Sample records for background stratified poisson

  1. Background stratified Poisson regression analysis of cohort data.

    PubMed

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  2. Background oriented schlieren in a density stratified fluid.

    PubMed

    Verso, Lilly; Liberzon, Alex

    2015-10-01

    Non-intrusive quantitative fluid density measurement methods are essential in the stratified flow experiments. Digital imaging leads to synthetic schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an extension to one of these methods, called background oriented schlieren, is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multimedia imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide a non-intrusive full-field density measurements of transparent liquids.

  3. Poisson mixture model for measurements using counting.

    PubMed

    Miller, Guthrie; Justus, Alan; Vostrotin, Vadim; Dry, Donald; Bertelli, Luiz

    2010-03-01

    Starting with the basic Poisson statistical model of a counting measurement process, 'extraPoisson' variance or 'overdispersion' are included by assuming that the Poisson parameter representing the mean number of counts itself comes from another distribution. The Poisson parameter is assumed to be given by the quantity of interest in the inference process multiplied by a lognormally distributed normalising coefficient plus an additional lognormal background that might be correlated with the normalising coefficient (shared uncertainty). The example of lognormal environmental background in uranium urine data is discussed. An additional uncorrelated background is also included. The uncorrelated background is estimated from a background count measurement using Bayesian arguments. The rather complex formulas are validated using Monte Carlo. An analytical expression is obtained for the probability distribution of gross counts coming from the uncorrelated background, which allows straightforward calculation of a classical decision level in the form of a gross-count alarm point with a desired false-positive rate. The main purpose of this paper is to derive formulas for exact likelihood calculations in the case of various kinds of backgrounds.

  4. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.

    PubMed

    Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio

    2014-11-24

    The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine

  5. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, David; Miranda, Eva

    2018-01-01

    We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

  6. Dipolar eddies in a decaying stratified turbulent flow

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.

    2008-02-01

    Laboratory experiments on the evolution of dipolar (momentum) eddies in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum eddies, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum eddies, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar eddies in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike currents and other naturally/artificially generated large dipolar eddies in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the eddies and random background motions.

  7. Normal forms for Poisson maps and symplectic groupoids around Poisson transversals

    NASA Astrophysics Data System (ADS)

    Frejlich, Pedro; Mărcuț, Ioan

    2018-03-01

    Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.

  8. Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.

    PubMed

    Frejlich, Pedro; Mărcuț, Ioan

    2018-01-01

    Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.

  9. Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian; Punjabi, Naresh M.

    2013-01-01

    Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings of subjects and repeated measures within those subjects, as comparing diseased to non-diseased subjects while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed. Supplementary material includes the analyzed data set as well as the code for a reproducible analysis. PMID:22241689

  10. DISCRETE COMPOUND POISSON PROCESSES AND TABLES OF THE GEOMETRIC POISSON DISTRIBUTION.

    DTIC Science & Technology

    A concise summary of the salient properties of discrete Poisson processes , with emphasis on comparing the geometric and logarithmic Poisson processes . The...the geometric Poisson process are given for 176 sets of parameter values. New discrete compound Poisson processes are also introduced. These...processes have properties that are particularly relevant when the summation of several different Poisson processes is to be analyzed. This study provides the

  11. Poisson Coordinates.

    PubMed

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  12. Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.

    PubMed

    Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram

    2017-02-01

    In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.

  13. Poisson Regression Analysis of Illness and Injury Surveillance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences duemore » to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to

  14. Effects of unstratified and centre-stratified randomization in multi-centre clinical trials.

    PubMed

    Anisimov, Vladimir V

    2011-01-01

    This paper deals with the analysis of randomization effects in multi-centre clinical trials. The two randomization schemes most often used in clinical trials are considered: unstratified and centre-stratified block-permuted randomization. The prediction of the number of patients randomized to different treatment arms in different regions during the recruitment period accounting for the stochastic nature of the recruitment and effects of multiple centres is investigated. A new analytic approach using a Poisson-gamma patient recruitment model (patients arrive at different centres according to Poisson processes with rates sampled from a gamma distributed population) and its further extensions is proposed. Closed-form expressions for corresponding distributions of the predicted number of the patients randomized in different regions are derived. In the case of two treatments, the properties of the total imbalance in the number of patients on treatment arms caused by using centre-stratified randomization are investigated and for a large number of centres a normal approximation of imbalance is proved. The impact of imbalance on the power of the study is considered. It is shown that the loss of statistical power is practically negligible and can be compensated by a minor increase in sample size. The influence of patient dropout is also investigated. The impact of randomization on predicted drug supply overage is discussed. Copyright © 2010 John Wiley & Sons, Ltd.

  15. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S.; Genovese, L.

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and themore » linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.« less

  16. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.

    PubMed

    Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  17. Schrödinger-Poisson-Vlasov-Poisson correspondence

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Lancaster, Lachlan; Fialkov, Anastasia; Becerra, Fernando; Chavanis, Pierre-Henri

    2018-04-01

    The Schrödinger-Poisson equations describe the behavior of a superfluid Bose-Einstein condensate under self-gravity with a 3D wave function. As ℏ/m →0 , m being the boson mass, the equations have been postulated to approximate the collisionless Vlasov-Poisson equations also known as the collisionless Boltzmann-Poisson equations. The latter describe collisionless matter with a 6D classical distribution function. We investigate the nature of this correspondence with a suite of numerical test problems in 1D, 2D, and 3D along with analytic treatments when possible. We demonstrate that, while the density field of the superfluid always shows order unity oscillations as ℏ/m →0 due to interference and the uncertainty principle, the potential field converges to the classical answer as (ℏ/m )2. Thus, any dynamics coupled to the superfluid potential is expected to recover the classical collisionless limit as ℏ/m →0 . The quantum superfluid is able to capture rich phenomena such as multiple phase-sheets, shell-crossings, and warm distributions. Additionally, the quantum pressure tensor acts as a regularizer of caustics and singularities in classical solutions. This suggests the exciting prospect of using the Schrödinger-Poisson equations as a low-memory method for approximating the high-dimensional evolution of the Vlasov-Poisson equations. As a particular example we consider dark matter composed of ultralight axions, which in the classical limit (ℏ/m →0 ) is expected to manifest itself as collisionless cold dark matter.

  18. Nambu-Poisson gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-06-01

    We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.

  19. Fractional Poisson Fields and Martingales

    NASA Astrophysics Data System (ADS)

    Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely

    2018-02-01

    We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

  20. On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action

    NASA Astrophysics Data System (ADS)

    Chekhov, L. O.; Mazzocco, M.

    2017-12-01

    Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.

  1. Understanding poisson regression.

    PubMed

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  2. Poisson denoising on the sphere: application to the Fermi gamma ray space telescope

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I.

    2010-07-01

    The Large Area Telescope (LAT), the main instrument of the Fermi gamma-ray Space telescope, detects high energy gamma rays with energies from 20 MeV to more than 300 GeV. The two main scientific objectives, the study of the Milky Way diffuse background and the detection of point sources, are complicated by the lack of photons. That is why we need a powerful Poisson noise removal method on the sphere which is efficient on low count Poisson data. This paper presents a new multiscale decomposition on the sphere for data with Poisson noise, called multi-scale variance stabilizing transform on the sphere (MS-VSTS). This method is based on a variance stabilizing transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has a quasi constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. MS-VSTS consists of decomposing the data into a sparse multi-scale dictionary like wavelets or curvelets, and then applying a VST on the coefficients in order to get almost Gaussian stabilized coefficients. In this work, we use the isotropic undecimated wavelet transform (IUWT) and the curvelet transform as spherical multi-scale transforms. Then, binary hypothesis testing is carried out to detect significant coefficients, and the denoised image is reconstructed with an iterative algorithm based on hybrid steepest descent (HSD). To detect point sources, we have to extract the Galactic diffuse background: an extension of the method to background separation is then proposed. In contrary, to study the Milky Way diffuse background, we remove point sources with a binary mask. The gaps have to be interpolated: an extension to inpainting is then proposed. The method, applied on simulated Fermi LAT data, proves to be adaptive, fast and easy to implement.

  3. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    NASA Astrophysics Data System (ADS)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  4. Risk-Stratified Imputation in Survival Analysis

    PubMed Central

    Kennedy, Richard E.; Adragni, Kofi P.; Tiwari, Hemant K.; Voeks, Jenifer H.; Brott, Thomas G.; Howard, George

    2013-01-01

    Background Censoring that is dependent on covariates associated with survival can arise in randomized trials due to changes in recruitment and eligibility criteria to minimize withdrawals, potentially leading to biased treatment effect estimates. Imputation approaches have been proposed to address censoring in survival analysis; and while these approaches may provide unbiased estimates of treatment effects, imputation of a large number of outcomes may over- or underestimate the associated variance based on the imputation pool selected. Purpose We propose an improved method, risk-stratified imputation, as an alternative to address withdrawal related to the risk of events in the context of time-to-event analyses. Methods Our algorithm performs imputation from a pool of replacement subjects with similar values of both treatment and covariate(s) of interest, that is, from a risk-stratified sample. This stratification prior to imputation addresses the requirement of time-to-event analysis that censored observations are representative of all other observations in the risk group with similar exposure variables. We compared our risk-stratified imputation to case deletion and bootstrap imputation in a simulated dataset in which the covariate of interest (study withdrawal) was related to treatment. A motivating example from a recent clinical trial is also presented to demonstrate the utility of our method. Results In our simulations, risk-stratified imputation gives estimates of treatment effect comparable to bootstrap and auxiliary variable imputation while avoiding inaccuracies of the latter two in estimating the associated variance. Similar results were obtained in analysis of clinical trial data. Limitations Risk-stratified imputation has little advantage over other imputation methods when covariates of interest are not related to treatment, although its performance is superior when covariates are related to treatment. Risk-stratified imputation is intended for

  5. Cumulative Poisson Distribution Program

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert

    1990-01-01

    Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.

  6. Nonlinear Poisson Equation for Heterogeneous Media

    PubMed Central

    Hu, Langhua; Wei, Guo-Wei

    2012-01-01

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937

  7. Nonlinear Poisson equation for heterogeneous media.

    PubMed

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Poisson's ratio of fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Christiansson, Henrik; Helsing, Johan

    1996-05-01

    Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.

  9. Properties of the Bivariate Delayed Poisson Process

    DTIC Science & Technology

    1974-07-01

    and Lewis (1972) in their Berkeley Symposium paper and here their analysis of the bivariate Poisson processes (without Poisson noise) is carried... Poisson processes . They cannot, however, be independent Poisson processes because their events are associated in pairs by the displace- ment centres...process because its marginal processes for events of each type are themselves (univariate) Poisson processes . Cox and Lewis (1972) assumed a

  10. From Loss of Memory to Poisson.

    ERIC Educational Resources Information Center

    Johnson, Bruce R.

    1983-01-01

    A way of presenting the Poisson process and deriving the Poisson distribution for upper-division courses in probability or mathematical statistics is presented. The main feature of the approach lies in the formulation of Poisson postulates with immediate intuitive appeal. (MNS)

  11. Instabilities in a staircase stratified shear flow

    NASA Astrophysics Data System (ADS)

    Ponetti, G.; Balmforth, N. J.; Eaves, T. S.

    2018-01-01

    We study stratified shear flow instability where the density profile takes the form of a staircase of interfaces separating uniform layers. Internal gravity waves riding on density interfaces can resonantly interact due to a background shear flow, resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield instabilities. We analyse the linear instability of a staircase with piecewise-constant density profile embedded in a background linear shear flow, locating all the unstable modes and identifying the strongest. The interaction between nearest-neighbour interfaces leads to the most unstable modes. The nonlinear dynamics of the instabilities are explored in the long-wavelength, weakly stratified limit (the defect approximation). Unstable modes on adjacent interfaces saturate by rolling up the intervening layer into a distinctive billow. These nonlinear structures coexist when stacked vertically and are bordered by the sharp density gradients that are the remnants of the steps of the original staircase. Horizontal averages remain layer-like.

  12. Multiparameter linear least-squares fitting to Poisson data one count at a time

    NASA Technical Reports Server (NTRS)

    Wheaton, Wm. A.; Dunklee, Alfred L.; Jacobsen, Allan S.; Ling, James C.; Mahoney, William A.; Radocinski, Robert G.

    1995-01-01

    A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multicomponent linear model, with underlying physical count rates or fluxes which are to be estimated from the data. Despite its conceptual simplicity, the linear least-squares (LLSQ) method for solving this problem has generally been limited to situations in which the number n(sub i) of counts in each bin i is not too small, conventionally more than 5-30. It seems to be widely believed that the failure of the LLSQ method for small counts is due to the failure of the Poisson distribution to be even approximately normal for small numbers. The cause is more accurately the strong anticorrelation between the data and the wieghts w(sub i) in the weighted LLSQ method when square root of n(sub i) instead of square root of bar-n(sub i) is used to approximate the uncertainties, sigma(sub i), in the data, where bar-n(sub i) = E(n(sub i)), the expected value of N(sub i). We show in an appendix that, avoiding this approximation, the correct equations for the Poisson LLSQ (PLLSQ) problems are actually identical to those for the maximum likelihood estimate using the exact Poisson distribution. We apply the method to solve a problem in high-resolution gamma-ray spectroscopy for the JPL High-Resolution Gamma-Ray Spectrometer flown on HEAO 3. Systematic error in subtracting the strong, highly variable background encountered in the low-energy gamma-ray region can be significantly reduced by closely pairing source and background data in short segments. Significant results can be built up by weighted averaging of the net fluxes obtained from the subtraction of many individual source/background pairs. Extension of the approach to complex situations, with multiple cosmic sources and realistic background parameterizations, requires a means of efficiently fitting to data from single scans in the narrow (approximately = 1.2 ke

  13. Constructions and classifications of projective Poisson varieties

    NASA Astrophysics Data System (ADS)

    Pym, Brent

    2018-03-01

    This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.

