Status of the Simbol-X Background Simulation Activities
NASA Astrophysics Data System (ADS)
Tenzer, C.; Briel, U.; Bulgarelli, A.; Chipaux, R.; Claret, A.; Cusumano, G.; Dell'Orto, E.; Fioretti, V.; Foschini, L.; Hauf, S.; Kendziorra, E.; Kuster, M.; Laurent, P.; Tiengo, A.
2009-05-01
The Simbol-X background simulation group is working towards a simulation based background and mass model which can be used before and during the mission. Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Achieving an overall low instrument background has direct impact on the sensitivity of Simbol-X and thus will be crucial for the success of the mission. We present results of recent simulation studies concerning the shielding of the detectors with respect to the diffuse cosmic hard X-ray background and to the cosmic-ray proton induced background. Besides estimates of the level and spectral shape of the remaining background expected in the low and high energy detector, also anti-coincidence rates and resulting detector dead time predictions are discussed.
NASA Astrophysics Data System (ADS)
Choomlucksana, Juthamas; Doolen, Toni L.
2017-11-01
The use of collaborative activities and simulation sessions in engineering education has been explored previously. However, few studies have investigated the relationship of these types of teaching innovations with other learner characteristics, such as self-efficacy and background knowledge. This study explored the effects of collaborative activities and simulation sessions on learning and the relationships between self-efficacy beliefs, background knowledge, and learning. Data were collected from two different terms in an upper division engineering course entitled Lean Manufacturing Systems Engineering. Findings indicated that the impact of collaborative activities and simulation sessions appears to be different, depending on the concepts being taught. Simulation sessions were found to have a significant effect on self-efficacy beliefs, and background knowledge had a mixed effect on learning. Overall the results of this study highlight the complex set of relationships between classroom innovations, learner characteristics, and learning.
Gao, Lin; Zhang, Tongsheng; Wang, Jue; Stephen, Julia
2014-01-01
When connectivity analysis is carried out for event related EEG and MEG, the presence of strong spatial correlations from spontaneous activity in background may mask the local neuronal evoked activity and lead to spurious connections. In this paper, we hypothesized PCA decomposition could be used to diminish the background activity and further improve the performance of connectivity analysis in event related experiments. The idea was tested using simulation, where we found that for the 306-channel Elekta Neuromag system, the first 4 PCs represent the dominant background activity, and the source connectivity pattern after preprocessing is consistent with the true connectivity pattern designed in the simulation. Improving signal to noise of the evoked responses by discarding the first few PCs demonstrates increased coherences at major physiological frequency bands when removing the first few PCs. Furthermore, the evoked information was maintained after PCA preprocessing. In conclusion, it is demonstrated that the first few PCs represent background activity, and PCA decomposition can be employed to remove it to expose the evoked activity for the channels under investigation. Therefore, PCA can be applied as a preprocessing approach to improve neuronal connectivity analysis for event related data. PMID:22918837
Gao, Lin; Zhang, Tongsheng; Wang, Jue; Stephen, Julia
2013-04-01
When connectivity analysis is carried out for event related EEG and MEG, the presence of strong spatial correlations from spontaneous activity in background may mask the local neuronal evoked activity and lead to spurious connections. In this paper, we hypothesized PCA decomposition could be used to diminish the background activity and further improve the performance of connectivity analysis in event related experiments. The idea was tested using simulation, where we found that for the 306-channel Elekta Neuromag system, the first 4 PCs represent the dominant background activity, and the source connectivity pattern after preprocessing is consistent with the true connectivity pattern designed in the simulation. Improving signal to noise of the evoked responses by discarding the first few PCs demonstrates increased coherences at major physiological frequency bands when removing the first few PCs. Furthermore, the evoked information was maintained after PCA preprocessing. In conclusion, it is demonstrated that the first few PCs represent background activity, and PCA decomposition can be employed to remove it to expose the evoked activity for the channels under investigation. Therefore, PCA can be applied as a preprocessing approach to improve neuronal connectivity analysis for event related data.
Apollo 16 astronauts in Apollo Command Module Mission Simulator
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).
Simulating Issue Networks in Small Classes using the World Wide Web.
ERIC Educational Resources Information Center
Josefson, Jim; Casey, Kelly
2000-01-01
Provides background information on simulations and active learning. Discusses the use of simulations in political science courses. Describes a simulation exercise where students performed specific institutional role playing, simulating the workings of a single congressional issue network, based on the reauthorization of the Endangered Species Act.…
Monte Carlo Simulations of Background Spectra in Integral Imager Detectors
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.
1998-01-01
Predictions of the expected gamma-ray backgrounds in the ISGRI (CdTe) and PiCsIT (Csl) detectors on INTEGRAL due to cosmic-ray interactions and the diffuse gamma-ray background have been made using a coupled set of Monte Carlo radiation transport codes (HETC, FLUKA, EGS4, and MORSE) and a detailed, 3-D mass model of the spacecraft and detector assemblies. The simulations include both the prompt background component from induced hadronic and electromagnetic cascades and the delayed component due to emissions from induced radioactivity. Background spectra have been obtained with and without the use of active (BGO) shielding and charged particle rejection to evaluate the effectiveness of anticoincidence counting on background rejection.
Study of Background Rejection Systems for the IXO Mission.
NASA Astrophysics Data System (ADS)
Laurent, Philippe; Limousin, O.; Tatischeff, V.
2009-01-01
The scientific performances of the IXO mission will necessitate a very low detector background level. This will imply thorough background simulations, and efficient background rejection systems. It necessitates also a very good knowledge of the detectors to be shielded. In APC, Paris, and CEA, Saclay, we got experience on these activities by conceiving and optimising in parallel the high energy detector and the active and passive background rejection system of the Simbol-X mission. Considering that this work may be naturally extended to other X-ray missions, we have initiated with CNES a R&D project on the study of background rejection systems mainly in view the IXO project. We will detail this activity in the poster.
Command Control Group Behaviors. Objective 2. Command Control Training with Simulations
1984-08-01
made to Fort Leavenworth to obtain background information on simulation activities and2 usage, ARTEPs, and other related Army activities such as C SPR...Year Three, with the various volumes focusing on one or more key aspects of training with simulations. 1.5 RELATED ACTIVITIES As the research of Year...One was being conducted, it became apparent that a number of on-going Army activities may impact the final pr3duct and therefore have been, and
Study of new anticoincidence systems design
NASA Astrophysics Data System (ADS)
Chabaud, J.; Laurent, P.; Baronick, J.-P.; Oger, R.; Prévôt, G.
2012-12-01
The scientific performances of future hard X-ray missions will necessitate a very low detector background level. This will imply thorough background simulations, and efficient background rejection systems. It necessitates also a very good knowledge of the detectors to be shielded. We got experience on these activities by conceiving and optimizing the active and passive background rejection system of the Simbol-X and IXO/HXI missions. Considering that this work may naturally be extended to other X-ray missions, we have initiated with CNES, in 2010, a R&T project on the study of background rejection systems, whose status will be presented in this paper.
Crime and Justice: 10 Activities.
ERIC Educational Resources Information Center
Constitutional Rights Foundation, Los Angeles, CA.
This manual contains learning activities to aid secondary teachers in clarifying and enriching the Scholastic materials "Living Law." The format of the manual includes a brief overview, background information, teacher instructions, and a description of each activity. Case studies, simulations, and role-playing activities are provided. Topics…
Crew Training - Apollo X (Apollo Mission Simulator [AMS])
1969-04-05
S69-32787 (3 April 1969) --- Two members of the Apollo 10 prime crew participate in simulation activity at the Kennedy Space Center during preparations for their scheduled lunar orbit mission. Astronaut Thomas P. Stafford, commander, is in the background; and in the foreground is astronaut Eugene A. Cernan, lunar module pilot. The two crewmen are in the Lunar Module Mission Simulator.
Soffientini, Chiara D; De Bernardi, Elisabetta; Casati, Rosangela; Baselli, Giuseppe; Zito, Felicia
2017-01-01
Design, realization, scan, and characterization of a phantom for PET Automatic Segmentation (PET-AS) assessment are presented. Radioactive zeolites immersed in a radioactive heterogeneous background simulate realistic wall-less lesions with known irregular shape and known homogeneous or heterogeneous internal activity. Three different zeolite families were evaluated in terms of radioactive uptake homogeneity, necessary to define activity and contour ground truth. Heterogeneous lesions were simulated by the perfect matching of two portions of a broken zeolite, soaked in two different 18 F-FDG radioactive solutions. Heterogeneous backgrounds were obtained with tissue paper balls and sponge pieces immersed into radioactive solutions. Natural clinoptilolite proved to be the most suitable zeolite for the construction of artificial objects mimicking homogeneous and heterogeneous uptakes in 18 F-FDG PET lesions. Heterogeneous backgrounds showed a coefficient of variation equal to 269% and 443% of a uniform radioactive solution. Assembled phantom included eight lesions with volumes ranging from 1.86 to 7.24 ml and lesion to background contrasts ranging from 4.8:1 to 21.7:1. A novel phantom for the evaluation of PET-AS algorithms was developed. It is provided with both reference contours and activity ground truth, and it covers a wide range of volumes and lesion to background contrasts. The dataset is open to the community of PET-AS developers and utilizers. © 2016 American Association of Physicists in Medicine.
Gemini 7 backup crew seen in white room during Gemini 7 simulation activity
1965-11-27
S65-61837 (27 Nov. 1965) --- The Gemini-7 backup crew seen in the White Room atop Pad 19 during Gemini-7 simulation flight activity. McDonnell Aircraft Corporation technicians assist in the exercise. Astronaut Edward H. White II (in foreground) is the Gemini-7 backup crew command pilot; and astronaut Michael Collins (right background) is the backup crew pilot. Photo credit: NASA
Studies of the Low-energy Gamma Background
NASA Astrophysics Data System (ADS)
Bikit, K.; Mrđa, D.; Bikit, I.; Slivka, J.; Veskovic, M.; Knezevic, D.
The investigations of contribution to the low-energy part of background gamma spectrum (below 100 keV) and knowing detection efficiency for this region are important for both, a fundamental, as well as for applied research. In this work, the components contributing to the low-energy region of background gamma spectrum for shielded detector are analyzed, including the production and spectral distribution of muon-induced continuous low-energy radiation in the vicinity of high-purity germanium detector.In addition, the detection efficiency for low energy gamma region is determined using the GEANT 4 simulation package. This technique offers excellent opportunity to predict the detection response in mentioned region. Unfortunately, the frequently weakly known dead layer thickness on the surface of the extended-range detector, as well as some processes which are not incorporated in simulation (e.g. charge collection from detector active volume) may limit the reliability of simulation technique. Thus, the 14, 17, 21, 26, 33, 59.5 keV transitions in the calibrated 241Am point source were used to check the simulated efficiencies.
NASA Astrophysics Data System (ADS)
Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; Koi, Tatsumi; Madejski, Greg; Mizuno, Tsunefumi; Ohno, Masanori; Saito, Shinya; Sato, Tamotsu; Wright, Dennis H.; Enoto, Teruaki; Fukazawa, Yasushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Kobayashi, Shogo B.; Kokubun, Motohide; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Maier, Daniel; Makishima, Kazuo; Mimura, Taketo; Miyake, Katsuma; Mori, Kunishiro; Murakami, Hiroaki; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Ohta, Masayuki; Ozaki, Masanobu; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yasuda, Tetsuya; Yatsu, Yoichi; Yuasa, Takayuki; Zoglauer, Andreas
2018-05-01
Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi4Ge3O12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi
Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation ofmore » isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. As a result, the simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4Ge 3O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.« less
Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; ...
2018-02-19
Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation ofmore » isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. As a result, the simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4Ge 3O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.« less
Release of ultrafine particles from three simulated building processes
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Mulheron, Mike; Som, Claudia
2012-03-01
Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5-560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near-steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri-modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei (<10 nm), nucleation (10-30 nm) and accumulation (30-300 nm) modes for individual activities. The measured background size distributions showed modal peaks at about 13 and 49 nm with average background PNCs 1.47 × 104 cm-3. These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and `dry' and `wet' recycling events were measured as 0.77, 19.1, 22.7 and 1.76 (×104) cm-3, respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; 95, 79, 73 and 90% of total PNCs, and 71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for laboratory workplaces and operational building sites.
NASA Astrophysics Data System (ADS)
Develaki, Maria
2017-11-01
Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.
ERIC Educational Resources Information Center
Tural, Güner; Tarakçi, Demet
2017-01-01
Background: One of the topics students have difficulties in understanding is electromagnetic induction. Active learning methods instead of traditional learning method may be able to help facilitate students' understanding such topics more effectively. Purpose: The study investigated the effectiveness of physical models and simulations on students'…
The ACT Vision Mission Study Simulation Effort
NASA Astrophysics Data System (ADS)
Wunderer, C. B.; Kippen, R. M.; Bloser, P. F.; Boggs, S. E.; McConnell, M. L.; Hoover, A.; Oberlack, U.; Sturner, S.; Tournear, D.; Weidenspointner, G.; Zoglauer, A.
2004-12-01
The Advanced Compton Telescope (ACT) has been selected by NASA for a one-year "Vision Mission" study. The main goal of this study is to determine feasible instrument configurations to achieve ACT's sensitivity requirements, and to give recommendations for technology development. Space-based instruments operating in the energy range of nuclear lines are subject to complex backgrounds generated by cosmic-ray interactions and diffuse gamma rays; typically measurements are significantly background-dominated. Therefore accurate, detailed simulations of the background induced in different ACT configurations, and exploration of event selection and reconstruction techniques for reducing these backgrounds, are crucial to determining both the capabilities of a given instrument configuration and the technology enhancements that would result in the most significant performance improvements. The ACT Simulation team has assembled a complete suite of tools that allows the generation of particle backgrounds for a given orbit (based on CREME96), their propagation through any instrument and spacecraft geometry (using MGGPOD) - including delayed photon emission from instrument activation - as well as the event selection and reconstruction of Compton-scatter events in the given detectors (MEGAlib). The package can deal with polarized photon beams as well as e.g. anticoincidence shields. We will report on the progress of the ACT simulation effort and the suite of tools used. We thank Elena Novikova at NRL for her contributions, and NASA for support of this research.
Esquinas, Pedro L; Uribe, Carlos F; Gonzalez, M; Rodríguez-Rodríguez, Cristina; Häfeli, Urs O; Celler, Anna
2017-07-20
The main applications of 188 Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188 Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188 Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188 Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object's true activity. Each object's activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial [Formula: see text]-camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors <10%) was achieved for the entire phantom, the hot-background activity concentration and for objects in cold background segmented with a 1% threshold. However, the accuracy of activity quantification for objects segmented with 40% threshold or CT-based methods decreased (errors >15%), mostly due to partial-volume effects. The Monte-Carlo simulations confirmed that TEW-scatter correction applied to 188 Re, although practical, yields only approximate estimates of the true scatter.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.
Preliminary assessment of the ATHENA/WFI non-X-ray background
NASA Astrophysics Data System (ADS)
Perinati, Emanuele; Barbera, Marco; Diebold, Sebastian; Guzman, Alejandro; Santangelo, Andrea; Tenzer, Chris
2017-12-01
We present a preliminary assessment of the non-X-ray background for the WFI on board ATHENA conducted at IAAT in the context of the collaborative background and radiation damage working group activities. Our main result is that in the baseline configuration originally assumed for the camera the requirement on the level of non-X-ray background could not be met. In light of the results of Geant4 simulations we propose and discuss a possible optimization of the camera design and pinpoint some open issues to be addressed in the next phase of investigation. One of these concerns the possible contribution to the non-X-ray background from soft protons and ions funneled to the focal plane through the optics. This is not quantified at this stage, here we just briefly report on our ongoing activities aimed at validating the mechanisms of proton scattering at grazing incidence.
Background simulations for the wide field imager aboard the ATHENA X-ray Observatory
NASA Astrophysics Data System (ADS)
Hauf, Steffen; Kuster, Markus; Hoffmann, Dieter H. H.; Lang, Philipp-Michael; Neff, Stephan; Pia, Maria Grazia; Strüder, Lothar
2012-09-01
The ATHENA X-ray observatory was a European Space Agency project for a L-class mission. ATHENA was to be based upon a simplified IXO design with the number of instruments and the focal length of the Wolter optics being reduced. One of the two instruments, the Wide Field Imager (WFI) was to be a DePFET based focal plane pixel detector, allowing for high time and spatial resolution spectroscopy in the energy-range between 0.1 and 15 keV. In order to fulfill the mission goals a high sensitivity is essential, especially to study faint and extended sources. Thus a detailed understanding of the detector background induced by cosmic ray particles is crucial. During the mission design generally extensive Monte-Carlo simulations are used to estimate the detector background in order to optimize shielding components and software rejection algorithms. The Geant4 toolkit1,2 is frequently the tool of choice for this purpose. Alongside validation of the simulation environment with XMM-Newton EPIC-pn and Space Shuttle STS-53 data we present estimates for the ATHENA WFI cosmic ray induced background including long-term activation, which demonstrate that DEPFET-technology based detectors are able to achieve the required sensitivity.
Measurement of the passive fast-ion D-alpha emission on the NSTX-U tokamak
Hao, G. Z.; Heidbrink, W. W.; Liu, D.; ...
2018-01-08
On National Spherical Torus Experiment Upgrade, the passive fast-ion D-alpha (passive-FIDA) spectra from charge exchange (CX) between the beam ions and the background neutrals are measured and simulated. The results indicate that the passive-FIDA signal is measurable and comparable to the active-FIDA on several channels, such as at the major radius R = 117 cm. For this, active-FIDA means the active D-alpha emission from the fast ions that CX with the injected neutrals. The shapes of measured spectra are in agreement with FIDASIM simulations on many fibers. Furthermore, the passive-FIDA spatial profile agrees with the simulation. When making measurements ofmore » active-FIDA in the edge region using time-slice subtraction, variations in the passive-FIDA contribution to the signal should be considered.« less
Measurement of the passive fast-ion D-alpha emission on the NSTX-U tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, G. Z.; Heidbrink, W. W.; Liu, D.
On National Spherical Torus Experiment Upgrade, the passive fast-ion D-alpha (passive-FIDA) spectra from charge exchange (CX) between the beam ions and the background neutrals are measured and simulated. The results indicate that the passive-FIDA signal is measurable and comparable to the active-FIDA on several channels, such as at the major radius R = 117 cm. For this, active-FIDA means the active D-alpha emission from the fast ions that CX with the injected neutrals. The shapes of measured spectra are in agreement with FIDASIM simulations on many fibers. Furthermore, the passive-FIDA spatial profile agrees with the simulation. When making measurements ofmore » active-FIDA in the edge region using time-slice subtraction, variations in the passive-FIDA contribution to the signal should be considered.« less
Review of Monte Carlo simulations for backgrounds from radioactivity
NASA Astrophysics Data System (ADS)
Selvi, Marco
2013-08-01
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.
Apollo 16 astronauts in Apollo Command Module Mission Simulator
1972-03-14
S72-31047 (March 1972) --- Astronaut Thomas K. Mattingly II (right foreground), command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in Building 5 at the Manned Spacecraft Center (MSC). Mattingly is scheduled to perform EVA during the Apollo 16 journey home from the moon. Astronaut John W. Young, commander, can be seen in the left background. In the right background is astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator. While Mattingly remains with the Apollo 16 Command and Service Modules (CSM) in lunar orbit, Young and Duke will descend in the Lunar Module (LM) to the moon's Descartes landing site.
Sekihara, K; Poeppel, D; Marantz, A; Koizumi, H; Miyashita, Y
1997-09-01
This paper proposes a method of localizing multiple current dipoles from spatio-temporal biomagnetic data. The method is based on the multiple signal classification (MUSIC) algorithm and is tolerant of the influence of background brain activity. In this method, the noise covariance matrix is estimated using a portion of the data that contains noise, but does not contain any signal information. Then, a modified noise subspace projector is formed using the generalized eigenvectors of the noise and measured-data covariance matrices. The MUSIC localizer is calculated using this noise subspace projector and the noise covariance matrix. The results from a computer simulation have verified the effectiveness of the method. The method was then applied to source estimation for auditory-evoked fields elicited by syllable speech sounds. The results strongly suggest the method's effectiveness in removing the influence of background activity.
Verification of Loop Diagnostics
NASA Technical Reports Server (NTRS)
Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.
2014-01-01
Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.
Expected background in the LZ experiment
NASA Astrophysics Data System (ADS)
Kudryavtsev, Vitaly A.
2015-08-01
The LZ experiment, featuring a 7-tonne active liquid xenon target, is aimed at achieving unprecedented sensitivity to WIMPs with the background expected to be dominated by astrophysical neutrinos. To reach this goal, extensive simulations are carried out to accurately calculate the electron recoil and nuclear recoil rates in the detector. Both internal (from target material) and external (from detector components and surrounding environment) backgrounds are considered. A very efficient suppression of background rate is achieved with an outer liquid scintillator veto, liquid xenon skin and fiducialisation. Based on the current measurements of radioactivity of different materials, it is shown that LZ can achieve the reduction of a total background for a WIMP search down to about 2 events in 1000 live days for 5.6 tonne fiducial mass.
Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C
2016-01-01
Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant results. PMID:27537079
BLDG. 30 - APOLLO-SOYUZ TEST PROJECT (ASTP) SIMS - FLIGHT DIRECTION - JSC
1975-03-20
S75-23638 (20 March 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during joint ASTP simulation activity at NASA's Johnson Space Center. The simulations are part of the preparations for the U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit scheduled for July 1975. M.P. Frank (seated, right) is the senior American flight director for the mission. Sigurd A. Sjoberg (in center, checked jacket), JSC Deputy Director, watches some of the console activity. George W.S. Abbey, Technical Assistant to the JSC Director, is standing next to Sjoberg. The television monitor in the background shows Soviet Soyuz crew activity from the Soviet Union.
SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahlka, R; Kappadath, S; Mawlawi, O
2016-06-15
Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray inmore » the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.« less
Focusing of active particles in a converging flow
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid; ...
2017-10-20
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
NASA Astrophysics Data System (ADS)
Achim, Pascal; Generoso, Sylvia; Morin, Mireille; Gross, Philippe; Le Petit, Gilbert; Moulin, Christophe
2016-05-01
Monitoring atmospheric concentrations of radioxenons is relevant to provide evidence of atmospheric or underground nuclear weapon tests. However, when the design of the International Monitoring Network (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was set up, the impact of industrial releases was not perceived. It is now well known that industrial radioxenon signature can interfere with that of nuclear tests. Therefore, there is a crucial need to characterize atmospheric distributions of radioxenons from industrial sources—the so-called atmospheric background—in the frame of the CTBT. Two years of Xe-133 atmospheric background have been simulated using 2013 and 2014 meteorological data together with the most comprehensive emission inventory of radiopharmaceutical facilities and nuclear power plants to date. Annual average simulated activity concentrations vary from 0.01 mBq/m3 up to above 5 mBq/m3 nearby major sources. Average measured and simulated concentrations agree on most of the IMS stations, which indicates that the main sources during the time frame are properly captured. Xe-133 atmospheric background simulated at IMS stations turn out to be a complex combination of sources. Stations most impacted are in Europe and North America and can potentially detect Xe-133 every day. Predicted occurrences of detections of atmospheric Xe-133 show seasonal variations, more accentuated in the Northern Hemisphere, where the maximum occurs in winter. To our knowledge, this study presents the first global maps of Xe-133 atmospheric background from industrial sources based on two years of simulation and is a first attempt to analyze its composition in terms of origin at IMS stations.
Expected background in the LZ experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryavtsev, Vitaly A.
2015-08-17
The LZ experiment, featuring a 7-tonne active liquid xenon target, is aimed at achieving unprecedented sensitivity to WIMPs with the background expected to be dominated by astrophysical neutrinos. To reach this goal, extensive simulations are carried out to accurately calculate the electron recoil and nuclear recoil rates in the detector. Both internal (from target material) and external (from detector components and surrounding environment) backgrounds are considered. A very efficient suppression of background rate is achieved with an outer liquid scintillator veto, liquid xenon skin and fiducialisation. Based on the current measurements of radioactivity of different materials, it is shown thatmore » LZ can achieve the reduction of a total background for a WIMP search down to about 2 events in 1000 live days for 5.6 tonne fiducial mass.« less
Background in X-ray astronomy proportional counters
NASA Technical Reports Server (NTRS)
Bower, C. R.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.
1991-01-01
The authors report the results of an investigation into the nature of background events in proportional counters sensitive to X-ray photons having energy of less than 150 keV. Even with the use of thick shields composed of high-atomic-number material, a significant flux background in the detector's energy region can result from multiple Compton scattering in the mass surrounding the active region of the detector. The importance of the selection of detector components in the reduction of the background by more than an order of magnitude is emphasized. Experimental results are shown to agree qualitatively with Monte Carlo simulations. It is concluded that escape gating is a powerful means of determining the nature of background in flight detectors: the single/pair ratios reveal whether the detected events are charged particles or photons.
Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media
NASA Astrophysics Data System (ADS)
Toner, John; Löwen, Hartmut; Wensink, Henricus H.
2016-06-01
Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to t lnt of the mean-square displacement with time t . This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns.
Monte-Carlo background simulations of present and future detectors in x-ray astronomy
NASA Astrophysics Data System (ADS)
Tenzer, C.; Kendziorra, E.; Santangelo, A.
2008-07-01
Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newton's EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.
Patel, Radha V; Chudow, Melissa; Vo, Teresa T; Serag-Bolos, Erini S
The purpose of this study was to evaluate students' knowledge and perceptions of the clinical application of pharmacogenetics through a simulation activity and to assess communication of pharmacogenetic-guided treatment recommendations utilizing standardized patients. Third-year students in the four-year doctor of pharmacy (PharmD) program at University of South Florida College of Pharmacy completed a pharmacogenetics simulation involving a patient case review, interpretation of pharmacogenetic test results, completion of a situation, background, assessment, recommendation (SBAR) note with drug therapy recommendations, and patient counseling. Voluntary assessments were completed before and after the simulation, which included demographics, knowledge, and perceptions of students' ability to interpret and communicate pharmacogenetic results. Response rates for the pre- and post-simulation assessments were 109 (98%) and 104 (94%), respectively. Correct responses in application-type questions improved after the simulation (74%) compared to before the simulation (44%, p < 0.01). Responses to perception questions shifted towards "strongly agree" or "agree" after the simulation (p < 0.01). The simulation gave students an opportunity to apply pharmacogenetics knowledge and allowed them to gain an appreciation of pharmacists' roles within the pharmacogenetics field. Copyright © 2017 Elsevier Inc. All rights reserved.
The simulation library of the Belle II software system
NASA Astrophysics Data System (ADS)
Kim, D. Y.; Ritter, M.; Bilka, T.; Bobrov, A.; Casarosa, G.; Chilikin, K.; Ferber, T.; Godang, R.; Jaegle, I.; Kandra, J.; Kodys, P.; Kuhr, T.; Kvasnicka, P.; Nakayama, H.; Piilonen, L.; Pulvermacher, C.; Santelj, L.; Schwenker, B.; Sibidanov, A.; Soloviev, Y.; Starič, M.; Uglov, T.
2017-10-01
SuperKEKB, the next generation B factory, has been constructed in Japan as an upgrade of KEKB. This brand new e+ e- collider is expected to deliver a very large data set for the Belle II experiment, which will be 50 times larger than the previous Belle sample. Both the triggered physics event rate and the background event rate will be increased by at least 10 times than the previous ones, and will create a challenging data taking environment for the Belle II detector. The software system of the Belle II experiment is designed to execute this ambitious plan. A full detector simulation library, which is a part of the Belle II software system, is created based on Geant4 and has been tested thoroughly. Recently the library has been upgraded with Geant4 version 10.1. The library is behaving as expected and it is utilized actively in producing Monte Carlo data sets for various studies. In this paper, we will explain the structure of the simulation library and the various interfaces to other packages including geometry and beam background simulation.
Allvin, Renée; Berndtzon, Magnus; Carlzon, Liisa; Edelbring, Samuel; Hult, Håkan; Hultin, Magnus; Karlgren, Klas; Masiello, Italo; Södersved Källestedt, Marie-Louise; Tamás, Éva
2017-01-01
Background Medical simulation enables the design of learning activities for competency areas (eg, communication and leadership) identified as crucial for future health care professionals. Simulation educators and medical teachers follow different career paths, and their education backgrounds and teaching contexts may be very different in a simulation setting. Although they have a key role in facilitating learning, information on the continuing professional development (pedagogical development) of simulation educators is not available in the literature. Objectives To explore changes in experienced simulation educators’ perceptions of their own teaching skills, practices, and understanding of teaching over time. Methods A qualitative exploratory study. Fourteen experienced simulation educators participated in individual open-ended interviews focusing on their development as simulation educators. Data were analyzed using an inductive thematic analysis. Results Marked educator development was discerned over time, expressed mainly in an altered way of thinking and acting. Five themes were identified: shifting focus, from following to utilizing a structure, setting goals, application of technology, and alignment with profession. Being confident in the role as an instructor seemed to constitute a foundation for the instructor’s pedagogical development. Conclusion Experienced simulation educators’ pedagogical development was based on self-confidence in the educator role, and not on a deeper theoretical understanding of teaching and learning. This is the first clue to gain increased understanding regarding educational level and possible education needs among simulation educators, and it might generate several lines of research for further studies. PMID:28176931
NASA Astrophysics Data System (ADS)
Banerjee, D.; Gasnault, O.
2008-07-01
The primary aim of the high-energy X-ray spectrometer (HEX) experiment on the Chandrayaan-1 mission to the Moon is to characterize the movement of volatiles on the lunar surface through the detection of the 46.5 keV line from 210Pb, a decay product of 222Rn. An important consideration for design and operation of HEX is to estimate the continuum background signal expected from the lunar surface, as well as its dependence on solar activity and lunar composition. We have developed a Monte Carlo code utilizing Geant4 for simulating the interaction of cosmic rays in the lunar regolith, and we estimated the variation in the continuum background in the energy region of interest for various lunar compositions. Dependence of the continuum background on solar activity was also evaluated considering ferroan anorthositic (FAN) composition. Our results suggest the viability of inferring lithologic characteristics of planetary surfaces based on a study of low-energy gamma ray emission.
NASA Technical Reports Server (NTRS)
Slassi-Sennou, S. A.; Boggs, S. E.; Feffer, P. T.; Lin, R. P.
1997-01-01
Pulse Shape Discrimination (PSD) for background reduction will be used in the INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) imaging spectrometer (SPI) to improve the sensitivity from 200 keV to 2 MeV. The observation of significant astrophysical gamma ray lines in this energy range is expected, where the dominant component of the background is the beta(sup -) decay in the Ge detectors due to the activation of Ge nuclei by cosmic rays. The sensitivity of the SPI will be improved by rejecting beta(sup -) decay events while retaining photon events. The PSD technique will distinguish between single and multiple site events. Simulation results of PSD for INTEGRAL-type Ge detectors using a numerical model for pulse shape generation are presented. The model was shown to agree with the experimental results for a narrow inner bore closed end cylindrical detector. Using PSD, a sensitivity improvement factor of the order of 2.4 at 0.8 MeV is expected.
Stephen, Julia M; Ranken, Doug M; Aine, Cheryl J; Weisend, Michael P; Shih, Jerry J
2005-12-01
Previous studies have shown that magnetoencephalography (MEG) can measure hippocampal activity, despite the cylindrical shape and deep location in the brain. The current study extended this work by examining the ability to differentiate the hippocampal subfields, parahippocampal cortex, and neocortical temporal sources using simulated interictal epileptic activity. A model of the hippocampus was generated on the MRIs of five subjects. CA1, CA3, and dentate gyrus of the hippocampus were activated as well as entorhinal cortex, presubiculum, and neocortical temporal cortex. In addition, pairs of sources were activated sequentially to emulate various hypotheses of mesial temporal lobe seizure generation. The simulated MEG activity was added to real background brain activity from the five subjects and modeled using a multidipole spatiotemporal modeling technique. The waveforms and source locations/orientations for hippocampal and parahippocampal sources were differentiable from neocortical temporal sources. In addition, hippocampal and parahippocampal sources were differentiated to varying degrees depending on source. The sequential activation of hippocampal and parahippocampal sources was adequately modeled by a single source; however, these sources were not resolvable when they overlapped in time. These results suggest that MEG has the sensitivity to distinguish parahippocampal and hippocampal spike generators in mesial temporal lobe epilepsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
2017-03-01
activities, as well as other causes of sedimentation (e.g., agricultural practices, storm events, tidal flows). BACKGROUND AND PROBLEM: Many naturally...effects originating from many sources (e.g., agriculture , storm event, tidal flows) on multiple aquatic species and life stages. Multiple experimental
Speaking Personally--With John "Pathfinder" Lester
ERIC Educational Resources Information Center
Beaubois, Terry
2013-01-01
John Lester is currently the chief learning officer at ReactionGrid, a software company developing 3-D simulations and multiuser virtual world platforms. Lester's background includes working with Linden Lab on Second Life's education activities and neuroscience research. His primary focus is on collaborative learning and instructional…
Hydrodynamic Simulation of the Cosmological X-Ray Background
NASA Astrophysics Data System (ADS)
Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.
2001-08-01
We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with current observations in a simulation that incorporates cooling, star formation, and only modest feedback. A clear prediction of our model is that the unresolved portion of the soft XRB will remain mostly unresolved even as observations reach deeper point-source sensitivity.
Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglieri, M.
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for amore » $$\\sim$$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$$^{22}$$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $$\\chi$$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.« less
Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki; Himuro, Kazuhiko
2015-04-15
Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitativelymore » consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually superior to SPECT image because of the low background noise. The simulation reveals that the detected photon number in SPECT is comparable to that of PET, but the large fraction (approximately 75%) of scattered and penetration photons contaminates SPECT image. The lower limit of {sup 90}Y detection in SPECT image was approximately 200 kBq/ml, while that in PET image was approximately 100 kBq/ml. Conclusions: By comparing the background noise level and the image concentration profile of both the techniques, PET image quality was determined to be superior to that of bremsstrahlung SPECT. The developed simulation codes will be very useful in the future investigations of PET and bremsstrahlung SPECT imaging of {sup 90}Y.« less
NASA Astrophysics Data System (ADS)
Cheng, Siyang; An, Xingqin; Zhou, Lingxi; Tans, Pieter P.; Jacobson, Andy
2017-06-01
In order to explore where the source and sink have the greatest impact on CO2 background concentration at Waliguan (WLG) station, a statistical method is here proposed to calculate the representative source-sink region. The key to this method is to find the best footprint threshold, and the study is carried out in four parts. Firstly, transport climatology, expressed by total monthly footprint, was simulated by FLEXPART on a 7-day time scale. Surface CO2 emissions in Eurasia frequently transported to WLG station. WLG station was mainly influenced by the westerlies in winter and partly controlled by the Southeast Asian monsoon in summer. Secondly, CO2 concentrations, simulated by CT2015, were processed and analyzed through data quality control, screening, fitting and comparing. CO2 concentrations displayed obvious seasonal variation, with the maximum and minimum concentration appearing in April and August, respectively. The correlation of CO2 fitting background concentrations was R2 = 0.91 between simulation and observation. The temporal patterns were mainly correlated with CO2 exchange of biosphere-atmosphere, human activities and air transport. Thirdly, for the monthly CO2 fitting background concentrations from CT2015, a best footprint threshold was found based on correlation analysis and numerical iteration using the data of footprints and emissions. The grid cells where monthly footprints were greater than the best footprint threshold were the best threshold area corresponding to representative source-sink region. The representative source-sink region of maximum CO2 concentration in April was primarily located in Qinghai province, but the minimum CO2 concentration in August was mainly influenced by emissions in a wider region. Finally, we briefly presented the CO2 source-sink characteristics in the best threshold area. Generally, the best threshold area was a carbon sink. The major source and sink were relatively weak owing to less human activities and vegetation types in this high altitude area. CO2 concentrations were more influenced by human activities when air mass passed through many urban areas in summer. Therefore, the combination of footprints and emissions is an effective approach for assessing the source-sink region representativeness of CO2 background concentration.
On the contribution of active galactic nuclei to the high-redshift metagalactic ionizing background
NASA Astrophysics Data System (ADS)
D'Aloisio, Anson; Upton Sanderbeck, Phoebe R.; McQuinn, Matthew; Trac, Hy; Shapiro, Paul R.
2017-07-01
Motivated by the claimed detection of a large population of faint active galactic nuclei (AGNs) at high redshift, recent studies have proposed models in which AGNs contribute significantly to the z > 4 H I ionizing background. In some models, AGNs are even the chief sources of reionization. If proved true, these models would make necessary a complete revision to the standard view that galaxies dominated the high-redshift ionizing background. It has been suggested that AGN-dominated models can better account for two recent observations that appear to be in conflict with the standard view: (1) large opacity variations in the z ˜ 5.5 H I Ly α forest, and (2) slow evolution in the mean opacity of the He II Ly α forest. Large spatial fluctuations in the ionizing background from the brightness and rarity of AGNs may account for the former, while the earlier onset of He II reionization in these models may account for the latter. Here we show that models in which AGN emissions source ≳50 per cent of the ionizing background generally provide a better fit to the observed H I Ly α forest opacity variations compared to standard galaxy-dominated models. However, we argue that these AGN-dominated models are in tension with constraints on the thermal history of the intergalactic medium (IGM). Under standard assumptions about the spectra of AGNs, we show that the earlier onset of He II reionization heats up the IGM well above recent temperature measurements. We further argue that the slower evolution of the mean opacity of the He II Ly α forest relative to simulations may reflect deficiencies in current simulations rather than favour AGN-dominated models as has been suggested.
Pizzo, Francesca; Bartolomei, Fabrice; Wendling, Fabrice; Bénar, Christian-George
2017-01-01
High-frequency oscillations (HFO) have been suggested as biomarkers of epileptic tissues. While visual marking of these short and small oscillations is tedious and time-consuming, automatic HFO detectors have not yet met a large consensus. Even though detectors have been shown to perform well when validated against visual marking, the large number of false detections due to their lack of robustness hinder their clinical application. In this study, we developed a validation framework based on realistic and controlled simulations to quantify precisely the assets and weaknesses of current detectors. We constructed a dictionary of synthesized elements—HFOs and epileptic spikes—from different patients and brain areas by extracting these elements from the original data using discrete wavelet transform coefficients. These elements were then added to their corresponding simulated background activity (preserving patient- and region- specific spectra). We tested five existing detectors against this benchmark. Compared to other studies confronting detectors, we did not only ranked them according their performance but we investigated the reasons leading to these results. Our simulations, thanks to their realism and their variability, enabled us to highlight unreported issues of current detectors: (1) the lack of robust estimation of the background activity, (2) the underestimated impact of the 1/f spectrum, and (3) the inadequate criteria defining an HFO. We believe that our benchmark framework could be a valuable tool to translate HFOs into a clinical environment. PMID:28406919
Simulated characteristics of the DEGAS γ-detector array
NASA Astrophysics Data System (ADS)
Li, G. S.; Lizarazo, C.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Górska, M.; Pietralla, N.; Saha, S.; Liu, M. L.; Wang, J. G.
2018-05-01
The performance of the novel HPGe-Cluster array DEGAS to be used at FAIR has been studied through GEANT4 simulations using accurate geometries of most of the detector components. The simulation framework has been tested by comparing experimental data of various detector setups. The study showed that the DEGAS system could provide a clear improvement of the photo-peak efficiency compared to the previous RISING array. In addition, the active BGO Back-catcher could greatly enhance the background suppression capability. The add-back analysis revealed that even at a γ multiplicity of six the sensitivity is improved by adding back the energy depositions of the neighboring Ge crystals.
Casutt, Gianclaudio; Theill, Nathan; Martin, Mike; Keller, Martin; Jäncke, Lutz
2014-01-01
Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training. Methods: Ninety-one healthy active drivers (62–87 years) were randomly assigned to one of three groups: (1) a driving simulator training group, (2) an attention training group (vigilance and selective attention), or (3) a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85%) completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned orthogonal comparisons. Results: The driving simulator-training group showed an improvement in on-road driving performance compared to the attention-training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers' safety on the road. PMID:24860497
ERIC Educational Resources Information Center
Choomlucksana, Juthamas; Doolen, Toni L.
2017-01-01
The use of collaborative activities and simulation sessions in engineering education has been explored previously. However, few studies have investigated the relationship of these types of teaching innovations with other learner characteristics, such as self-efficacy and background knowledge. This study explored the effects of collaborative…
An Improved Method for Demonstrating Visual Selection by Wild Birds.
ERIC Educational Resources Information Center
Allen, J. A.; And Others
1990-01-01
An activity simulating natural selection in which wild birds are predators, green and brown pastry "baits" are prey, and trays containing colored stones as the backgrounds is presented. Two different methods of measuring selection are used to describe the results. The materials and methods, results, and discussion are included. (KR)
BOREAS TE-18 GeoSail Canopy Reflectance Model
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Huemmrich, K. Fred
2000-01-01
The SAIL (Scattering from Arbitrarily Inclined Leaves) model was combined with the Jasinski geo metric model to simulate canopy spectral reflectance and absorption of photosynthetically active radiation for discontinuous canopies. This model is called the GeoSail model. Tree shapes are described by cylinders or cones distributed over a plane. Spectral reflectance and transmittance of trees are calculated from the SAIL model to determine the reflectance of the three components used in the geometric model: illuminated canopy, illuminated background, shadowed canopy, and shadowed background. The model code is Fortran. sample input and output data are provided in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
NASA Astrophysics Data System (ADS)
Sun, Anbang; Teunissen, Jannis; Ebert, Ute
2014-11-01
We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.
Secomb, Jacinta; McKenna, Lisa; Smith, Colleen
2012-12-01
To provide evidence on the effectiveness of simulation activities on the clinical decision-making abilities of undergraduate nursing students. Based on previous research, it was hypothesised that the higher the cognitive score, the greater the ability a nursing student would have to make informed valid decisions in their clinical practice. Globally, simulation is being espoused as an education method that increases the competence of health professionals. At present, there is very little evidence to support current investment in time and resources. Following ethical approval, fifty-eight third-year undergraduate nursing students were randomised in a pretest-post-test group-parallel controlled trial. The learning environment preferences (LEP) inventory was used to test cognitive abilities in order to refute the null hypothesis that activities in computer-based simulated learning environments have a negative effect on cognitive abilities when compared with activities in skills laboratory simulated learning environments. There was no significant difference in cognitive development following two cycles of simulation activities. Therefore, it is reasonable to assume that two simulation tasks, either computer-based or laboratory-based, have no effect on an undergraduate student's ability to make clinical decisions in practice. However, there was a significant finding for non-English first-language students, which requires further investigation. More longitudinal studies that quantify the education effects of simulation on the cognitive, affective and psychomotor attributes of health science students and professionals from both English-speaking and non-English-speaking backgrounds are urgently required. It is also recommended that to achieve increased participant numbers and prevent non-participation owing to absenteeism, further studies need to be imbedded directly into curricula. This investigation confirms the effect of simulation activities on real-life clinical practice, and the comparative learning benefits with traditional clinical practice and university education remain unknown. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.
2018-03-01
Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.
Luna: What Did We Learn and What Should We Expect?
NASA Technical Reports Server (NTRS)
Wallace, William T.
2009-01-01
This presentation presents a look at the space program's background prior to lunar exploration and highlights the Apollo program and lessons learned from lunar exploration. The possibilities of exposures and difficulties attributed to lunar dust are described, including obscured vision, clogged equipment, coated surfaces, and inhalation, among others. A lunar dust simulant is proposed to support preliminary studies. Lunar dust is constantly activated by meteorite lunar dust, UV radiation and elements of solar wind - this active dust could produce reactive species. Methods of deactivation must be determined before new lunar missions, but first we must understand how to reactivate dust on Earth. Activation methods tested and described here include crushing/grinding or UV activation. Grinding time has a direct effect on amount of hydroxyl radicals produced upon addition of ground quartz to a solution. An increase in hydroxyl production was also seen for a lunar simulant with increased grinding.
e-Learning development in medical physics and engineering
Tabakov, S
2008-01-01
Medical Physics and Engineering was among the first professions to develop and apply e-Learning (e-L). The profession provides excellent background for application of simulations and other e-L materials. The paper describes several layers for e-L development: Programming specific simulations; Building e-L modules; Development of e-L web-based programmes. The paper shows examples from these layers and outlines their specificities. At the end, the newest e-L development (project EMITEL) is briefly introduced and the necessity of a regularly updated list of e-L activities is emphasised. PMID:21614312
High altitude simulation, substance P and airway rapidly adapting receptor activity in rabbits.
Bhagat, R; Yasir, A; Vashisht, A; Kulshreshtha, R; Singh, S B; Ravi, K
2011-09-15
To investigate whether there is a change in airway rapidly adapting receptor (RAR) activity during high altitude exposure, rabbits were placed in a high altitude simulation chamber (barometric pressure, 429 mm Hg). With 12 h exposure, when there was pulmonary congestion, an increase in basal RAR activity was observed. With 36 h exposure, when there was alveolar edema, there was a further increase in basal RAR activity. In these backgrounds, there was an increase in the sensitivity of the RARs to substance P (SP). To assess whether there was an increase in lung SP level, neutral endopeptidase activity was determined which showed a decrease in low barometric pressure exposed groups. It is concluded that along with the SP released, pulmonary congestion and edema produced, respectively by different durations of low barometric pressure exposure cause a progressive increase in RAR activity which may account for the respiratory symptoms reported in climbers who are unacclimatized. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Intriligator, D. S.; Sun, W.; Detman, T. R.; Dryer, Ph D., M.; Intriligator, J.; Deehr, C. S.; Webber, W. R.; Gloeckler, G.; Miller, W. D.
2015-12-01
Large solar events can have severe adverse global impacts at Earth. These solar events also can propagate throughout the heliopshere and into the interstellar medium. We focus on the July 2012 and Halloween 2003 solar events. We simulate these events starting from the vicinity of the Sun at 2.5 Rs. We compare our three dimensional (3D) time-dependent simulations to available spacecraft (s/c) observations at 1 AU and beyond. Based on the comparisons of the predictions from our simulations with in-situ measurements we find that the effects of these large solar events can be observed in the outer heliosphere, the heliosheath, and even into the interstellar medium. We use two simulation models. The HAFSS (HAF Source Surface) model is a kinematic model. HHMS-PI (Hybrid Heliospheric Modeling System with Pickup protons) is a numerical magnetohydrodynamic solar wind (SW) simulation model. Both HHMS-PI and HAFSS are ideally suited for these analyses since starting at 2.5 Rs from the Sun they model the slowly evolving background SW and the impulsive, time-dependent events associated with solar activity. Our models naturally reproduce dynamic 3D spatially asymmetric effects observed throughout the heliosphere. Pre-existing SW background conditions have a strong influence on the propagation of shock waves from solar events. Time-dependence is a crucial aspect of interpreting s/c data. We show comparisons of our simulation results with STEREO A, ACE, Ulysses, and Voyager s/c observations.
MHD simulation of the Bastille day event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linker, Jon, E-mail: linkerj@predsci.com; Torok, Tibor; Downs, Cooper
2016-03-25
We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 10{sup 33} ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similarmore » to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.« less
HEAO-1 analysis of Low Energy Detectors (LED)
NASA Technical Reports Server (NTRS)
Nousek, John A.
1992-01-01
The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.
ERIC Educational Resources Information Center
Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides
2011-01-01
Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample: Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvi, Marco
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories andmore » by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.« less
Digital simulation of hybrid loop operation in RFI backgrounds.
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Nelson, D. R.
1972-01-01
A digital computer model for Monte-Carlo simulation of an imperfect second-order hybrid phase-locked loop (PLL) operating in radio-frequency interference (RFI) and Gaussian noise backgrounds has been developed. Characterization of hybrid loop performance in terms of cycle slipping statistics and phase error variance, through computer simulation, indicates that the hybrid loop has desirable performance characteristics in RFI backgrounds over the conventional PLL or the costas loop.
