usage are harmful.

  12. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    PubMed

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P < 0.05 and P < 0.05, respectively). We successfully developed a dog model of acute radiation enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis. © 2014 by the Society for Experimental Biology and Medicine.

  13. Exposure to Mobile Phone Radiation Opens New Horizons in Alzheimer’s Disease Treatment

    PubMed Central

    Mortazavi, SAR; Shojaei-Fard, MB; Haghani, M; Shokrpour, N; Mortazavi, SMJ

    2013-01-01

    Alzheimer’s disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer’s disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer’s disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease. PMID:25505755

  14. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  15. Exposure assessment of mobile phone base station radiation in an outdoor environment using sequential surrogate modeling.

    PubMed

    Aerts, Sam; Deschrijver, Dirk; Joseph, Wout; Verloock, Leen; Goeminne, Francis; Martens, Luc; Dhaene, Tom

    2013-05-01

    Human exposure to background radiofrequency electromagnetic fields (RF-EMF) has been increasing with the introduction of new technologies. There is a definite need for the quantification of RF-EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack of a fast and efficient measurement procedure. In this article, a new procedure is proposed for accurately mapping the exposure to base station radiation in an outdoor environment based on surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry for human RF exposure. We tested our procedure in an urban area of about 0.04 km(2) for Global System for Mobile Communications (GSM) technology at 900 MHz (GSM900) using a personal exposimeter. Fifty measurement locations were sufficient to obtain a coarse street exposure map, locating regions of high and low exposure; 70 measurement locations were sufficient to characterize the electric field distribution in the area and build an accurate predictive interpolation model. Hence, accurate GSM900 downlink outdoor exposure maps (for use in, e.g., governmental risk communication and epidemiological studies) are developed by combining the proven efficiency of sequential design with the speed of exposimeter measurements and their ease of handling. Copyright © 2013 Wiley Periodicals, Inc.

  16. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  17. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  18. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. Wemore » conclude by presenting measurement targets and future opportunities.« less

  19. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and,more » because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of

  20. Estimation of occupational cosmic radiation exposure among airline personnel: Agreement between a job-exposure matrix, aggregate, and individual dose estimates.

    PubMed

    Talibov, Madar; Salmelin, Raili; Lehtinen-Jacks, Susanna; Auvinen, Anssi

    2017-04-01

    Job-exposure matrices (JEM) are used for exposure assessment in occupational studies, but they can involve errors. We assessed agreement between the Nordic Occupational Cancer Studies JEM (NOCCA-JEM) and aggregate and individual dose estimates for cosmic radiation exposure among Finnish airline personnel. Cumulative cosmic radiation exposure for 5,022 airline crew members was compared between a JEM and aggregate and individual dose estimates. The NOCCA-JEM underestimated individual doses. Intraclass correlation coefficient was 0.37, proportion of agreement 64%, kappa 0.46 compared with individual doses. Higher agreement was achieved with aggregate dose estimates, that is annual medians of individual doses and estimates adjusted for heliocentric potentials. The substantial disagreement between NOCCA-JEM and individual dose estimates of cosmic radiation may lead to exposure misclassification and biased risk estimates in epidemiological studies. Using aggregate data may provide improved estimates. Am. J. Ind. Med. 60:386-393, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo

    2013-01-01

    Background Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Methods Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Results Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly

  2. Effects of fetal microwave radiation exposure on offspring behavior in mice

    PubMed Central

    Zhang, Yanchun; Li, Zhihui; Gao, Yan; Zhang, Chenggang

    2015-01-01

    Abstract The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5–18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects. PMID:25359903

  3. Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Gorenstein, M. V.; Smoot, G. F.

    1980-05-01

    We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1?}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

  4. Passive exposure of Earth radiation budget experiment components LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1991-01-01

    The Passive Exposure of Earth Radiation Budget Experiment Components (PEERBEC) experiment of the Long Duration Exposure Facility (LDEF) mission was composed of sensors and components associated with the measurement of the earth radiation budget (ERB) from satellites. These components included the flight spare sensors from the ERB experiment which operated on Nimbus 6 and 7 satellites. The experiment components and materials as well as the pertinent background and ancillary information necessary for the understanding of the intended mission and the results are described. The extent and timing of the LDEF mission brought the exposure from solar minimum between cycles 21 and 22 through the solar maximum of cycle 22. The orbital decay, coupled with the events of solar maximum, caused the LDEF to be exposed to a broader range of space environmental effects than were anticipated. The mission spanned almost six years concurrent with the 12 year (to date) Nimbus 7 operations. Preliminary information is presented on the following: (1) the changes in transmittance experienced by the interference filters; (2) the results of retesting of the thermopile sensors, which appear to be relatively unaffected by the exposure; and (3) the results of the recalibration of the APEX cavity radiometer. The degradation and recovery of the filters of the Nimbus 7 ERB are also discussed relative to the apparent atomic oxygen cleaning which also applies to the LDEF.

  5. Radiation exposure in the young level 1 trauma patient: a retrospective review.

    PubMed

    Gottschalk, Michael B; Bellaire, Laura L; Moore, Thomas

    2015-01-01

    Computed tomography (CT) has become an increasingly popular and powerful tool for clinicians managing trauma patients with life-threatening injuries, but the ramifications of increasing radiation burden on individual patients are not insignificant. This study examines a continuous series of 337 patients less than 40 years old admitted to a level 1 trauma center during a 4-month period. Primary outcome measures included number of scans; effective dose of radiation from radiographs and CT scans, respectively; and total effective dose from both sources over patients' hospital stays. Several variables, including hospital length of stay, initial Glasgow Coma Scale score, and Injury Severity Score, correlated with greater radiation exposure. Blunt trauma victims were more prone to higher doses than those with penetrating or combined penetrating and blunt trauma. Location and mechanism of injury were also found to correlate with radiation exposure. Trauma patients as a group are exposed to high levels of radiation from X-rays and CT scans, and CT scans contribute a very high proportion (91.3% ± 11.7%) of that radiation. Certain subgroups of patients are at a particularly high risk of exposure, and greater attention to cumulative radiation dose should be paid to patients with the above mentioned risk factors.

  6. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  7. Management of cosmic radiation exposure for aircraft crew in Japan.

    PubMed

    Yasuda, Hiroshi; Sato, Tatsuhiko; Yonehara, Hidenori; Kosako, Toshiso; Fujitaka, Kazunobu; Sasaki, Yasuhito

    2011-07-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y(-1). The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Institute of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program.

  8. Invasive Cardiologists Are Exposed to Greater Left Sided Cranial Radiation: The BRAIN Study (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures).

    PubMed

    Reeves, Ryan R; Ang, Lawrence; Bahadorani, John; Naghi, Jesse; Dominguez, Arturo; Palakodeti, Vachaspathi; Tsimikas, Sotirios; Patel, Mitul P; Mahmud, Ehtisham

    2015-08-17

    This study sought to determine radiation exposure across the cranium of cardiologists and the protective ability of a nonlead, XPF (barium sulfate/bismuth oxide) layered cap (BLOXR, Salt Lake City, Utah) during fluoroscopically guided, invasive cardiovascular (CV) procedures. Cranial radiation exposure and potential for protection during contemporary invasive CV procedures is unclear. Invasive cardiologists wore an XPF cap with radiation attenuation ability. Six dosimeters were fixed across the outside and inside of the cap (left, center, and right), and 3 dosimeters were placed outside the catheterization lab to measure ambient exposure. Seven cardiology fellows and 4 attending physicians (38.4 ± 7.2 years of age; all male) performed diagnostic and interventional CV procedures (n = 66.2 ± 27 cases/operator; fluoroscopy time: 14.9 ± 5.0 min). There was significantly greater total radiation exposure at the outside left and outside center (106.1 ± 33.6 mrad and 83.1 ± 18.9 mrad) versus outside right (50.2 ± 16.2 mrad; p < 0.001 for both) locations of the cranium. The XPF cap attenuated radiation exposure (42.3 ± 3.5 mrad, 42.0 ± 3.0 mrad, and 41.8 ± 2.9 mrad at the inside left, inside center, and inside right locations, respectively) to a level slightly higher than that of the ambient control (38.3 ± 1.2 mrad, p = 0.046). After subtracting ambient radiation, exposure at the outside left was 16 times higher than the inside left (p < 0.001) and 4.7 times higher than the outside right (p < 0.001). Exposure at the outside center location was 11 times higher than the inside center (p < 0.001), whereas no difference was observed on the right side. Radiation exposure to invasive cardiologists is significantly higher on the left and center compared with the right side of the cranium. Exposure may be reduced similar to an ambient control level by wearing a nonlead XPF cap. (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures [BRAIN]; NCT

  9. Outdoor work and solar radiation exposure: Evaluation method for epidemiological studies.

    PubMed

    Modenese, Alberto; Bisegna, Fabio; Borra, Massimo; Grandi, Carlo; Gugliermetti, Franco; Militello, Andrea; Gobba, Fabriziomaria

    The health risk related to an excessive exposure to solar radiation (SR) is well known. The Sun represents the main exposure source for all the frequency bands of optical radiation, that is the part of the electromagnetic spectrum ranging between 100 nm and 1 mm, including infrared (IR), ultraviolet (UV) and visible radiation. According to recent studies, outdoor workers have a relevant exposure to SR but few studies available in scientific literature have attempted to retrace a detailed history of individual exposure. We propose a new method for the evaluation of SR cumulative exposure both during work and leisure time, integrating subjective and objective data. The former is collected by means of an interviewer administrated questionnaire. The latter is available through the Internet databases for many geographical regions and through individual exposure measurements. The data is integrated into a mathematical algorithm, in order to obtain an esteem of the individual total amount of SR the subjects have been exposed to during their lives. The questionnaire has been tested for 58 voluntary subjects. Environmental exposure data through online databases has been collected for 3 different places in Italy in 2012. Individual exposure by electronic UV dosimeter has been measured in 6 fishermen. A mathematical algorithm integrating subjective and objective data has been elaborated. The method proposed may be used in epidemiological studies to evaluate specific correlations with biological effects of SR and to weigh the role of the personal and environmental factors that may increase or reduce SR exposure. Med Pr 2016;67(5):577-587. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Econometric model for age- and population-dependent radiation exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.

  11. Radiation safety protocol using real-time dose reporting reduces patient exposure in pediatric electrophysiology procedures.

    PubMed

    Patel, Akash R; Ganley, Jamie; Zhu, Xiaowei; Rome, Jonathan J; Shah, Maully; Glatz, Andrew C

    2014-10-01

    Radiation exposure during pediatric catheterization is significant. We sought to describe radiation exposure and the effectiveness of radiation safety protocols in reducing exposure during catheter ablations with electrophysiology studies in children and patients with congenital heart disease. We additionally sought to identify at-risk patients. We retrospectively reviewed all interventional electrophysiology procedures performed from April 2009 to September 2011 (6 months preceding intervention, 12 months following implementation of initial radiation safety protocol, and 8 months following implementation of modified protocol). The protocols consisted of low pulse rate fluoroscopy settings, operator notification of skin entrance dose every 1,000 mGy, adjusting cameras by >5 at every 1,000 mGy, and appropriate collimation. The cohort consisted of 291 patients (70 pre-intervention, 137 after initial protocol implementation, 84 after modified protocol implementation) at a median age of 14.9 years with congenital heart disease present in 11 %. Diagnoses included atrioventricular nodal reentrant tachycardia (25 %), atrioventricular reentrant tachycardia (61 %), atrial tachycardias (12 %), and ventricular tachycardia (2 %). There were no differences between groups based on patient, arrhythmia, and procedural characteristics. Following implementation of the protocols, there were significant reductions in all measures of radiation exposure: fluoroscopy time (17.8 %), dose area product (80.2 %), skin entry dose (81.0 %), and effective dose (76.9 %), p = 0.0001. Independent predictors of increased radiation exposure included larger patient weight, longer fluoroscopy time, and lack of radiation safety protocol. Implementation of a radiation safety protocol for pediatric and congenital catheter ablations can drastically reduce radiation exposure to patients without affecting procedural success.

  12. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  13. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  14. Uncertainties in estimating health risks associated with exposure to ionising radiation.

    PubMed

    Preston, R Julian; Boice, John D; Brill, A Bertrand; Chakraborty, Ranajit; Conolly, Rory; Hoffman, F Owen; Hornung, Richard W; Kocher, David C; Land, Charles E; Shore, Roy E; Woloschak, Gayle E

    2013-09-01

    The information for the present discussion on the uncertainties associated with estimation of radiation risks and probability of disease causation was assembled for the recently published NCRP Report No. 171 on this topic. This memorandum provides a timely overview of the topic, given that quantitative uncertainty analysis is the state of the art in health risk assessment and given its potential importance to developments in radiation protection. Over the past decade the increasing volume of epidemiology data and the supporting radiobiology findings have aided in the reduction of uncertainty in the risk estimates derived. However, it is equally apparent that there remain significant uncertainties related to dose assessment, low dose and low dose-rate extrapolation approaches (e.g. the selection of an appropriate dose and dose-rate effectiveness factor), the biological effectiveness where considerations of the health effects of high-LET and lower-energy low-LET radiations are required and the transfer of risks from a population for which health effects data are available to one for which such data are not available. The impact of radiation on human health has focused in recent years on cancer, although there has been a decided increase in the data for noncancer effects together with more reliable estimates of the risk following radiation exposure, even at relatively low doses (notably for cataracts and cardiovascular disease). New approaches for the estimation of hereditary risk have been developed with the use of human data whenever feasible, although the current estimates of heritable radiation effects still are based on mouse data because of an absence of effects in human studies. Uncertainties associated with estimation of these different types of health effects are discussed in a qualitative and semi-quantitative manner as appropriate. The way forward would seem to require additional epidemiological studies, especially studies of low dose and low dose

  15. Radiation exposure assessment for portsmouth naval shipyard health studies.

    PubMed

    Daniels, R D; Taulbee, T D; Chen, P

    2004-01-01

    Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.

  16. Thyroid cancer after exposure to external radiation: A pooled analysis of seven studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron, E.; Lubin, J.H.; Pottern, L.M.

    1995-03-01

    The thyroid gland of children is especially vulnerable to the carcinogenic action of ionizing radiation. To provide insights into various modifying influences on risk, seven major studies with organ doses to individual subjects were evaluated. Five cohort studies (atomic bomb survivors, children treated for tinea capitis, two studies of children irradiated for enlarged tonsils, and infants irradiated for an enlarged thymus gland) and two case-control studies (patients with cervical cancer and childhood cancer) were studied. The combined studies include almost 120,000 people (approximately 58,000 exposed to a wide range of doses and 61,000 nonexposed subjects), nearly 700 thyroid cancers andmore » 3,000,000 person years of follow-up. For persons exposed to radiation before age 15 years, linearity best described the dose response, even down to 0.10 Gy. At the highest doses (>10 Gy), associated with cancer therapy, there appeared to be a decrease or leveling of risk. For childhood exposures, the pooled excess relative risk per Gy (ERR/Gy) was 7.7 (95% CI = 2.1, 28.7) and the excess absolute risk per 10{sup 4} PY Gy (EAR/10{sup 4} PY Gy) was 4.4 (95% CI = 1.9, 10.1). The attributable risk percent (AR%) at 1 Gy was 88%. However, these summary estimates were affected strongly by age at exposure even within this limited age range. The ERR was greater (P = 0.07) for females than males, but the findings from the individual studies were not consistent. The EAR was higher among women, reflecting their higher rate of naturally occurring thyroid cancer. The distribution of ERR over time followed neither a simple multiplicative nor an additive pattern in relation to background occurrence. Only two cases were seen within 5 years of exposure. The ERR began to decline about 30 years after exposure but was still elevated at 40 years. Risk also decreased significantly with increasing age at exposure, with little risk apparent after age 20 years. 56 refs., 5 figs., 8 tabs.« less

  17. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  18. The risk of radiation exposure to the eyes of the interventional pain physician.

    PubMed

    Fish, David E; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog

    2011-01-01

    It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them.

  19. The Risk of Radiation Exposure to the Eyes of the Interventional Pain Physician

    PubMed Central

    Fish, David E.; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog

    2011-01-01

    It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them. PMID:22091381

  20. Radiation exposure in transcatheter patent ductus arteriosus closure: time to tune?

    PubMed

    Villemain, Olivier; Malekzadeh-Milani, Sophie; Sitefane, Fidelio; Mostefa-Kara, Meriem; Boudjemline, Younes

    2018-05-01

    The aims of this study were to describe radiation level at our institution during transcatheter patent ductus arteriosus occlusion and to evaluate the components contributing to radiation exposure. Transcatheter occlusion relying on X-ray imaging has become the treatment of choice for patients with patent ductus arteriosus. Interventionists now work hard to minimise radiation exposure in order to reduce risk of induced cancers. We retrospectively reviewed all consecutive children who underwent transcatheter closure of patent ductus arteriosus from January 2012 to January 2016. Clinical data, anatomical characteristics, and catheterisation procedure parameters were reported. Radiation doses were analysed for the following variables: total air kerma, mGy; dose area product, Gy.cm2; dose area product per body weight, Gy.cm2/kg; and total fluoroscopic time. A total of 324 patients were included (median age=1.51 [Q1-Q3: 0.62-4.23] years; weight=10.3 [6.7-17.0] kg). In all, 322/324 (99.4%) procedures were successful. The median radiation doses were as follows: total air kerma: 26 (14.5-49.3) mGy; dose area product: 1.01 (0.56-2.24) Gy.cm2; dose area product/kg: 0.106 (0.061-0.185) Gy.cm2/kg; and fluoroscopic time: 2.8 (2-4) min. In multivariate analysis, a weight >10 kg, a ductus arteriosus width <2 mm, complications during the procedure, and a high frame rate (15 frames/second) were risk factors for an increased exposure. Lower doses of radiation can be achieved with subsequent recommendations: technical improvement, frame rate reduction, avoidance of biplane cineangiograms, use of stored fluoroscopy as much as possible, and limitation of fluoroscopic time. A greater use of echocardiography might even lessen the exposure.

  1. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  2. Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.

    2018-02-01

    It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.

  3. Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.

    2018-05-01

    It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.

  4. Patient radiation exposure during different kyphoplasty techniques.

    PubMed

    Panizza, Denis; Barbieri, Massimo; Parisoli, Francesco; Moro, Luca

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient biometric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure(-1) for study A and 3.6±0.9 mSv procedure(-1) for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient.

  5. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently

  6. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights.

    PubMed

    Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  7. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Astrophysics Data System (ADS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  8. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Technical Reports Server (NTRS)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  9. Radionuclides and Radiation Indices of High Background Radiation Area in Chavara-Neendakara Placer Deposits (Kerala, India)

    PubMed Central

    Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar

    2012-01-01

    The present paper describes a detailed study on the distribution of radionuclides along Chavara – Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium (238U), Thorium (232Th) and Potassium (40K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between 238U and 232Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h−1) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA. PMID:23185629

  10. The modulating impact of illumination and background radiation on 8 Hz-induced infrasound effect on physicochemical properties of physiolagical solution.

    PubMed

    Baghdasaryan, Naira; Mikayelyan, Yerazik; Barseghyan, Sedrak; Dadasyan, Erna; Ayrapetyan, Sinerik

    2012-12-01

    At present, when the level of background ionizing radiation is increasing in a number of world locations, the problem of the study of biological effect of high background radiation becomes one of the extremely important global problems in modern life sciences. The modern research in biophysics proved that water is a most essential target, through which the biological effects of ionizing and non-ionizing radiations are realized. Therefore, there is no doubt about the strong dependency of non-ionizing radiation-induced effect on the level of background radiation. Findings have shown that illumination and background radiation have a strong modulation effect on infrasound-induced impacts on water physicochemical properties, which could also have appropriate effect on living organisms.

  11. AN ANALYSIS OF OPERATING PHYSICIAN AND PATIENT RADIATION EXPOSURE DURING RADIAL CORONARY ANGIOPLASTIES.

    PubMed

    Tarighatnia, Ali; Mesbahi, Asghar; Alian, Amir Hossein Mohammad; Koleini, Evin; Nader, Nader

    2018-03-23

    The objective of this study was to evaluate radiation exposure levels in conjunction with operator dose implemented, patient vascular characteristics, and other technical angiographic parameters. In total, 756 radial coronary angioplasties were evaluated in a major metropolitan general hospital in Tabriz, Iran. The classification of coronary lesions was based on the ACC/AHA system. One interventional cardiologist performed all of the procedures using a single angiography unit. The mean kerma-area product and mean cumulative dose for all cases was 5081 μGy m2 and 814.44 mGy, respectively. Average times of 26.16 and 9.1 min were recorded for the overall procedure and fluoroscopy, respectively. A strong correlation was demonstrated between types of lesions, number of stents and vessels treated in relation to physician radiation exposure. It was determined that operator radiation exposure levels for percutaneous coronary interventions lesions (complex) were higher than that of simple and moderate lesions. In addition, operator radiation exposure levels increased with the treatment of more coronary vessels and implementation of additional stents.

  12. Evaluation of radiation exposure with Tru-Align intraoral rectangular collimation system using OSL dosimeters.

    PubMed

    Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C

    2011-03-01

    A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.

  13. Radiation Transport Modeling and Assessment to Better Predict Radiation Exposure, Dose, and Toxicological Effects to Human Organs on Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor

    2000-01-01

    NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.

  14. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.

    PubMed

    Brown, Steven H; Chambers, Douglas B

    2017-07-01

    All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.