  14. Constructions and classifications of projective Poisson varieties.

    PubMed

    Pym, Brent

    2018-01-01

    This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.

  15. Nonlocal Poisson-Fermi model for ionic solvent.

    PubMed

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  16. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to

  17. Direct Numerical Simulation of a Weakly Stratified Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Redford, J. A.; Lund, T. S.; Coleman, Gary N.

    2014-01-01

    Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.

  18. On the Singularity of the Vlasov-Poisson System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    and Hong Qin, Jian Zheng

    2013-04-26

    The Vlasov-Poisson system can be viewed as the collisionless limit of the corresponding Fokker- Planck-Poisson system. It is reasonable to expect that the result of Landau damping can also be obtained from the Fokker-Planck-Poisson system when the collision frequency v approaches zero. However, we show that the colllisionless Vlasov-Poisson system is a singular limit of the collisional Fokker-Planck-Poisson system, and Landau's result can be recovered only as the approaching zero from the positive side.

  19. On the singularity of the Vlasov-Poisson system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian; Qin, Hong; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08550

    2013-09-15

    The Vlasov-Poisson system can be viewed as the collisionless limit of the corresponding Fokker-Planck-Poisson system. It is reasonable to expect that the result of Landau damping can also be obtained from the Fokker-Planck-Poisson system when the collision frequency ν approaches zero. However, we show that the collisionless Vlasov-Poisson system is a singular limit of the collisional Fokker-Planck-Poisson system, and Landau's result can be recovered only as the ν approaches zero from the positive side.

  20. On the fractal characterization of Paretian Poisson processes

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo I.; Sokolov, Igor M.

    2012-06-01

    Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities.

  1. NEWTPOIS- NEWTON POISSON DISTRIBUTION PROGRAM

    NASA Technical Reports Server (NTRS)

    Bowerman, P. N.

    1994-01-01

    The cumulative poisson distribution program, NEWTPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714), can be used independently of one another. NEWTPOIS determines percentiles for gamma distributions with integer shape parameters and calculates percentiles for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. NEWTPOIS determines the Poisson parameter (lambda), that is; the mean (or expected) number of events occurring in a given unit of time, area, or space. Given that the user already knows the cumulative probability for a specific number of occurrences (n) it is usually a simple matter of substitution into the Poisson distribution summation to arrive at lambda. However, direct calculation of the Poisson parameter becomes difficult for small positive values of n and unmanageable for large values. NEWTPOIS uses Newton's iteration method to extract lambda from the initial value condition of the Poisson distribution where n=0, taking successive estimations until some user specified error term (epsilon) is reached. The NEWTPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting epsilon, n, and the cumulative probability of the occurrence of n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 30K. NEWTPOIS was developed in 1988.

  2. Algorithm Calculates Cumulative Poisson Distribution

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Nolty, Robert C.; Scheuer, Ernest M.

    1992-01-01

    Algorithm calculates accurate values of cumulative Poisson distribution under conditions where other algorithms fail because numbers are so small (underflow) or so large (overflow) that computer cannot process them. Factors inserted temporarily to prevent underflow and overflow. Implemented in CUMPOIS computer program described in "Cumulative Poisson Distribution Program" (NPO-17714).

  3. Poisson Mixture Regression Models for Heart Disease Prediction.

    PubMed

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  4. Poisson Mixture Regression Models for Heart Disease Prediction

    PubMed Central

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  5. Calculation of the Poisson cumulative distribution function

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Nolty, Robert G.; Scheuer, Ernest M.

    1990-01-01

    A method for calculating the Poisson cdf (cumulative distribution function) is presented. The method avoids computer underflow and overflow during the process. The computer program uses this technique to calculate the Poisson cdf for arbitrary inputs. An algorithm that determines the Poisson parameter required to yield a specified value of the cdf is presented.

  6. Graphic Simulations of the Poisson Process.

    DTIC Science & Technology

    1982-10-01

    RANDOM NUMBERS AND TRANSFORMATIONS..o......... 11 Go THE RANDOM NUMBERGENERATOR....... .oo..... 15 III. POISSON PROCESSES USER GUIDE....oo.ooo ......... o...again. In the superimposed mode, two Poisson processes are active, each with a different rate parameter, (call them Type I and Type II with respective...occur. The value ’p’ is generated by the following equation where ’Li’ and ’L2’ are the rates of the two Poisson processes ; p = Li / (Li + L2) The value

  7. Poisson Spot with Magnetic Levitation

    ERIC Educational Resources Information Center

    Hoover, Matthew; Everhart, Michael; D'Arruda, Jose

    2010-01-01

    In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.

  8. Newton/Poisson-Distribution Program

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Scheuer, Ernest M.

    1990-01-01

    NEWTPOIS, one of two computer programs making calculations involving cumulative Poisson distributions. NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714) used independently of one another. NEWTPOIS determines Poisson parameter for given cumulative probability, from which one obtains percentiles for gamma distributions with integer shape parameters and percentiles for X(sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Program written in C.

  9. A Martingale Characterization of Mixed Poisson Processes.

    DTIC Science & Technology

    1985-10-01

    03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht

  10. Predictors of the number of under-five malnourished children in Bangladesh: application of the generalized poisson regression model

    PubMed Central

    2013-01-01

    Background Malnutrition is one of the principal causes of child mortality in developing countries including Bangladesh. According to our knowledge, most of the available studies, that addressed the issue of malnutrition among under-five children, considered the categorical (dichotomous/polychotomous) outcome variables and applied logistic regression (binary/multinomial) to find their predictors. In this study malnutrition variable (i.e. outcome) is defined as the number of under-five malnourished children in a family, which is a non-negative count variable. The purposes of the study are (i) to demonstrate the applicability of the generalized Poisson regression (GPR) model as an alternative of other statistical methods and (ii) to find some predictors of this outcome variable. Methods The data is extracted from the Bangladesh Demographic and Health Survey (BDHS) 2007. Briefly, this survey employs a nationally representative sample which is based on a two-stage stratified sample of households. A total of 4,460 under-five children is analysed using various statistical techniques namely Chi-square test and GPR model. Results The GPR model (as compared to the standard Poisson regression and negative Binomial regression) is found to be justified to study the above-mentioned outcome variable because of its under-dispersion (variance < mean) property. Our study also identify several significant predictors of the outcome variable namely mother’s education, father’s education, wealth index, sanitation status, source of drinking water, and total number of children ever born to a woman. Conclusions Consistencies of our findings in light of many other studies suggest that the GPR model is an ideal alternative of other statistical models to analyse the number of under-five malnourished children in a family. Strategies based on significant predictors may improve the nutritional status of children in Bangladesh. PMID:23297699

  11. Paretian Poisson Processes

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Klafter, Joseph

    2008-05-01

    Many random populations can be modeled as a countable set of points scattered randomly on the positive half-line. The points may represent magnitudes of earthquakes and tornados, masses of stars, market values of public companies, etc. In this article we explore a specific class of random such populations we coin ` Paretian Poisson processes'. This class is elemental in statistical physics—connecting together, in a deep and fundamental way, diverse issues including: the Poisson distribution of the Law of Small Numbers; Paretian tail statistics; the Fréchet distribution of Extreme Value Theory; the one-sided Lévy distribution of the Central Limit Theorem; scale-invariance, renormalization and fractality; resilience to random perturbations.

  12. Poisson's spot and Gouy phase

    NASA Astrophysics Data System (ADS)

    da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos

    2016-12-01

    Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules.

  13. Unimodularity criteria for Poisson structures on foliated manifolds

    NASA Astrophysics Data System (ADS)

    Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury

    2018-03-01

    We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.

  14. Characterization of Nonhomogeneous Poisson Processes Via Moment Conditions.

    DTIC Science & Technology

    1986-08-01

    Poisson processes play an important role in many fields. The Poisson process is one of the simplest counting processes and is a building block for...place of independent increments. This provides a somewhat different viewpoint for examining Poisson processes . In addition, new characterizations for

  15. Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0

    NASA Astrophysics Data System (ADS)

    Lundberg, J.; Conrad, J.; Rolke, W.; Lopez, A.

    2010-03-01

    A C++ class was written for the calculation of frequentist confidence intervals using the profile likelihood method. Seven combinations of Binomial, Gaussian, Poissonian and Binomial uncertainties are implemented. The package provides routines for the calculation of upper and lower limits, sensitivity and related properties. It also supports hypothesis tests which take uncertainties into account. It can be used in compiled C++ code, in Python or interactively via the ROOT analysis framework. Program summaryProgram title: TRolke version 2.0 Catalogue identifier: AEFT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 3431 No. of bytes in distributed program, including test data, etc.: 21 789 Distribution format: tar.gz Programming language: ISO C++. Computer: Unix, GNU/Linux, Mac. Operating system: Linux 2.6 (Scientific Linux 4 and 5, Ubuntu 8.10), Darwin 9.0 (Mac-OS X 10.5.8). RAM:˜20 MB Classification: 14.13. External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: The problem is to calculate a frequentist confidence interval on the parameter of a Poisson process with statistical or systematic uncertainties in signal efficiency or background. Solution method: Profile likelihood method, Analytical Running time:<10 seconds per extracted limit.

  16. Poisson geometry from a Dirac perspective

    NASA Astrophysics Data System (ADS)

    Meinrenken, Eckhard

    2018-03-01

    We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.

  17. Information transmission using non-poisson regular firing.

    PubMed

    Koyama, Shinsuke; Omi, Takahiro; Kass, Robert E; Shinomoto, Shigeru

    2013-04-01

    In many cortical areas, neural spike trains do not follow a Poisson process. In this study, we investigate a possible benefit of non-Poisson spiking for information transmission by studying the minimal rate fluctuation that can be detected by a Bayesian estimator. The idea is that an inhomogeneous Poisson process may make it difficult for downstream decoders to resolve subtle changes in rate fluctuation, but by using a more regular non-Poisson process, the nervous system can make rate fluctuations easier to detect. We evaluate the degree to which regular firing reduces the rate fluctuation detection threshold. We find that the threshold for detection is reduced in proportion to the coefficient of variation of interspike intervals.

  18. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    PubMed Central

    2013-01-01

    Background The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Results Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. Conclusions In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. PMID:23442253

  19. Sparse Poisson noisy image deblurring.

    PubMed

    Carlavan, Mikael; Blanc-Féraud, Laure

    2012-04-01

    Deblurring noisy Poisson images has recently been a subject of an increasing amount of works in many areas such as astronomy and biological imaging. In this paper, we focus on confocal microscopy, which is a very popular technique for 3-D imaging of biological living specimens that gives images with a very good resolution (several hundreds of nanometers), although degraded by both blur and Poisson noise. Deconvolution methods have been proposed to reduce these degradations, and in this paper, we focus on techniques that promote the introduction of an explicit prior on the solution. One difficulty of these techniques is to set the value of the parameter, which weights the tradeoff between the data term and the regularizing term. Only few works have been devoted to the research of an automatic selection of this regularizing parameter when considering Poisson noise; therefore, it is often set manually such that it gives the best visual results. We present here two recent methods to estimate this regularizing parameter, and we first propose an improvement of these estimators, which takes advantage of confocal images. Following these estimators, we secondly propose to express the problem of the deconvolution of Poisson noisy images as the minimization of a new constrained problem. The proposed constrained formulation is well suited to this application domain since it is directly expressed using the antilog likelihood of the Poisson distribution and therefore does not require any approximation. We show how to solve the unconstrained and constrained problems using the recent alternating-direction technique, and we present results on synthetic and real data using well-known priors, such as total variation and wavelet transforms. Among these wavelet transforms, we specially focus on the dual-tree complex wavelet transform and on the dictionary composed of curvelets and an undecimated wavelet transform.

  20. Poly-symplectic Groupoids and Poly-Poisson Structures

    NASA Astrophysics Data System (ADS)

    Martinez, Nicolas

    2015-05-01

    We introduce poly-symplectic groupoids, which are natural extensions of symplectic groupoids to the context of poly-symplectic geometry, and define poly-Poisson structures as their infinitesimal counterparts. We present equivalent descriptions of poly-Poisson structures, including one related with AV-Dirac structures. We also discuss symmetries and reduction in the setting of poly-symplectic groupoids and poly-Poisson structures, and use our viewpoint to revisit results and develop new aspects of the theory initiated in Iglesias et al. (Lett Math Phys 103:1103-1133, 2013).