2010-01-01
Background Defensins comprise a group of antimicrobial peptides, widely recognized as important elements of the innate immune system in both animals and plants. Cationicity, rather than the secondary structure, is believed to be the major factor defining the antimicrobial activity of defensins. To test this hypothesis and to improve the activity of the newly identified avian β-defensin Apl_AvBD2 by enhancing the cationicity, we performed in silico site directed mutagenesis, keeping the predicted secondary structure intact. Molecular dynamics (MD) simulation studies were done to predict the activity. Mutant proteins were made by in vitro site directed mutagenesis and recombinant protein expression, and tested for antimicrobial activity to confirm the results obtained in MD simulation analysis. Results MD simulation revealed subtle, but critical, structural variations between the wild type Apl_AvBD2 and the more cationic in silico mutants, which were not detected in the initial structural prediction by homology modelling. The C-terminal cationic 'claw' region, important in antimicrobial activity, which was intact in the wild type, showed changes in shape and orientation in all the mutant peptides. Mutant peptides also showed increased solvent accessible surface area and more number of hydrogen bonds with the surrounding water molecules. In functional studies, the Escherichia coli expressed, purified recombinant mutant proteins showed total loss of antimicrobial activity compared to the wild type protein. Conclusion The study revealed that cationicity alone is not the determining factor in the microbicidal activity of antimicrobial peptides. Factors affecting the molecular dynamics such as hydrophobicity, electrostatic interactions and the potential for oligomerization may also play fundamental roles. It points to the usefulness of MD simulation studies in successful engineering of antimicrobial peptides for improved activity and other desirable functions. PMID:20122244
SAR image classification based on CNN in real and simulation datasets
NASA Astrophysics Data System (ADS)
Peng, Lijiang; Liu, Ming; Liu, Xiaohua; Dong, Liquan; Hui, Mei; Zhao, Yuejin
2018-04-01
Convolution neural network (CNN) has made great success in image classification tasks. Even in the field of synthetic aperture radar automatic target recognition (SAR-ATR), state-of-art results has been obtained by learning deep representation of features on the MSTAR benchmark. However, the raw data of MSTAR have shortcomings in training a SAR-ATR model because of high similarity in background among the SAR images of each kind. This indicates that the CNN would learn the hierarchies of features of backgrounds as well as the targets. To validate the influence of the background, some other SAR images datasets have been made which contains the simulation SAR images of 10 manufactured targets such as tank and fighter aircraft, and the backgrounds of simulation SAR images are sampled from the whole original MSTAR data. The simulation datasets contain the dataset that the backgrounds of each kind images correspond to the one kind of backgrounds of MSTAR targets or clutters and the dataset that each image shares the random background of whole MSTAR targets or clutters. In addition, mixed datasets of MSTAR and simulation datasets had been made to use in the experiments. The CNN architecture proposed in this paper are trained on all datasets mentioned above. The experimental results shows that the architecture can get high performances on all datasets even the backgrounds of the images are miscellaneous, which indicates the architecture can learn a good representation of the targets even though the drastic changes on background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Movahed, M. Sadegh; Khosravi, Shahram, E-mail: m.s.movahed@ipm.ir, E-mail: khosravi@ipm.ir
2011-03-01
In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated puremore » Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.« less
Influence of impurities on the high temperature conductivity of SrTiO3
NASA Astrophysics Data System (ADS)
Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.
2018-01-01
In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.
Shielding concepts for low-background proportional counter arrays in surface laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, Craig E.; Humble, Paul H.; Mace, Emily K.
2016-02-01
Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes – primarily and activity in the uranium and thorium decay chains – inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportionalmore » counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as 37Ar.« less
Parametric models to relate spike train and LFP dynamics with neural information processing.
Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan
2012-01-01
Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial-by-trial behavioral performance than existing models of neural information processing. Our results highlight the utility of the unified modeling framework for characterizing spike-LFP recordings obtained during behavioral performance.
NASA Astrophysics Data System (ADS)
Jha, V.; Kahre, M. A.
2017-12-01
The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by comparing the spatial pattern of predicted wind stress lifting with a catalog of observed local storms. Better agreement is achieved in the radiatively active cloud case. These results suggest that wind stress lifting may contribute more to maintaining the background dust haze during NH spring and summer than what previous studies have shown.
MassiveNuS: cosmological massive neutrino simulations
NASA Astrophysics Data System (ADS)
Liu, Jia; Bird, Simeon; Zorrilla Matilla, José Manuel; Hill, J. Colin; Haiman, Zoltán; Madhavacheril, Mathew S.; Petri, Andrea; Spergel, David N.
2018-03-01
The non-zero mass of neutrinos suppresses the growth of cosmic structure on small scales. Since the level of suppression depends on the sum of the masses of the three active neutrino species, the evolution of large-scale structure is a promising tool to constrain the total mass of neutrinos and possibly shed light on the mass hierarchy. In this work, we investigate these effects via a large suite of N-body simulations that include massive neutrinos using an analytic linear-response approximation: the Cosmological Massive Neutrino Simulations (MassiveNuS). The simulations include the effects of radiation on the background expansion, as well as the clustering of neutrinos in response to the nonlinear dark matter evolution. We allow three cosmological parameters to vary: the neutrino mass sum Mν in the range of 0–0.6 eV, the total matter density Ωm, and the primordial power spectrum amplitude As. The rms density fluctuation in spheres of 8 comoving Mpc/h (σ8) is a derived parameter as a result. Our data products include N-body snapshots, halo catalogues, merger trees, ray-traced galaxy lensing convergence maps for four source redshift planes between zs=1–2.5, and ray-traced cosmic microwave background lensing convergence maps. We describe the simulation procedures and code validation in this paper. The data are publicly available at http://columbialensing.org.
Zhu, Hao; Sun, Yan; Rajagopal, Gunaretnam; Mondry, Adrian; Dhar, Pawan
2004-01-01
Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described. PMID:15339335
Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.; ...
2017-02-17
Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.
Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).
Research on cloud background infrared radiation simulation based on fractal and statistical data
NASA Astrophysics Data System (ADS)
Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing
2018-02-01
Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.
Integration of Irma tactical scene generator into directed-energy weapon system simulation
NASA Astrophysics Data System (ADS)
Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.
2003-08-01
Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.
2010-01-01
Background Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine. Methods The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks. Results The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability. Conclusions The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies. PMID:20584307
Simulation of PEP-II Accelerator Backgrounds Using TURTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, R.J.; Fieguth, T.; /SLAC
2006-02-15
We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using LPTURTLE, a modified version of the DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full program of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modeling of limiting apertures in bothmore » collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.« less
STS-45 MS Foale in EMU prepares for underwater exercises in JSC's WETF pool
1991-02-26
S91-30196 (1 March 1991) --- Astronaut C. Michael Foale, mission specialist, and Kathryn D. Sullivan, payload commander (barely visible in background), stand on a platform (out of frame) which is part of a system that will lower them into a 25-ft. deep pool. The payload commander and mission specialist used the pool in the weightless environment training facility (WET-F) to rehearse a contingency extravehicular activity (EVA). Astronauts wear pressurized spacesuits configured for achieving a neutrally buoyant condition in the water to simulate both planned and contingency EVAs. Two SCUBA-equipped swimmers assisting the training are seen in the background.
NASA Astrophysics Data System (ADS)
Yao, Rutao; Ma, Tianyu; Shao, Yiping
2008-08-01
This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.
Background and Recent Progress in Anomalous Transport Simulation
2017-07-19
NUMBER (Include area code) 19 July 2017 Briefing Charts 14 June 2017 - 19 July 2017 Background and Recent Progress in Anomalous Transport Simulation ...and Recent Progress in Anomalous Transport Simulation 19 Jul 2017 Justin Koo AFRL/RQRS Edwards AFB, CA 2DISTRIBUTION A: Approved for public release...Baalrud, S.D. and Chabert, P., “Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations
Educational aspects of molecular simulation
NASA Astrophysics Data System (ADS)
Allen, Michael P.
This article addresses some aspects of teaching simulation methods to undergraduates and graduate students. Simulation is increasingly a cross-disciplinary activity, which means that the students who need to learn about simulation methods may have widely differing backgrounds. Also, they may have a wide range of views on what constitutes an interesting application of simulation methods. Almost always, a successful simulation course includes an element of practical, hands-on activity: a balance always needs to be struck between treating the simulation software as a 'black box', and becoming bogged down in programming issues. With notebook computers becoming widely available, students often wish to take away the programs to run themselves, and access to raw computer power is not the limiting factor that it once was; on the other hand, the software should be portable and, if possible, free. Examples will be drawn from the author's experience in three different contexts. (1) An annual simulation summer school for graduate students, run by the UK CCP5 organization, in which practical sessions are combined with an intensive programme of lectures describing the methodology. (2) A molecular modelling module, given as part of a doctoral training centre in the Life Sciences at Warwick, for students who might not have a first degree in the physical sciences. (3) An undergraduate module in Physics at Warwick, also taken by students from other disciplines, teaching high performance computing, visualization, and scripting in the context of a physical application such as Monte Carlo simulation.
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Klein, Mark D.; Viola, Timothy S.; Hepokoski, Mark A.
2016-10-01
The ability to predict electro-optical (EO) signatures of diverse targets against cluttered backgrounds is paramount for signature evaluation and/or management. Knowledge of target and background signatures is essential for a variety of defense-related applications. While there is no substitute for measured target and background signatures to determine contrast and detection probability, the capability to simulate any mission scenario with desired environmental conditions is a tremendous asset for defense agencies. In this paper, a systematic process for the thermal and visible-through-infrared simulation of camouflaged human dismounts in cluttered outdoor environments is presented. This process, utilizing the thermal and EO/IR radiance simulation tool TAIThermIR (and MuSES), provides a repeatable and accurate approach for analyzing contrast, signature and detectability of humans in multiple wavebands. The engineering workflow required to combine natural weather boundary conditions and the human thermoregulatory module developed by ThermoAnalytics is summarized. The procedure includes human geometry creation, human segmental physiology description and transient physical temperature prediction using environmental boundary conditions and active thermoregulation. Radiance renderings, which use Sandford-Robertson BRDF optical surface property descriptions and are coupled with MODTRAN for the calculation of atmospheric effects, are demonstrated. Sensor effects such as optical blurring and photon noise can be optionally included, increasing the accuracy of detection probability outputs that accompany each rendering. This virtual evaluation procedure has been extensively validated and provides a flexible evaluation process that minimizes the difficulties inherent in human-subject field testing. Defense applications such as detection probability assessment, camouflage pattern evaluation, conspicuity tests and automatic target recognition are discussed.
GEANT4-based full simulation of the PADME experiment at the DAΦNE BTF
NASA Astrophysics Data System (ADS)
Leonardi, E.; Kozhuharov, V.; Raggi, M.; Valente, P.
2017-10-01
A possible solution to the dark matter problem postulates that dark particles can interact with Standard Model particles only through a new force mediated by a “portal”. If the new force has a U(1) gauge structure, the “portal” is a massive photon-like vector particle, called dark photon or A‧. The PADME experiment at the DAΦNE Beam-Test Facility (BTF) in Frascati is designed to detect dark photons produced in positron on fixed target annihilations decaying to dark matter (e+e-→γA‧) by measuring the final state missing mass. The experiment will be composed of a thin active diamond target where a 550 MeV positron beam will impinge to produce e+e- annihilation events. The surviving beam will be deflected with a magnet while the photons produced in the annihilation will be measured by a calorimeter composed of BGO crystals. To reject the background from Bremsstrahlung gamma production, a set of segmented plastic scintillator vetoes will be used to detect positrons exiting the target with an energy lower than that of the beam, while a fast small angle calorimeter will be used to reject the e+e-→γγ(γ) background. To optimize the experimental layout in terms of signal acceptance and background rejection, the full layout of the experiment was modelled with the GEANT4 simulation package. In this paper we will describe the details of the simulation and report on the results obtained with the software.
Modeling surface backgrounds from radon progeny plate-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumpilly, G.; Guiseppe, V. E.; Snyder, N.
2013-08-08
The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The surface deposition and subsequent implantation of radon progeny in detector materials will be a source of energetic background events. We investigate Monte Carlo and model-based simulations to understand the surface implantation profile of radon progeny. Depending on the material and region of interest of a rare event search, these partial energy depositions can be problematic. Motivated by the use of Ge crystals for the detection of neutrinoless double-beta decay, we wish to understand the detector response of surface backgrounds from radon progeny. Wemore » look at the simulation of surface decays using a validated implantation distribution based on nuclear recoils and a realistic surface texture. Results of the simulations and measured α spectra are presented.« less
Sensitivity of the Cherenkov Telescope Array to the Detection of Intergalactic Magnetic Fields
NASA Astrophysics Data System (ADS)
Meyer, Manuel; Conrad, Jan; Dickinson, Hugh
2016-08-01
Very high energy (VHE; energy E ≳ 100 GeV) γ-rays originating from extragalactic sources undergo pair production with low-energy photons of background radiation fields. These pairs can inverse-Compton-scatter background photons, initiating an electromagnetic cascade. The spatial and temporal structure of this secondary γ-ray signal is altered as the {e}+{e}- pairs are deflected in an intergalactic magnetic field (IGMF). We investigate how VHE observations with the future Cherenkov Telescope Array, with its high angular resolution and broad energy range, can potentially probe the IGMF. We identify promising sources and simulate γ-ray spectra over a wide range of values of the IGMF strength and coherence length using the publicly available ELMAG Monte Carlo code. Combining simulated observations in a joint likelihood approach, we find that current limits on the IGMF can be significantly improved. The projected sensitivity depends strongly on the time a source has been γ-ray active and on the emitted maximum γ-ray energy.
FastSim: A Fast Simulation for the SuperB Detector
NASA Astrophysics Data System (ADS)
Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.
2011-12-01
We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.
ATLAS Simulation using Real Data: Embedding and Overlay
NASA Astrophysics Data System (ADS)
Haas, Andrew; ATLAS Collaboration
2017-10-01
For some physics processes studied with the ATLAS detector, a more accurate simulation in some respects can be achieved by including real data into simulated events, with substantial potential improvements in the CPU, disk space, and memory usage of the standard simulation configuration, at the cost of significant database and networking challenges. Real proton-proton background events can be overlaid (at the detector digitization output stage) on a simulated hard-scatter process, to account for pileup background (from nearby bunch crossings), cavern background, and detector noise. A similar method is used to account for the large underlying event from heavy ion collisions, rather than directly simulating the full collision. Embedding replaces the muons found in Z→μμ decays in data with simulated taus at the same 4-momenta, thus preserving the underlying event and pileup from the original data event. In all these cases, care must be taken to exactly match detector conditions (beamspot, magnetic fields, alignments, dead sensors, etc.) between the real data event and the simulation. We will discuss the status of these overlay and embedding techniques within ATLAS software and computing.
Manual for the Jet Event and Background Simulation Library(JEBSimLib)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinz, Matthias; Soltz, Ron; Angerami, Aaron
Jets are the collimated streams of particles resulting from hard scattering in the initial state of high-energy collisions. In heavy-ion collisions, jets interact with the quark-gluon plasma (QGP) before freezeout, providing a probe into the internal structure and properties of the QGP. In order to study jets, background must be subtracted from the measured event, potentially introducing a bias. We aim to understand and quantify this subtraction bias. PYTHIA, a library to simulate pure jet events, is used to simulate a model for a signature with one pure jet (a photon) and one quenched jet, where all quenched particle momentamore » are reduced by a user-de ned constant fraction. Background for the event is simulated using multiplicity values generated by the TRENTO initial state model of heavy-ion collisions fed into a thermal model consisting of a 3-dimensional Boltzmann distribution for particle types and momenta. Data from the simulated events is used to train a statistical model, which computes a posterior distribution of the quench factor for a data set. The model was tested rst on pure jet events and then on full events including the background. This model will allow for a quantitative determination of biases induced by various methods of background subtraction.« less
Manual for the Jet Event and Background Simulation Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinz, M.; Soltz, R.; Angerami, A.
Jets are the collimated streams of particles resulting from hard scattering in the initial state of high-energy collisions. In heavy-ion collisions, jets interact with the quark-gluon plasma (QGP) before freezeout, providing a probe into the internal structure and properties of the QGP. In order to study jets, background must be subtracted from the measured event, potentially introducing a bias. We aim to understand and quantify this subtraction bias. PYTHIA, a library to simulate pure jet events, is used to simulate a model for a signature with one pure jet (a photon) and one quenched jet, where all quenched particle momentamore » are reduced by a user-de ned constant fraction. Background for the event is simulated using multiplicity values generated by the TRENTO initial state model of heavy-ion collisions fed into a thermal model consisting of a 3-dimensional Boltzmann distribution for particle types and momenta. Data from the simulated events is used to train a statistical model, which computes a posterior distribution of the quench factor for a data set. The model was tested rst on pure jet events and then on full events including the background. This model will allow for a quantitative determination of biases induced by various methods of background subtraction.« less
NASA Technical Reports Server (NTRS)
Yim, John T.; Burt, Jonathan M.
2015-01-01
The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.
Giudice, Ben D; Young, Thomas M
2011-10-01
Municipal biosolids are commonly applied to land as soil amendment or fertilizer as a form of beneficial reuse of what could otherwise be viewed as waste. Balanced against this benefit are potential risks to groundwater and surface water quality from constituents that may be mobilized during storm events. The objective of the present study was to characterize the mobilization of selected endocrine-disrupting compounds, heavy metals, and total estrogenic activity in rainfall runoff from land-applied biosolids. Rainfall simulations were conducted on soil plots amended with biosolids. Surface runoff and leachate was collected and analyzed for the endocrine-disrupting compounds bisphenol A, 17α-ethynylestradiol, triclocarban, triclosan, octylphenol, and nonylphenol; a suite of 16 metals; and estrogenic activity via the estrogen receptor-mediated chemical activated luciferase gene expression (ER-CALUX) bioassay. Triclocarban (2.3-17.3 ng/L), triclosan (<51-309 ng/L), and octylphenol (<4.9-203 ng/L) were commonly detected. Chromium (2.0-22 µg/L), Co (2.5-10 µg/L), Ni (28-235 µg/L), Cu (14-110 µg/L), As (1.2-2.7 µg/L), and Se (0.29-12 µg/L) were quantifiable over background levels. Triclosan, Ni, and Cu were detected at levels that might pose some risk to aquatic life, though levels of metals in the biosolids were well below the maximum allowable regulatory limits. The ER-CALUX results were mostly explained by background bisphenol A contamination and octylphenol in runoff, although unknown contributors or matrix effects were also found. Copyright © 2011 SETAC.
EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.
Hunold, A; Funke, M E; Eichardt, R; Stenroos, M; Haueisen, J
2016-07-01
Simultaneous electroencephalography (EEG) and magnetoencephalography (MEG) recordings of neuronal activity from epileptic patients reveal situations in which either EEG or MEG or both modalities show visible interictal spikes. While different signal-to-noise ratios (SNRs) of the spikes in EEG and MEG have been reported, a quantitative relation of spike source orientation and depth as well as the background brain activity to the SNR has not been established. We investigated this quantitative relationship for both dipole and patch sources in an anatomically realistic cortex model. Altogether, 5600 dipole and 3300 patch sources were distributed on the segmented cortical surfaces of two volunteers. The sources were classified according to their quantified depths and orientations, ranging from 20 mm to 60 mm below the skin surface and radial and tangential, respectively. The source time-courses mimicked an interictal spike, and the simulated background activity emulated resting activity. Simulations were conducted with individual three-compartment boundary element models. The SNR was evaluated for 128 EEG, 102 MEG magnetometer, and 204 MEG gradiometer channels. For superficial dipole and superficial patch sources, EEG showed higher SNRs for dominantly radial orientations, and MEG showed higher values for dominantly tangential orientations. Gradiometers provided higher SNR than magnetometers for superficial sources, particularly for those with dominantly tangential orientations. The orientation dependent difference in SNR in EEG and MEG gradually changed as the sources were located deeper, where the interictal spikes generated higher SNRs in EEG compared to those in MEG for all source orientations. With deep sources, the SNRs in gradiometers and magnetometers were of the same order. To better detect spikes, both EEG and MEG should be used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meziane, M.; Eichwald, O.; Ducasse, O.
The present paper is devoted to the 2D simulation of an Atmospheric Corona Discharge Reactor (ACDR) involving 10 pins powered by a DC high voltage and positioned 7 mm above a grounded metallic plane. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The simulation involves the electro-dynamic, chemical kinetic, and neutral gas hydrodynamic phenomena that influence the kinetics of the chemical species transformation. Each discharge stage (including the primary and the secondary streamers development and the resulting thermal shock) lasts about one hundred nanoseconds while the post-dischargemore » stages occurring between two successive discharge phases last one hundred microseconds. The ACDR is crossed by a lateral air flow including 400 ppm of NO. During the considered time scale of 10 ms, one hundred discharge/post-discharge cycles are simulated. The simulation involves the radical formation and thermal exchange between the discharges and the background gas. The results show how the successive discharges activate the flow gas and how the induced turbulence phenomena affect the redistribution of the thermal energy and the chemical kinetics inside the ACDR.« less
Wong, Lai Fun; Chan, Sally Wai-Chi; Ho, Jasmine Tze Yin; Mordiffi, Siti Zubaidah; Ang, Sophia Bee Leng; Goh, Poh Sun; Ang, Emily Neo Kim
2015-01-01
Background Web-based learning is becoming an increasingly important instructional tool in nursing education. Multimedia advancements offer the potential for creating authentic nursing activities for developing nursing competency in clinical practice. Objective This study aims to describe the design, development, and evaluation of an interactive multimedia Web-based simulation for developing nurses’ competencies in acute nursing care. Methods Authentic nursing activities were developed in a Web-based simulation using a variety of instructional strategies including animation video, multimedia instructional material, virtual patients, and online quizzes. A randomized controlled study was conducted on 67 registered nurses who were recruited from the general ward units of an acute care tertiary hospital. Following a baseline evaluation of all participants’ clinical performance in a simulated clinical setting, the experimental group received 3 hours of Web-based simulation and completed a survey to evaluate their perceptions of the program. All participants were re-tested for their clinical performances using a validated tool. Results The clinical performance posttest scores of the experimental group improved significantly (P<.001) from the pretest scores after the Web-based simulation. In addition, compared to the control group, the experimental group had significantly higher clinical performance posttest scores (P<.001) after controlling the pretest scores. The participants from the experimental group were satisfied with their learning experience and gave positive ratings for the quality of the Web-based simulation. Themes emerging from the comments about the most valuable aspects of the Web-based simulation include relevance to practice, instructional strategies, and fostering problem solving. Conclusions Engaging in authentic nursing activities using interactive multimedia Web-based simulation can enhance nurses’ competencies in acute care. Web-based simulations provide a promising educational tool in institutions where large groups of nurses need to be trained in acute nursing care and accessibility to repetitive training is essential for achieving long-term retention of clinical competency. PMID:25583029
Combat Simulation Using Breach Computer Language
1979-09-01
simulation and weapon system analysis computer language Two types of models were constructed: a stochastic duel and a dynamic engagement model The... duel model validates the BREACH approach by comparing results with mathematical solutions. The dynamic model shows the capability of the BREACH...BREACH 2 Background 2 The Language 3 Static Duel 4 Background and Methodology 4 Validation 5 Results 8 Tank Duel Simulation 8 Dynamic Assault Model
NASA Astrophysics Data System (ADS)
Barreiro, Andrea K.; Ly, Cheng
2017-08-01
Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations of coupled stochastic differential equations. We implement the method with several examples of coupled neural networks and show that the results are quantitatively accurate even with moderate coupling strengths and an appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how various neural attributes qualitatively affect the spiking statistics of coupled neural networks.
Analytical-Based Partial Volume Recovery in Mouse Heart Imaging
NASA Astrophysics Data System (ADS)
Dumouchel, Tyler; deKemp, Robert A.
2011-02-01
Positron emission tomography (PET) is a powerful imaging modality that has the ability to yield quantitative images of tracer activity. Physical phenomena such as photon scatter, photon attenuation, random coincidences and spatial resolution limit quantification potential and must be corrected to preserve the accuracy of reconstructed images. This study focuses on correcting the partial volume effects that arise in mouse heart imaging when resolution is insufficient to resolve the true tracer distribution in the myocardium. The correction algorithm is based on fitting 1D profiles through the myocardium in gated PET images to derive myocardial contours along with blood, background and myocardial activity. This information is interpolated onto a 2D grid and convolved with the tomograph's point spread function to derive regional recovery coefficients enabling partial volume correction. The point spread function was measured by placing a line source inside a small animal PET scanner. PET simulations were created based on noise properties measured from a reconstructed PET image and on the digital MOBY phantom. The algorithm can estimate the myocardial activity to within 5% of the truth when different wall thicknesses, backgrounds and noise properties are encountered that are typical of healthy FDG mouse scans. The method also significantly improves partial volume recovery in simulated infarcted tissue. The algorithm offers a practical solution to the partial volume problem without the need for co-registered anatomic images and offers a basis for improved quantitative 3D heart imaging.
NASA Astrophysics Data System (ADS)
Jiang, Houshuo; Grosenbaugh, Mark A.
2002-11-01
Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.
A study of reconstruction accuracy for a cardiac SPECT system with multi-segmental collimation
NASA Astrophysics Data System (ADS)
Yu, D.-C.; Chang, W.; Pan, T.-S.
1997-06-01
To improve the geometric efficiency of cardiac SPECT imaging, the authors previously proposed to use a multi-segmental collimation with a cylindrical geometry. The proposed collimator consists of multiple parallel-hole collimators with most of the segments directed toward a small central region, where the patient's heart should be positioned. This technique provides a significantly increased detection efficiency for the central region, but at the expense of reduced efficiency for the surrounding region. The authors have used computer simulations to evaluate the implication of this technique on the accuracy of the reconstructed cardiac images. Two imaging situations were simulated: 1) the heart well placed inside the central region, and 2) the heart shifted and partially outside the central region. A neighboring high-uptake liver was simulated for both imaging situations. The images were reconstructed and corrected for attenuation with ML-EM and OS-FM methods using a complete attenuation map. The results indicate that errors caused by projection truncation are not significant and are not strongly dependent on the activity of the liver when the heart is well positioned within the central region. When the heart is partially outside the central region, hybrid emission data (a combination of high-count projections from the central region and low-count projections from the background region) can be used to restore the activity of the truncated section of the myocardium. However, the variance of the image in the section of the myocardium outside the central region is increased by 2-3 times when 10% of the collimator segments are used to image the background region.
NASA Astrophysics Data System (ADS)
Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren
2017-08-01
Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:
Can muon-induced backgrounds explain the DAMA data?
NASA Astrophysics Data System (ADS)
Klinger, Joel; Kudryavtsev, Vitaly A.
2016-05-01
We present an accurate simulation of the muon-induced background in the DAMA/LIBRA experiment. Muon sampling underground has been performed using the MUSIC/MUSUN codes and subsequent interactions in the rock around the DAMA/LIBRA detector cavern and the experimental setup including shielding, have been simulated with GEANT4.9.6. In total we simulate the equivalent of 20 years of muon data. We have calculated the total muon-induced neutron flux in the DAMA/LIBRA detector cavern as Φμ n = 1.0 × 10-9 cm-2s-1, which is consistent with other simulations. After selecting events which satisfy the DAMA/LIBRA signal criteria, our simulation predicts 3.49 × 10-5 cpd/kg/keV which accounts for less than 0.3% of the DAMA/LIBRA modulation amplitude. We conclude from our work that muon-induced backgrounds are unable to contribute to the observed signal modulation.
2014-01-01
Background To validate physical activity estimates by the Sensewear Pro3 activity monitor compared with indirect calorimetry during simulated free living in patients diagnosed with osteoarthritis of the hip pre or post total hip arthroplasty. Methods Twenty patients diagnosed with hip osteoarthritis (10 pre- and 10 post total hip arthroplasty; 40% female; age: 63.3 ± 9.0; BMI: 23.7 ± 3.7). All patients completed a 2 hour protocol of simulated free living with 8 different typical physical activity types. Energy consumption (kcal/min) was estimated by the Sense Wear pro3 Armband activity monitor and validated against indirect calorimetry (criterion method) by means of a portable unit (Cosmed K4b2). Bias and variance was analyzed using functional ANOVA. Results Mean bias during all activities was 1.5 Kcal/min 95%CI [1.3; 1.8] corresponding to 72% (overestimation). Normal gait speed showed an overestimation of 2.8 Kcal/min, 95%CI [2.3; 3.3] (93%) while an underestimation of -1.1 Kcal/min, 95%CI [-1.8; -0.3] (-25%) was recorded during stair climb. Activities dominated by upper body movements showed large overestimation with 4.37 Kcal/min, 95%CI [3.8; 5.1] (170%) being recorded during gardening. Both bias and variance appeared to be dependent on activity type. Conclusion The activity monitor generally overestimated the energy consumption during common activities of low to medium intensity in the patient group. The size and direction of the bias was highly dependent on the activity type which indicates the activity monitor is of limited value in patients with hip osteoarthritis and that the results do not express the real energy expenditure. PMID:24552503
Astronaut Gene Cernan poses in front of Gemini Mission Simulator
1966-08-09
S66-32698 (17 June 1966) --- Astronaut Eugene A. Cernan discusses his Gemini-9A extravehicular activity before a gathering of news media representatives in the MSC auditorium. In the background is an Astronaut Maneuvering Unit (AMU) mock-up mounted in a mock-up of a Gemini spacecraft adapter equipment section. Astronauts Cernan and Thomas P. Stafford completed their three-day mission in space on June 6, 1966. Photo credit: NASA
Implementation of input command shaping to reduce vibration in flexible space structures
NASA Technical Reports Server (NTRS)
Chang, Kenneth W.; Seering, Warren P.; Rappole, B. Whitney
1992-01-01
Viewgraphs on implementation of input command shaping to reduce vibration in flexible space structures are presented. Goals of the research are to explore theory of input command shaping to find an efficient algorithm for flexible space structures; to characterize Middeck Active Control Experiment (MACE) test article; and to implement input shaper on the MACE structure and interpret results. Background on input shaping, simulation results, experimental results, and future work are included.
Numerical Modeling and Combustion Studies of Scram Jet Simulation
2014-12-01
and this work is dedicated to them. xiii Chapter 1 1 Introduction 1.1 Background and Overview Scramjet ( Supersonic Combustion Ramjet) is a type of...engine that op- erates under supersonic airflow conditions. The efficiency in its propulsion system over ramjet has made it a very active research...from the boundary layer of the wall [41]. Moreover, when the crossflow is supersonic , as is the case in the Scramjet configuration, some additional
Generative technique for dynamic infrared image sequences
NASA Astrophysics Data System (ADS)
Zhang, Qian; Cao, Zhiguo; Zhang, Tianxu
2001-09-01
The generative technique of the dynamic infrared image was discussed in this paper. Because infrared sensor differs from CCD camera in imaging mechanism, it generates the infrared image by incepting the infrared radiation of scene (including target and background). The infrared imaging sensor is affected deeply by the atmospheric radiation, the environmental radiation and the attenuation of atmospheric radiation transfers. Therefore at first in this paper the imaging influence of all kinds of the radiations was analyzed and the calculation formula of radiation was provided, in addition, the passive scene and the active scene were analyzed separately. Then the methods of calculation in the passive scene were provided, and the functions of the scene model, the atmospheric transmission model and the material physical attribute databases were explained. Secondly based on the infrared imaging model, the design idea, the achievable way and the software frame for the simulation software of the infrared image sequence were introduced in SGI workstation. Under the guidance of the idea above, in the third segment of the paper an example of simulative infrared image sequences was presented, which used the sea and sky as background and used the warship as target and used the aircraft as eye point. At last the simulation synthetically was evaluated and the betterment scheme was presented.
Kapitán, Josef; Johannessen, Christian; Bour, Petr; Hecht, Lutz; Barron, Laurence D
2009-01-01
The samples used for the first observations of vibrational Raman optical activity (ROA) in 1972, namely both enantiomers of 1-phenylethanol and 1-phenylethylamine, have been revisited using a modern commercial ROA instrument together with state-of-the-art ab initio calculations. The simulated ROA spectra reveal for the first time the vibrational origins of the first reported ROA signals, which comprised similar couplets in the alcohol and amine in the spectral range approximately 280-400 cm(-1). The results demonstrate how easy and routine ROA measurements have become, and how current ab initio quantum-chemical calculations are capable of simulating experimental ROA spectra quite closely provided sufficient averaging over accessible conformations is included. Assignment of absolute configuration is, inter alia, completely secure from results of this quality. Anharmonic corrections provided small improvements in the simulated Raman and ROA spectra. The importance of conformational averaging emphasized by this and previous related work provides the underlying theoretical background to ROA studies of dynamic aspects of chiral molecular and biomolecular structure and behavior. (c) 2009 Wiley-Liss, Inc.
Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz
2014-01-01
Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing. PMID:24922512
Using Active Learning for Speeding up Calibration in Simulation Models
Cevik, Mucahit; Ali Ergun, Mehmet; Stout, Natasha K.; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan
2015-01-01
Background Most cancer simulation models include unobservable parameters that determine the disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality and their values are typically estimated via lengthy calibration procedure, which involves evaluating large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Methods Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We develop an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs, therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using previously developed University of Wisconsin Breast Cancer Simulation Model (UWBCS). Results In a recent study, calibration of the UWBCS required the evaluation of 378,000 input parameter combinations to build a race-specific model and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378,000 combinations. Conclusion Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. PMID:26471190
2011-01-01
Background Health professions education programs use simulation for teaching and maintaining clinical procedural skills. Simulated learning activities are also becoming useful methods of instruction for interprofessional education. The simulation environment for interprofessional training allows participants to explore collaborative ways of improving communicative aspects of clinical care. Simulation has shown communication improvement within and between health care professions, but the impacts of teamwork simulation on perceptions of others' interprofessional practices and one's own attitudes toward teamwork are largely unknown. Methods A single-arm intervention study tested the association between simulated team practice and measures of interprofessional collaboration, nurse-physician relationships, and attitudes toward health care teams. Participants were 154 post-licensure nurses, allied health professionals, and physicians. Self- and proxy-report survey measurements were taken before simulation training and two and six weeks after. Results Multilevel modeling revealed little change over the study period. Variation in interprofessional collaboration and attitudes was largely attributable to between-person characteristics. A constructed categorical variable indexing 'leadership capacity' found that participants with highest and lowest values were more likely to endorse shared team leadership over physician centrality. Conclusion Results from this study indicate that focusing interprofessional simulation education on shared leadership may provide the most leverage to improve interprofessional care. PMID:21443779
Aerosol indirect effect on tropospheric ozone via lightning
NASA Astrophysics Data System (ADS)
Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.
2012-12-01
Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and projecting future tropospheric O3 forcing as well as wildfire changes and call for integrated investigations of the coupled aerosol-cloud-chemistry system.
NASA Technical Reports Server (NTRS)
Koga, J. K.; Lin, C. S.; Winglee, R. M.
1989-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.
Active confocal imaging for visual prostheses
Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli
2014-01-01
There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710
Radiation noise in a high sensitivity star sensor
NASA Technical Reports Server (NTRS)
Parkinson, J. B.; Gordon, E.
1972-01-01
An extremely accurate attitude determination was developed for space applications. This system uses a high sensitivity star sensor in which the photomultiplier tube is subject to noise generated by space radiations. The space radiation induced noise arises from trapped electrons, solar protons and other ionizing radiations, as well as from dim star background. The solar activity and hence the electron and proton environments are predicted through the end of the twentieth century. The available data for the response of the phototube to proton, electron, gamma ray, and bremsstrahlung radiations are reviewed and new experimental data is presented. A simulation was developed which represents the characteristics of the effect of radiations on the star sensor, including the non-stationarity of the backgrounds.
Effects of high-frequency activity on latent heat flux of MJO
NASA Astrophysics Data System (ADS)
Gao, Yingxia; Hsu, Pang-Chi; Li, Tim
2018-04-01
The effect of high-frequency (HF) variability on latent heat flux (LHF) associated with the Madden-Julian Oscillation (MJO) during the boreal winter is investigated through diagnosis using two reanalysis datasets and numerical experiments of an atmospheric general circulation model (AGCM). The diagnostic results show that the HF activities exert an impact on the variability of MJO LHF mainly through their interactions with the longer than 90-day low-frequency background state (LFBS). The contribution of intraseasonal LHF induced by the interactions between LFBS and HF activities accounts for more than 20% of the total intraseasonal LHF over active MJO regions. The intraseasonal LHF induced by the LFBS-HF interaction is in phase with the MJO convection, while the total intraseasonal LHF appears at and to the west of the MJO convection center. This suggests that the intraseasonal LHF via the feedback of HF activity interacting with LFBS is conducive to the maintenance and eastward propagation of MJO convection. To confirm the role of HF disturbances in MJO convection activity, we carry out a series of experiments using the AGCM of ECHAM4, which captures well the general features of MJO. We select a number of MJO cases with enhanced convective signals and significant eastward propagation from a 30-year climatological simulation. Once the HF components of surface wind and moisture fields in LHF are excluded in model integration for each MJO case, most of the simulated MJO convection shows weakened activity and a slower propagation speed compared to the simulations containing all time-scale components. The outputs of these sensitivity experiments support the diagnostic results that HF activities contribute to the maintenance and propagation of MJO convection through the intraseasonal LHF induced by the scale interaction of HF activities with lower frequency variability.
Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger
2016-01-01
Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.
Meteorological and Aerosol effects on Marine Cloud Microphysical Properties
NASA Astrophysics Data System (ADS)
Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.
2015-12-01
Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0.02 and 0.20 respectively. In addition, the ACP model simulations are compared to those from a numerical parameterization of cloud droplet activation that is suitable for GCMs and show droplet concentrations are comparable between the two methods.
Development of an Ultra-Low Background Liquid Scintillation Counter for Trace Level Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erchinger, Jennifer L.; Orrell, John L.; Aalseth, Craig E.
2015-09-01
Low-level liquid scintillation counting (LSC) has been established as one of the radiation detection techniques useful in elucidating environmental processes and environmental monitoring around nuclear facilities. The Ultra-Low Background Liquid Scintillation Counter (ULB-LSC) under construction in the Shallow Underground Laboratory at Pacific Northwest National Laboratory aims to further reduce the MDAs and/or required sample processing. Through layers of passive shielding in conjunction with an active veto and 30 meters water equivalent overburden, the background reduction is expected to be 10 to 100 times below typical analytic low-background liquid scintillation systems. Simulations have shown an expected background of around 14 countsmore » per day. A novel approach to the light collection will use a coated hollow light guide cut into the inner copper shielding. Demonstration LSC measurements will show low-energy detection, spectral deconvolution, and alpha/beta discrimination capabilities, from trials with standards of tritium, strontium-90, and actinium-227, respectively. An overview of the system design and expected demonstration measurements will emphasize the potential applications of the ULB-LSC in environmental monitoring for treaty verification, reach-back sample analysis, and facility inspections.« less
Cascaded analysis of signal and noise propagation through a heterogeneous breast model.
Mainprize, James G; Yaffe, Martin J
2010-10-01
The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the "power law" filter used to generate the texture of the tissue distribution. A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.
2011-01-01
In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.
Giudice, Ben D.; Young, Thomas M.
2012-01-01
Municipal biosolids are commonly applied to land as soil amendment or fertilizer as a form of beneficial reuse of what could otherwise be viewed as waste. Balanced against this benefit are potential risks to groundwater and surface water quality from constituents that may be mobilized during storm events. The objective of the present study was to characterize the mobilization of selected endocrine disrupting compounds (EDCs), heavy metals, and total estrogenic activity in rainfall runoff from land-applied biosolids. Rainfall simulations were conducted on soil plots amended with biosolids. Surface runoff and leachate was collected and analyzed for the EDCs bisphenol A, 17α-ethynylestradiol, triclocarban, triclosan, octylphenol, and nonylphenol; a suite of sixteen metals; and estrogenic activity via the ER-CALUX bioassay. Triclocarban (2.3–17.3 ng/L), triclosan (<51–309 ng/L), and octylphenol (<4.9–203 ng/L) were commonly detected. Chromium (2.0–22 µg/L), cobalt (2.5–10 µg/L), nickel (28–235 µg/L), copper (14–110 µg/L), arsenic (1.2–2.7 µg/L), and selenium (0.29–12 µg/L) were quantifiable over background levels. Triclosan, nickel, and copper were detected at levels that might pose some risk to aquatic life, though levels of metals in the biosolids were well below maximum allowable regulatory limits. ER-CALUX results were mostly explained by background bisphenol A contamination and octylphenol in runoff, though unknown contributors and/or matrix effects were also found. PMID:21786314
NASA Technical Reports Server (NTRS)
Yamauchi, M.
1994-01-01
A two-dimensional numerical simulation of finite-amplitude magnetohydrodynamic (MHD) magnetosonic waves is performed under a finite-velocity background convection condition. Isothermal cases are considered for simplicity. External dissipation is introduced by assuming that the field-aligned currents are generated in proportion to the accumulated charges. The simulation results are as follows: Paired field-aligned currents are found from the simulated waves. The flow directions of these field-aligned currents depend on the angle between the background convection and the wave normal, and hence two pairs of field-aligned currents are found from a bowed wave if we look at the overall structure. The majority of these field-aligned currents are closed within each pair rather than between two wings. These features are not observed under slow background convection. The result could be applied to the cusp current system and the substorm current system.
Dual view FIDA measurements on MAST
NASA Astrophysics Data System (ADS)
Michael, C. A.; Conway, N.; Crowley, B.; Jones, O.; Heidbrink, W. W.; Pinches, S.; Braeken, E.; Akers, R.; Challis, C.; Turnyanskiy, M.; Patel, A.; Muir, D.; Gaffka, R.; Bailey, S.
2013-09-01
A fast-ion deuterium alpha (FIDA) spectrometer was installed on MAST to measure radially resolved information about the fast-ion density and its distribution in energy and pitch angle. Toroidally and vertically directed collection lenses are employed, to detect both passing and trapped particle dynamics, and reference views are installed to subtract the background. This background is found to contain a substantial amount of passive FIDA emission driven by edge neutrals, and to depend delicately on viewing geometry. Results are compared with theoretical expectations based on the codes NUBEAM (for fast-ion distributions) and FIDASIM. Calibrating via the measured beam emission peaks, the toroidal FIDA signal profile agrees with classical simulations in magnetohydrodynamic quiescent discharges where the neutron rate is also classical. Long-lived modes (LLMs) and chirping modes decrease the core FIDA signal significantly, and the profile can be matched closely to simulations using anomalous diffusive transport; a spatially uniform diffusion coefficient is sufficient for chirping modes, while a core localized diffusion is better for a LLM. Analysis of a discharge with chirping mode activity shows a dramatic drop in the core FIDA signal and rapid increase in the edge passive signal at the onset of the burst indicating a very rapid redistribution towards the edge. Vertical-viewing measurements show a discrepancy with simulations at higher Doppler shifts when the neutron rate is classical, which, combined with the fact that the toroidal signals agree, means that the difference must be occurring for pitch angles near the trapped-passing boundary, although uncertainties in the background subtraction, which are difficult to assess, may contribute to this. Further evidence of an anomalous transport mechanism for these particles is provided by the fact that an increase of beam power does not increase the higher energy vertical FIDA signals, while the toroidal signals do increase.
Romoser, Matthew R. E.; Fisher, Donald L.
2010-01-01
Objective This study aimed (a) to determine whether older drivers looked less often for potential threats while turning than younger drivers and (b) to compare the effectiveness of active and passive training on older drivers’ performance and evaluation of their driving skills in intersections. Background Age-related declines in vision, physical abilities, psychomotor coordination, and cognition combine to make it less likely that older drivers will look for potential threats during a turn. Research suggests that active training should be an effective means of improving older drivers’ performance and self-awareness. Method In Experiment 1, younger and older participants drove a series of virtual intersection scenarios, were shown video replays, and were provided feedback. In Experiment 2, older drivers were assigned to one of three cohorts: active simulator training, passive classroom training, or no training. Pre- and posttraining simulator and field drives assessed training effectiveness. Results In Experiment 1, older drivers looked less often during turns than younger drivers. Customized feedback was successful in altering drivers’ perception of their abilities. In Experiment 2, active training increased a driver’s probability of looking for a threat during a turn by nearly 100% in both posttraining simulator and field drives. Those receiving passive training or no training showed no improvement. Conclusion Compared with passive training, active training is a more effective strategy for increasing older drivers’ likelihood of looking for threats during a turn. Application The results of this research can guide the development of programs that could reduce intersection crashes among older drivers. PMID:20196291
NASA Astrophysics Data System (ADS)
Ekberg, Joakim; Timpka, Toomas; Morin, Magnus; Jenvald, Johan; Nyce, James M.; Gursky, Elin A.; Eriksson, Henrik
Computer simulations have emerged as important tools in the preparation for outbreaks of infectious disease. To support the collaborative planning and responding to the outbreaks, reports from simulations need to be transparent (accessible) with regard to the underlying parametric settings. This paper presents a design for generation of simulation reports where the background settings used in the simulation models are automatically visualized. We extended the ontology-management system Protégé to tag different settings into categories, and included these in report generation in parallel to the simulation outcomes. The report generator takes advantage of an XSLT specification and collects the documentation of the particular simulation settings into abridged XMLs including also summarized results. We conclude that even though inclusion of critical background settings in reports may not increase the accuracy of infectious disease simulations, it can prevent misunderstandings and less than optimal public health decisions.
High-Fidelity Simulation in Biomedical and Aerospace Engineering
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.
Background and Source Term Identification in Active Neutron Interrogation Methods
2011-03-24
interactions occurred to observe gamma ray peaks and not unduly increase simulation time. Not knowing the uranium enrichment modeled by Gozani, pure U...neutron interactions can occur. The uranium targets, though, should have increased neutron fluencies as the energy levels become below 2 MeV. This is...Assessment Monitor Site (TEAMS) at Kirtland AFB, NM. Iron (Fe-56), lead (Pb-207), polyethylene (C2H4 –– > C-12 & H-1), and uranium (U-235 and U-238) were
Allvin, Renée; Berndtzon, Magnus; Carlzon, Liisa; Edelbring, Samuel; Hult, Håkan; Hultin, Magnus; Karlgren, Klas; Masiello, Italo; Södersved Källestedt, Marie-Louise; Tamás, Éva
2017-01-01
Medical simulation enables the design of learning activities for competency areas (eg, communication and leadership) identified as crucial for future health care professionals. Simulation educators and medical teachers follow different career paths, and their education backgrounds and teaching contexts may be very different in a simulation setting. Although they have a key role in facilitating learning, information on the continuing professional development (pedagogical development) of simulation educators is not available in the literature. To explore changes in experienced simulation educators' perceptions of their own teaching skills, practices, and understanding of teaching over time. A qualitative exploratory study. Fourteen experienced simulation educators participated in individual open-ended interviews focusing on their development as simulation educators. Data were analyzed using an inductive thematic analysis. Marked educator development was discerned over time, expressed mainly in an altered way of thinking and acting. Five themes were identified: shifting focus, from following to utilizing a structure, setting goals, application of technology, and alignment with profession. Being confident in the role as an instructor seemed to constitute a foundation for the instructor's pedagogical development. Experienced simulation educators' pedagogical development was based on self-confidence in the educator role, and not on a deeper theoretical understanding of teaching and learning. This is the first clue to gain increased understanding regarding educational level and possible education needs among simulation educators, and it might generate several lines of research for further studies.
Cavity approach to noisy learning in nonlinear perceptrons.