  15. Management of fear of radiation exposure in carers of outpatients treated with iodine-131.

    PubMed

    Calais, Phillipe J; Page, Andrew C; Turner, J Harvey

    2012-07-01

    To characterise potential fear of radiation exposure in a normal population of individuals who have volunteered to care for a radioactive family member or friend after outpatient radioimmunotherapy (RIT) treatment for cancer, and obtain their knowing and willing acceptance of the risk. Over 750 carers of 300 patients confined to their homes for 1 week following outpatient iodine-131 rituximab RIT of lymphoma were interviewed by a nuclear medicine physicist according to a multi-visit integrated protocol designed to minimise radiation exposure, define risk and gain informed consent. Median radiation exposure of carers was 0.49 mSv (range 0.01-3.7 mSv) which is below the Western Australian regulatory limit of 5 mSv for consenting adult carers of radioactive patients. After signing a declaration of consent, only 2 carers of 750 abrogated their responsibility and none of those who carried out their duties expressed residual concerns at the end of the exit interview with respect to their radiation exposure. Fear of radiation exposure in a normal population may be characterised as a normal emotional response. In the special case of carers of radioactive patients, this fear may be successfully managed by rational, authoritative and empathic explanation to define the risk and gain willing acceptance within the context of domiciliary patient care.

  16. Radiation exposure and risk assessment for critical female body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Hardy, Alva C.

    1991-01-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed.

  17. HELLE: Health Effects of Low Level Exposures/ Gezondheidseffecten van lage blootstellingniveaus [International workshop: Influence of low level exposures to chemicals and radiation on human and ecological health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoten, Eert

    1998-11-26

    Developments and Perspectives for Risk Assessment''. The central question was the extent to which the sometimes fast-growing knowledge about molecular and cellular effects offers the desired basis for extrapolation. Against this setting, a number of more specific questions which have been hotly debated for some time were also addressed. One of the primary questions concerned the traditional but increasingly questioned division between stochastic and non-stochastic working agents, and the corresponding division between exposure-effect relations without a threshold and with a threshold. Thoughts were also exchanged on what is often referred to as hormesis: the notion that low levels of exposure could actually improve health. For the purpose of illuminating the many aspects of these issues, experts from a number of areas were invited. In addition to this, three agents were selected to serve as points of crystallization for the general debate: ionizing radiation, ultraviolet (UV) radiation and dioxins. The present report calls attention to a selection of issues which emerged during the discussions on the above-mentioned central topic. Various more detailed questions and the wider context of the points considered are described at greater length in the enclosed conference report and in the background documents attached to the report. What follows is a series of considerations regarding the scientific basis for the derivation of recommended exposure levels, viewed in the light of current procedures and against the background of the work of the Health Council. In the preparation of the following comments and recommendations, various Dutch experts have been consulted.« less

  18. Educational background: different processes and consequences on health and physical and mental exposures among women and men.

    PubMed

    Dahlberg, Raymond; Bildt, Carina; Vingård, Eva; Karlqvist, Lena

    2007-01-01

    To compare health and exposures at work and at home of women and men with the same educational background. The study group consisted of 3831 individuals, grouped into three educational categories based on length of education. Category 1, which represents 9-year compulsory school; Category 2, which includes 3-year upper secondary school, i.e. in total 12 years of education; and Category 3, which includes post-secondary school, such as university. They responded to a questionnaire that included questions on health and exposures at work and at home. Significant differences were shown in health outcomes between women and men with the same educational background and also in exposures in their professional and private lives. Associations between educational background and health were found and analyses revealed that men with a university education run the lowest risk of developing ill health. Women with the same educational background as men are differently exposed, both in paid and unpaid work, due to the segregated labour market and the unequal distribution of domestic duties. Men in all educational categories studied had better health compared to women with the same educational background.

  19. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    NASA Astrophysics Data System (ADS)

    Kulisek, J. A.; Schweppe, J. E.; Stave, S. C.; Bernacki, B. E.; Jordan, D. V.; Stewart, T. N.; Seifert, C. E.; Kernan, W. J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, 60Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  20. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells

    PubMed Central

    Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon

    2014-01-01

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. PMID:24105709

  1. Lead exposure and radiator repair work.

    PubMed Central

    Lussenhop, D H; Parker, D L; Barklind, A; McJilton, C

    1989-01-01

    In 1986, the ambient air for lead in radiator repair shops in the Minneapolis-St. Paul metropolitan area exceeded the Occupational Safety and Health Administration (OSHA) action level in nine of 12 shops sampled by Minnesota OSHA. We therefore sought to determine the prevalence of lead exposure/toxicity in this industry. Thirty-five radiator shops were identified, 30 were visited, and 53 workers were studied. The mean blood lead level was 1.53 (range 0.24-2.80). Seventeen individuals had blood lead levels greater than or equal to 1.93 mumol/L (40 micrograms/dl). The mean zinc protoporphyrin level (ZPP) was 0.55 mumol/L (range 0.16-1.43). No single worksite or personal characteristic was a strong determinant of either blood lead or ZPP level. PMID:2817174

  2. Lead exposure and radiator repair work.

    PubMed

    Lussenhop, D H; Parker, D L; Barklind, A; McJilton, C

    1989-11-01

    In 1986, the ambient air for lead in radiator repair shops in the Minneapolis-St. Paul metropolitan area exceeded the Occupational Safety and Health Administration (OSHA) action level in nine of 12 shops sampled by Minnesota OSHA. We therefore sought to determine the prevalence of lead exposure/toxicity in this industry. Thirty-five radiator shops were identified, 30 were visited, and 53 workers were studied. The mean blood lead level was 1.53 (range 0.24-2.80). Seventeen individuals had blood lead levels greater than or equal to 1.93 mumol/L (40 micrograms/dl). The mean zinc protoporphyrin level (ZPP) was 0.55 mumol/L (range 0.16-1.43). No single worksite or personal characteristic was a strong determinant of either blood lead or ZPP level.

  3. THE HIGH BACKGROUND RADIATION AREA IN RAMSAR IRAN: GEOLOGY, NORM, BIOLOGY, LNT, AND POSSIBLE REGULATORY FUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karam, P. A.

    2002-02-25

    The city of Ramsar Iran hosts some of the highest natural radiation levels on earth, and over 2000 people are exposed to radiation doses ranging from 1 to 26 rem per year. Curiously, inhabitants of this region seem to have no greater incidence of cancer than those in neighboring areas of normal background radiation levels, and preliminary studies suggest their blood cells experience fewer induced chromosomal abnormalities when exposed to 150 rem ''challenge'' doses of radiation than do the blood cells of their neighbors. This paper will briefly describe the unique geology that gives Ramsar its extraordinarily high background radiationmore » levels. It will then summarize the studies performed to date and will conclude by suggesting ways to incorporate these findings (if they are borne out by further testing) into future radiation protection standards.« less

  4. Effect of space relevant radiation exposure on differentiation and mineralization of murine osteoprogenitor cells

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hu, Yueyuan; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Extended exposure to altered gravity conditions like during long-term space flight results in significant bone loss. Exposure to ionizing radiation for cancer therapy causes bone damage and may increase the risk of fractures. Similarly, besides altered gravity conditions, astronauts on exploratory missions beyond low-Earth orbit will be exposed to high-energy heavy ions in addition to proton and photon radiation, although for prolonged periods and at lower doses and dose rates compared with therapy. Space conditions may place astronauts at a greater risk for mission-critical fractures. Until now, little is known about the effects of space radiation on the skeletal system especially on osteoprogenitor cells. Accelerator facilities are used to simulate parts of the radiation environment in space. Heavy ion accelerators therefore could be used to assess radiation risks for astronauts who will be exposed to higher radiation doses e.g. on a Mars mission. The aim of the present study was to determine the biological effects of spaceflight-relevant radiation exposure on the cellular level using murine osteoprogenitor cell lines compared to nonirradiated controls. To gain a deeper understanding of bone cell differenti-ation and mineralization after exposure to heavy ions, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. We investigated the transcrip-tional modulation of type I collagen (Col I), osteocalcin (Ocn), Transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and the bone specific transcription factor Runx2 (Cbfa1). To gain deeper insight into potential cellular mechanisms involved in cellular response after ex-posure to heavy ions, we investigated gene expression modulations after exposure to energetic carbon ions (35 MeV/u, 73.2 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600

  5. Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure

    PubMed Central

    Verreet, Tine; Quintens, Roel; Baatout, Sarah; Benotmane, Mohammed A.

    2016-01-01

    Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered. PMID:27382490

  6. On the contribution of a stochastic background of gravitational radiation to the timing noise of pulsars

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1982-01-01

    The influence of a stochastic and isotropic background of gravitational radiation on timing measurements of pulsars is investigated, and it is shown that pulsar timing noise may be used to establish a significant upper limit of about 10 to the -10th on the total energy density of very long-wavelength stochastic gravitational waves. This places restriction on the strength of very long wavelength gravitational waves in the Friedmann model, and such a background is expected to have no significant effect on the approximately 3 K electromagnetic background radiation or on the dynamics of a cluster of galaxies.

  7. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review.

    PubMed

    Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  8. Airline Pilot Cosmic Radiation and Circadian Disruption Exposure Assessment from Logbooks and Company Records

    PubMed Central

    Grajewski, Barbara; Waters, Martha A.; Yong, Lee C.; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli II, Rick T.

    2011-01-01

    Objectives: US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Methods: Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments’ block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Results: Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (Ptrend < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman’s r = 0.61–0.69). Conclusions: The methods

  9. Airline pilot cosmic radiation and circadian disruption exposure assessment from logbooks and company records.

    PubMed

    Grajewski, Barbara; Waters, Martha A; Yong, Lee C; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli, Rick T

    2011-06-01

    US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments' block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (P(trend) < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman's r = 0.61-0.69). The methods developed provided an exposure profile of this group

  10. Risk of breast cancer following low-dose radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boice, J.D. Jr.; Land, C.E.; Shore, R.E.

    1979-06-01

    Risk of breast cancer following radiation exposure was studied, based on surveys of tuberculosis patients who had multiple fluoroscopic examinations of the chest, mastitis patients given radiotherapy, and atomic bomb survivors. Analysis suggests that the risk is greatest for persons exposed as adolescents, although exposure at all ages carries some risk. The dose-response relationship was consistent with linearity in all studies. Direct evidence of radiation risk at doses under 0.5 Gy (50 rad) is apparent among A-bomb survivors. Fractionation does not appear to diminish risk, nor does time since exposure (even after 45 years of observation). The interval between exposuremore » and the clinical appearance of radiogenic breast cancer may be mediated by hormonal or other age-related factors but is unrelated to dose. Age-specific absolute risk estimtes for all studies are remarkably similar. The best estimate of risk among American women exposed after age 20 is 6.6 excess cancers/10/sup 4/ WY-Gy (10/sup 6/ WY-rad).« less

  11. Radiation in the workplace-a review of studies of the risks of occupational exposure to ionising radiation.

    PubMed

    Wakeford, Richard

    2009-06-01

    Many individuals are, or have been, exposed to ionising radiation in the course of their work and the epidemiological study of occupationally irradiated groups offers an important opportunity to complement the estimates of risks to health resulting from exposure to radiation that are obtained from other populations, such as the Japanese survivors of the atomic bombings of Hiroshima and Nagasaki in 1945. Moreover, workplace exposure to radiation usually involves irradiation conditions that are of direct relevance to the principal concern of radiological protection: protracted exposure to low level radiation. Further, some workers have been exposed to radioactive material that has been inadvertently taken into the body, and the study of these groups leads to risk estimates derived directly from the experience of those irradiated by these 'internal emitters', intakes of alpha-particle-emitters being of particular interest. Workforces that have been the subject of epidemiological study include medical staff, aircrews, radium dial luminisers, underground hard-rock miners, Chernobyl clean-up workers, nuclear weapons test participants and nuclear industry workers. The first solid epidemiological evidence of the stochastic effects of irradiation came from a study of occupational exposure to medical x-rays that was reported in 1944, which demonstrated a large excess risk of leukaemia among US radiologists; but the general lack of dose records for early medical staff who tended to experience the highest exposures hampers the derivation of risks per unit dose received by medical workers. The instrument dial luminisers who inadvertently ingested large amounts of radium-based paint and underground hard-rock miners who inhaled large quantities of radon and its decay products suffered markedly raised excess risks of, respectively, bone and lung cancers; the miner studies have provided standard risk estimates for radon-induced lung cancer. The large numbers of nuclear industry

  12. A SPACE TRAJECTORY RADIATION EXPOSURE PROCEDURE FOR CISLUNAR MISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranford, W.; Falkenbury, R.F.; Miller, R.A.

    1962-07-31

    The Space Trajectory Radiation Exposure Procedure (STREP) is designed for use in computing the timeintegrated spectra for any specified trajectory in cislunar space for any combination of the several components of space radiations. These components include Van Allen protons and electrons; solar-flare protons, electrons, heavy particles, and gamma radiation; cosmic protons and heavy particles; albedo neutrons, and aurora borealis gamma radiation. The program can also be used to calculate the accumulated dose behind a thin vehicle skin at any time after the start of the mission. The technique of interpolation for intermediate points along the prescribed space trajectory is describedmore » in detail. The method of representation of the space radiation data as input for the calculation of the dose and time-integrated spectra is discussed. (auth)« less

  13. Decreased Radiation Exposure Among Orthopedic Residents Is Maintained When Using the Mini C-Arm After Undergoing Radiation Safety Training.

    PubMed

    Gendelberg, David; Hennrikus, William L; Sawyer, Carissa; Armstrong, Douglas; King, Steven

    2017-09-01

    The resident curriculum of the American Board of Orthopaedic Surgery emphasizes radiation safety. Gendelberg showed that, immediately after a program on fluoroscopic safety, residents used less radiation when using the mini C-arm to reduce pediatric fractures. The current study evaluated whether this effect lasted. Residents underwent a new annual 3-hour session on mini C-arm use and radiation. Group A included 53 reductions performed before training. Group B included 45 reductions performed immediately after training. Group C included 46 reductions performed 11 months later. For distal radius fractures, exposure time and amount were 38.1 seconds and 83.1 mR, respectively, for group A; 26.7 seconds and 32.6 mR, respectively, for group B; and 24.1 seconds and 40.0 mR, respectively, for group C. When radiation time and amount were compared between group B and group C, P values were .525 and .293, respectively. When group C and group A were compared, P values were <.05 and <.01, respectively. For both bone forearm fractures, exposure time and amount were 41.2 seconds and 90.9 mR, respectively, for group A; 28.9 seconds and 30.4 mR, respectively, for group B; and 31.2 seconds and 43.6 mR, respectively, for group C. When radiation time and amount were compared between group B and group C, P values were .704 and .117, respectively. When group C and group A were compared, P values were .183 and .004, respectively. No significant difference in radiation exposure was noted immediately after training vs 11 months later. A sustained decrease in radiation exposure occurred after an educational program on safe mini C-arm use. [Orthopedics. 2017; 40(5):e788-e792.]. Copyright 2017, SLACK Incorporated.

  14. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    PubMed Central

    Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834

  15. Search for Linear Polarization of the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Lubin, P. M.; Smoot, G. F.

    1978-10-01

    We present preliminary measurements of the linear polarization of the cosmic microwave background (3 deg K blackbody) radiation. These ground-based measurements are made at 9 mm wavelength. We find no evidence for linear polarization, and set an upper limit for a polarized component of 0.8 m deg K with a 95% confidence level. This implies that the present rate of expansion of the Universe is isotropic to one part in 10{sup 6}, assuming no re-ionization of the primordial plasma after recombination

  16. Metastatic angiosarcoma of the spleen after accidental radiation exposure: a case report.

    PubMed

    Geffen, D B; Zirkin, H J; Mermershtain, W; Cohen, Y; Ariad, S

    1998-04-01

    Angiosarcoma is a rare malignant tumor arising from endothelial cells of blood vessels or lymphatic channels. Therapeutic irradiation, thoriumdioxide administration, pyothorax, and polyvinyl chloride exposure have been shown to be predisposing factors for developing angiosarcoma. Accidental radiation exposure has not been associated with angiosarcoma. We present an unusual case of angiosarcoma of the spleen, with metastases to bone, liver, breast, and bone marrow, in a woman who lived near the Chernobyl nuclear facility in the former Soviet Union at the time of the reactor accident in 1986. To the best of our knowledge, this is the first report of metastatic angiosarcoma after accidental radiation exposure.

  17. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  18. Inhalation exposures due to radon and thoron ((222)Rn and (220)Rn): Do they differ in high and normal background radiation areas in India?

    PubMed

    Mishra, Rosaline; Sapra, B K; Prajith, R; Rout, R P; Jalaluddin, S; Mayya, Y S

    2015-09-01

    In India, High Background Radiation Areas (HBRAs) due to enhanced levels of naturally occurring radionuclides in soil (thorium and, to a lesser extent, uranium), are located along some parts of the coastal tracts viz. the coastal belt of Kerala, Tamilnadu and Odisha. It is conjectured that these deposits will result in higher emissions of radon isotopes ((222)Rn and (220)Rn) and their daughter products as compared to Normal Background Radiation Areas (NBRAs). While the annual external dose rates contributed by gamma radiations in these areas are about 5-10 times higher, the extent of increase in the inhalation dose rates attributable to (222)Rn and (220)Rn and their decay products is not well quantified. Towards this, systematic indoor surveys were conducted wherein simultaneous measurements of time integrated (222)Rn and (220)Rn gas and their decay product concentrations was carried out in around 800 houses in the HBRAs of Kerala and Odisha to estimate the inhalation doses. All gas measurements were carried out using pin-hole cup dosimeters while the progeny measurements were with samplers and systems based on the Direct radon/thoron Progeny sensors (DRPS/DTPS). To corroborate these passive measurements of decay products concentrations, active sampling was also carried out in a few houses. The results of the surveys provide a strong evidence to conclude that the inhalation doses due to (222)Rn and (220)Rn gas and their decay products in these HBRAs are in the same range as observed in the NBRAs in India. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Radiation exposure and safety practices during pediatric central line placement

    PubMed Central

    Saeman, Melody R.; Burkhalter, Lorrie S.; Blackburn, Timothy J.; Murphy, Joseph T.

    2015-01-01

    Purpose Pediatric surgeons routinely use fluoroscopy for central venous line (CVL) placement. We examined radiation safety practices and patient/surgeon exposure during fluoroscopic CVL. Methods Fluoroscopic CVL procedures performed by 11 pediatric surgeons in 2012 were reviewed. Fluoroscopic time (FT), patient exposure (mGy), and procedural data were collected. Anthropomorphic phantom simulations were used to calculate scatter and dose (mSv). Surgeons were surveyed regarding safety practices. Results 386 procedures were reviewed. Median FT was 12.8 seconds. Median patient estimated effective dose was 0.13 mSv. Median annual FT per surgeon was 15.4 minutes. Simulations showed no significant difference (p = 0.14) between reported exposures (median 3.5 mGy/min) and the modeled regression exposures from the C-arm default mode (median 3.4 mGy/min). Median calculated surgeon exposure was 1.5 mGy/year. Eight of 11 surgeons responded to the survey. Only three reported 100% lead protection and frequent dosimeter use. Conclusion We found non-standard radiation training, safety practices, and dose monitoring for the 11 surgeons. Based on simulations, the C-arm default setting was typically used instead of low dose. While most CVL procedures have low patient/surgeon doses, every effort should be used to minimize patient and occupational exposure, suggesting the need for formal hands-on training for non-radiologist providers using fluoroscopy. PMID:25837269

  20. Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea.

    PubMed

    Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina

    2015-01-01

    We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 ((137)Cs) in Seoul. Using information regarding the frequency and duration of passing via the (137)Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of (137)Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline.

  1. Risk of radiation induced cataracts: investigation of radiation exposure to the eye lens during endourologic procedures.

    PubMed

    Hartmann, Josefin; Distler, Florian A; Baumueller, Martin; Guni, Ewald; Pahernik, Sascha A; Wucherer, Michael

    2018-06-14

    Due to new radiobiological data, the ICRP recommends a dose limit of 20mSv per year to the eye lens. Therefore, the IAEA International Basic Safety Standard and the EU council directive 2013/59/EURATOM requires a reduction of the annual dose limit from 150mSv to 20mSv. Urologists are exposed to an elevated radiation exposure in the head region during fluoroscopic interventions, due to the commonly used overtable X-ray tubes and the rarely used radiation protection for the head. Aim of the study was to analyze real radiation exposure to the eye lens of the urologist during various interventions during which the patient is in the lithotomy position. The partial body doses (forehead and apron collar) of the urologists and surgical staff were measured over a period of two months. 95 interventions were performed on Uroskop Omnia Max workplaces (Siemens Healthineers, Erlangen, Germany). Interventions were class-divided in less (stage I) and more complex (stage II) interventions. Two dosimeter-types were applied: well-calibrated electronic personal dosimeter EPD Mk2 and self-calibrated TLD-100H (both Thermo Fisher Scientific, Waltham, USA). The radiation exposure parameters were documented using the dose area product (DAP) and the fluoroscopy time (FT). The correlation between DAP and the apron dose of the urologist was in average 0.07µSv per 1µGym². The more experienced urologists yielded a mean DAP of 166µGym² for stage I and 415µGym² for stage II procedures. The interventionist was exposed with 10µSv in mean outside the lead apron collar. The mean dose value of the eye lenses per intervention was ascertained to 20µSv (mean DAP: 233µGym²). The study setup allows a differentiated and time-resolved measurement of the radiation exposure, which was found heterogeneous depending on intervention and surgeon. In this setting, approximately 1000 interventions can be performed until the annual eye lens dose limit is achieved.

  2. Emesis, radiation exposure, and local cerebral blood flow in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuor, U.I.; Kondysar, M.H.; Harding, R.K.

    1988-06-01

    We examined the sensitivity of the ferret to emetic stimuli and the effect of radiation exposure near the time of emesis on local cerebral blood flow. Ferrets vomited following the administration of either apomorphine (approx 45% of the ferrets tested) or peptide YY (approx 36% of those tested). Exposure to radiation was a very potent emetic stimulus, but vomiting could be prevented by restraint of the hindquarters of the ferret. Local cerebral blood flow was measured using a quantitative autoradiographic technique and with the exception of several regions in the telencephalon and cerebellum, local cerebral blood flow in the ferretmore » was similar to that in the rat. In animals with whole-body exposure to moderate levels of radiation (4 Gy of /sup 137/Cs), mean arterial blood pressure was similar to that in the control group. However, 15-25 min following irradiation there was a general reduction of local cerebral blood flow ranging from 7 to 33% of that in control animals. These cerebral blood flow changes likely correspond to a reduced activation of the central nervous system.« less

  3. Novel Human Radiation Exposure Biomarker Panel Applicable for Population Triage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazan, Jose G.; Chang, Polly; Balog, Robert

    2014-11-01

    Purpose: To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Methods and Materials: Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groupsmore » were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. Results: A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). Conclusions: A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear

  4. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  5. Novel human radiation exposure biomarker panel applicable for population triage.