  1. Study of MRI in stratified viscous plasma configuration

    NASA Astrophysics Data System (ADS)

    Carlevaro, Nakia; Montani, Giovanni; Renzi, Fabrizio

    2017-02-01

    We analyze the morphology of the magneto-rotational instability (MRI) for a stratified viscous plasma disk configuration in differential rotation, taking into account the so-called corotation theorem for the background profile. In order to select the intrinsic Alfvénic nature of MRI, we deal with an incompressible plasma and we adopt a formulation of the local perturbation analysis based on the use of the magnetic flux function as a dynamical variable. Our study outlines, as consequence of the corotation condition, a marked asymmetry of the MRI with respect to the equatorial plane, particularly evident in a complete damping of the instability over a positive critical height on the equatorial plane. We also emphasize how such a feature is already present (although less pronounced) even in the ideal case, restoring a dependence of the MRI on the stratified morphology of the gravitational field.

  2. Evaluating the double Poisson generalized linear model.

    PubMed

    Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique

    2013-10-01

    The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A test of inflated zeros for Poisson regression models.

    PubMed

    He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan

    2017-01-01

    Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.

  4. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.

    PubMed

    Hougaard, P; Lee, M L; Whitmore, G A

    1997-12-01

    Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.

  5. Poisson denoising on the sphere

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.

    2009-08-01

    In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.

  6. Relaxed Poisson cure rate models.

    PubMed

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution.

    PubMed

    Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton

    2018-03-13

    The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

  8. Analyzing hospitalization data: potential limitations of Poisson regression.

    PubMed

    Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R

    2015-08-01

    Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  9. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  10. Noncommutative gauge theory for Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2000-09-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  11. Saint-Venant end effects for materials with negative Poisson's ratios

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.

    1992-01-01

    Results are presented from an analysis of Saint-Venant end effects for materials with negative Poisson's ratio. Examples are presented showing that slow decay of end stress occurs in circular cylinders of negative Poisson's ratio, whereas a sandwich panel containing rigid face sheets and a compliant core exhibits no anomalous effects for negative Poisson's ratio (but exhibits slow stress decay for core Poisson's ratios approaching 0.5). In sand panels with stiff but not perfectly rigid face sheets, a negative Poisson's ratio results in end stress decay, which is faster than it would be otherwise. It is suggested that the slow decay previously predicted for sandwich strips in plane deformation as a result of the geometry can be mitigated by the use of a negative Poisson's ratio material for the core.

  12. Scaling the Poisson Distribution

    ERIC Educational Resources Information Center

    Farnsworth, David L.

    2014-01-01

    We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented.

  13. Identification of a Class of Filtered Poisson Processes.

    DTIC Science & Technology

    1981-01-01

    LD-A135 371 IDENTIFICATION OF A CLASS OF FILERED POISSON PROCESSES I AU) NORTH CAROLINA UNIV AT CHAPEL HIL DEPT 0F STATISTICS D DE RRUC ET AL 1981...STNO&IO$ !tt ~ 4.s " . , ".7" -L N ~ TITLE :IDENTIFICATION OF A CLASS OF FILTERED POISSON PROCESSES Authors : DE BRUCQ Denis - GUALTIEROTTI Antonio...filtered Poisson processes is intro- duced : the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown

  14. Stratifying photo plots into volume classes...by crown closure comparator

    Treesearch

    Robert C. Aldrich

    1967-01-01

    As an aid to aerial photo interpretation, a Crown Closure Comparator has been developed. Printed as a positive film transparency, this device shows tree crowns as open dots on a black background. The Comparator is used to stratify I-acre plots into broad volume classes on single aerial photos using 4 crown-diameter and 9 crown-closure classes. It can also be used for...

  15. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    PubMed

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  16. A Three-dimensional Polymer Scaffolding Material Exhibiting a Zero Poisson's Ratio.

    PubMed

    Soman, Pranav; Fozdar, David Y; Lee, Jin Woo; Phadke, Ameya; Varghese, Shyni; Chen, Shaochen

    2012-05-14

    Poisson's ratio describes the degree to which a material contracts (expands) transversally when axially strained. A material with a zero Poisson's ratio does not transversally deform in response to an axial strain (stretching). In tissue engineering applications, scaffolding having a zero Poisson's ratio (ZPR) may be more suitable for emulating the behavior of native tissues and accommodating and transmitting forces to the host tissue site during wound healing (or tissue regrowth). For example, scaffolding with a zero Poisson's ratio may be beneficial in the engineering of cartilage, ligament, corneal, and brain tissues, which are known to possess Poisson's ratios of nearly zero. Here, we report a 3D biomaterial constructed from polyethylene glycol (PEG) exhibiting in-plane Poisson's ratios of zero for large values of axial strain. We use digital micro-mirror device projection printing (DMD-PP) to create single- and double-layer scaffolds composed of semi re-entrant pores whose arrangement and deformation mechanisms contribute the zero Poisson's ratio. Strain experiments prove the zero Poisson's behavior of the scaffolds and that the addition of layers does not change the Poisson's ratio. Human mesenchymal stem cells (hMSCs) cultured on biomaterials with zero Poisson's ratio demonstrate the feasibility of utilizing these novel materials for biological applications which require little to no transverse deformations resulting from axial strains. Techniques used in this work allow Poisson's ratio to be both scale-independent and independent of the choice of strut material for strains in the elastic regime, and therefore ZPR behavior can be imparted to a variety of photocurable biomaterial.

  17. Alternative Derivations for the Poisson Integral Formula

    ERIC Educational Resources Information Center

    Chen, J. T.; Wu, C. S.

    2006-01-01

    Poisson integral formula is revisited. The kernel in the Poisson integral formula can be derived in a series form through the direct BEM free of the concept of image point by using the null-field integral equation in conjunction with the degenerate kernels. The degenerate kernels for the closed-form Green's function and the series form of Poisson…

  18. The solution of large multi-dimensional Poisson problems

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1974-01-01

    The Buneman algorithm for solving Poisson problems can be adapted to solve large Poisson problems on computers with a rotating drum memory so that the computation is done with very little time lost due to rotational latency of the drum.

  19. Method of Poisson's ratio imaging within a material part

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1996-01-01

    The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.

  20. Simulation Methods for Poisson Processes in Nonstationary Systems.

    DTIC Science & Technology

    1978-08-01

    for simulation of nonhomogeneous Poisson processes is stated with log-linear rate function. The method is based on an identity relating the...and relatively efficient new method for simulation of one-dimensional and two-dimensional nonhomogeneous Poisson processes is described. The method is

  1. Modified Regression Correlation Coefficient for Poisson Regression Model

    NASA Astrophysics Data System (ADS)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  2. Monitoring Poisson observations using combined applications of Shewhart and EWMA charts

    NASA Astrophysics Data System (ADS)

    Abujiya, Mu'azu Ramat

    2017-11-01

    The Shewhart and exponentially weighted moving average (EWMA) charts for nonconformities are the most widely used procedures of choice for monitoring Poisson observations in modern industries. Individually, the Shewhart EWMA charts are only sensitive to large and small shifts, respectively. To enhance the detection abilities of the two schemes in monitoring all kinds of shifts in Poisson count data, this study examines the performance of combined applications of the Shewhart, and EWMA Poisson control charts. Furthermore, the study proposes modifications based on well-structured statistical data collection technique, ranked set sampling (RSS), to detect shifts in the mean of a Poisson process more quickly. The relative performance of the proposed Shewhart-EWMA Poisson location charts is evaluated in terms of the average run length (ARL), standard deviation of the run length (SDRL), median run length (MRL), average ratio ARL (ARARL), average extra quadratic loss (AEQL) and performance comparison index (PCI). Consequently, all the new Poisson control charts based on RSS method are generally more superior than most of the existing schemes for monitoring Poisson processes. The use of these combined Shewhart-EWMA Poisson charts is illustrated with an example to demonstrate the practical implementation of the design procedure.

  3. Limitations of Poisson statistics in describing radioactive decay.

    PubMed

    Sitek, Arkadiusz; Celler, Anna M

    2015-12-01

    The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Poisson image reconstruction with Hessian Schatten-norm regularization.

    PubMed

    Lefkimmiatis, Stamatios; Unser, Michael

    2013-11-01

    Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.

  5. Modeling laser velocimeter signals as triply stochastic Poisson processes

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  6. A comparison between Poisson and zero-inflated Poisson regression models with an application to number of black spots in Corriedale sheep

    PubMed Central

    Naya, Hugo; Urioste, Jorge I; Chang, Yu-Mei; Rodrigues-Motta, Mariana; Kremer, Roberto; Gianola, Daniel

    2008-01-01

    Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP) models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep. PMID:18558072

  7. Universal Poisson Statistics of mRNAs with Complex Decay Pathways.

    PubMed

    Thattai, Mukund

    2016-01-19

    Messenger RNA (mRNA) dynamics in single cells are often modeled as a memoryless birth-death process with a constant probability per unit time that an mRNA molecule is synthesized or degraded. This predicts a Poisson steady-state distribution of mRNA number, in close agreement with experiments. This is surprising, since mRNA decay is known to be a complex process. The paradox is resolved by realizing that the Poisson steady state generalizes to arbitrary mRNA lifetime distributions. A mapping between mRNA dynamics and queueing theory highlights an identifiability problem: a measured Poisson steady state is consistent with a large variety of microscopic models. Here, I provide a rigorous and intuitive explanation for the universality of the Poisson steady state. I show that the mRNA birth-death process and its complex decay variants all take the form of the familiar Poisson law of rare events, under a nonlinear rescaling of time. As a corollary, not only steady-states but also transients are Poisson distributed. Deviations from the Poisson form occur only under two conditions, promoter fluctuations leading to transcriptional bursts or nonindependent degradation of mRNA molecules. These results place severe limits on the power of single-cell experiments to probe microscopic mechanisms, and they highlight the need for single-molecule measurements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Intertime jump statistics of state-dependent Poisson processes.

    PubMed

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  9. Poisson traces, D-modules, and symplectic resolutions

    NASA Astrophysics Data System (ADS)

    Etingof, Pavel; Schedler, Travis

    2018-03-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  10. Poisson traces, D-modules, and symplectic resolutions.

    PubMed

    Etingof, Pavel; Schedler, Travis

    2018-01-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  11. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.

    PubMed

    Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai

    2011-01-01

    Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.

  12. Evolutionary inference via the Poisson Indel Process.

    PubMed

    Bouchard-Côté, Alexandre; Jordan, Michael I

    2013-01-22

    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.

  13. Evolutionary inference via the Poisson Indel Process

    PubMed Central

    Bouchard-Côté, Alexandre; Jordan, Michael I.

    2013-01-01

    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114–124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments. PMID:23275296

  14. Minimum risk wavelet shrinkage operator for Poisson image denoising.

    PubMed

    Cheng, Wu; Hirakawa, Keigo

    2015-05-01

    The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.

  15. Fuzzy classifier based support vector regression framework for Poisson ratio determination

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa

    2013-09-01

    Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.

  16. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  17. Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.

    PubMed

    Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng

    2018-06-01

    The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.

  18. On covariant Poisson brackets in classical field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forger, Michael; Salles, Mário O.; Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN

    2015-10-15

    How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket,more » applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.« less

  19. Exact solution for the Poisson field in a semi-infinite strip.

    PubMed

    Cohen, Yossi; Rothman, Daniel H

    2017-04-01

    The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.

  20. A Method of Poisson's Ration Imaging Within a Material Part

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1994-01-01

    The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data.

  1. Fractional poisson--a simple dose-response model for human norovirus.

    PubMed

    Messner, Michael J; Berger, Philip; Nappier, Sharon P

    2014-10-01

    This study utilizes old and new Norovirus (NoV) human challenge data to model the dose-response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta-Poisson dose-response model that includes parameters for virus aggregation and for a beta-distribution that describes variable susceptibility among hosts. The quality of the beta-Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two-parameter beta-distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta-Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta-Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta-Poisson model. At low, environmentally relevant exposure levels (<100), estimation error is small for the fractional Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low-dose data would be of great value to further clarify the NoV dose-response relationship and to support improved risk assessment for environmentally relevant exposures. © 2014 Society for Risk Analysis Published 2014. This article is a U.S. Government work and is in the public domain for the U.S.A.

  2. Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.

    PubMed

    Francis, Royce A; Geedipally, Srinivas Reddy; Guikema, Seth D; Dhavala, Soma Sekhar; Lord, Dominique; LaRocca, Sarah

    2012-01-01

    Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression. © 2011 Society for Risk Analysis.

  3. Reference analysis of the signal + background model in counting experiments

    NASA Astrophysics Data System (ADS)

    Casadei, D.

    2012-01-01

    The model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered from a Bayesian point of view. This is a widely used model for the searches of rare or exotic events in presence of a background source, as for example in the searches performed by high-energy physics experiments. In the assumption of prior knowledge about the background yield, a reference prior is obtained for the signal alone and its properties are studied. Finally, the properties of the full solution, the marginal reference posterior, are illustrated with few examples.