Luo, P; Michael Wong, K Y
2001-12-01
We analyze the learning of noisy teacher-generated examples by nonlinear and differentiable student perceptrons using the cavity method. The generic activation of an example is a function of the cavity activation of the example, which is its activation in the perceptron that learns without the example. Mean-field equations for the macroscopic parameters and the stability condition yield results consistent with the replica method. When a single value of the cavity activation maps to multiple values of the generic activation, there is a competition in learning strategy between preferentially learning an example and sacrificing it in favor of the background adjustment. We find parameter regimes in which examples are learned preferentially or sacrificially, leading to a gap in the activation distribution. Full phase diagrams of this complex system are presented, and the theory predicts the existence of a phase transition from poor to good generalization states in the system. Simulation results confirm the theoretical predictions.
Radon mitigation for the SuperCDMS SNOLAB dark matter experiment
NASA Astrophysics Data System (ADS)
Street, J.; Bunker, R.; Miller, E. H.; Schnee, R. W.; Snyder, S.; So, J.
2018-01-01
A potential background for the SuperCDMS SNOLAB dark matter experiment is from radon daughters that have plated out onto detector surfaces. To reach desired backgrounds, understanding plate-out rates during detector fabrication as well as mitigating radon in surrounding air is critical. A radon mitigated cleanroom planned at SNOLAB builds upon a system commissioned at the South Dakota School of Mines & Technology (SD Mines). The ultra-low radon cleanroom at SD Mines has air supplied by a vacuum-swing-adsorption radon mitigation system that has achieved >1000× reduction for a cleanroom activity consistent with zero and <0.067 Bq m-3 at 90% confidence. Our simulation of this system, validated against calibration data, provides opportunity for increased understanding and optimization for this and future systems.
Maintenance of ventricular fibrillation in heterogeneous ventricle.
Arevalo, Hamenegild J; Trayanova, Natalia A
2006-01-01
Although ventricular fibrillation (VF) is the prevalent cause of sudden cardiac death, the mechanisms that underlie VF remain elusive. One possible explanation is that VF is driven by a single robust rotor that is the source of wavefronts that break-up due to functional heterogeneities. Previous 2D computer simulations have proposed that a heterogeneity in background potassium current (IK1) can serve as the substrate for the formation of mother rotor activity. This study incorporates IK1 heterogeneity between the left and right ventricle in a realistic 3D rabbit ventricle model to examine its effects on the organization of VF. Computer simulations show that the IK1 heterogeneity contributes to the initiation and maintenance of VF by providing regions of different refractoriness which serves as sites of wave break and rotor formation. A single rotor that drives the fibrillatory activity in the ventricle is not found in this study. Instead, multiple sites of reentry are recorded throughout the ventricle. Calculation of dominant frequencies for each myocardial node yields no significant difference between the dominant frequency of the LV and the RV. The 3D computer simulations suggest that IK1 spatial heterogeneity alone can not lead to the formation of a stable rotor.
Simulations of Flare Reconnection in Breakout Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
DeVore, C. Richard; Karpen, J. T.; Antiochos, S. K.
2009-05-01
We report 3D MHD simulations of the flare reconnection in the corona below breakout coronal mass ejections (CMEs). The initial setup is a single bipolar active region imbedded in the global-scale background dipolar field of the Sun, forming a quadrupolar magnetic configuration with a coronal null point. Rotational motions applied to the active-region polarities at the base of the atmosphere introduce shear across the polarity inversion line (PIL). Eventually, the magnetic stress and energy reach the critical threshold for runaway breakout reconnection, at which point the sheared core field erupts outward at high speed. The vertical current sheet formed by the stretching of the departing sheared field suffers reconnection that reforms the initial low-lying arcade across the PIL, i.e., creates the flare loops. Our simulation model, the Adaptively Refined MHD Solver, exploits local grid refinement to resolve the detailed structure and evolution of the highly dynamic current sheet. We are analyzing the numerical experiments to identify and interpret observable signatures of the flare reconnection associated with CMEs, e.g., the flare loops and ribbons, coronal jets and shock waves, and possible origins of solar energetic particles. This research was supported by NASA and ONR.
Ishizaki, Makiko; Maeda, Hatsuo; Okamoto, Ikuko
2014-01-01
Color-weak persons, who in Japan represent approximately 5% of male and 0.2% of female population, may not be able to discriminate among colors of tablets. Thus using color-weak simulation by Variantor™ we evaluated the effects of background colors (light, medium, and dark gray, purple, blue, and blue green) on discrimination among yellow, yellow red, red, and mixed group tablets by our established method. In addition, the influence of white 10-mm ruled squares on background sheets was examined, and the change in color of the tablets and background sheets through the simulation measured. Variance analysis of the data obtained from 42 volunteers demonstrated that with color-weak vision, the best discrimination among yellow, yellow red, or mixed group tablets was achieved on a dark gray background sheet, and a blue background sheet was useful to discriminate among each tablet group in all colors including red. These results were compared with those previously obtained with healthy and cataractous vision, suggesting that gap in color hue and chroma as well as value between background sheets and tablets affects discrimination with color-weak vision. The observed positive effects of white ruled squares, in contrast to those observed on healthy and cataractous vision, demonstrate that a background sheet arranged by two colors allows color-weak persons to discriminate among all sets of tablets in a sharp and feasible manner.
Air shower simulation for background estimation in muon tomography of volcanoes
NASA Astrophysics Data System (ADS)
Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Labazuy, P.; Laktineh, I.; Lénat, J.-F.; Miallier, D.; Mirabito, L.; Niess, V.; Portal, A.; Vulpescu, B.
2013-01-01
One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.
Using an agent-based model to simulate children’s active travel to school
2013-01-01
Background Despite the multiple advantages of active travel to school, only a small percentage of US children and adolescents walk or bicycle to school. Intervention studies are in a relatively early stage and evidence of their effectiveness over long periods is limited. The purpose of this study was to illustrate the utility of agent-based models in exploring how various policies may influence children’s active travel to school. Methods An agent-based model was developed to simulate children’s school travel behavior within a hypothetical city. The model was used to explore the plausible implications of policies targeting two established barriers to active school travel: long distance to school and traffic safety. The percent of children who walk to school was compared for various scenarios. Results To maximize the percent of children who walk to school the school locations should be evenly distributed over space and children should be assigned to the closest school. In the case of interventions to improve traffic safety, targeting a smaller area around the school with greater intensity may be more effective than targeting a larger area with less intensity. Conclusions Despite the challenges they present, agent based models are a useful complement to other analytical strategies in studying the plausible impact of various policies on active travel to school. PMID:23705953
Lu, T Z; Kostelecki, W; Sun, C L F; Dong, N; Pérez Velázquez, J L; Feng, Z-P
2016-12-01
The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K + and a small Na + component. We previously reported that a Na + -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na + current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na + leak current as compared to the K + leak current, suggesting a robust function of Na + leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na + leak current in intrinsic properties of pacemaker neurons. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
[PM₂.₅ Background Concentration at Different Directions in Beijing in 2013].
Li, Yun-ting; Cheng, Niam-liang; Zhang, Da-wei; Sun, Rui-wen; Dong, Xin; Sun, Nai-di; Chen, Chen
2015-12-01
PM₂.₅, background concentration at different directions in 2013 in Beijing was analyzed combining the techniques of mathematical statistics, physical identification and numerical simulation (CMAQ4.7.1) as well as using monitoring data of six PM₂.₅ auto-monitoring sites and five meteorological sites in 2013. Results showed that background concentrations of PM₂.₅ at northwest, northeast, eastern, southeast, southern and southwest boundary sites were between 40.3 and 85.3 µg · m⁻³ in Beijing. From the lowest to the highest, PMPM₂.₅ background concentrations at different sites were: Miyun reservoir, Badaling, Donggaocun, Yufa, Yongledian and Liulihe. Background concentration of PM₂.₅ was the lowest under north wind, then under west wind, and significantly higher under south and east wind. Calculated PM₂.₅ background average concentrations were 6.5-27.9, 22.4-73.4, 67.2-91.7, 40.7-116.1 µg · m⁻³ respectively in different wind directions. Simulated PM₂.₅ background concentration showed a clear north-south gradient distribution and the surrounding area had a notable effect on the spatial distribution of PM₂.₅ background concentration in 2013 in Beijing.
NASA Astrophysics Data System (ADS)
Chen, M.; Lemon, C.; Sazykin, S. Y.; Wolf, R.; Anderson, P. C.
2016-12-01
Sub-Auroral Polarization Streams (SAPS), characterized by large subauroral E x B velocities that span from dusk to the early morning sector for high magnetic activity, result from strong magnetosphere-ionosphere coupling. We investigate how electron and ion precipitation and the ionospheric conductance affect the simulated development of the SAPS electric field for the 17 March 2013 storm. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the SAPS. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. Ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. The electron and proton contributions to the auroral conductance in the RCM-E are calculated using the empirical Robinson et al. [JGR, 1987] and Galand and Richmond [JGR, 2001] equations, respectively. The "background" ionospheric conductance is based on parameters from the International Reference Ionosphere [Bilitza and Reinisch, JASR, 2008] but modified to include the effect of specified ionospheric troughs. Parameterized simulations will aid in understanding the underlying physical process. We compare simulated precipitating particle energy flux and E x B velocities with DMSP observations where SAPS are observed during the 17 March 2013 storm. Analysis of discerpancies between the simulation results and data will aid us in assessing needed improvements in the model.
Expected Backgrounds of the BetaCage, an Ultra-sensitive Screener for Surface Contamination
NASA Astrophysics Data System (ADS)
Wang, Boqian; Bunker, Raymond; Schnee, Richard; Bowles, Michael; Kos, Marek; Ahmed, Zeeshan; Golwala, Sunil; Nelson, Robert; Grant, Darren
2013-04-01
Material screening for low-energy betas and alphas is necessary for rare-event-search experiments, such as dark matter and neutrinoless double-beta decay searches where surface radiocontamination has become a significant background. The BetaCage, a gaseous neon time-projection chamber, has been proposed as a screener for emitters of low-energy betas and alphas to which existing screening facilities are insufficiently sensitive. The expected sensitivity is 0.1 betas / (keV m^2 day) and 0.1 alphas / (m^2 day). Expected backgrounds are dominated by Compton scattering of external photons in the sample to be screened; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We will report on details of the background simulations and the detector design that allows discrimination to reach these sensitivity levels.
Surface alpha backgrounds from plate-out of radon progeny
NASA Astrophysics Data System (ADS)
Perumpilly, Gopakumar; Guiseppe, Vincente
2012-03-01
Low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent daughters present in an experiment are potential backgrounds, more troublesome is the deposition of radon daughters on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by daughters supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. We have developed a model of the radon progeny implantation using Geant4 simulations based on the low energy nuclear recoil process. We explore the alpha decays from implanted progeny on a Ge crystal as potential backgrounds for a neutrinoless double-beta decay experiment. Results of the simulations validated with alpha spectrum measurement of plate-out samples will be presented.
Retrospective determination of the contamination in the HML's counting chambers.
Kramer, Gary H; Hauck, Barry; Capello, Kevin; Phan, Quoc
2008-09-01
The original documentation surrounding the purchase of the Human Monitoring Laboratory's (HML) counting chambers clearly showed that the steel contained low levels of radioactivity, presumably as a result of A-bomb fallout or perhaps to the inadvertent mixing of radioactive sources with scrap steel. Monte Carlo simulations have been combined with experimental measurements to estimate the level of contamination in the steel of the HML's whole body counting chamber. A 24-h empty chamber background count showed the presence of 137Cs and 60Co. The estimated activity of 137Cs in the 51 tons of steel was 2.7 kBq in 2007 (51.3 microBq g(-1) steel) which would have been 8 kBq at the time of manufacture. The 60Co that was found in the background spectrum is postulated to be contained in the bed-frame. The estimated amount in 2007 was 5 Bq and its origin is likely to be contaminated scrap metal entering the steel production cycle sometime in the past. The estimated activities are 10 to 25 times higher than the estimated minimum detectable activity for this measurement. These amounts have no impact on the usefulness of the whole body counter.
Virtual wayfinding using simulated prosthetic vision in gaze-locked viewing.
Wang, Lin; Yang, Liancheng; Dagnelie, Gislin
2008-11-01
To assess virtual maze navigation performance with simulated prosthetic vision in gaze-locked viewing, under the conditions of varying luminance contrast, background noise, and phosphene dropout. Four normally sighted subjects performed virtual maze navigation using simulated prosthetic vision in gaze-locked viewing, under five conditions of luminance contrast, background noise, and phosphene dropout. Navigation performance was measured as the time required to traverse a 10-room maze using a game controller, and the number of errors made during the trip. Navigation performance time (1) became stable after 6 to 10 trials, (2) remained similar on average at luminance contrast of 68% and 16% but had greater variation at 16%, (3) was not significantly affected by background noise, and (4) increased by 40% when 30% of phosphenes were removed. Navigation performance time and number of errors were significantly and positively correlated. Assuming that the simulated gaze-locked viewing conditions are extended to implant wearers, such prosthetic vision can be helpful for wayfinding in simple mobility tasks, though phosphene dropout may interfere with performance.
High-efficiency and low-background multi-segmented proportional gas counter for β-decay spectroscopy
NASA Astrophysics Data System (ADS)
Mukai, M.; Hirayama, Y.; Watanabe, Y. X.; Schury, P.; Jung, H. S.; Ahmed, M.; Haba, H.; Ishiyama, H.; Jeong, S. C.; Kakiguchi, Y.; Kimura, S.; Moon, J. Y.; Oyaizu, M.; Ozawa, A.; Park, J. H.; Ueno, H.; Wada, M.; Miyatake, H.
2018-03-01
A multi-segmented proportional gas counter (MSPGC) with high detection efficiency and low-background event rate has been developed for β-decay spectroscopy. The MSPGC consists of two cylindrically aligned layers of 16 counters (32 counters in total). Each counter has a long active length and small trapezoidal cross-section, and the total solid angle of the 32 counters is 80% of 4 π. β-rays are distinguished from the background events including cosmic-rays by analyzing the hit patterns of independent counters. The deduced intrinsic detection efficiency of each counter was almost 100%. The measured background event rate was 0.11 counts per second using the combination of veto counters for cosmic-rays and lead block shields for background γ-rays. The MSPGC was applied to measure the β-decay half-lives of 198Ir and 199mPt. The evaluated half-lives of T1/2 = 9 . 8(7) s and 12.4(7) s for 198Ir and 199mPt, respectively, were in agreement with previously reported values. The estimated absolute detection efficiency of the MSPGC from GEANT4 simulations was consistent with the evaluated efficiency from the analysis of the β- γ spectroscopy of 199Pt, saturating at approximately 60% for Qβ > 4 MeV.
Background studies of high energy γ rays from (n,γ) reactions in the CANDLES experiment
NASA Astrophysics Data System (ADS)
Nakajima, K.; Iida, T.; Akutagawa, K.; Batpurev, T.; Chan, W. M.; Dokaku, F.; Fushimi, K.; Kakubata, H.; Kanagawa, K.; Katagiri, S.; Kawasaki, K.; Khai, B. T.; Kino, H.; Kinoshita, E.; Kishimoto, T.; Hazama, R.; Hiraoka, H.; Hiyama, T.; Ishikawa, M.; Li, X.; Maeda, T.; Matsuoka, K.; Moser, M.; Nomachi, M.; Ogawa, I.; Ohata, T.; Sato, H.; Shamoto, K.; Shimada, M.; Shokati, M.; Takahashi, N.; Takemoto, Y.; Takihira, Y.; Tamagawa, Y.; Tozawa, M.; Teranishi, K.; Tetsuno, K.; Trang, V. T. T.; Tsuzuki, M.; Umehara, S.; Wang, W.; Yoshida, S.; Yotsunaga, N.
2018-07-01
High energy γ rays with several MeV produced by (n,γ) reactions can be a trouble for low background measurements in the underground laboratories such as double beta decay experiments. In the CANDLES project, which aimed to observe the neutrino-less double beta decay from 48Ca, γ rays caused by (n,γ) reactions were found to be the most significant background. The profile of the background was studied by measurements with a neutron source and a simulation with a validity check of neutron processes in Geant4. The observed spectrum of γ rays from (n,γ) reactions was well reproduced by the simulated spectra, which were originated from the surrounding rock and a detector tank made of stainless steel. The environmental neutron flux was derived by the observed event rate of γ rays from (n,γ) reactions using the simulation. The thermal and non-thermal neutron flux were found to be (1.3 ± 0.6) ×10-6 cm-2s-1 and (1.1 ± 0.5) ×10-5 cm-2s-1 , respectively. It is necessary to install an additional shield to reduce the background from (n,γ) reaction to the required level.
NASA Astrophysics Data System (ADS)
Krygiel, Rebecca G.; Waye, Abigail B.; Baptista, Rafael Reimann; Heidner, Gustavo Sandri; Rehnberg, Lucas; Russomano, Thais
2014-04-01
BACKGROUND: This original study evaluated the electromyograph (EMG) activity of four upper body muscles: triceps brachii, erector spinae, upper rectus abdominis, and pectoralis major, while external chest compressions (ECCs) were performed in simulated Martian hypogravity using a Body Suspension Device, counterweight system, and standard full body cardiopulmonary resuscitation (CPR) mannequin. METHOD: 20 young, healthy male subjects were recruited. One hundred compressions divided into four sets, with roughly six seconds between each set to indicate 'ventilation', were performed within approximately a 1.5 minute protocol. Chest compression rate, depth and number were measured along with the subject's heart rate (HR) and rating of perceived exertion (RPE). RESULTS: All mean values were used in two-tailed t-tests using SPSS to compare +1 Gz values (control) versus simulated hypogravity values. The AHA (2005) compression standards were maintained in hypogravity. RPE and HR increased by 32% (p < 0.001) and 44% (p = 0.002), respectively, when ECCs were performed during Mars simulation, in comparison to +1 Gz. In hypogravity, the triceps brachii showed significantly less activity (p < 0.001) when compared with the other three muscles studied. The comparison of all the other muscles showed no difference at +1 Gz or in hypogravity. CONCLUSIONS: This study was among the first of its kind, however several limitations were faced which hopefully will not exist in future studies. Evaluation of a great number of muscles will allow space crews to focus on specific strengthening exercises within their current training regimes in case of a serious cardiac event in hypogravity.
Fully kinetic simulations of magnetic reconnection in partially ionised gases
NASA Astrophysics Data System (ADS)
Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.
2016-12-01
Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.
Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators
NASA Astrophysics Data System (ADS)
Wolszczak, W.; Dorenbos, P.
2017-06-01
Internal contamination with actinium-227 and its daughters is a serious drawback in low-background applications of lanthanide-based scintillators. In this work we showed the important role of nuclear γ de-excitations on the shape of the internal alpha spectrum measured in scintillators. We calculated with Bateman equations the activities of contamination isotopes and the time evolution of actinium-227 and its progenies. Next, we measured the intrinsic background spectra of LaBr3(Ce), LaBr3(Ce,Sr) and CeBr3 with a digital spectroscopy technique, and we analyzed them with a pulse shape discrimination method (PSD) and a time-amplitude analysis. Finally, we simulated the α background spectrum with Geant4 tool-kit, consequently taking into account complex α-γ-electron events, the α / β ratio dependence on the α energy, and the electron/γ nonproportionality. We found that α-γ mixed events have higher light yield than expected for alpha particles alone, which leads to overestimation of the α / β ratio when it is measured with internal 227Th and 223Ra isotopes. The time-amplitude analysis showed that the α peaks of 219Rn and 215Po in LaBr3(Ce) and LaBr3(Ce,Sr) are not symmetric. We compared the simulation results with the measured data and provided further evidence of the important role of mixed α-γ-electron events for understanding the shape of the internal α spectrum in scintillators.
NASA Astrophysics Data System (ADS)
Justus, Christopher
2005-04-01
In this study, we simulated top-antitop (tt-bar) quark events at the Compact Muon Solenoid (CMS), an experiment presently being constructed at the Large Hadron Collider in Geneva, Switzerland. The tt-bar process is an important background for Higgs events. We used a chain of software to simulate and reconstruct processes that will occur inside the detector. CMKIN was used to generate and store Monte Carlo Events. OSCAR, a GEANT4 based CMS detector simulator, was used to simulate the CMS detector and how particles would interact with the detector. Next, we used ORCA to simulate the response of the readout electronics at CMS. Last, we used the Jet/MET Root maker to create root files of jets and missing energy. We are now using this software analysis chain to complete a systematic study of initial state radiation at hadron colliders. This study is essential because tt-bar is the main background for the Higgs boson and these processes are extremely sensitive to initial state radiation. Results of our initial state radiation study will be presented. We started this study at the new LHC Physics Center (LPC) located at Fermi National Accelerator Laboratory, and we are now completing the study at the University of Rochester.
Simulated interprofessional education: an analysis of teaching and learning processes.
van Soeren, Mary; Devlin-Cop, Sandra; Macmillan, Kathleen; Baker, Lindsay; Egan-Lee, Eileen; Reeves, Scott
2011-11-01
Simulated learning activities are increasingly being used in health professions and interprofessional education (IPE). Specifically, IPE programs are frequently adopting role-play simulations as a key learning approach. Despite this widespread adoption, there is little empirical evidence exploring the teaching and learning processes embedded within this type of simulation. This exploratory study provides insight into the nature of these processes through the use of qualitative methods. A total of 152 clinicians, 101 students and 9 facilitators representing a range of health professions, participated in video-recorded role-plays and debrief sessions. Videotapes were analyzed to explore emerging issues and themes related to teaching and learning processes related to this type of interprofessional simulated learning experience. In addition, three focus groups were conducted with a subset of participants to explore perceptions of their educational experiences. Five key themes emerged from the data analysis: enthusiasm and motivation, professional role assignment, scenario realism, facilitator style and background and team facilitation. Our findings suggest that program developers need to be mindful of these five themes when using role-plays in an interprofessional context and point to the importance of deliberate and skilled facilitation in meeting desired learning outcomes.
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286974 (22 Dec. 2009) --- Astronauts Ken Ham (left background), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons
NASA Astrophysics Data System (ADS)
Nishiyama, Ryuichi; Taketa, Akimichi; Miyamoto, Seigo; Kasahara, Katsuaki
2016-08-01
Several attempts have been made to obtain a radiographic image inside volcanoes using cosmic-ray muons (muography). Muography is expected to resolve highly heterogeneous density profiles near the surface of volcanoes. However, several prior works have failed to make clear observations due to contamination by background noise. The background contamination leads to an overestimation of the muon flux and consequently a significant underestimation of the density in the target mountains. To investigate the origin of the background noise, we performed a Monte Carlo simulation. The main components of the background noise in muography are found to be low-energy protons, electrons and muons in case of detectors without particle identification and with energy thresholds below 1 GeV. This result was confirmed by comparisons with actual observations of nuclear emulsions. This result will be useful for detector design in future works, and in addition some previous works of muography should be reviewed from the view point of background contamination.
Cheng, Karen Elizabeth; Crary, David J; Ray, Jaideep; Safta, Cosmin
2013-01-01
Objective We discuss the use of structural models for the analysis of biosurveillance related data. Methods and results Using a combination of real and simulated data, we have constructed a data set that represents a plausible time series resulting from surveillance of a large scale bioterrorist anthrax attack in Miami. We discuss the performance of anomaly detection with structural models for these data using receiver operating characteristic (ROC) and activity monitoring operating characteristic (AMOC) analysis. In addition, we show that these techniques provide a method for predicting the level of the outbreak valid for approximately 2 weeks, post-alarm. Conclusions Structural models provide an effective tool for the analysis of biosurveillance data, in particular for time series with noisy, non-stationary background and missing data. PMID:23037798
NASA Technical Reports Server (NTRS)
Mcgrady, W. J.
1979-01-01
The BANNING MOS design system is presented. It complements rather than supplant the normal design activities associated with the design and fabrication of low-power digital electronic equipment. BANNING is user-oriented and requires no programming experience to use effectively. It provides the user a simulation capability to aid in his circuit design and it eliminates most of the manual operations involved in the layout and artwork generation of integrated circuits. An example of its operation is given and some additional background reading is provided.
2002-03-18
KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Jerry Ross waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Mission Specialist Lee Morin. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet
Dosanjh, Manjit; Cirilli, Manuela; Navin, Sparsh
2015-01-01
Between 2011 and 2015, the ENTERVISION Marie Curie Initial Training Network has been training 15 young researchers from a variety of backgrounds on topics ranging from in-beam Positron Emission Tomography or Single Particle Tomography techniques, to adaptive treatment planning, optical imaging, Monte Carlo simulations and biological phantom design. This article covers the main research activities, as well as the training scheme implemented by the participating institutes, which included academia, research, and industry. PMID:26697403
KC-135 and Other Microgravity Simulations
NASA Technical Reports Server (NTRS)
2005-01-01
This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 23, 2004 to June 27, 2005. Included is a general overview of KC-135 activities manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describe tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.
NASA Astrophysics Data System (ADS)
Bardeen, J. M.
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.
Astronaut Musgrave performing EVA during STS-6
NASA Technical Reports Server (NTRS)
1983-01-01
Views of Mission Specialist F. Story Musgrave performing an extravehicular activity (EVA) during the STS-6 mission. In this view, Musgrave uses hand holds in the payload bay door hinge line to move towards the aft payload bay (30215); Musgrave conducts a simulation of a contingency EVA in the aft payload bay. This was designed to return the inertial upper stage (IUS) support equipment's tilt table device to its normal stowed configuration in the event of failure of an automatic system. A cloud-covered earth can be seen in the background (30216).
NASA Astrophysics Data System (ADS)
Rodríguez, F.; Thomas, G. E.; Wong, T.; García, E.; Melián, G.; Padron, E.; Asensio-Ramos, M.; Hernández, P. A.; Perez, N. M.
2017-12-01
The North East Rift zone of Tenerife Island (NERZ, 210 km2) is one of the three major volcanic rift-zones of the island. The most recent eruptive activity along the NERZ took place in the 1704-1705 period with eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. Since fumarolic activity is nowadays absent at the NERZ, soil CO2 degassing monitoring represent a potential geochemical tool for its volcanic surveillance. The aim of this study is to report the results of the last CO2 efflux survey performed in June 2017, with 658 sampling sites. In-situ measurements of CO2 efflux from the surface environment of the NERZ were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) following the accumulation chamber method. To quantify the total CO2 emission, soil CO2 efflux spatial distribution maps were constructed using Sequential Gaussian Simulation (SGS) as interpolation method. The diffuse CO2 emission values ranged between 0 - 41.1 g m-2 d-1. The probability plot technique applied to the data allowed to distinguish two different geochemical populations; background (B) and peak (P) represented by 81.8% and 18.2% of the total data, respectively, with geometric means of 3.9 and 15.0 g m-2 d-1, respectively. The average map constructed with 100 equiprobable simulations showed an emission rate of 1,361±35 t d-1. This value relatively higher than the background average of CO2 emission estimated on 415 t d-1 and slightly higher than the background range of 148 t d-1 (-1σ) and 1,189 t d-1 (+1σ) observed at the NERZ. This study reinforces the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool in the NERZ.
Diurnal variations of ELF transients and background noise in the Schumann resonance band
NASA Astrophysics Data System (ADS)
Greenberg, Eran; Price, Colin
2007-02-01
Schumann resonances (SR) are resonant electromagnetic waves in the Earth-ionosphere cavity, induced primarily by lightning discharges, with a fundamental frequency of about 8 Hz and higher-order modes separated by approximately 6 Hz. The SR are made up of the background signal resulting from global lightning activity and extremely low frequency (ELF) transients resulting from particularly intense lightning discharges somewhere on the planet. Since transients within the Earth-ionosphere cavity due to lightning propagate globally in the ELF range, we can monitor and study global ELF transients from a single station. Data from our Negev Desert (Israel) ELF site are collected using two horizontal magnetic induction coils and a vertical electric field ball antenna, monitored in the 5-40 Hz range with a sampling frequency of 250 Hz. In this paper we present statistics related to the probability distribution of ELF transients and background noise in the time domain and its temporal variations during the day. Our results show that the ELF signal in the time domain follows the normal distribution very well. The σ parameter exhibits three peaks at 0800, 1400, and 2000 UT, which are related to the three main global lightning activity centers in Asia, Africa, and America, respectively. Furthermore, the occurrence of intense ELF events obeys the Poisson distribution, with such intense events occurring every ~10 s, depending on the time of the day. We found that the diurnal changes of the σ parameter are several percent of the mean, while for the number of intense events per minute, the diurnal changes are tens of percent about the mean. We also present the diurnal changes of the SR intensities in the frequency domain as observed at our station. To better understand the diurnal variability of the observations, we simulated the measured ELF background noise using space observations as input, as detected by the Optical Transient Detector (OTD). The most active center which is reflected from both ELF measurements and OTD observations is in Africa. However, the second most active center on the basis of ELF measurements appears to be Asia, while OTD observations show that the American center is more active than the Asian center. These differences are discussed. This paper contributes to our understanding of the origin of the SR by comparing different lightning data sets: background electromagnetic radiation and optical emission observed from space.
Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.
1998-04-01
An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.
Asynchronous adaptive time step in quantitative cellular automata modeling
Zhu, Hao; Pang, Peter YH; Sun, Yan; Dhar, Pawan
2004-01-01
Background The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. Results Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. Conclusions Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment. PMID:15222901
Repeat work bouts increase thermal strain for Australian firefighters working in the heat
Walker, Anthony; Argus, Christos; Driller, Matthew; Rattray, Ben
2015-01-01
Background: Firefighters regularly re-enter fire scenes during long duration emergency events with limited rest between work bouts. It is unclear whether this practice is impacting on the safety of firefighters. Objectives:To evaluate the effects of multiple work bouts on firefighter physiology, strength, and cognitive performance when working in the heat. Methods: Seventy-seven urban firefighters completed two 20-minute simulated search and rescue tasks in a heat chamber (105 ± 5°C), separated by a 10-minute passive recovery. Core and skin temperature, rate of perceived exertion (RPE), thermal sensation (TS), grip strength, and cognitive changes between simulations were evaluated. Results: Significant increases in core temperature and perceptual responses along with declines in strength were observed following the second simulation. No differences for other measures were observed. Conclusions: A significant increase in thermal strain was observed when firefighters re-entered a hot working environment. We recommend that longer recovery periods or active cooling methods be employed prior to re-entry. PMID:25849044
LENS: μLENS Simulations, Analysis, and Results
NASA Astrophysics Data System (ADS)
Rasco, Charles
2013-04-01
Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.
NASA Astrophysics Data System (ADS)
Dhanya, M.; Chandrasekar, A.
2016-02-01
The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.
NASA Astrophysics Data System (ADS)
Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.
2016-05-01
Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.
A full Monte Carlo simulation of the YAP-PEM prototype for breast tumor detection
NASA Astrophysics Data System (ADS)
Motta, A.; Righi, S.; Del Guerra, A.; Belcari, N.; Vaiano, A.; De Domenico, G.; Zavattini, G.; Campanini, R.; Lanconelli, N.; Riccardi, A.
2004-07-01
A prototype for Positron Emission Mammography, the YAP-PEM, is under development within a collaboration of the Italian Universities of Pisa, Ferrara, and Bologna. The aim is to detect breast lesions, with dimensions of 5 mm in diameter, and with a specific activity ratio of 10:1 between the cancer and breast tissue. The YAP-PEM is composed of two stationary detection heads of 6×6 cm 2, composed of a matrix of 30×30 YAP:Ce finger crystals of 2×2×30 mm 3 each. The EGSnrc Monte Carlo code has been used to simulate several characteristics of the prototype. A fast EM algorithm has been adapted to reconstruct all of the collected lines of flight, also at large incidence angles, by achieving 3D positioning capability of the lesion in the FOV. The role of the breast compression has been studied. The performed study shows that a 5 mm diameter tumor of 37 kBq/cm 3 (1 μCi/cm 3), embedded in active breast tissue with 10:1 tumor/background specific activity ratio, is detected in 10 min with a Signal-to-Noise Ratio of 8.7±1.0. Two hot lesions in the active breast phantom are clearly visible in the reconstructed image.
René de Cotret, Laurent P; Siwick, Bradley J
2017-07-01
The general problem of background subtraction in ultrafast electron powder diffraction (UEPD) is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT) wavelet transforms when applied to simulated UEPD data on the M1-R phase transition in VO 2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.
SEPAC data analysis in support of the environmental interaction program
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1990-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Monte-Carlo Simulations of the Suzaku-XRS Residual Background Spectrum
NASA Technical Reports Server (NTRS)
Perinati, E.; Kilbourne, Caroline Anne; Colasanti, L.; Lotti, S.; Macculi, C.; Piro, L.; Mineo, T.; Mitsuda, K.; Bonardi, A.; Santangelo, A.
2012-01-01
Cryogenic micro-calorimeters are suitable to detect small amounts of energy deposited by electromagnetic and nuclear interactions, which makes them attractive in a variety of applications on ground and in space. The only X-ray microcalorimeter that operated in orbit to date is the X-Ray Spectrometer on-board of the Japanese Suzaku satellite. We discuss the analysis of the components of its residual background spectrum with the support of Monte-Carlo simulations.
Smith, D G; Baranski, J V; Thompson, M M; Abel, S M
2003-01-01
A total of twenty-five subjects were cloistered for a period of 70 hours, five at a time, in a hyperbaric chamber modified to simulate the conditions aboard the International Space Station (ISS). A recording of 72 dBA background noise from the ISS service module was used to simulate noise conditions on the ISS. Two groups experienced the background noise throughout the experiment, two other groups experienced the noise only during the day, and one control group was cloistered in a quiet environment. All subjects completed a battery of cognitive tests nine times throughout the experiment. The data showed little or no effect of noise on reasoning, perceptual decision-making, memory, vigilance, mood, or subjective indices of fatigue. Our results suggest that the level of noise on the space station should not affect cognitive performance, at least over a period of several days.
Traffic and Driving Simulator Based on Architecture of Interactive Motion.
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.
Traffic and Driving Simulator Based on Architecture of Interactive Motion
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711
Nelson, Andrew F.; Ruffert, Maximilian
2012-12-21
In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass M pl = 10M ⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providingmore » spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as defined by locally isothermal or isentropic treatments, any cooling that does affect the envelope material will have limited consequences for the dynamics, since the flow quickly carries cooled material out of the core's environment entirely. The angular momentum of material in the envelope, relative to the core, varies both in magnitude and in sign on time-scales of days to months near the core and on time-scales a few years at distances comparable to the Hill radius. The dynamical activity contrasts with the largely static behaviour typically assumed within the framework of the core accretion model for Jovian planet formation. We show that material entering the dynamically active environment may suffer intense heating and cooling events the durations of which are as short as a few hours to a few days. Shorter durations are not observable in our work due to the limits of our resolution. Peak temperatures in these events range from T ~ 1000 K to as high as T ~ 3–4000 K, with densities ρ ~ 10 -9 to 10 -8 gcm -3. These time-scales, densities and temperatures span a range consistent with those required for chondrule formation in the nebular shock model. Finally, we therefore propose that dynamical activity in the Jovian planet formation environment could be responsible for the production of chondrules and other annealed silicates in the solar nebula.« less
NASA Astrophysics Data System (ADS)
Nelson, Andrew F.; Ruffert, Maximilian
2013-02-01
We perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the `Piecewise Parabolic Method' with as many as six fixed nested grids, providing spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either `locally isothermal' or `locally isentropic') and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as defined by locally isothermal or isentropic treatments, any cooling that does affect the envelope material will have limited consequences for the dynamics, since the flow quickly carries cooled material out of the core's environment entirely. The angular momentum of material in the envelope, relative to the core, varies both in magnitude and in sign on time-scales of days to months near the core and on time-scales a few years at distances comparable to the Hill radius. The dynamical activity contrasts with the largely static behaviour typically assumed within the framework of the core accretion model for Jovian planet formation. We show that material entering the dynamically active environment may suffer intense heating and cooling events the durations of which are as short as a few hours to a few days. Shorter durations are not observable in our work due to the limits of our resolution. Peak temperatures in these events range from T ˜ 1000 K to as high as T ˜ 3-4000 K, with densities ρ ˜ 10-9 to 10-8 g cm-3. These time-scales, densities and temperatures span a range consistent with those required for chondrule formation in the nebular shock model. We therefore propose that dynamical activity in the Jovian planet formation environment could be responsible for the production of chondrules and other annealed silicates in the solar nebula.
Using Simulation Technology to Teach Diabetes Care Management Skills to Resident Physicians
Sperl-Hillen, John; O’Connor, Patrick; Ekstrom, Heidi; Rush, William; Asche, Stephen; Fernandes, Omar; Appana, Deepika; Amundson, Gerald; Johnson, Paul
2013-01-01
Background Simulation is widely used to teach medical procedures. Our goal was to develop and implement an innovative virtual model to teach resident physicians the cognitive skills of type 1 and type 2 diabetes management. Methods A diabetes educational activity was developed consisting of (a) a curriculum using 18 explicit virtual cases, (b) a web-based interactive interface, (c) a simulation model to calculate physiologic outcomes of resident actions, and (d) a library of programmed feedback to critique and guide resident actions between virtual encounters. Primary care residents in 10 U.S. residency programs received the educational activity. Satisfaction and changes in knowledge and confidence in managing diabetes were analyzed with mixed quantitative and qualitative methods. Results Pre- and post-education surveys were completed by 92/142 (65%) of residents. Likert scale (five-point) responses were favorably higher than neutral for general satisfaction (94%), recommending to colleagues (91%), training adequacy (91%), and navigation ease (92%). Finding time to complete cases was difficult for 50% of residents. Mean ratings of knowledge (on a five-point scale) posteducational activity improved by +0.5 (p < .01) for use of all available drug classes, +0.9 (p < .01) for how to start and adjust insulin, +0.8 (p < .01) for interpreting blood glucose values, +0.8 (p < .01) for individualizing treatment goals, and +0.7 (p < .01) for confidence in managing diabetes patients. Conclusions A virtual diabetes educational activity to teach cognitive skills to manage diabetes to primary care residents was successfully developed, implemented, and well liked. It significantly improved self-assessed knowledge and confidence in diabetes management. PMID:24124951
Imhoff, Sarah; Lavallière, Martin; Germain-Robitaille, Mathieu; Teasdale, Normand; Fait, Philippe
2017-01-01
Background Traumatic brain injury (TBI) causes functional deficits that may significantly interfere with numerous activities of daily living such as driving. We report the case of a 20-year-old woman having lost her driver’s license after sustaining a moderate TBI. Objective We aimed to evaluate the effectiveness of an in-simulator training program with automated feedback on driving performance in a TBI individual. Methods The participant underwent an initial and a final in-simulator driving assessment and 11 in-simulator training sessions with driving-specific automated feedbacks. Driving performance (simulation duration, speed regulation and lateral positioning) was measured in the driving simulator. Results Speeding duration decreased during training sessions from 1.50 ± 0.80 min (4.16 ± 2.22%) to 0.45 ± 0.15 min (0.44 ± 0.42%) but returned to initial duration after removal of feedbacks for the final assessment. Proper lateral positioning improved with training and was maintained at the final assessment. Time spent in an incorrect lateral position decreased from 18.85 min (53.61%) in the initial assessment to 1.51 min (4.64%) on the final assessment. Conclusion Driving simulators represent an interesting therapeutic avenue. Considerable research efforts are needed to confirm the effectiveness of this method for driving rehabilitation of individuals who have sustained a TBI. PMID:28243152
Eissing, Thomas; Kuepfer, Lars; Becker, Corina; Block, Michael; Coboeken, Katrin; Gaub, Thomas; Goerlitz, Linus; Jaeger, Juergen; Loosen, Roland; Ludewig, Bernd; Meyer, Michaela; Niederalt, Christoph; Sevestre, Michael; Siegmund, Hans-Ulrich; Solodenko, Juri; Thelen, Kirstin; Telle, Ulrich; Weiss, Wolfgang; Wendl, Thomas; Willmann, Stefan; Lippert, Joerg
2011-01-01
Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multiscale by nature, project work, and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug–drug, or drug–metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach. PMID:21483730
Phakthanakanok, Krongsakda; Ratanakhanokchai, Khanok; Kyu, Khin Lay; Sompornpisut, Pornthep; Watts, Aaron; Pinitglang, Surapong
2009-01-01
Background SARS coronavirus main proteinase (SARS CoVMpro) is an important enzyme for the replication of Severe Acute Respiratory Syndrome virus. The active site region of SARS CoVMpro is divided into 8 subsites. Understanding the binding mode of SARS CoVMpro with a specific substrate is useful and contributes to structural-based drug design. The purpose of this research is to investigate the binding mode between the SARS CoVMpro and two octapeptides, especially in the region of the S3 subsite, through a molecular docking and molecular dynamics (MD) simulation approach. Results The one turn α-helix chain (residues 47–54) of the SARS CoVMpro was directly involved in the induced-fit model of the enzyme-substrate complex. The S3 subsite of the enzyme had a negatively charged region due to the presence of Glu47. During MD simulations, Glu47 of the enzyme was shown to play a key role in electrostatic bonding with the P3Lys of the octapeptide. Conclusion MD simulations were carried out on the SARS CoVMpro-octapeptide complex. The hypothesis proposed that Glu47 of SARS CoVMpro is an important residue in the S3 subsite and is involved in binding with P3Lys of the octapeptide. PMID:19208150
NASA Technical Reports Server (NTRS)
Mullally, Fergal
2017-01-01
We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.
Background Error Correlation Modeling with Diffusion Operators
2013-01-01
RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 07-10-2013 Book Chapter Background Error Correlation Modeling with Diffusion Operators...normalization Unclassified Unclassified Unclassified UU 27 Max Yaremchuk (228) 688-5259 Reset Chapter 8 Background error correlation modeling with diffusion ...field, then a structure like this simulates enhanced diffusive transport of model errors in the regions of strong cur- rents on the background of
The effect of different methods to compute N on estimates of mixing in stratified flows
NASA Astrophysics Data System (ADS)
Fringer, Oliver; Arthur, Robert; Venayagamoorthy, Subhas; Koseff, Jeffrey
2017-11-01
The background stratification is typically well defined in idealized numerical models of stratified flows, although it is more difficult to define in observations. This may have important ramifications for estimates of mixing which rely on knowledge of the background stratification against which turbulence must work to mix the density field. Using direct numerical simulation data of breaking internal waves on slopes, we demonstrate a discrepancy in ocean mixing estimates depending on the method in which the background stratification is computed. Two common methods are employed to calculate the buoyancy frequency N, namely a three-dimensionally resorted density field (often used in numerical models) and a locally-resorted vertical density profile (often used in the field). We show that how N is calculated has a significant effect on the flux Richardson number Rf, which is often used to parameterize turbulent mixing, and the turbulence activity number Gi, which leads to errors when estimating the mixing efficiency using Gi-based parameterizations. Supported by ONR Grant N00014-08-1-0904 and LLNL Contract DE-AC52-07NA27344.
How we compute N matters to estimates of mixing in stratified flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Robert S.; Venayagamoorthy, Subhas K.; Koseff, Jeffrey R.
We know that most commonly used models for turbulent mixing in the ocean rely on a background stratification against which turbulence must work to stir the fluid. While this background stratification is typically well defined in idealized numerical models, it is more difficult to capture in observations. Here, a potential discrepancy in ocean mixing estimates due to the chosen calculation of the background stratification is explored using direct numerical simulation data of breaking internal waves on slopes. There are two different methods for computing the buoyancy frequencymore » $N$$, one based on a three-dimensionally sorted density field (often used in numerical models) and the other based on locally sorted vertical density profiles (often used in the field), are used to quantify the effect of$$N$$on turbulence quantities. It is shown that how$$N$$is calculated changes not only the flux Richardson number$$R_{f}$$, which is often used to parameterize turbulent mixing, but also the turbulence activity number or the Gibson number$$Gi$$, leading to potential errors in estimates of the mixing efficiency using$$Gi$-based parameterizations.« less
How we compute N matters to estimates of mixing in stratified flows
Arthur, Robert S.; Venayagamoorthy, Subhas K.; Koseff, Jeffrey R.; ...
2017-10-13
We know that most commonly used models for turbulent mixing in the ocean rely on a background stratification against which turbulence must work to stir the fluid. While this background stratification is typically well defined in idealized numerical models, it is more difficult to capture in observations. Here, a potential discrepancy in ocean mixing estimates due to the chosen calculation of the background stratification is explored using direct numerical simulation data of breaking internal waves on slopes. There are two different methods for computing the buoyancy frequencymore » $N$$, one based on a three-dimensionally sorted density field (often used in numerical models) and the other based on locally sorted vertical density profiles (often used in the field), are used to quantify the effect of$$N$$on turbulence quantities. It is shown that how$$N$$is calculated changes not only the flux Richardson number$$R_{f}$$, which is often used to parameterize turbulent mixing, but also the turbulence activity number or the Gibson number$$Gi$$, leading to potential errors in estimates of the mixing efficiency using$$Gi$-based parameterizations.« less
NASA Astrophysics Data System (ADS)
Min, K.; Liu, K.; Gary, S. P.
2017-12-01
The main challenge of the secondary ENA mechanism, a theory put forth to explain the IBEX ENA ribbon, is maintaining the stability of the pickup ion velocity distribution before the pickup ions in the outer heliosheath go through two consecutive charge exchanges. The Alfvén/ion-cyclotron instability, which has its maximum growth at propagation parallel to Bo, the background magnetic field, is believed to be the main agent leading to rapid isotropization of the pickup ions. However, recent studies found that this instability can be suppressed when parallel temperatures of the background plasma and the pickup ion ring distribution are comparable, allowing the pickup ion distribution to remain stable for a long period. This paper demonstrates that a pickup ion ring distribution can also drive the mirror and ion Bernstein instabilities which lead to growing modes at propagation oblique to Bo. For idealized proton-electron plasmas where relatively cool background electron and proton populations are represented by isotropic Maxwellian distributions and tenuous (1%) pickup protons are represented by a Maxwellian-ring distribution (assuming a 90˚ pickup angle), linear Vlasov theory predicts unstable mirror and ion Bernstein modes with growth rates comparable to or exceeding that of the Alfvén-cyclotron instability. According to quasilinear theory, interactions with these obliquely-propagating modes can lead to substantial pitch angle scattering of the ring protons. Two-dimensional hybrid (kinetic ions and massless fluid electrons) simulations are carried out to examine the nonlinear consequences of the mirror and Bernstein instabilities. The preliminary simulation results are presented. The study suggests a scenario that the oblique mirror and ion Bernstein modes can be an active agent of the pickup ion isotropization when the condition is such that the Alfvén-cyclotron instability is suppressed.
Comparison of TOF-PET and Bremsstrahlung SPECT Images of Yttrium-90: A Monte Carlo Simulation Study.
Takahashi, Akihiko; Himuro, Kazuhiko; Baba, Shingo; Yamashita, Yasuo; Sasaki, Masayuki
2018-01-01
Yttrium-90 ( 90 Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90 Y using Monte Carlo simulation codes under the same conditions and to compare them. In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90 Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90 Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.
NASA Astrophysics Data System (ADS)
Nohtomi, Akihiro; Wakabayashi, Genichiro
2015-11-01
We evaluated the accuracy of a self-activation method with iodine-containing scintillators in quantifying 128I generation in an activation detector; the self-activation method was recently proposed for photo-neutron on-line measurements around X-ray radiotherapy machines. Here, we consider the accuracy of determining the initial count rate R0, observed just after termination of neutron irradiation of the activation detector. The value R0 is directly related to the amount of activity generated by incident neutrons; the detection efficiency of radiation emitted from the activity should be taken into account for such an evaluation. Decay curves of 128I activity were numerically simulated by a computer program for various conditions including different initial count rates (R0) and background rates (RB), as well as counting statistical fluctuations. The data points sampled at minute intervals and integrated over the same period were fit by a non-linear least-squares fitting routine to obtain the value R0 as a fitting parameter with an associated uncertainty. The corresponding background rate RB was simultaneously calculated in the same fitting routine. Identical data sets were also evaluated by a well-known integration algorithm used for conventional activation methods and the results were compared with those of the proposed fitting method. When we fixed RB = 500 cpm, the relative uncertainty σR0 /R0 ≤ 0.02 was achieved for R0/RB ≥ 20 with 20 data points from 1 min to 20 min following the termination of neutron irradiation used in the fitting; σR0 /R0 ≤ 0.01 was achieved for R0/RB ≥ 50 with the same data points. Reasonable relative uncertainties to evaluate initial count rates were reached by the decay-fitting method using practically realistic sampling numbers. These results clarified the theoretical limits of the fitting method. The integration method was found to be potentially vulnerable to short-term variations in background levels, especially instantaneous contaminations by spike-like noise. The fitting method easily detects and removes such spike-like noise.