    PubMed

    Bazan, Jose G; Chang, Polly; Balog, Robert; D'Andrea, Annalisa; Shaler, Thomas; Lin, Hua; Lee, Shirley; Harrison, Travis; Shura, Lei; Schoen, Lucy; Knox, Susan J; Cooper, David E

    2014-11-01

    To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groups were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear or other radiologic events. Copyright © 2014 Elsevier Inc. All

  6. Effects of exposure to different types of radiation on behaviors mediated by peripheral or central systems

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Erat, S.

    1998-01-01

    The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.

  7. What Aircrews Should Know About Their Occupational Exposure to Ionizing Radiation

    DTIC Science & Technology

    2003-10-01

    aircrews, and their children irradiated in utero , the principal health concern is a small increase in the lifetime risk of fatal cancer . For both of...from cancer : adults, p.301; all ages, p.303. — Risks from irradiation in utero , p.302. — Inherited genetic defects from parental...Aircrews, Ionizing Radiation, Galactic Cosmic Radiation, Cancer Risk, Hereditary Risks, Radiation Exposure Limits Springfield, Virginia 22161 19

  8. Effects of Radiation Exposure From Cardiac Imaging: How Good Are the Data?

    PubMed Central

    Einstein, Andrew J.

    2012-01-01

    Concerns about medical exposure to ionizing radiation have become heightened in recent years due to rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This article summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, I address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac-dose-level studies, albeit with exceptions. Using risk projection models developed by the US National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared to benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. PMID:22300689

  9. Radiation exposure of the radiologist's eye lens during CT-guided interventions.

    PubMed

    Heusch, Philipp; Kröpil, Patric; Buchbender, Christian; Aissa, Joel; Lanzman, Rotem S; Heusner, Till A; Ewen, Klaus; Antoch, Gerald; Fürst, Günther

    2014-02-01

    In the past decade the number of computed tomography (CT)-guided procedures performed by interventional radiologists have increased, leading to a significantly higher radiation exposure of the interventionalist's eye lens. Because of growing concern that there is a stochastic effect for the development of lens opacification, eye lens dose reduction for operators and patients should be of maximal interest. To determine the interventionalist's equivalent eye lens dose during CT-guided interventions and to relate the results to the maximum of the recommended equivalent dose limit. During 89 CT-guided interventions (e.g. biopsies, drainage procedures, etc.) measurements of eye lens' radiation doses were obtained from a dedicated dosimeter system for scattered radiation. The sensor of the personal dosimeter system was clipped onto the side of the lead glasses which was located nearest to the CT gantry. After the procedure, radiation dose (µSv), dose rate (µSv/min) and the total exposure time (s) were recorded. For all 89 interventions, the median total exposure lens dose was 3.3 µSv (range, 0.03-218.9 µSv) for a median exposure time of 26.2 s (range, 1.1-94.0 s). The median dose rate was 13.9 µSv/min (range, 1.1-335.5 µSv/min). Estimating 50-200 CT-guided interventions per year performed by one interventionalist, the median dose of the eye lens of the interventional radiologist does not exceed the maximum of the ICRP-recommended equivalent eye lens dose limit of 20 mSv per year.

  10. Indirect lead exposure among children of radiator repair workers.

    PubMed

    Aguilar-Garduño, C; Lacasaña, M; Tellez-Rojo, M M; Aguilar-Madrid, G; Sanin-Aguirre, L H; Romieu, I; Hernandez-Avila, M

    2003-06-01

    Secondary exposure to lead has been identified as a public health problem since the late 1940s; we investigate the risk of lead exposure among families of radiator repair workers. A sample of the wives and children, aged 6 months to 6 years (exposed children) (n = 19), of radiator repair workers and a sample of children whose parents were not occupationally exposed to lead (non-exposed children) (n = 29) were matched for age and residence; their geometric mean blood lead levels are compared. Blood samples were obtained by the finger stick method and environmental dust samples by the wipe method; both were analyzed using a portable anodic stripping voltameter. Dust lead levels were significantly higher in the houses of exposed children (143.8 vs. 3.9 microg/g; P < 0.01). In crude analyses, the highest lead levels were observed among children whose fathers worked in home-based workshops (22.4 microg/dl)(n = 6). Children whose fathers worked in an external workshop (n = 13) also had high levels (14.2 microg/dl) (P < 0.01), while blood lead levels in non-exposed children were significantly lower (5.6 microg/dl)(P < 0.01). The observed differences remained significant after adjustment for age and gender. This study confirms that children of radiator repair workers are at increased risk of lead exposure and public health interventions are needed to protect them. Copyright 2003 Wiley-Liss, Inc.

  11. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  12. Inferring ultraviolet anatomical exposure patterns while distinguishing the relative contribution of radiation components

    NASA Astrophysics Data System (ADS)

    Vuilleumier, Laurent; Milon, Antoine; Bulliard, Jean-Luc; Moccozet, Laurent; Vernez, David

    2013-05-01

    Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.

  13. Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.

    PubMed

    Grandahl, Kasper; Eriksen, Paul; Ibler, Kristina Sophie; Bonde, Jens Peter; Mortensen, Ole Steen

    2018-03-30

    Exposure to solar ultraviolet radiation is the main cause of skin cancer and may well present an occupational health and safety problem. In Denmark, skin cancer is a common disease in the general population, but detailed data on solar ultraviolet radiation exposure among outdoor workers are lacking. The aim of this study was to provide objective measurements of solar ultraviolet radiation exposure on working days and at leisure and compare levels of exposure between groups of mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers. To this end, UV-B dosimeters with an aluminum gallium nitride (AlGaN) photodiode detector were used to measure the solar ultraviolet radiation exposure of 457 workers in the Danish summer season. Presented as semi-annual standard erythemal dose (SED) on working days, respectively, at leisure, the results are for mainly outdoor workers 214.2 SED and 64.8 SED, equal-parts-outdoor-and-indoor workers 131.4 SED and 64.8 SED, indoor workers 55.8 SED and 57.6 SED. The daily SED by month is significantly different (α = 0.05) between mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers and across professional groups; some of which are exposed at very high levels that is roofers 361.8 SED. These findings substantiate that exposure to solar ultraviolet radiation is indeed an occupational health and safety problem in Denmark. © 2018 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.

  14. 75 FR 8375 - Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... radiologic technologists or technologists in other specialties as well as physicians in all medical...] Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting... Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging.'' The purpose of this meeting is to...

  15. Component separation for cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fernández-Cobos, R.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.

    2011-11-01

    Cosmic microwave background (CMB) radiation data obtained by different experiments contains, besides the desired signal, a superposition of microwave sky contributions mainly due to, on the one hand, synchrotron radiation, free-free emission and re-emission of dust clouds in our galaxy; and, on the other hand, extragalactic sources. We present an analytical method, using a wavelet decomposition on the sphere, to recover the CMB signal from microwave maps. Being applied to both temperature and polarization data, it is shown as a significant powerful tool when it is used in particularly polluted regions of the sky. The applied wavelet has the advantages of requiring little computering time in its calculations being adapted to the HEALPix pixelization scheme (which is the format that the community uses to report the CMB data) and offering the possibility of multi-resolution analysis. The decomposition is implemented as part of a template fitting method, minimizing the variance of the resulting map. The method was tested with simulations of WMAP data and results have been positive, with improvements up to 12% in the variance of the resulting full sky map and about 3% in low contaminate regions. Finally, we also present some preliminary results with WMAP data in the form of an angular cross power spectrum C_ℓ^{TE}, consistent with the spectrum offered by WMAP team.

  16. Assessing the health effects associated with occupational radiation exposure in Korean radiation workers: protocol for a prospective cohort study.

    PubMed

    Seo, Songwon; Lim, Wan Young; Lee, Dal Nim; Kim, Jung Un; Cha, Eun Shil; Bang, Ye Jin; Lee, Won Jin; Park, Sunhoo; Jin, Young Woo

    2018-03-30

    The cancer risk of radiation exposure in the moderate-to-high dose range has been well established. However, the risk remains unclear at low-dose ranges with protracted low-dose rate exposure, which is typical of occupational exposure. Several epidemiological studies of Korean radiation workers have been conducted, but the data were analysed retrospectively in most cases. Moreover, groups with relatively high exposure, such as industrial radiographers, have been neglected. Therefore, we have launched a prospective cohort study of all Korean radiation workers to assess the health effects associated with occupational radiation exposure. Approximately 42 000 Korean radiation workers registered with the Nuclear Safety and Security Commission from 2016 to 2017 are the initial target population of this study. Cohort participants are to be enrolled through a nationwide self-administered questionnaire survey between 24 May 2016 and 30 June 2017. As of 31 March 2017, 22 982 workers are enrolled in the study corresponding to a response rate of 75%. This enrolment will be continued at 5-year intervals to update information on existing study participants and recruit newly hired workers. Survey data will be linked with the national dose registry, the national cancer registry, the national vital statistics registry and national health insurance data via personal identification numbers. Age-specific and sex-specific standardised incidence and mortality ratios will be calculated for overall comparisons of cancer risk. For dose-response assessment, excess relative risk (per Gy) and excess absolute risk (per Gy) will be estimated with adjustments for birth year and potential confounders, such as lifestyle factors and socioeconomic status. This study has received ethical approval from the institutional review board of the Korea Institute of Radiological and Medical Sciences (IRB No. K-1603-002-034). All participants provided written informed consent prior to enrolment. The findings

  17. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  18. Male reproductive health under threat: Short term exposure to radiofrequency radiations emitted by common mobile jammers

    PubMed Central

    Mortazavi, SMJ; Parsanezhad, ME; Kazempour, M; Ghahramani, P; Mortazavi, AR; Davari, M

    2013-01-01

    BACKGROUND: Modern life prompted man to increasingly generate, transmit and use electricity that leads to exposure to different levels of electromagnetic fields (EMFs). Substantial evidence indicates that exposure to common sources of EMF such as mobile phones, laptops or wireless internet-connected laptops decreases human semen quality. In some countries, mobile jammers are occasionally used in offices, shrines, conference rooms and cinemas to block the signal. AIMS: To the best of our knowledge, this is the first study to investigate the effect of short term exposure of human sperm samples to radiofrequency (RF) radiations emitted by common mobile jammers. SUBJECTS AND METHODS: Fresh semen samples were collected by masturbation from 30 healthy donors who had referred to Infertility Treatment Center at the Mother and Child Hospital with their wives. Female problem was diagnosed as the reason for infertility in these couples. STATISTICAL ANALYSIS: T-test and analysis of variance were used to show statistical significance. RESULTS: The motility of sperm samples exposed to jammer RF radiation for 2 or 4 h were significantly lower than those of sham-exposed samples. These findings lead us to the conclusion that mobile jammers may significantly decrease sperm motility and the couples’ chances of conception. CONCLUSION: Based on these results, it can be suggested that in countries that have not banned mobile jammer use, legislations should be urgently passed to restrict the use of these signal blocking devices in public or private places. PMID:24082653

  19. Predictors of Excess Patient Radiation Exposure During Chronic Total Occlusion Coronary Intervention: Insights from a Contemporary Multicenter Registry

    PubMed Central

    Christakopoulos, Georgios E.; Christopoulos, Georgios; Karmpaliotis, Dimitri; Alaswad, Khaldoon; Yeh, Robert W.; Jaffer, Farouc A.; Wyman, Michael R.; Lombardi, William L.; Tarar, Muhammad Nauman J.; Grantham, J. Aaron; Kandzari, David; Lembo, Nicholas; Moses, Jeffrey W.; Kirtane, Ajay; Parikh, Manish; Green, Philip; Finn, Matthew; Garcia, Santiago; Doing, Anthony; Hatem, Raja; Thompson, Craig A.; Banerjee, Subhash; Brilakis, Emmanouil S.

    2016-01-01

    Background High patient radiation dose during chronic total occlusion (CTO) percutaneous coronary intervention (PCI) may lead to procedural failure and radiation skin injury. Methods We examined the association between several clinical and angiographic variables on patient air kerma (AK) radiation dose among 748 consecutive CTO PCIs performed at 9 experienced US centers between May 2012 and May 2015. Results Mean age was 65±10 years, 87% of patients were men, and 35% had prior coronary artery bypass graft surgery (CABG). Technical and procedural success was 92% and 90%, respectively. The median patient AK dose was 3.40 (2.00, 5.40) Gray and 34% of the patients received >4.8 Gray (high radiation exposure). On univariable analysis male gender (p=0.016), high body mass index (p<0.001), history of hyperlipidemia (p=0.023), prior CABG (p<0.001), moderate or severe calcification (p<0.001), tortuosity (p<0.001), proximal cap ambiguity (p=0.001), distal cap at a bifurcation (p=0.006), longer CTO occlusion length (p<0.001), blunt/no blunt stump (p<0.001), and center (<0.001) were associated with higher patient AK dose. On multivariable analysis high body mass index (p<0.001), prior CABG (p=0.005), moderate or severe calcification (p=0.005), longer CTO occlusion length (p<0.001), and center (p<0.001) were independently associated with higher patient AK dose. Conclusions Approximately 1 in 3 patients undergoing CTO PCI receives high AK radiation dose (>4.8 Gray). Several baseline clinical and angiographic characteristics can help predict the likelihood of high radiation dose and assist with intensifying efforts to reduce radiation exposure for the patient and the operator. PMID:28169091

  20. Occupational dust and radiation exposure and mortality from stomach cancer among German uranium miners, 1946-2003.

    PubMed

    Kreuzer, M; Straif, K; Marsh, J W; Dufey, F; Grosche, B; Nosske, D; Sogl, M

    2012-03-01

    'Dusty occupations' and exposure to low-dose radiation have been suggested as potential risk factors for stomach cancer. Data from the German uranium miner cohort study are used to further evaluate this topic. The cohort includes 58 677 miners with complete information on occupational exposure to dust, arsenic and radiation dose based on a detailed job-exposure matrix. A total of 592 stomach cancer deaths occurred in the follow-up period from 1946 to 2003. A Poisson regression model stratified by age and calendar year was used to calculate the excess relative risk (ERR) per unit of cumulative exposure to fine dust or from cumulative absorbed dose to stomach from α or low-LET (low linear energy transfer) radiation. For arsenic exposure, a binary quadratic model was applied. After adjustment for each of the three other variables, a statistically non-significant linear relationship was observed for absorbed dose from low-LET radiation (ERR/Gy=0.30, 95% CI -1.26 to 1.87), α radiation (ERR/Gy=22.5, 95% CI -26.5 to 71.5) and fine dust (ERR/dust-year=0.0012, 95% CI -0.0020 to 0.0043). The relationship between stomach cancer and arsenic exposure was non-linear with a 2.1-fold higher RR (95% CI 0.9 to 3.3) in the exposure category above 500 compared with 0 dust-years. Positive statistically non-significant relationships between stomach cancer and arsenic dust, fine dust and absorbed dose from α and low-LET radiation were found. Overall, low statistical power due to low doses from radiation and dust are of concern.

  1. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1991-01-01

    The Ionizing Radiation Special Investigation Group (IRSIG) for the Long Duration Exposure Facility (LDEF) was established to perform radiation measurements and analysis not planned in the original experiments, and to assure availability of LDEF analysis results in a form useful to future missions. The IRSIG has organized extensive induced radioactivity measurements throughout LDEF, and a comprehensive program to compare the LDEF radiation measurements to values calculated using environment models. The activities and present status of the Group is described. The ionizing radiation results presented is summarized.

  2. Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea

    PubMed Central

    Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina

    2015-01-01

    Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 (137Cs) in Seoul. Methods Using information regarding the frequency and duration of passing via the 137Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of 137Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline. PMID:26184047

  3. Radiation dose predictions for SPE events during solar cycle 23 from NASA's Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Blattnig, Steve; Slaba, Tony; Kress, Brian; Wiltberger, Michael; Solomon, Stan

    NASA's High Charge and Energy Transport (HZETRN) code is a deterministic model for rapid and accurate calculations of the particle radiation fields in the space environment. HZETRN is used to calculate dosimetric quantities on the International Space Station (ISS) and assess astronaut risk to space radiations, including realistic spacecraft and human geometry for final exposure evaluation. HZETRN is used as an engineering design tool for materials research for radiation shielding protection. Moreover, it is used to calculate HZE propagation through the Earth and Martian atmospheres, and to evaluate radiation exposures for epidemiological studies. A new research project has begun that will use HZETRN as the transport engine for the development of a nowcast prediction of air-crew radiation exposure for both background galactic cosmic ray (GCR) exposure and radiation exposure during solar particle events (SPE) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which utilizes real-time observations from ground-based, atmospheric, and satellite measurements. In this paper, we compute the global distribution of atmospheric radiation dose for several SPE events during solar cycle 23, with particular emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure.

  4. Low dose or low dose rate ionizing radiation-induced health effect in the human.

    PubMed

    Tang, Feng Ru; Loganovsky, Konstantin

    2018-06-05

    The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention.

    PubMed

    Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p<0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p<0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p<0.001) or suspended lead (p=0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p<0.001) and 80.0% less than manual PCI performed with suspended lead (p<0.001). Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Cari Kitahara Explores Medical Radiation Exposures and Thyroid Cancer Etiology

    Cancer.gov

    Dr. Cari Kitahara has built a multidisciplinary research program to explore cancer risks from occupational and medical radiation exposures, and to investigate the etiology of radiosensitive tumors, including thyroid cancer.

  7. Computer Aided Dosimetry and Verification of Exposure to Radiation

    NASA Astrophysics Data System (ADS)

    Waller, Edward; Stodilka, Robert Z.; Leach, Karen E.; Lalonde, Louise

    2002-06-01

    In the timeframe following the September 11th attacks on the United States, increased emphasis has been placed on Chemical, Biological, Radiological and Nuclear (CBRN) preparedness. Of prime importance is rapid field assessment of potential radiation exposure to Canadian Forces field personnel. This work set up a framework for generating an 'expert' computer system for aiding and assisting field personnel in determining the extent of radiation insult to military personnel. Data was gathered by review of the available literature, discussions with medical and health physics personnel having hands-on experience dealing with radiation accident victims, and from experience of the principal investigator. Flow charts and generic data fusion algorithms were developed. Relationships between known exposure parameters, patient interview and history, clinical symptoms, clinical work-ups, physical dosimetry, biological dosimetry, and dose reconstruction as critical data indicators were investigated. The data obtained was examined in terms of information theory. A main goal was to determine how best to generate an adaptive model (i.e. when more data becomes available, how is the prediction improved). Consideration was given to determination of predictive algorithms for health outcome. In addition. the concept of coding an expert medical treatment advisor system was developed (U)

  8. High Dietary Iron and Radiation Exposure Increase Biomarkers of Oxidative Stress in Blood and Liver of Rats

    NASA Technical Reports Server (NTRS)

    Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.

  9. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to

  10. Measurements and Modeling of Radiation Exposure Due to Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Beck, P.; Conrad Wp6-Sgb Team

    Dose assessment procedures of cosmic radiation to aircraft crew are introduced in most of the European countries according the corresponding European directive and national regulations 96 29 Euratom However the radiation exposure due to solar particle events is still a matter of scientific research Several in-flight measurements were performed during solar storm conditions First models to estimate the exposure due to solar particle events were discussed previously Recently EURADOS European Radiation Dosimetry Group http www eurados org started to coordinate research activities in model improvements for dose assessment of solar particle events The coordinated research is a work package of the European research project CONRAD Coordinated Network for Radiation Dosimetry on complex mixed radiation fields at workplaces Major aim of sub group B of that work package is the validation of models for dose assessment of solar particle events using data from neutron ground level monitors in-flight measurement results obtained during a solar particle event and proton satellite data The paper describes the current status of obtainable solar storm measurements and gives an overview of the existing models for dose assessment of solar particle events in flight altitudes

  11. [Radiation-induced modification of human somatic cell chromosome sensitivity to the testing mutagenic exposure of bleomycin in vitro in lung cancer patients in delayed terms following Chernobyl accident].

    PubMed

    Pilinskaia, M A; Dybskiĭ, S S; Dybskaia, E B; Shvaĭko, L I

    2012-01-01

    By using modified "G2-bleomycin sensitivity assay" above background level of cytogenetic effect considered as a marker of hidden chromosome instability (HCI) has been investigated in 3 groups--liquidators of Chernobyl accident (occupational group 1), patients with lung cancer who denied conscious contact--with ionizing radiation (group of comparison), liquidators with lung cancer (occupational group 2). Significant interindividual variations of cytogenetic effects induced with bleomycin and the lack of positive correlation between background and above background frequencies of chromosome aberrations have been shown in all observed groups. It had been established that occupational group 2 was the most burdened group by expression of the above background cytogenetic effect and, accordingly, number of persons with HCI. The data obtained permit to suggest the existence of the association between radiation-induced increase of individual sensitivity to testing mutagenic exposure and the realization of cancer in persons exposed to ionizing radiation. The results show acceptability of "G2-bleomycin sensitivity assay" under the cytogenetic examination of irradiated contingents for determining HCI as one of informative markers of predisposition to oncopathology.

  12. Improved space object detection using short-exposure image data with daylight background.

    PubMed

    Becker, David; Cain, Stephen

    2018-05-10

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. The detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize, and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long-exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follow a Gaussian distribution. Long-exposure imaging is critical to detection performance in these algorithms; however, for imaging under daylight conditions, it becomes necessary to create a long-exposure image as the sum of many short-exposure images. This paper explores the potential for increasing detection capabilities for small and dim space objects in a stack of short-exposure images dominated by a bright background. The algorithm proposed in this paper improves the traditional stack and average method of forming a long-exposure image by selectively removing short-exposure frames of data that do not positively contribute to the overall signal-to-noise ratio of the averaged image. The performance of the algorithm is compared to a traditional matched filter detector using data generated in MATLAB as well as laboratory-collected data. The results are illustrated on a receiver operating characteristic curve to highlight the increased probability of detection associated with the proposed algorithm.