  4. Non-Poisson Processes: Regression to Equilibrium Versus Equilibrium Correlation Functions

    DTIC Science & Technology

    2004-07-07

    ARTICLE IN PRESSPhysica A 347 (2005) 268–2880378-4371/$ - doi:10.1016/j Correspo E-mail adwww.elsevier.com/locate/physaNon- Poisson processes : regression...05.40.a; 89.75.k; 02.50.Ey Keywords: Stochastic processes; Non- Poisson processes ; Liouville and Liouville-like equations; Correlation function...which is not legitimate with renewal non- Poisson processes , is a correct property if the deviation from the exponential relaxation is obtained by time

  5. Investigating on the Differences between Triggered and Background Seismicity in Italy and Southern California.

    NASA Astrophysics Data System (ADS)

    Stallone, A.; Marzocchi, W.

    2017-12-01

    Earthquake occurrence may be approximated by a multidimensional Poisson clustering process, where each point of the Poisson process is replaced by a cluster of points, the latter corresponding to the well-known aftershock sequence (triggered events). Earthquake clusters and their parents are assumed to occur according to a Poisson process at a constant temporal rate proportional to the tectonic strain rate, while events within a cluster are modeled as generations of dependent events reproduced by a branching process. Although the occurrence of such space-time clusters is a general feature in different tectonic settings, seismic sequences seem to have marked differences from region to region: one example, among many others, is that seismic sequences of moderate magnitude in Italian Apennines seem to last longer than similar seismic sequences in California. In this work we investigate on the existence of possible differences in the earthquake clustering process in these two areas. At first, we separate the triggered and background components of seismicity in the Italian and Southern California seismic catalog. Then we study the space-time domain of the triggered earthquakes with the aim to identify possible variations in the triggering properties across the two regions. In the second part of the work we focus our attention on the characteristics of the background seismicity in both seismic catalogs. The assumption of time stationarity of the background seismicity (which includes both cluster parents and isolated events) is still under debate. Some authors suggest that the independent component of seismicity could undergo transient perturbations at various time scales due to different physical mechanisms, such as, for example, viscoelastic relaxation, presence of fluids, non-stationary plate motion, etc, whose impact may depend on the tectonic setting. Here we test if the background seismicity in the two regions can be satisfactorily described by the time

  6. Poisson process stimulation of an excitable membrane cable model.

    PubMed Central

    Goldfinger, M D

    1986-01-01

    The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505

  7. Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading

    DOE PAGES

    Sanborn, Brett; Song, Bo

    2018-06-03

    Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less

  8. Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo

    Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less

  9. The BRST complex of homological Poisson reduction

    NASA Astrophysics Data System (ADS)

    Müller-Lennert, Martin

    2017-02-01

    BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.

  10. Electrostatic forces in the Poisson-Boltzmann systems

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-09-01

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.

  11. Image denoising in mixed Poisson-Gaussian noise.

    PubMed

    Luisier, Florian; Blu, Thierry; Unser, Michael

    2011-03-01

    We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy.

  12. Poisson's Ratio and Auxetic Properties of Natural Rocks

    NASA Astrophysics Data System (ADS)

    Ji, Shaocheng; Li, Le; Motra, Hem Bahadur; Wuttke, Frank; Sun, Shengsi; Michibayashi, Katsuyoshi; Salisbury, Matthew H.

    2018-02-01

    Here we provide an appraisal of the Poisson's ratios (υ) for natural elements, common oxides, silicate minerals, and rocks with the purpose of searching for naturally auxetic materials. The Poisson's ratios of equivalently isotropic polycrystalline aggregates were calculated from dynamically measured elastic properties. Alpha-cristobalite is currently the only known naturally occurring mineral that has exclusively negative υ values at 20-1,500°C. Quartz and potentially berlinite (AlPO4) display auxetic behavior in the vicinity of their α-β structure transition. None of the crystalline igneous and metamorphic rocks (e.g., amphibolite, gabbro, granite, peridotite, and schist) display auxetic behavior at pressures of >5 MPa and room temperature. Our experimental measurements showed that quartz-rich sedimentary rocks (i.e., sandstone and siltstone) are most likely to be the only rocks with negative Poisson's ratios at low confining pressures (≤200 MPa) because their main constituent mineral, α-quartz, already has extremely low Poisson's ratio (υ = 0.08) and they contain microcracks, micropores, and secondary minerals. This finding may provide a new explanation for formation of dome-and-basin structures in quartz-rich sedimentary rocks in response to a horizontal compressional stress in the upper crust.

  13. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  14. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.

    PubMed

    Zhang, Jiachao; Hirakawa, Keigo

    2017-04-01

    This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.

  15. Delineating high-density areas in spatial Poisson fields from strip-transect sampling using indicator geostatistics: application to unexploded ordnance removal.

    PubMed

    Saito, Hirotaka; McKenna, Sean A

    2007-07-01

    An approach for delineating high anomaly density areas within a mixture of two or more spatial Poisson fields based on limited sample data collected along strip transects was developed. All sampled anomalies were transformed to anomaly count data and indicator kriging was used to estimate the probability of exceeding a threshold value derived from the cdf of the background homogeneous Poisson field. The threshold value was determined so that the delineation of high-density areas was optimized. Additionally, a low-pass filter was applied to the transect data to enhance such segmentation. Example calculations were completed using a controlled military model site, in which accurate delineation of clusters of unexploded ordnance (UXO) was required for site cleanup.

  16. Poisson-type inequalities for growth properties of positive superharmonic functions.

    PubMed

    Luan, Kuan; Vieira, John

    2017-01-01

    In this paper, we present new Poisson-type inequalities for Poisson integrals with continuous data on the boundary. The obtained inequalities are used to obtain growth properties at infinity of positive superharmonic functions in a smooth cone.

  17. Poisson Noise Removal in Spherical Multichannel Images: Application to Fermi data

    NASA Astrophysics Data System (ADS)

    Schmitt, Jérémy; Starck, Jean-Luc; Fadili, Jalal; Digel, Seth

    2012-03-01

    The Fermi Gamma-ray Space Telescope, which was launched by NASA in June 2008, is a powerful space observatory which studies the high-energy gamma-ray sky [5]. Fermi's main instrument, the Large Area Telescope (LAT), detects photons in an energy range between 20MeV and >300 GeV. The LAT is much more sensitive than its predecessor, the energetic gamma ray experiment telescope (EGRET) telescope on the Compton Gamma-ray Observatory, and is expected to find several thousand gamma-ray point sources, which is an order of magnitude more than its predecessor EGRET [13]. Even with its relatively large acceptance (∼2m2 sr), the number of photons detected by the LAT outside the Galactic plane and away from intense sources is relatively low and the sky overall has a diffuse glow from cosmic-ray interactions with interstellar gas and low energy photons that makes a background against which point sources need to be detected. In addition, the per-photon angular resolution of the LAT is relatively poor and strongly energy dependent, ranging from>10° at 20MeV to ∼0.1° above 100 GeV. Consequently, the spherical photon count images obtained by Fermi are degraded by the fluctuations on the number of detected photons. This kind of noise is strongly signal dependent : on the brightest parts of the image like the galactic plane or the brightest sources, we have a lot of photons per pixel, and so the photon noise is low. Outside the galactic plane, the number of photons per pixel is low, which means that the photon noise is high. Such a signal-dependent noise cannot be accurately modeled by a Gaussian distribution. The basic photon-imaging model assumes that the number of detected photons at each pixel location is Poisson distributed. More specifically, the image is considered as a realization of an inhomogeneous Poisson process. This statistical noise makes the source detection more difficult, consequently it is highly desirable to have an efficient denoising method for spherical

  18. Turbulent Heat Transfer from a Thermally Forced Boundary in a Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Burns, K. J.; Wells, A.; Flierl, G.

    2017-12-01

    When a marine-terminating glacier melts into a stratified ocean, a buoyancy-driven flow develops along the ice surface. The resulting turbulent heat and salt fluxes provide a key feedback on the ice melting rate. To build insight into such flows, we consider direct numerical simulations of an analogue problem with convection driven by a thermally forced sidewall in a stably stratified Boussinesq fluid. Our model considers vertical and inclined periodic channels in 2D with a constant background buoyancy gradient. When the lateral or upper boundary is given a sufficient thermal perturbation relative to the ambient, a confined and homogeneous turbulent plume emerges along the heated wall. We present a scaling analysis for the resulting heat transport across the plume, and compare it to simulations over a range of Rayleigh numbers, Prandtl numbers, and wall-inclination angles.

  19. Soft network materials with isotropic negative Poisson's ratios over large strains.

    PubMed

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  20. Design of dry sand soil stratified sampler

    NASA Astrophysics Data System (ADS)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  1. Accurate solution of the Poisson equation with discontinuities

    NASA Astrophysics Data System (ADS)

    Nave, Jean-Christophe; Marques, Alexandre; Rosales, Rodolfo

    2017-11-01

    Solving the Poisson equation in the presence of discontinuities is of great importance in many applications of science and engineering. In many cases, the discontinuities are caused by interfaces between different media, such as in multiphase flows. These interfaces are themselves solutions to differential equations, and can assume complex configurations. For this reason, it is convenient to embed the interface into a regular triangulation or Cartesian grid and solve the Poisson equation in this regular domain. We present an extension of the Correction Function Method (CFM), which was developed to solve the Poisson equation in the context of embedded interfaces. The distinctive feature of the CFM is that it uses partial differential equations to construct smooth extensions of the solution in the vicinity of interfaces. A consequence of this approach is that it can achieve high order of accuracy while maintaining compact discretizations. The extension we present removes the restrictions of the original CFM, and yields a method that can solve the Poisson equation when discontinuities are present in the solution, the coefficients of the equation (material properties), and the source term. We show results computed to fourth order of accuracy in two and three dimensions. This work was partially funded by DARPA, NSF, and NSERC.

  2. Stratified flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Retallack, Charles

    The focus of this dissertation is the study of stratified atmospheric flows in the presence of complex terrain. Two large-scale field study campaigns were carried out, each with a focus on a specific archetypal terrain. Each field study involved the utilization of remote and in-situ atmospheric monitoring devices to collect experimental data. The first of the two field studies focused on pollution transport mechanisms near an escarpment. The analysis aimed to determine the combined effect of the escarpment and ambient density stratification on the flow and aerosol pollution transport. It was found that under specific atmospheric conditions, the escarpment prompted the channeling, down-mixing, and trapping of aerosol pollutant plumes. The objective of the second field campaign was the study of stratified flows in a mountain valley. Analysis revealed that buoyancy driven katabatic currents originating on the surrounding valley slopes created a scenario in which a down-slope gravity current transitioned into an intrusive gravity current. The intrusive gravity current propagated near the interface of a density stratified lower ambient layer and a non-stratified upper ambient layer. A combination of shallow water theory and energy arguments is used to produce a model for the propagation of a gravity current moving along the interface of a homogeneous ambient layer and a linearly stratified layer. It is found that the gravity current propagating entirely within the homogeneous layer travels at the greatest speed. As the relative density of the gravity current is increased, the gravity current begins to slump below the interface of the two layers and the propagation speed decreases.

  3. Zero-inflated Conway-Maxwell Poisson Distribution to Analyze Discrete Data.

    PubMed

    Sim, Shin Zhu; Gupta, Ramesh C; Ong, Seng Huat

    2018-01-09

    In this paper, we study the zero-inflated Conway-Maxwell Poisson (ZICMP) distribution and develop a regression model. Score and likelihood ratio tests are also implemented for testing the inflation/deflation parameter. Simulation studies are carried out to examine the performance of these tests. A data example is presented to illustrate the concepts. In this example, the proposed model is compared to the well-known zero-inflated Poisson (ZIP) and the zero- inflated generalized Poisson (ZIGP) regression models. It is shown that the fit by ZICMP is comparable or better than these models.

  4. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    NASA Astrophysics Data System (ADS)

    Nutku, Yavuz

    2003-07-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.

  5. Stratified Charge Engines

    DOT National Transportation Integrated Search

    1976-01-01

    This report reviews stratified charge concepts and engines, with emphasis on the important issues of exhaust emissions, fuel economy, and performance. Divided and open chamber designs are discussed. Potential improvements in exhaust emissions and fue...

  6. Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.

    PubMed

    Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique

    2015-05-01

    The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.

  7. A spectral Poisson solver for kinetic plasma simulation

    NASA Astrophysics Data System (ADS)

    Szeremley, Daniel; Obberath, Jens; Brinkmann, Ralf

    2011-10-01

    Plasma resonance spectroscopy is a well established plasma diagnostic method, realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In this contribution we concentrate on the specialized Poisson solver for that tool. The plasma is represented by an ensemble of point charges. By expanding both the charge density and the potential into spherical harmonics, a largely analytical solution of the Poisson problem can be employed. For a practical implementation, the expansion must be appropriately truncated. With this spectral solver we are able to efficiently solve the Poisson equation in a kinetic plasma simulation without the need of introducing a spatial discretization.

  8. Seasonally adjusted birth frequencies follow the Poisson distribution.

    PubMed

    Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A

    2015-12-15

    Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p < 0.01). The fundamental model with year and month as explanatory variables is significantly improved (p < 0.001) by adding day of the week as an explanatory variable. Altogether 7.5% more children are born on Tuesdays than on Sundays. The digit sum of the date is non-significant as an explanatory variable (p = 0.23), nor does it increase the explained variance. INERPRETATION: Spontaneous births are well modelled by a time-dependent Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends.