Provost, Jean; Gurev, Viatcheslav; Trayanova, Natalia; Konofagou, Elisa E.
2011-01-01
Background Electromechanical Wave Imaging (EWI) is an entirely non-invasive, ultrasound-based imaging method capable of mapping the electromechanical activation sequence of the ventricles in vivo. Given the broad accessibility of ultrasound scanners in the clinic, the application of EWI could constitute a flexible surrogate for the 3D electrical activation. Objective The purpose of this report is to reproduce the electromechanical wave (EW) using an anatomically-realistic electromechanical model, and establish the capability of EWI to map the electrical activation sequence in vivo when pacing from different locations. Methods EWI was performed in one canine during pacing from three different sites. A high-resolution dynamic model of coupled cardiac electromechanics of the canine heart was used to predict the experimentally recorded electromechanical wave. The simulated 3D electrical activation sequence was then compared with the experimental EW. Results The electrical activation sequence and the EW were highly correlated for all pacing sites. The relationship between the electrical activation and the EW onset was found to be linear with a slope of 1.01 to 1.17 for different pacing schemes and imaging angles. Conclusions The accurate reproduction of the EW in simulations indicates that the model framework is capable of accurately representing the cardiac electromechanics and thus testing new hypotheses. The one-to-one correspondence between the electrical activation sequence and the EW indicates that EWI could be used to map the cardiac electrical activity. This opens the door for further exploration of the technique in assisting in the early detection, diagnosis and treatment monitoring of rhythm dysfunction. PMID:21185403
STS-112 crew during TCDT activities with M-113 carrier
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, Fla. - STS-112 Mission Specialist Sandra Magnus takes her turn driving the M-113 armored personnel carrier. Space Shuttle Atlantis is in the background. Magnus and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.
Simulating nanostorm heating in coronal loops using hydrodynamics and non-thermal particle evolution
NASA Astrophysics Data System (ADS)
Migliore, Christina; Winter, Henry; Murphy, Nicholas
2018-01-01
The solar corona is filled with loop-like structures that appear bright against the background when observed in the extreme ultraviolet (EUV). These loops have several remarkable properties that are not yet well understood. Warm loops (∼ 1 MK) appear to be ∼ 2 ‑ 9 times as dense at their apex as the predictions of hydrostatic atmosphere models. These loops also appear to be of constant cross-section despite the fact that the field strength in a potential magnetic field should decrease in the corona, causing the loops to expand. It is not clear why many active region loops appear to be of constant cross-section. Theories range from an internal twist of the magnetic field to observational effects. In this work we simulate active region loops heated by nanoflare storms using a dipolar magnetic field. We calculate the hydrodynamic properties for each loop using advanced hydrodynamics codes to simulate the corona and chromospheric response and basic dipole models to represent the magnetic fields of the loops. We show that even modest variations of the magnetic field strength along the loop can lead to drastic changes in the density profiles of active region loops, and they can also explain the overpressure at the apex of these loops. Synthetic AIA images of each loop are made to show the observable consequences of varying magnetic field strengths along the loop’s axis of symmetry. We also show how this work can lead to improved modeling of larger solar and stellar flares.
The Effect of AGN Heating on the Low-redshift Lyα Forest
NASA Astrophysics Data System (ADS)
Gurvich, Alex; Burkhart, Blakesley; Bird, Simeon
2017-02-01
We investigate the effects of AGN heating and the ultraviolet background on the low-redshift Lyα forest column density distribution (CDD) using the Illustris simulation. We show that Illustris reproduces observations at z = 0.1 in the column density range {10}12.5{--}{10}13.5 cm-2, relevant for the “photon underproduction crisis.” We attribute this to the inclusion of AGN feedback, which changes the gas distribution so as to mimic the effect of extra photons, as well as the use of the Faucher-Giguère ultraviolet background, which is more ionizing at z = 0.1 than the Haardt & Madau background previously considered. We show that the difference between simulations run with smoothed particle hydrodynamics and simulations using a moving mesh is small in this column density range but can be more significant at larger column densities. We further consider the effect of supernova feedback, Voigt profile fitting, and finite resolution, all of which we show to have little influence on the CDD. Finally, we identify a discrepancy between our simulations and observations at column densities {10}14{--}{10}16 cm-2, where Illustris produces too few absorbers, which suggests the AGN feedback model should be further refined. Since the “photon underproduction crisis” primarily affects lower column density systems, we conclude that AGN feedback and standard ionizing background models can resolve the crisis.
2013-01-01
Background Flight simulators have been used to train pilots to experience and recognize spatial disorientation, a condition in which pilots incorrectly perceive the position, location, and movement of their aircrafts. However, during or after simulator training, simulator sickness (SS) may develop. Spatial disorientation and SS share common symptoms and signs and may involve a similar mechanism of dys-synchronization of neural inputs from the vestibular, visual, and proprioceptive systems. Transcutaneous electrical nerve stimulation (TENS), a maneuver used for pain control, was found to influence autonomic cardiovascular responses and enhance visuospatial abilities, postural control, and cognitive function. The purpose of present study was to investigate the protective effects of TENS on SS. Methods Fifteen healthy young men (age: 28.6 ± 0.9 years, height: 172.5 ± 1.4 cm, body weight: 69.3 ± 1.3 kg, body mass index: 23.4 ± 1.8 kg/m2) participated in this within-subject crossover study. SS was induced by a flight simulator. TENS treatment involved 30 minutes simultaneous electrical stimulation of the posterior neck and the right Zusanli acupoint. Each subject completed 4 sessions (control, SS, TENS, and TENS + SS) in a randomized order. Outcome indicators included SS symptom severity and cognitive function, evaluated with the Simulator Sickness Questionnaire (SSQ) and d2 test of attention, respectively. Sleepiness was rated using the Visual Analogue Scales for Sleepiness Symptoms (VAS-SS). Autonomic and stress responses were evaluated by heart rate, heart rate variability (HRV) and salivary stress biomarkers (salivary alpha-amylase activity and salivary cortisol concentration). Results Simulator exposure increased SS symptoms (SSQ and VAS-SS scores) and decreased the task response speed and concentration. The heart rate, salivary stress biomarker levels, and the sympathetic parameter of HRV increased with simulator exposure, but parasympathetic parameters decreased (p < 0.05). After TENS treatment, SS symptom severity significantly decreased and the subjects were more able to concentrate and made fewer cognitive test errors (p < 0.05). Conclusions Sympathetic activity increased and parasympathetic activity decreased after simulator exposure. TENS was effective in reducing SS symptoms and alleviating cognitive impairment. Trial registration number Australia and New Zealand Clinical Trials Register: http://ACTRN12612001172897 PMID:23587135
Simulation of background from low-level tritium and radon emanation in the KATRIN spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiber, B.; Collaboration: KATRIN Collaboration
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment for the model independent determination of the mass of electron anti-neutrinos with a sensitivity of 200 meV/c{sup 2}. It investigates the kinematics of electrons from tritium beta decay close to the endpoint of the energy spectrum at 18.6 keV. To achieve a good signal to background ratio at the endpoint, a low background rate below 10{sup −2} counts per second is required. The KATRIN setup thus consists of a high luminosity windowless gaseous tritium source (WGTS), a magnetic electron transport system with differential and cryogenic pumping for tritium retention, andmore » electro-static retarding spectrometers (pre-spectrometer and main spectrometer) for energy analysis, followed by a segmented detector system for counting transmitted beta-electrons. A major source of background comes from magnetically trapped electrons in the main spectrometer (vacuum vessel: 1240 m{sup 3}, 10{sup −11} mbar) produced by nuclear decays in the magnetic flux tube of the spectrometer. Major contributions are expected from short-lived radon isotopes and tritium. Primary electrons, originating from these decays, can be trapped for hours, until having lost almost all their energy through inelastic scattering on residual gas particles. Depending on the initial energy of the primary electron, up to hundreds of low energetic secondary electrons can be produced. Leaving the spectrometer, these electrons will contribute to the background rate. This contribution describes results from simulations for the various background sources. Decays of {sup 219}Rn, emanating from the main vacuum pump, and tritium from the WGTS that reaches the spectrometers are expected to account for most of the background. As a result of the radon alpha decay, electrons are emitted through various processes, such as shake-off, internal conversion and the Auger deexcitations. The corresponding simulations were done using the KASSIOPEIA framework, which has been developed for the KATRIN experiment for low-energy electron tracking, field calculation and detector simulation. The results of the simulations have been used to optimize the design parameters of the vacuum system with regard to radon emanation and tritium pumping, in order to reach the stringent requirements of the neutrino mass measurement.« less
PREDICTION METRICS FOR CHEMICAL DETECTION IN LONG-WAVE INFRARED HYPERSPECTRAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilton, M.; Walsh, S.J.; Daly, D.S.
2009-01-01
Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere, the bounding background surface and instrument noise. A physics-based model of observed radiance shows that high chemical absorbance and low background emissivity result in a larger chemical signature. Using simulated hyperspectral imagery, this study investigated two metrics which exploited this relationship. The objective was to explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing one background type to another. The twomore » predictor metrics correctly rank ordered the backgrounds for about 94% of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection algorithm) of the simulated spectra. These results suggest that the metrics provide a reasonable summary of how the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal. This study suggests that similarly effective predictors that account for more general physical conditions may be derived.« less
Soil Moisture Active/Passive (SMAP) Forward Brightness Temperature Simulator
NASA Technical Reports Server (NTRS)
Peng, Jinzheng; Peipmeier, Jeffrey; Kim, Edward
2012-01-01
The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007) [1]. It is to measure the global soil moisture and freeze/thaw from space. One of the spaceborne instruments is an L-band radiometer with a shared single feedhorn and parabolic mesh reflector. While the radiometer measures the emission over a footprint of interest, unwanted emissions are also received by the antenna through the antenna sidelobes from the cosmic background and other error sources such as the Sun, the Moon and the galaxy. Their effects need to be considered accurately, and the analysis of the overall performance of the radiometer requires end-to-end performance simulation from Earth emission to antenna brightness temperature, such as the global simulation of L-band brightness temperature simulation over land and sea [2]. To assist with the SMAP radiometer level 1B algorithm development, the SMAP forward brightness temperature simulator is developed by adapting the Aquarius simulator [2] with necessary modifications. This poster presents the current status of the SMAP forward brightness simulator s development including incorporating the land microwave emission model and its input datasets, and a simplified atmospheric radiative transfer model. The latest simulation results are also presented to demonstrate the ability of supporting the SMAP L1B algorithm development.
Background of SAM atom-fraction profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Frank
Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which ismore » validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.« less
Estimation of channel parameters and background irradiance for free-space optical link.
Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk
2013-05-10
Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.
Valente, Daniel L.; Plevinsky, Hallie M.; Franco, John M.; Heinrichs-Graham, Elizabeth C.; Lewis, Dawna E.
2012-01-01
The potential effects of acoustical environment on speech understanding are especially important as children enter school where students’ ability to hear and understand complex verbal information is critical to learning. However, this ability is compromised because of widely varied and unfavorable classroom acoustics. The extent to which unfavorable classroom acoustics affect children’s performance on longer learning tasks is largely unknown as most research has focused on testing children using words, syllables, or sentences as stimuli. In the current study, a simulated classroom environment was used to measure comprehension performance of two classroom learning activities: a discussion and lecture. Comprehension performance was measured for groups of elementary-aged students in one of four environments with varied reverberation times and background noise levels. The reverberation time was either 0.6 or 1.5 s, and the signal-to-noise level was either +10 or +7 dB. Performance is compared to adult subjects as well as to sentence-recognition in the same condition. Significant differences were seen in comprehension scores as a function of age and condition; both increasing background noise and reverberation degraded performance in comprehension tasks compared to minimal differences in measures of sentence-recognition. PMID:22280587
Two- and three-dimensional turbine blade row flow field simulations
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Briley, W. R.; Mcdonald, H.; Shamroth, S. J.; Weinberg, B. C.
1987-01-01
Work performed in the numerical simulation of turbine passage flows via a Navier-Stokes approach is discussed. Both laminar and turbulent simulations in both two and three dimensions are discussed. An outline of the approach, background, and an overview of the results are given.
Web-Based Simulation in Psychiatry Residency Training: A Pilot Study
ERIC Educational Resources Information Center
Gorrindo, Tristan; Baer, Lee; Sanders, Kathy M.; Birnbaum, Robert J.; Fromson, John A.; Sutton-Skinner, Kelly M.; Romeo, Sarah A.; Beresin, Eugene V.
2011-01-01
Background: Medical specialties, including surgery, obstetrics, anesthesia, critical care, and trauma, have adopted simulation technology for measuring clinical competency as a routine part of their residency training programs; yet, simulation technologies have rarely been adapted or used for psychiatry training. Objective: The authors describe…
Advanced radiometric and interferometric milimeter-wave scene simulations
NASA Technical Reports Server (NTRS)
Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.
1993-01-01
Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.
NASA Technical Reports Server (NTRS)
Winglee, Robert M.
1991-01-01
The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
NASA Technical Reports Server (NTRS)
1991-01-01
The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
Further Improvement of the RITS Code for Pulsed Neutron Bragg-edge Transmission Imaging
NASA Astrophysics Data System (ADS)
Sato, H.; Watanabe, K.; Kiyokawa, K.; Kiyanagi, R.; Hara, K. Y.; Kamiyama, T.; Furusaka, M.; Shinohara, T.; Kiyanagi, Y.
The RITS code is a unique and powerful tool for a whole Bragg-edge transmission spectrum fitting analysis. However, it has had two major problems. Therefore, we have proposed methods to overcome these problems. The first issue is the difference in the crystallite size values between the diffraction and the Bragg-edge analyses. We found the reason was a different definition of the crystal structure factor. It affects the crystallite size because the crystallite size is deduced from the primary extinction effect which depends on the crystal structure factor. As a result of algorithm change, crystallite sizes obtained by RITS drastically approached to crystallite sizes obtained by Rietveld analyses of diffraction data; from 155% to 110%. The second issue is correction of the effect of background neutrons scattered from a specimen. Through neutron transport simulation studies, we found that the background components consist of forward Bragg scattering, double backward Bragg scattering, and thermal diffuse scattering. RITS with the background correction function which was developed through the simulation studies could well reconstruct various simulated and experimental transmission spectra, but refined crystalline microstructural parameters were often distorted. Finally, it was recommended to reduce the background by improving experimental conditions.
Strain-dependent activation energy of shear transformation in metallic glasses
NASA Astrophysics Data System (ADS)
Xu, Bin; Falk, Michael; Li, Jinfu; Kong, Lingti
2017-04-01
Shear transformation (ST) plays a decisive role in determining the mechanical behavior of metallic glasses, which is believed to be a stress-assisted thermally activated process. Understanding the dependence in its activation energy on the stress imposed on the material is of central importance to model the deformation process of metallic glasses and other amorphous solids. Here a theoretical model is proposed to predict the variation of the minimum energy path (MEP) associated with a particular ST event upon further deformation. Verification based on atomistic simulations and calculations are also conducted. The proposed model reproduces the MEP and activation energy of an ST event under different imposed macroscopic strains based on a known MEP at a reference strain. Moreover, an analytical approach is proposed based on the atomistic calculations, which works well when the stress varies linearity along the MEP. These findings provide necessary background for understanding the activation processes and, in turn, the mechanical behavior of metallic glasses.
Optimal weighted averaging of event related activity from acquisitions with artifacts.
Vollero, Luca; Petrichella, Sara; Innello, Giulio
2016-08-01
In several biomedical applications that require the signal processing of biological data, the starting procedure for noise reduction is the ensemble averaging of multiple repeated acquisitions (trials). This method is based on the assumption that each trial is composed of two additive components: (i) a time-locked activity related to some sensitive/stimulation phenomenon (ERA, Event Related Activity in the following) and (ii) a sum of several other non time-locked background activities. The averaging aims at estimating the ERA activity under very low Signal to Noise and Interference Ratio (SNIR). Although averaging is a well established tool, its performance can be improved in the presence of high-power disturbances (artifacts) by a trials classification and removal stage. In this paper we propose, model and evaluate a new approach that avoids trials removal, managing trials classified as artifact-free and artifact-prone with two different weights. Based on the model, a weights tuning is possible and through modeling and simulations we show that, when optimally configured, the proposed solution outperforms classical approaches.
NASA Astrophysics Data System (ADS)
Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William
2017-10-01
We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.
Flute Instability of Expanding Plasma Cloud
NASA Astrophysics Data System (ADS)
Dudnikova, Galina; Vshivkov, Vitali
2000-10-01
The expansion of plasma against a magnetized background where collisions play no role is a situation common to many plasma phenomena. The character of interaction between expanding plasma and background plasma is depending of the ratio of the expansion velocity to the ambient Alfven velocity. If the expansion speed is greater than the background Alfven speed (super-Alfvenic flows) a collisionless shock waves are formed in background plasma. It is originally think that if the expansion speed is less than Alfvenic speed (sub-Alfvenic flows) the interaction of plasma flows will be laminar in nature. However, the results of laboratory experiments and chemical releases in magnetosphere have shown the development of flute instability on the boundary of expanding plasma (Rayleigh-Taylor instability). A lot of theoretical and experimental papers have been devoted to study the Large Larmor Flute Instability (LLFI) of plasma expanding into a vacuum magnetic field. In the present paper on the base of computer simulation of plasma cloud expansion in magnetizied background plasma the regimes of development and stabilization LLFI for super- and sub-Alfvenic plasma flows are investigated. 2D hybrid numerical model is based on kinetic Vlasov equation for ions and hydrodynamic approximation for electrons. The similarity parameters characterizing the regimes of laminar flows are founded. The stabilization of LLFI takes place with the transition from sub- to super-Alfvenic plasma cloud expansion. The results of the comparision between computer simulation and laboratory simulation are described.
A brief simulation intervention increasing basic science and clinical knowledge.
Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David
2016-01-01
Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.
Attitudes and Perception of Baccalaureate Nursing Students toward Educational Simulation
ERIC Educational Resources Information Center
Gharaibeh, Besher; Hweidi, Issa; Al-Smadi, Ahmed
2017-01-01
Background: Simulation can produce highly qualified professionals, however, it can also be perceived as stressful and frustrating by the nursing students. Purposes: This study was to identify the attitudes and perceptions of Jordanian nursing students toward simulation as an educational strategy, to investigate whether certain students'…
Designing, Implementing and Evaluating Preclinical Simulation Lab for Maternity Nursing Course
ERIC Educational Resources Information Center
ALFozan, Haya; El Sayed, Yousria; Habib, Farida
2015-01-01
Background: The opportunity for students to deliver care safely in today's, complex health care environment is limited. Simulation allows students to practice skills in a safe environment. Purpose: to assess the students' perception, satisfaction, and learning outcomes after a simulation based maternity course. Method: a quasi experimental design…
Memory Maintenance in Synapses with Calcium-Based Plasticity in the Presence of Background Activity
Higgins, David; Graupner, Michael; Brunel, Nicolas
2014-01-01
Most models of learning and memory assume that memories are maintained in neuronal circuits by persistent synaptic modifications induced by specific patterns of pre- and postsynaptic activity. For this scenario to be viable, synaptic modifications must survive the ubiquitous ongoing activity present in neural circuits in vivo. In this paper, we investigate the time scales of memory maintenance in a calcium-based synaptic plasticity model that has been shown recently to be able to fit different experimental data-sets from hippocampal and neocortical preparations. We find that in the presence of background activity on the order of 1 Hz parameters that fit pyramidal layer 5 neocortical data lead to a very fast decay of synaptic efficacy, with time scales of minutes. We then identify two ways in which this memory time scale can be extended: (i) the extracellular calcium concentration in the experiments used to fit the model are larger than estimated concentrations in vivo. Lowering extracellular calcium concentration to in vivo levels leads to an increase in memory time scales of several orders of magnitude; (ii) adding a bistability mechanism so that each synapse has two stable states at sufficiently low background activity leads to a further boost in memory time scale, since memory decay is no longer described by an exponential decay from an initial state, but by an escape from a potential well. We argue that both features are expected to be present in synapses in vivo. These results are obtained first in a single synapse connecting two independent Poisson neurons, and then in simulations of a large network of excitatory and inhibitory integrate-and-fire neurons. Our results emphasise the need for studying plasticity at physiological extracellular calcium concentration, and highlight the role of synaptic bi- or multistability in the stability of learned synaptic structures. PMID:25275319
STS-110 M.S. Ross in M-113 personnel carrier during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Jerry Ross waits his turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Mission Specialist Lee Morin. TCDT includes emergency egress training and a simulated launch countdown, and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.
STS-110 M.S. Ochoa in M-113 personnel carrier during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Ellen Ochoa waits her turn at driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. In the background, right, is Pilot Stephen Frick. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.
simulation component models within EnergyPlus and OpenStudio. Prior to working at NREL, Anthony was a member building envelope and developed attic and roof simulation tools. His background is in modeling heat
Health-Related Benefits of Attaining the 8-Hr Ozone Standard
Hubbell, Bryan J.; Hallberg, Aaron; McCubbin, Donald R.; Post, Ellen
2005-01-01
During the 2000–2002 time period, between 36 and 56% of ozone monitors each year in the United States failed to meet the current ozone standard of 80 ppb for the fourth highest maximum 8-hr ozone concentration. We estimated the health benefits of attaining the ozone standard at these monitors using the U.S. Environmental Protection Agency’s Environmental Benefits Mapping and Analysis Program. We used health impact functions based on published epidemiologic studies, and valuation functions derived from the economics literature. The estimated health benefits for 2000 and 2001 are similar in magnitude, whereas the results for 2002 are roughly twice that of each of the prior 2 years. The simple average of health impacts across the 3 years includes reductions of 800 premature deaths, 4,500 hospital and emergency department admissions, 900,000 school absences, and > 1 million minor restricted activity days. The simple average of benefits (including premature mortality) across the 3 years is $5.7 billion [90% confidence interval (CI), 0.6–15.0] for the quadratic rollback simulation method and $4.9 billion (90% CI, 0.5–14.0) for the proportional rollback simulation method. Results are sensitive to the form of the standard and to assumptions about background ozone levels. If the form of the standard is based on the first highest maximum 8-hr concentration, impacts are increased by a factor of 2–3. Increasing the assumed hourly background from zero to 40 ppb reduced impacts by 30 and 60% for the proportional and quadratic attainment simulation methods, respectively. PMID:15626651
Incoherent pair generation in a beam-beam interaction simulation
NASA Astrophysics Data System (ADS)
Rimbault, C.; Bambade, P.; Mönig, K.; Schulte, D.
2006-03-01
This paper deals with two topics: the generation of incoherent pairs in two beam-beam simulation programs, GUINEA-PIG and CAIN, and the influence of the International Linear Collider (ILC) beam parameter choices on the background in the micro vertex detector (VD) induced by direct hits. One of the processes involved in incoherent pair creation (IPC) is equivalent to a four fermions interaction and its cross section can be calculated exactly with a dedicated generator, BDK. A comparison of GUINEA-PIG and CAIN results with BDK allows to identify and quantify the uncertainties on IPC background predictions and to benchmark the GUINEA-PIG calculation. Based on this simulation and different VD designs, the five currently suggested ILC beam parameter sets have been compared regarding IPC background induced in the VD by direct IPC hits. We emphasize that the high luminosity set, as it is currently defined, would constrain both the choices of magnetic field and VD inner layer radius.
Breier, R; Brudanin, V B; Loaiza, P; Piquemal, F; Povinec, P P; Rukhadze, E; Rukhadze, N; Štekl, I
2018-05-21
The main limitation in the high-sensitive HPGe gamma-ray spectrometry has been the detector background, even for detectors placed deep underground. Environmental radionuclides such as 40 K and decay products in the 238 U and 232 Th chains have been identified as the most important radioactive contaminants of construction parts of HPGe gamma-ray spectrometers. Monte Carlo simulations have shown that the massive inner and outer lead shields have been the main contributors to the HPGe-detector background, followed by aluminum cryostat, copper cold finger, detector holder and the lead ring with FET. The Monte Carlo simulated cosmic-ray background gamma-ray spectrum has been by about three orders of magnitude lower than the experimental spectrum measured in the Modane underground laboratory (4800 m w.e.), underlying the importance of using radiopure materials for the construction of ultra-low-level HPGe gamma-ray spectrometers. Copyright © 2018 Elsevier Ltd. All rights reserved.
A statistically robust EEG re-referencing procedure to mitigate reference effect
Lepage, Kyle Q.; Kramer, Mark A.; Chu, Catherine J.
2014-01-01
Background The electroencephalogram (EEG) remains the primary tool for diagnosis of abnormal brain activity in clinical neurology and for in vivo recordings of human neurophysiology in neuroscience research. In EEG data acquisition, voltage is measured at positions on the scalp with respect to a reference electrode. When this reference electrode responds to electrical activity or artifact all electrodes are affected. Successful analysis of EEG data often involves re-referencing procedures that modify the recorded traces and seek to minimize the impact of reference electrode activity upon functions of the original EEG recordings. New method We provide a novel, statistically robust procedure that adapts a robust maximum-likelihood type estimator to the problem of reference estimation, reduces the influence of neural activity from the re-referencing operation, and maintains good performance in a wide variety of empirical scenarios. Results The performance of the proposed and existing re-referencing procedures are validated in simulation and with examples of EEG recordings. To facilitate this comparison, channel-to-channel correlations are investigated theoretically and in simulation. Comparison with existing methods The proposed procedure avoids using data contaminated by neural signal and remains unbiased in recording scenarios where physical references, the common average reference (CAR) and the reference estimation standardization technique (REST) are not optimal. Conclusion The proposed procedure is simple, fast, and avoids the potential for substantial bias when analyzing low-density EEG data. PMID:24975291
Adverse Effects of Simulated Hyper- and Hypo-Phosphatemia on Endothelial Cell Function and Viability
Zeng, Caihong; Rakheja, Dinesh; Zhu, Jiankun; Ye, Ting; Hutcheson, Jack; Vaziri, Nosratola D.; Liu, Zhihong; Mohan, Chandra; Zhou, Xin J.
2011-01-01
Background Dysregulaiton of phosphate homeostasis as occurs in chronic kidney disease is associated with cardiovascular complications. It has been suggested that both hyperphosphatemia and hypophosphatemia can cause cardiovascular disease. The molecular mechanisms by which high or low serum phosphate levels adversely affect cardiovascular function are poorly understood. The purpose of this study was to explore the mechanisms of endothelial dysfunction in the presence of non-physiologic phosphate levels. Methodology/Principal Findings We studied the effects of simulated hyper- and hypophosphatemia in human umbilical vein endothelial cells in vitro. We found both simulated hyperphosphatemia and hypophosphatemia decrease eNOS expression and NO production. This was associated with reduced intracellular calcium, increased protein kinase C β2 (PKCβ2), reduced cell viability, and increased apoptosis. While simulated hyperphosphatemia was associated with decreased Akt/p-Akt, Bcl-xl/Bax ratios, NFkB-p65 and p-Erk abundance, simulated hypophosphatemia was associated with increased Akt/p-Akt and Bcl-xl/Bax ratios and p-Mek, p38, and p-p38 abundance. Conclusions/Significance This is the first demonstration of endothelial dysfunction with hypophosphatemia. Our data suggests that both hyperphosphatemia and hypophosphatemia decrease eNOS activity via reduced intracellular calcium and increased PKCβ2. Hyperphosphatemia also appears to reduce eNOS transcription via reduced signaling through PI3K/Akt/NF-kB and MAPK/NF-kB pathways. On the other hand, hypophosphatemia appears to activate these pathways. Our data provides the basis for further studies to elucidate the relationship between altered phosphate homeostasis and cardiovascular disease. As a corollary, our data suggests that the level of phosphate in the culture media, if not in the physiologic range, may inadvertently affect experimental results. PMID:21858050
Gomez, Juan F.; Cardona, Karen; Martinez, Laura; Saiz, Javier; Trenor, Beatriz
2014-01-01
Background Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure. Objective In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations. Methods The electrical activity of human transmural ventricular tissue (5 cm×5 cm) was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW) for reentry was evaluated following cross-field stimulation. Results No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components. Conclusion Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity. PMID:25054335
Understanding Uncertainties and Biases in Jet Quenching in High-Energy Nucleus-Nucleus Collisions
NASA Astrophysics Data System (ADS)
Heinz, Matthias
2017-09-01
Jets are the collimated streams of particles resulting from hard scattering in the initial state of high-energy collisions. In heavy-ion collisions, jets interact with the quark-gluon plasma (QGP) before freezeout, providing a probe into the internal structure and properties of the QGP. In order to study jets, background must be subtracted from the measured event, potentially introducing a bias. We aim to understand quantify this subtraction bias. PYTHIA, a library to simulate pure jet events, is used to simulate a model for a signature with one pure jet (a photon) and one quenched jet, where all quenched particle momenta are reduced by the same fraction. Background for the event is simulated using multiplicity values generated by the TRENTO initial state model of heavy-ion collisions fed into a thermal model from which to sample particle types and a 3-dimensional Boltzmann distribution from which to sample particle momenta. Data from the simulated events is used to train a statistical model, which computes a posterior distribution of the quench factor for a data set. The model was tested first on pure jet events and later on full events including the background. This model will allow for a quantitative determination of biases induced by various methods of background subtraction. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Theory and simulations of current drive via injection of an electron beam in the ACT-1 device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuda, H.; Horton, R.; Ono, M.
1985-02-01
One- and two-dimensional particle simulations of beam-plasma interaction have been carried out in order to understand current drive experiments that use an electron beam injected into the ACT-1 device. Typically, the beam velocity along the magnetic field is V = 10/sup 9/ cm/sec while the thermal velocity of the background electrons is v/sub t/ = 10/sup 8//cm. The ratio of the beam density to the background density is about 10% so that a strong beam-plasma instability develops causing rapid diffusion of beam particles. For both one- and two- dimensional simulations, it is found that a significant amount of beam andmore » background electrons is accelerated considerably beyond the initial beam velocity when the beam density is more than a few percent of the background plasma density. In addition, electron distribution along the magnetic field has a smooth negative slope, f' (v/sub parallel/) < 0, for v/ sub parallel/ > 0 extending v/sub parallel/ = 1.5 V approx. 2 V, which is in sharp contrast to the predictions from quasilinear theory. An estimate of the mean-free path for beam electrons due to Coulomb collisions reveals that the beam electrons can propagate a much longer distance than is predicted from a quasilinear theory, due to the presence of a high energy tail. These simulation results agree well with the experimental observations from the ACT-1 device.« less
Description of the dynamic infrared background/target simulator (DIBS)
NASA Astrophysics Data System (ADS)
Lujan, Ignacio
1988-01-01
The purpose of the Dynamic Infrared Background/Target Simulator (DIBS) is to project dynamic infrared scenes to a test sensor; e.g., a missile seeker that is sensitive to infrared energy. The projected scene will include target(s) and background. This system was designed to present flicker-free infrared scenes in the 8 micron to 12 micron wavelength region. The major subassemblies of the DIBS are the laser write system (LWS), vanadium dioxide modulator assembly, scene data buffer (SDB), and the optical image translator (OIT). This paper describes the overall concept and design of the infrared scene projector followed by some details of the LWS and VO2 modulator. Also presented are brief descriptions of the SDB and OIT.
Backgrounds, radiation damage, and spacecraft orbits
NASA Astrophysics Data System (ADS)
Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.
2017-08-01
The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.
Montenery, Susan M; Walker, Marjorie; Sorensen, Elizabeth; Thompson, Rhonda; Kirklin, Dena; White, Robin; Ross, Carl
2013-01-01
To determine how millennial nursing students perceive the effects of instructional technology on their attentiveness, knowledge, critical thinking, and satisfaction. BACKGROUND Millennial learners develop critical thinking through experimentation, active participation, and multitasking with rapid shifts between technological devices. They desire immediate feedback. METHOD; A descriptive, longitudinal, anonymous survey design was used with a convenience sample of 108 sophomore, junior, and senior baccalaureate nursing students (participation rates 95 percent, winter, 85 percent, spring). Audience response, virtual learning, simulation, and computerized testing technologies were used. An investigator-designed instrument measured attentiveness, knowledge, critical thinking, and satisfaction (Cronbach's alphas 0.73, winter; 0.84, spring). Participants positively rated the audience response, virtual learning, and simulation instructional technologies on their class participation, learning, attention, and satisfaction. They strongly preferred computerized testing. Consistent with other studies, these students engaged positively with new teaching strategies using contemporary instructional technology. Faculty should consider using instructional technologies.
Bouridane, Hamida; Sifour, Mohamed; Idoui, Tayeb; Annick, Lejeune; Thonard, Philip
2016-01-01
Background For biotechnological application, selected lactic acid bacteria strains belonging to the genera Lactobacillus (Lb) are proposed as an alternative to the antibiotics for the prevention and treatment of urogenital tract infections. Objectives Isolating and selecting vaginal lactobacilli strains for probiotic use based on their technological and probiotic aptitudes. Materials and Methods The vaginal isolates were examined for their essential characteristics as the potential probiotic such as low pH tolerance, bile-salt and simulated human intestinal fluid (SIF) resistance, adhesion to the vaginal epithelial cells (VECs), aggregation and coaggregation, surface hydrophobicity, antimicrobial activity, acid production, antibiotic resistance, and resistance to spermicides. The best strain was identified by PCR. Results From 70 lactobacilli isolates and according to the 16 rDNA sequences, isolates B6 and B10 showed the closest homology (99%) to the Lb. gasseri and Lb. plantarum respectively. They produced hydrogen peroxide (H2O2), tolerant to acid, bile, simulated human intestinal fluid, present a strong adhesion, highest percentages of aggregation, and antibacterial activity. These strains are resistant to the spermicide and actively acidify the growth medium. Conclusions Strains Lb. plantarum B10 and Lb. gasseri B6 have a strong potential probiotic confirming their value as a tool for prevention against urinary and vaginal infections. PMID:28959336
Efficient generation of image chips for training deep learning algorithms
NASA Astrophysics Data System (ADS)
Han, Sanghui; Fafard, Alex; Kerekes, John; Gartley, Michael; Ientilucci, Emmett; Savakis, Andreas; Law, Charles; Parhan, Jason; Turek, Matt; Fieldhouse, Keith; Rovito, Todd
2017-05-01
Training deep convolutional networks for satellite or aerial image analysis often requires a large amount of training data. For a more robust algorithm, training data need to have variations not only in the background and target, but also radiometric variations in the image such as shadowing, illumination changes, atmospheric conditions, and imaging platforms with different collection geometry. Data augmentation is a commonly used approach to generating additional training data. However, this approach is often insufficient in accounting for real world changes in lighting, location or viewpoint outside of the collection geometry. Alternatively, image simulation can be an efficient way to augment training data that incorporates all these variations, such as changing backgrounds, that may be encountered in real data. The Digital Imaging and Remote Sensing Image Image Generation (DIRSIG) model is a tool that produces synthetic imagery using a suite of physics-based radiation propagation modules. DIRSIG can simulate images taken from different sensors with variation in collection geometry, spectral response, solar elevation and angle, atmospheric models, target, and background. Simulation of Urban Mobility (SUMO) is a multi-modal traffic simulation tool that explicitly models vehicles that move through a given road network. The output of the SUMO model was incorporated into DIRSIG to generate scenes with moving vehicles. The same approach was used when using helicopters as targets, but with slight modifications. Using the combination of DIRSIG and SUMO, we quickly generated many small images, with the target at the center with different backgrounds. The simulations generated images with vehicles and helicopters as targets, and corresponding images without targets. Using parallel computing, 120,000 training images were generated in about an hour. Some preliminary results show an improvement in the deep learning algorithm when real image training data are augmented with the simulated images, especially when obtaining sufficient real data was particularly challenging.
More than Meets the Eye--a Simulation of Natural Selection.
ERIC Educational Resources Information Center
Allen, J. A.; And Others
1987-01-01
Presents experiments using wild birds as predators and pastry as prey and colored stones as background to demonstrate natural selection. Describes the exercise as an exercise in simulating natural selection. (Author/CW)
Fermi-LAT high-z active galactic nuclei and the extragalactic background light
NASA Astrophysics Data System (ADS)
Armstrong, Thomas; Brown, Anthony M.; Chadwick, Paula M.
2017-10-01
Observations of distant gamma-ray sources are hindered by the presence of the extragalactic background light (EBL). In order to understand the physical processes that result in the observed spectrum of sources, it is imperative that a good understanding of the EBL is included. In this work, an investigation into the imprint of the EBL on the observed spectra of high-redshift Fermi-LAT active galactic nuclei is presented. By fitting the spectrum below ˜10 GeV, an estimation of the unabsorbed intrinsic source spectrum is obtained; by applying this spectrum to data up to 300 GeV, it is then possible to derive a scaling factor for different EBL models. A second approach uses five sources (PKS 0426-380, 4C +55.17, Ton 116, PG 1246+586 and RBS 1432) that were found to exhibit very high energy (VHE) emission (Eγ > 100 GeV). Through Monte Carlo simulations, it is shown that the observation of VHE photons, despite the large distances of these objects, is consistent with current EBL models. Many of these sources would be observable with the upcoming ground-based observatory, the Cherenkov Telescope Array, leading to a better understanding of the EBL.
Melbye, Sigurd; Hotvedt, Martin; Bolle, Stein Roald
2014-06-02
Videoconferencing on mobile phones may enhance communication, but knowledge on its quality in various situations is needed before it can be used in medical emergencies. Mobile phones automatically activate loudspeaker functionality during videoconferencing, making calls particularly vulnerable to background noise. The aim of this study was to investigate if videoconferencing can be used between lay bystanders and Emergency Medical Dispatch (EMD) operators for initial emergency calls during medical emergencies, under suboptimal sound and light conditions. Videoconferencing was tested between 90 volunteers and an emergency medical dispatcher in a standardized scenario of a medical emergency. Three different environments were used for the trials: indoors with moderate background noise, outdoors with daylight and much background noise, and outdoors during nighttime with little background noise. Thirty participants were recruited for each of the three locations. After informed consent, each participant was asked to use a video mobile phone to communicate with an EMD operator. During the video call the EMD operator gave instructions for tasks to be performed by the participant. The video quality from the caller to the EMD was evaluated by the EMD operator and rated on a five step scale ranging from "not able to see" to "good video quality". Sound quality between participants and EMD operators was assessed by a method developed for this trial. Kruskal - Wallis and Chi-square tests were used for statistical analysis. Video quality was significantly different between the groups (p <0.001), and the nighttime group had lower video quality. For most sessions in the nighttime group it was still possible to see actions done at the simulated emergency site. All participants were able to perform their tasks according to the instructions given by dispatchers, although with a need for more repetitions during sessions with much background noise. No calls were rated by dispatchers as incomprehensible due to low sound quality and only 3% of the calls were considered somewhat difficult or very difficult to understand. Videoconferencing on mobile phones can be used for the initial emergency call during medical emergencies also in suboptimal conditions.
Connor, Jennie; Witten, Karen; Kearns, Robin; Rees, David; Woodward, Alistair
2014-01-01
Background: Shifting to active modes of transport in the trip to work can achieve substantial co-benefits for health, social equity, and climate change mitigation. Previous integrated modeling of transport scenarios has assumed active transport mode share and has been unable to incorporate acknowledged system feedbacks. Objectives: We compared the effects of policies to increase bicycle commuting in a car-dominated city and explored the role of participatory modeling to support transport planning in the face of complexity. Methods: We used system dynamics modeling (SDM) to compare realistic policies, incorporating feedback effects, nonlinear relationships, and time delays between variables. We developed a system dynamics model of commuter bicycling through interviews and workshops with policy, community, and academic stakeholders. We incorporated best available evidence to simulate five policy scenarios over the next 40 years in Auckland, New Zealand. Injury, physical activity, fuel costs, air pollution, and carbon emissions outcomes were simulated. Results: Using the simulation model, we demonstrated the kinds of policies that would likely be needed to change a historical pattern of decline in cycling into a pattern of growth that would meet policy goals. Our model projections suggest that transforming urban roads over the next 40 years, using best practice physical separation on main roads and bicycle-friendly speed reduction on local streets, would yield benefits 10–25 times greater than costs. Conclusions: To our knowledge, this is the first integrated simulation model of future specific bicycling policies. Our projections provide practical evidence that may be used by health and transport policy makers to optimize the benefits of transport bicycling while minimizing negative consequences in a cost-effective manner. The modeling process enhanced understanding by a range of stakeholders of cycling as a complex system. Participatory SDM can be a helpful method for integrating health and environmental outcomes in transport and urban planning. Citation: Macmillan A, Connor J, Witten K, Kearns R, Rees D, Woodward A. 2014. The societal costs and benefits of commuter bicycling: simulating the effects of specific policies using system dynamics modeling. Environ Health Perspect 122:335–344; http://dx.doi.org/10.1289/ehp.1307250 PMID:24496244
Simulating environmental and psychological acoustic factors of the operating room.
Bennett, Christopher L; Dudaryk, Roman; Ayers, Andrew L; McNeer, Richard R
2015-12-01
In this study, an operating room simulation environment was adapted to include quadraphonic speakers, which were used to recreate a composed clinical soundscape. To assess validity of the composed soundscape, several acoustic parameters of this simulated environment were acquired in the presence of alarms only, background noise only, or both. These parameters were also measured for comparison from size-matched operating rooms at Jackson Memorial Hospital. The parameters examined included sound level, reverberation time, and predictive metrics of speech intelligibility in quiet and noise. It was found that the sound levels and acoustic parameters were comparable between the simulated environment and the actual operating rooms. The impact of the background noise on the perception of medical alarms was then examined, and was found to have little impact on the audibility of the alarms. This study is a first in kind report of a comparison between the environmental and psychological acoustical parameters of a hospital simulation environment and actual operating rooms.
Background and imaging simulations for the hard X-ray camera of the MIRAX mission
NASA Astrophysics Data System (ADS)
Castro, M.; Braga, J.; Penacchioni, A.; D'Amico, F.; Sacahui, R.
2016-07-01
We report the results of detailed Monte Carlo simulations of the performance expected both at balloon altitudes and at the probable satellite orbit of a hard X-ray coded-aperture camera being developed for the Monitor e Imageador de RAios X (MIRAX) mission. Based on a thorough mass model of the instrument and detailed specifications of the spectra and angular dependence of the various relevant radiation fields at both the stratospheric and orbital environments, we have used the well-known package GEANT4 to simulate the instrumental background of the camera. We also show simulated images of source fields to be observed and calculated the detailed sensitivity of the instrument in both situations. The results reported here are especially important to researchers in this field considering that we provide important information, not easily found in the literature, on how to prepare input files and calculate crucial instrumental parameters to perform GEANT4 simulations for high-energy astrophysics space experiments.
Creating Interactive Physics Simulations Using the Power of GeoGebra
ERIC Educational Resources Information Center
Walsh, Tom
2017-01-01
I have long incorporated physics simulations in my physics teaching, and truly appreciate those who have made their simulations available to the public. I often would think of an idea for a simulation I would love to be able to use, but with no real programming background I did not know how I could make my own. That was the case until I discovered…
NASA Astrophysics Data System (ADS)
Kulisek, J. A.; Schweppe, J. E.; Stave, S. C.; Bernacki, B. E.; Jordan, D. V.; Stewart, T. N.; Seifert, C. E.; Kernan, W. J.
2015-06-01
Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, 60Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.
ERIC Educational Resources Information Center
Kukkonen, Jari Ensio; Kärkkäinen, Sirpa; Dillon, Patrick; Keinonen, Tuula
2014-01-01
Research has demonstrated that simulation-based inquiry learning has significant advantages for learning outcomes when properly scaffolded. For successful learning in science with simulation-based inquiry, one needs to ascertain levels of background knowledge so as to support learners in making, evaluating and modifying hypotheses, conducting…
Nursing Students' Nonverbal Reactions to Malodor in Wound Care Simulation
ERIC Educational Resources Information Center
Baker, Gloria Waters
2012-01-01
Background: Wound care is an essential competency which nursing students are expected to acquire. To foster students' competency, nurse educators use high fidelity simulation to expose nursing students to various wound characteristics. Problem: Little is known about how nursing students react to simulated wound characteristics. Malodor is a…
ERIC Educational Resources Information Center
Kay, Gary G.; Michaels, M. Alex; Pakull, Barton
2009-01-01
Background: Psychostimulant treatment may improve simulated driving performance in young adults with attention-deficit/hyperactivity disorder (ADHD). Method: This was a randomized, double-blind, placebo-controlled, crossover study of simulated driving performance with mixed amphetamine salts--extended release (MAS XR) 50 mg/day (Cohort 1) and…
This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boun...
Quantum Chess: Making Quantum Phenomena Accessible
NASA Astrophysics Data System (ADS)
Cantwell, Christopher
Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?
Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M
2012-01-01
Background Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. Methods and results The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. Conclusion This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system. PMID:23055729
Evidence of a New Instability in Gyrokinetic Simulations of LAPD Plasmas
NASA Astrophysics Data System (ADS)
Terry, P. W.; Pueschel, M. J.; Rossi, G.; Jenko, F.; Told, D.; Carter, T. A.
2015-11-01
Recent experiments at the LArge Plasma Device (LAPD) have focused on structure formation driven by density and temperature gradients. A central difference relative to typical, tokamak-like plasmas stems from the linear geometry and absence of background magnetic shear. At sufficiently high β, strong excitation of parallel (compressional) magnetic fluctuations was observed. Here, linear and nonlinear simulations with the
Rieger, Dirk; Peschel, Nicolai; Dusik, Verena; Glotz, Silvia; Helfrich-Förster, Charlotte
2012-02-01
The ability to adapt to different environmental conditions including seasonal changes is a key feature of the circadian clock. Here, we compared the ability of 3 Drosophila melanogaster wild-type strains to adapt rhythmic activity to long photoperiods simulated in the laboratory. Fruit flies are predominantly crepuscular with activity bouts in the morning (M) and evening (E). The M peak follows dawn and the E peak follows dusk when the photoperiod is extended. We show that this ability is restricted to a certain extension of the phase angle between M and E peaks, such that the E peak does not delay beyond a certain phase under long days. We demonstrate that this ability is significantly improved by simulated twilight and that it depends additionally on the genetic background and the ambient temperature. At 20 °C, the laboratory strain CantonS had the most flexible phase angle between M and E peaks, a Northern wild-type strain had an intermediate one, and a Southern wild-type strain had the lowest flexibility. Furthermore, we found that the 3 strains differed in clock light sensitivity, with the CantonS and the Northern strains more light sensitive than the Southern strain. These results are generally in accord with the recently discovered polymorphisms in the timeless gene (tim) that affect clock light sensitivity.