  13. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    PubMed

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    NASA Technical Reports Server (NTRS)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  15. [Changes in the chromatin structure of lymphoid cells under the influence of low-intensity extremely high-frequency electromagnetic radiation against the background of inflammatory process].

    PubMed

    Gapeev, A B; Romanova, N A; Chemeris, N K

    2011-01-01

    Using the alkaline single cell gel electrophoresis technique (comet assay), changes in chromatin structure of peripheral blood leukocytes and peritoneal neutrophils have been studied in mice exposed to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20 min at 1 h after induction of inflammation) against the background of the systemic inflammatory process. It was revealed that the exposure of mice with the developing inflammation leads to a pronounced decrease in the level of DNA damage to peripheral blood leukocytes and peritoneal neutrophils. It is supposed that the changes in the chromatin structure of lymphoid cells have a genoprotective character in the inflammatory process and can underlie the mechanisms of realization of antiinflammatory effects of the electromagnetic radiation.

  16. Ultraviolet radiation exposure from UV-transilluminators.

    PubMed

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at < or =25 cm from the UV-transilluminator's filter surface. Daily exposure time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  17. The effect of prescription eyewear on ocular exposure to ultraviolet radiation.

    PubMed Central

    Rosenthal, F S; Bakalian, A E; Taylor, H R

    1986-01-01

    Several studies have suggested that ultraviolet radiation in sunlight may cause cataracts and other eye disease. We evaluated the effect of prescription eyewear in attenuating ocular exposure to ultraviolet radiation (UVR) in the sunlight portions of the ultraviolet spectrum (295-350 nm). Using natural sunlight as the source, the attenuation was measured with two ultraviolet detectors, one sensitive to only UVB (295-315 nm) and one sensitive to both UVA and UVB (295-350 nm). A random sample of spectacles, spectacle lenses, and contact lenses was examined. The average transmission, as measured with either detector, was highest for soft contact lenses, followed by glass spectacle lenses, untinted hard contact lenses, and plastic spectacle lenses. Measurements performed with mannikins wearing spectacles showed that an average of 6.6 per cent of incident radiation reached the eye even when the lenses were covered with black opaque tape. The amount of exposure was increased substantially when the spectacles were moved 0.6 cm away from the forehead. The results show that the protection against ultraviolet exposure provided by prescription eyewear is highly variable and depends largely on its composition, size, and wearing position. PMID:3752323

  18. Evaluation of Background Exposures of Americans to Dioxin-Like Compounds in the 1990's and the 2000's

    USDA-ARS?s Scientific Manuscript database

    The US Environmental Protection Agency’s 2004 Dioxin Reassessment included a characterization of background exposures to dioxin-like compounds, including an estimate of an average background intake dose and an average background body burden. These quantities were derived from data generated in the m...

  19. Radiation Exposure and Health Effects – is it Time to Reassess the Real Consequences?

    PubMed Central

    Thomas, G.A.; Symonds, P.

    2017-01-01

    Our acceptance of exposure to radiation is somewhat schizophrenic. We accept that the use of high doses of radiation is still one of the most valuable weapons in our fight against cancer, and believe that bathing in radioactive spas is beneficial. On the other hand, as a species, we are fearful of exposure to man-made radiation as a result of accidents related to power generation, even though we understand that the doses are orders of magnitude lower than those we use everyday in medicine. The 70th anniversary of the detonation of the atomic bombs in Hiroshima and Nagasaki was marked in 2015. The 30th anniversary of the Chernobyl nuclear power plant accident will be marked in April 2016. March 2016 also sees the fifth anniversary of the accident at the Fukushima nuclear power plant. Perhaps now is an opportune time to assess whether we are right to be fearful of the effects of low doses of radiation, or whether actions taken because of our fear of radiation actually cause a greater detriment to health than the direct effect of radiation exposure. PMID:26880062

  20. Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background

    NASA Astrophysics Data System (ADS)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-05-01

    With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.

  1. Background radiation in the Albuquerque, New Mexico, U.S.A., area

    NASA Astrophysics Data System (ADS)

    Brookins, Douglas G.

    1992-01-01

    Background radiation levels in the Albuquerque, New Mexico, area are elevated when compared to much of the United States. Soil K, U, and Th are somewhat elevated compared to average values in this country and generate roughly 60 mrem per year to the average resident. Cosmic ray contribution, due to the mean elevation of 5,200 ft above sea level, is 80 mrem/yr—well over the average for the United States. Thirty percent of the homes in Albuquerque contain indoor radon levels over the EPA action level of 4 pCi/ℓ compared to 10 12 percent of homes for the entire United States. Indoor radon contributes about 100 300 mrem/yr. Food, beverages, and x-ray doses are assumed at an average-equivalent for the United States and locally yield 96 mrem/yr. Total contributions from other minor sources (color TV, coal, weapons fallout, etc.) are under 10 mrem/yr. Thus total background radiation received by Albuquerque residents is about 330 530 mrem/yr, well in excess of the rest of the United States. The spread in mrem values is due to variations in the contribution from indoor radon.

  2. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    PubMed

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  3. Radiation Exposure

    MedlinePlus

    Radiation is energy that travels in the form of waves or high-speed particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a ...

  4. Concern over radiation exposure and psychological distress among rescue workers following the Great East Japan Earthquake.

    PubMed

    Matsuoka, Yutaka; Nishi, Daisuke; Nakaya, Naoki; Sone, Toshimasa; Noguchi, Hiroko; Hamazaki, Kei; Hamazaki, Tomohito; Koido, Yuichi

    2012-05-15

    On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. One month after the disaster, 424 of 1816 (24%) disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6), depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D), fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI), and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R). Radiation exposure was a concern for 39 (9.2%) respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers.

  5. Basal cell carcinoma of the eyelids and solar ultraviolet radiation exposure

    PubMed Central

    Lindgren, G.; Diffey, B.; Larko, O.

    1998-01-01

    AIMS—To compare the distribution of eyelid basal cell carcinoma (BCC) with the relative ultraviolet radiation (UVR) exposure to different sites on the eyelids.
METHODS—The location of BCC on the eyelids was allocated to one of seven regions. The UVR exposure was recorded with a polymer film attached to the eyelids at seven sites in a manikin and in human subjects.
RESULTS—Localisation of the 329 tumours was mainly on the lower eyelids (225 tumours), and the medial canthal regions (87 tumours). There was no association between UVR doses at the seven sites of the eyelids and the location of BCCs. The UVR exposure was similar on the upper and lower eyelids, while the number of tumours on the lower eyelids outnumbered the upper lids by a factor of 13 (17 upper, 225 lower)
CONCLUSION—UVR exposure only partially explains the aetiology of periorbital BCC.

 Keywords: polysulphone film; basal cell carcinoma; ultraviolet radiation; eyelid PMID:9930273

  6. Introduction to temperature anisotropies of Cosmic Microwave Background radiation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoshi

    2014-06-01

    Since its serendipitous discovery, Cosmic Microwave Background (CMB) radiation has been recognized as the most important probe of Big Bang cosmology. This review focuses on temperature anisotropies of CMB which make it possible to establish precision cosmology. Following a brief history of CMB research, the physical processes working on the evolution of CMB anisotropies are discussed, including gravitational redshift, acoustic oscillations, and diffusion dumping. Accordingly, dependencies of the angular power spectrum on various cosmological parameters, such as the baryon density, the matter density, space curvature of the universe, and so on, are examined and intuitive explanations of these dependencies are given.

  7. Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Atwell, Bill; Ponomarev, Artem L.; Nounu, Hatem; Hussein, Hesham; Cucinotta, Francis A.

    2007-01-01

    Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed variations of radiation shielding properties are required. A model using a modern CAD tool ProE (TM), which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4 pi particle flux on a surface. Previously, estimates of doses to the blood forming organs (BFO) from SPEs have been made using an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). The development of an 82-point body-shielding distribution at BFOs made it possible to estimate the mean and variance of SPE doses in the major active marrow regions. Using the detailed distribution of bone marrow sites and implementation of cosine distribution of particle flux is shown to provide improved estimates of acute and cancer risks from SPEs.

  8. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    PubMed

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  9. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    PubMed

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  10. DETERMINING BACKGROUND EXPOSURE TO PETROLEUM AND COMBUSTION BY-PRODUCTS: COMPARISON OF MID-WESTERN AND MID-ATLANTIC REGIONS

    EPA Science Inventory

    Regional background levels of exposure to fish from petroleum and combustion by-products were determined for the state of Ohio and the mid-Atlantic region. Exposures were measured using bile metabolites that fluoresce at 290/335 nm for naphthalene(NAPH)-type compounds and at 380...

  11. Evaluation of radiation exposure from diagnostic radiology examination; availability of final recommendations--FDA. Notice.

    PubMed

    1986-02-19

    The Food and Drug Administration (FDA) is announcing the availability of a document entitled "Recommendations for Evaluation of Radiation Exposure from Diagnostic Radiology Examinations". The recommendations, prepared by FDA's Center for Devices and Radiological Health (CDRH), encourage diagnostic radiology facilities to take voluntary action to: Become aware of the radiation levels experienced by patients undergoing the projections commonly given in the facility; compare their radiation levels to generally accepted levels for these projections; and bring the exposures back into line if their levels fall consistently outside these generally accepted levels.

  12. Exposure of the surgeon's hands to radiation during hand surgery procedures.

    PubMed

    Żyluk, Andrzej; Puchalski, Piotr; Szlosser, Zbigniew; Dec, Paweł; Chrąchol, Joanna

    2014-01-01

    The objective of the study was to assess the time of exposure of the surgeon's hands to radiation and calculate of the equivalent dose absorbed during surgery of hand and wrist fractures with C-arm fluoroscope guidance. The necessary data specified by the objective of the study were acquired from operations of 287 patients with fractures of fingers, metacarpals, wrist bones and distal radius. 218 operations (78%) were percutaneous procedures and 60 (22%) were performed by open method. Data on the time of exposure and dose of radiation were acquired from the display of the fluoroscope, where they were automatically generated. These data were assigned to the individual patient, type of fracture, method of surgery and the operating surgeon. Fixations of distal radial fractures required longer times of radiation exposure (mean 61 sec.) than fractures of the wrist/metacarpals and fingers (38 and 32 sec., respectively), which was associated with absorption of significantly higher equivalent doses. Fixations of distal radial fractures by open method were associated with statistically significantly higher equivalent doses (0.41 mSv) than percutaneous procedures (0.3 mSv). Fixations of wrist and metacarpal bone fractures by open method were associated with lower equivalent doses (0.34 mSv) than percutaneous procedures (0.37 mSv),but the difference was not significant. Fixations of finger fractures by open method were associated with lower equivalent doses (0.13 mSv) than percutaneous procedures (0.24 mSv), the difference being statistically non-significant. Statistically significant differences in exposure time and equivalent doses were noted between 4 surgeons participating in the study, but no definitive relationship was found between these parameters and surgeons' employment time. 1. Hand surgery procedures under fluoroscopic guidance are associated with mild exposure of the surgeons' hands to radiation. 2. The equivalent dose was related to the type of fracture

  13. The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model

    PubMed Central

    Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.

    2014-01-01

    Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435

  14. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies.

    PubMed

    Veiga, Lene H S; Holmberg, Erik; Anderson, Harald; Pottern, Linda; Sadetzki, Siegal; Adams, M Jacob; Sakata, Ritsu; Schneider, Arthur B; Inskip, Peter; Bhatti, Parveen; Johansson, Robert; Neta, Gila; Shore, Roy; de Vathaire, Florent; Damber, Lena; Kleinerman, Ruth; Hawkins, Michael M; Tucker, Margaret; Lundell, Marie; Lubin, Jay H

    2016-05-01

    Studies have causally linked external thyroid radiation exposure in childhood with thyroid cancer. In 1995, investigators conducted relative risk analyses of pooled data from seven epidemiologic studies. Doses were mostly <10 Gy, although childhood cancer therapies can result in thyroid doses >50 Gy. We pooled data from 12 studies of thyroid cancer patients who were exposed to radiation in childhood (ages <20 years), more than doubling the data, including 1,070 (927 exposed) thyroid cancers and 5.3 million (3.4 million exposed) person-years. Relative risks increased supralinearly through 2-4 Gy, leveled off between 10-30 Gy and declined thereafter, remaining significantly elevated above 50 Gy. There was a significant relative risk trend for doses <0.10 Gy (P < 0.01), with no departure from linearity (P = 0.36). We observed radiogenic effects for both papillary and nonpapillary tumors. Estimates of excess relative risk per Gy (ERR/Gy) were homogeneous by sex (P = 0.35) and number of radiation treatments (P = 0.84) and increased with decreasing age at the time of exposure. The ERR/Gy estimate was significant within ten years of radiation exposure, 2.76 (95% CI, 0.94-4.98), based on 42 exposed cases, and remained elevated 50 years and more after exposure. Finally, exposure to chemotherapy was significantly associated with thyroid cancer, with results supporting a nonsynergistic (additive) association with radiation.

  15. A novel dosimeter for measuring the amount of radiation exposure of surgeons during percutaneous nephrolithotomy: Instadose™

    PubMed Central

    Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim

    2016-01-01

    Introduction The aim of this study was to demonstrate the efficacy of Instadose™, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose™ on the outer part of their lead aprons during the PNL procedures performed between December 2013 and July 2014. Patient demographics and stone characteristics were noted. Factors affecting radiation dose were determined. Fluoroscopic screening time was compared with the amount of radiation in order to validate the measurements of Instadose™. Results Overall, 51 patients with a mean age of 43.41 ±18.58 (range 1–75) years were enrolled. Male to female ratio was 35/16. The amount of radiation was greater than 0.01mSv in only 19 (37.25%) cases. Stone location complexity (p = 0.380), dilation type (p = 0.584), stone size (p = 0.565), dilation size (p = 0.891) and access number (p = 0.268) were not associated with increased radiation exposure. Instadose™ measurements were correlated with fluoroscopic screening time (r = 0.519, p = 0.001). Conclusions Instadose™ is a useful tool for the measurement of radiation exposure during PNL. The advantage of measuring the amount of radiation exposure after each PNL operation is that it may aid urologists in taking appropriate precautions to minimize the risk of radiation related complications. PMID:27551558

  16. [The remote effects of chronic exposure to ionizing radiation and electromagnetic fields with respect to hygienic standardization].

    PubMed

    Grigor'ev, Iu G; Shafirkin, A V; Nikitina, V N; Vasin, A L

    2003-01-01

    A variety and rate of non-cancer diseases occurred in humans as a result of chronic exposure to ionizing radiation or to electromagnetic radiation (EMR) of high and superhigh frequency have been compared. The intensity of EMR was slightly higher than a sanitary standard for population. A risk of health impairments in workers having occupational exposure to EMR was assessed on the basis of Selie's concept of development of non-specific reaction of the body to chronic stress factors (general adaptation syndrome), models of changes in the body compensatory reserves and calculations of radiation risk after severe and chronic exposure to ionizing radiation.

  17. Radiation exposure--do urologists take it seriously in Turkey?

    PubMed

    Söylemez, Haluk; Altunoluk, Bülent; Bozkurt, Yaşar; Sancaktutar, Ahmet Ali; Penbegül, Necmettin; Atar, Murat

    2012-04-01

    A questionnaire was administered to urologists to evaluate attitudes and behaviors about protection from radiation exposure during fluoroscopy guided endourological procedures. The questionnaire was e-mailed to 1,482 urologists, including urology residents, specialists and urologists holding all levels of academic degrees, between May and June 2011. The questionnaire administered to study participants was composed of demographic questions, and questions on radiation exposure frequency, and the use of dosimeters and flexible protective clothes. If a respondent reported not using dosimeters or protective clothes, additional questions asked for the reason. Of the 1,482 questionnaires 394 (26.58%) were returned, of which 363 had completed answers. A total of 307 physicians (84.58%) were exposed to ionizing radiation, of whom 79.61% stated that they perform percutaneous nephrolithotomy at the clinic. Fluoroscopy guidance was the initial choice of 96.19% of urologists during percutaneous nephrolithotomy. Despite the common use of lead aprons (75.24%) most urologists did not use dosimeters (73.94%), eyeglasses (76.95%) or gloves (66.67%) while 46.44% always used thyroid shields during fluoroscopy. When asked why they did not use protective clothing, the most common answers were that protective clothes are not ergonomic and not practical. Results clearly highlight the lack of use of ionizing radiation protection devices and dosimeters during commonly performed fluoroscopy guided endourological procedures among urologists in Turkey. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning.

    PubMed

    Zhao, Jonathan Z L; Mucaki, Eliseos J; Rogan, Peter K

    2018-01-01

    Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% ( DDB2 ,  PRKDC , TPP2 , PTPRE , and GADD45A ) when validated over 209 samples and traditional validation accuracies of up to 92% ( DDB2 ,  CD8A ,  TALDO1 ,  PCNA ,  EIF4G2 ,  LCN2 ,  CDKN1A ,  PRKCH ,  ENO1 ,  and PPM1D ) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene

  19. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizawa, Eiichi

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  20. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    PubMed

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-03-15

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  1. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl

    PubMed Central

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations. PMID:26976674

  2. Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution.

    PubMed

    Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena

    2014-12-30

    An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.

  3. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  4. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  5. Effects of radiation exposure from cardiac imaging: how good are the data?

    PubMed

    Einstein, Andrew J

    2012-02-07

    Concerns about medical exposure to ionizing radiation have become heightened in recent years as a result of rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This paper summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, this paper will address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher-dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac dose-level studies, albeit with exceptions. Using risk projection models developed by the U.S. National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared with the benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Reduction in operator radiation exposure during transradial coronary procedures using a simple lead rectangle.

    PubMed

    Osherov, Azriel B; Bruoha, Sharon; Laish Farkash, Avishag; Paul, Gideon; Orlov, Ian; Katz, Amos; Jafari, Jamal

    2017-02-01

    Transradial access for percutaneous coronary intervention (PCI) reduces procedural complications however, there are concerns regarding the potential for increased exposure to ionizing radiation to the primary operator. We evaluated the efficacy of a lead-attenuator in reducing radiation exposure during transradial PCI. This was a non-randomized, prospective, observational study in which 52 consecutive patients were assigned to either standard operator protection (n = 26) or the addition of the lead attenuator across their abdomen/pelvis (n = 26). In the attenuator group patients were relatively older with a higher prevalence of peripheral vascular disease (67.9 vs 58.7 p = 0.0292 and 12% vs 7.6% p < 0.001 respectively). Despite similar average fluoroscopy times (12.3 ± 9.8 min vs. 9.3 ± 5.4 min, p = 0.175) and average examination doses (111866 ± 80790 vs. 91,268 ± 47916 Gycm 2 , p = 0.2688), the total radiation exposure to the operator, at the thyroid level, was significantly lower when the lead-attenuator was utilized (20.2% p < 0.0001) as compared to the control group. Amongst the 26 patients assigned to the lead-attenuator, there was a significant reduction in measured radiation of 94.5% (p < 0.0001), above as compared to underneath the lead attenuator. Additional protection with the use of a lead rectangle-attenuator significantly lowered radiation exposure to the primary operator, which may confer long-term benefits in reducing radiation-induced injury. This is the first paper to show that a simple lead attenuator almost completely reduced the scattered radiation at very close proximity to the patient and should be considered as part of the standard equipment within catheterization laboratories.

  7. Reduction of radiation exposure during radiography for scoliosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.E.; Hoffman, A.D.; Peterson, H.A.

    1983-01-01

    To reduce the radiation exposure received by young scoliosis patients during treatment, six changes in technique were instituted: (1) a posteroanterior projection, (2) specially designed leaded acrylic filters, (3) a high-speed screen-film system, (4) a specially designed cassette-holder and grid, (5) a breast-shield, and (6) additional filtration in the x-ray tube the thyroid, breast, and abdominal areas were made on an Alderson phantom. They revealed an eightfold reduction in abdominal exposure for both the posteroanterior and the lateral radiographys. There was a twentyfold reduction in exposure to the thyroid for the posteroanterior radiography from 100 to less than five milliroentgensmore » and for the lateral radiograph there was a 100-fold reduction from 618 to six milliroentgens. For the breasts there was a sixty-ninefold reduction from 344 to less than five milliroentgens for the posteroanterior radiography and a fifty-fivefold reduction from 277 to less than five milliroentgens for the lateral radiograph. These reductions in exposure were obtained without significant loss in the quality of the radiographs and in most instances with an improvement in the over-all quality of the radiograph due to the more uniform exposure.« less

  8. Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies.

    PubMed

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W

    2013-08-01

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  9. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewedmore » at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.« less

  10. Real-Time Airborne Gamma-Ray Background Estimation Using NASVD with MLE and Radiation Transport for Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; Schweppe, John E.; Stave, Sean C.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this, we have developed a new technique for real-time estimation ofmore » background gamma radiation from aerial measurements. This method is built upon on the noise-adjusted singular value decomposition (NASVD) technique that was previously developed for estimating the potassium (K), uranium (U), and thorium (T) concentrations in soil post-flight. The method can be calibrated using K, U, and T spectra determined from radiation transport simulations along with basis functions, which may be determined empirically by applying maximum likelihood estimation (MLE) to previously measured airborne gamma-ray spectra. The method was applied to both measured and simulated airborne gamma-ray spectra, with and without man-made radiological source injections. Compared to schemes based on simple averaging, this technique was less sensitive to background contamination from the injected man-made sources and may be particularly useful when the gamma-ray background frequently changes during the course of the flight.« less

  11. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis

    2015-01-01

    Occupational radiation exposure from the space environment may result in non-cancer or non-CNS degenerative tissue diseases, such as cardiovascular disease, cataracts, and respiratory or digestive diseases. However, the magnitude of influence and mechanisms of action of radiation leading to these diseases are not well characterized. Radiation and synergistic effects of radiation cause DNA damage, persistent oxidative stress, chronic inflammation, and accelerated tissue aging and degeneration, which may lead to acute or chronic disease of susceptible organ tissues. In particular, cardiovascular pathologies such as atherosclerosis are of major concern following gamma-ray exposure. This provides evidence for possible degenerative tissue effects following exposures to ionizing radiation in the form of the GCR or SPEs expected during long-duration spaceflight. However, the existence of low dose thresholds and dose-rate and radiation quality effects, as well as mechanisms and major risk pathways, are not well-characterized. Degenerative disease risks are difficult to assess because multiple factors, including radiation, are believed to play a role in the etiology of the diseases. As additional evidence is pointing to lower, space-relevant thresholds for these degenerative effects, particularly for cardiovascular disease, additional research with cell and animal studies is required to quantify the magnitude of this risk, understand mechanisms, and determine if additional protection strategies are required.The NASA PEL (Permissive Exposure Limit)s for cataract and cardiovascular risks are based on existing human epidemiology data. Although animal and clinical astronaut data show a significant increase in cataracts following exposure and a reassessment of atomic bomb (A-bomb) data suggests an increase in cardiovascular disease from radiation exposure, additional research is required to fully understand and quantify these adverse outcomes at lower doses (less than 0.5 gray

  12. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time.