  9. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  10. Determination of confidence limits for experiments with low numbers of counts. [Poisson-distributed photon counts from astrophysical sources

    NASA Technical Reports Server (NTRS)

    Kraft, Ralph P.; Burrows, David N.; Nousek, John A.

    1991-01-01

    Two different methods, classical and Bayesian, for determining confidence intervals involving Poisson-distributed data are compared. Particular consideration is given to cases where the number of counts observed is small and is comparable to the mean number of background counts. Reasons for preferring the Bayesian over the classical method are given. Tables of confidence limits calculated by the Bayesian method are provided for quick reference.

  11. An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.

    PubMed

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-09-01

    Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  12. Complete synchronization of the global coupled dynamical network induced by Poisson noises.

    PubMed

    Guo, Qing; Wan, Fangyi

    2017-01-01

    The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.

  13. Implementing risk-stratified screening for common cancers: a review of potential ethical, legal and social issues

    PubMed Central

    Hall, A.E.; Chowdhury, S.; Hallowell, N.; Pashayan, N.; Dent, T.; Pharoah, P.; Burton, H.

    2014-01-01

    Background The identification of common genetic variants associated with common cancers including breast, prostate and ovarian cancers would allow population stratification by genotype to effectively target screening and treatment. As scientific, clinical and economic evidence mounts there will be increasing pressure for risk-stratified screening programmes to be implemented. Methods This paper reviews some of the main ethical, legal and social issues (ELSI) raised by the introduction of genotyping into risk-stratified screening programmes, in terms of Beauchamp and Childress's four principles of biomedical ethics—respect for autonomy, non-maleficence, beneficence and justice. Two alternative approaches to data collection, storage, communication and consent are used to exemplify the ELSI issues that are likely to be raised. Results Ultimately, the provision of risk-stratified screening using genotyping raises fundamental questions about respective roles of individuals, healthcare providers and the state in organizing or mandating such programmes, and the principles, which underpin their provision, particularly the requirement for distributive justice. Conclusions The scope and breadth of these issues suggest that ELSI relating to risk-stratified screening will become increasingly important for policy-makers, healthcare professionals and a wide diversity of stakeholders. PMID:23986542

  14. Application of zero-inflated poisson mixed models in prognostic factors of hepatitis C.

    PubMed

    Akbarzadeh Baghban, Alireza; Pourhoseingholi, Asma; Zayeri, Farid; Jafari, Ali Akbar; Alavian, Seyed Moayed

    2013-01-01

    In recent years, hepatitis C virus (HCV) infection represents a major public health problem. Evaluation of risk factors is one of the solutions which help protect people from the infection. This study aims to employ zero-inflated Poisson mixed models to evaluate prognostic factors of hepatitis C. The data was collected from a longitudinal study during 2005-2010. First, mixed Poisson regression (PR) model was fitted to the data. Then, a mixed zero-inflated Poisson model was fitted with compound Poisson random effects. For evaluating the performance of the proposed mixed model, standard errors of estimators were compared. The results obtained from mixed PR showed that genotype 3 and treatment protocol were statistically significant. Results of zero-inflated Poisson mixed model showed that age, sex, genotypes 2 and 3, the treatment protocol, and having risk factors had significant effects on viral load of HCV patients. Of these two models, the estimators of zero-inflated Poisson mixed model had the minimum standard errors. The results showed that a mixed zero-inflated Poisson model was the almost best fit. The proposed model can capture serial dependence, additional overdispersion, and excess zeros in the longitudinal count data.

  15. Four-dimensional gravity as an almost-Poisson system

    NASA Astrophysics Data System (ADS)

    Ita, Eyo Eyo

    2015-04-01

    In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.

  16. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    PubMed Central

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  17. Blind beam-hardening correction from Poisson measurements

    NASA Astrophysics Data System (ADS)

    Gu, Renliang; Dogandžić, Aleksandar

    2016-02-01

    We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.

  18. Computation of solar perturbations with Poisson series

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1974-01-01

    Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.

  19. Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels

    PubMed Central

    Corry, Ben; Kuyucak, Serdar; Chung, Shin-Ho

    2003-01-01

    We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for quantitative studies of biological ion channels in all situations. PMID:12770869

  20. Non-linear properties of metallic cellular materials with a negative Poisson's ratio

    NASA Technical Reports Server (NTRS)

    Choi, J. B.; Lakes, R. S.

    1992-01-01

    Negative Poisson's ratio copper foam was prepared and characterized experimentally. The transformation into re-entrant foam was accomplished by applying sequential permanent compressions above the yield point to achieve a triaxial compression. The Poisson's ratio of the re-entrant foam depended on strain and attained a relative minimum at strains near zero. Poisson's ratio as small as -0.8 was achieved. The strain dependence of properties occurred over a narrower range of strain than in the polymer foams studied earlier. Annealing of the foam resulted in a slightly greater magnitude of negative Poisson's ratio and greater toughness at the expense of a decrease in the Young's modulus.

  1. Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'.

    PubMed

    de Nijs, Robin

    2015-07-21

    In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.

  2. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory.

    PubMed

    Lord, Dominique; Washington, Simon P; Ivan, John N

    2005-01-01

    There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate

  3. An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces.

    PubMed

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-03-08

    Poisson disk sampling plays an important role in a variety of visual computing, due to its useful statistical property in distribution and the absence of aliasing artifacts. While many effective techniques have been proposed to generate Poisson disk distribution in Euclidean space, relatively few work has been reported to the surface counterpart. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. We propose a new technique for parallelizing the dart throwing. Rather than the conventional approaches that explicitly partition the spatial domain to generate the samples in parallel, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. It is worth noting that our algorithm is accurate as the generated Poisson disks are uniformly and randomly distributed without bias. Our method is intrinsic in that all the computations are based on the intrinsic metric and are independent of the embedding space. This intrinsic feature allows us to generate Poisson disk distributions on arbitrary surfaces. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  4. A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution.

    PubMed

    Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep

    2017-01-01

    The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section.

  5. A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution

    PubMed Central

    Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep

    2017-01-01

    The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section. PMID:28983398

  6. ? filtering for stochastic systems driven by Poisson processes

    NASA Astrophysics Data System (ADS)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  7. Functionally-fitted energy-preserving integrators for Poisson systems

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Xinyuan

    2018-07-01

    In this paper, a new class of energy-preserving integrators is proposed and analysed for Poisson systems by using functionally-fitted technology. The integrators exactly preserve energy and have arbitrarily high order. It is shown that the proposed approach allows us to obtain the energy-preserving methods derived in [12] by Cohen and Hairer (2011) and in [1] by Brugnano et al. (2012) for Poisson systems. Furthermore, we study the sufficient conditions that ensure the existence of a unique solution and discuss the order of the new energy-preserving integrators.

  8. Poisson point process modeling for polyphonic music transcription.

    PubMed

    Peeling, Paul; Li, Chung-fai; Godsill, Simon

    2007-04-01

    Peaks detected in the frequency domain spectrum of a musical chord are modeled as realizations of a nonhomogeneous Poisson point process. When several notes are superimposed to make a chord, the processes for individual notes combine to give another Poisson process, whose likelihood is easily computable. This avoids a data association step linking individual harmonics explicitly with detected peaks in the spectrum. The likelihood function is ideal for Bayesian inference about the unknown note frequencies in a chord. Here, maximum likelihood estimation of fundamental frequencies shows very promising performance on real polyphonic piano music recordings.

  9. The effect of surfactant on stratified and stratifying gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  10. A poisson process model for hip fracture risk.

    PubMed

    Schechner, Zvi; Luo, Gangming; Kaufman, Jonathan J; Siffert, Robert S

    2010-08-01

    The primary method for assessing fracture risk in osteoporosis relies primarily on measurement of bone mass. Estimation of fracture risk is most often evaluated using logistic or proportional hazards models. Notwithstanding the success of these models, there is still much uncertainty as to who will or will not suffer a fracture. This has led to a search for other components besides mass that affect bone strength. The purpose of this paper is to introduce a new mechanistic stochastic model that characterizes the risk of hip fracture in an individual. A Poisson process is used to model the occurrence of falls, which are assumed to occur at a rate, lambda. The load induced by a fall is assumed to be a random variable that has a Weibull probability distribution. The combination of falls together with loads leads to a compound Poisson process. By retaining only those occurrences of the compound Poisson process that result in a hip fracture, a thinned Poisson process is defined that itself is a Poisson process. The fall rate is modeled as an affine function of age, and hip strength is modeled as a power law function of bone mineral density (BMD). The risk of hip fracture can then be computed as a function of age and BMD. By extending the analysis to a Bayesian framework, the conditional densities of BMD given a prior fracture and no prior fracture can be computed and shown to be consistent with clinical observations. In addition, the conditional probabilities of fracture given a prior fracture and no prior fracture can also be computed, and also demonstrate results similar to clinical data. The model elucidates the fact that the hip fracture process is inherently random and improvements in hip strength estimation over and above that provided by BMD operate in a highly "noisy" environment and may therefore have little ability to impact clinical practice.

  11. Jet-front systems nearing strongly stratified region in differentially heated, rotating stratified annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Achatz, Ulrich

    2017-04-01

    The differentially heated, rotating annulus configuration has been used for a long time as a model system of the earth troposphere. It can easily reproduce thermal wind and baroclinic waves in the laboratory. It has recently been shown numerically that provided the Rossby number, the rotation rate and the Brunt-Väisälä frequency were well chosen, this configuration also reproduces the spontaneous emission of gravity waves by jet front systems [1]. This offers a very practical configuration in which to study an important process of emission of atmospheric gravity waves. It has also been shown experimentally that this configuration can be modified in order to add the possibility for the emitted wave to reach a strongly stratified region [2]. It thus creates a system containing a model troposphere where gravity waves are spontaneously emitted and can propagate to a model stratosphere. For this matter a stratification was created using a salinity gradient in the experimental apparatus. Through double diffusion, this generates a strongly stratified layer in the middle of the flow (the model stratosphere) and two weakly stratified region in the top and bottom layers (the model troposphere). In this poster, we present simulations of this configuration displaying baroclinic waves in the top and bottom layers. We aim at creating jet front systems strong enough that gravity waves can be spontaneously emitted. This will thus offer the possibility of studying the wave characteristic and mechanisms in emission and propagation in details. References [1] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [2] M. Vincze, I. Borcia, U. Harlander, P. Le Gal, Double-diffusive convection convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res. 48, 061414 (2016).

  12. Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry

    NASA Technical Reports Server (NTRS)

    Hong, Yie-Ming

    1973-01-01

    Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.

  13. On the validity of the Poisson assumption in sampling nanometer-sized aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damit, Brian E; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air withmore » a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.« less

  14. Optimal Matched Filter in the Low-number Count Poisson Noise Regime and Implications for X-Ray Source Detection

    NASA Astrophysics Data System (ADS)

    Ofek, Eran O.; Zackay, Barak

    2018-04-01

    Detection of templates (e.g., sources) embedded in low-number count Poisson noise is a common problem in astrophysics. Examples include source detection in X-ray images, γ-rays, UV, neutrinos, and search for clusters of galaxies and stellar streams. However, the solutions in the X-ray-related literature are sub-optimal in some cases by considerable factors. Using the lemma of Neyman–Pearson, we derive the optimal statistics for template detection in the presence of Poisson noise. We demonstrate that, for known template shape (e.g., point sources), this method provides higher completeness, for a fixed false-alarm probability value, compared with filtering the image with the point-spread function (PSF). In turn, we find that filtering by the PSF is better than filtering the image using the Mexican-hat wavelet (used by wavdetect). For some background levels, our method improves the sensitivity of source detection by more than a factor of two over the popular Mexican-hat wavelet filtering. This filtering technique can also be used for fast PSF photometry and flare detection; it is efficient and straightforward to implement. We provide an implementation in MATLAB. The development of a complete code that works on real data, including the complexities of background subtraction and PSF variations, is deferred for future publication.

  15. Calculation of periodic flows in a continuously stratified fluid

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.

    2012-04-01

    analyzed by methods of computational mathematics. Singular components of the solution affect the flow pattern of the inhomogeneous stratified fluid, not only near the source of the waves, but at a large distance. Analytical calculations of the structure of wave beams are matched with laboratory experiments. Some deviations at large distances from the source are formed due to the contribution of background wave field associated with seiches in the laboratory tank. In number of the experiments vortices with closed contours were observed on some distances from the disk. The work was supported by Ministry of Education and Science RF (Goscontract No. 16.518.11.7059), experiments were performed on set up USU "HPC IPMec RAS".

  16. Effect of non-Poisson samples on turbulence spectra from laser velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sree, D.; Kjelgaard, S.O.; Sellers, W.L. III

    1994-12-01

    Spectral estimations from LV data are typically based on the assumption of a Poisson sampling process. It is demonstrated here that the sampling distribution must be considered before spectral estimates are used to infer turbulence scales. A non-Poisson sampling process can occur if there is nonhomogeneous distribution of particles in the flow. Based on the study of a simulated first-order spectrum, it has been shown that a non-Poisson sampling process causes the estimated spectrum to deviate from the true spectrum. Also, in this case the prefiltering techniques do not improve the spectral estimates at higher frequencies. 4 refs.