2012-01-01
Background Leishmaniasis is caused by several species of leishmania protozoan and is one of the major vector-born diseases after malaria and sleeping sickness. Toxicity of available drugs and drug resistance development by protozoa in recent years has made Leishmaniasis cure difficult and challenging. This urges the need to discover new antileishmanial-drug targets and antileishmanial-drug development. Results Tertiary structure of leishmanial protein kinase C was predicted and found stable with a RMSD of 5.8Å during MD simulations. Natural compound withaferin A inhibited the predicted protein at its active site with -28.47 kcal/mol binding free energy. Withanone was also found to inhibit LPKC with good binding affinity of -22.57 kcal/mol. Both withaferin A and withanone were found stable within the binding pocket of predicted protein when MD simulations of ligand-bound protein complexes were carried out to examine the consistency of interactions between the two. Conclusions Leishmanial protein kinase C (LPKC) has been identified as a potential target to develop drugs against Leishmaniasis. We modelled and refined the tertiary structure of LPKC using computational methods such as homology modelling and molecular dynamics simulations. This structure of LPKC was used to reveal mode of inhibition of two previous experimentally reported natural compounds from Withania somnifera - withaferin A and withanone. PMID:23281834
Background evaluation for the neutron sources in the Daya Bay experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, W. Q.; Cao, G. F.; Chen, X. H.
2016-07-06
Here, we present an evaluation of the background induced by 241Am–13C neutron calibration sources in the Daya Bay reactor neutrino experiment. Furthermore, as a significant background for electron-antineutrino detection at 0.26 ± 0.12 detector per day on average, it has been estimated by a Monte Carlo simulation that was benchmarked by a special calibration data set. This dedicated data set also provides the energy spectrum of the background.
Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE
NASA Astrophysics Data System (ADS)
Itai, Akitoshi; Yasukawa, Hiroshi
This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.
NASA Astrophysics Data System (ADS)
Kennicutt, Robert C., Jr.
Overview: Induced Star Formation and Interactions Introduction Historical Background: First Hints Systematic Studies: Starbursts Interactions and Nuclear activity IRAS and Ultralumious starburst Galaxies The 1990's: HST, Supercomputers, and the Distant Universe Key Questions and Issues Organization of Lectures Star Formation Properties of Normal Galaxies Observational Techniques Results: Star Formation in Normal Galaxies Interpretation: Star Formation Histories Global Star Formation in interacting Galaxies A Gallery of Interactions and Mergers Star Formation Statistics: Guilt By Association Tests SFRs in Interacting vs Noninteracting Galaxies Kinematic Properties and Regulation of SFRs Induced Nuclear Activity and Star Formation Background: Nuclear Spectra and Classification Nuclear Star Formation and Starbursts Nuclear Star Formation and Interactions Induced AGN Activity: Statistics of Seyfert Galaxies Environments of Quasars Kinematic Clues to the Triggering of AGNs Infrared Luminous Galaxies and Starbursts Background: IR Luminous Galaxies and IRAS Infrared Luminosity Function and Spectra Infrared Structure and Morphology Interstellar Gas X-Ray Emission and Superwinds Optical, UV, and Near-Infrared Spectra Radio Continuum Emission Evidence for Interactions and Mergers The Power Source: Starbursts or Dusty AGNs? Spectral Diagnostics of Starbursts Evolutionary Synthesis Models Applications: Integrated Colors of Interacting Galaxies Applications: Hα Emission, Colors, and SFRs Applications: Spectral Modelling of Evolved Starbursts Infrared Starbursts and the IMF in starbursts Triggering and Regulation of Star Formation: The Problem Introduction: Star Formation as a Nonlinear Process The schmidt Law in Normal Galaxies Star Formation Regimes in Interacting Galaxies Summary Triggering and Regulation of Starbusts: Theoretical Ideas Gravitational Star Formation Thresholds Cloud Collision Models Radial Transport of Gas: Clues from Barred Galaxies Simulations of Starbursts in Merging Galaxies The Cosmological Role of Interactions and Starbursts Interactions in Hierarchical Cosmology Interaction-Induced Star Formation Today Interaction-Induced Star Formation in the Past Disk kinematics and the Merger Rate Global Effects of Starbursts and Superwinds Concluding Remarks References
Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources
Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter
2016-01-01
Background Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. Methods EEG data were generated by simulating multiple cortical sources (2–4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. Results While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms. PMID:26809000
Penetration of Large Scale Electric Field to Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.
2015-12-01
The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI simulations reveal alternating penetration and shielding electric fields during the main phase of the geomagnetic storm, indicating an impulsive nature of the large scale penetrating electric field in regulating the gain and loss of radiation belt particles. We will present the statistical analysis and simulations results.
Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?
NASA Astrophysics Data System (ADS)
Kay, C.; Opher, M.; Evans, R. M.
2013-12-01
Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M.
2011-05-15
The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.
Simulation of radial expansion of an electron beam injected into a background plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1989-01-01
A 2-D electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
NASA Astrophysics Data System (ADS)
Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.
2012-12-01
The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets relevant for fire and smoke management.
NASA Technical Reports Server (NTRS)
2004-01-01
The primary goal of Access 5 is to allow safe, reliable and routine operations of High Altitude-Long Endurance Remotely Operated Aircraft (HALE ROAs) within the National Airspace System (NAS). Step 1 of Access 5 addresses the policies, procedures, technologies and implementation issues of introducing such operations into the NAS above pressure altitude 40,000 ft (Flight Level 400 or FL400). Routine HALE ROA activity within the NAS represents a potentially significant change to the tasks and concerns of NAS users, service providers and other stakeholders. Due to the complexity of the NAS, and the importance of maintaining current high levels of safety in the NAS, any significant changes must be thoroughly evaluated prior to implementation. The Access 5 community has been tasked with performing this detailed evaluation of routine HALE-ROA activities in the NAS, and providing to key NAS stakeholders a set of recommended policies and procedures to achieve this goal. Extensive simulation, in concert with a directed flight demonstration program are intended to provide the required supporting evidence that these recommendations are based on sound methods and offer a clear roadmap to achieving safe, reliable and routine HALE ROA operations in the NAS. Through coordination with NAS service providers and policy makers, and with significant input from HALE-ROA manufacturers, operators and pilots, this document presents the detailed simulation plan for Step 1 of Access 5. A brief background of the Access 5 project will be presented with focus on Steps 1 and 2, concerning HALE-ROA operations above FL400 and FL180 respectively. An overview of project management structure follows with particular emphasis on the role of the Simulation IPT and its relationships to other project entities. This discussion will include a description of work packages assigned to the Simulation IPT, and present the specific goals to be achieved for each simulation work package, along with the associated deliverables necessary to achieve these goals and the needs of other Access 5 IPTs. The simulation environment chosen for this task is then outlined. This section includes a description of the system architecture, a list of the necessary assumptions made by the Simulation IPT, and the roles, responsibilities and interactions of simulation participants. The method of simulation conduct is presented in the next section with particular emphasis on scenario development and applicability to evaluation of Step 1 HALE-ROA operations. Following, data collection and analysis methods are discussed for air traffic specialists and air vehicle control station operators. Lastly, a schedule of Step 1 simulation activities is presented for reference.
Morgan, Helen; Marzano, David; Lanham, Michael; Stein, Tamara; Curran, Diana; Hammoud, Maya
2014-01-01
Background The implementation of the Accreditation Council for Graduate Medical Education (ACGME) Milestones in the field of obstetrics and gynecology has arrived with Milestones Level One defined as the level expected of an incoming first-year resident. Purpose We designed, implemented, and evaluated a 4-week elective for fourth-year medical school students, which utilized a multimodal approach to teaching and assessing the Milestones Level One competencies. Methods The 78-hour curriculum utilized traditional didactic lectures, flipped classroom active learning sessions, a simulated paging curriculum, simulation training, embalmed cadaver anatomical dissections, and fresh-frozen cadaver operative procedures. We performed an assessment of student knowledge and surgical skills before and after completion of the course. Students also received feedback on their assessment and management of eight simulated paging scenarios. Students completed course content satisfaction surveys at the completion of each of the 4 weeks. Results Students demonstrated improvement in knowledge and surgical skills at the completion of the course. Paging confidence trended toward improvement at the completion of the course. Student satisfaction was high for all of the course content, and the active learning components of the curriculum (flipped classroom, simulation, and anatomy sessions) had higher scores than the traditional didactics in all six categories of our student satisfaction survey. Conclusions This pilot study demonstrates a practical approach for preparing fourth-year medical students for the expectations of Milestones Level One in obstetrics and gynecology. This curriculum can serve as a framework as medical schools and specific specialties work to meet the first steps of the ACGME's Next Accreditation System. PMID:25430640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, Daniel O.; DeLuca, Edward E.; Mininni, Pablo D.
Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To studymore » the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.« less
Evaluation of appropriate sensor specifications for space based ballistic missile detection
NASA Astrophysics Data System (ADS)
Schweitzer, Caroline; Stein, Karin; Wendelstein, Norbert
2012-10-01
The detection and tracking of ballistic missiles (BMs) during launch or cloud break using satellite based electro-optical (EO) sensors is a promising possibility for pre-instructing early warning and fire control radars. However, the successful detection of a BM is depending on the applied infrared (IR)-channel, as emission and reflection of threat and background vary in different spectral (IR-) bands and for different observation scenarios. In addition, the spatial resolution of the satellite based system also conditions the signal-to-clutter-ratio (SCR) and therefore the predictability of the flight path. Generally available satellite images provide data in spectral bands, which are suitable for remote sensing applications and earth surface observations. However, in the fields of BM early warning, these bands are not of interest making the simulation of background data essential. The paper focuses on the analysis of IR-bands suitable for missile detection by trading off the suppression of background signature against threat signal strength. This comprises a radiometric overview of the background radiation in different spectral bands for different climates and seasons as well as for various cloud types and covers. A brief investigation of the BM signature and its trajectory within a threat scenario is presented. Moreover, the influence on the SCR caused by different observation scenarios and varying spatial resolution are pointed out. The paper also introduces the software used for simulating natural background spectral radiance images, MATISSE ("Advanced Modeling of the Earth for Environment and Scenes Simulation") by ONERA [1].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkin, V. G.; Lionello, R.; Linker, J.
2016-11-01
Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon–Fedder–Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run with both LFM and the MAS extension into the heliosphere, and use themore » same polytropic coronal MAS solutions as the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric solutions diverge. Additional simulations with different resolution are then performed and show that the MAS heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit.« less
Fluet, Gerard G.; Merians, Alma S.; Qiu, Qinyin; Lafond, Ian; Saleh, Soha; Ruano, Viviana; Delmonico, Andrea R.; Adamovich, Sergei V.
2014-01-01
Background and Purpose A majority of studies examining repetitive task practice facilitated by robots for the treatment of upper extremity paresis utilize standardized protocols applied to large groups. Others utilize interventions tailored to patients but don't describe the clinical decision making process utilized to develop and modify interventions. This case report will describe a robot-based intervention customized to match the goals and clinical presentation of a gentleman with upper extremity hemiparesis secondary to stroke. Methods PM is an 85 year-old man with left hemiparesis secondary to an intracerebral hemorrhage five years prior to examination. Outcomes were measured before and after a one month period of home therapy and after a one month robotic intervention. The intervention was designed to address specific impairments identified during his PT examination. When necessary, activities were modified based on the patient's response to his first week of treatment. Outcomes PM trained twelve sessions using six virtually simulated activities. Modifications to original configurations of these activities resulted in performance improvements in five of these activities. PM demonstrated a 35 second improvement in Jebsen Test of Hand Function time and a 44 second improvement in Wolf Motor Function Test time subsequent to the robotic training intervention. Reaching kinematics, 24 hour activity measurement and the Hand and Activities of Daily Living scales of the Stroke Impact Scale all improved as well. Discussion A customized program of robotically facilitated rehabilitation resulted in large short-term improvements in several measurements of upper extremity function in a patient with chronic hemiparesis. PMID:22592063
Regional Background Fine Particulate Matter
A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...
Realistic Reflections for Marine Environments in Augmented Reality Training Systems
2009-09-01
Static Backgrounds. Top: Agua Background. Bottom: Blue Background.............48 Figure 27. Ship Textures Used to Generate Reflections. In Order from...Like virtual simulations, augmented reality trainers can be configured to meet specific training needs and can be restarted and reused to train...Wave Distortion, Blurring and Shadow Many of the same methods outlined in Full Reflection shader were reused for the Physics shader. The same
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Akerlof, C. W.; Akimov, D. Yu.; Alsum, S. K.; Araújo, H. M.; Arnquist, I. J.; Arthurs, M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Balashov, S.; Barry, M. J.; Belle, J.; Beltrame, P.; Benson, T.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boast, K. E.; Bolozdynya, A.; Boxer, B.; Bramante, R.; Brás, P.; Buckley, J. H.; Bugaev, V. V.; Bunker, R.; Burdin, S.; Busenitz, J. K.; Carels, C.; Carlsmith, D. L.; Carlson, B.; Carmona-Benitez, M. C.; Chan, C.; Cherwinka, J. J.; Chiller, A. A.; Chiller, C.; Cottle, A.; Coughlen, R.; Craddock, W. W.; Currie, A.; Dahl, C. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edberg, T. K.; Edwards, W. R.; Emmet, W. T.; Faham, C. H.; Fiorucci, S.; Fruth, T.; Gaitskell, R. J.; Gantos, N. J.; Gehman, V. M.; Gerhard, R. M.; Ghag, C.; Gilchriese, M. G. D.; Gomber, B.; Hall, C. R.; Hans, S.; Hanzel, K.; Haselschwardt, S. J.; Hertel, S. A.; Hillbrand, S.; Hjemfelt, C.; Hoff, M. D.; Holbrook, B.; Holtom, E.; Hoppe, E. W.; Hor, J. Y.-K.; Horn, M.; Huang, D. Q.; Hurteau, T. W.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kaboth, A.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Khazov, A.; Khromov, A. V.; Konovalov, A. M.; Korolkova, E. V.; Koyuncu, M.; Kraus, H.; Krebs, H. J.; Kudryavtsev, V. A.; Kumpan, A. V.; Kyre, S.; Lee, C.; Lee, H. S.; Lee, J.; Leonard, D. S.; Leonard, R.; Lesko, K. T.; Levy, C.; Liao, F.-T.; Lin, J.; Lindote, A.; Linehan, R. E.; Lippincott, W. H.; Liu, X.; Lopes, M. I.; Lopez Paredes, B.; Lorenzon, W.; Luitz, S.; Majewski, P.; Manalaysay, A.; Manenti, L.; Mannino, R. L.; Markley, D. J.; Martin, T. J.; Marzioni, M. F.; McConnell, C. T.; McKinsey, D. N.; Mei, D.-M.; Meng, Y.; Miller, E. H.; Mizrachi, E.; Mock, J.; Monzani, M. E.; Morad, J. A.; Mount, B. J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; Nikkel, J. A.; O'Dell, J.; O'Sullivan, K.; Olcina, I.; Olevitch, M. A.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Piepke, A.; Powell, S.; Preece, R. M.; Pushkin, K.; Ratcliff, B. N.; Reichenbacher, J.; Reichhart, L.; Rhyne, C. A.; Richards, A.; Rodrigues, J. P.; Rose, H. J.; Rosero, R.; Rossiter, P.; Saba, J. S.; Sarychev, M.; Schnee, R. W.; Schubnell, M.; Scovell, P. R.; Shaw, S.; Shutt, T. A.; Silva, C.; Skarpaas, K.; Skulski, W.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sosnovtsev, V. V.; Stancu, I.; Stark, M. R.; Stephenson, S.; Stiegler, T. M.; Stifter, K.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Temples, D.; Terman, P. A.; Thomas, K. J.; Thomson, J. A.; Tiedt, D. R.; Timalsina, M.; To, W. H.; Tomás, A.; Tope, T. E.; Tripathi, M.; Tvrznikova, L.; Va'Vra, J.; Vacheret, A.; van der Grinten, M. G. D.; Verbus, J. R.; Vuosalo, C. O.; Waldron, W. L.; Wang, R.; Watson, R.; Webb, R. C.; Wei, W.-Z.; While, M.; White, D. T.; Whitis, T. J.; Wisniewski, W. J.; Witherell, M. S.; Wolfs, F. L. H.; Woodward, D.; Worm, S.; Xu, J.; Yeh, M.; Yin, J.; Zhang, C.; Lux-Zeplin (LZ) Collaboration
2017-11-01
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238Ue < 1.6 mBq/kg, 238Ul < 0.09 mBq/kg, 232The = 0.28 ± 0.03 mBq/kg, 232Thl = 0.25 ± 0.02 mBq/kg, 40K < 0.54 mBq/kg, and 60Co < 0.02 mBq/kg (68% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160 ± 0.001(stat) ± 0.030(sys) counts.
Using compressive sensing to recover images from PET scanners with partial detector rings.
Valiollahzadeh, SeyyedMajid; Clark, John W; Mawlawi, Osama
2015-01-01
Most positron emission tomography/computed tomography (PET/CT) scanners consist of tightly packed discrete detector rings to improve scanner efficiency. The authors' aim was to use compressive sensing (CS) techniques in PET imaging to investigate the possibility of decreasing the number of detector elements per ring (introducing gaps) while maintaining image quality. A CS model based on a combination of gradient magnitude and wavelet domains (wavelet-TV) was developed to recover missing observations in PET data acquisition. The model was designed to minimize the total variation (TV) and L1-norm of wavelet coefficients while constrained by the partially observed data. The CS model also incorporated a Poisson noise term that modeled the observed noise while suppressing its contribution by penalizing the Poisson log likelihood function. Three experiments were performed to evaluate the proposed CS recovery algorithm: a simulation study, a phantom study, and six patient studies. The simulation dataset comprised six disks of various sizes in a uniform background with an activity concentration of 5:1. The simulated image was multiplied by the system matrix to obtain the corresponding sinogram and then Poisson noise was added. The resultant sinogram was masked to create the effect of partial detector removal and then the proposed CS algorithm was applied to recover the missing PET data. In addition, different levels of noise were simulated to assess the performance of the proposed algorithm. For the phantom study, an IEC phantom with six internal spheres each filled with F-18 at an activity-to-background ratio of 10:1 was used. The phantom was imaged twice on a RX PET/CT scanner: once with all detectors operational (baseline) and once with four detector blocks (11%) turned off at each of 0 ˚, 90 ˚, 180 ˚, and 270° (partially sampled). The partially acquired sinograms were then recovered using the proposed algorithm. For the third test, PET images from six patient studies were investigated using the same strategy of the phantom study. The recovered images using WTV and TV as well as the partially sampled images from all three experiments were then compared with the fully sampled images (the baseline). Comparisons were done by calculating the mean error (%bias), root mean square error (RMSE), contrast recovery (CR), and SNR of activity concentration in regions of interest drawn in the background as well as the disks, spheres, and lesions. For the simulation study, the mean error, RMSE, and CR for the WTV (TV) recovered images were 0.26% (0.48%), 2.6% (2.9%), 97% (96%), respectively, when compared to baseline. For the partially sampled images, these results were 22.5%, 45.9%, and 64%, respectively. For the simulation study, the average SNR for the baseline was 41.7 while for WTV (TV), recovered image was 44.2 (44.0). The phantom study showed similar trends with 5.4% (18.2%), 15.6% (18.8%), and 78% (60%), respectively, for the WTV (TV) images and 33%, 34.3%, and 69% for the partially sampled images. For the phantom study, the average SNR for the baseline was 14.7 while for WTV (TV) recovered image was 13.7 (11.9). Finally, the average of these values for the six patient studies for the WTV-recovered, TV, and partially sampled images was 1%, 7.2%, 92% and 1.3%, 15.1%, 87%, and 27%, 25.8%, 45%, respectively. CS with WTV is capable of recovering PET images with good quantitative accuracy from partially sampled data. Such an approach can be used to potentially reduce the cost of scanners while maintaining good image quality.
Using compressive sensing to recover images from PET scanners with partial detector rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiollahzadeh, SeyyedMajid, E-mail: sv4@rice.edu; Clark, John W.; Mawlawi, Osama
2015-01-15
Purpose: Most positron emission tomography/computed tomography (PET/CT) scanners consist of tightly packed discrete detector rings to improve scanner efficiency. The authors’ aim was to use compressive sensing (CS) techniques in PET imaging to investigate the possibility of decreasing the number of detector elements per ring (introducing gaps) while maintaining image quality. Methods: A CS model based on a combination of gradient magnitude and wavelet domains (wavelet-TV) was developed to recover missing observations in PET data acquisition. The model was designed to minimize the total variation (TV) and L1-norm of wavelet coefficients while constrained by the partially observed data. The CSmore » model also incorporated a Poisson noise term that modeled the observed noise while suppressing its contribution by penalizing the Poisson log likelihood function. Three experiments were performed to evaluate the proposed CS recovery algorithm: a simulation study, a phantom study, and six patient studies. The simulation dataset comprised six disks of various sizes in a uniform background with an activity concentration of 5:1. The simulated image was multiplied by the system matrix to obtain the corresponding sinogram and then Poisson noise was added. The resultant sinogram was masked to create the effect of partial detector removal and then the proposed CS algorithm was applied to recover the missing PET data. In addition, different levels of noise were simulated to assess the performance of the proposed algorithm. For the phantom study, an IEC phantom with six internal spheres each filled with F-18 at an activity-to-background ratio of 10:1 was used. The phantom was imaged twice on a RX PET/CT scanner: once with all detectors operational (baseline) and once with four detector blocks (11%) turned off at each of 0 °, 90 °, 180 °, and 270° (partially sampled). The partially acquired sinograms were then recovered using the proposed algorithm. For the third test, PET images from six patient studies were investigated using the same strategy of the phantom study. The recovered images using WTV and TV as well as the partially sampled images from all three experiments were then compared with the fully sampled images (the baseline). Comparisons were done by calculating the mean error (%bias), root mean square error (RMSE), contrast recovery (CR), and SNR of activity concentration in regions of interest drawn in the background as well as the disks, spheres, and lesions. Results: For the simulation study, the mean error, RMSE, and CR for the WTV (TV) recovered images were 0.26% (0.48%), 2.6% (2.9%), 97% (96%), respectively, when compared to baseline. For the partially sampled images, these results were 22.5%, 45.9%, and 64%, respectively. For the simulation study, the average SNR for the baseline was 41.7 while for WTV (TV), recovered image was 44.2 (44.0). The phantom study showed similar trends with 5.4% (18.2%), 15.6% (18.8%), and 78% (60%), respectively, for the WTV (TV) images and 33%, 34.3%, and 69% for the partially sampled images. For the phantom study, the average SNR for the baseline was 14.7 while for WTV (TV) recovered image was 13.7 (11.9). Finally, the average of these values for the six patient studies for the WTV-recovered, TV, and partially sampled images was 1%, 7.2%, 92% and 1.3%, 15.1%, 87%, and 27%, 25.8%, 45%, respectively. Conclusions: CS with WTV is capable of recovering PET images with good quantitative accuracy from partially sampled data. Such an approach can be used to potentially reduce the cost of scanners while maintaining good image quality.« less
Chemineau, Philippe; Daveau, Agnès; Cognié, Yves; Aumont, Gilles; Chesneau, Didier
2004-01-01
Background Seasonality of ovulatory activity is observed in European sheep and goat breeds, whereas tropical breeds show almost continuous ovulatory activity. It is not known if these tropical breeds are sensitive or not to temperate photoperiod. This study was therefore designed to determine whether tropical Creole goats and Black-Belly ewes are sensitive to temperate photoperiod. Two groups of adult females in each species, either progeny or directly born from imported embryos, were used and maintained in light-proof rooms under simulated temperate (8 to 16 h of light per day) or tropical (11 – 13 h) photoperiods. Ovulatory activity was determined by blood progesterone assays for more than two years. The experiment lasted 33 months in goats and 25 months in ewes. Results Marked seasonality of ovulatory activity appeared in the temperate group of Creole female goats. The percentage of female goats experiencing at least one ovulation per month dramatically decreased from May to September for the three years (0%, 27% and 0%, respectively). Tropical female goats demonstrated much less seasonality, as the percentage of goats experiencing at least one ovulation per month never went below 56%. These differences were significant. Both groups of temperate and tropical Black-Belly ewes experienced a marked seasonality in their ovulatory activity, with only a slightly significant difference between groups. The percentage of ewes experiencing at least one ovulation per month dropped dramatically in April and rose again in August (tropical ewes) or September (temperate ewes). The percentage of ewes experiencing at least one ovulation per month never went below 8% and 17% (for tropical and temperate ewes respectively) during the spring and summer months. Conclusions An important seasonality in ovulatory activity of tropical Creole goats was observed when females were exposed to a simulated temperate photoperiod. An unexpected finding was that Black-Belly ewes and, to a lesser extent, Creole goats exposed to a simulated tropical photoperiod also showed seasonality in their ovulatory activity. Such results indicate that both species are capable of showing seasonality under the photoperiodic changes of the temperate zone even though they do not originate from these regions. PMID:15333134
Quantitation of tumor uptake with molecular breast imaging.
Bache, Steven T; Kappadath, S Cheenu
2017-09-01
We developed scatter and attenuation-correction techniques for quantifying images obtained with Molecular Breast Imaging (MBI) systems. To investigate scatter correction, energy spectra of a 99m Tc point source were acquired with 0-7-cm-thick acrylic to simulate scatter between the detector heads. System-specific scatter correction factor, k, was calculated as a function of thickness using a dual energy window technique. To investigate attenuation correction, a 7-cm-thick rectangular phantom containing 99m Tc-water simulating breast tissue and fillable spheres simulating tumors was imaged. Six spheres 10-27 mm in diameter were imaged with sphere-to-background ratios (SBRs) of 3.5, 2.6, and 1.7 and located at depths of 0.5, 1.5, and 2.5 cm from the center of the water bath for 54 unique tumor scenarios (3 SBRs × 6 sphere sizes × 3 depths). Phantom images were also acquired in-air under scatter- and attenuation-free conditions, which provided ground truth counts. To estimate true counts, T, from each tumor, the geometric mean (GM) of the counts within a prescribed region of interest (ROI) from the two projection images was calculated as T=C1C2eμtF, where C are counts within the square ROI circumscribing each sphere on detectors 1 and 2, μ is the linear attenuation coefficient of water, t is detector separation, and the factor F accounts for background activity. Four unique F definitions-standard GM, background-subtraction GM, MIRD Primer 16 GM, and a novel "volumetric GM"-were investigated. Error in T was calculated as the percentage difference with respect to in-air. Quantitative accuracy using the different GM definitions was calculated as a function of SBR, depth, and sphere size. Sensitivity of quantitative accuracy to ROI size was investigated. We developed an MBI simulation to investigate the robustness of our corrections for various ellipsoidal tumor shapes and detector separations. Scatter correction factor k varied slightly (0.80-0.95) over a compressed breast thickness range of 6-9 cm. Corrected energy spectra recovered general characteristics of scatter-free spectra. Quantitatively, photopeak counts were recovered to <10% compared to in-air conditions after scatter correction. After GM attenuation correction, mean errors (95% confidence interval, CI) for all 54 imaging scenarios were 149% (-154% to +455%), -14.0% (-38.4% to +10.4%), 16.8% (-14.7% to +48.2%), and 2.0% (-14.3 to +18.3%) for the standard GM, background-subtraction GM, MIRD 16 GM, and volumetric GM, respectively. Volumetric GM was less sensitive to SBR and sphere size, while all GM methods were insensitive to sphere depth. Simulation results showed that Volumetric GM method produced a mean error within 5% over all compressed breast thicknesses (3-14 cm), and that the use of an estimated radius for nonspherical tumors increases the 95% CI to at most ±23%, compared with ±16% for spherical tumors. Using DEW scatter- and our Volumetric GM attenuation-correction methodology yielded accurate estimates of tumor counts in MBI over various tumor sizes, shapes, depths, background uptake, and compressed breast thicknesses. Accurate tumor uptake can be converted to radiotracer uptake concentration, allowing three patient-specific metrics to be calculated for quantifying absolute uptake and relative uptake change for assessment of treatment response. © 2017 American Association of Physicists in Medicine.
Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Valverde-Pérez, Borja; Gernaey, Krist V; Sin, Gürkan
2013-01-01
A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for anaerobic ammonium oxidizers, located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface towards the center. The initial value of the background charge and influent bicarbonate concentration were found to greatly influence the simulation result and should be accurately measured. Since the change in pH over the depth of the biofilm was relatively small, the activity potential of the microbial groups affected by the pH did not change more than 5% over the depth of the granules.
Bivalves: From individual to population modelling
NASA Astrophysics Data System (ADS)
Saraiva, S.; van der Meer, J.; Kooijman, S. A. L. M.; Ruardij, P.
2014-11-01
An individual based population model for bivalves was designed, built and tested in a 0D approach, to simulate the population dynamics of a mussel bed located in an intertidal area. The processes at the individual level were simulated following the dynamic energy budget theory, whereas initial egg mortality, background mortality, food competition, and predation (including cannibalism) were additional population processes. Model properties were studied through the analysis of theoretical scenarios and by simulation of different mortality parameter combinations in a realistic setup, imposing environmental measurements. Realistic criteria were applied to narrow down the possible combination of parameter values. Field observations obtained in the long-term and multi-station monitoring program were compared with the model scenarios. The realistically selected modeling scenarios were able to reproduce reasonably the timing of some peaks in the individual abundances in the mussel bed and its size distribution but the number of individuals was not well predicted. The results suggest that the mortality in the early life stages (egg and larvae) plays an important role in population dynamics, either by initial egg mortality, larvae dispersion, settlement failure or shrimp predation. Future steps include the coupling of the population model with a hydrodynamic and biogeochemical model to improve the simulation of egg/larvae dispersion, settlement probability, food transport and also to simulate the feedback of the organisms' activity on the water column properties, which will result in an improvement of the food quantity and quality characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreyev, A.
Purpose: Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. Methods: To validate the proposed algorithm we used Monte Carlomore » simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Results: Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2–3 orders of magnitude per iteration. Conclusions: The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.« less
Resolution recovery for Compton camera using origin ensemble algorithm.
Andreyev, A; Celler, A; Ozsahin, I; Sitek, A
2016-08-01
Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. To validate the proposed algorithm we used Monte Carlo simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2-3 orders of magnitude per iteration. The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.
CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajfirouze, E.; Safari, H.
2012-01-10
Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponentmore » of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.« less
Acceleration techniques for dependability simulation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Barnette, James David
1995-01-01
As computer systems increase in complexity, the need to project system performance from the earliest design and development stages increases. We have to employ simulation for detailed dependability studies of large systems. However, as the complexity of the simulation model increases, the time required to obtain statistically significant results also increases. This paper discusses an approach that is application independent and can be readily applied to any process-based simulation model. Topics include background on classical discrete event simulation and techniques for random variate generation and statistics gathering to support simulation.
Challenges & Roadmap for Beyond CMOS Computing Simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Arun F.; Frank, Michael P.
Simulating HPC systems is a difficult task and the emergence of “Beyond CMOS” architectures and execution models will increase that difficulty. This document presents a “tutorial” on some of the simulation challenges faced by conventional and non-conventional architectures (Section 1) and goals and requirements for simulating Beyond CMOS systems (Section 2). These provide background for proposed short- and long-term roadmaps for simulation efforts at Sandia (Sections 3 and 4). Additionally, a brief explanation of a proof-of-concept integration of a Beyond CMOS architectural simulator is presented (Section 2.3).
Bonetti, Gianpiero; Tedeschi, Paola; Meca, Giuseppe; Bertelli, Davide; Mañes, Jordi; Brandolini, Vincenzo; Maietti, Annalisa
2016-10-12
Nettle (Urtica dioica L.) is a well-known plant with a wide historical background use of stems, roots and leaves. Nettle leaves are an excellent source of phenolic compounds, principally 3-caffeoylquinic acid (3-CQA), caffeoylmalic acid (CMA) and rutin. The aim of this work was to evaluate the bioaccessibility (BAC), the bioavailability (BAV) and the antioxidant activity of nettle phenolic compounds present in foods and supplements. The BAC of nettle phenolics was evaluated with an in vitro dynamic digestion of real food matrices: the type of food matrix and chemical characteristic affected the kinetics of release and solubilization, with the highest BAC after duodenal digestion. A study of duodenal trans epithelial transport evidenced low bioavailability of native forms of 3-CQA, CMA and rutin. Simulation of colonic metabolism confirmed that phenolic compounds are fermented by gut microflora, confirming the need for further investigations on the impact of phenolic compounds at the large intestine level. Photochemiluminescence assay of the simulated digestion fluids demonstrated that ingestion of Urtica based foods contributes to create an antioxidant environment against superoxide anion radicals in the entire gastrointestinal tract (GIT).
Effects of in-plane magnetic field on the transport of 2D electron vortices in non-uniform plasmas
NASA Astrophysics Data System (ADS)
Angus, Justin; Richardson, Andrew; Schumer, Joseph; Pulsed Power Team
2015-11-01
The formation of electron vortices in current-carrying plasmas is observed in 2D particle-in-cell (PIC) simulations of the plasma-opening switch. In the presence of a background density gradient in Cartesian systems, vortices drift in the direction found by crossing the magnetic field with the background density gradient as a result of the Hall effect. However, most of the 2D simulations where electron vortices are seen and studied only allow for in-plane currents and thus only an out-of-plane magnetic field. Here we present results of numerical simulations of 2D, seeded electron vortices in an inhomogeneous background using the generalized 2D electron-magneto-hydrodynamic model that additionally allows for in-plane components of the magnetic field. By seeding vortices with a varying axial component of the velocity field, so that the vortex becomes a corkscrew, it is found that a pitch angle of around 20 degrees is sufficient to completely prevent the vortex from propagating due to the Hall effect for typical plasma parameters. This work is supported by the NRL Base Program.
An analog retina model for detecting dim moving objects against a bright moving background
NASA Technical Reports Server (NTRS)
Searfus, R. M.; Colvin, M. E.; Eeckman, F. H.; Teeters, J. L.; Axelrod, T. S.
1991-01-01
We are interested in applications that require the ability to track a dim target against a bright, moving background. Since the target signal will be less than or comparable to the variations in the background signal intensity, sophisticated techniques must be employed to detect the target. We present an analog retina model that adapts to the motion of the background in order to enhance targets that have a velocity difference with respect to the background. Computer simulation results and our preliminary concept of an analog 'Z' focal plane implementation are also presented.
Using HexSim to simulate complex species, landscape, and stressor interactions
Background / Question / Methods The use of simulation models in conservation biology, landscape ecology, and other disciplines is increasing. Models are essential tools for researchers who, for example, need to forecast future conditions, weigh competing recovery and mitigation...
Development of a new type of germanium detector for dark matter searches
NASA Astrophysics Data System (ADS)
Wei, Wenzhao
Monte Carlo simulation is an important tool used to develop a better understanding of important physical processes. This thesis describes three Monte Carlo simulations used to understand germanium detector response to low energy nuclear recoils and radiogenic backgrounds for direct dark matter searches. The first simulation is the verification of Barker-Mei model, a theoretical model for calculating the ionization efficiency for germanium detector for the energy range of 1 - 100 keV. Utilizing the shape analysis, a bin-to-bin comparison between simulation and experimental data was performed for verifying the accuracy of the Barker-Mei model. A percentage difference within 4% was achieved between data and simulation, which showed the validity of the Barker-Mei model. The second simulation is the study of a new type of germanium detector for n/gamma discrimination at 77 K with plasma time difference in pulse shape. Due to the poor time resolution, conventional P-type Point Contact (PPC) and coaxial germanium detectors are not capable of discriminating nuclear recoils from electron recoils. In this thesis, a new idea of using great detector granularity and plasma time difference in pulse shape to discriminate nuclear recoils from electron recoils with planar germanium detectors in strings was discussed. The anticipated sensitivity of this new detector array is shown for detecting dark matter. The last simulation is a study of a new type of germanium-detector array serving as a PMT screening facility for ultra-low background dark matter experiments using noble liquid xenon as detector material such LUX/LZ and XENON100/XENON1T. A well-shaped germanium detector array and a PMT were simulated to study the detector response to the signal and background for a better understanding of the radiogenic gamma rays from PMTs. The detector efficiency and other detector performance were presented in this work.
Background concentrations for high resolution satellite observing systems of methane
NASA Astrophysics Data System (ADS)
Benmergui, J. S.; Propp, A. M.; Turner, A. J.; Wofsy, S. C.
2017-12-01
Emerging satellite technologies promise to measure total column dry-air mole fractions of methane (XCH4) at resolutions on the order of a kilometer. XCH4 is linearly related to regional methane emissions through enhancements in the mixed layer, giving these satellites the ability to constrain emissions at unprecedented resolution. However, XCH4 is also sensitive to variability in transport of upwind concentrations (the "background concentration"). Variations in the background concentration are caused by synoptic scale transport in both the free troposphere and the stratosphere, as well as the rate of methane oxidation. Misspecification of the background concentration is aliased onto retrieved emissions as bias. This work explores several methods of specifying the background concentration for high resolution satellite observations of XCH4. We conduct observing system simulation experiments (OSSEs) that simulate the retrieval of emissions in the Barnett Shale using observations from a 1.33 km resolution XCH4 imaging satellite. We test background concentrations defined (1) from an external continental-scale model, (2) using pixels along the edge of the image as a boundary value, (3) using differences between adjacent pixels, and (4) using differences between the same pixel separated by one hour in time. We measure success using the accuracy of the retrieval, the potential for bias induced by misspecification of the background, and the computational expedience of the method. Pathological scenarios are given to each method.
Impacts of Central American Fires on Ozone Air Quality in Texas
NASA Astrophysics Data System (ADS)
Wang, S. C.; Wang, Y.; Lei, R.; Talbot, R. W.
2016-12-01
Background ozone represents the portion of ozone level in one day that cannot be reduced by local emission controls. One of the important factors causing high background ozone events is wildfires. Satellite observations have documented frequent transport of wildfire smoke from Mexico and Central America to the southern US, particularly Texas, causing haze and exceedance of fine particle matters. However, the impact of those fires on background ozone in Texas is poorly understood. In this study, the effects of the Central America fire emissions in spring (Apr-May) from 2000 to 2013 on high background ozone events in Texas are investigated and quantified. We first examine through back trajectory analysis if any high background ozone days in cities of Texas such as Houston can be traced back to fire events in Central America. The GEOS-Chem global chemical transport model and its nested-grid version over North America are used to simulate the periods of the selected cases studies of Central American fires. Long-large transport of gaseous emissions (NOx, VOCs, and CO) from Central American fires are simulated and background ozone concentrations variations in Texas region due to those fire events are also quantified through the difference in model results with and without fire emissions in Central America. Finally, this study connects those fires and high background ozone events, and also quantifies the contribution of fire emissions from Central America on Texas ozone air quality.
in silico Surveillance: evaluating outbreak detection with simulation models
2013-01-01
Background Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic evaluation of outbreak detection protocols. The authors’ objectives were to design, implement, and test a flexible methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal clustering of cases and use to evaluate outbreak detection protocols. Methods A detailed representation of the Boston area was constructed, based on data about individuals, locations, and activity patterns. Influenza-like illness (ILI) transmission was simulated, producing 100 years of in silico ILI data. Six different surveillance systems were designed and developed using gathered cases from the simulated disease data. Performance was measured by inserting test outbreaks into the surveillance streams and analyzing the likelihood and timeliness of detection. Results Detection of outbreaks varied from 21% to 95%. Increased coverage did not linearly improve detection probability for all surveillance systems. Relaxing the decision threshold for signaling outbreaks greatly increased false-positives, improved outbreak detection slightly, and led to earlier outbreak detection. Conclusions Geographical distribution can be more important than coverage level. Detailed simulations of infectious disease transmission can be configured to represent nearly any conceivable scenario. They are a powerful tool for evaluating the performance of surveillance systems and methods used for outbreak detection. PMID:23343523
Impact of reconstruction parameters on quantitative I-131 SPECT
NASA Astrophysics Data System (ADS)
van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.
2016-07-01
Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.
Rare Event Simulation for T-cell Activation
NASA Astrophysics Data System (ADS)
Lipsmeier, Florian; Baake, Ellen
2009-02-01
The problem of statistical recognition is considered, as it arises in immunobiology, namely, the discrimination of foreign antigens against a background of the body's own molecules. The precise mechanism of this foreign-self-distinction, though one of the major tasks of the immune system, continues to be a fundamental puzzle. Recent progress has been made by van den Berg, Rand, and Burroughs (J. Theor. Biol. 209:465-486, 2001), who modelled the probabilistic nature of the interaction between the relevant cell types, namely, T-cells and antigen-presenting cells (APCs). Here, the stochasticity is due to the random sample of antigens present on the surface of every APC, and to the random receptor type that characterises individual T-cells. It has been shown previously (van den Berg et al. in J. Theor. Biol. 209:465-486, 2001; Zint et al. in J. Math. Biol. 57:841-861, 2008) that this model, though highly idealised, is capable of reproducing important aspects of the recognition phenomenon, and of explaining them on the basis of stochastic rare events. These results were obtained with the help of a refined large deviation theorem and were thus asymptotic in nature. Simulations have, so far, been restricted to the straightforward simple sampling approach, which does not allow for sample sizes large enough to address more detailed questions. Building on the available large deviation results, we develop an importance sampling technique that allows for a convenient exploration of the relevant tail events by means of simulation. With its help, we investigate the mechanism of statistical recognition in some depth. In particular, we illustrate how a foreign antigen can stand out against the self background if it is present in sufficiently many copies, although no a priori difference between self and nonself is built into the model.
Imaging Sensor Flight and Test Equipment Software
NASA Technical Reports Server (NTRS)
Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa
2007-01-01
The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes at user-selected locations.
Fidelity of Simulation for Pilot Training
1980-12-01
is worthwhile emphasizing at this point that the study is focused on fidelity of simulators for pilot training. It does not consider simulation for...significantly higher cost than low fidelity. Motivation for 0~is study is to obtain background information on the effect of simulator fidel- ity on ...bottom of the diagram is the recom- mended approach. In practice, however, it is often the case that emphasis is placed on work in the bottom segment of
Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Bennett, C. L.; Kogut, A.
1995-01-01
We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.
The performance of the Muon Veto of the G erda experiment
NASA Astrophysics Data System (ADS)
Freund, K.; Falkenstein, R.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Lubsandorzhiev, B.; Ritter, F.; Schmitt, C.; Schütz, A.-K.; Jitnikov, I.; Shevchik, E.; Shirchenko, M.; Zinatulina, D.
2016-05-01
Low background experiments need a suppression of cosmogenically induced events. The Gerda experiment located at Lngs is searching for the 0ν β β decay of ^{76}Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the water tank surrounding the Gerda cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of \\varepsilon _\\upmu d=(99.935± 0.015) % was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of \\varepsilon _{\\upmu r}=(99.2_{-0.4}^{+0.3}) % was found. Without veto condition the muons by themselves would cause a background index of {BI}_{μ }=(3.16 ± 0.85)× 10^{-3} cts/(keV\\cdot kg\\cdot year) at Q_{β β }.
Detection of bremsstrahlung radiation of 90Sr-90Y for emergency lung counting.
Ho, A; Hakmana Witharana, S S; Jonkmans, G; Li, L; Surette, R A; Dubeau, J; Dai, X
2012-09-01
This study explores the possibility of developing a field-deployable (90)Sr detector for rapid lung counting in emergency situations. The detection of beta-emitters (90)Sr and its daughter (90)Y inside the human lung via bremsstrahlung radiation was performed using a 3″ × 3″ NaI(Tl) crystal detector and a polyethylene-encapsulated source to emulate human lung tissue. The simulation results show that this method is a viable technique for detecting (90)Sr with a minimum detectable activity (MDA) of 1.07 × 10(4) Bq, using a realistic dual-shielded detector system in a 0.25-µGy h(-1) background field for a 100-s scan. The MDA is sufficiently sensitive to meet the requirement for emergency lung counting of Type S (90)Sr intake. The experimental data were verified using Monte Carlo calculations, including an estimate for internal bremsstrahlung, and an optimisation of the detector geometry was performed. Optimisations in background reduction techniques and in the electronic acquisition systems are suggested.
Views of EVA performed during STS-6
NASA Technical Reports Server (NTRS)
1983-01-01
Two STS-6 mission specialists busy near the aft bulkhead were photographed with a 70mm camera. Astronauts F. Story Musgrave (at winch device near center) and Donald H. Peterson are setting up winch operations at the aft bulkhead as a simulation for a contingency extravehicular activity (EVA). The orbital maneuvering system (OMS) pods are seen in the background (30211); Musgrave translates down the Challenger's payload bay door hinge line with a bag of latch tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wing and OMS pod are seen in the background. The gold-foil protected object on the right is the airborne support equipment for the inertial upper stage (IUS) (30212); Peterson (starboard side) and Musgrave evaluate the handrail system on the starboard longeron and aft bulkhead during an EVA. Behind them the vertical stabilizer and OMS pods frame a portion of Mexico's state of Jalisco (30213); Musgrave sus
An Overview of Landing Gear Dynamics
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.
1999-01-01
One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given.
Input comparison of radiogenic neutron estimates for ultra-low background experiments
NASA Astrophysics Data System (ADS)
Cooley, J.; Palladino, K. J.; Qiu, H.; Selvi, M.; Scorza, S.; Zhang, C.
2018-04-01
Ultra-low-background experiments address some of the most important open questions in particle physics, cosmology and astrophysics: the nature of dark matter, whether the neutrino is its own antiparticle, and does the proton decay. These rare event searches require well-understood and minimized backgrounds. Simulations are used to understand backgrounds caused by naturally occurring radioactivity in the rock and in every piece of shielding and detector material used in these experiments. Most important are processes like spontaneous fission and (α,n) reactions in material close to the detectors that can produce neutrons. A comparison study of the (α,n) reactions between two dedicated software packages is detailed. The cross section libraries, neutron yields, and spectra from the Mei-Zhang-Hime and the SOURCES-4A codes are presented. The resultant yields and spectra are used as inputs to direct dark matter detector toy models in GEANT4, to study the impact of their differences on background estimates and fits. Although differences in neutron yield calculations up to 50% were seen, there was no systematic difference between the Mei-Hime-Zhang and SOURCES-4A results. Neutron propagation simulations smooth differences in spectral shape and yield, and both tools were found to meet the broad requirements of the low-background community.
ERIC Educational Resources Information Center
Thies, Anna-Lena; Weissenstein, Anne; Haulsen, Ivo; Marschall, Bernhard; Friederichs, Hendrik
2014-01-01
Simulation as a tool for medical education has gained considerable importance in the past years. Various studies have shown that the mastering of basic skills happens best if taught in a realistic and workplace-based context. It is necessary that simulation itself takes place in the realistic background of a genuine clinical or in an accordingly…
Multidisciplinary research leading to utilization of extraterrestrial resources
NASA Technical Reports Server (NTRS)
1972-01-01
Progress of the research accomplished during fiscal year 1972 is reported. The summaries presented include: (1) background analysis and coordination, (2) surface properties of rock in simulated lunar environment, (3) rock failure processes, strength and elastic properties in simulated lunar environment, (4) thermal fragmentation, and thermophysical and optical properties in simulated lunar environment, and (5) use of explosives on the moon.
NASA Astrophysics Data System (ADS)
Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.