  13. [Paternal exposure to occupational electromagnetic radiation and sex ratio of the offspring: a meta-analysis].

    PubMed

    Tong, Shu-Hui; Liu, Yi-Ting; Liu, Yang

    2013-02-01

    To investigate the association between paternal exposure to occupational electromagnetic radiation and the sex ratio of the offspring. We searched various databases, including PubMed, Embase, Cochrane Library, OVID, Bioscience Information Service (BIOSIS), China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals and Wanfang Database, for the literature relevant to the association of paternal exposure to occupational electromagnetic radiation with the sex ratio of the offspring. We conducted a meta-analysis on their correlation using Stata 11.0. There was no statistically significant difference in the sex ratio between the offspring with paternal exposure to occupational electromagnetic radiation and those without (pooled OR = 1.00 [95% CI: 0.95 -1.05], P = 0.875). Subgroup analysis of both case-control and cohort studies revealed no significant difference (pooled OR = 1.03 [95% CI: 0.99 -1.08], P = 0.104 and pooled OR = 0.98 [95% CI: 0.99 -1.08], P = 0.186, respectively). Paternal exposure to occupational electromagnetic radiation is not correlated with the sex ratio of the offspring.

  14. Medical exposure to ionising radiation and the risk of brain tumours: Interphone study group, Germany.

    PubMed

    Blettner, Maria; Schlehofer, Brigitte; Samkange-Zeeb, Florence; Berg, Gabriele; Schlaefer, Klaus; Schüz, Joachim

    2007-09-01

    The role of exposure to low doses of ionising radiation in the aetiology of brain tumours has yet to be clarified. The objective of this study was to investigate the association between medically or occupationally related exposure to ionising radiation and brain tumours. We used self-reported medical and occupational data collected during the German part of a multinational case-control study on mobile phone use and the risk of brain tumours (Interphone study) for the analyses. For any exposure to medical ionising radiation we found odds ratios (ORs) of 0.63 (95% confidence interval (CI)=0.48-0.83), 1.08 (95% CI=0.80-1.45) and 0.97 (95% CI=0.54-1.75) for glioma, meningioma and acoustic neuroma, respectively. Elevated ORs were found for meningioma (OR 2.32, 95% CI: 0.90-5.96) and acoustic neuroma (OR 6.45, 95% CI: 0.62-67.16) for radiotherapy to the head and neck regions. We did not find any significant increased risk of brain tumours for exposure to medical ionising radiation.

  15. Effects of reduced natural background radiation on Drosophila melanogaster growth and development as revealed by the FLYINGLOW program.

    PubMed

    Morciano, Patrizia; Iorio, Roberto; Iovino, Daniela; Cipressa, Francesca; Esposito, Giuseppe; Porrazzo, Antonella; Satta, Luigi; Alesse, Edoardo; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-01-01

    Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans. © 2017 Wiley Periodicals, Inc.

  16. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Haerich, Paul; Zuccarelli, Cara N.; Smith, Anna L.; Zendejas, Eric D.; Nelson, Gregory A.

    2002-01-01

    Two experiments were carried out to investigate the consequences of exposure to proton radiation, such as might occur for astronauts during space flight. C57BL/6 mice were exposed, either with or without 15-g/cm2 aluminum shielding, to 0-, 3-, or 4-Gy proton irradiation mimicking features of a solar particle event. Irradiation produced transient direct deficits in open-field exploratory behavior and acoustic startle habituation. Rotorod performance at 18 rpm was impaired by exposure to proton radiation and was impaired at 26 rpm, but only for mice irradiated with shielding and at the 4-Gy dose. Long-term (>2 weeks) indirect deficits in open-field activity appeared as a result of impaired experiential encoding immediately following exposure. A 2-week recovery prior to testing decreased most of the direct effects of exposure, with only rotorod performance at 26 rpm being impaired. These results suggest that the performance deficits may have been mediated by radiation damage to hippocampal, cerebellar, and possibly, forebrain dopaminergic function.

  17. The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted; Turner, Michael S.

    1989-01-01

    The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 10(exp 5) to 10(exp -24) cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.

  18. Health risks of exposure to non-ionizing radiation--myths or science-based evidence.

    PubMed

    Hietanen, Maila

    2006-01-01

    The non-ionizing radiation (NIR) contains large range of wavelengths and frequencies from vacuum ultraviolet (UV) radiation to static electric and magnetic fields. Biological effects of electromagnetic (EM) radiation depend greatly on wavelength and other physical parameters. The Sun is the most significant source of environmental UV exposure, so that outdoor workers are at risk of chronic over-exposure. Also exposure to short-wave visible light is associated with the aging and degeneration of the retina. Especially hazardous are laser beams focused to a small spot at the retina, resulting in permanent visual impairment. Exposure to EM fields induces body currents and energy absorption in tissues, depending on frequencies and coupling mechanisms. Thermal effects caused by temperature rise are basically understood, whereas the challenge is to understand the suspected non-thermal effects. Radiofrequency (RF) fields around frequencies of 900 MHz and 1800 MHz are of special interest because of the rapid advances in the telecommunication technology. The field levels of these sources are so low that temperature rise is unlikely to explain possible health effects. Other mechanisms of interaction have been proposed, but biological experiments have failed to confirm their existence.

  19. Diagnostic imaging and radiation exposure in inflammatory bowel disease.

    PubMed

    Zakeri, Nekisa; Pollok, Richard C G

    2016-02-21

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.

  20. Radiation exposure during in-situ pinning of slipped capital femoral epiphysis hips: does the patient positioning matter?

    PubMed

    Mohammed, Riazuddin; Johnson, Karl; Bache, Ed

    2010-07-01

    Multiple radiographic images may be necessary during the standard procedure of in-situ pinning of slipped capital femoral epiphysis (SCFE) hips. This procedure can be performed with the patient positioned on a fracture table or a radiolucent table. Our study aims to look at any differences in the amount and duration of radiation exposure for in-situ pinning of SCFE performed using a traction table or a radiolucent table. Sixteen hips in thirteen patients who were pinned on radiolucent table were compared for the cumulative radiation exposure to 35 hips pinned on a fracture table in 33 patients during the same time period. Cumulative radiation dose was measured as dose area product in Gray centimeter2 and the duration of exposure was measured in minutes. Appropriate statistical tests were used to test the significance of any differences. Mean cumulative radiation dose for SCFE pinned on radiolucent table was statistically less than for those pinned on fracture table (P<0.05). The mean duration of radiation exposure on either table was not significantly different. Lateral projections may increase the radiation doses compared with anteroposterior projections because of the higher exposure parameters needed for side imaging. Our results showing decreased exposure doses on the radiolucent table are probably because of the ease of a frog leg lateral positioning obtained and thereby the ease of lateral imaging. In-situ pinning of SCFE hips on a radiolucent table has an additional advantage that the radiation dose during the procedure is significantly less than that of the procedure that is performed on a fracture table.

  1. Awareness of medical radiation exposure among patients: A patient survey as a first step for effective communication of ionizing radiation risks.

    PubMed

    Ria, F; Bergantin, A; Vai, A; Bonfanti, P; Martinotti, A S; Redaelli, I; Invernizzi, M; Pedrinelli, G; Bernini, G; Papa, S; Samei, E

    2017-11-01

    The European Directive 2013/59/EURATOM requires patient radiation dose information to be included in the medical report of radiological procedures. To provide effective communication to the patient, it is necessary to first assess the patient's level of knowledge regarding medical exposure. The goal of this work is to survey patients' current knowledge level of both medical exposure to ionizing radiation and professional disciplines and communication means used by patients to garner information. A questionnaire was designed comprised of thirteen questions: 737 patients participated in the survey. The data were analysed based on population age, education, and number of radiological procedures received in the three years prior to survey. A majority of respondents (56.4%) did not know which modality uses ionizing radiation. 74.7% had never discussed with healthcare professionals the risk concerning their medical radiological procedures. 70.1% were not aware of the professionals that have expertise to discuss the use of ionizing radiation for medical purposes, and 84.7% believe it is important to have the radiation dose information stated in the medical report. Patients agree with new regulations that it is important to know the radiation level related to the medical exposure, but there is little awareness in terms of which modalities use X-Rays and the professionals and channels that can help them to better understand the exposure information. To plan effective communication, it is essential to devise methods and adequate resources for key professionals (medical physicists, radiologists, referring physicians) to convey correct and effective information. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Distortion of the cosmic background radiation by superconducting strings

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Thompson, C.

    1987-01-01

    Superconducting cosmic strings can be significant energy sources, keeping the universe ionized past the commonly assumed epoch of recombination. As a result, the spectrum of the cosmic background radiation is distorted in the presence of heated primordial gas via the Suniaev-Zel'dovich effect. Thiis distortion can be relatively large: the Compton y parameter attains a maximum in the range 0.001-0.005, with these values depending on the mass scale of the string. A significant contribution to y comes from loops decaying at high redshift when the universe is optically thick to Thomson scattering. Moreover, the isotropic spectral distortion is large compared to fluctuations at all angular scales.

  3. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  4. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  5. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  6. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  7. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  8. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...

  9. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...

  10. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  11. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies

    PubMed Central

    Veiga, Lene H. S.; Holmberg, Erik; Anderson, Harald; Pottern, Linda; Sadetzki, Siegal; Adams, M. Jacob; Sakata, Ritsu; Schneider, Arthur B.; Inskip, Peter; Bhatti, Parveen; Johansson, Robert; Neta, Gila; Shore, Roy; de Vathaire, Florent; Damber, Lena; Kleinerman, Ruth; Hawkins, Michael M.; Tucker, Margaret; Lundell, Marie; Lubin, Jay H.

    2016-01-01

    Studies have causally linked external thyroid radiation exposure in childhood with thyroid cancer. In 1995, investigators conducted relative risk analyses of pooled data from seven epidemiologic studies. Doses were mostly <10 Gy, although childhood cancer therapies can result in thyroid doses >50 Gy. We pooled data from 12 studies of thyroid cancer patients who were exposed to radiation in childhood (ages <20 years), more than doubling the data, including 1,070 (927 exposed) thyroid cancers and 5.3 million (3.4 million exposed) person-years. Relative risks increased supralinearly through 2–4 Gy, leveled off between 10–30 Gy and declined thereafter, remaining significantly elevated above 50 Gy. There was a significant relative risk trend for doses <0.10 Gy (P < 0.01), with no departure from linearity (P = 0.36). We observed radiogenic effects for both papillary and nonpapillary tumors. Estimates of excess relative risk per Gy (ERR/Gy) were homogeneous by sex (P = 0.35) and number of radiation treatments (P = 0.84) and increased with decreasing age at the time of exposure. The ERR/Gy estimate was significant within ten years of radiation exposure, 2.76 (95% CI, 0.94–4.98), based on 42 exposed cases, and remained elevated 50 years and more after exposure. Finally, exposure to chemotherapy was significantly associated with thyroid cancer, with results supporting a nonsynergistic (additive) association with radiation. PMID:27128740

  12. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  13. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    PubMed

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  14. Effects of low-dose radiation - a correlation study.

    PubMed

    Edling, C; Comba, P; Axelson, O; Flodin, U

    1982-01-01

    The effects of low-dose radiation have been a matter of controversy over the years, and the epidemiologic results have been conflicting. A couple of recent studies have indicated a possible impact on lung cancer mortality from exposure to indoor levels of radon and radon daughters. In this study, selected mortality rates, ie, lung cancer, pancreatic cancer, breast cancer (females only), leukemia, and multiple myeloma were correlated for the counties of Sweden with estimates of average background radiation exposure in these areas. Significant correlations were obtained for lung cancer (males, r = 0.46; females r = 0.55) and pancreatic cancer (males, r = 0.59; females, r = 0.40) , and there was a borderline correlation (r = 0.36; p = 0.04) for leukemia in males. In all, there were positive correlations for eight out of the nine computations made. Since background radiation correlates with urbanization and therefore with smoking, air pollution, etc, the correlations might be spurious due to confounding; on the other hand confounding is a reciprocal phenomenon which suggests that background radiation should to be taken into consideration when widespread risk factors like smoking, coffee drinking, general air pollution, etc, are studied.

  15. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    PubMed

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  16. Thyroid Cancer Following Childhood Low-Dose Radiation Exposure: A Pooled Analysis of Nine Cohorts.

    PubMed

    Lubin, Jay H; Adams, M Jacob; Shore, Roy; Holmberg, Erik; Schneider, Arthur B; Hawkins, Michael M; Robison, Leslie L; Inskip, Peter D; Lundell, Marie; Johansson, Robert; Kleinerman, Ruth A; de Vathaire, Florent; Damber, Lena; Sadetzki, Siegal; Tucker, Margaret; Sakata, Ritsu; Veiga, Lene H S

    2017-07-01

    The increased use of diagnostic and therapeutic procedures that involve radiation raises concerns about radiation effects, particularly in children and the radiosensitive thyroid gland. Evaluation of relative risk (RR) trends for thyroid radiation doses <0.2 gray (Gy); evidence of a threshold dose; and possible modifiers of the dose-response, e.g., sex, age at exposure, time since exposure. Pooled data from nine cohort studies of childhood external radiation exposure and thyroid cancer with individualized dose estimates, ≥1000 irradiated subjects or ≥10 thyroid cancer cases, with data limited to individuals receiving doses <0.2 Gy. Cohorts included the following: childhood cancer survivors (n = 2); children treated for benign diseases (n = 6); and children who survived the atomic bombings in Japan (n = 1). There were 252 cases and 2,588,559 person-years in irradiated individuals and 142 cases and 1,865,957 person-years in nonirradiated individuals. There were no interventions. Incident thyroid cancers. For both <0.2 and <0.1 Gy, RRs increased with thyroid dose (P < 0.01), without significant departure from linearity (P = 0.77 and P = 0.66, respectively). Estimates of threshold dose ranged from 0.0 to 0.03 Gy, with an upper 95% confidence bound of 0.04 Gy. The increasing dose-response trend persisted >45 years after exposure, was greater at younger age at exposure and younger attained age, and was similar by sex and number of treatments. Our analyses reaffirmed linearity of the dose response as the most plausible relationship for "as low as reasonably achievable" assessments for pediatric low-dose radiation-associated thyroid cancer risk. Copyright © 2017 Endocrine Society

  17. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion.

    PubMed

    Shanmugarajan, Srinivasan; Zhang, Ye; Moreno-Villanueva, Maria; Clanton, Ryan; Rohde, Larry H; Ramesh, Govindarajan T; Sibonga, Jean D; Wu, Honglu

    2017-11-18

    The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase ( Trap ) and dendritic cell-specific transmembrane protein ( Dcstamp ). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein ( Ocstamp ) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the

  18. Safe days in space with acceptable uncertainty from space radiation exposure.

    PubMed

    Cucinotta, Francis A; Alp, Murat; Rowedder, Blake; Kim, Myung-Hee Y

    2015-04-01

    The prediction of the risks of cancer and other late effects from space radiation exposure carries large uncertainties mostly due to the lack of information on the risks from high charge and energy (HZE) particles and other high linear energy transfer (LET) radiation. In our recent work new methods were used to consider NASA's requirement to protect against the acceptable risk of no more than 3% probability of cancer fatality estimated at the 95% confidence level. Because it is not possible that a zero-level of uncertainty could be achieved, we suggest that an acceptable uncertainty level should be defined in relationship to a probability distribution function (PDF) that only suffers from modest skewness with higher uncertainty allowed for a normal PDF. In this paper, we evaluate PDFs and the number or "safe days" in space, which are defined as the mission length where risk limits are not exceeded, for several mission scenarios at different acceptable levels of uncertainty. In addition, we briefly discuss several important issues in risk assessment including non-cancer effects, the distinct tumor spectra and lethality found in animal experiments for HZE particles compared to background or low LET radiation associated tumors, and the possibility of non-targeted effects (NTE) modifying low dose responses and increasing relative biological effectiveness (RBE) factors for tumor induction. Each of these issues skew uncertainty distributions to higher fatality probabilities with the potential to increase central values of risk estimates in the future. Therefore they will require significant research efforts to support space exploration within acceptable levels of risk and uncertainty. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. ADVISORY ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION

    EPA Science Inventory

    The National Academy of Sciences (NAS) published the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in 2006. The Committee analyzed the most recent epidemiology from the important exposed cohorts and factor...

  20. Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.

    1983-06-01

    We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.

  1. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... produce ionizations directly or indirectly, but does not include electromagnetic radiations other than... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations...

  2. Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.

    2004-01-01

    For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of clinically significant cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that sub-clinical cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.

  3. Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.

    2004-01-01

    For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures*. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of "clinically significant" cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that "sub-clinical" cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.

  4. Monitoring exposure to atomic bomb radiation by somatic mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Mitoshi; Kyoizumi, Seishi; Kusunoki, Yoichiro

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in femalesmore » and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. 27 refs., 2 figs.« less

  5. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  6. Radiation exposure and disease questionnaires of early entrants after the Hiroshima bombing.

    PubMed

    Imanaka, Tetsuji; Endo, Satoru; Kawano, Noriyuki; Tanaka, Kenichi

    2012-03-01

    It is popularly known that people who entered into the ground-zero area shortly after the atomic bombings in Hiroshima and Nagasaki suffered from various syndromes similar to acute radiation effects. External exposures from neutron-induced radionuclides in soil have recently been reassessed based on DS02 calculations as functions of both distance from the hypocentres and elapsed time after the explosions. Significant exposure due to induced radiation can be determined for those who entered the area within 1000 m from the hypocentres shortly after the bombing. Although it was impossible to track the action of each of the survivors over the days or weeks following the bombings in order to make reliable dose estimates for their exposures to soil activation or fallout, four individuals among those early entrants were investigated here to describe useful information of what happened shortly after the bombing.

  7. Life-span carcinogenicity studies on Sprague-Dawley rats exposed to γ-radiation: design of the project and report on the tumor occurrence after post-natal radiation exposure (6 weeks of age) delivered in a single acute exposure.

    PubMed

    Soffritti, Morando; Tibaldi, Eva; Bua, Luciano; Padovani, Michela; Falcioni, Laura; Lauriola, Michelina; Manservigi, Marco; Manservisi, Fabiana; Belpoggi, Fiorella

    2015-01-01

    Experimental long-term carcinogenicity bioassays conducted on rats and mice proved that ionizing radiation can induce a variety of tumor types. However few studies have been conducted on rats. This report deals with the effects of γ-radiation in groups of 416-1,051 6-weeks old Sprague-Dawley rats exposed to 0, 0.1, 1, or 3 Gy of γ-radiation delivered in a single acute exposure. The experiment lasted for the animals' lifespan and all were necropsied and underwent full histopathological evaluation. The results confirm the dose-related carcinogenic effects of γ-radiation for several organs and tissues. Moreover they indicate that exposure to 0.1 Gy induces a statistically significant increased incidence in Zymbal gland carcinomas and pancreas islet cell carcinomas in females. Our data show that exposure to γ-radiation induces carcinogenic effects at all tested doses. © 2014 Wiley Periodicals, Inc.

  8. [Eye lens radiation exposure during ureteroscopy with and without a face protection shield: Investigations on a phantom model].

    PubMed

    Zöller, G; Figel, M; Denk, J; Schulz, K; Sabo, A

    2016-03-01

    Eye lens radiation exposure during radiologically-guided endoscopic procedures may result in radiation-induced cataracts; therefore, we investigated the ocular radiation exposure during ureteroscopy on a phantom model. Using an Alderson phantom model and eye lens dosimeters, we measured the ocular radiation exposure depending on the number of X-ray images and on the duration of fluoroscopic imaging. The measurements were done with and without using a face protection shield. We could demonstrate that a significant ocular radiation exposure can occur, depending on the number of X-ray images and on the duration time of fluoroscopy. Eye lens doses up to 0.025 mSv were recorded even using modern digital X-ray systems. Using face protection shields this ocular radiation exposure can be reduced to a minimum. The International Commission on Radiological Protection (ICRP) recommendations of a mean eye lens dosage of 20 mSv/year may be exceeded during repeated ureteroscopy by a high volume surgeon. Using a face protection shield, the eye lens dose during ureteroscopy could be reduced to a minimum in a phantom model. Further investigations will show whether these results can be transferred to real life ureteroscopic procedures.

  9. Occupational exposures to antineoplastic drugs and ionizing radiation in Canadian veterinary settings: findings from a national surveillance project.