  17. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

    PubMed

    Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

    2016-11-01

    In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

  18. Number-counts slope estimation in the presence of Poisson noise

    NASA Technical Reports Server (NTRS)

    Schmitt, Juergen H. M. M.; Maccacaro, Tommaso

    1986-01-01

    The slope determination of a power-law number flux relationship in the case of photon-limited sampling. This case is important for high-sensitivity X-ray surveys with imaging telescopes, where the error in an individual source measurement depends on integrated flux and is Poisson, rather than Gaussian, distributed. A bias-free method of slope estimation is developed that takes into account the exact error distribution, the influence of background noise, and the effects of varying limiting sensitivities. It is shown that the resulting bias corrections are quite insensitive to the bias correction procedures applied, as long as only sources with signal-to-noise ratio five or greater are considered. However, if sources with signal-to-noise ratio five or less are included, the derived bias corrections depend sensitively on the shape of the error distribution.

  19. Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains

    NASA Astrophysics Data System (ADS)

    Wang, Fengwen

    2018-05-01

    This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.

  20. On the Determination of Poisson Statistics for Haystack Radar Observations of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Stokely, Christopher L.; Benbrook, James R.; Horstman, Matt

    2007-01-01

    A convenient and powerful method is used to determine if radar detections of orbital debris are observed according to Poisson statistics. This is done by analyzing the time interval between detection events. For Poisson statistics, the probability distribution of the time interval between events is shown to be an exponential distribution. This distribution is a special case of the Erlang distribution that is used in estimating traffic loads on telecommunication networks. Poisson statistics form the basis of many orbital debris models but the statistical basis of these models has not been clearly demonstrated empirically until now. Interestingly, during the fiscal year 2003 observations with the Haystack radar in a fixed staring mode, there are no statistically significant deviations observed from that expected with Poisson statistics, either independent or dependent of altitude or inclination. One would potentially expect some significant clustering of events in time as a result of satellite breakups, but the presence of Poisson statistics indicates that such debris disperse rapidly with respect to Haystack's very narrow radar beam. An exception to Poisson statistics is observed in the months following the intentional breakup of the Fengyun satellite in January 2007.

  1. Identification d’une Classe de Processus de Poisson Filtres (Identification of a Class of Filtered Poisson Processes).

    DTIC Science & Technology

    1983-05-20

    Poisson processes is introduced: the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown how such a model can be identified from experimental data. (Author)

  2. Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions

    NASA Astrophysics Data System (ADS)

    Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji

    The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.

  3. Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes.

    PubMed

    Lord, Dominique; Guikema, Seth D; Geedipally, Srinivas Reddy

    2008-05-01

    This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. The objectives of this study were to evaluate the application of the COM-Poisson GLM for analyzing motor vehicle crashes and compare the results with the traditional negative binomial (NB) model. The comparison analysis was carried out using the most common functional forms employed by transportation safety analysts, which link crashes to the entering flows at intersections or on segments. To accomplish the objectives of the study, several NB and COM-Poisson GLMs were developed and compared using two datasets. The first dataset contained crash data collected at signalized four-legged intersections in Toronto, Ont. The second dataset included data collected for rural four-lane divided and undivided highways in Texas. Several methods were used to assess the statistical fit and predictive performance of the models. The results of this study show that COM-Poisson GLMs perform as well as NB models in terms of GOF statistics and predictive performance. Given the fact the COM-Poisson distribution can also handle under-dispersed data (while the NB distribution cannot or has difficulties converging), which have sometimes been observed in crash databases, the COM-Poisson GLM offers a better alternative over the NB model for modeling motor vehicle crashes, especially given the important limitations recently documented in the safety literature about the latter type of model.

  4. Normal and compound poisson approximations for pattern occurrences in NGS reads.

    PubMed

    Zhai, Zhiyuan; Reinert, Gesine; Song, Kai; Waterman, Michael S; Luan, Yihui; Sun, Fengzhu

    2012-06-01

    Next generation sequencing (NGS) technologies are now widely used in many biological studies. In NGS, sequence reads are randomly sampled from the genome sequence of interest. Most computational approaches for NGS data first map the reads to the genome and then analyze the data based on the mapped reads. Since many organisms have unknown genome sequences and many reads cannot be uniquely mapped to the genomes even if the genome sequences are known, alternative analytical methods are needed for the study of NGS data. Here we suggest using word patterns to analyze NGS data. Word pattern counting (the study of the probabilistic distribution of the number of occurrences of word patterns in one or multiple long sequences) has played an important role in molecular sequence analysis. However, no studies are available on the distribution of the number of occurrences of word patterns in NGS reads. In this article, we build probabilistic models for the background sequence and the sampling process of the sequence reads from the genome. Based on the models, we provide normal and compound Poisson approximations for the number of occurrences of word patterns from the sequence reads, with bounds on the approximation error. The main challenge is to consider the randomness in generating the long background sequence, as well as in the sampling of the reads using NGS. We show the accuracy of these approximations under a variety of conditions for different patterns with various characteristics. Under realistic assumptions, the compound Poisson approximation seems to outperform the normal approximation in most situations. These approximate distributions can be used to evaluate the statistical significance of the occurrence of patterns from NGS data. The theory and the computational algorithm for calculating the approximate distributions are then used to analyze ChIP-Seq data using transcription factor GABP. Software is available online (www

  5. Study of non-Hodgkin's lymphoma mortality associated with industrial pollution in Spain, using Poisson models

    PubMed Central

    Ramis, Rebeca; Vidal, Enrique; García-Pérez, Javier; Lope, Virginia; Aragonés, Nuria; Pérez-Gómez, Beatriz; Pollán, Marina; López-Abente, Gonzalo

    2009-01-01

    Background Non-Hodgkin's lymphomas (NHLs) have been linked to proximity to industrial areas, but evidence regarding the health risk posed by residence near pollutant industries is very limited. The European Pollutant Emission Register (EPER) is a public register that furnishes valuable information on industries that release pollutants to air and water, along with their geographical location. This study sought to explore the relationship between NHL mortality in small areas in Spain and environmental exposure to pollutant emissions from EPER-registered industries, using three Poisson-regression-based mathematical models. Methods Observed cases were drawn from mortality registries in Spain for the period 1994–2003. Industries were grouped into the following sectors: energy; metal; mineral; organic chemicals; waste; paper; food; and use of solvents. Populations having an industry within a radius of 1, 1.5, or 2 kilometres from the municipal centroid were deemed to be exposed. Municipalities outside those radii were considered as reference populations. The relative risks (RRs) associated with proximity to pollutant industries were estimated using the following methods: Poisson Regression; mixed Poisson model with random provincial effect; and spatial autoregressive modelling (BYM model). Results Only proximity of paper industries to population centres (>2 km) could be associated with a greater risk of NHL mortality (mixed model: RR:1.24, 95% CI:1.09–1.42; BYM model: RR:1.21, 95% CI:1.01–1.45; Poisson model: RR:1.16, 95% CI:1.06–1.27). Spatial models yielded higher estimates. Conclusion The reported association between exposure to air pollution from the paper, pulp and board industry and NHL mortality is independent of the model used. Inclusion of spatial random effects terms in the risk estimate improves the study of associations between environmental exposures and mortality. The EPER could be of great utility when studying the effects of industrial pollution

  6. A Theory of Density Layering in Stratified Turbulence using Statistical State Dynamics

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J.; Farrell, B.

    2016-12-01

    Stably stratified turbulent fluids commonly develop density structures that are layered in the vertical direction (e.g., Manucharyan et al., 2015). Within layers, density is approximately constant and stratification is weak. Between layers, density varies rapidly and stratification is strong. A common explanation for the existence of layers invokes the negative diffusion mechanism of Phillips (1972) & Posmentier (1977). The physical principle underlying this mechanism is that the flux-gradient relationship connecting the turbulent fluxes of buoyancy to the background stratification must have the special property of weakening fluxes with strengthening gradient. Under these conditions, the evolution of the stratification is governed by a negative diffusion problem which gives rise to spontaneous layer formation. In previous work on stratified layering, this flux-gradient property is often assumed (e.g, Posmentier, 1977) or drawn from phenomenological models of turbulence (e.g., Balmforth et al., 1998).In this work we develop the theoretical underpinnings of layer formation by applying stochastic turbulence modeling and statistical state dynamics (SSD) to predict the flux-gradient relation and analyze layer formation directly from the equations of motion. We show that for stochastically-forced homogeneous 2D Boussinesq turbulence, the flux-gradient relation can be obtained analytically and indicates that the fluxes always strengthen with stratification. The Phillips mechanism thus does not operate in this maximally simplified scenario. However, when the problem is augmented to include a large scale background shear, we show that the flux-gradient relationship is modified so that the fluxes weaken with stratification. Sheared and stratified 2D Boussinesq turbulence thus spontaneously forms density layers through the Phillips mechanism. Using SSD (Farrell & Ioannou 2003), we obtain a closed, deterministic dynamics for the stratification and the statistical turbulent

  7. Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio

    NASA Astrophysics Data System (ADS)

    Yeganeh-Haeri, Amir; Weidner, Donald J.; Parise, John B.

    1992-07-01

    Laser Brillouin spectroscopy was used to determine the adiabatic single-crystal elastic stiffness coefficients of silicon dioxide (SiO_2) in the α-cristobalite structure. This SiO_2 polymorph, unlike other silicas and silicates, exhibits a negative Poisson's ratio; α-cristobalite contracts laterally when compressed and expands laterally when stretched. Tensorial analysis of the elastic coefficients shows that Poisson's ratio reaches a maximum value of -0.5 in some directions, whereas averaged values for the single-phased aggregate yield a Poisson's ratio of -0.16.

  8. Poisson's ratio over two centuries: challenging hypotheses

    PubMed Central

    Greaves, G. Neville

    2013-01-01

    This article explores Poisson's ratio, starting with the controversy concerning its magnitude and uniqueness in the context of the molecular and continuum hypotheses competing in the development of elasticity theory in the nineteenth century, moving on to its place in the development of materials science and engineering in the twentieth century, and concluding with its recent re-emergence as a universal metric for the mechanical performance of materials on any length scale. During these episodes France lost its scientific pre-eminence as paradigms switched from mathematical to observational, and accurate experiments became the prerequisite for scientific advance. The emergence of the engineering of metals followed, and subsequently the invention of composites—both somewhat separated from the discovery of quantum mechanics and crystallography, and illustrating the bifurcation of technology and science. Nowadays disciplines are reconnecting in the face of new scientific demands. During the past two centuries, though, the shape versus volume concept embedded in Poisson's ratio has remained invariant, but its application has exploded from its origins in describing the elastic response of solids and liquids, into areas such as materials with negative Poisson's ratio, brittleness, glass formation, and a re-evaluation of traditional materials. Moreover, the two contentious hypotheses have been reconciled in their complementarity within the hierarchical structure of materials and through computational modelling. PMID:24687094

  9. Validation of the Poisson Stochastic Radiative Transfer Model

    NASA Technical Reports Server (NTRS)

    Zhuravleva, Tatiana; Marshak, Alexander

    2004-01-01

    A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.

  10. Measuring Poisson Ratios at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  11. Quantization of Poisson Manifolds from the Integrability of the Modular Function

    NASA Astrophysics Data System (ADS)

    Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.

    2014-10-01

    We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.

  12. DCOMP Award Lecture (Metropolis): A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph

    2006-03-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.

  13. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  14. Poisson structure of dynamical systems with three degrees of freedom

    NASA Astrophysics Data System (ADS)

    Gümral, Hasan; Nutku, Yavuz

    1993-12-01

    It is shown that the Poisson structure of dynamical systems with three degrees of freedom can be defined in terms of an integrable one-form in three dimensions. Advantage is taken of this fact and the theory of foliations is used in discussing the geometrical structure underlying complete and partial integrability. Techniques for finding Poisson structures are presented and applied to various examples such as the Halphen system which has been studied as the two-monopole problem by Atiyah and Hitchin. It is shown that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a nontrivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of three-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the SL(2,R) structure is a quadratic unfolding of an integrable one-form in 3+1 dimensions. It is shown that the existence of a vector field compatible with the flow is a powerful tool in the investigation of Poisson structure and some new techniques for incorporating arbitrary constants into the Poisson one-form are presented herein. This leads to some extensions, analogous to q extensions, of Poisson structure. The Kermack-McKendrick model and some of its generalizations describing the spread of epidemics, as well as the integrable cases of the Lorenz, Lotka-Volterra, May-Leonard, and Maxwell-Bloch systems admit globally integrable bi-Hamiltonian structure.

  15. A Study of Poisson's Ratio in the Yield Region

    NASA Technical Reports Server (NTRS)

    Gerard, George; Wildhorn, Sorrel

    1952-01-01

    In the yield region of the stress-strain curve the variation in Poisson's ratio from the elastic to the plastic value is most pronounced. This variation was studied experimentally by a systematic series of tests on several aluminum alloys. The tests were conducted under simple tensile and compressive loading along three orthogonal axes. A theoretical variation of Poisson's ratio for an orthotropic solid was obtained from dilatational considerations. The assumptions used in deriving the theory were examined by use of the test data and were found to be in reasonable agreement with experimental evidence.