2015-07-01
A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soffientini, Chiara Dolores, E-mail: chiaradolores.soffientini@polimi.it; Baselli, Giuseppe; De Bernardi, Elisabetta
Purpose: Quantitative {sup 18}F-fluorodeoxyglucose positron emission tomography is limited by the uncertainty in lesion delineation due to poor SNR, low resolution, and partial volume effects, subsequently impacting oncological assessment, treatment planning, and follow-up. The present work develops and validates a segmentation algorithm based on statistical clustering. The introduction of constraints based on background features and contiguity priors is expected to improve robustness vs clinical image characteristics such as lesion dimension, noise, and contrast level. Methods: An eight-class Gaussian mixture model (GMM) clustering algorithm was modified by constraining the mean and variance parameters of four background classes according to the previousmore » analysis of a lesion-free background volume of interest (background modeling). Hence, expectation maximization operated only on the four classes dedicated to lesion detection. To favor the segmentation of connected objects, a further variant was introduced by inserting priors relevant to the classification of neighbors. The algorithm was applied to simulated datasets and acquired phantom data. Feasibility and robustness toward initialization were assessed on a clinical dataset manually contoured by two expert clinicians. Comparisons were performed with respect to a standard eight-class GMM algorithm and to four different state-of-the-art methods in terms of volume error (VE), Dice index, classification error (CE), and Hausdorff distance (HD). Results: The proposed GMM segmentation with background modeling outperformed standard GMM and all the other tested methods. Medians of accuracy indexes were VE <3%, Dice >0.88, CE <0.25, and HD <1.2 in simulations; VE <23%, Dice >0.74, CE <0.43, and HD <1.77 in phantom data. Robustness toward image statistic changes (±15%) was shown by the low index changes: <26% for VE, <17% for Dice, and <15% for CE. Finally, robustness toward the user-dependent volume initialization was demonstrated. The inclusion of the spatial prior improved segmentation accuracy only for lesions surrounded by heterogeneous background: in the relevant simulation subset, the median VE significantly decreased from 13% to 7%. Results on clinical data were found in accordance with simulations, with absolute VE <7%, Dice >0.85, CE <0.30, and HD <0.81. Conclusions: The sole introduction of constraints based on background modeling outperformed standard GMM and the other tested algorithms. Insertion of a spatial prior improved the accuracy for realistic cases of objects in heterogeneous backgrounds. Moreover, robustness against initialization supports the applicability in a clinical setting. In conclusion, application-driven constraints can generally improve the capabilities of GMM and statistical clustering algorithms.« less
2012-01-01
Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. Conclusions Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation. PMID:22676913
Samadi, Samareh; Amini, Ladan; Cosandier-Rimélé, Delphine; Soltanian-Zadeh, Hamid; Jutten, Christian
2013-01-01
In this paper, we present a fast method to extract the sources related to interictal epileptiform state. The method is based on general eigenvalue decomposition using two correlation matrices during: 1) periods including interictal epileptiform discharges (IED) as a reference activation model and 2) periods excluding IEDs or abnormal physiological signals as background activity. After extracting the most similar sources to the reference or IED state, IED regions are estimated by using multiobjective optimization. The method is evaluated using both realistic simulated data and actual intracerebral electroencephalography recordings of patients suffering from focal epilepsy. These patients are seizure-free after the resective surgery. Quantitative comparisons of the proposed IED regions with the visually inspected ictal onset zones by the epileptologist and another method of identification of IED regions reveal good performance. PMID:23428609
Multiview fusion for activity recognition using deep neural networks
NASA Astrophysics Data System (ADS)
Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad
2016-07-01
Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.
Simulation and theory of spontaneous TAE frequency sweeping
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, H. L.
2012-09-01
A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarisien, M.; Plaisir, C.; Gobet, F.
2011-02-15
We present a stand-alone system to characterize the high-energy particles emitted in the interaction of ultrahigh intensity laser pulses with matter. According to the laser and target characteristics, electrons or protons are produced with energies higher than a few mega electron volts. Selected material samples can, therefore, be activated via nuclear reactions. A multidetector, named NATALIE, has been developed to count the {beta}{sup +} activity of these irradiated samples. The coincidence technique used, designed in an integrated system, results in very low background in the data, which is required for low activity measurements. It, therefore, allows a good precision onmore » the nuclear activation yields of the produced radionuclides. The system allows high counting rates and online correction of the dead time. It also provides, online, a quick control of the experiment. Geant4 simulations are used at different steps of the data analysis to deduce, from the measured activities, the energy and angular distributions of the laser-induced particle beams. Two applications are presented to illustrate the characterization of electrons and protons.« less
Discrete Element Method (DEM) Simulations using PFC3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt Evans
Contains input scripts, background information, reduced data, and results associated with the discrete element method (DEM) simulations of interface shear tests, plate anchor pullout tests, and torpedo anchor installation and pullout tests, using the software PFC3D (v4.0).
Readout circuit with novel background suppression for long wavelength infrared focal plane arrays
NASA Astrophysics Data System (ADS)
Xie, L.; Xia, X. J.; Zhou, Y. F.; Wen, Y.; Sun, W. F.; Shi, L. X.
2011-02-01
In this article, a novel pixel readout circuit using a switched-capacitor integrator mode background suppression technique is presented for long wavelength infrared focal plane arrays. This circuit can improve dynamic range and signal-to-noise ratio by suppressing the large background current during integration. Compared with other background suppression techniques, the new background suppression technique is less sensitive to the process mismatch and has no additional shot noise. The proposed circuit is theoretically analysed and simulated while taking into account the non-ideal characteristics. The result shows that the background suppression non-uniformity is ultra-low even for a large process mismatch. The background suppression non-uniformity of the proposed circuit can also remain very small with technology scaling.
Cheng, Jiu-Hua; Zhang, Li-Fan; Gao, Fang; Bai, Yun-Gang; Boscolo, Marco; Huang, Xiao-Feng; Zhang, Xiang
2014-01-01
Background To elucidate further from the biomechanical aspect whether microgravity-induced cerebral vascular mal-adaptation might be a contributing factor to postflight orthostatic intolerance and the underlying mechanism accounting for the potential effectiveness of intermittent artificial gravity (IAG) in preventing this adverse effect. Methodology/Principal Findings Middle cerebral arteries (MCAs) were isolated from 28-day SUS (tail-suspended, head-down tilt rats to simulate microgravity effect), S+D (SUS plus 1-h/d −Gx gravitation by normal standing to simulate IAG), and CON (control) rats. Vascular myogenic reactivity and circumferential stress-strain and axial force-pressure relationships and overall stiffness were examined using pressure arteriography and calculated. Acellular matrix components were quantified by electron microscopy. The results demonstrate that myogenic reactivity is susceptible to previous pressure-induced, serial constrictions. During the first-run of pressure increments, active MCAs from SUS rats can strongly stiffen their wall and maintain the vessels at very low strains, which can be prevented by the simulated IAG countermeasure. The strains are 0.03 and 0.14 respectively for SUS and S+D, while circumferential stress being kept at 0.5 (106 dyn/cm2). During the second-run pressure steps, both the myogenic reactivity and active stiffness of the three groups declined. The distensibility of passive MCAs from S+D is significantly higher than CON and SUS, which may help to attenuate the vasodilatation impairment at low levels of pressure. Collagen and elastin percentages were increased and decreased, respectively, in MCAs from SUS and S+D as compared with CON; however, elastin was higher in S+D than SUS rats. Conclusions Susceptibility to previous myogenic constrictions seems to be a self-limiting protective mechanism in cerebral small resistance arteries to prevent undue cerebral vasoconstriction during orthostasis at 1-G environment. Alleviating of active stiffening and increasing of distensibility of cerebral resistance arteries may underlie the countermeasure effectiveness of IAG. PMID:24840155
Pomareda, Víctor; Magrans, Rudys; Jiménez-Soto, Juan M; Martínez, Dani; Tresánchez, Marcel; Burgués, Javier; Palacín, Jordi; Marco, Santiago
2017-04-20
We present the estimation of a likelihood map for the location of the source of a chemical plume dispersed under atmospheric turbulence under uniform wind conditions. The main contribution of this work is to extend previous proposals based on Bayesian inference with binary detections to the use of concentration information while at the same time being robust against the presence of background chemical noise. For that, the algorithm builds a background model with robust statistics measurements to assess the posterior probability that a given chemical concentration reading comes from the background or from a source emitting at a distance with a specific release rate. In addition, our algorithm allows multiple mobile gas sensors to be used. Ten realistic simulations and ten real data experiments are used for evaluation purposes. For the simulations, we have supposed that sensors are mounted on cars which do not have among its main tasks navigating toward the source. To collect the real dataset, a special arena with induced wind is built, and an autonomous vehicle equipped with several sensors, including a photo ionization detector (PID) for sensing chemical concentration, is used. Simulation results show that our algorithm, provides a better estimation of the source location even for a low background level that benefits the performance of binary version. The improvement is clear for the synthetic data while for real data the estimation is only slightly better, probably because our exploration arena is not able to provide uniform wind conditions. Finally, an estimation of the computational cost of the algorithmic proposal is presented.
NASA Astrophysics Data System (ADS)
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.
NASA Astrophysics Data System (ADS)
Silva, James
2017-09-01
The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.
2018-02-01
We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of the magnetic pinch. The pinch width and number density distribution are compared to experimentally obtained data to calibrate the inlet boundary conditions used to set up the plasma acceleration problem.
Rader, T; Fastl, H; Baumann, U
2017-03-01
After implantation of cochlear implants with hearing preservation for combined electronic acoustic stimulation (EAS), the residual acoustic hearing ability relays fundamental speech frequency information in the low frequency range. With the help of acoustic simulation of EAS hearing perception the impact of frequency and level fine structure of speech signals can be systematically examined. The aim of this study was to measure the speech reception threshold (SRT) under various noise conditions with acoustic EAS simulation by variation of the frequency and level information of the fundamental frequency f0 of speech. The study was carried out to determine to what extent the SRT is impaired by modification of the f0 fine structure. Using partial tone time pattern analysis an acoustic EAS simulation of the speech material from the Oldenburg sentence test (OLSA) was generated. In addition, determination of the f0 curve of the speech material was conducted. Subsequently, either the parameter frequency or level of f0 was fixed in order to remove one of the two fine contour information of the speech signal. The processed OLSA sentences were used to determine the SRT in background noise under various test conditions. The conditions "f0 fixed frequency" and "f0 fixed level" were tested under two different situations, under "amplitude modulated background noise" and "continuous background noise" conditions. A total of 24 subjects with normal hearing participated in the study. The SRT in background noise for the condition "f0 fixed frequency" was more favorable in continuous noise with 2.7 dB and in modulated noise with 0.8 dB compared to the condition "f0 fixed level" with 3.7 dB and 2.9 dB, respectively. In the simulation of speech perception with cochlear implants and acoustic components, the level information of the fundamental frequency had a stronger impact on speech intelligibility than the frequency information. The method of simulation of transmission of cochlear implants allows investigation of how various parameters influence speech intelligibility in subjects with normal hearing.
Impact of Sociocultural Background and Assessment Data Upon School Psychologists' Decisions.
ERIC Educational Resources Information Center
Huebner, E. Scott; Cummings, Jack A.
1985-01-01
Psychologists (N=56) participated in an adapted version of Algozzine and Ysseldyke's (1981) diagnostic simulation to investigate the effects of sociocultural background (rural vs. suburban) and assessment data (normal vs. learning disabled) on educational decisions. Findings suggest school psychologists utilize multiple sources of information but…
The Impact of Missing Background Data on Subpopulation Estimation
ERIC Educational Resources Information Center
Rutkowski, Leslie
2011-01-01
Although population modeling methods are well established, a paucity of literature appears to exist regarding the effect of missing background data on subpopulation achievement estimates. Using simulated data that follows typical large-scale assessment designs with known parameters and a number of missing conditions, this paper examines the extent…
Local Control Models of Cardiac Excitation–Contraction Coupling
Stern, Michael D.; Song, Long-Sheng; Cheng, Heping; Sham, James S.K.; Yang, Huang Tian; Boheler, Kenneth R.; Ríos, Eduardo
1999-01-01
In cardiac muscle, release of activator calcium from the sarcoplasmic reticulum occurs by calcium- induced calcium release through ryanodine receptors (RyRs), which are clustered in a dense, regular, two-dimensional lattice array at the diad junction. We simulated numerically the stochastic dynamics of RyRs and L-type sarcolemmal calcium channels interacting via calcium nano-domains in the junctional cleft. Four putative RyR gating schemes based on single-channel measurements in lipid bilayers all failed to give stable excitation–contraction coupling, due either to insufficiently strong inactivation to terminate locally regenerative calcium-induced calcium release or insufficient cooperativity to discriminate against RyR activation by background calcium. If the ryanodine receptor was represented, instead, by a phenomenological four-state gating scheme, with channel opening resulting from simultaneous binding of two Ca2+ ions, and either calcium-dependent or activation-linked inactivation, the simulations gave a good semiquantitative accounting for the macroscopic features of excitation–contraction coupling. It was possible to restore stability to a model based on a bilayer-derived gating scheme, by introducing allosteric interactions between nearest-neighbor RyRs so as to stabilize the inactivated state and produce cooperativity among calcium binding sites on different RyRs. Such allosteric coupling between RyRs may be a function of the foot process and lattice array, explaining their conservation during evolution. PMID:10051521
Nishite, Yoshiaki; Takesawa, Shingo
2016-01-01
Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal circulation system can be set to different models of dialyzers, and that the reproduced treatment scenarios can be used for simulation training. PMID:26981503
Confronting History: Simulations of Historical Conflicts. Grades 5-8.
ERIC Educational Resources Information Center
Collins, Katie; Draze, Dianne, Ed.; Conroy, Sonsie, Ed.
This booklet presents four different scenarios of conflict from United States history. Students take on the roles of some of the characters in the conflicts to learn the differing viewpoints of the situations. Each simulation presents five sections: "background information"; "meet the people"; "investigator…
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong V.; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.
1994-07-01
Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.
Modular, high power, variable R dynamic electrical load simulator
NASA Technical Reports Server (NTRS)
Joncas, K. P.
1974-01-01
The design of a previously developed basic variable R load simulator was entended to increase its power dissipation and transient handling capabilities. The delivered units satisfy all design requirements, and provides for a high power, modular simulation capability uniquely suited to the simulation of complex load responses. In addition to presenting conclusions and recommendations and pertinent background information, the report covers program accomplishments; describes the simulator basic circuits, transfer characteristic, protective features, assembly, and specifications; indicates the results of simulator evaluation, including burn-in and acceptance testing; provides acceptance test data; and summarizes the monthly progress reports.
ForCent Model Development and Testing using the Enriched Background Isotope Study (EBIS) Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parton, William; Hanson, Paul J; Swanston, Chris
The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could accurately simulate ecosystem carbon dynamics for the Oak Ridge National Laboratory deciduous forest. A comparison of ForCent versus observed soil pool 14C signature (? 14C) data from the Enriched Background Isotope Study 14C experiment (1999-2006) shows that the model correctly simulates the temporal dynamicsmore » of the 14C label as it moved from the surface litter and roots into the mineral soil organic matter pools. ForCent model validation was performed by comparing the observed Enriched Background Isotope Study experimental data with simulated live and dead root biomass ? 14C data, and with soil respiration ? 14C (mineral soil, humus layer, leaf litter layer, and total soil respiration) data. Results show that the model correctly simulates the impact of the Enriched Background Isotope Study 14C experimental treatments on soil respiration ? 14C values for the different soil organic matter pools. Model results suggest that a two-pool root growth model correctly represents root carbon dynamics and inputs to the soil. The model fitting process and sensitivity analysis exposed uncertainty in our estimates of the fraction of mineral soil in the slow and passive pools, dissolved organic carbon flux out of the litter layer into the mineral soil, and mixing of the humus layer into the mineral soil layer.« less
Integration of simulations and visualizations into classroom contexts through role playing
NASA Astrophysics Data System (ADS)
Moysey, S. M.
2016-12-01
While simulations create a novel way to engage students, the idea of numerical modeling may be overwhelming to a wide swath of students - particularly non-geoscience majors or those students early in their earth science education. Yet even for these students, simulations and visualizations remain a powerful way to explore concepts and take ownership over their learning. One approach to bring these tools into the classroom is to introduce them as a component of a larger role-playing activity. I present two specific examples of how I have done this within a general education course broadly focused on water resources sustainability. In the first example, we have created an online multi-player watershed management game where players make management decisions for their individual farms, which in turn set the parameters for a watershed-scale groundwater model that continuously runs in the background. Through the simulation students were able to influence the behavior of the environment and see feedbacks on their individual land within the game. Though the original intent was to focus student learning on the hydrologic aspects of the watershed behavior, I have found that the value of the simulation is actually in allowing students to become immersed in a way that enables deep conversations about topics ranging from environmental policy to social justice. The second example presents an overview of a role playing activity focused on a multi-party negotiation of water rights in the Klamath watershed. In this case each student takes on a different role in the negotiation (e.g., farmer, energy producer, government, environmental advocate, etc.) and is presented with a rich set of data tying environmental and economic factors to the operation of reservoirs. In this case the simulation model is very simple, i.e., a mass balance calculator that students use to predict the consequences of their management decisions. The simplicity of the simulator, however, allows for reinforcement of the fundamental concept of mass balance which is a key scientific theme throughout the course. It also allows students to focus on analysis of data that enables them to tie hydrologic behaviors to societal consequences that guide their decision making.
Template-Based Geometric Simulation of Flexible Frameworks
Wells, Stephen A.; Sartbaeva, Asel
2012-01-01
Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers. PMID:28817055
Verification of Minimum Detectable Activity for Radiological Threat Source Search
NASA Astrophysics Data System (ADS)
Gardiner, Hannah; Myjak, Mitchell; Baciak, James; Detwiler, Rebecca; Seifert, Carolyn
2015-10-01
The Department of Homeland Security's Domestic Nuclear Detection Office is working to develop advanced technologies that will improve the ability to detect, localize, and identify radiological and nuclear sources from airborne platforms. The Airborne Radiological Enhanced-sensor System (ARES) program is developing advanced data fusion algorithms for analyzing data from a helicopter-mounted radiation detector. This detector platform provides a rapid, wide-area assessment of radiological conditions at ground level. The NSCRAD (Nuisance-rejection Spectral Comparison Ratios for Anomaly Detection) algorithm was developed to distinguish low-count sources of interest from benign naturally occurring radiation and irrelevant nuisance sources. It uses a number of broad, overlapping regions of interest to statistically compare each newly measured spectrum with the current estimate for the background to identify anomalies. We recently developed a method to estimate the minimum detectable activity (MDA) of NSCRAD in real time. We present this method here and report on the MDA verification using both laboratory measurements and simulated injects on measured backgrounds at or near the detection limits. This work is supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-12-X-00376. This support does not constitute an express or implied endorsement on the part of the Gov't.
Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells
NASA Astrophysics Data System (ADS)
Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.
2006-01-01
Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions.
NASA Astrophysics Data System (ADS)
Sharma, Sumit; Khare, Mukesh
2017-02-01
This study simulates ground level ozone concentrations in a heavily populated and polluted National Capital Region (NCR- Delhi) in India. Multi-sectoral emission inventories of ozone precursors are prepared at a high resolution of 4 × 4 km2 for the whole region covering the capital city of Delhi along with other surrounding towns and rural regions in NCR. Emission inventories show that transport sector accounts for 55% of the total NOx emissions, followed by power plants (23%) and diesel generator sets (7%). In NMVOC inventories, transport sector again accounts for 33%, followed by evaporative emissions released from solvent use and fuel handling activities (30%), and agricultural residue burning (28%). Refuse burning contributes to 73% of CO emissions mainly due to incomplete combustion, followed by agricultural residue burning (14%). These emissions are spatially and temporally distributed across the study domain and are fed into the WRF-CMAQ models to predict ozone concentrations for the year 2012. Model validations are carried out with the observed values at different monitoring stations in Delhi. The performance of the models over various metrics used for evaluation was found to be satisfactory. Summers and post-monsoon seasons were better simulated than monsoon and winter seasons. Simulations have shown higher concentrations of ozone formation during summers and lesser during winters and monsoon seasons, mainly due to varying solar radiation affecting photo-chemical activities. Ozone concentrations are observed lower at those locations where NOx emissions are higher, and concentrations increase close to the boundary of study domain when compared to the center of Delhi city. Downwind regions to Delhi are influenced by the ozone formed due to plume of precursor emissions released from Delhi. Considering significant background contributions, regional scale controls are required for reducing ozone in NCR.
Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells
Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.
2008-01-01
Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions. PMID:19081771
Abd Halim, Khairul Bariyyah; Koldsø, Heidi; Sansom, Mark S.P.
2015-01-01
Background The epidermal growth factor receptor (EGFR) is the best characterised member of the receptor tyrosine kinases, which play an important role in signalling across mammalian cell membranes. The EGFR juxtamembrane (JM) domain is involved in the mechanism of activation of the receptor, interacting with the anionic lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in the intracellular leaflet of the cell membrane. Methods Multiscale MD simulations were used to characterize PIP2–JM interactions. Simulations of the transmembrane helix plus JM region (TM–JM) dimer (PDB:2M20) in both PIP2-containing and PIP2-depleted lipid bilayer membranes revealed the interactions of the JM with PIP2 and other lipids. Results PIP2 forms strong interactions with the basic residues in the R645–R647 motif of the JM domain resulting in clustering of PIP2 around the protein. This association of PIP2 and the JM domain aids stabilization of JM-A dimer away from the membrane. Mutation (R645N/R646N/R647N) or PIP2-depletion results in deformation of the JM-A dimer and changes in JM–membrane interactions. Conclusions These simulations support the proposal that the positively charged residues at the start of the JM-A domain stabilize the JM-A helices in an orientation away from the membrane surface through binding to PIP2, thus promoting a conformation corresponding to an asymmetric (i.e. activated) kinase. General significance This study indicates that MD simulations may be used to characterise JM/lipid interactions, thus helping to define their role in the mechanisms of receptor tyrosine kinases. This article is part of a Special Issue entitled Recent developments of molecular dynamics. PMID:25219456
Mandija, Stefano; Sommer, Iris E. C.; van den Berg, Cornelis A. T.; Neggers, Sebastiaan F. W.
2017-01-01
Background Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM), there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to several limitations. Methods We evaluate and empirically validate models of a figure-of-eight TMS coil that are commonly used in published modeling studies, of increasing complexity: simple circular coil model; coil with in-plane spiral winding turns; and finally one with stacked spiral winding turns. We will assess the electric fields induced by all 3 coil models in the motor cortex using a computer FEM model. Biot-Savart models of discretized wires were used to approximate the 3 coil models of increasing complexity. We use a tailored MR based phase mapping technique to get a full 3D validation of the incident magnetic field induced in a cylindrical phantom by our TMS coil. FEM based simulations on a meshed 3D brain model consisting of five tissues types were performed, using two orthogonal coil orientations. Results Substantial differences in the induced currents are observed, both theoretically and empirically, between highly idealized coils and coils with correctly modeled spiral winding turns. Thickness of the coil winding turns affect minimally the induced electric field, and it does not influence the predicted activation. Conclusion TMS coil models used in FEM simulations should include in-plane coil geometry in order to make reliable predictions of the incident field. Modeling the in-plane coil geometry is important to correctly simulate the induced electric field and to correctly make reliable predictions of neuronal activation PMID:28640923
Dual-tracer background subtraction approach for fluorescent molecular tomography
Holt, Robert W.; El-Ghussein, Fadi; Davis, Scott C.; Samkoe, Kimberley S.; Gunn, Jason R.; Leblond, Frederic
2013-01-01
Abstract. Diffuse fluorescence tomography requires high contrast-to-background ratios to accurately reconstruct inclusions of interest. This is a problem when imaging the uptake of fluorescently labeled molecularly targeted tracers in tissue, which can result in high levels of heterogeneously distributed background uptake. We present a dual-tracer background subtraction approach, wherein signal from the uptake of an untargeted tracer is subtracted from targeted tracer signal prior to image reconstruction, resulting in maps of targeted tracer binding. The approach is demonstrated in simulations, a phantom study, and in a mouse glioma imaging study, demonstrating substantial improvement over conventional and homogenous background subtraction image reconstruction approaches. PMID:23292612
Establish an Agent-Simulant Technology Relationship (ASTR)
2017-04-14
for quantitative measures that characterize simulant performance in testing , such as the ability to be removed from surfaces. Component-level ASTRs...Overall Test and Agent-Simulant Technology Relationship (ASTR) process. 1.2 Background. a. Historically, many tests did not develop quantitative ...methodology report14. Report provides a VX-TPP ASTR for post -decon contact hazard and off- gassing. In the Stryker production verification test (PVT
Automated Design Tools for Integrated Mixed-Signal Microsystems (NeoCAD)
2005-02-01
method, Model Order Reduction (MOR) tools, system-level, mixed-signal circuit synthesis and optimization tools, and parsitic extraction tools. A unique...Mission Area: Command and Control mixed signal circuit simulation parasitic extraction time-domain simulation IC design flow model order reduction... Extraction 1.2 Overall Program Milestones CHAPTER 2 FAST TIME DOMAIN MIXED-SIGNAL CIRCUIT SIMULATION 2.1 HAARSPICE Algorithms 2.1.1 Mathematical Background
NASA Technical Reports Server (NTRS)
Simpson, W. R.
1994-01-01
An advanced sensor test capability is now operational at the Air Force Arnold Engineering Development Center (AEDC) for calibration and performance characterization of infrared sensors. This facility, known as the 7V, is part of a broad range of test capabilities under development at AEDC to provide complete ground test support to the sensor community for large-aperture surveillance sensors and kinetic kill interceptors. The 7V is a state-of-the-art cryo/vacuum facility providing calibration and mission simulation against space backgrounds. Key features of the facility include high-fidelity scene simulation with precision track accuracy and in-situ target monitoring, diffraction limited optical system, NIST traceable broadband and spectral radiometric calibration, outstanding jitter control, environmental systems for 20 K, high-vacuum, low-background simulation, and an advanced data acquisition system.
Spatiotemporal models for the simulation of infrared backgrounds
NASA Astrophysics Data System (ADS)
Wilkes, Don M.; Cadzow, James A.; Peters, R. Alan, II; Li, Xingkang
1992-09-01
It is highly desirable for designers of automatic target recognizers (ATRs) to be able to test their algorithms on targets superimposed on a wide variety of background imagery. Background imagery in the infrared spectrum is expensive to gather from real sources, consequently, there is a need for accurate models for producing synthetic IR background imagery. We have developed a model for such imagery that will do the following: Given a real, infrared background image, generate another image, distinctly different from the one given, that has the same general visual characteristics as well as the first and second-order statistics of the original image. The proposed model consists of a finite impulse response (FIR) kernel convolved with an excitation function, and histogram modification applied to the final solution. A procedure for deriving the FIR kernel using a signal enhancement algorithm has been developed, and the histogram modification step is a simple memoryless nonlinear mapping that imposes the first order statistics of the original image onto the synthetic one, thus the overall model is a linear system cascaded with a memoryless nonlinearity. It has been found that the excitation function relates to the placement of features in the image, the FIR kernel controls the sharpness of the edges and the global spectrum of the image, and the histogram controls the basic coloration of the image. A drawback to this method of simulating IR backgrounds is that a database of actual background images must be collected in order to produce accurate FIR and histogram models. If this database must include images of all types of backgrounds obtained at all times of the day and all times of the year, the size of the database would be prohibitive. In this paper we propose improvements to the model described above that enable time-dependent modeling of the IR background. This approach can greatly reduce the number of actual IR backgrounds that are required to produce a sufficiently accurate mathematical model for synthesizing a similar IR background for different times of the day. Original and synthetic IR backgrounds will be presented. Previous research in simulating IR backgrounds was performed by Strenzwilk, et al., Botkin, et al., and Rapp. The most recent work of Strenzwilk, et al. was based on the use of one-dimensional ARMA models for synthesizing the images. Their results were able to retain the global statistical and spectral behavior of the original image, but the synthetic image was not visually very similar to the original. The research presented in this paper is the result of an attempt to improve upon their results, and represents a significant improvement in quality over previously obtained results.
Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE
NASA Astrophysics Data System (ADS)
Lamare, F.; Turzo, A.; Bizais, Y.; Cheze LeRest, C.; Visvikis, D.
2006-02-01
A newly developed simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop a Monte Carlo simulation of a fully three-dimensional (3D) clinical PET scanner. The Philips Allegro/GEMINI PET systems were simulated in order to (a) allow a detailed study of the parameters affecting the system's performance under various imaging conditions, (b) study the optimization and quantitative accuracy of emission acquisition protocols for dynamic and static imaging, and (c) further validate the potential of GATE for the simulation of clinical PET systems. A model of the detection system and its geometry was developed. The accuracy of the developed detection model was tested through the comparison of simulated and measured results obtained with the Allegro/GEMINI systems for a number of NEMA NU2-2001 performance protocols including spatial resolution, sensitivity and scatter fraction. In addition, an approximate model of the system's dead time at the level of detected single events and coincidences was developed in an attempt to simulate the count rate related performance characteristics of the scanner. The developed dead-time model was assessed under different imaging conditions using the count rate loss and noise equivalent count rates performance protocols of standard and modified NEMA NU2-2001 (whole body imaging conditions) and NEMA NU2-1994 (brain imaging conditions) comparing simulated with experimental measurements obtained with the Allegro/GEMINI PET systems. Finally, a reconstructed image quality protocol was used to assess the overall performance of the developed model. An agreement of <3% was obtained in scatter fraction, with a difference between 4% and 10% in the true and random coincidence count rates respectively, throughout a range of activity concentrations and under various imaging conditions, resulting in <8% differences between simulated and measured noise equivalent count rates performance. Finally, the image quality validation study revealed a good agreement in signal-to-noise ratio and contrast recovery coefficients for a number of different volume spheres and two different (clinical level based) tumour-to-background ratios. In conclusion, these results support the accurate modelling of the Philips Allegro/GEMINI PET systems using GATE in combination with a dead-time model for the signal flow description, which leads to an agreement of <10% in coincidence count rates under different imaging conditions and clinically relevant activity concentration levels.
Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe
2013-01-01
Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2) to 30 cm(2), whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.
Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe
2013-01-01
Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm2 to 30 cm2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered. PMID:23418485
Kurashige, Hiroki; Câteau, Hideyuki
2011-01-01
Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity – called a bump – can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability. PMID:21931635
DOT National Transportation Integrated Search
1975-10-01
This document forms part of the Subway Environmental Design Handbook. It contains the background information and instructions to enable an engineer to perform an analysis of a subway system by using the Subway Environment Simulation (SES) computer pr...
Impact analysis of composite aircraft structures
NASA Technical Reports Server (NTRS)
Pifko, Allan B.; Kushner, Alan S.
1993-01-01
The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.
Radiogenic and muon-induced backgrounds in the LUX dark matter detector
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O'Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L. H.; Woods, M.; Zhang, C.
2015-03-01
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is (2.6 ±0.2stat ±0.4sys) ×10-3 events keVee-1 kg-1day-1 in a 118 kg fiducial volume. The observed background rate is (3.6 ±0.4stat) ×10-3 events keVee-1 kg-1day-1 , consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.
Gibbs, Kenneth D; Basson, Jacob; Xierali, Imam M; Broniatowski, David A
2016-11-17
Faculty diversity is a longstanding challenge in the US. However, we lack a quantitative and systemic understanding of how the career transitions into assistant professor positions of PhD scientists from underrepresented minority (URM) and well-represented (WR) racial/ethnic backgrounds compare. Between 1980 and 2013, the number of PhD graduates from URM backgrounds increased by a factor of 9.3, compared with a 2.6-fold increase in the number of PhD graduates from WR groups. However, the number of scientists from URM backgrounds hired as assistant professors in medical school basic science departments was not related to the number of potential candidates (R 2 =0.12, p>0.07), whereas there was a strong correlation between these two numbers for scientists from WR backgrounds (R 2 =0.48, p<0.0001). We built and validated a conceptual system dynamics model based on these data that explained 79% of the variance in the hiring of assistant professors and posited no hiring discrimination. Simulations show that, given current transition rates of scientists from URM backgrounds to faculty positions, faculty diversity would not increase significantly through the year 2080 even in the context of an exponential growth in the population of PhD graduates from URM backgrounds, or significant increases in the number of faculty positions. Instead, the simulations showed that diversity increased as more postdoctoral candidates from URM backgrounds transitioned onto the market and were hired.
Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation
NASA Technical Reports Server (NTRS)
Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.
2012-01-01
Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.
NASA Astrophysics Data System (ADS)
Skuhersky, Michael
2013-04-01
IsoDAR (Isotope Decay-At-Rest) is a proposed high-intensity source of electron antineutrinos intended for use in searches for beyond standard model physics, the main analysis being a short baseline search for sterile neutrinos at a kiloton scale liquid scintillator detector. The source uses a compact cyclotron to deliver 600kW of protons at 60 MeV/nucleon in the form of H2^+ onto a Beryllium target which produces a large intermediate energy neutron flux. These neutrons thermalize and capture on a 99.9% pure ^7Li sleeve, which produces ^8Li at rest, which subsequently beta decays producing νe. Due to the high neutron fluxes, large duty factor, and low background environment surrounding the neutrino detector, we need to understand the activation risk and design a shield to minimize this risk allowing for the safe operation of the source. I will report on my neutron activation studies and the benchmarking of Geant4 for these applications.
RFI in hybrid loops - Simulation and experimental results.
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.
1972-01-01
A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.
NASA Technical Reports Server (NTRS)
Roman, Juan A.; Stitt, George F.; Roman, Felix R.
1997-01-01
This paper will provide a general overview of the molecular contamination philosophy of the Space Simulation Test Engineering Section and how the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) space simulation laboratory controls and maintains the cleanliness of all its facilities, thereby, minimizing down time between tests. It will also briefly cover the proper selection and safety precautions needed when using some chemical solvents for wiping, washing, or spraying thermal shrouds when molecular contaminants increase to unacceptable background levels.
Comparison of Measured and Simulated Albedo Signals in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2003-01-01
Albedo, radiation backscattered from an interaction and from the subsequent shower development, provides a 'background' for calorimeter experiments. In ATIC (Advanced Thin Ionization Calorimeter), a balloon borne instrument to measure cosmic ray composition and energy spectra for elements from hydrogen to iron from 30 GeV to near 100 TeV, a fully active BGO calorimeter follows a carbon interaction target and scintillator holdoscopes. The first detector is a silicon matrix constructed of 4480 individual silicon pixels, each 2 cm x 1.5 cm, that provide a measurement of the charge of the primary particle in the presence of albedo. ATIC had two successful balloon flights in Antarctica: from 28 Dec 2000 to 13 Jan 2001 (ATIC-1) and from 29 Dec 2002 to 18 Jan 2003 (ATIC-2). A comparison of albedo signals in the silicon matri:x in ATIC-1 experiment with simulations performed using the GEANT 3.21 code and the QGSM event generator for nucleus-nucleus interactions is presented.
Multimessenger Signatures of Massive Black Holes in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Bellovary, Jillian; Cleary, Colleen; Tremmel, Michael; Munshi, Ferah
2018-01-01
Inspired by the recent discovery of several nearby dwarf galaxies hosting active galactic nuclei, we present results from a series of cosmological hydrodynamic simulations focusing on dwarf galaxies which host supermassive black holes (SMBHs). Cosmological simulations are a vital tool for predicting SMBH populations and merger events which will eventually be observed by LISA. Dwarf galaxies are the most numerous in the universe, so even though the occupation fraction of SMBHs in dwarfs is less than unity, their contribution to the gravitational wave background could be non-negligible. We find that electromagnetic signatures from SMBH accretion are not common among most SMBH-hosting dwarfs, but the gravitational wave signatures can be substantial. The most common mass ratio for SMBH mergers in low-mass galaxy environments is ~1:20, which is an unexplored region of gravitational waveform parameter space. We discuss the occupation fraction of SMBHs in low-mass galaxies as well as differences in field and satellite populations, providing clues to search for and characterize these elusive giants lurking in the dwarfs.
The Dependence of Tropical Cyclone Count and Size on Rotation Rate
NASA Astrophysics Data System (ADS)
Chavas, D. R.; Reed, K. A.
2017-12-01
Both theory and idealized equilibrium modeling studies indicate that tropical cyclone size decreases with background rotation rate. In contrast, in real-world observations size tends to increase with latitude. Here we seek to resolve this apparent contradiction via a set of reduced-complexity global aquaplanet simulations with varying planetary rotation rates using the NCAR Community Atmosphere Model 5. The latitudinal distribution of both storm count and size are found to vary markedly with rotation rate, yielding insight into the dynamical constraints on tropical cyclone activity on a rotating planet. Moreover, storm size is found to vary non-monotonically with latitude, indicating that non-equilibrium effects are crucial to the life-cycle evolution of size in nature. Results are then compared to experiments in idealized, time-dependent limited-area modeling simulations using CM1 in axisymmetric and three-dimensional geometry. Taken together, this hierarchy of models is used to quantify the role of equilibrium versus transient controls on storm size and the relevance of each to real storms in nature.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.
NASA Astrophysics Data System (ADS)
Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.
2017-10-01
Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.
Magnetospheric Reconnection in Modified Current-Sheet Equilibria
NASA Astrophysics Data System (ADS)
Newman, D. L.; Goldman, M. V.; Lapenta, G.; Markidis, S.
2012-10-01
Particle simulations of magnetic reconnection in Earth's magnetosphere are frequently initialized with a current-carrying Harris equilibrium superposed on a current-free uniform background plasma. The Harris equilibrium satisfies local charge neutrality, but requires that the sheet current be dominated by the hotter species -- often the ions in Earth's magnetosphere. This constraint is not necessarily consistent with observations. A modified kinetic equilibrium that relaxes this constraint on the currents was proposed by Yamada et al. [Phys. Plasmas., 7, 1781 (2000)] with no background population. These modified equilibria were characterized by an asymptotic converging or diverging electrostatic field normal to the current sheet. By reintroducing the background plasma, we have developed new families of equilibria where the asymptotic fields are suppressed by Debye shielding. Because the electrostatic potential profiles of these new equilibria contain wells and/or barriers capable of spatially isolating different populations of electrons and/or ions, these solutions can be further generalized to include classes of asymmetric kinetic equilibria. Examples of both symmetric and asymmetric equilibria will be presented. The dynamical evolution of these equilibria, when perturbed, will be further explored by means of implicit 2D PIC reconnection simulations, including comparisons with simulations employing standard Harris-equilibrium initializations.
NASA Astrophysics Data System (ADS)
Ke, Y.; Gao, X.; Lu, Q.; Wang, X.; Wang, S.
2017-12-01
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.
NASA Astrophysics Data System (ADS)
Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Wang, Shui
2017-08-01
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. In this paper, we have developed a two-dimensional (2-D) general curvilinear PIC simulation code and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are observed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the wave normal angle smaller than 25°. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves is found to be larger along a field line with a smaller curvature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Wei; Li Hui; Li Shengtai
Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic ''bubble'' plasma into a lower density, weakly magnetized background plasma, are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Am. Phys. Soc. 52, 53 (2007)], which is studying magnetic bubble expansion as a model for extragalactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidalmore » to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection facilitated by numerical resistivity and to inhomogeneous angular momentum transport mainly due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.« less
Accurate estimates for North American background (NAB) ozone (O3) in surface air over the United States are needed for setting and implementing an attainable national O3 standard. These estimates rely on simulations with atmospheric chemistry-transport models that set North Amer...
Defining the Simulation Technician Role: Results of a Survey-Based Study.
Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L
2015-10-01
In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.
NIST activities in support of space-based radiometric remote sensing
NASA Astrophysics Data System (ADS)
Rice, Joseph P.; Johnson, B. Carol
2001-06-01
We provide an historical overview of NIST research and development in radiometry for space-based remote sensing. The applications in this field can be generally divided into two areas: environmental and defense. In the environmental remote sensing area, NIST has had programs with agencies such as the National Aeronautical and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to verify and improve traceability of the radiometric calibration of sensors that fly on board Earth-observing satellites. These produce data used in climate models and weather prediction. Over the years, the scope of activities has expanded from existing routine calibration services for artifacts such as lamps, diffusers, and filters, to development and off-site deployment of portable radiometers for radiance- and irradiance-scale intercomparisons. In the defense remote sensing area, NIST has had programs with agencies such as the Department of Defense (DOD) for support of calibration of small, low-level infrared sources in a low infrared background. These are used by the aerospace industry to simulate ballistic missiles in a cold space background. Activities have evolved from calibration of point-source cryogenic blackbodies at NIST to measurement of irradiance in off-site calibration chambers by a portable vacuum/cryogenic radiometer. Both areas of application required measurements on the cutting edge of what was technically feasible, thus compelling NIST to develop a state-of-the-art radiometric measurement infrastructure to meet the needs. This infrastructure has led to improved dissemination of the NIST spectroradiometric quantities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerib, D. S.
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities ofmore » $$^{238}$$U$$_{e}$$~$<$1.6~mBq/kg, $$^{238}$$U$$_{l}$$~$<$0.09~mBq/kg, $$^{232}$$Th$$_{e}$$~$$=0.28\\pm 0.03$$~mBq/kg, $$^{232}$$Th$$_{l}$$~$$=0.25\\pm 0.02$$~mBq/kg, $$^{40}$$K~$<$0.54~mBq/kg, and $$^{60}$$Co~$<$$0.02~mBq/kg (68\\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $$0.160\\pm0.001$(stat)$$\\pm0.030$$(sys) counts.« less
Akerib, D. S.
2017-09-25
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities ofmore » $$^{238}$$U$$_{e}$$~$<$1.6~mBq/kg, $$^{238}$$U$$_{l}$$~$<$0.09~mBq/kg, $$^{232}$$Th$$_{e}$$~$$=0.28\\pm 0.03$$~mBq/kg, $$^{232}$$Th$$_{l}$$~$$=0.25\\pm 0.02$$~mBq/kg, $$^{40}$$K~$<$0.54~mBq/kg, and $$^{60}$$Co~$<$$0.02~mBq/kg (68\\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $$0.160\\pm0.001$(stat)$$\\pm0.030$$(sys) counts.« less
Active Galactic Nuclei, Host Star Formation, and the Far Infrared
NASA Astrophysics Data System (ADS)
Draper, Aden R.; Ballantyne, D. R.
2011-05-01
Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nuclei (AGN) hosts. The FIR is also an important spectral region for observing AGN which are heavily enshrouded by dust, such as Compton thick (CT) AGN. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGN in the FIR. Expected differential number counts of AGN and their host galaxies are calculated in the Herschel bands. The expected contribution of AGN and their hosts to the cosmic infrared background (CIRB) is also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at 350 and 500 um are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. AGN and host differential number counts are dominated by CT AGN in the Herschel-SPIRE bands. Therefore, X-ray stacking of bright SPIRE sources is likely to disclose a large fraction of the CT AGN population.
Properties and Expected Number Counts of Active Galactic Nuclei and Their Hosts in the Far-infrared
NASA Astrophysics Data System (ADS)
Draper, A. R.; Ballantyne, D. R.
2011-03-01
Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far-infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nucleus (AGN) hosts. The FIR is also an important spectral region for observing AGNs which are heavily enshrouded by dust, such as Compton thick (CT) AGNs. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGNs in the FIR. Expected differential number counts of AGNs and their host galaxies are calculated in the Herschel bands. The expected contribution of AGNs and their hosts to the cosmic infrared background (CIRB) and the infrared luminosity density are also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at ~500 μm are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. The contribution of CT AGNs to the bright end differential number counts and to the bright source infrared luminosity density is a good test of AGN evolution models where quasars are triggered by major mergers.
NASA Astrophysics Data System (ADS)
Chen, M.; Lemon, C.; Walterscheid, R. L.; Hecht, J. H.; Sazykin, S. Y.; Wolf, R.
2017-12-01
We investigate how neutral winds and particle precipitation affect the simulated development of electric fields including Sub-Auroral Polarization Streams (SAPS) during the 17 March 2013 storm. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) to simulate the inner magnetospheric electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. Ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. The electron and proton contributions to the auroral conductance in the RCM-E are calculated using the empirical Robinson et al. [JGR, 1987] and Galand and Richmond [JGR, 2001] equations, respectively. The "background" ionospheric conductance is based on parameters from the International Reference Ionosphere [Bilitza and Reinisch, JASR, 2008] but modified to include the effect of specified ionospheric troughs. Neutral winds are modeled by the empirical Horizontal Wind Model (HWM07) in the RCM-E. We compare simulated precipitating particle energy flux, E x B velocities with DMSP observations during the 17 March 2013 storm with and without the inclusion of neutral winds. Discrepancies between the simulations and observations will aid us in assessing needed improvements in the model.
Plis, Sergey M; George, J S; Jun, S C; Paré-Blagoev, J; Ranken, D M; Wood, C C; Schmidt, D M
2007-01-01
We propose a new model to approximate spatiotemporal noise covariance for use in neural electromagnetic source analysis, which better captures temporal variability in background activity. As with other existing formalisms, our model employs a Kronecker product of matrices representing temporal and spatial covariance. In our model, spatial components are allowed to have differing temporal covariances. Variability is represented as a series of Kronecker products of spatial component covariances and corresponding temporal covariances. Unlike previous attempts to model covariance through a sum of Kronecker products, our model is designed to have a computationally manageable inverse. Despite increased descriptive power, inversion of the model is fast, making it useful in source analysis. We have explored two versions of the model. One is estimated based on the assumption that spatial components of background noise have uncorrelated time courses. Another version, which gives closer approximation, is based on the assumption that time courses are statistically independent. The accuracy of the structural approximation is compared to an existing model, based on a single Kronecker product, using both Frobenius norm of the difference between spatiotemporal sample covariance and a model, and scatter plots. Performance of ours and previous models is compared in source analysis of a large number of single dipole problems with simulated time courses and with background from authentic magnetoencephalography data.
Chavez, Margeaux; Nazi, Kim; Antinori, Nicole; Melillo, Christine; Cotner, Bridget A; Hathaway, Wendy; Cook, Ashley; Wilck, Nancy; Noonan, Abigail
2017-01-01
Background The Department of Veterans Affairs (VA) has multiple health information technology (HIT) resources for veterans to support their health care management. These include a patient portal, VetLink Kiosks, mobile apps, and telehealth services. The veteran patient population has a variety of needs and preferences that can inform current VA HIT redesign efforts to meet consumer needs. Objective This study aimed to describe veterans’ experiences using the current VA HIT and identify their vision for the future of an integrated VA HIT system. Methods Two rounds of focus group interviews were conducted with a single cohort of 47 veterans and one female caregiver recruited from Bedford, Massachusetts, and Tampa, Florida. Focus group interviews included simulation modeling activities and a self-administered survey. This study also used an expert panel group to provide data and input throughout the study process. High-fidelity, interactive simulations were created and used to facilitate collection of qualitative data. The simulations were developed based on system requirements, data collected through operational efforts, and participants' reported preferences for using VA HIT. Pairwise comparison activities of HIT resources were conducted with both focus groups and the expert panel. Rapid iterative content analysis was used to analyze qualitative data. Descriptive statistics summarized quantitative data. Results Data themes included (1) current use of VA HIT, (2) non-VA HIT use, and (3) preferences for future use of VA HIT. Data indicated that, although the Secure Messaging feature was often preferred, a full range of HIT options are needed. These data were then used to develop veteran-driven simulations that illustrate user needs and expectations when using a HIT system and services to access VA health care services. Conclusions Patient participant redesign processes present critical opportunities for creating a human-centered design. Veterans value virtual health care options and prefer standardized, integrated, and synchronized user-friendly interface designs. PMID:29061553
Zhang, Y; Roberts, J; Tortorici, M; Veldman, A; St Ledger, K; Feussner, A; Sidhu, J
2017-06-01
Essentials rVIII-SingleChain is a unique recombinant factor VIII (FVIII) molecule. A population pharmacokinetic model was based on FVIII activity of severe hemophilia A patients. The model was used to simulate factor VIII activity-time profiles for various dosing scenarios. The model supports prolonged dosing of rVIII-SingleChain with intervals of up to twice per week. Background Single-chain recombinant coagulation factor VIII (rVIII-SingleChain) is a unique recombinant coagulation factor VIII molecule. Objectives To: (i) characterize the population pharmacokinetics (PK) of rVIII-SingleChain in patients with severe hemophilia A; (ii) identify correlates of variability in rVIII-SingleChain PK; and (iii) simulate various dosing scenarios of rVIII-SingleChain. Patients/Methods A population PK model was developed, based on FVIII activity levels of 130 patients with severe hemophilia A (n = 91 for ≥ 12-65 years; n = 39 for < 12 years) who had participated in a single-dose PK investigation with rVIII-SingleChain 50 IU kg -1 . PK sampling was performed for up to 96 h. Results A two-compartment population PK model with first-order elimination adequately described FVIII activity. Body weight and predose level of von Willebrand factor were significant covariates on clearance, and body weight was a significant covariate on the central distribution volume. Simulations using the model with various dosing scenarios estimated that > 85% and > 93% of patients were predicted to maintain FVIII activity level above 1 IU dL -1 , at all times with three-times-weekly dosing (given on days 0, 2, and 4.5) at the lowest (20 IU kg -1 ) and highest (50 IU kg -1 ) doses, respectively. For twice weekly dosing (days 0 and 3.5) of 50 IU kg -1 rVIII-SingleChain, 62-80% of patients across all ages were predicted to maintain a FVIII activity level above 1 IU dL -1 at day 7. Conclusions The population PK model adequately characterized rVIII-SingleChain PK, and the model can be utilized to simulate FVIII activity-time profiles for various dosing scenarios. © 2017 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
No Friends but the Mountains: A Simulation on Kurdistan.