    PubMed

    Hall, Amy L; Davies, Hugh W; Demers, Paul A; Nicol, Anne-Marie; Peters, Cheryl E

    2013-11-01

    Although veterinary workers may encounter various occupational health hazards, a national characterization of exposures is lacking in Canada. This study used secondary data sources to identify veterinary exposure prevalence for ionizing radiation and antineoplastic agents, as part of a national surveillance project. For ionizing radiation, data from the Radiation Protection Bureau of Health Canada were used to identify veterinarians and veterinary technicians monitored in 2006. This was combined with Census statistics to estimate a prevalence range and dose levels. For antineoplastic agents, exposure prevalence was estimated using statistics on employment by practice type and antineoplastic agent usage rates, obtained from veterinary licensing bodies and peer-reviewed literature. In 2006, 7,013 (37% of all) Canadian veterinary workers were monitored for ionizing radiation exposure. An estimated 3.3% to 8.2% of all veterinarians and 2.4% to 7.2% of veterinary technicians were exposed to an annual ionizing radiation dose above 0.1 mSv, representing a total of between 536 and 1,450 workers. All monitored doses were below regulatory limits. For antineoplastic agents, exposure was predicted in up to 5,300 (23%) of all veterinary workers, with an estimated prevalence range of 22% to 24% of veterinarians and 20% to 21% of veterinary technicians. This is the first national-level assessment of exposure to ionizing radiation and antineoplastic agents in Canadian veterinary settings. These hazards may pose considerable health risks. Exposures appeared to be low, however our estimates should be validated with comprehensive exposure monitoring and examination of determinants across practice areas, occupations, and tasks.

  10. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure.

    PubMed

    Horn, Simon; Barnard, Stephen; Rothkamm, Kai

    2011-01-01

    Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci--but not intensity--levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body exposures.

  11. Influence of various factors on individual radiation exposure from the Chernobyl disaster.

    PubMed

    Zamostian, Pavlo; Moysich, Kirsten B; Mahoney, Martin C; McCarthy, Philip; Bondar, Alexandra; Noschenko, Andrey G; Michalek, Arthur M

    2002-10-29

    The explosion at the Chernobyl Nuclear Power Plant was one of the greatest known nuclear disasters of the 20th century. To reduce individual exposure to ionizing radiation the Soviet Union government introduced a number of counter-measures. This article presents a description of how historical events conspired to disrupt these efforts and affect residents in exposed areas. This study employed an extensive review of data on radionuclide deposition, contamination patterns and lifestyle characteristics. Data were obtained from the Ukraine Ministry of Health and the Ukraine Research Center for Radiation Medicine. Data are presented on annual contamination rates in selected locales as well as data on local food consumption patterns. Historical factors including economic and political circumstances are also highlighted. Results show the diminution of individual doses between 1987 and 1991 and then an increase between 1991 and 1994 and the relationship between this increase and changes in the lifestyle of the local population. A number of factors played direct and indirect roles in contributing to the populace's cumulative radiation exposure. Future post-contamination studies need to consider these factors when estimating individual exposures.

  12. Molecular pathway activation in cancer and tissue following space radiation exposure

    NASA Astrophysics Data System (ADS)

    Kovyrshina, Tatiana A.

    Space radiation exposure is an important safety concern for astronauts, especially since one of the risks is carcinogenesis. This thesis explores the link between lung, colorectal, and breast cancer and iron particles and gamma radiation on a molecular level. We obtained DNA microarrays for each condition from the Gene Expression Omnibus (GEO), a public functional genomics data repository, cleaned up the data, and analysed overexpression and underexpression of pathway analysis. Our results show that pathways which participate in DNA replication appear to be overexpressed in cancer cells and cells exposed to ionizing radiation.

  13. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    PubMed

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  14. Ingestion of polonium ((210)Po) via dietary sources in high background radiation areas of south India.

    PubMed

    Arunachalam, Kantha Deivi; Baskaran, Kamesh Viswanathan; Rao, D D; Sathyapriya, R; Annamalai, Sathesh Kumar; Kuruva, Jaya Krishna; Hari, Shanmugamsundaram

    2014-10-01

    To study the distribution of Polonium ((210)Po) activity in dietary sources in the high background radiation zone of Puttetti in southern Tamil Nadu. (210)Po was analyzed in the food materials consumed by the male and female individual representatives living in the high background areas by 24-h Duplicate Diet Study (DDS) and Market Basket Study (MBS). The MBS was performed by collecting the food samples such as, cereals, fruits, leafy vegetables, roots and tubers, other vegetables, fish, meat and milk grown in the high background radiation zone of southern Tamil Nadu as a part of baseline study in this region. The DDS was done by collecting the food materials consumed including the beverages in 24 h from different age groups of male and female individuals living in the village of Puttetti. The intake and ingestion dose of the radionuclide (210)Po was estimated. The average concentration of (210)Po in DDS (n = 33) was found to be 74 mBq.kg(- 1) of fresh weight. The MBS was collected based on food consumption representing more than 85-95% of annual supply, and were divided into eight food groups. The average concentration of (210)Po in the eight food groups namely leafy vegetables was 2176 mBq.kg(- 1) (n = 3), vegetables 55 mBq.kg(- 1) (n = 10), roots and tubers 251 mBq.kg(- 1) (n = 4), fruits 65 mBq.kg(- 1) (n = 5), fish 345 mBq.kg(- 1) (n = 2), meat food 117 mBq.kg(- 1) (n = 3), milk 20 mBq.kg(- 1) (n = 1) and cereal 290 (n = 1) mBq.kg(- 1) of fresh weight, respectively. The annual intake and ingestion dose due to (210)Po was estimated by DDS and MBS in adults, adolescents and children. The overall results showed that the MBS was moderately higher than the DDS in all age groups. Moreover, a DDS approach may even be more realistic, as cooked foodstuffs are used for dietary exposure assessment. The study confirms that the current levels of (210)Po do not pose a significant radiological risk to the local inhabitants.

  15. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis

    PubMed Central

    Li, Changzhao; Athar, Mohammad

    2016-01-01

    This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology. PMID:26930381

  16. CONSULTATION ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION

    EPA Science Inventory

    The National Academy of Sciences (NAS) expects to publish the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in calendar year 2005. The committee is expected to have analyzed the most recent epidemiology f...

  17. Iatrogenic radiation exposure to patients with early onset spine and chest wall deformities.

    PubMed

    Khorsand, Derek; Song, Kit M; Swanson, Jonathan; Alessio, Adam; Redding, Gregory; Waldhausen, John

    2013-08-01

    Retrospective cohort series. Characterize average iatrogenic radiation dose to a cohort of children with thoracic insufficiency syndrome (TIS) during assessment and treatment at a single center with vertically expandable prosthetic titanium rib. Children with TIS undergo extensive evaluations to characterize their deformity. No standardized radiographical evaluation exists, but all reports use extensive imaging. The source and level of radiation these patients receive is not currently known. We evaluated a retrospective consecutive cohort of 62 children who had surgical treatment of TIS at our center from 2001-2011. Typical care included obtaining serial radiographs, spine and chest computed tomographic (CT) scans, ventilation/perfusion scans, and magnetic resonance images. Epochs of treatment were divided into time of initial evaluation to the end of initial vertically expandable prosthetic titanium rib implantation with each subsequent epoch delineated by the next surgical intervention. The effective dose for each examination was estimated within millisieverts (mSv). Plain radiographs were calculated from references. Effective dose was directly estimated for CT scans since 2007 and an average of effective dose from 2007-2011 was used for scans before 2007. Effective dose from fluoroscopy was directly estimated. All doses were reported in mSv. A cohort of 62 children had a total of 447 procedures. There were a total of 290 CT scans, 4293 radiographs, 147 magnetic resonance images, and 134 ventilation/perfusion scans. The average accumulated effective dose was 59.6 mSv for children who had completed all treatment, 13.0 mSv up to initial surgery, and 3.2 mSv for each subsequent epoch of treatment. CT scans accounted for 74% of total radiation dose. Children managed for TIS using a consistent protocol received iatrogenic radiation doses that were on average 4 times the estimated average US background radiation exposure of 3 mSv/yr. CT scans comprised 74% of the total

  18. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  19. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  20. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  1. Impact of ionizing radiation exposure on in vitro differentiation of preosteoblastic cell lines

    NASA Astrophysics Data System (ADS)

    Hu, Yueyuan; Lau, Patrick; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Bone demineralization of astronauts during residence in microgravity is a well known phe-nomenon during space travel. Besides altered gravity conditions, radiation risk is considered to be one of the major health hazards for astronauts in both orbital and interplanetary space. Un-til know, little is known about the effects of space radiation on the skeletal system especially on the bone forming osteoblasts. Accelerator facilities are used to simulate parts of the radiation environment in space. We examined the effects of heavy ion exposure on osteoblastic differ-entiation of murine preosteoblastic cell lines to gain insight into potential cellular mechanisms involved in bone cellular response after exposure to heavy ions. Therefore, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. mRNA levels were determined using quantitative real time reverse transcriptase PCR (qRT-PCR). Expression of a target gene was standardized to unregulated reference genes. We investigated the transcriptional regulation of Osteocalcin (OCN) as well as TGF-β1, p21(CDKN1A) and the bone specific transcription factor Runx2 (cbfa1). We investigated gene expression modula-tions after exposure to energetic carbon ions (35 MeV/u, 73 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. X-irradiation dose-dependently increased the mRNA levels of p21(CDKN1A) and Runx2 (cbfa1) whereas expression of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more pronounced effect on osteoblastic specific gene expression within the dif-ferentiation process. Collectively, our results indicate that heavy ions facilitate osteoblastic differentiation more effectively than X-ray. Using the proposed in vitro model we confirmed that exposure to ionizing radiation significantly

  2. “Estimating Regional Background Air Quality using Space/Time Ordinary Kriging to Support Exposure Studies”

    EPA Science Inventory

    Local-scale dispersion models are increasingly being used to perform exposure assessments. These types of models, while able to characterize local-scale air quality at increasing spatial scale, however, lack the ability to include background concentration in their overall estimat...

  3. Assessment of Health Consequences of Steel Industry Welders' Occupational Exposure to Ultraviolet Radiation.

    PubMed

    Zamanian, Zahra; Mortazavi, Saied Mohammad Javad; Asmand, Ebrahim; Nikeghbal, Kiana

    2015-01-01

    Welding is among the most important frequently used processes in the industry with a wide range of applications from the food industry to aerospace and from precision tools to shipbuilding. The aim of this study was to assess the level of steel industry welders' exposure to ultraviolet (UV) radiation and to investigate the health impacts of these exposures. In this case-control study, we measured the intensity of UV at the workers' wrist in Fars Steel Company through manufacture of different types of heavy metal structures, using UV-meter model 666230 made by Leybold Co., from Germany. The population under the study comprised 400 people including 200 welders as the exposed group and 200 nonwelders as the unexposed group. The results of the questionnaire were analyzed using SPSS software, version 19. The average, standard deviation, maximum and minimum of the UV at the welders' wrist were 0.362, 0.346, 1.27, and 0.01 μW/cm(2), respectively. There was a significantly (P < 0.01) higher incidence of cataracts, keratoconjunctivitis, dermatitis and erythema in welders than in their nonwelders. This study showed that the time period of UV exposure in welders is higher than the permissible contact threshold level. Therefore, considering the outbreak of the eye and skin disorders in the welders, decreasing exposure time, reducing UV radiation level, and using personal protective equipment seem indispensable. As exposure to UV radiation can be linked to different types of skin cancer, skin aging, and cataract, welders should be advised to decrease their occupational exposures.

  4. [Occupational risk related to optical radiation exposure in construction workers].

    PubMed

    Gobba, F; Modenese, A

    2012-01-01

    Optical Radiation is a relevant occupational risk in construction workers, mainly as a consequence of the exposure to the ultraviolet (UV) component of solar radiation (SR). Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma, squamous cell carcinoma of the skin and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in construction workers. The role of occupational physicians in prevention is fundamental.

  5. Diagnostic imaging and radiation exposure in inflammatory bowel disease

    PubMed Central

    Zakeri, Nekisa; Pollok, Richard CG

    2016-01-01

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282

  6. Radiation in Yolo County

    NASA Astrophysics Data System (ADS)

    Dickie, H.; Colwell, K.

    2013-12-01

    In today's post-nuclear age, there are many man-made sources of radioactivity, in addition to the natural background we expect from cosmic and terrestrial origins. While all atoms possess unstable isotopes, there are few that are abundant enough, energetic enough, and have long enough half-lives to pose a signicant risk of ionizing radiation exposure. We hypothesize a decreasing relative radiation measurement (in detected counts per minute [CPM]) at nine locations that might pose occupational or environmental hazard: 1. A supermarket produce aisle (living tissue has high concentration of 40K) 2. A hospital (medical imaging uses X-rays and radioactive dyes) 3. The electronics section of a superstore (high voltage electronics have the potential to produce ionizing radiation) 4. An electrical transformer (similar reasons) 5. An antique store (some ceramics and glazes use radioisotopes that are now outlawed) 6. A gasoline pump (processing and terrestrial isotope contamination might leave a radioactive residue) 7. A fertilized eld (phosphate rock contains uranium and thorium, in addition to potassium) 8. A house (hopefully mild background, but potential radon contamination) 9. A school (should be radiologically neutral) We tested the hypothesis by measuring 100 minutes of counts on a self-assembled MightyOhmTM Geiger counter at each location. Our results show that contrary to the hypothesized ordering, the house was the most radiologically active. We present possible explanations for the observed radiation levels, as well as possible sources of measurement error, possible consequences of prolonged exposure to the measured levels, and suggestions for decreasing exposure and environmental impact.

  7. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice

    PubMed Central

    Luo, Lan; Urata, Yoshishige; Yan, Chen; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Tou, Fang-Fang; Xie, Yucai; Li, Tao-Sheng

    2016-01-01

    Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks. PMID:27195709

  8. Large-scale anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1981-01-01

    Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.

  9. [Evaluation of radiation exposure of personnel in an orthopaedic and trauma operation theatre using the new real-time dosimetry system "dose aware"].

    PubMed

    Müller, M C; Strauss, A; Pflugmacher, R; Nähle, C P; Pennekamp, P H; Burger, C; Wirtz, D C

    2014-08-01

    There is a positive correlation between operation time and staff exposure to radiation during intraoperative use of C-arm fluoroscopy. Due to harmful effects of exposure to long-term low-dose radiation for both the patient and the operating team it should be kept to a minimum. AIM of this study was to evaluate a novel dosimeter system called Dose Aware® (DA) enabling radiation exposure feedback of the personal in an orthopaedic and trauma operation theatre in real-time. Within a prospective study over a period of four month, DA was applied by the operation team during 104 orthopaedic and trauma operations in which the C-arm fluoroscope was used in 2D-mode. During ten operation techniques, radiation exposure of the surgeon, the first assistant, the theatre nurse and the anaesthesiologist was evaluated. Seventy-three operations were analysed. The surgeon achieved the highest radiation exposure during dorsolumbar spinal osteosynthesis, kyphoplasty and screw fixation of sacral fractures. The first assistant received a higher radiation exposure compared to the surgeon during plate osteosynthesis of distal radius fractures (157 %), intramedullary nailing of pertrochanteric fractures (143 %) and dorsolumbar spinal osteosynthesis (240 %). During external fixation of ankle fractures (68 %) and screw fixation of sacral fractures (66 %) radiation exposure of the theatre nurse exceeded 50 % of the surgeon's radiation exposure. During plate osteosynthesis of distal radius fractures (157 %) and intramedullary splinting of clavicular fractures (115 %), the anaesthesiologist received a higher radiation exposure than the surgeon. The novel dosimeter system DA provides real-time radiation exposure feedback of the personnel in an orthopaedic and trauma operation theatre for the first time. Data of this study demonstrate that radiation exposure of the personnel depends on the operation type. The first assistant, the theatre nurse and the anaesthesiologist might be

  10. Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station.

    PubMed

    Halgamuge, Malka N; Yak, See Kye; Eberhardt, Jacob L

    2015-02-01

    The aim of this work was to study possible effects of environmental radiation pollution on plants. The association between cellular telephone (short duration, higher amplitude) and base station (long duration, very low amplitude) radiation exposure and the growth rate of soybean (Glycine max) seedlings was investigated. Soybean seedlings, pre-grown for 4 days, were exposed in a gigahertz transverse electromagnetic cell for 2 h to global system for mobile communication (GSM) mobile phone pulsed radiation or continuous wave (CW) radiation at 900 MHz with amplitudes of 5.7 and 41 V m(-1) , and outgrowth was studied one week after exposure. The exposure to higher amplitude (41 V m(-1)) GSM radiation resulted in diminished outgrowth of the epicotyl. The exposure to lower amplitude (5.7 V m(-1)) GSM radiation did not influence outgrowth of epicotyl, hypocotyls, or roots. The exposure to higher amplitude CW radiation resulted in reduced outgrowth of the roots whereas lower CW exposure resulted in a reduced outgrowth of the hypocotyl. Soybean seedlings were also exposed for 5 days to an extremely low level of radiation (GSM 900 MHz, 0.56 V m(-1)) and outgrowth was studied 2 days later. Growth of epicotyl and hypocotyl was found to be reduced, whereas the outgrowth of roots was stimulated. Our findings indicate that the observed effects were significantly dependent on field strength as well as amplitude modulation of the applied field. © 2015 Wiley Periodicals, Inc.

  11. Estimated Internal and External Radiation Exposure of Caregivers of Patients With Pediatric Neuroblastoma Undergoing 131I Metaiodobenzylguanidine Therapy: A Prospective Pilot Study.

    PubMed

    Han, Sangwon; Yoo, Seon Hee; Koh, Kyung-Nam; Lee, Jong Jin

    2017-04-01

    Current recommendations suggest that family members should participate in the care of children receiving in-hospital I metaiodobenzylguanidine (MIBG) therapy for neuroblastoma. The present study aimed to measure the external radiation exposure and estimate the internal radiation exposure of caregivers during the hospital stay for I MIBG therapy. Caregivers received radiation safety instructions and a potassium iodide solution for thyroid blockade before patient admission. External radiation exposure was determined using a personal pocket dosimeter. Serial 24-hour urine samples were collected from caregivers during the hospital stay. Estimated internal radiation exposure was calculated based on the urine activity. Twelve cases (mean age, 6.2 ± 3.5 years; range, 2-13 years) were enrolled. The mean administered activity was 233.3 ± 74.9 (range, 150.0-350.0) mCi. The mean external radiation dose was 5.8 ± 7.2 (range, 0.8-19.9) mSv. Caregivers of children older than 4 years had significantly less external radiation exposure than those of children younger than 4 years (1.9 ± 1.0 vs 16.4 ± 5.0 mSv; P = 0.012). The mean estimated internal radiation dose was 11.3 ± 10.2 (range, 1.0-29.8) μSv. Caregivers receive both external and internal radiation exposure while providing in-hospital care to children receiving I MIBG therapy for neuroblastoma. However, the internal radiation exposure was negligible compared with the external radiation exposure.

  12. Modelling of aircrew radiation exposure from galactic cosmic rays and solar particle events.

    PubMed

    Takada, M; Lewis, B J; Boudreau, M; Al Anid, H; Bennett, L G I

    2007-01-01

    Correlations have been developed for implementation into the semi-empirical Predictive Code for Aircrew Radiation Exposure (PCAIRE) to account for effects of extremum conditions of solar modulation and low altitude based on transport code calculations. An improved solar modulation model, as proposed by NASA, has been further adopted to interpolate between the bounding correlations for solar modulation. The conversion ratio of effective dose to ambient dose equivalent, as applied to the PCAIRE calculation (based on measurements) for the legal regulation of aircrew exposure, was re-evaluated in this work to take into consideration new ICRP-92 radiation-weighting factors and different possible irradiation geometries of the source cosmic-radiation field. A computational analysis with Monte Carlo N-Particle eXtended Code was further used to estimate additional aircrew exposure that may result from sporadic solar energetic particle events considering real-time monitoring by the Geosynchronous Operational Environmental Satellite. These predictions were compared with the ambient dose equivalent rates measured on-board an aircraft and to count rate data observed at various ground-level neutron monitors.

  13. Parental knowledge of radiation exposure in medical imaging used in the pediatric emergency department.

    PubMed

    Hartwig, Hans-David R; Clingenpeel, Joel; Perkins, Amy M; Rose, Whitney; Abdullah-Anyiwo, Joel

    2013-06-01

    We sought to quantify the knowledge base among parents and legal guardians presenting to our pediatric emergency department regarding radiation exposure during medical imaging and potential risks to children resulting from ionizing radiation. We sought to examine if a child's previous exposure to medical imaging changed caregiver knowledge base and discern caregivers' preference for future education on this topic. A prospective convenience sample survey was performed of caregivers who presented with their child to our tertiary pediatric emergency department. Parents or legal guardians (18-89 years) who accompanied a child (0-17 years) were eligible for inclusion and approached for enrollment. A structured questionnaire was administered by trained interviewers, and a chart review was conducted to ascertain if their child had a history of previous imaging. Sixty percent of caregivers interviewed (n = 205 of 340) did not associate any long-term negative effects with medical imaging. Among participants who did express a perceived risk from medical imaging radiation exposure, only 50% could indicate a known negative effect from exposure. We found no significant association between a child having had documented imaging studies and awareness of long-term negative effects (P = 0.22). Participants preferred to learn more about this topic from an Internet-based resource (50%), informational pamphlet (38%), or via treating physician (33%). Parents and legal guardians are largely unaware that exposure to radiation during medical imaging carries an inherent risk for their child. Health care providers wishing to educate caregivers should utilize reliable Internet sources, educational pamphlets, and direct communication.

  14. Klebsiella pneumonia, a Microorganism that Approves the Non-linear Responses to Antibiotics and Window Theory after Exposure to Wi-Fi 2.4 GHz Electromagnetic Radiofrequency Radiation

    PubMed Central

    Taheri, M.; Mortazavi, S. M. J.; Moradi, M.; Mansouri, Sh.; Nouri, F.; Mortazavi, S. A. R.; Bahmanzadegan, F.