  16. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    PubMed

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  17. A generalized right truncated bivariate Poisson regression model with applications to health data.

    PubMed

    Islam, M Ataharul; Chowdhury, Rafiqul I

    2017-01-01

    A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.

  18. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    PubMed

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  19. Generation of Non-Homogeneous Poisson Processes by Thinning: Programming Considerations and Comparision with Competing Algorithms.

    DTIC Science & Technology

    1978-12-01

    Poisson processes . The method is valid for Poisson processes with any given intensity function. The basic thinning algorithm is modified to exploit several refinements which reduce computer execution time by approximately one-third. The basic and modified thinning programs are compared with the Poisson decomposition and gap-statistics algorithm, which is easily implemented for Poisson processes with intensity functions of the form exp(a sub 0 + a sub 1t + a sub 2 t-squared. The thinning programs are competitive in both execution

  20. State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.

    DTIC Science & Technology

    1978-12-01

    The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared

  1. High order solution of Poisson problems with piecewise constant coefficients and interface jumps

    NASA Astrophysics Data System (ADS)

    Marques, Alexandre Noll; Nave, Jean-Christophe; Rosales, Rodolfo Ruben

    2017-04-01

    We present a fast and accurate algorithm to solve Poisson problems in complex geometries, using regular Cartesian grids. We consider a variety of configurations, including Poisson problems with interfaces across which the solution is discontinuous (of the type arising in multi-fluid flows). The algorithm is based on a combination of the Correction Function Method (CFM) and Boundary Integral Methods (BIM). Interface and boundary conditions can be treated in a fast and accurate manner using boundary integral equations, and the associated BIM. Unfortunately, BIM can be costly when the solution is needed everywhere in a grid, e.g. fluid flow problems. We use the CFM to circumvent this issue. The solution from the BIM is used to rewrite the problem as a series of Poisson problems in rectangular domains-which requires the BIM solution at interfaces/boundaries only. These Poisson problems involve discontinuities at interfaces, of the type that the CFM can handle. Hence we use the CFM to solve them (to high order of accuracy) with finite differences and a Fast Fourier Transform based fast Poisson solver. We present 2-D examples of the algorithm applied to Poisson problems involving complex geometries, including cases in which the solution is discontinuous. We show that the algorithm produces solutions that converge with either 3rd or 4th order of accuracy, depending on the type of boundary condition and solution discontinuity.

  2. A generalized Poisson solver for first-principles device simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch; Brück, Sascha

    2016-01-28

    Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative methodmore » in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.« less

  3. Extensions of Rasch's Multiplicative Poisson Model.

    ERIC Educational Resources Information Center

    Jansen, Margo G. H.; van Duijn, Marijtje A. J.

    1992-01-01

    A model developed by G. Rasch that assumes scores on some attainment tests can be realizations of a Poisson process is explained and expanded by assuming a prior distribution, with fixed but unknown parameters, for the subject parameters. How additional between-subject and within-subject factors can be incorporated is discussed. (SLD)

  4. The Validity of Poisson Assumptions in a Combined Loglinear/MDS Mapping Model.

    ERIC Educational Resources Information Center

    Everett, James E.

    1993-01-01

    Addresses objections to the validity of assuming a Poisson loglinear model as the generating process for citations from one journal into another. Fluctuations in citation rate, serial dependence on citations, impossibility of distinguishing between rate changes and serial dependence, evidence for changes in Poisson rate, and transitivity…

  5. A generalized right truncated bivariate Poisson regression model with applications to health data

    PubMed Central

    Islam, M. Ataharul; Chowdhury, Rafiqul I.

    2017-01-01

    A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model. PMID:28586344

  6. Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Wang, Jun; Luo, Ray

    2009-01-01

    CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271

  7. A random-censoring Poisson model for underreported data.

    PubMed

    de Oliveira, Guilherme Lopes; Loschi, Rosangela Helena; Assunção, Renato Martins

    2017-12-30

    A major challenge when monitoring risks in socially deprived areas of under developed countries is that economic, epidemiological, and social data are typically underreported. Thus, statistical models that do not take the data quality into account will produce biased estimates. To deal with this problem, counts in suspected regions are usually approached as censored information. The censored Poisson model can be considered, but all censored regions must be precisely known a priori, which is not a reasonable assumption in most practical situations. We introduce the random-censoring Poisson model (RCPM) which accounts for the uncertainty about both the count and the data reporting processes. Consequently, for each region, we will be able to estimate the relative risk for the event of interest as well as the censoring probability. To facilitate the posterior sampling process, we propose a Markov chain Monte Carlo scheme based on the data augmentation technique. We run a simulation study comparing the proposed RCPM with 2 competitive models. Different scenarios are considered. RCPM and censored Poisson model are applied to account for potential underreporting of early neonatal mortality counts in regions of Minas Gerais State, Brazil, where data quality is known to be poor. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance.

    PubMed

    Poplová, Michaela; Sovka, Pavel; Cifra, Michal

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.

  9. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance

    PubMed Central

    Poplová, Michaela; Sovka, Pavel

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal. PMID:29216207

  10. Effect of Poisson's loss factor of rubbery material on underwater sound absorption of anechoic coatings

    NASA Astrophysics Data System (ADS)

    Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong

    2018-06-01

    Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.

  11. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    PubMed

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Easy Demonstration of the Poisson Spot

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    Many physics teachers have a set of slides of single, double and multiple slits to show their students the phenomena of interference and diffraction. Thomas Young's historic experiments with double slits were indeed a milestone in proving the wave nature of light. But another experiment, namely the Poisson spot, was also important historically and…

  13. Composite laminates with negative through-the-thickness Poisson's ratios

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1984-01-01

    A simple analysis using two dimensional lamination theory combined with the appropriate three dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.

  14. Composite laminates with negative through-the-thickness Poisson's ratios

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1984-01-01

    A simple analysis using two-dimensional lamination theory combined with the appropriate three-dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.

  15. Wigner surmises and the two-dimensional homogeneous Poisson point process.

    PubMed

    Sakhr, Jamal; Nieminen, John M

    2006-04-01

    We derive a set of identities that relate the higher-order interpoint spacing statistics of the two-dimensional homogeneous Poisson point process to the Wigner surmises for the higher-order spacing distributions of eigenvalues from the three classical random matrix ensembles. We also report a remarkable identity that equates the second-nearest-neighbor spacing statistics of the points of the Poisson process and the nearest-neighbor spacing statistics of complex eigenvalues from Ginibre's ensemble of 2 x 2 complex non-Hermitian random matrices.

  16. Modelling infant mortality rate in Central Java, Indonesia use generalized poisson regression method

    NASA Astrophysics Data System (ADS)

    Prahutama, Alan; Sudarno

    2018-05-01

    The infant mortality rate is the number of deaths under one year of age occurring among the live births in a given geographical area during a given year, per 1,000 live births occurring among the population of the given geographical area during the same year. This problem needs to be addressed because it is an important element of a country’s economic development. High infant mortality rate will disrupt the stability of a country as it relates to the sustainability of the population in the country. One of regression model that can be used to analyze the relationship between dependent variable Y in the form of discrete data and independent variable X is Poisson regression model. Recently The regression modeling used for data with dependent variable is discrete, among others, poisson regression, negative binomial regression and generalized poisson regression. In this research, generalized poisson regression modeling gives better AIC value than poisson regression. The most significant variable is the Number of health facilities (X1), while the variable that gives the most influence to infant mortality rate is the average breastfeeding (X9).

  17. Poisson sigma models, reduction and nonlinear gauge theories

    NASA Astrophysics Data System (ADS)

    Signori, Daniele

    This dissertation comprises two main lines of research. Firstly, we study non-linear gauge theories for principal bundles, where the structure group is replaced by a Lie groupoid. We follow the approach of Moerdijk-Mrcun and establish its relation with the existing physics literature. In particular, we derive a new formula for the gauge transformation which closely resembles and generalizes the classical formulas found in Yang Mills gauge theories. Secondly, we give a field theoretic interpretation of the of the BRST (Becchi-Rouet-Stora-Tyutin) and BFV (Batalin-Fradkin-Vilkovisky) methods for the reduction of coisotropic submanifolds of Poisson manifolds. The generalized Poisson sigma models that we define are related to the quantization deformation problems of coisotropic submanifolds using homotopical algebras.

  18. Marginalized zero-inflated Poisson models with missing covariates.

    PubMed

    Benecha, Habtamu K; Preisser, John S; Divaris, Kimon; Herring, Amy H; Das, Kalyan

    2018-05-11

    Unlike zero-inflated Poisson regression, marginalized zero-inflated Poisson (MZIP) models for counts with excess zeros provide estimates with direct interpretations for the overall effects of covariates on the marginal mean. In the presence of missing covariates, MZIP and many other count data models are ordinarily fitted using complete case analysis methods due to lack of appropriate statistical methods and software. This article presents an estimation method for MZIP models with missing covariates. The method, which is applicable to other missing data problems, is illustrated and compared with complete case analysis by using simulations and dental data on the caries preventive effects of a school-based fluoride mouthrinse program. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Matrix decomposition graphics processing unit solver for Poisson image editing

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Wei, Li

    2012-10-01

    In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.

  20. Radiative transfer in a plane stratified dielectric

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T., Jr.

    1975-01-01

    A model is developed for calculating radiative transfer in a stratified dielectric. This model is used to show that the reflectivity of a stratified dielectric is primarily determined by gradients in the real part of the refractive index over distances on the order of 1/10 wavelength in the medium. The effective temperature of the medium is determined by the thermodynamic temperature profile over distances of the order delta T.

  1. Using a fast Fourier method to model sound propagation in a stratified atmosphere over a stratified porous-elastic ground

    NASA Technical Reports Server (NTRS)

    Tooms, S.; Attenborough, K.

    1990-01-01

    Using a Fast Fourier integration method and a global matrix method for solution of the boundary condition equations at all interfaces simultaneously, a useful tool for predicting acoustic propagation in a stratified fluid over a stratified porous-elastic solid was developed. The model for the solid is a modified Biot-Stoll model incorporating four parameters describing the pore structure corresponding to the Rayleigh-Attenborough rigid-porous structure model. The method is also compared to another Fast Fourier code (CERL-FFP) which models the ground as an impedance surface under a horizontally stratified air. Agreement with the CERL FFP is good. The effects on sound propagation of a combination of ground elasticity, complex ground structure, and atmospheric conditions are demonstrated by theoretical results over a snow layer, and experimental results over a model ground surface.

  2. Internal wave mode resonant triads in an arbitrarly stratified finite-depth ocean with background rotation

    NASA Astrophysics Data System (ADS)

    Varma, Dheeraj; Mathur, Manikandan

    2017-11-01

    Internal tides generated by barotropic tides on bottom topography or the spatially compact near-inertial mixed layer currents excited by surface winds can be conveniently represented in the linear regime as a superposition of vertical modes at a given frequency in an arbitrarily stratified ocean of finite depth. Considering modes (m , n) at a frequency ω in the primary wave field, we derive the weakly nonlinear solution, which contains a secondary wave at 2 ω that diverges when it forms a resonant triad with the primary waves. In nonuniform stratifications, resonant triads are shown to occur when the horizontal component of the classical RTI criterion k->1 +k->2 +k->3 = 0 is satisfied along with a non-orthogonality criterion. In nonuniform stratifications with a pycnocline, infinitely more pairs of primary wave modes (m , n) result in RTI when compared to a uniform stratification. Further, two nearby high modes at around the near-inertial frequency often form a resonant triad with a low mode at 2 ω , reminiscent of the features of PSI near the critical latitude. The theoretical framework is then adapted to investigate RTI in two different scenarios: low-mode internal tide scattering over topography, and internal wave beams incident on a pycnocline. The authors thank the Ministry of Earth Sciences, Government of India for financial support under the Monsoon Mission Grant MM/2014/IND-002.

  3. Finite element solution of torsion and other 2-D Poisson equations

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.

    1982-01-01

    The NASTRAN structural analysis computer program may be used, without modification, to solve two dimensional Poisson equations such as arise in the classical Saint Venant torsion problem. The nonhomogeneous term (the right-hand side) in the Poisson equation can be handled conveniently by specifying a gravitational load in a "structural" analysis. The use of an analogy between the equations of elasticity and those of classical mathematical physics is summarized in detail.

  4. Doubly stochastic Poisson processes in artificial neural learning.

    PubMed

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  5. Applying the compound Poisson process model to the reporting of injury-related mortality rates.

    PubMed

    Kegler, Scott R

    2007-02-16

    Injury-related mortality rate estimates are often analyzed under the assumption that case counts follow a Poisson distribution. Certain types of injury incidents occasionally involve multiple fatalities, however, resulting in dependencies between cases that are not reflected in the simple Poisson model and which can affect even basic statistical analyses. This paper explores the compound Poisson process model as an alternative, emphasizing adjustments to some commonly used interval estimators for population-based rates and rate ratios. The adjusted estimators involve relatively simple closed-form computations, which in the absence of multiple-case incidents reduce to familiar estimators based on the simpler Poisson model. Summary data from the National Violent Death Reporting System are referenced in several examples demonstrating application of the proposed methodology.