ERIC Educational Resources Information Center
Major, Marc R.
1996-01-01
Presents a simulation that focuses on Kurdish nationalism and the struggle for autonomy and independence from the states that rule over Kurdish lands. Students assume the roles of either one of the countries directly involved or the governing body of the United Nations. Includes extensive background material. (MJP)
Simulation in JFL: Business Writing
ERIC Educational Resources Information Center
Fukushima, Tatsuya
2007-01-01
This article discusses a simulation wherein learners of Japanese as a Foreign Language (JFL) in a business writing course at an American university are assigned tasks to write a series of business letters based on situations that are likely to occur in actual business settings. After an overview of the theoretical background, this article…
ERIC Educational Resources Information Center
Van Camp, Julie
1986-01-01
This article provides background on the voir dire (jury selection) process, explaining its importance to the outcome of a trial. Offers a simulation experience which has students take the role of lawyers interviewing 29 prospective jurors for an alcohol-related traffic accident involving a 20-year-old driver. Profiles for prospective jurors and…
Background: Simulation studies have previously demonstrated that time-series analyses using smoothing splines correctly model null health-air pollution associations. Methods: We repeatedly simulated season, meteorology and air quality for the metropolitan area of Atlanta from cyc...
The Relation between Cognitive and Metacognitive Strategic Processing during a Science Simulation
ERIC Educational Resources Information Center
Dinsmore, Daniel L.; Zoellner, Brian P.
2018-01-01
Background: This investigation was designed to uncover the relations between students' cognitive and metacognitive strategies used during a complex climate simulation. While cognitive strategy use during science inquiry has been studied, the factors related to this strategy use, such as concurrent metacognition, prior knowledge, and prior…
Helicopter simulator qualification
NASA Technical Reports Server (NTRS)
Hampson, Brian
1992-01-01
CAE has extensive experience in building helicopter simulators and has participated in group working sessions for fixed-wing advisory circulars. Against this background, issues that should be addressed in establishing helicopter approval criteria were highlighted. Some of these issues are not immediately obvious and may, indeed, be more important than the criteria a themselves.
Water Conservation Education with a Rainfall Simulator.
ERIC Educational Resources Information Center
Kok, Hans; Kessen, Shelly
1997-01-01
Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…
Exploring Iconic Interpretation and Mathematics Teacher Development through Clinical Simulations
ERIC Educational Resources Information Center
Dotger, Benjamin; Masingila, Joanna; Bearkland, Mary; Dotger, Sharon
2015-01-01
Field placements serve as the traditional "clinical" experience for prospective mathematics teachers to immerse themselves in the mathematical challenges of students. This article reports data from a different type of learning experience, that of a clinical simulation with a standardized individual. We begin with a brief background on…
NASA Astrophysics Data System (ADS)
Mathur, R.; Kang, D.; Napelenok, S. L.; Xing, J.; Hogrefe, C.
2017-12-01
Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emission patterns across the globe (e.g. declining emissions in North America and Western Europe in response to implementation of control measures and increasing emissions across Asia due to economic and population growth) are resulting in heterogeneous changes in the tropospheric chemical composition and are likely altering long-range transport impacts and consequently background pollution levels at receptor regions. To quantify these impacts, the WRF-CMAQ model is expanded to hemispheric scales and multi-decadal model simulations are performed for the period spanning 1990-2010 to examine changes in hemispheric air pollution resulting from changes in emissions over this period. Simulated trends in ozone and precursor species concentrations across the U.S. and the Northern Hemisphere over the past two decades are compared with those inferred from available measurements during this period. Additionally, the decoupled direct method (DDM) in CMAQ, a first- and higher-order sensitivity calculation technique, is used to estimate the sensitivity of O3 to emissions from different source regions across the Northern Hemisphere. The seasonal variations in source region contributions to background O3 are then estimated from these sensitivity calculations and will be discussed. These source region sensitivities estimated from DDM are then combined with the multi-decadal simulations of O3 distributions and emissions trends to characterize the changing contributions of different source regions to background O3 levels across North America. This characterization of changing long-range transport contributions is critical for the design and implementation of tighter national air quality standards
Coronal Jets in Closed Magnetic Regions on the Sun
NASA Astrophysics Data System (ADS)
Wyper, Peter Fraser; DeVore, C. R.
2015-04-01
Coronal jets are dynamic, collimated structures observed in solar EUV and X-ray emission. They appear predominantly in the open field of coronal holes, but are also observed in areas of closed field, especially active regions. A common feature of coronal jets is that they originate from the field above a parasitic polarity of opposite sign to the surrounding field. Some process - such as instability onset or flux emergence - induces explosive reconnection between the closed “anemone” field and the surrounding open field that generates the jet. The lesser number of coronal jets in closed-field regions suggests a possible stabilizing effect of the closed configuration with respect to coronal jet formation. If the scale of the jet region is small compared with the background loop length, as in for example type II spicules, the nearby magnetic field may be treated as locally open. As such, one would expect that if a stabilizing effect exists it becomes most apparent as the scale of the anemone region approaches that of the background coronal loops.To investigate if coronal jets are indeed suppressed along shorter coronal loops, we performed a number of simulations of jets driven by a rotation of the parasitic polarity (as in the previous open-jet calculations by Pariat et. al 2009, 2010, 2015) embedded in a large-scale closed bipolar field. The simulations were performed with the state of the art Adaptively Refined Magnetohydrodynamics Solver. We will report here how the magnetic configuration above the anemone region determines the nature of the jet, when it is triggered, and how much of the stored magnetic energy is released. We show that regions in which the background field and the parasitic polarity region are of comparable scale naturally suppress explosive energy release. We will also show how in the post-jet relaxation phase a combination of confined MHD waves and weak current layers are generated by the jet along the background coronal loops, both of which may have implications for coronal heating.This work was supported by an appointment to the NASA Postdoctoral Program (P.F.W.) and by NASA’s Living With a Star Targeted Research and Technology program (C.R.D.).
The effect of simulated weightlessness on hypobaric decompression sickness
NASA Technical Reports Server (NTRS)
Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.
2002-01-01
BACKGROUND: A discrepancy exists between the incidence of ground-based decompression sickness (DCS) during simulated extravehicular activity (EVA) at hypobaric space suit pressure (20-40%) and crewmember reports during actual EVA (zero reports). This could be due to the effect of gravity during ground-based DCS studies. HYPOTHESIS: At EVA suit pressures of 29.6 kPa (4.3 psia), there is no difference in the incidence of hypobaric DCS between a control group and group exposed to simulated weightlessness (supine body position). METHODS: Male subjects were exposed to a hypobaric pressure of 29.6 kPa (4.3 psi) for up to 4 h. The control group (n = 26) pre-oxygenated for 60 min (first 10 min exercising) before hypobaric exposure and walking around in the altitude chamber. The test group (n = 39) remained supine for a 3 h prior to and during the 60-min pre-oxygenation (also including exercise) and at hypobaric pressure. DCS symptoms and venous gas emboli (VGE) at hypobaric pressure were registered. RESULTS: DCS occurred in 42% in the control and in 44% in simulated weightlessness group (n.s.). The mean time for DCS to develop was 112 min (SD +/- 61) and 123 min (+/- 67), respectively. VGE occurred in 81% of the control group subjects and in 51% of the simulated weightlessness subjects (p = 0.02), while severe VGE occurred in 58% and 33%, respectively (p = 0.08). VGE started after 113 min (+/- 43) in the control and after 76 min (+/- 64) in the simulated weightlessness group. CONCLUSIONS: No difference in incidence of DCS was shown between control and simulated weightlessness conditions. VGE occurred more frequently during the control condition with bubble-releasing arm and leg movements.
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D. G.
2017-12-01
In this work we present recent results from high-resolution direct numerical simulations and a phenomenological model that describes the radial evolution of reflection-driven Alfven Wave turbulence in the solar atmosphere and the inner solar wind. The simulations are performed inside a narrow magnetic flux tube that models a coronal hole extending from the solar surface through the chromosphere and into the solar corona to approximately 21 solar radii. The simulations include prescribed empirical profiles that account for the inhomogeneities in density, background flow, and the background magnetic field present in coronal holes. Alfven waves are injected into the solar corona by imposing random, time-dependent velocity and magnetic field fluctuations at the photosphere. The phenomenological model incorporates three important features observed in the simulations: dynamic alignment, weak/strong nonlinear AW-AW interactions, and that the outward-propagating AWs launched by the Sun split into two populations with different characteristic frequencies. Model and simulations are in good agreement and show that when the key physical parameters are chosen within observational constraints, reflection-driven Alfven turbulence is a plausible mechanism for the heating and acceleration of the fast solar wind. By flying a virtual Parker Solar Probe (PSP) through the simulations, we will also establish comparisons between the model and simulations with the kind of single-point measurements that PSP will provide.
Active Noise Control for Dishwasher noise
NASA Astrophysics Data System (ADS)
Lee, Nokhaeng; Park, Youngjin
2016-09-01
The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.
Suppression of tritium retention in remote areas of ITER by nonperturbative reactive gas injection.
Tabarés, F L; Ferreira, J A; Ramos, A; van Rooij, G; Westerhout, J; Al, R; Rapp, J; Drenik, A; Mozetic, M
2010-10-22
A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4 nm/min deposition can be suppressed by addition of 1 Pa·m³ s⁻¹ ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.
TMS delivered for A-3 Test Stand
2010-03-17
A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.
KC-135 and Other Microgravity Simulations
NASA Technical Reports Server (NTRS)
Skinner, Noel C.
1999-01-01
This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 20, 1998 to June 20, 1999. Included is a general overview of KC-135 activities manifested and coordinated by the Life Sciences Research Laboratories. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.
KC-135 and Other Microgravity Simulations
NASA Technical Reports Server (NTRS)
Skinner, Noel C.; Schlegel, Todd T. (Technical Monitor)
2001-01-01
This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from January to June 15, 2001. Included is a general overview of KC-135 activities manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
NASA Astrophysics Data System (ADS)
Taylor, Peter; Lee, Stuart H.; Tal, Tali
2006-12-01
In response to Tali and Yarden's presentation of their efforts to teach socioscientific issues, the discussants address issues of authentic versus simulated activities; teachers as learners or co-creators with their students; educating people to contribute to science-based decisionmaking; the development of such socioscientific competence; the relationship between group or participatory processes and individual development; framing real world cases for every age of student; making space to delve into the historical and social background to any scientific theory, practice, or application; educating teachers who can coach students in socioscientific inquiry; and facing off against the traditional and resurgent emphasis on highstakes, content-oriented testing of students in science.
Giving students the run of sprinting models
NASA Astrophysics Data System (ADS)
Heck, André; Ellermeijer, Ton
2009-11-01
A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.
Fedele, T; Scheer, H-J; Burghoff, M; Waterstraat, G; Nikulin, V V; Curio, G
2013-01-01
Non-invasively recorded averaged event-related potentials (ERP) represent a convenient opportunity to investigate human brain perceptive and cognitive processes. Nevertheless, generative ERP mechanisms are still debated. Two previous approaches have been contested in the past: the added-energy model in which the response raises independently from the ongoing background activity, and the phase-reset model, based on stimulus-driven synchronization of oscillatory ongoing activity. Many criteria for the distinction of these two models have been proposed, but there is no definitive methodology to disentangle them, owing also to the limited information at the single trial level. Here, we propose a new approach combining low-noise EEG technology and multivariate decomposition techniques. We present theoretical analyses based on simulated data and identify in high-frequency somatosensory evoked responses an optimal target for the distinction between the two mechanisms.
Kerber, Karolin; Dümpelmann, Matthias; Schelter, Björn; Le Van, Pierre; Korinthenberg, Rudolf; Schulze-Bonhage, Andreas; Jacobs, Julia
2014-07-01
High frequency oscillations (HFOs) at 80-500 Hz are promising markers of epileptic areas. Several retrospective studies reported that surgical removal of areas generating HFOs was associated with a good seizure outcome. Recent reports suggested that ripple (80-200 Hz) HFO patterns co-existed with different background EEG activities. We hypothesized that the coexisting background EEG pattern may distinguish physiological from epileptic ripples. Rates of HFOs were analyzed in intracranial EEG recordings of 22 patients. Additionally, ripple patterns were classified for each channel depending either as coexisting with a flat or oscillatory background activity. A multi-variate analysis was performed to determine whether removal of areas showing the above EEG markers correlated with seizure outcome. Removal of areas generating high rates of 'fast ripples (>200 Hz)' and 'ripples on a flat background activity' showed a significant correlation with a seizure-free outcome. In contrast, removal of high rates of 'ripples' or 'ripple patterns in a continuously oscillating background' was not significantly associated with seizure outcome. Ripples occurring in an oscillatory background activity may be suggestive of physiological activity, while those on a flat background reflect epileptic activity. Consideration of coexisting background patterns may improve the delineation of the epileptogenic areas using ripple oscillations. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Preparing for ICESat-2: Simulated Geolocated Photon Data for Cryospheric Data Products
NASA Astrophysics Data System (ADS)
Harbeck, K.; Neumann, T.; Lee, J.; Hancock, D.; Brenner, A. C.; Markus, T.
2017-12-01
ICESat-2 will carry NASA's next-generation laser altimeter, ATLAS (Advanced Topographic Laser Altimeter System), which is designed to measure changes in ice sheet height, sea ice freeboard, and vegetation canopy height. There is a critical need for data that simulate what certain ICESat-2 science data products will "look like" post-launch in order to aid the data product development process. There are several sources for simulated photon-counting lidar data, including data from NASA's MABEL (Multiple Altimeter Beam Experimental Lidar) instrument, and M-ATLAS (MABEL data that has been scaled geometrically and radiometrically to be more similar to that expected from ATLAS). From these sources, we are able to develop simulated granules of the geolocated photon cloud product; also referred to as ATL03. These simulated ATL03 granules can be further processed into the upper-level data products that report ice sheet height, sea ice freeboard, and vegetation canopy height. For ice sheet height (ATL06) and sea ice height (ATL07) simulations, both MABEL and M-ATLAS data products are used. M-ATLAS data use ATLAS engineering design cases for signal and background noise rates over certain surface types, and also provides large vertical windows of data for more accurate calculations of atmospheric background rates. MABEL data give a more accurate representation of background noise rates over areas of water (i.e., melt ponds, crevasses or sea ice leads) versus land or solid ice. Through a variety of data manipulation procedures, we provide a product that mimics the appearance and parameter characterization of ATL03 data granules. There are three primary goals for generating this simulated ATL03 dataset: (1) allowing end users to become familiar with using the large photon cloud datasets that will be the primary science data product from ICESat-2, (2) the process ensures that ATL03 data can flow seamlessly through upper-level science data product algorithms, and (3) the process ensures parameter traceability through ATL03 and upper-level data products. We will present a summary of how simulated data products are generated, the cryospheric data product applications for this simulated data (specifically ice sheet height and sea ice freeboard), and where these simulated datasets are available to the ICESat-2 data user community.
Yu, Mi; Kang, Kyung Ja
2017-06-01
Accurate, skilled communication in handover is of high priority in maintaining patients' safety. Nursing students have few chances to practice nurse-to-doctor handover in clinical training, and some have little knowledge of what constitutes effective handover or lack confidence in conveying information. This study aimed to develop a role-play simulation program involving the Situation, Background, Assessment, Recommendation technique for nurse-to-doctor handover; implement the program; and analyze its effects on situation, background, assessment, recommendation communication, communication clarity, handover confidence, and education satisfaction in nursing students. Non-equivalent control-group pretest-posttest quasi-experimental. A convenience sample of 62 senior nursing students from two Korean universities. The differences in SBAR communication, communication clarity, handover confidence, and education satisfaction between the control and intervention groups were measured before and after program participation. The intervention group showed higher Situation, Background, Assessment, Recommendation communication scores (t=-3.05, p=0.003); communication clarity scores in doctor notification scenarios (t=-5.50, p<0.001); and Situation, Background, Assessment, Recommendation education satisfaction scores (t=-4.94, p<0.001) relative to those of the control group. There was no significant difference in handover confidence between groups (t=-1.97, p=0.054). The role-play simulation program developed in this study could be used to promote communication skills in nurse-to-doctor handover and cultivate communicative competence in nursing students. Copyright © 2017. Published by Elsevier Ltd.
A magnetic diverter for charged particle background rejection in the SIMBOL-X telescope
NASA Astrophysics Data System (ADS)
Spiga, D.; Fioretti, V.; Bulgarelli, A.; Dell'Orto, E.; Foschini, L.; Malaguti, G.; Pareschi, G.; Tagliaferri, G.; Tiengo, A.
2008-07-01
Minimization of charged particle background in X-ray telescopes is a well known issue. Charged particles (chiefly protons and electrons) naturally present in the cosmic environment constitute an important background source when they collide with the X-ray detector. Even worse, a serious degradation of spectroscopic performances of the X-ray detector was observed in Chandra and Newton-XMM, caused by soft protons with kinetic energies ranging between 100 keV and some MeV being collected by the grazing-incidence mirrors and funneled to the detector. For a focusing telescope like SIMBOL-X, the exposure of the soft X-ray detector to the proton flux can increase significantly the instrumental background, with a consequent loss of sensitivity. In the worst case, it can also seriously compromise the detector duration. A well-known countermeasure that can be adopted is the implementation of a properly-designed magnetic diverter, that should prevent high-energy particles from reaching the focal plane instruments of SIMBOL-X. Although Newton-XMM and Swift-XRT are equipped with magnetic diverters for electrons, the magnetic fields used are insufficient to effectively act on protons. In this paper, we simulate the behavior of a magnetic diverter for SIMBOL-X, consisting of commercially-available permanent magnets. The effects of SIMBOL-X optics is simulated through GEANT4 libraries, whereas the effect of the intense required magnetic fields is simulated along with specifically-written numerical codes in IDL.
THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qing; Xu, Jin; Zhang, Wenchao
The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of themore » beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.« less
A generalized transport-velocity formulation for smoothed particle hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.
The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable formore » fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.« less
The perception of isoluminant coloured stimuli of amblyopic eye and defocused eye
NASA Astrophysics Data System (ADS)
Krumina, Gunta; Ozolinsh, Maris; Ikaunieks, Gatis
2008-09-01
In routine eye examination the visual acuity usually is determined using standard charts with black letters on a white background, however contrast and colour are important characteristics of visual perception. The purpose of research was to study the perception of isoluminant coloured stimuli in the cases of true and simulated amlyopia. We estimated difference in visual acuity with isoluminant coloured stimuli comparing to that for high contrast black-white stimuli for true amblyopia and simulated amblyopia. Tests were generated on computer screen. Visual acuity was detected using different charts in two ways: standard achromatic stimuli (black symbols on a white background) and isoluminant coloured stimuli (white symbols on a yellow background, grey symbols on blue, green or red background). Thus isoluminant tests had colour contrast only but had no luminance contrast. Visual acuity evaluated with the standard method and colour tests were studied for subjects with good visual acuity, if necessary using the best vision correction. The same was performed for subjects with defocused eye and with true amblyopia. Defocus was realized with optical lenses placed in front of the normal eye. The obtained results applying the isoluminant colour charts revealed worsening of the visual acuity comparing with the visual acuity estimated with a standard high contrast method (black symbols on a white background).
Optimal Search for an Astrophysical Gravitational-Wave Background
NASA Astrophysics Data System (ADS)
Smith, Rory; Thrane, Eric
2018-04-01
Roughly every 2-10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals) for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both "safe" and effective: it is not fooled by instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about 1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a number of extensions and generalizations, including application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.
2011-01-01
The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.
Lin, Risa J; Jaeger, Dieter
2011-05-01
In previous studies we used the technique of dynamic clamp to study how temporal modulation of inhibitory and excitatory inputs control the frequency and precise timing of spikes in neurons of the deep cerebellar nuclei (DCN). Although this technique is now widely used, it is limited to interpreting conductance inputs as being location independent; i.e., all inputs that are biologically distributed across the dendritic tree are applied to the soma. We used computer simulations of a morphologically realistic model of DCN neurons to compare the effects of purely somatic vs. distributed dendritic inputs in this cell type. We applied the same conductance stimuli used in our published experiments to the model. To simulate variability in neuronal responses to repeated stimuli, we added a somatic white current noise to reproduce subthreshold fluctuations in the membrane potential. We were able to replicate our dynamic clamp results with respect to spike rates and spike precision for different patterns of background synaptic activity. We found only minor differences in the spike pattern generation between focal or distributed input in this cell type even when strong inhibitory or excitatory bursts were applied. However, the location dependence of dynamic clamp stimuli is likely to be different for each cell type examined, and the simulation approach developed in the present study will allow a careful assessment of location dependence in all cell types.
A feedback model of figure-ground assignment.
Domijan, Drazen; Setić, Mia
2008-05-30
A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output from the dorsal stream is projected to the surface network which serves as a blackboard on which the surface representation is formed. The surface network is a recurrent network which segregates different surfaces by assigning different firing rates to them. The figure is labeled by the maximal firing rate. Computer simulations showed that the model correctly assigns figural status to the surface with a smaller size, a greater contrast, convexity, surroundedness, horizontal-vertical orientation and a higher spatial frequency content. The simple gradient of activity in the dorsal stream enables the simulation of the new principles of the lower region and the top-bottom polarity. The model also explains how the exogenous attention and the endogenous attention may reverse the figural assignment. Due to the local excitation in the surface network, neural activity at the cued region will spread over the whole surface representation. Therefore, the model implements the object-based attentional selection.
NASA Astrophysics Data System (ADS)
Stone, Michael A.; Moore, Brian C. J.
2003-08-01
Using a ``noise-vocoder'' cochlear implant simulator [Shannon et al., Science 270, 303-304 (1995)], the effect of the speed of dynamic range compression on speech intelligibility was assessed, using normal-hearing subjects. The target speech had a level 5 dB above that of the competing speech. Initially, baseline performance was measured with no compression active, using between 4 and 16 processing channels. Then, performance was measured using a fast-acting compressor and a slow-acting compressor, each operating prior to the vocoder simulation. The fast system produced significant gain variation over syllabic timescales. The slow system produced significant gain variation only over the timescale of sentences. With no compression active, about six channels were necessary to achieve 50% correct identification of words in sentences. Sixteen channels produced near-maximum performance. Slow-acting compression produced no significant degradation relative to the baseline. However, fast-acting compression consistently reduced performance relative to that for the baseline, over a wide range of performance levels. It is suggested that fast-acting compression degrades performance for two reasons: (1) because it introduces correlated fluctuations in amplitude in different frequency bands, which tends to produce perceptual fusion of the target and background sounds and (2) because it reduces amplitude modulation depth and intensity contrasts.
2014-01-01
Background The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease. Results We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism. Conclusion This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use. PMID:25170421
NASA Astrophysics Data System (ADS)
Zhou, Y.; Feng, X. S.
2015-12-01
CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness
Olasky, Jaisa; Sankaranarayanan, Ganesh; Seymour, Neal E.; Magee, J. Harvey; Enquobahrie, Andinet; Lin, Ming C.; Aggarwal, Rajesh; Brunt, L. Michael; Schwaitzberg, Steven D.; Cao, Caroline G. L.; De, Suvranu; Jones, Daniel B.
2015-01-01
Objectives To conduct a review of the state of virtual reality (VR) simulation technology, to identify areas of surgical education that have the greatest potential to benefit from it, and to identify challenges to implementation. Background Data Simulation is an increasingly important part of surgical training. VR is a developing platform for using simulation to teach technical skills, behavioral skills, and entire procedures to trainees and practicing surgeons worldwide. Questions exist regarding the science behind the technology and most effective usage of VR simulation. A symposium was held to address these issues. Methods Engineers, educators, and surgeons held a conference in November 2013 both to review the background science behind simulation technology and to create guidelines for its use in teaching and credentialing trainees and surgeons in practice. Results Several technologic challenges were identified that must be overcome in order for VR simulation to be useful in surgery. Specific areas of student, resident, and practicing surgeon training and testing that would likely benefit from VR were identified: technical skills, team training and decision-making skills, and patient safety, such as in use of electrosurgical equipment. Conclusions VR simulation has the potential to become an essential piece of surgical education curriculum but depends heavily on the establishment of an agreed upon set of goals. Researchers and clinicians must collaborate to allocate funding toward projects that help achieve these goals. The recommendations outlined here should guide further study and implementation of VR simulation. PMID:25925424
Effects of Alcohol on Performance on a Distraction Task During Simulated Driving
Allen, Allyssa J.; Meda, Shashwath A.; Skudlarski, Pawel; Calhoun, Vince; Astur, Robert; Ruopp, Kathryn C.; Pearlson, Godfrey D.
2009-01-01
Background Prior studies report that accidents involving intoxicated drivers are more likely to occur during performance of secondary tasks. We studied this phenomenon, using a dual-task paradigm, involving performance of a visual oddball (VO) task while driving in an alcohol challenge paradigm. Previous functional MRI (fMRI) studies of the VO task have shown activation in the anterior cingulate, hippocampus, and prefrontal cortex. Thus, we predicted dose-dependent decreases in activation of these areas during VO performance. Methods Forty healthy social drinkers were administered 3 different doses of alcohol, individually tailored to their gender and weight. Participants performed a VO task while operating a virtual reality driving simulator in a 3T fMRI scanner. Results Analysis showed a dose-dependent linear decrease in Blood Oxygen Level Dependent activation during task performance, primarily in hippocampus, anterior cingulate, and dorsolateral prefrontal areas, with the least activation occurring during the high dose. Behavioral analysis showed a dose-dependent linear increase in reaction time, with no effects associated with either correct hits or false alarms. In all dose conditions, driving speed decreased significantly after a VO stimulus. However, at the high dose this decrease was significantly less. Passenger-side line crossings significantly increased at the high dose. Conclusions These results suggest that driving impairment during secondary task performance may be associated with alcohol-related effects on the above brain regions, which are involved with attentional processing/decision-making. Drivers with high blood alcohol concentrations may be less able to orient or detect novel or sudden stimuli during driving. PMID:19183133
Khowailed, Iman Akef; Petrofsky, Jerrold; Lohman, Everett; Daher, Noha
2015-01-01
Background The aim of this study was to examine the effects of a 6-week training program of simulated barefoot running (SBR) on running kinetics in habitually shod (wearing shoes) female recreational runners. Material/Methods Twelve female runners age 25.7±3.4 years gradually increased running distance in Vibram FiveFingers minimal shoes over a 6-week period. The kinetic analysis of treadmill running at 10 Km/h was performed pre- and post-intervention in shod running, non-habituated SBR, and habituated SBR conditions. Spatiotemporal parameters, ground reaction force components, and electromyography (EMG) were measured in all conditions. Results Post-intervention data indicated a significant decrease across time in the habituation SBR for EMG activity of the tibialis anterior (TA) in the pre-activation and absorptive phase of running (P<0.001). A significant increase was denoted in the pre-activation amplitude of the gastrocnemius (GAS) between the shod running, unhabituated SBR, and habituated SBR. Six weeks of SBR was associated with a significant decrease in the loading rates and impact forces. Additionally, SBR significantly decrease the stride length, step duration, and flight time, and stride frequency was significantly higher compared to shod running. Conclusions The findings of this study indicate that changes in motor patterns in previously habitually shod runners are possible and can be accomplished within 6 weeks. Non-habituation SBR did not show a significant neuromuscular adaptation in the EMG activity of TA and GAS as manifested after 6 weeks of habituated SBR. PMID:26166443
Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation
NASA Astrophysics Data System (ADS)
Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo
2015-01-01
Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.
The Madison School-Community: Abbreviated Background Materials.
ERIC Educational Resources Information Center
Sybouts, Ward; Tobiska, Kenneth
The manual describes a simulated community and school district and is to be used with the "in-baskets" (VT 006 654) produced by the University Council of Educational Administration (UCEA) and those produced by the University of Nebraska in conjunction with the UCEA. The "Instructor's Guide for Using Simulated Materials to Instruct School…
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of a...
Sales Role Play: An Online Simulation
ERIC Educational Resources Information Center
Newberry, Robert; Collins, Marianne
2017-01-01
The online role play simulation as described in this article addresses critical skills as identified by practitioners and includes background materials, buyer and seller profiles, a sale/no-sale decision matrix, as well as a grading rubric, thereby facilitating a variety of selling scenarios. Both the buyer and the seller have integral roles in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulisek, Jonathan A.; Schweppe, John E.; Stave, Sean C.
2015-06-01
Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this, we have developed a new technique for real-time estimation ofmore » background gamma radiation from aerial measurements. This method is built upon on the noise-adjusted singular value decomposition (NASVD) technique that was previously developed for estimating the potassium (K), uranium (U), and thorium (T) concentrations in soil post-flight. The method can be calibrated using K, U, and T spectra determined from radiation transport simulations along with basis functions, which may be determined empirically by applying maximum likelihood estimation (MLE) to previously measured airborne gamma-ray spectra. The method was applied to both measured and simulated airborne gamma-ray spectra, with and without man-made radiological source injections. Compared to schemes based on simple averaging, this technique was less sensitive to background contamination from the injected man-made sources and may be particularly useful when the gamma-ray background frequently changes during the course of the flight.« less
Gibbs, Kenneth D; Basson, Jacob; Xierali, Imam M; Broniatowski, David A
2016-01-01
Faculty diversity is a longstanding challenge in the US. However, we lack a quantitative and systemic understanding of how the career transitions into assistant professor positions of PhD scientists from underrepresented minority (URM) and well-represented (WR) racial/ethnic backgrounds compare. Between 1980 and 2013, the number of PhD graduates from URM backgrounds increased by a factor of 9.3, compared with a 2.6-fold increase in the number of PhD graduates from WR groups. However, the number of scientists from URM backgrounds hired as assistant professors in medical school basic science departments was not related to the number of potential candidates (R2=0.12, p>0.07), whereas there was a strong correlation between these two numbers for scientists from WR backgrounds (R2=0.48, p<0.0001). We built and validated a conceptual system dynamics model based on these data that explained 79% of the variance in the hiring of assistant professors and posited no hiring discrimination. Simulations show that, given current transition rates of scientists from URM backgrounds to faculty positions, faculty diversity would not increase significantly through the year 2080 even in the context of an exponential growth in the population of PhD graduates from URM backgrounds, or significant increases in the number of faculty positions. Instead, the simulations showed that diversity increased as more postdoctoral candidates from URM backgrounds transitioned onto the market and were hired. DOI: http://dx.doi.org/10.7554/eLife.21393.001 PMID:27852433
The Python Sky Model: software for simulating the Galactic microwave sky
NASA Astrophysics Data System (ADS)
Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.
2017-08-01
We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.
IslandFAST: A Semi-numerical Tool for Simulating the Late Epoch of Reionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yidong; Chen, Xuelei; Yue, Bin
2017-08-01
We present the algorithm and main results of our semi-numerical simulation, islandFAST, which was developed from 21cmFAST and designed for the late stage of reionization. The islandFAST simulation predicts the evolution and size distribution of the large-scale underdense neutral regions (neutral islands), and we find that the late Epoch of Reionization proceeds very fast, showing a characteristic scale of the neutral islands at each redshift. Using islandFAST, we compare the impact of two types of absorption systems, i.e., the large-scale underdense neutral islands versus small-scale overdense absorbers, in regulating the reionization process. The neutral islands dominate the morphology of themore » ionization field, while the small-scale absorbers dominate the mean-free path of ionizing photons, and also delay and prolong the reionization process. With our semi-numerical simulation, the evolution of the ionizing background can be derived self-consistently given a model for the small absorbers. The hydrogen ionization rate of the ionizing background is reduced by an order of magnitude in the presence of dense absorbers.« less
Investigation of soft component in cosmic ray detection
NASA Astrophysics Data System (ADS)
Oláh, László; Varga, Dezső
2017-07-01
Cosmic ray detection is a research area which finds various applications in tomographic imaging of large size objects. In such applications, the background sources which contaminate cosmic muon signal require a good understanding of the creation processes, as well as reliable simulation frameworks with high predictive power are needed. One of the main background source is the ;soft component;, that is electrons and positrons. In this paper a simulation framework based on GEANT4 has been established to pin down the key features of the soft component. We have found that the electron and positron flux shows a remarkable invariance against various model parameters including the muon emission altitude or primary particle energy distribution. The correlation between simultaneously arriving particles have been quantitatively investigated, demonstrating that electrons and positrons tend to arrive within a close distance and with low relative angle. This feature, which is highly relevant for counting detectors, has been experimentally verified under open sky and at shallow depth underground. The simulation results have been compared to existing other measurements as well as other simulation programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warburton, Thomas Karl
2017-01-01
The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino experiment which will be built at the Sanford Underground Research Facility (SURF), and will receive a wide-band neutrino beam from Fermilab, 1300~km away. At this baseline DUNE will be able to study many of the properties of neutrino mixing, including the neutrino mass hierarchy and the value of the CP-violating complex phase (more » $$\\delta_{CP}$$). DUNE will utilise Liquid Argon (LAr) Time Projection Chamber (TPC) (LArTPC) technology, and the Far Detector (FD) will consist of four modules, each containing 17.1~kt of LAr with a fiducial mass of around 10~kt. Each of these FD modules represents around an order of magnitude increase in size, when compared to existing LArTPC experiments. \\\\ The 35 ton detector is the first DUNE prototype for the single (LAr) phase design of the FD. There were two running periods, one from November 2013 to February 2014, and a second from November 2015 to March 2016. During t he second running period, a system of TPCs was installed, and cosmic-ray data were collected. A method of particle identification was developed using simulations, though this was not applied to the data due to the higher than expected noise level. A new method of determining the interaction time of a track, using the effects of longitudinal diffusion, was developed using the cosmic-ray data. A camera system was also installed in the detector for monitoring purposes, and to look for high voltage breakdowns. \\\\ Simulations concerning the muon-induced background rate to nucleon decay are performed, following the incorporation of the MUon Simulations UNderground (MUSUN) generator into the DUNE software framework. A series of cuts which are based on Monte Carlo truth information is developed, designed to reject simulated background events, whilst preserving simulated signal events in the $$n \\rightarrow K^{+} + e^{-}$$ decay channel. No background events are seen to survive the app lication of these cuts in a sample of 2~$$\\times$$~10$^9$ muon! s, representing 401.6~years of detector live time. This corresponds to an annual background rate of <~0.44~events$$\\cdot$$Mt$$^{-1}\\cdot$$year$$^{-1}$$ at 90\\% confidence, using a fiducial mass of 13.8~kt.« less
A GATE evaluation of the sources of error in quantitative {sup 90}Y PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydhorst, Jared, E-mail: jared.strydhorst@gmail.
Purpose: Accurate reconstruction of the dose delivered by {sup 90}Y microspheres using a postembolization PET scan would permit the establishment of more accurate dose–response relationships for treatment of hepatocellular carcinoma with {sup 90}Y. However, the quality of the PET data obtained is compromised by several factors, including poor count statistics and a very high random fraction. This work uses Monte Carlo simulations to investigate what impact factors other than low count statistics have on the quantification of {sup 90}Y PET. Methods: PET acquisitions of two phantoms—a NEMA PET phantom and the NEMA IEC PET body phantom-containing either {sup 90}Y ormore » {sup 18}F were simulated using GATE. Simulated projections were created with subsets of the simulation data allowing the contributions of random, scatter, and LSO background to be independently evaluated. The simulated projections were reconstructed using the commercial software for the simulated scanner, and the quantitative accuracy of the reconstruction and the contrast recovery of the reconstructed images were evaluated. Results: The quantitative accuracy of the {sup 90}Y reconstructions were not strongly influenced by the high random fraction present in the projection data, and the activity concentration was recovered to within 5% of the known value. The contrast recovery measured for simulated {sup 90}Y data was slightly poorer than that for simulated {sup 18}F data with similar count statistics. However, the degradation was not strongly linked to any particular factor. Using a more restricted energy range to reduce the random fraction in the projections had no significant effect. Conclusions: Simulations of {sup 90}Y PET confirm that quantitative {sup 90}Y is achievable with the same approach as that used for {sup 18}F, and that there is likely very little margin for improvement by attempting to model aspects unique to {sup 90}Y, such as the much higher random fraction or the presence of bremsstrahlung in the singles data.« less
Arcs from gravitational lensing
NASA Technical Reports Server (NTRS)
Grossman, Scott A.; Narayan, Ramesh
1988-01-01
The proposal made by Paczynski (1987) that the arcs of blue light found recently in two cluster cores are gravitationally lensed elongated images of background galaxies is investigated. It is shown that lenses that are circularly symmetric in projection produce pairs of arcs, in conflict with the observations. However, more realistic asymmetric lenses produce single arcs, which can become as elongated as the observed ones whenever the background galaxy is located on or close to a cusp caustic. Detailed computer simulations of lensing by clusters using a reasonable model of the mass distribution are presented. Elongated and curved lensed images longer than 10 arcsec occur in 12 percent of the simulated clusters. It is concluded that the lensing hypothesis must be taken seriously.
The Story of a Boring Encounter with a Black Hole
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
Remember the excitement three years ago before the gas cloud G2s encounter with the supermassive black hole at the center of our galaxy, Sgr A*? Did you notice that not much was said about it after the fact? Thats because not much happened and a new study suggests that this isnt surprising.An Anticipated ApproachG2,an object initially thought to be a gas cloud, was expected to make its closest approach to the 4.6-million-solar-mass Sgr A* in 2014. At the pericenter of its orbit, G2 was predicted to pass as close as 36 light-hours from the black hole.Log-scale column density plots from one of the authors simulations, showing the cloud at a time relative to periapsis (t=0) of 5, 1, 0, 1, 5, and 10 yr (left to right, top to bottom). [Morsony et al. 2017]This close brush with such a massive black hole was predicted to tear G2 apart, causing much of its material to accrete onto Sgr A*. It was thought that this process would temporarily increase the accretion rate onto the black hole relative to its normal background accretion rate, causing Sgr A*s luminosity to increase for a time.Instead, Sgr A* showed a distinct lack of fireworks, with very minimal change to its brightness after G2s closest approach. This cosmic fizzle has raised questions about the nature of G2: was it really a gas cloud? What else might it have been instead? Now, a team of scientists led by Brian Morsony (University of Maryland and University of Wisconsin-Madison) have run a series of simulations of the encounter to try to address these questions.No FireworksMorsony and collaborators ran three-dimensional hydrodynamics simulations using the FLASH code. They used a range of different simulation parameters, like cloud structure, background structure, background density, grid resolution, and accretion radius, in order to better understand how these factors might have affected the accretion rate and corresponding luminosity of Sgr A*.Accretion rate vs. time for two of the simulations, one with a wind background and one with no wind background. The accretion rate in both cases displays no significant increase when G2 reaches periapsis. [Morsony et al. 2017]Based on their simulations, the authors showed that we actually shouldnt expect G2s encounter to have caused a significant change in Sgr A*s accretion rate relative to its normal rate from background accretion: with the majority of the simulation parameters used, only 321% of the material Sgr A* accreted from 05 years after periapsis is from the cloud, and only 0.0310% of the total cloud mass is accreted.Not Just a Cloud?By comparing their simulations to observations of G2 after its closest approach, Morsony and collaborators find that to fit the observations, G2 cannot be solely a gas cloud. Instead, two components are likely needed: an extended, cold, low-mass gas cloud responsible for most of the emission before G2 approached pericenter, and a very compact component such as a dusty stellar object that dominates the emission observed since pericenter.The authors argue that any future emission detected should no longer be from the cloud, but only from the compact core or dusty stellar object. Future observations should help us to confirm this model but in the meantime these simulations give us a better sense of why G2s encounter with Sgr A* was such a fizzle.CitationBrian J. Morsony et al 2017 ApJ 843 29. doi:10.3847/1538-4357/aa773d
Physiological changes, sleep, and morning mood in an isolated environment
NASA Technical Reports Server (NTRS)
Kraft, Norbert O.; Inoue, Natsuhiko; Mizuno, Koh; Ohshima, Hiroshi; Murai, Tadashi; Sekiguchi, Chiharu; Orasanu, J. M. (Principal Investigator)
2002-01-01
BACKGROUND: Previous isolation studies have shown increased 24-h urine volumes and body weight gains in subjects. This project examined those and other physiological variables in relationship to sleep motor activity, subjective sleep quality, mood, and complaints during confinement. METHODS: Six male and two female subjects lived for 7 d in the National Space Development Agency of Japan's isolation chamber, which simulates the interior of the Japanese Experiment Module. Each 24-h period included 6 h of sleep, 3 meals, and 20 min of exercise. Each morning, subjects completed Sleep Sensation and Complaint Index questionnaires. Catecholamine and creatinine excretion, urine volume, and body weight were measured on the 2 d before and 2 d after confinement, and sleep motor activity was measured during confinement. RESULTS: Confinement produced no significant change in body weight, urine volume, or questionnaire results. In contrast, epinephrine, norepinephrine, and sleep motor activity exhibited significant differences during confinement (p < 0.05). Higher nocturnal norepinephrine excretion correlated with higher sleep motor activity. CONCLUSION: The 24-h epinephrine values were slightly higher than normal throughout the experiment, but lower than for subjects working under time-stress. High sympathetic activity (as indicated by norepinephrine) may have interfered with sleep.
Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.
2017-01-01
Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496
Exploring perinatal shift-to-shift handover communication and process: an observational study.
Poot, Else P; de Bruijne, Martine C; Wouters, Maurice G A J; de Groot, Christianne J M; Wagner, Cordula
2014-04-01
Loss of situation awareness (SA) by health professionals during handover is a major threat to patient safety in perinatal care. SA refers to knowing what is going on around. Adequate handover communication and process may support situation assessment, a precursor of SA. This study describes current practices and opinions of perinatal handover to identify potential improvements. Structured direct observations of shift-to-shift patient handovers (n = 70) in an academic perinatal setting were used to measure handover communication (presence and order of levels of SA: current situation, background, assessment and recommendation) and process (duration, interruptions/distractions, eye contact, active inquiry and reading information back). Afterwards, receivers' opinions of handover communication (n = 51) were measured by means of a questionnaire. All levels of SA were present in 7% of handovers, the current situation in 86%, the background in 99%, an assessment in 24% and a recommendation in 46%. In 77% of handovers the background was mentioned first, followed by the current situation. Forty-four per cent of handovers took 2 minutes or more per patient. In 52% distractions occurred, in 43% there was no active inquiry, in 32% no eye contact and in 97% information was not read back. The overall mean of the receivers' opinions of handover communication was 4.1 (standard deviation ± 0.7; scale 1-5, where 5 is excellent). Perinatal handovers are currently at risk for inadequate situation assessment because of variability and limitations in handover communication and process. However, receivers' opinions of handover communication were very positive, indicating a lack of awareness of patient safety threats during handover. Therefore, the staff's awareness of current limitations should be raised, for example through video reflection or simulation training. © 2013 John Wiley & Sons, Ltd.
TVB-EduPack—An Interactive Learning and Scripting Platform for The Virtual Brain
Matzke, Henrik; Schirner, Michael; Vollbrecht, Daniel; Rothmeier, Simon; Llarena, Adalberto; Rojas, Raúl; Triebkorn, Paul; Domide, Lia; Mersmann, Jochen; Solodkin, Ana; Jirsa, Viktor K.; McIntosh, Anthony Randal; Ritter, Petra
2015-01-01
The Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full brain network simulation based on individual anatomical connectivity data. The framework addresses clinical and neuroscientific questions by simulating multi-scale neural dynamics that range from local population activity to large-scale brain function and related macroscopic signals like electroencephalography and functional magnetic resonance imaging. TVB is equipped with a graphical and a command-line interface to create models that capture the characteristic biological variability to predict the brain activity of individual subjects. To enable researchers from various backgrounds a quick start into TVB and brain network modeling in general, we developed an educational module: TVB-EduPack. EduPack offers two educational functionalities that seamlessly integrate into TVB's graphical user interface (GUI): (i) interactive tutorials introduce GUI elements, guide through the basic mechanics of software usage and develop complex use-case scenarios; animations, videos and textual descriptions transport essential principles of computational neuroscience and brain modeling; (ii) an automatic script generator records model parameters and produces input files for TVB's Python programming interface; thereby, simulation configurations can be exported as scripts that allow flexible customization of the modeling process and self-defined batch- and post-processing applications while benefitting from the full power of the Python language and its toolboxes. This article covers the implementation of TVB-EduPack and its integration into TVB architecture. Like TVB, EduPack is an open source community project that lives from the participation and contribution of its users. TVB-EduPack can be obtained as part of TVB from thevirtualbrain.org. PMID:26635597
2010-01-01
Background With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms. Results We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD) by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets) reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila. Conclusions Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics. PMID:20356411
A novel radioguided surgery technique exploiting β- decays
NASA Astrophysics Data System (ADS)
Camillocci, E. Solfaroli; Baroni, G.; Bellini, F.; Bocci, V.; Collamati, F.; Cremonesi, M.; De Lucia, E.; Ferroli, P.; Fiore, S.; Grana, C. M.; Marafini, M.; Mattei, I.; Morganti, S.; Paganelli, G.; Patera, V.; Piersanti, L.; Recchia, L.; Russomando, A.; Schiariti, M.; Sarti, A.; Sciubba, A.; Voena, C.; Faccini, R.
2014-03-01
The background induced by the high penetration power of the radiation is the main limiting factor of the current radio-guided surgery (RGS). To partially mitigate it, a RGS with β+-emitting radio-tracers has been suggested in literature. Here we propose the use of β--emitting radio-tracers and β- probes and discuss the advantage of this method with respect to the previously explored ones: the electron low penetration power allows for simple and versatile probes and could extend RGS to tumours for which background originating from nearby healthy tissue makes probes less effective. We developed a β- probe prototype and studied its performances on phantoms. By means of a detailed simulation we have also extrapolated the results to estimate the performances in a realistic case of meningioma, pathology which is going to be our first in-vivo test case. A good sensitivity to residuals down to 0.1 ml can be reached within 1 s with an administered activity smaller than those for PET-scans thus making the radiation exposure to medical personnel negligible.
Embryonic background risk promotes the survival of tadpoles facing surface predators
Chivers, Douglas P.; Ferrari, Maud C. O.
2018-01-01
Exposure to intense predation risk can induce morphological and behavioural phenotypes that prepare prey, often at young ages, for surviving attacks from unknown predators. However, previous studies revealed that this survival advantage depended on the predator species. Here, we used alarm cues from injured conspecifics to simulate a period of high predation risk for embryonic wood frogs, Lithobates sylvaticus. Two weeks post-hatching, we tested whether the embryonic risk exposure influenced survival in encounters with two novel predators: (1) a spider (Dolomedes sp.) that ambushes prey exclusively on the surface of the water, and (2) the adult predacious diving beetle (Dytiscus sp.) which displays underwater sit-and-wait posture and pursuit tactics. Tadpoles exposed to embryonic high-risk survived longer when encountering spiders, whereas background risk had no influence on survival with adult beetles. These findings, coupled with survival studies involving other predator types, indicate that a high-risk environment promotes tadpole survival in future encounters with unknown sit-and-wait predators, but at the cost of increased vulnerability to novel predators capable of active pursuit. PMID:29561913
A novel radioguided surgery technique exploiting β(-) decays.