    2015-01-01

    Background Drug resistance is widely believed to be an increasingly serious threat to global public health. We have previously reported that short term exposure of microorganisms to diagnostic ultrasound waves could significantly alter their sensitivity to antibiotics. In our previous studies, Klebsiella pneumoniae showed major differences in the sensitivity to antibiotics in exposed and non-exposed samples. This study was aimed at investigating the alteration of antibiotic resistance of Klebsiella pneumonia, after exposure to Wi-Fi 2.4 GHz electromagnetic radiofrequency radiation. Materials and Methods In this in vitro study, three replicate agar plates were used for each test. The antibiotic susceptibility test was carried out using disc diffusion method on Mueller Hinton agar plates and the inhibition zones in both control and exposed groups were measured. A common Wi-Fi router was used in this study as the radiofrequency exposure source. Irradiated samples were exposed to Wi-Fi radiofrequency radiation for 3, 4.5 and 8 hours. Results Statistically significant variations of sensitivity to antibiotics were found for all studied antibiotics after 4.5 hours of RF exposure, compared to non-exposed bacteria. Interestingly, the mean diameters of the inhibition zones after 3 hours of exposure were less than those exposed for 4.5 hours. Following this rise in the sensitivity to antibiotics, a fall was observed in the bacteria exposed for 8 hours for all studied antibiotics. Conclusion The findings of this study show a statistically significant rise in the sensitivity of Klebsiella pneumoniae to different antibiotics after 4.5 hours of exposure to 2.4 GHz Wi-Fi radiation, followed by a fall after 8 hours of exposure. These observations can be interpreted by the concept of non-linearity in the responses of Klebsiella pneumoniae to different antibiotics after exposure to electromagnetic radiofrequency radiation. As in this study a minimum level of effect was needed for the

  15. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    DTIC Science & Technology

    2016-08-01

    Acronyms and Symbols ARA Applied Research Associates, Inc. ARS Acute radiation syndrome d Days DE Differential Evolution DTRA Defense Threat...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...epithelial cells to acute radiation alone. The model has been modified for improved radiation response, and an addition to the model allows for thermal injury

  16. Radiation as a Risk Factor for Cardiovascular Disease

    PubMed Central

    Moulder, John E.; Hopewell, John W.

    2011-01-01

    Abstract Humans are continually exposed to ionizing radiation from terrestrial sources. The two major contributors to radiation exposure of the U.S. population are ubiquitous background radiation and medical exposure of patients. From the early 1980s to 2006, the average dose per individual in the United States for all sources of radiation increased by a factor of 1.7–6.2 mSv, with this increase due to the growth of medical imaging procedures. Radiation can place individuals at an increased risk of developing cardiovascular disease. Excess risk of cardiovascular disease occurs a long time after exposure to lower doses of radiation as demonstrated in Japanese atomic bomb survivors. This review examines sources of radiation (atomic bombs, radiation accidents, radiological terrorism, cancer treatment, space exploration, radiosurgery for cardiac arrhythmia, and computed tomography) and the risk for developing cardiovascular disease. The evidence presented suggests an association between cardiovascular disease and exposure to low-to-moderate levels of radiation, as well as the well-known association at high doses. Studies are needed to define the extent that diagnostic and therapeutic radiation results in increased risk factors for cardiovascular disease, to understand the mechanisms involved, and to develop strategies to mitigate or treat radiation-induced cardiovascular disease. Antioxid. Redox Signal. 15, 1945–1956. PMID:21091078

  17. Contamination and radiation exposure in central Europe after the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayer, A.; Mueck, K.; Loosli, H.H.

    1996-06-01

    Ten years ago, on 26 April 1986, as a consequence of an accident in Unit 4 of the Chernobyl-NPP, a large quantity of radioactive material was released into the atmosphere for some days. This material was spread over wide areas of Europe. Due to variable weather conditions the activity concentrations in air varied considerably in different regions. Also as a consequence of large variations in precipitation intensity-particularly in the regions of Southeastern Germany, Austria and Southern Switzerland-up to 100 kBq m{sup -2} {sup 137}Cs were deposited on the soil. Due to fallout, washout, and/or rainout, a range of foodstuffs weremore » contaminated, and foodstuffs directly exposed to the fallout [vegetables and green fodder (grass)] showed the highest contamination levels. Consequently, milk also showed a significantly increased activity concentration, in particular of {sup 131}I. In the following years contamination in all kinds of foodstuffs decreased, but elevated contamination levels in special pathways like venison and mushrooms are still observed to date. This contamination resulted in additional exposure, mainly due to external radiation from ground and from consumption of contaminated food. The radiation exposure in the most contaminated areas was calculated on the basis of model assumptions and was found to be about 1 mSv during the first year after the accident. Using this model, the ingestion pathway was overestimated by at least a factor of two. This additional exposure decreased and is now less than 1 % on average; in the most contaminated areas, this is a few percent of the average natural radiation exposure.« less

  18. Exploring the Large Scale Anisotropy in the Cosmic Microwave Background Radiation at 170 GHz

    NASA Astrophysics Data System (ADS)

    Ganga, Kenneth Matthew

    1994-01-01

    In this thesis, data from the Far Infra-Red Survey (FIRS), a balloon-borne experiment designed to measure the large scale anisotropy in the cosmic microwave background radiation, are analyzed. The FIRS operates in four frequency bands at 170, 280, 480, and 670 GHz, using an approximately Gaussian beam with a 3.8 deg full-width-at-half-maximum. A cross-correlation with the COBE/DMR first-year maps yields significant results, confirming the DMR detection of anisotropy in the cosmic microwave background radiation. Analysis of the FIRS data alone sets bounds on the amplitude of anisotropy under the assumption that the fluctuations are described by a Harrison-Peebles-Zel'dovich spectrum and further analysis sets limits on the index of the primordial density fluctuations for an Einstein-DeSitter universe. Galactic dust emission is discussed and limits are set on the magnitude of possible systematic errors in the measurement.

  19. Occupational exposure to solar radiation in Australia: who is exposed and what protection do they use?

    PubMed

    Carey, Renee N; Glass, Deborah C; Peters, Susan; Reid, Alison; Benke, Geza; Driscoll, Timothy R; Fritschi, Lin

    2014-02-01

    Solar ultraviolet radiation (UVR) exposure is widely recognised as a leading cause of skin cancer, with outdoor workers being particularly at risk. Little is known on a national level about how many workers are exposed to solar radiation, the circumstances in which they are exposed, or their use of protective measures. The Australian Work Exposures Study (AWES) was a cross-sectional telephone survey of 5,023 Australian workers aged 18 to 65. A subset of 1,113 respondents who indicated they worked outdoors was asked about their exposure to solar radiation in terms of the amount of time they spent working outdoors, their working location and their use of sun protective measures. A total of 1,100 respondents (22% overall) were assessed as being exposed to solar radiation at work. Exposure was more likely among males and those residing in lower socioeconomic and regional areas. Sun protection was used by 95% of the respondents, although the level of protection varied among workers, with only 8.7% classified as fully protected. This study provides valuable information regarding solar exposure that has not previously been available. The results of this study will inform strategies for risk reduction. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  20. Lead exposure among automobile radiator repair workers and their children in New York City.

    PubMed

    Nunez, C M; Klitzman, S; Goodman, A

    1993-05-01

    Despite a comprehensive Occupational Safety and Health Administration lead standard, exposure to lead continues in many industries. This paper describes a blood lead screening and education program for automobile radiator repair workers and their families in New York City. Results showed that 67% of automobile radiator repair workers (n = 62) in 89% of the shops tested (n = 24) had blood lead levels in excess of 25 micrograms/dl. The vast majority of workers had never been tested previously, and none had received health and safety training regarding occupational lead exposure. Although none of the workers' children's blood lead levels were in excess of then-current guidelines, several had levels which may be associated with subclinical toxicity and in excess of the revised Centers for Disease Control guidelines of 10 micrograms/dl. This project demonstrates that lead exposure in the automotive radiator repair industry continues to be widespread and that local health departments can assist in hazard identification and remediation.

  1. Performance deficit produced by partial body exposures to space radiation

    USDA-ARS?s Scientific Manuscript database

    On exploratory class missions to other planets, astronauts will be exposed to types of radiation (particles of high energy and charge [HZE particles]) that are not experienced in low earth orbit, where the space shuttle operates. Previous research has shown that exposure to HZE particles can affect...

  2. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    ScienceCinema

    Wiley, Al; Sugarman, Steve

    2018-02-07

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  3. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, Al; Sugarman, Steve

    2015-03-08

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  4. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation

    PubMed Central

    Li, Shuang; Zhang, Qing-Zhao; Zhang, De-Qin; Feng, Jiang-Bin; Luo, Qun; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Gao, Ling; Liu, Qing-Jie

    2017-01-01

    The identification of rapid, sensitive and high-throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH-1 human lymphoblastoid cells, following exposure to γ-rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF-15 gene expression in AHH-1 cells and human peripheral blood lymphocytes (HPBLs). GDF-15 mRNA and protein expression levels following exposure to γ-rays and neutron radiation were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis in AHH-1 cells. In addition, alterations in GDF-15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF-15 mRNA and protein expression levels in AHH-1 cells were significantly upregulated following exposure to γ-ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose-response relationship was identified in AHH-1 cells at γ-ray doses between 0.4 and 1.6 Gy. GDF-15 mRNA levels in HPBLs were significantly upregulated following exposure to γ-ray doses between 1 and 8 Gy, within 4–48 h following irradiation. These results suggested that significant time- and dose-dependent alterations in GDF-15 mRNA and protein expression occur in AHH-1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF-15 gene expression may have potential as a biomarker to evaluate radiation exposure. PMID:28440431

  5. The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study

    NASA Astrophysics Data System (ADS)

    Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.

    2017-12-01

    The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon

  6. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems.

    PubMed

    Yakymenko, I; Sidorik, E; Kyrylenko, S; Chekhun, V

    2011-06-01

    In this review we discuss alarming epidemiological and experimental data on possible carcinogenic effects of long term exposure to low intensity microwave (MW) radiation. Recently, a number of reports revealed that under certain conditions the irradiation by low intensity MW can substantially induce cancer progression in humans and in animal models. The carcinogenic effect of MW irradiation is typically manifested after long term (up to 10 years and more) exposure. Nevertheless, even a year of operation of a powerful base transmitting station for mobile communication reportedly resulted in a dramatic increase of cancer incidence among population living nearby. In addition, model studies in rodents unveiled a significant increase in carcinogenesis after 17-24 months of MW exposure both in tumor-prone and intact animals. To that, such metabolic changes, as overproduction of reactive oxygen species, 8-hydroxi-2-deoxyguanosine formation, or ornithine decarboxylase activation under exposure to low intensity MW confirm a stress impact of this factor on living cells. We also address the issue of standards for assessment of biological effects of irradiation. It is now becoming increasingly evident that assessment of biological effects of non-ionizing radiation based on physical (thermal) approach used in recommendations of current regulatory bodies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, requires urgent reevaluation. We conclude that recent data strongly point to the need for re-elaboration of the current safety limits for non-ionizing radiation using recently obtained knowledge. We also emphasize that the everyday exposure of both occupational and general public to MW radiation should be regulated based on a precautionary principles which imply maximum restriction of excessive exposure.

  7. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  8. Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: an mFISH study.

    PubMed

    Hande, M Prakash; Azizova, Tamara V; Burak, Ludmilla E; Khokhryakov, Valentin F; Geard, Charles R; Brenner, David J

    2005-09-01

    Long-lived, sensitive, and specific biomarkers of particular mutagenic agents are much sought after and potentially have broad applications in the fields of cancer biology, epidemiology, and prevention. Many clastogens induce a spectrum of chromosome aberrations, and some of them can be exploited as biomarkers of exposure. Densely ionizing radiation, for example, alpha particle radiation (from radon or plutonium) and neutron radiation, preferentially induces complex chromosome aberrations, which can be detected by the 24-color multifluor fluorescence in situ hybridization (mFISH) technique. We report the detection and quantification of stable complex chromosome aberrations in lymphocytes of healthy former nuclear-weapons workers, who were exposed many years ago to plutonium, gamma rays, or both, at the Mayak weapons complex in Russia. We analyzed peripheral-blood lymphocytes from these individuals for the presence of persistent complex chromosome aberrations. A significantly elevated frequency of complex chromosome translocations was detected in the highly exposed plutonium workers but not in the group exposed only to high doses of gamma radiation. No such differences were found for simple chromosomal aberrations. The results suggest that stable complex chromosomal translocations represent a long-lived, quantitative, low-background biomarker of densely ionizing radiation for human populations exposed many years ago. (c) 2005 Wiley-Liss, Inc.

  9. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    PubMed

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  10. Knowledge of outdoor workers on the effects of natural UV radiation and methods of protection against exposure.

    PubMed

    Hault, K; Rönsch, H; Beissert, S; Knuschke, P; Bauer, A

    2016-04-01

    The most important but influenceable risk factor in the development of skin cancer is the unprotected exposure to solar ultraviolet (UV) radiation. In order to assure adequate and effective protection against UV exposure, a level of knowledge about solar radiation and its effects is required. The objective of this study was to assess the knowledge of workers in outdoor professions on the effects of natural UV radiation and methods of protection against exposure. Forty outdoor workers were given a standardized questionnaire designed to ascertain their level of knowledge. The majority of participants knew exposure to solar radiation can be detrimental depending on exposure time. Eighty-three percentage recognized that people working regularly in an outdoor environment may be at risk due to high exposure. Long-sleeved clothing plus headgear and sunscreen containing sun-protecting substances were deemed adequate methods of protection by 83% and 85% respectively. Seventy percentage of the outdoor workers were familiar with the definition of the sun protection factor (SPF), yet only 25% correctly identified the amount of sunscreen needed to achieve the SPF as indicated on the product. A mere 8% of participants knew that symptoms of a sunburn first became apparent 3 h after sun exposure and only 18% were able to accurately gauge the amount of time they could spend in the sun before developing one. Although 30% had heard of the ultraviolet index (UVI), only 13% understood that protecting your skin using additional measures is recommended as of UVI 3. Overall, 30% of the outdoor workers thought themselves sufficiently protected against the harmful effects of the sun. While the participants of this study had a basic fundamental understanding of the effects of solar radiation and methods of protection against exposure, there remains an urgent need for further clarification across all demographic groups. © 2016 European Academy of Dermatology and Venereology.

  11. Far Infrared Spectrometry of the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  12. Electromagnetic navigation reduces surgical time and radiation exposure for proximal interlocking in retrograde femoral nailing.

    PubMed

    Somerson, Jeremy S; Rowley, David; Kennedy, Chad; Buttacavoli, Frank; Agarwal, Animesh

    2014-07-01

    To compare the time required for proximal locking screw placement between a standard freehand technique and the navigated technique, and to quantify the reduction in ionizing radiation exposure. A fresh frozen cadaver model was used for 48 proximal interlocking screw procedures. Each procedure consisted of insertion of 2 anteroposterior locking screws. Standard fluoroscopic technique was used for 24 procedures, and an electromagnetic navigation system was used for the remaining 24 procedures. Procedure duration was recorded using an electronic timer and radiation doses were documented. Mean total insertion time for both proximal interlocking screws was 405 ± 165.7 seconds with the freehand technique and 311 ± 78.3 seconds in the navigation group (P = 0.002). All procedures resulted in successful locking screw placement. Mean ionizing radiation exposure time for proximal locking was 29.5 ± 12.8 seconds. Proximal locking screw insertion using the navigation technique evaluated in this work was significantly faster than the standard fluoroscopic method. The navigated technique is effective and has the potential to prevent ionizing radiation exposure.

  13. Cataract frequency and subtypes involved in workers assessed for their solar radiation exposure: a systematic review.

    PubMed

    Modenese, Alberto; Gobba, Fabriziomaria

    2018-04-16

    Cataract is currently the primary cause of blindness worldwide, and one of its main risk factors is solar ultraviolet radiation exposure. According to the localization of lens opacities, three main subtypes of cataract are recognized: nuclear, cortical and posterior subcapsular cataract. One of the main determinants of individual long-term solar radiation exposure is outdoor work. We systematically reviewed scientific literature from the last 20 years to update the recent development of research on the risk of cataract in outdoor workers and on the specific subtypes involved, also investigating the methods applied to evaluate the occupational risk. A total of 15 studies were included in the review, of which 12 showed a positive association. The studies confirm the relationship of long-term occupational solar radiation exposure with cortical cataract and give new support for nuclear cataract, although no substantial new data were available to support a relation with the posterior subcapsular subtype. In most of the studies, the exposure assessment was not adequate to support a representative evaluation of the ocular risk; however, outdoor work is clearly a relevant risk factor for cataract. Further research providing a better evaluation of the relation between solar radiation exposure levels and lens damage in workers is needed and aimed to establish adequate occupational exposure limits and better preventive measures, studying also their effectiveness. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Radiation exposure of contrast-enhanced spectral mammography compared with full-field digital mammography.

    PubMed

    Jeukens, Cécile R L P N; Lalji, Ulrich C; Meijer, Eduard; Bakija, Betina; Theunissen, Robin; Wildberger, Joachim E; Lobbes, Marc B I

    2014-10-01

    Contrast-enhanced spectral mammography (CESM) shows promising initial results but comes at the cost of increased dose as compared with full-field digital mammography (FFDM). We aimed to quantitatively assess the dose increase of CESM in comparison with FFDM. Radiation exposure-related data (such as kilovoltage, compressed breast thickness, glandularity, entrance skin air kerma (ESAK), and average glandular dose (AGD) were retrieved for 47 CESM and 715 FFDM patients. All examinations were performed on 1 mammography unit. Radiation dose values reported by the unit were validated by phantom measurements. Descriptive statistics of the patient data were generated using a statistical software package. Dose values reported by the mammography unit were in good qualitative agreement with those of phantom measurements. Mean ESAK was 10.5 mGy for a CESM exposure and 7.46 mGy for an FFDM exposure. Mean AGD for a CESM exposure was 2.80 mGy and 1.55 mGy for an FFDM exposure. Compared with our institutional FFDM, the AGD of a single CESM exposure is increased by 1.25 mGy (+81%), whereas ESAK is increased by 3.07 mGy (+41%). Dose values of both techniques meet the recommendations for maximum dose in mammography.

  15. Comparative MicroRNA Expression Patterns in Fibroblasts after Low and High Doses of Low-LET Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia

    2007-01-01

    Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2

  16. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures.

    PubMed

    Germano, Joseph J; Day, Gina; Gregorious, David; Natarajan, Venkataraman; Cohen, Todd

    2005-09-01

    The purpose of this study was to evaluate a novel disposable lead-free radiation protection drape for decreasing radiation scatter during electrophysiology procedures. In recent years, there has been an exponential increase in the number of electrophysiology (EP) procedures exposing patients, operators and laboratory staff to higher radiation doses. The RADPAD was positioned slightly lateral to the incision site for pectoral device implants and superior to the femoral vein during electrophysiology studies. Each patient served as their own control and dosimetric measurements were obtained at the examiner's elbow and hand. Radiation badge readings for the operator were obtained three months prior to RADPAD use and three months after introduction. Radiation dosimetry was obtained in twenty patients: 7 electrophysiology studies, 6 pacemakers, 5 catheter ablations, and 2 implantable cardioverter-defibrillators. Eleven women and nine men with a mean age of 63 +/- 4 years had an average fluoroscopy time of 2.5 +/- 0.42 minutes per case. Mean dosimetric measurements at the hand were reduced from 141.38 +/- 24.67 to 48.63 +/- 9.02 milliroentgen (mR) per hour using the protective drape (63% reduction; p < 0.0001). Measurements at the elbow were reduced from 78.78 +/- 7.95 mR per hour to 34.50 +/- 4.18 mR per hour using the drape (55% reduction; p < 0.0001). Badge readings for three months prior to drape introduction averaged 2.45 mR per procedure versus 1.54 mR per procedure for 3 months post-initiation (37% reduction). The use of a novel radiation protection surgical drape can significantly reduce scatter radiation exposure to staff and operators during a variety of EP procedures.

  17. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    PubMed

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  18. Public safety assessment of electromagnetic radiation exposure from mobile base stations.

    PubMed

    Alhekail, Z O; Hadi, M A; Alkanhal, M A

    2012-09-01

    Exposure of the general public to electromagnetic radiation originating from randomly selected GSM/WCDMA base stations in Riyadh, Kingdom of Saudi Arabia has been assessed in the context of the International Commission on Non-Ionising Radiation Protection (ICNIRP) guidelines. The purpose of the measurement was to record the maximum power density of signals to estimate possible worst case exposure at each measurement location. These power density measurements were carried out at 60 mobile base stations located in different regions of the city. For each of these sites, three sectors were operational, yielding a total of 180 sectors. Two positions were identified per site with the greatest power density values. Exposures from these base stations were generally found to be in the range of 0.313 to 0.00000149% of the ICNIRP general public reference level, and the greatest exposure near any of the base stations was 21.96 mW m(-2) for a wideband measurement in the 75-3000 MHz frequency range. Analysis of the measured data reveals several trends for different mobile bands with respect to maximum exposure in those locations. Additionally, a simplified calculation method for the electromagnetic fields was used to compare calculated and the measured data. It was determined, on the basis of both results of the measurements and calculations carried out for these selected base stations, that members of the public would not be exposed to in excess of a small fraction of the ICNIRP guidelines at any of those sites. These are first such measurements to be made in the Middle East and provide assurance that exposures in this region of the world do not seem to be any greater than elsewhere.

  19. Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation

    PubMed Central

    Li, Xiaoping; Schilkey, Faye; Smith, Geoffrey B.