Camillocci, E Solfaroli; Baroni, G; Bellini, F; Bocci, V; Collamati, F; Cremonesi, M; De Lucia, E; Ferroli, P; Fiore, S; Grana, C M; Marafini, M; Mattei, I; Morganti, S; Paganelli, G; Patera, V; Piersanti, L; Recchia, L; Russomando, A; Schiariti, M; Sarti, A; Sciubba, A; Voena, C; Faccini, R
2014-03-20
The background induced by the high penetration power of the radiation is the main limiting factor of the current radio-guided surgery (RGS). To partially mitigate it, a RGS with β(+)-emitting radio-tracers has been suggested in literature. Here we propose the use of β(-)-emitting radio-tracers and β(-) probes and discuss the advantage of this method with respect to the previously explored ones: the electron low penetration power allows for simple and versatile probes and could extend RGS to tumours for which background originating from nearby healthy tissue makes probes less effective. We developed a β(-) probe prototype and studied its performances on phantoms. By means of a detailed simulation we have also extrapolated the results to estimate the performances in a realistic case of meningioma, pathology which is going to be our first in-vivo test case. A good sensitivity to residuals down to 0.1 ml can be reached within 1 s with an administered activity smaller than those for PET-scans thus making the radiation exposure to medical personnel negligible.
NASA Astrophysics Data System (ADS)
Park, In-Hong; Min, Seung-Ki; Yeh, Sang-Wook; Weller, Evan; Kim, Seon Tae
2017-04-01
This study assessed the anthropogenic contribution to the 2015 record-breaking high sea surface temperatures (SSTs) observed in the central equatorial Pacific and tropical Indian Ocean. Considering a close link between extreme warm events in these regions, we conducted a joint attribution analysis using a fraction of attributable risk approach. Probability of occurrence of such extreme anomalies and long-term trends for the two oceanic regions were compared between CMIP5 multi-model simulations with and without anthropogenic forcing. Results show that the excessive warming in both regions is well beyond the range of natural variability and robustly attributable to human activities due to greenhouse gas increase. We further explored associated mechanisms including the Bjerknes feedback and background anthropogenic warming. It is concluded that background warming was the main contribution to the 2015 extreme SST event over the central equatorial Pacific Ocean on a developing El Niño condition, which in turn induced the extreme SST event over the tropical Indian Ocean through the atmospheric bridge effect.
A novel radioguided surgery technique exploiting β− decays
Camillocci, E. Solfaroli; Baroni, G.; Bellini, F.; Bocci, V.; Collamati, F.; Cremonesi, M.; De Lucia, E.; Ferroli, P.; Fiore, S.; Grana, C. M.; Marafini, M.; Mattei, I.; Morganti, S.; Paganelli, G.; Patera, V.; Piersanti, L.; Recchia, L.; Russomando, A.; Schiariti, M.; Sarti, A.; Sciubba, A.; Voena, C.; Faccini, R.
2014-01-01
The background induced by the high penetration power of the radiation is the main limiting factor of the current radio-guided surgery (RGS). To partially mitigate it, a RGS with β+-emitting radio-tracers has been suggested in literature. Here we propose the use of β−-emitting radio-tracers and β− probes and discuss the advantage of this method with respect to the previously explored ones: the electron low penetration power allows for simple and versatile probes and could extend RGS to tumours for which background originating from nearby healthy tissue makes probes less effective. We developed a β− probe prototype and studied its performances on phantoms. By means of a detailed simulation we have also extrapolated the results to estimate the performances in a realistic case of meningioma, pathology which is going to be our first in-vivo test case. A good sensitivity to residuals down to 0.1 ml can be reached within 1 s with an administered activity smaller than those for PET-scans thus making the radiation exposure to medical personnel negligible. PMID:24646766
DarkSide-20k: A 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, C.E.; et al.
Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LArTPC) with an active (fiducial) mass of 23 t (20 t). The DarkSide-20k LArTPC will be deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). Operation of DarkSide-50 demonstrated a major reduction in the dominantmore » $$^{39}$$Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of $$\\gt3\\times10^9$$ is achievable. This, along with the use of the veto system, is the key to unlocking the path to large LArTPC detector masses, while maintaining an "instrumental background-free" experiment, an experiment in which less than 0.1 events (other than $$\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuriya, Mutsuo; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582; Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, 240-8501
Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This primingmore » effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. - Highlights: • Background NE augments the responsiveness of astrocytes to subsequent NE stimulation. • The priming effect is independent of neuronal activity and mediated by βadrenoceptor. • Background subthreshold NE may play gliomodulatory roles in the cerebral cortex.« less
Influence of range-gated intensifiers on underwater imaging system SNR
NASA Astrophysics Data System (ADS)
Wang, Xia; Hu, Ling; Zhi, Qiang; Chen, Zhen-yue; Jin, Wei-qi
2013-08-01
Range-gated technology has been a hot research field in recent years due to its high effective back scattering eliminating. As a result, it can enhance the contrast between a target and its background and extent the working distance of the imaging system. The underwater imaging system is required to have the ability to image in low light level conditions, as well as the ability to eliminate the back scattering effect, which means that the receiver has to be high-speed external trigger function, high resolution, high sensitivity, low noise, higher gain dynamic range. When it comes to an intensifier, the noise characteristics directly restrict the observation effect and range of the imaging system. The background noise may decrease the image contrast and sharpness, even covering the signal making it impossible to recognize the target. So it is quite important to investigate the noise characteristics of intensifiers. SNR is an important parameter reflecting the noise features of a system. Through the use of underwater laser range-gated imaging prediction model, and according to the linear SNR system theory, the gated imaging noise performance of the present market adopted super second generation and generation Ⅲ intensifiers were theoretically analyzed. Based on the active laser underwater range-gated imaging model, the effect to the system by gated intensifiers and the relationship between the system SNR and MTF were studied. Through theoretical and simulation analysis to the image intensifier background noise and SNR, the different influence on system SNR by super second generation and generation Ⅲ ICCD was obtained. Range-gated system SNR formula was put forward, and compared the different effect influence on the system by using two kind of ICCDs was compared. According to the matlab simulation, a detailed analysis was carried out theoretically. All the work in this paper lays a theoretical foundation to further eliminating back scattering effect, improving image SNR, designing and manufacturing higher performance underwater range-gated imaging systems.
Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering
2012-01-01
Background Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Results Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms. Conclusions This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces. PMID:22871125
NASA Astrophysics Data System (ADS)
Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.
2013-07-01
In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), non-industrial combustion (SNAP2) and road transport (SNAP7). First the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a~second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase of the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, the component and station. Using national profiles for road transport showed important improvements of the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1 and 2 profiles were found for SO2. When using all new time profiles simultaneously in one simulation the daily average correlation coefficient increased by 0.05 (NO2), 0.07 (SO2) and 0.03 (PM10) at urban background stations in Germany. This exercise showed that to improve the performance of a CTM a better representation of the distribution of anthropogenic emission in time is recommendable. This can be done by developing a dynamical emission model which takes into account regional specific factors and meteorology.
Three-dimensional Hybrid Simulation Study of Anisotropic Turbulence in the Proton Kinetic Regime
NASA Astrophysics Data System (ADS)
Vasquez, Bernard J.; Markovskii, Sergei A.; Chandran, Benjamin D. G.
2014-06-01
Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing fluid electrons are conducted for a freely decaying turbulence that is anisotropic with respect to the background magnetic field. The turbulence evolution is determined by both the combined root-mean-square (rms) amplitude for fluctuating proton bulk velocity and magnetic field and by the ratio of perpendicular to parallel wavenumbers. This kind of relationship had been considered in the past with regard to interplanetary turbulence. The fluctuations nonlinearly evolve to a turbulent phase whose net wave vector anisotropy is usually more perpendicular than the initial one, irrespective of the initial ratio of perpendicular to parallel wavenumbers. Self-similar anisotropy evolution is found as a function of the rms amplitude and parallel wavenumber. Proton heating rates in the turbulent phase vary strongly with the rms amplitude but only weakly with the initial wave vector anisotropy. Even in the limit where wave vectors are confined to the plane perpendicular to the background magnetic field, the heating rate remains close to the corresponding case with finite parallel wave vector components. Simulation results obtained as a function of proton plasma to background magnetic pressure ratio β p in the range 0.1-0.5 show that the wave vector anisotropy also weakly depends on β p .
A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Holton, James R.
1997-01-01
A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.
Cheng, Adam; Donoghue, Aaron; Gilfoyle, Elaine; Eppich, Walter
2012-03-01
To review the essential elements of crisis resource management and provide a resource for instructors by describing how to use simulation-based training to teach crisis resource management principles in pediatric acute care contexts. A MEDLINE-based literature source. OUTLINE OF REVIEW: This review is divided into three main sections: Background, Principles of Crisis Resource Management, and Tools and Resources. The background section provides the brief history and definition of crisis resource management. The next section describes all the essential elements of crisis resource management, including leadership and followership, communication, teamwork, resource use, and situational awareness. This is followed by a review of evidence supporting the use of simulation-based crisis resource management training in health care. The last section provides the resources necessary to develop crisis resource management training using a simulation-based approach. This includes a description of how to design pediatric simulation scenarios, how to effectively debrief, and a list of potential assessment tools that instructors can use to evaluate crisis resource management performance during simulation-based training. Crisis resource management principles form the foundation for efficient team functioning and subsequent error reduction in high-stakes environments such as acute care pediatrics. Effective instructor training is required for those programs wishing to teach these principles using simulation-based learning. Dissemination and integration of these principles into pediatric critical care practice has the potential for a tremendous impact on patient safety and outcomes.
A beam hardening and dispersion correction for x-ray dark-field radiography.
Pelzer, Georg; Anton, Gisela; Horn, Florian; Rieger, Jens; Ritter, André; Wandner, Johannes; Weber, Thomas; Michel, Thilo
2016-06-01
X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.
Firefighters from Mayport Naval Station train at CCAFS
NASA Technical Reports Server (NTRS)
2000-01-01
A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
2000-09-14
KENNEDY SPACE CENTER, FLA. -- A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
2000-09-14
KENNEDY SPACE CENTER, FLA. -- A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
NASA Astrophysics Data System (ADS)
Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong
2016-09-01
Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere.
Vidović, Marija; Morina, Filis; Milić, Sonja; Zechmann, Bernd; Albert, Andreas; Winkler, Jana Barbro; Veljović Jovanović, Sonja
2015-05-01
We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 μmol m(-2) s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function. © 2014 John Wiley & Sons Ltd.
Improvement of the prompt-gamma neutron activation facility at Brookhaven National Laboratory.
Dilmanian, F A; Lidofsky, L J; Stamatelatos, I; Kamen, Y; Yasumura, S; Vartsky, D; Pierson, R N; Weber, D A; Moore, R I; Ma, R
1998-02-01
The prompt-gamma neutron activation facility at Brookhaven National Laboratory was upgraded to improve both the precision and accuracy of its in vivo determinations of total body nitrogen. The upgrade, guided by Monte Carlo simulations, involved elongating and modifying the source collimator and its shielding, repositioning the system's two NaI(Tl) detectors, and improving the neutron and gamma shielding of these detectors. The new source collimator has a graphite reflector around the 238PuBe neutron source to enhance the low-energy region of the neutron spectrum incident on the patient. The gamma detectors have been relocated from positions close to the upward-emerging collimated neutron beam to positions close to and at the sides of the patient. These modifications substantially reduced spurious counts resulting from the capture of small-angle scattered neutrons in the NaI detectors. The pile-up background under the 10.8 MeV 14N(n, gamma)15N spectral peak has been reduced so that the nitrogen peak-to-background ratio has been increased by a factor of 2.8. The resulting reduction in the coefficient of variation of the total body nitrogen measurements from 3% to 2.2% has improved the statistical significance of the results possible for any given number of patient measurements. The new system also has a more uniform composite sensitivity.
Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry
2008-01-01
Background and Aims AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. Methods The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Key Results Simulations were performed on tomato plants to demostrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. Conclusions The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment. PMID:17766310
NASA Astrophysics Data System (ADS)
Keilbach, D.; Drews, C.; Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.
2017-12-01
Using a test particle approach we have investigated, how an oxygen pickup ion torus velocity distribution is modified by continuous and intermittent alfvènic waves on timescales, where the gyro trajectory of each particle can be traced.We have therefore exposed the test particles to mono frequent waves, which expanded through the whole simulation in time and space. The general behavior of the pitch angle distribution is found to be stationary and a nonlinear function of the wave frequency, amplitude and the initial angle between wave elongation and field-perpendicular particle velocity vector. The figure shows the time-averaged pitch angle distributions as a function of the Doppler shifted wave frequency (where the Doppler shift was calculated with respect to the particles initial velocity) for three different wave amplitudes (labeled in each panel). The background field is chosen to be 5 nT and the 500 test particles were initially distributed on a torus with 120° pitch angle at a solar wind velocity of 450 km/s. Each y-slice of the histogram (which has been normalized to it's respective maximum) represents an individual run of the simulation.The frequency-dependent behavior of the test particles is found to be classifiable into the regimes of very low/high frequencies and frequencies close to first order resonance. We have found, that only in the latter regime the particles interact strongly with the wave, where in the time averaged histograms a branch structure is found, which was identified as a trace of particles co-moving with the wave phase. The magnitude of pitch angle change of these particles is as well as the frequency margin, where the branch structure is found, an increasing function with the wave amplitude.We have also investigated the interaction with mono frequent intermittent waves. Exposed to such waves a torus distribution is scattered in pitch angle space, whereas the pitch angle distribution is broadened systematically over time similar to pitch angle diffusion.The framework of our simulations is a first step toward understanding wave particle interactions at the most basic level and is readily expandable to e.g. the inclusion of multiple wave frequencies, intermittent wave activity, gradients in the background magnetic field or collisions with solar wind particles.
Wettstein, Richard B; Wilkins, Robert L; Gardner, Donna D; Restrepo, Ruben D
2011-03-01
Critical thinking is an important characteristic to develop in respiratory care students. We used the short-form Watson-Glaser Critical Thinking Appraisal instrument to measure critical-thinking ability in 55 senior respiratory care students in a baccalaureate respiratory care program. We calculated the Pearson correlation coefficient to assess the relationships between critical-thinking score, age, and student performance on the clinical-simulation component of the national respiratory care boards examination. We used chi-square analysis to assess the association between critical-thinking score and educational background. There was no significant relationship between critical-thinking score and age, or between critical-thinking score and student performance on the clinical-simulation component. There was a significant (P = .04) positive association between a strong science-course background and critical-thinking score, which might be useful in predicting a student's ability to perform in areas where critical thinking is of paramount importance, such as clinical competencies, and to guide candidate-selection for respiratory care programs.
Reverse Current Shock Induced by Plasma-Neutral Collision
NASA Astrophysics Data System (ADS)
Wongwaitayakornkul, Pakorn; Haw, Magnus; Li, Hui; Li, Shengtai; Bellan, Paul
2017-10-01
The Caltech solar experiment creates an arched plasma-filled flux rope expanding into low density background plasma. A layer of electrical current flowing in the opposite direction with respect to the flux rope current is induced in the background plasma just ahead of the flux rope. Two dimensional spatial and temporal measurements by a 3-dimensional magnetic vector probe demonstrate the existence of this induced current layer forming ahead of the flux rope. The induced current magnitude is 20% of the magnitude of the current in the flux rope. The reverse current in the low density background plasma is thought to be a diamagnetic response that shields out the magnetic field ahead of the propagation. The spatial and magnetic characteristics of the reverse current layer are consistent with similar shock structures seen in 3-dimensional ideal MHD numerical simulations performed on the Turquoise supercomputer cluster using the Los Alamos COMPutational Astrophysics Simulation Suite. This discovery of the induced diamagnetic current provides useful insights for space and solar plasma.
ERIC Educational Resources Information Center
Seman, Laio Oriel; Hausmann, Romeu; Bezerra, Eduardo Augusto
2018-01-01
Contribution: This paper presents the "PBL classroom model," an agent-based simulation (ABS) that allows testing of several scenarios of a project-based learning (PBL) application by considering different levels of soft-skills, and students' perception of the methodology. Background: While the community has made great advances in…
Force Measurement on the GLAST Delta II Flight
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Daniel
2009-01-01
This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.
NASA Technical Reports Server (NTRS)
Lytle, John
2001-01-01
This report provides an overview presentation of the 2000 NPSS (Numerical Propulsion System Simulation) Review and Planning Meeting. Topics include: 1) a background of the program; 2) 1999 Industry Feedback; 3) FY00 Status, including resource distribution and major accomplishments; 4) FY01 Major Milestones; and 5) Future direction for the program. Specifically, simulation environment/production software and NPSS CORBA Security Development are discussed.
USING MM5V3 WITH ETA ANALYSES FOR AIR-QUALITY MODELING AT THE EPA
Efforts have been underway since MM5v3 was released in July 1999 to set up air-quality simulations using Eta analyses as background fields. Our previous simulations used a one-way quadruple-nested set of domains with horizontal grid spacing of 108, 36, 12 and 4 km. With Eta a...
NASA Astrophysics Data System (ADS)
Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.
2014-01-01
In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), nonindustrial combustion (SNAP2) and road transport (SNAP7). First of all, the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance both separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. The LOTOS-EUROS simulations were performed for the year 2006 with a temporal resolution of 1 h and a horizontal resolution of approximately 25 × 25km2. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase in the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, component and station. Using national profiles for road transport showed important improvements in the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1 and 2 profiles were found for SO2. When using all new time profiles simultaneously in one simulation, the daily average correlation coefficient increased by 0.05 (NO2), 0.07 (SO2) and 0.03 (PM10) at urban background stations in Germany. This exercise showed that to improve the performance of a CTM, a better representation of the distribution of anthropogenic emission in time is recommendable. This can be done by developing a dynamical emission model that takes into account regional specific factors and meteorology.
System design and simulation of a long-wave infrared hyperspectral imaging spectrometer
NASA Astrophysics Data System (ADS)
Yuan, Li-yin; Xu, Wei-ming; He, Zhi-ping; Lin, Ying; Shu, Rong; Wang, Jian-yu
2009-07-01
A ground-based long-wave hyperspectral imaging spectrometer (LWHIS) is designed and simulated. The spectrometer is based on a focal plane array detector with a spectral response that covers the range 7700 to 9300 nm. Optical system of this instrument is all-reflective and provides up to 30 continuous spectral channels with 54 nm of dispersion per pixel. The entrance aperture is 20 mm and feeds an F/2 telescope front end. The telescope has a 11-deg field of view with 256 spatially resolved elements (detector pixel size is 30 μm). To get high enough signal noise rate (SNR), no concern about the electronic part, first, the cool stop of the detector is used as soon as possible, and second, background thermal radiance of the opto-mechanical system seen by the focal plane must be suppressed. Thus, the entire instrument is set in a vacuum chamber and the opto-mechanical subsystem is cooled by liquid nitrogen. The background thermal radiance verse different cases is discussed. Based on the radiation simulation and analysis, if the opto-mechanical subsystem of the spectrometer within the vacuum chamber is cooled blew 100 Kelvin, significant performance gains can be realized. The design and simulation provides an example for illustrating the design principles specific and radiation simulation to this type of system.
Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur
NASA Astrophysics Data System (ADS)
Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.
2014-01-01
X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.
Supernova neutrino detection in LZ
NASA Astrophysics Data System (ADS)
Khaitan, D.
2018-02-01
In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.
2013-09-01
of the cosmic microwave background dipole velocity onto the lens plane, as done by Kochanek (2004). We compare the simulated light curves to the...observer, the background source, the foreground lens galaxy, and its stars cause uncorrelated variations in the source magnification as a function of...hereafter SBS 0909; αJ2000 = 09h13m01.s05, δJ2000 = +52d59m28.s83) is a doubly-imaged quasar lens sys- tem in which the background quasar has redshift
NASA Astrophysics Data System (ADS)
Awadalla, Ahmed; Hegab, Omar A.; Ahmed, Mohammed A.; Hassan, Saad
2018-02-01
An integrated 1D model on seven wells has been performed to simulate the multi-tectonic phases and multiple thermal regimes in the Abu Rudeis-Sidri oilfield. Concordance between measured and calculated present-day temperatures is achieved with present-day heat flows in the range of 42-55 mW/m2. Reconstruction of the thermal and burial histories provides information on the paleotemperature profiles, the timing of thermal activation as well as the effect of the Oligo-Miocene rifting phases and its associated magmatic activity. The burial histories show the pre-rift subsidence was progressive but modest, whereas the syn-rift was more rapid (contemporaneous with the main rifting phases and basin formation). Finally, the early post-rift thermal subsidence was slow to moderate in contrast to the late post-rift thermal subsidence which was moderate to rapid. The simulated paleo heat flow illustrates a steady state for the pre-rift phase and non-steady state (transient) for syn-rift and postrift phases. Three geothermal regimes are recognized, each of which is associated with a specific geological domain. 1) A lower geothermal regime reflects the impact of stable tectonics (pre-rift). 2) The higher temperature distribution reflects the syn-rift high depositional rate as well as the impact of stretching and thinning (rifting phases) of the lithosphere. 3) A local higher geothermal pulse owing to the magmatic activity during the Oligo-Miocene time (ARM-1 and Sidri-7 wells). Paleoheat flow values of 100mW/m2 (Oligo-Miocene rifting phase) increased to 120mW/m2 (Miocene rifting phase) and lesser magnitude of 80mW/m2 (Mio- Pliocene reactivation phase) have been specified. These affected the thermal regime and temperature distribution by causing perturbations in subsurface temperatures. A decline in the background value of 60mW/m2 owing to conductive cooling has been assigned. The blanketing effect caused by low thermal conductivity of the basin-fill sediments has been simulated as well.
Parnia, Aidin; Yamani, Nikoo; Zamani, Ahmadreza; Badihian, Shervin; Manouchehri, Navid; Fakhri, Maryam
2017-01-01
A serious challenge to educate health staff for public health is to appear encouraging enough to persuade them for learning issues on this field and implementing new educational methods and innovative ways. Iran International Public Health Summer School (IPHS) made an effort to provide medical sciences students with a fortune to get familiar with and involved in public health. This study intended to evaluate the efficacy of this event. This cross-sectional study was performed in March-April 2015 by the help of an electronic self-administered questionnaire filled out by 49 Iranian participants 6 months after IPHS2014. The questionnaire assessed the main goals in seven main domains: Interest, activities, and general knowledge in the field of public health, general skills, educational methods, educational and executive schedules, and general satisfaction. Average scores of all domains were >3 (the mean), and all were statistically significant. The highest average score belonged to educational methods (3.92) and the lowest was calculated for the item regarding participants' activities on public health (3.5). No significant difference was found between positive answers of individuals who were interested or active in public health prior to the event and those who had no background. We believe IPHS was a unique instance in Public Health Education in Iran. Considering the level of success of this program to reach its goals for both students' with or without any previous background on public health, it is recommended as a general model to be simulated in other developing countries.
Fire Hose Instability in the Multiple Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Alexandrova, A.; Retino, A.; Divin, A. V.; Le Contel, O.; Matteini, L.; Breuillard, H.; Deca, J.; Catapano, F.; Cozzani, G.; Nakamura, R.; Panov, E. V.; Voros, Z.
2017-12-01
We present observations of multiple reconnection in the Earth's magnetotail. In particular, we observe an ion temperature anisotropy characterized by large temperature along the magnetic field, between the two active X-lines. The anisotropy is associated with right-hand polarized waves at frequencies lower than the ion cyclotron frequency and propagating obliquely to the background magnetic field. We show that the observed anisotropy and the wave properties are consistent with linear kinetic theory of fire hose instability. The observations are in agreement with the particle-in-cell simulations of multiple reconnection. The results suggest that the fire hose instability can develop during multiple reconnection as a consequence of the ion parallel anisotropy that is produced by counter-streaming ions trapped between the X-lines.
Rogue-wave bullets in a composite (2+1)D nonlinear medium.
Chen, Shihua; Soto-Crespo, Jose M; Baronio, Fabio; Grelu, Philippe; Mihalache, Dumitru
2016-07-11
We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise.
STS-105 crew poses for photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- An STS-102 crew member reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. On the horizon in the background can be seen the Vehicle Assembly Building. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
2008-05-07
CAPE CANAVERAL, Fla. -- With Launch Pad 39B in the background, STS-124 Pilot Ken Ham drives the M113 armored personnel carrier as part of emergency training. Behind him at right is Mission Specialist Karen Nyberg. At center is Battalion Chief George Hoggard providing supervision. Ham and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2013-01-01
Background Unexpected obstetric emergencies threaten the safety of pregnant women. As emergencies are rare, they are difficult to learn. Therefore, simulation-based medical education (SBME) seems relevant. In non-systematic reviews on SBME, medical simulation has been suggested to be associated with improved learner outcomes. However, many questions on how SBME can be optimized remain unanswered. One unresolved issue is how 'in situ simulation' (ISS) versus 'off site simulation' (OSS) impact learning. ISS means simulation-based training in the actual patient care unit (in other words, the labor room and operating room). OSS means training in facilities away from the actual patient care unit, either at a simulation centre or in hospital rooms that have been set up for this purpose. Methods and design The objective of this randomized trial is to study the effect of ISS versus OSS on individual learning outcome, safety attitude, motivation, stress, and team performance amongst multi-professional obstetric-anesthesia teams. The trial is a single-centre randomized superiority trial including 100 participants. The inclusion criteria were health-care professionals employed at the department of obstetrics or anesthesia at Rigshospitalet, Copenhagen, who were working on shifts and gave written informed consent. Exclusion criteria were managers with staff responsibilities, and staff who were actively taking part in preparation of the trial. The same obstetric multi-professional training was conducted in the two simulation settings. The experimental group was exposed to training in the ISS setting, and the control group in the OSS setting. The primary outcome is the individual score on a knowledge test. Exploratory outcomes are individual scores on a safety attitudes questionnaire, a stress inventory, salivary cortisol levels, an intrinsic motivation inventory, results from a questionnaire evaluating perceptions of the simulation and suggested changes needed in the organization, a team-based score on video-assessed team performance and on selected clinical performance. Discussion The perspective is to provide new knowledge on contextual effects of different simulation settings. Trial registration ClincialTrials.gov NCT01792674. PMID:23870501
Simulating southwestern U.S. desert dust influences on supercell thunderstorms
NASA Astrophysics Data System (ADS)
Lerach, David G.; Cotton, William R.
2018-05-01
Three-dimensional numerical simulations were performed to evaluate potential southwestern U.S. dust indirect microphysical and direct radiative impacts on a real severe storms outbreak. Increased solar absorption within the dust plume led to modest increases in pre-storm atmospheric stability at low levels, resulting in weaker convective updrafts and less widespread precipitation. Dust microphysical impacts on convection were minor in comparison, due in part to the lofted dust concentrations being relatively few in number when compared to the background (non-dust) aerosol population. While dust preferentially serving as cloud condensation nuclei (CCN) versus giant CCN had opposing effects on warm rain production, both scenarios resulted in ample supercooled water and subsequent glaciation aloft, yielding larger graupel and hail. Associated latent heating from condensation and freezing contributed little to overall updraft invigoration. With reduced rain production overall, the simulations that included dust effects experienced slightly reduced grid-cumulative precipitation and notably warmer and spatially smaller cold pools. Dust serving as ice nucleating particles did not appear to play a significant role. The presence of dust ultimately reduced the number of supercells produced but allowed for supercell evolution characterized by consistently higher values of relative vertical vorticity within simulated mesocyclones. Dust radiative and microphysical effects were relatively small in magnitude when compared to those from altering the background convective available potential energy and vertical wind shear. It is difficult to generalize such findings from a single event, however, due to a number of case-specific environmental factors. These include the nature of the low-level moisture advection and characteristics of the background aerosol distribution.
Radioactivity backgrounds in ZEPLIN-III
NASA Astrophysics Data System (ADS)
Araújo, H. M.; Akimov, D. Yu.; Barnes, E. J.; Belov, V. A.; Bewick, A.; Burenkov, A. A.; Chepel, V.; Currie, A.; Deviveiros, L.; Edwards, B.; Ghag, C.; Hollingsworth, A.; Horn, M.; Kalmus, G. E.; Kobyakin, A. S.; Kovalenko, A. G.; Lebedenko, V. N.; Lindote, A.; Lopes, M. I.; Lüscher, R.; Majewski, P.; Murphy, A. St. J.; Neves, F.; Paling, S. M.; Pinto da Cunha, J.; Preece, R.; Quenby, J. J.; Reichhart, L.; Scovell, P. R.; Silva, C.; Solovov, V. N.; Smith, N. J. T.; Smith, P. F.; Stekhanov, V. N.; Sumner, T. J.; Thorne, C.; Walker, R. J.
2012-03-01
We examine electron and nuclear recoil backgrounds from radioactivity in the ZEPLIN-III dark matter experiment at Boulby. The rate of low-energy electron recoils in the liquid xenon WIMP target is 0.75 ± 0.05 events/kg/day/keV, which represents a 20-fold improvement over the rate observed during the first science run. Energy and spatial distributions agree with those predicted by component-level Monte Carlo simulations propagating the effects of the radiological contamination measured for materials employed in the experiment. Neutron elastic scattering is predicted to yield 3.05 ± 0.5 nuclear recoils with energy 5-50 keV per year, which translates to an expectation of 0.4 events in a 1 yr dataset in anti-coincidence with the veto detector for realistic signal acceptance. Less obvious background sources are discussed, especially in the context of future experiments. These include contamination of scintillation pulses with Cherenkov light from Compton electrons and from β activity internal to photomultipliers, which can increase the size and lower the apparent time constant of the scintillation response. Another challenge is posed by multiple-scatter γ-rays with one or more vertices in regions that yield no ionisation. If the discrimination power achieved in the first run can be replicated, ZEPLIN-III should reach a sensitivity of ˜1 × 10-8pb · yr to the scalar WIMP-nucleon elastic cross-section, as originally conceived.
STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory (left) and Pilot Terence T. Henricks, positioned at their appointed stations on the forward flight deck, are joined by Mission Specialist (MS) F. Story Musgrave (center) and MS James S. Voss (standing). The crewmembers are participating in a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. A maze of panel switches appear overhead and in the background.
Development Of Maneuvering Autopilot For Flight Tests
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Walker, R. A.
1992-01-01
Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.
Earthquake precursors: activation or quiescence?
NASA Astrophysics Data System (ADS)
Rundle, John B.; Holliday, James R.; Yoder, Mark; Sachs, Michael K.; Donnellan, Andrea; Turcotte, Donald L.; Tiampo, Kristy F.; Klein, William; Kellogg, Louise H.
2011-10-01
We discuss the long-standing question of whether the probability for large earthquake occurrence (magnitudes m > 6.0) is highest during time periods of smaller event activation, or highest during time periods of smaller event quiescence. The physics of the activation model are based on an idea from the theory of nucleation, that a small magnitude earthquake has a finite probability of growing into a large earthquake. The physics of the quiescence model is based on the idea that the occurrence of smaller earthquakes (here considered as magnitudes m > 3.5) may be due to a mechanism such as critical slowing down, in which fluctuations in systems with long-range interactions tend to be suppressed prior to large nucleation events. To illuminate this question, we construct two end-member forecast models illustrating, respectively, activation and quiescence. The activation model assumes only that activation can occur, either via aftershock nucleation or triggering, but expresses no choice as to which mechanism is preferred. Both of these models are in fact a means of filtering the seismicity time-series to compute probabilities. Using 25 yr of data from the California-Nevada catalogue of earthquakes, we show that of the two models, activation and quiescence, the latter appears to be the better model, as judged by backtesting (by a slight but not significant margin). We then examine simulation data from a topologically realistic earthquake model for California seismicity, Virtual California. This model includes not only earthquakes produced from increases in stress on the fault system, but also background and off-fault seismicity produced by a BASS-ETAS driving mechanism. Applying the activation and quiescence forecast models to the simulated data, we come to the opposite conclusion. Here, the activation forecast model is preferred to the quiescence model, presumably due to the fact that the BASS component of the model is essentially a model for activated seismicity. These results lead to the (weak) conclusion that California seismicity may be characterized more by quiescence than by activation, and that BASS-ETAS models may not be robustly applicable to the real data.
Simulation results of a veto counter for the ClearPEM
NASA Astrophysics Data System (ADS)
Trummer, J.; Auffray, E.; Lecoq, P.
2009-04-01
The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. The ClearPEM uses the common radio pharmaceutical FDG for imaging cancer. As FDG is a rather non-specific radio tracer, it accumulates not only in cancer cells but in all cells with a high energy consumption, such as the heart and liver. This fact poses a problem especially in breast imaging, where the vicinity of the heart and other organs to the breast leads to a high background noise level in the scanner. In this work, a veto counter to reduce the background is described. Different configurations and their effectiveness were studied using the GATE simulation package.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, T. F.; Chen, Z. J.; Peng, X. Y.
A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometermore » at EAST are studied for future data interpretation.« less
Measurement of the small-scale structure of the intergalactic medium using close quasar pairs.
Rorai, Alberto; Hennawi, Joseph F; Oñorbe, Jose; White, Martin; Prochaska, J Xavier; Kulkarni, Girish; Walther, Michael; Lukić, Zarija; Lee, Khee-Gan
2017-04-28
The distribution of diffuse gas in the intergalactic medium (IGM) imprints a series of hydrogen absorption lines on the spectra of distant background quasars known as the Lyman-α forest. Cosmological hydrodynamical simulations predict that IGM density fluctuations are suppressed below a characteristic scale where thermal pressure balances gravity. We measured this pressure-smoothing scale by quantifying absorption correlations in a sample of close quasar pairs. We compared our measurements to hydrodynamical simulations, where pressure smoothing is determined by the integrated thermal history of the IGM. Our findings are consistent with standard models for photoionization heating by the ultraviolet radiation backgrounds that reionized the universe. Copyright © 2017, American Association for the Advancement of Science.
Adaptive nonlinear control for autonomous ground vehicles
NASA Astrophysics Data System (ADS)
Black, William S.
We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design nonlinear disturbance observers for both single-input-single-output and multi-input-multi-output systems. Finally, we show the performance of these observers with simulation results.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Activities; Proposed Collection; Comment Request; Background Checks for Contractor Employees (Renewal) AGENCY... the electronic docket, go to www.regulations.gov . Title: Background Checks for Contractor Employees... consolidated in 40 CFR part 9. Abstract: The EPA uses contractors to perform services throughout the nation...
Activation of Background Knowledge for Inference Making: Effects on Reading Comprehension
ERIC Educational Resources Information Center
Elbro, Carsten; Buch-Iversen, Ida
2013-01-01
Failure to "activate" relevant, existing background knowledge may be a cause of poor reading comprehension. This failure may cause particular problems with inferences that depend heavily on prior knowledge. Conversely, teaching how to use background knowledge in the context of gap-filling inferences could improve reading comprehension in…
2014-01-01
Background We propose a mathematical model for multichannel assessment of the trial-to-trial variability of auditory evoked brain responses in magnetoencephalography (MEG). Methods Following the work of de Munck et al., our approach is based on the maximum likelihood estimation and involves an approximation of the spatio-temporal covariance of the contaminating background noise by means of the Kronecker product of its spatial and temporal covariance matrices. Extending the work of de Munck et al., where the trial-to-trial variability of the responses was considered identical to all channels, we evaluate it for each individual channel. Results Simulations with two equivalent current dipoles (ECDs) with different trial-to-trial variability, one seeded in each of the auditory cortices, were used to study the applicability of the proposed methodology on the sensor level and revealed spatial selectivity of the trial-to-trial estimates. In addition, we simulated a scenario with neighboring ECDs, to show limitations of the method. We also present an illustrative example of the application of this methodology to real MEG data taken from an auditory experimental paradigm, where we found hemispheric lateralization of the habituation effect to multiple stimulus presentation. Conclusions The proposed algorithm is capable of reconstructing lateralization effects of the trial-to-trial variability of evoked responses, i.e. when an ECD of only one hemisphere habituates, whereas the activity of the other hemisphere is not subject to habituation. Hence, it may be a useful tool in paradigms that assume lateralization effects, like, e.g., those involving language processing. PMID:24939398
NASA Astrophysics Data System (ADS)
Mereminskiy, I. A.; Filippova, E. V.; Burenin, R. A.; Sazonov, S. Yu.; Pavlinsky, M. N.; Tkachenko, A. Yu.; Lapshov, I. Yu.; Shtykovskiy, A. E.; Krivonos, R. A.
2018-02-01
To choose the best strategy for conducting a deep extragalactic survey with the ART-XC X-ray telescope onboard the Spectrum-Röntgen-Gamma (SRG) observatory and to estimate the expected results, we have simulated the observations of a 1.1° × 1.1° field in the 5-11 and 8-24 keV energy bands. For this purpose, we have constructed a model of the active galactic nuclei (AGN) population that reflects the properties of the X-ray emission from such objects. The photons that "arrived" from these sources were passed through a numerical model of the telescope, while the resulting data were processed with the standard ART-XC data processing pipeline. We show that several hundred AGNs at redshifts up to z ≈ 3 will be detected in such a survey over 1.2 Ms of observations with the expected charged particle background levels. Among them there will be heavily obscured AGNs, which will allow a more accurate estimate of the fraction of such objects in the total population to be made. Source confusion is expected at fluxes below 2 × 10-14 erg s-1 cm-2 (5-11 keV). Since this value can exceed the source detection threshold in a deep survey at low particle background levels, it may turn out to be more interesting to conduct a survey of larger area (several square degrees) but smaller depth, obtaining a sample of approximately four hundred bright AGNs as a result.
1995-07-01
designated pixel. OTF analysis will be similar to the analysis discussed previously. Any nonuniformity in the response of the chosen pixel to the...not seen by the trace. Nonuniformity of the pixel response must be also be taken into account. Background measurements of the maximum and minimum...to the background field of regard. To incorporate and support interactive CLDWSG operation and to accommodate simulation of nonuniform anisoplanatic
NASA Astrophysics Data System (ADS)
Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.
2017-02-01
Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.
Influence of optical activity on rogue waves propagating in chiral optical fibers.
Temgoua, D D Estelle; Kofane, T C
2016-06-01
We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.
Masticatory Muscle Sleep Background EMG Activity is Elevated in Myofascial TMD Patients
Raphael, Karen G.; Janal, Malvin N.; Sirois, David A.; Dubrovsky, Boris; Wigren, Pia E.; Klausner, Jack J.; Krieger, Ana C.; Lavigne, Gilles J.
2013-01-01
Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n=124) with a demographically matched control group without TMD (n=46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artifacts were removed. Results indicated that median background EMG during these non SB-event periods was significantly higher (p<.01) for women with myofascial TMD (median=3.31 μV and mean=4.98 μV) than for control women (median=2.83 μV and mean=3.88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0–10 numerical scale) on post sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. PMID:24237356
Issues and progress in determining background ozone and particle concentrations
NASA Astrophysics Data System (ADS)
Pinto, J. P.
2011-12-01
Exposure to ambient ozone is associated with a variety of health outcomes ranging from mild breathing discomfort to mortality. For the purpose of health risk and policy assessments EPA evaluates the anthropogenic increase in ozone above background concentrations and has defined the North American (NA) background concentration of O3 as that which would occur in the U.S. in the absence of anthropogenic emissions of precursors in the U.S., Canada, and Mexico. Monthly average NA background ozone has been used to evaluate health risks, but EPA and state air quality managers must also estimate day specific ozone background levels for high ozone episodes as part of urban scale photochemical modeling efforts to support ozone regulatory programs. The background concentration of O3 is of more concern than other air pollutants because it typically represents a much larger fraction of observed O3 than do the backgrounds of other criteria pollutants (particulate matter (PM), CO, NO2, SO2). NA background cannot be determined directly from ambient monitoring data because of the influence of NA precursor emissions on formation of ozone within NA. Instead, estimates of NA background O3 have been based on GEOS-Chem using simulations in which NA anthropogenic precursor emissions are zeroed out. Thus, modeled NA background O3 includes contributions from natural sources of precursors (including CH4, NMVOCs, NOx, and CO) everywhere in the world, anthropogenic sources of precursors outside of NA, and downward transport of O3 from the stratosphere. Although monitoring data cannot determine NA background directly, measurements by satellites, aircraft, ozonesondes and surface monitors have proved to be highly useful for identifying sources of background O3 and for evaluating the performance of the GEOS-Chem model. Model simulated NA background concentrations are strong functions of location and season with large inter-day variability and with values increasing with elevation and higher in spring than in summer, and tend to be highest in the Intermountain West during spring. Estimates of annual average NA and other background definitions that have been considered will be presented. Issues associated with modeling background concentrations for both health-risk assessments and for episodic regulatory air quality programs will be discussed, and proposals for new atmospheric measurements and model improvements needed to quantify more accurately background contributions to ozone will also be presented. The views expressed are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.
Mean-variance model for portfolio optimization with background risk based on uncertainty theory
NASA Astrophysics Data System (ADS)
Zhai, Jia; Bai, Manying
2018-04-01
The aim of this paper is to develop a mean-variance model for portfolio optimization considering the background risk, liquidity and transaction cost based on uncertainty theory. In portfolio selection problem, returns of securities and assets liquidity are assumed as uncertain variables because of incidents or lacking of historical data, which are common in economic and social environment. We provide crisp forms of the model and a hybrid intelligent algorithm to solve it. Under a mean-variance framework, we analyze the portfolio frontier characteristic considering independently additive background risk. In addition, we discuss some effects of background risk and liquidity constraint on the portfolio selection. Finally, we demonstrate the proposed models by numerical simulations.
Signal and background considerations for the MRSt on the National Ignition Facility (NIF).
Wink, C W; Frenje, J A; Hilsabeck, T J; Bionta, R; Khater, H Y; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D
2016-11-01
A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ∼20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5-10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt is reduced 50-100 times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edlund, Jeffrey A.; Tinto, Massimo; Krolak, Andrzej
LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic gravitational radiation. In the low part of its frequency band, the LISA strain sensitivity will be dominated by the incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own Galaxy. In order to estimate the magnitude of the LISA response to this background, we have simulated a synthesized population that recently appeared in the literature. Our approach relies on entirely analytic expressions of themore » LISA time-delay interferometric responses to the gravitational radiation emitted by such systems, which allows us to implement a computationally efficient and accurate simulation of the background in the LISA data. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA noise for a period of about two months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. This suggests that, during this time period, LISA could search for other gravitational wave signals incoming from directions that are away from the galactic plane. Since the galactic white-dwarf background will be observed by LISA not as a stationary but rather as a cyclostationary random process with a period of 1 yr, we summarize the theory of cyclostationary random processes, present the corresponding generalized spectral method needed to characterize such process, and make a comparison between our analytic results and those obtained by applying our method to the simulated data. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarf binary systems present in our Galaxy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, R.J.; Westley, G.W.; Herzog, H.W. Jr.
This report documents the development of MULTIREGION, a computer model of regional and interregional socio-economic development. The MULTIREGION model interprets the economy of each BEA economic area as a labor market, measures all activity in terms of people as members of the population (labor supply) or as employees (labor demand), and simultaneously simulates or forecasts the demands and supplies of labor in all BEA economic areas at five-year intervals. In general the outputs of MULTIREGION are intended to resemble those of the Water Resource Council's OBERS projections and to be put to similar planning and analysis purposes. This report hasmore » been written at two levels to serve the needs of multiple audiences. The body of the report serves as a fairly nontechnical overview of the entire MULTIREGION project; a series of technical appendixes provide detailed descriptions of the background empirical studies of births, deaths, migration, labor force participation, natural resource employment, manufacturing employment location, and local service employment used to construct the model.« less
McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P
2011-05-01
Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.
Towards Multiscale Interactions Between Tearing Modes and Microturbulence
NASA Astrophysics Data System (ADS)
Williams, Z. R.; Pueschel, M. J.; Terry, P. W.
2017-10-01
Work on the Madison Symmetric Torus Reversed-Field Pinch (RFP) has shown that large-scale tearing modes present in standard operation are highly detrimental to confinement. These tearing modes, even when reduced in improved confinement regimes of operation, significantly affect zonal flow activity and play a large role in setting microturbulent-induced transport levels. Previous gyrokinetic work has shown that a small but finite tearing fluctuation amplitude is necessary to produce transport values in agreement with experimental observation. This has previously been implemented via an ad-hoc, constant-in-time A∥ perturbation. This work details self-consistent modeling of tearing fluctuations in the RFP using the
Simulation Models of Obesity: A Review of the Literature and Implications for Research and Policy
Levy, David T.; Mabry, Patricia L.; Wang, Y. Claire; Gortmaker, Steve; Huang, Terry T-K; Marsh, Tim; Moodie, Marj; Swinburn, Boyd
2015-01-01
Simulation models (SMs) combine information from a variety of sources to provide a useful tool for examining how the effects of obesity unfold over time and impact population health. SMs can aid in the understanding of the complex interaction of the drivers of diet and activity and their relation to health outcomes. As emphasized in a recently released report of the Institute or Medicine, SMs can be especially useful for considering the potential impact of an array of policies that will be required to tackle the obesity problem. The purpose of this paper is to present an overview of existing SMs for obesity. First, a background section introduces the different types of models, explains how models are constructed, shows the utility of SMs, and discusses their strengths and weaknesses. Using these typologies, we then briefly review extant obesity SMs. We categorize these models according to their focus: health and economic outcomes, trends in obesity as a function of past trends, physiologically-based behavioral models, environmental contributors to obesity, and policy interventions. Finally, we suggest directions for future research. PMID:20973910
2013-01-01
Background As there are limited patients for chronic lymphocytic leukaemia trials, it is important that statistical methodologies in Phase II efficiently select regimens for subsequent evaluation in larger-scale Phase III trials. Methods We propose the screened selection design (SSD), which is a practical multi-stage, randomised Phase II design for two experimental arms. Activity is first evaluated by applying Simon’s two-stage design (1989) on each arm. If both are active, the play-the-winner selection strategy proposed by Simon, Wittes and Ellenberg (SWE) (1985) is applied to select the superior arm. A variant of the design, Modified SSD, also allows the arm with the higher response rates to be recommended only if its activity rate is greater by a clinically-relevant value. The operating characteristics are explored via a simulation study and compared to a Bayesian Selection approach. Results Simulations showed that with the proposed SSD, it is possible to retain the sample size as required in SWE and obtain similar probabilities of selecting the correct superior arm of at least 90%; with the additional attractive benefit of reducing the probability of selecting ineffective arms. This approach is comparable to a Bayesian Selection Strategy. The Modified SSD performs substantially better than the other designs in selecting neither arm if the underlying rates for both arms are desirable but equivalent, allowing for other factors to be considered in the decision making process. Though its probability of correctly selecting a superior arm might be reduced, it still performs reasonably well. It also reduces the probability of selecting an inferior arm. Conclusions SSD provides an easy to implement randomised Phase II design that selects the most promising treatment that has shown sufficient evidence of activity, with available R codes to evaluate its operating characteristics. PMID:23819695
Photographer: N/A Boeing CH-47B (USA 66-19138 NASA-737) Chinook in-flight simulator with Moffet
NASA Technical Reports Server (NTRS)
1985-01-01
Photographer: N/A Boeing CH-47B (USA 66-19138 NASA-737) Chinook in-flight simulator with Moffet Field Navy Hangar and Ames VMS in background. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 133
Astronauts Young and Duke collect rock samples along simulated lunar traverse
NASA Technical Reports Server (NTRS)
1971-01-01
Astronauts John W. Young, left, prime crew commander for Apollo 16, and Charles M. Duke Jr., lunar module pilot, collect rock samples along a simulated lunar traverse route in the Coso Hills, near Ridgecrest, California. Astronaut Eugene A. Cernan, right background, prime crew commander for Apollo 17, looks on. The astronauts trained at the U.S. Naval Ordnance Test Station.