    2018-01-01

    Natural ionizing background radiation has exerted a constant pressure on organisms since the first forms of life appeared on Earth, so that cells have developed molecular mechanisms to avoid or repair damages caused directly by radiation or indirectly by radiation-induced reactive oxygen species (ROS). In the present study, we investigated the transcriptional effect of depriving Shewanella oneidensis cultures of background levels of radiation by growing the cells in a mine 655 m underground, thus reducing the dose rate from 72.1 to 0.9 nGy h-1 from control to treatment, respectively. RNASeq transcriptome analysis showed the differential expression of 4.6 and 7.6% of the S. oneidensis genome during early- and late-exponential phases of growth, respectively. The greatest change observed in the treatment was the downregulation of ribosomal proteins (21% of all annotated ribosomal protein genes during early- and 14% during late-exponential) and tRNA genes (14% of all annotated tRNA genes in early-exponential), indicating a marked decrease in protein translation. Other significant changes were the upregulation of membrane transporters, implying an increase in the traffic of substrates across the cell membrane, as well as the up and downregulation of genes related to respiration, which could be interpreted as a response to insufficient oxidants in the cells. In other reports, there is evidence in multiple species that some ROS not just lead to oxidative stress, but act as signaling molecules to control cellular metabolism at the transcriptional level. Consistent with these reports, several genes involved in the metabolism of carbon and biosynthesis of amino acids were also regulated, lending support to the idea of a wide metabolic response. Our results indicate that S. oneidensis is sensitive to the withdrawal of background levels of ionizing radiation and suggest that a transcriptional response is required to maintain homeostasis and retain normal growth. PMID:29768440

  20. SCALING THE PHYSIOLOGICAL EFFECTS OF EXPOSURE TO RADIOFREQUENCY ELECTROMAGNETIC RADIATION: CONSEQUENCES OF BODY SIZE

    EPA Science Inventory

    The authors have demonstrated that a comparative analysis of the physiological effects of exposure of laboratory mammals to radiofrequency electromagnetic radiation (RFR) may be useful in predicting exposure thresholds for humans if the effect is assumed to be due only to heating...

  1. Analysis of Policy and Doctrine Supporting the Management of Operational Exposures to Ionizing Radiation

    DTIC Science & Technology

    2016-06-01

    discussion of the various subsyndromes of acute radiation syndrome , such as the hematopoietic syndrome , gastrointestinal syndrome , and neurovascular...Protection (Washington, DC: USAF, September 2011), p. 16. 8 probabilities as a function of acute radiation dose. Paragraph 3.d. discusses Risk... syndrome . It includes the use of dosimetry as well as biodosimetry to estimate radiation exposure and prognosis. It also provides guidance on the

  2. Physician exposure to ionizing radiation during trauma resuscitation: A prospective clinical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, E.L.; Singer, C.M.; Benedict, S.H.

    1990-02-01

    A prospective study of emergency physician whole body and extremity exposure to ionizing radiation during trauma resuscitation over a three-month period was conducted. Radiation film badges and thermoluminescent dosimeter finger rings were permanently attached to leaded aprons worn by emergency medicine residents during all trauma resuscitations. One set of apron and finger ring dosimeters was designated for the resident who managed the airway and stabilized the neck, when necessary, during cervical spine radiography (A-CS resident). A separate set of dosimeters was designated for the resident supervising the resuscitation. During the study period, 150 major trauma patients requiring 481 radiographic studiesmore » were treated. The mean monthly cumulative whole body exposures were 136.7 +/- 85.0 and 103.3 +/- 60.3 mrem for A-CS and supervising residents, respectively. The mean weekly cumulative extremity exposures were 523.3 +/- 611.0 and 46.7 +/- 18.6 mrem for A-CS and supervising residents, respectively. Calculated whole body exposures per patient were 2.7 mrem for the A-CS resident and 2.1 mrem for the supervising resident. Calculated extremity exposures per patient were 41.9 +/- 48.9 and 3.7 +/- 1.5 mrem, respectively. To exceed the annual whole body exposure limit established by the National Council of Radiologic Protection, the A-CS resident, working 200 shifts per year, would have to treat 9.2 trauma patients per shift. To exceed the annual extremity exposure limit, the A-CS resident would have to treat 5.9 trauma patients per shift. Of note, European exposure limits are 10% of current US limits. We conclude that significant exposures may occur to physicians working in trauma centers and that the use of shielding devices is indicated.« less

  3. Exposure of the examiner to radiation during myelography versus radiculography and root block: A comparative study.

    PubMed

    Yamane, Kentaro; Kai, Nobuo; Miyamoto, Tadashi; Matsushita, Tomohiro

    2017-03-01

    Exposure to radiation over many years prompts concerns regarding potential health-related effects, particularly the incidence of cataracts and the development of cancer. The purpose of this study was to examine and compare the exposure of the examiner to radiation during myelography versus radiculography and root block. A total of 114 examinations were performed in our institute in the 6 months. Sixty-two examinations were performed during myelography in the first 3 months (MG group), while 52 were performed during radiculography and root block in the last 3 months (RB group). The examiner wore a torso protector, a neck protector, radiation protection gloves, and radiation protection glasses. Optically stimulated luminescence (OSL) dosimeter badges were placed on both the inside and the outside of each protector. The dosimeters were exchanged every month. Radiation doses (mSv) were measured as the integrated radiation quantity every month from the OSL dosimeters. The effective dose and the equivalent doses of hand, skin, and eyes were investigated. The mean equivalent doses were significantly lower outside the neck, torso, eye protectors, and inside the torso protector in the RB group than in the MG group. Conversely, the mean equivalent dose was significantly lower outside the hand protector in the MG group than in the RB group. The use of a neck protector significantly decreased the effective dose compared to the non-use of a neck protector in the RB group. The present study showed the standard radiation exposure to the examiner during myelography, radiculography, and root block. Receiving full protection including a neck protector and protection gloves is an easy and reliable means to reduce radiation exposure. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  4. Cumulative exposure to medical sources of ionizing radiation in the first year after pediatric heart transplantation.

    PubMed

    McDonnell, Alicia; Downing, Tacy E; Zhu, Xiaowei; Ryan, Rachel; Rossano, Joseph W; Glatz, Andrew C

    2014-11-01

    Pediatric heart transplant recipients undergo a variety of radiologic tests with the attendant risk of exposure to ionizing radiation. We sought to quantify and describe the cumulative exposure to all forms of medical radiation during the first year after pediatric heart transplantation and identify factors associated with higher exposure. Pediatric patients who received a heart transplant between January 2009 and May 2012 with follow-up at our institution were retrospectively reviewed. Patients were included if they survived through 1 year and the first coronary angiography. All medical testing using ionizing radiation performed during follow-up was compiled, and exposures were converted to effective dose (mSv). Included were 31 patients who underwent heart transplantation at a median age of 13.6 years (range, 0.3-18.3 years). The median number of radiologic tests performed was 38 (range, 18-154), including 8 catheterizations (range, 2-12), and 28 X-ray images (range, 11-135). Median cumulative effective dose was 53.5 mSv (range, 10.6-153.5 mSv), of which 91% (range, 34%-98%) derived from catheterizations, 31% (range, 8%-89%) of the exposure occurred during the transplant admission, 59% (range, 11%-88%) during planned follow-up, and 3% (0%-56%) during unplanned follow-up. Older age at transplant was a risk factor for increased exposure (p = 0.006). When adjusted for age, a trend toward increased exposure was shown for congenital heart disease as the indication for transplant (p = 0.08), pre-sensitization (p = 0.12), and positive crossmatch (p = 0.09). Pediatric heart transplant patients are exposed to significant amounts of ionizing radiation during the first post-transplant year, most during scheduled catheterization. As survival improves, considering the long-term risks associated with these levels of exposure is important. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    PubMed

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  6. Residential exposure from extremely low frequency electromagnetic field (ELF EMF) radiation

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Shamesh Raj; Tukimin, Roha

    2018-01-01

    ELF EMF radiation have received considerable attention as a potential threat to the safety and health of people living in the vicinity of high voltage transmission lines, electric distribution substations, power stations and even in close proximity to electronics and electrical household appliances. The paper highlights the study on the ELF EMF safety assessment performed at residences comprising of an owner-occupied house, a completed vacant house and an under construction condominium. The objectives of this study were to determine the ELF EMF radiation exposure level from the high voltage transmission line, electric distribution substation, power station and electrical household appliances in the residences, and to assess the potential exposure received by the occupants at the assessed locations. The results were logged in the electric and magnetic field strength with the units of volt per meter (V/m) and miliGauss (mG) respectively. The instrument setup and measurement protocols during the assessment were adopted from standard measurement method and procedures stipulated under the Institute of Electrical and Electronics Engineers (IEEE) Standard. The results were compared with the standards recommended in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines.

  7. Clinical distinctions of radiation sickness with exposure of different parts of the human body to radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nevskaya, G.F.; Abramova, G.M.; Volkova, M.A.

    1982-01-12

    The clinical picture of radiation sickness of 139 radiological patients exposed to local irradition of the head, chest, and stomach with efficient doses of 210 rad was examined. It was found that at fractionated local irraditions the clinical symptom-complex of radiation sickness was identifical to that seen as a result of total-body irradiation. During head irradiation the major symptom was headache and during stomach irradiation nausea. The severity level of radiation damage measured with respect to the clinical symptom-complex as a whole with the aid of the bioinformation model was similar during irradiations of the head and stomach, much highermore » during irradiation of the chest. During head and stomach irradiations the severity level of radiation damage was proportional to the efficient dose. During chest irradiation there was no correlation between the severity level and the exposure to doses of 210 rad.« less

  8. Individual, family background, and contextual explanations of racial and ethnic disparities in youths' exposure to violence.

    PubMed

    Zimmerman, Gregory M; Messner, Steven F

    2013-03-01

    We used data from the Project on Human Development in Chicago Neighborhoods to examine the extent to which individual, family, and contextual factors account for the differential exposure to violence associated with race/ethnicity among youths. Logistic hierarchical item response models on 2344 individuals nested within 80 neighborhoods revealed that the odds of being exposed to violence were 74% and 112% higher for Hispanics and Blacks, respectively, than for Whites. Appreciable portions of the Hispanic-White gap (33%) and the Black-White gap (53%) were accounted for by family background factors, individual differences, and neighborhood factors. The findings imply that programs aimed at addressing the risk factors for exposure to violence and alleviating the effects of exposure to violence may decrease racial/ethnic disparities in exposure to violence and its consequences.

  9. Individual, Family Background, and Contextual Explanations of Racial and Ethnic Disparities in Youths’ Exposure to Violence

    PubMed Central

    Messner, Steven F.

    2013-01-01

    We used data from the Project on Human Development in Chicago Neighborhoods to examine the extent to which individual, family, and contextual factors account for the differential exposure to violence associated with race/ethnicity among youths. Logistic hierarchical item response models on 2344 individuals nested within 80 neighborhoods revealed that the odds of being exposed to violence were 74% and 112% higher for Hispanics and Blacks, respectively, than for Whites. Appreciable portions of the Hispanic–White gap (33%) and the Black–White gap (53%) were accounted for by family background factors, individual differences, and neighborhood factors. The findings imply that programs aimed at addressing the risk factors for exposure to violence and alleviating the effects of exposure to violence may decrease racial/ethnic disparities in exposure to violence and its consequences. PMID:23327266

  10. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  11. Technologist radiation exposure in routine clinical practice with 18F-FDG PET.

    PubMed

    Guillet, Benjamin; Quentin, Pierre; Waultier, Serge; Bourrelly, Marc; Pisano, Pascale; Mundler, Olivier

    2005-09-01

    The use of 18F-FDG for clinical PET studies increases technologist radiation dose exposure because of the higher gamma-radiation energy of this isotope than of other conventional medical gamma-radiation-emitting isotopes. Therefore, 18F-FDG imaging necessitates stronger radiation protection requirements. The aims of this study were to assess technologist whole-body and extremity exposure in our PET department and to evaluate the efficiency of our radiation protection devices (homemade syringe drawing device, semiautomated injector, and video tracking of patients). Radiation dose assessment was performed for monodose as well as for multidose 18F-FDG packaging with both LiF thermoluminescence dosimeters (TLD) and electronic personal dosimeters (ED) during 5 successive 18F-FDG PET steps (from syringe filling to patient departure). The mean +/- SD total effective doses received by technologists (n = 50) during all of the working steps were 3.24 +/- 2.1 and 3.01 +/- 1.4 microSv, respectively, as measured with ED and TLD (345 +/- 84 MBq injected). These values were confirmed by daily TLD technologist whole-body dose measurements (2.98 +/- 1.8 microSv; 294 +/- 78 MBq injected; n = 48). Finger irradiation doses during preparation of single 18F-FDG syringes were 204.9 +/- 24 and 198.4 +/- 23 microSv with multidose vials (345 +/- 93 MBq injected) and 127.3 +/- 76 and 55.9 +/- 47 microSv with monodose vials (302 +/- 43 MBq injected) for the right hand and the left hand, respectively. The protection afforded by the semiautomated injector, estimated as the ratio of the doses received by TLD placed on the syringe shield and on the external face of the injector, was near 2,000. These results showed that technologist radiation doses in our PET department were lower than those reported in the literature. This finding may be explained by the use of a homemade syringe drawing device, a semiautomated injector, and patient video tracking, allowing a shorter duration of contact between

  12. Public Exposure from Indoor Radiofrequency Radiation in the City of Hebron, West Bank-Palestine.

    PubMed

    Lahham, Adnan; Sharabati, Afefeh; ALMasri, Hussien

    2015-08-01

    This work presents the results of measured indoor exposure levels to radiofrequency (RF) radiation emitting sources in one of the major cities in the West Bank-the city of Hebron. Investigated RF emitters include FM, TV broadcasting stations, mobile telephony base stations, cordless phones [Digital Enhanced Cordless Telecommunications (DECT)], and wireless local area networks (WLAN). Measurements of power density were conducted in 343 locations representing different site categories in the city. The maximum total power density found at any location was about 2.3 × 10 W m with a corresponding exposure quotient of about 0.01. This value is well below unity, indicating compliance with the guidelines of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The average total exposure from all RF sources was 0.08 × 10 W m. The relative contributions from different sources to the total exposure in terms of exposure quotient were evaluated and found to be 46% from FM radio, 26% from GSM900, 15% from DECT phones, 9% from WLAN, 3% from unknown sources, and 1% from TV broadcasting. RF sources located outdoors contribute about 73% to the population exposure indoors.

  13. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere.

    PubMed

    Beck, P; Latocha, M; Dorman, L; Pelliccioni, M; Rollet, S

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircrafts have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at).

  14. Exposure to solar ultraviolet radiation is associated with a decreased folate status in women of childbearing age.

    PubMed

    Borradale, D; Isenring, E; Hacker, E; Kimlin, M G

    2014-02-05

    In vitro studies indicate that folate in collected human blood is vulnerable to degradation after exposure to ultraviolet (UV) radiation. This has raised concerns about folate depletion in individuals with high sun exposure. Here, we investigate the association between personal solar UV radiation exposure and serum folate concentration, using a three-week prospective study that was undertaken in females aged 18-47years in Brisbane, Australia (153 E, 27 S). Following two weeks of supplementation with 500μg of folic acid daily, the change in serum folate status was assessed over a 7-day period of measured personal sun exposure. Compared to participants with personal UV exposures of <200 Joules per day, participants with personal UV exposures of 200-599 and >600 Joules per day had significantly higher depletion of serum folate (p=0.015). Multivariable analysis revealed personal UV exposure as the strongest predictor accounting for 20% of the overall change in serum folate (Standardised B=-0.49; t=-3.75; p=<0.01). These data show that increasing solar UV radiation exposures reduces the effectiveness of folic acid supplementation. The consequences of this association may be most pronounced for vulnerable individuals, such as women who are pregnant or of childbearing age with high sun exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ultraviolet radiation exposure triggers neurokinin-1 receptor upregulation in ocular tissues in vivo.

    PubMed

    Gross, Janine; Wegener, Alfred R; Kronschlaeger, Martin; Holz, Frank G; Schönfeld, Carl-Ludwig; Meyer, Linda M

    2018-04-26

    The purpose of this study was to investigate the neurokinin receptor-1 (NKR-1) protein expression in ocular tissues before and after supra-cataract threshold ultraviolet radiation (UVR-B peak at 312 nm) exposure in vivo in a mouse model. Six-week-old C57Bl/6 mice were unilaterally exposed to a single (2.9 kJ/m 2 ) and an above 3-fold UVR-B cataract threshold dose (9.4 kJ/m 2 ) of UVR. UVR-exposure (λpeak = 312 nm) was performed in mydriasis using a Bio-Spectra exposure system. After latency periods of 3 and 7 days, eyes were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned and stained with fluorescence coupled antibody for NKR-1 and DAPI for cell nuclei staining. Control animals received only anesthesia but no UVR-exposure. Cataract development was documented with a Leica dark-field microscope and quantified as integrated optical density (IOD). NKR-1 is ubiquitously present in ocular tissues. An above 3-fold cataract threshold dose of UV-radiation induced NKR-1 upregulation after days 3 and 7 in the epithelium and endothelium of the cornea, the endothelial cells of the iris vessels, the pigmented epithelium/stroma of the ciliary body, the lens epithelium, pronounced in the nuclear bow region and the inner plexiform layer of the retina. A significant upregulation of NKR-1 could not be provoked with a single cataract threshold dose (2.9 kJ/m 2 UVR-B) ultraviolet irradiation. All exposed eyes developed anterior subcapsular cataracts. Neurokinin-1 receptor is present ubiquitously in ocular tissues including the lens epithelium and the nuclear bow region of the lens. UV-radiation exposure to an above 3-fold UVR-B cataract threshold dose triggers NKR-1 upregulation in the eye in vivo. The involvement of inflammation in ultraviolet radiation induced cataract and the role of neuroinflammatory peptides such as substance P and its receptor, NKR-1, might have been underestimated to date. Copyright © 2018. Published by Elsevier Ltd.

  16. Hazards to space workers from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Lyman, J. T.

    1980-01-01

    A compilation of background information and a preliminary assessment of the potential risks to workers from the ionizing radiation encountered in space is provided. The report: (1) summarizes the current knowledge of the space radiation environment to which space workers will be exposed; (2) reviews the biological effects of ionizing radiation considered of major importance to a SPS project; and (3) discusses the health implications of exposure of populations of space workers to the radiations likely to penetrate through the shielding provided by the SPS work stations and habitat shelters of the SPS Reference System.

  17. Molecular effects of 1-naphthyl-methylcarbamate and solar radiation exposures on human melanocytes.

    PubMed

    Ferrucio, Bianca; Tiago, Manoela; Fannin, Richard D; Liu, Liwen; Gerrish, Kevin; Maria-Engler, Silvya Stuchi; Paules, Richard S; Barros, Silvia Berlanga de Moraes

    2017-02-01

    Carbaryl (1-naphthyl-methylcarbamate), a broad-spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, the main etiologic factor for skin carcinogenesis. We hypothesized that carbaryl exposure may increase deleterious effects of UV solar radiation on skin melanocytes. This study aimed to characterize human melanocytes after individual or combined exposure to carbaryl (100μM) and solar radiation (375mJ/cm 2 ). In a microarray analysis, carbaryl, but not solar radiation, induced an oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of Microphtalmia-associated Transcription Factor (MITF), the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Carbaryl and solar radiation induced a gene response suggestive of DNA damage and cell cycle alteration. The expression of CDKN1A, BRCA1/2 and MDM2 genes was notably more intense in the combined treatment group, in a synergistic manner. Flow cytometry assays demonstrated S-phase cell cycle arrest, reduced apoptosis levels and faster induction of cyclobutane pyrimidine dimers (CPD) lesions in carbaryl treated groups. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 47 CFR 2.1091 - Radiofrequency radiation exposure evaluation: mobile devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... their effective radiated power (ERP) is 1.5 watts or more, or if they operate at frequencies above 1.5 GHz and their ERP is 3 watts or more. Unlicensed personal communications service devices, unlicensed... exposure prior to equipment authorization or use if their ERP is 3 watts or more or if they meet the...

  19. [Radiation exposure during spiral-CT of the paranasal sinuses].

    PubMed

    Dammann, F; Momino-Traserra, E; Remy, C; Pereira, P L; Baumann, I; Koitschev, A; Claussen, C D

    2000-03-01

    Determination of the radiation doses in spiral CT of the paranasal sinuses using a variety of mAs values and scan protocols. CT examinations of the paranasal sinuses were performed using an Alderson-Rando phantom. Radiation dose was determined by LiF-TLD at the level of high risk organs in the head and neck region for combinations of different scan parameters (2/3, 3/3, 3/4 mm) and decreasing charges (200, 150, 100, 50, 25 mAs) on a spiral CT. Additional measurements were performed on three other CT scanners using the 2/3 mm protocol at 50 mAs, and a single slice technique (5/5 mm) on one scanner. The lowest dose values found were 1.88 mGy for the eye lenses, 1.35 mGy for the parotid gland, 0.03 mGy for the thyroid gland and 0.1 mGy for the medulla oblongata using 2 mm collimation and 3 mm table feed at 25 mAs. Maximal dose values resulted using the 3/3 mm protocol at 200 mAs (31.00 mGy for the eye lense, 0.65 mGy for the thyroid gland). There were no significant differences found between the different CT scanners. Using up-to-date CT scanners, radiation exposure may be reduced by a factor of 15-20 compared to that of conventional CT technique. Thus, the exposure of the eye lens comes to only a thousandth of the value supposedly inducing a cataract, as published by the ICRP.

  20. Response of Caenorhabditis elegans to wireless devices radiation exposure.

    PubMed

    Fasseas, Michael K; Fragopoulou, Adamantia F; Manta, Areti K; Skouroliakou, Aikaterini; Vekrellis, Konstantinos; Margaritis, Lukas H; Syntichaki, Popi

    2015-03-01

    To examine the impact of electromagnetic radiation, produced by GSM (Global System for Mobile communications) mobile phones, Wi-Fi (Wireless-Fidelity) routers and wireless DECT (Digital Enhanced Cordless Telecommunications) phones, on the nematode Caenorhabditis elegans. We exposed synchronized populations, of different developmental stages, to these wireless devices at E-field levels below ICNIRP's (International Commission on Non-Ionizing Radiation Protection) guidelines for various lengths of time. WT (wild-type) and aging- or stress-sensitive mutant worms were examined for changes in growth, fertility, lifespan, chemotaxis, short-term memory, increased ROS (Reactive Oxygen Species) production and apoptosis by using fluorescent marker genes or qRT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction). No statistically significant differences were found between the exposed and the sham/control animals in any of the experiments concerning lifespan, fertility, growth, memory, ROS, apoptosis or gene expression. The worm appears to be robust to this form of (pulsed) radiation, at least under the exposure conditions used.