  6. This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms--theory and practice.

    PubMed

    Harmany, Zachary T; Marcia, Roummel F; Willett, Rebecca M

    2012-03-01

    Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f*) from Poisson data (y) cannot be effectively accomplished by minimizing a conventional penalized least-squares objective function. The problem addressed in this paper is the estimation of f* from y in an inverse problem setting, where the number of unknowns may potentially be larger than the number of observations and f* admits sparse approximation. The optimization formulation considered in this paper uses a penalized negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). In particular, the proposed approach incorporates key ideas of using separable quadratic approximations to the objective function at each iteration and penalization terms related to l1 norms of coefficient vectors, total variation seminorms, and partition-based multiscale estimation methods.

  7. Support of personalized medicine through risk-stratified treatment recommendations - an environmental scan of clinical practice guidelines

    PubMed Central

    2013-01-01

    Background Risk-stratified treatment recommendations facilitate treatment decision-making that balances patient-specific risks and preferences. It is unclear if and how such recommendations are developed in clinical practice guidelines (CPGs). Our aim was to assess if and how CPGs develop risk-stratified treatment recommendations for the prevention or treatment of common chronic diseases. Methods We searched the United States National Guideline Clearinghouse for US, Canadian and National Institute for Health and Clinical Excellence (United Kingdom) CPGs for heart disease, stroke, cancer, chronic obstructive pulmonary disease and diabetes that make risk-stratified treatment recommendations. We included only those CPGs that made risk-stratified treatment recommendations based on risk assessment tools. Two reviewers independently identified CPGs and extracted information on recommended risk assessment tools; type of evidence about treatment benefits and harms; methods for linking risk estimates to treatment evidence and for developing treatment thresholds; and consideration of patient preferences. Results We identified 20 CPGs that made risk-stratified treatment recommendations out of 133 CPGs that made any type of treatment recommendations for the chronic diseases considered in this study. Of the included 20 CPGs, 16 (80%) used evidence about treatment benefits from randomized controlled trials, meta-analyses or other guidelines, and the source of evidence was unclear in the remaining four (20%) CPGs. Nine CPGs (45%) used evidence on harms from randomized controlled trials or observational studies, while 11 CPGs (55%) did not clearly refer to harms. Nine CPGs (45%) explained how risk prediction and evidence about treatments effects were linked (for example, applying estimates of relative risk reductions to absolute risks), but only one CPG (5%) assessed benefit and harm quantitatively and three CPGs (15%) explicitly reported consideration of patient preferences

  8. Modeling environmental noise exceedances using non-homogeneous Poisson processes.

    PubMed

    Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R

    2014-10-01

    In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.

  9. The Poisson model limits in NBA basketball: Complexity in team sports

    NASA Astrophysics Data System (ADS)

    Martín-González, Juan Manuel; de Saá Guerra, Yves; García-Manso, Juan Manuel; Arriaza, Enrique; Valverde-Estévez, Teresa

    2016-12-01

    Team sports are frequently studied by researchers. There is presumption that scoring in basketball is a random process and that can be described using the Poisson Model. Basketball is a collaboration-opposition sport, where the non-linear local interactions among players are reflected in the evolution of the score that ultimately determines the winner. In the NBA, the outcomes of close games are often decided in the last minute, where fouls play a main role. We examined 6130 NBA games in order to analyze the time intervals between baskets and scoring dynamics. Most numbers of baskets (n) over a time interval (ΔT) follow a Poisson distribution, but some (e.g., ΔT = 10 s, n > 3) behave as a Power Law. The Poisson distribution includes most baskets in any game, in most game situations, but in close games in the last minute, the numbers of events are distributed following a Power Law. The number of events can be adjusted by a mixture of two distributions. In close games, both teams try to maintain their advantage solely in order to reach the last minute: a completely different game. For this reason, we propose to use the Poisson model as a reference. The complex dynamics will emerge from the limits of this model.

  10. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    PubMed

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  11. Infinitesimal deformations of Poisson bi-vectors using the Kontsevich graph calculus

    NASA Astrophysics Data System (ADS)

    Buring, Ricardo; Kiselev, Arthemy V.; Rutten, Nina

    2018-02-01

    Let \\mathscr{P} be a Poisson structure on a finite-dimensional affine real manifold. Can \\mathscr{P} be deformed in such a way that it stays Poisson? The language of Kontsevich graphs provides a universal approach - with respect to all affine Poisson manifolds - to finding a class of solutions to this deformation problem. For that reasoning, several types of graphs are needed. In this paper we outline the algorithms to generate those graphs. The graphs that encode deformations are classified by the number of internal vertices k; for k ≤ 4 we present all solutions of the deformation problem. For k ≥ 5, first reproducing the pentagon-wheel picture suggested at k = 6 by Kontsevich and Willwacher, we construct the heptagon-wheel cocycle that yields a new unique solution without 2-loops and tadpoles at k = 8.

  12. Symmetries and Invariants of Twisted Quantum Algebras and Associated Poisson Algebras

    NASA Astrophysics Data System (ADS)

    Molev, A. I.; Ragoucy, E.

    We construct an action of the braid group BN on the twisted quantized enveloping algebra U q'( {o}N) where the elements of BN act as automorphisms. In the classical limit q → 1, we recover the action of BN on the polynomial functions on the space of upper triangular matrices with ones on the diagonal. The action preserves the Poisson bracket on the space of polynomials which was introduced by Nelson and Regge in their study of quantum gravity and rediscovered in the mathematical literature. Furthermore, we construct a Poisson bracket on the space of polynomials associated with another twisted quantized enveloping algebra U q'( {sp}2n). We use the Casimir elements of both twisted quantized enveloping algebras to reproduce and construct some well-known and new polynomial invariants of the corresponding Poisson algebras.

  13. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felberg, Lisa E.; Brookes, David H.; Yap, Eng-Hui

    2016-11-02

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized Poisson Boltzmann equation. The PB-AM software package includes the generation of outputs files appropriate for visualization using VMD, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmannmore » Solver (APBS) software package to make it more accessible to a larger group of scientists, educators and students that are more familiar with the APBS framework.« less

  14. Sparsity-based Poisson denoising with dictionary learning.

    PubMed

    Giryes, Raja; Elad, Michael

    2014-12-01

    The problem of Poisson denoising appears in various imaging applications, such as low-light photography, medical imaging, and microscopy. In cases of high SNR, several transformations exist so as to convert the Poisson noise into an additive-independent identically distributed. Gaussian noise, for which many effective algorithms are available. However, in a low-SNR regime, these transformations are significantly less accurate, and a strategy that relies directly on the true noise statistics is required. Salmon et al took this route, proposing a patch-based exponential image representation model based on Gaussian mixture model, leading to state-of-the-art results. In this paper, we propose to harness sparse-representation modeling to the image patches, adopting the same exponential idea. Our scheme uses a greedy pursuit with boot-strapping-based stopping condition and dictionary learning within the denoising process. The reconstruction performance of the proposed scheme is competitive with leading methods in high SNR and achieving state-of-the-art results in cases of low SNR.

  15. Modeling spiking behavior of neurons with time-dependent Poisson processes.

    PubMed

    Shinomoto, S; Tsubo, Y

    2001-10-01

    Three kinds of interval statistics, as represented by the coefficient of variation, the skewness coefficient, and the correlation coefficient of consecutive intervals, are evaluated for three kinds of time-dependent Poisson processes: pulse regulated, sinusoidally regulated, and doubly stochastic. Among these three processes, the sinusoidally regulated and doubly stochastic Poisson processes, in the case when the spike rate varies slowly compared with the mean interval between spikes, are found to be consistent with the three statistical coefficients exhibited by data recorded from neurons in the prefrontal cortex of monkeys.

  16. Concurrent topological design of composite structures and materials containing multiple phases of distinct Poisson's ratios

    NASA Astrophysics Data System (ADS)

    Long, Kai; Yuan, Philip F.; Xu, Shanqing; Xie, Yi Min

    2018-04-01

    Most studies on composites assume that the constituent phases have different values of stiffness. Little attention has been paid to the effect of constituent phases having distinct Poisson's ratios. This research focuses on a concurrent optimization method for simultaneously designing composite structures and materials with distinct Poisson's ratios. The proposed method aims to minimize the mean compliance of the macrostructure with a given mass of base materials. In contrast to the traditional interpolation of the stiffness matrix through numerical results, an interpolation scheme of the Young's modulus and Poisson's ratio using different parameters is adopted. The numerical results demonstrate that the Poisson effect plays a key role in reducing the mean compliance of the final design. An important contribution of the present study is that the proposed concurrent optimization method can automatically distribute base materials with distinct Poisson's ratios between the macrostructural and microstructural levels under a single constraint of the total mass.

  17. Brain, music, and non-Poisson renewal processes

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Ignaccolo, Massimiliano; Rider, Mark S.; Ross, Mary J.; Winsor, Phil; Grigolini, Paolo

    2007-06-01

    In this paper we show that both music composition and brain function, as revealed by the electroencephalogram (EEG) analysis, are renewal non-Poisson processes living in the nonergodic dominion. To reach this important conclusion we process the data with the minimum spanning tree method, so as to detect significant events, thereby building a sequence of times, which is the time series to analyze. Then we show that in both cases, EEG and music composition, these significant events are the signature of a non-Poisson renewal process. This conclusion is reached using a technique of statistical analysis recently developed by our group, the aging experiment (AE). First, we find that in both cases the distances between two consecutive events are described by nonexponential histograms, thereby proving the non-Poisson nature of these processes. The corresponding survival probabilities Ψ(t) are well fitted by stretched exponentials [ Ψ(t)∝exp (-(γt)α) , with 0.5<α<1 .] The second step rests on the adoption of AE, which shows that these are renewal processes. We show that the stretched exponential, due to its renewal character, is the emerging tip of an iceberg, whose underwater part has slow tails with an inverse power law structure with power index μ=1+α . Adopting the AE procedure we find that both EEG and music composition yield μ<2 . On the basis of the recently discovered complexity matching effect, according to which a complex system S with μS<2 responds only to a complex driving signal P with μP⩽μS , we conclude that the results of our analysis may explain the influence of music on the human brain.

  18. Vortex ring motions in stratified media

    NASA Astrophysics Data System (ADS)

    Auvity, Bruno; Koulal, Mokrane; Dupont, Pascal; Peerhossaini, Hassan

    2003-11-01

    The behavior of vortex rings generated in a stably stratified media has received only weak treatment in the literature. This configuration is believed to shed light on the basic phenomena involved in the collapse of wake in stratified fluid. The present study focused on experimental observations of the formation, the advection and the collapse of horizontal vortex rings in stratified media. Stable continuous vertical stratification was produced in a tank using the well-known two-tanks method. The generation of vortex ring was realized moving a piston through a tube. The maximum piston stroke achievable was seven tube diameters. The problem is mainly characterized by two parameters : the initial Reynolds number and the initial Froude number of the vortex ring. Both these numbers were varied in the study. The Reynolds number based on the tube diameter and piston velocity was in the range 1,500 - 5,500 and the Froude number based on the same parameters in the range 1.4 - 4.7. Dye visualizations were performed from the top and the side of the tank showing the vortex ring may develop an important asymmetry. Different processes to the complete collapse of the vortex ring were identified.

  19. Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoneking, M.R.; Den Hartog, D.J.

    1996-06-01

    The fitting of data by {chi}{sup 2}-minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimatesmore » for the fit parameters. They compare this method with a {chi}{sup 2}-minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than {approximately}20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers.« less

  20. Dendritic polyelectrolytes as seen by the Poisson-Boltzmann-Flory theory.

    PubMed

    Kłos, J S; Milewski, J

    2018-06-20

    G3-G9 dendritic polyelectrolytes accompanied by counterions are investigated using the Poisson-Boltzmann-Flory theory. Within this approach we solve numerically the Poisson-Boltzmann equation for the mean electrostatic potential and minimize the Poisson-Boltzmann-Flory free energy with respect to the size of the molecules. Such a scheme enables us to inspect the conformational and electrostatic properties of the dendrimers in equilibrium based on their response to varying the dendrimer generation. The calculations indicate that the G3-G6 dendrimers exist in the polyelectrolyte regime where absorption of counterions into the volume of the molecules is minor. Trapping of ions in the interior region becomes significant for the G7-G9 dendrimers and signals the emergence of the osmotic regime. We find that the behavior of the dendritic polyelectrolytes corresponds with the degree of ion trapping. In particular, in both regimes the polyelectrolytes are swollen as compared to their neutral counterparts and the expansion factor is maximal at the crossover generation G7.

  1. Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers

    NASA Astrophysics Data System (ADS)

    Neshveyev, Sergey; Tuset, Lars

    2012-05-01

    Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 < q < 1. We study a quantization C( G q / K q ) of the algebra of continuous functions on G/ K. Using results of Soibelman and Dijkhuizen-Stokman we classify the irreducible representations of C( G q / K q ) and obtain a composition series for C( G q / K q ). We describe closures of the symplectic leaves of G/ K refining the well-known description in the case of flag manifolds in terms of the Bruhat order. We then show that the same rules describe the topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).

  2. Super-integrable Calogero-type systems admit maximal number of Poisson structures

    NASA Astrophysics Data System (ADS)

    Gonera, C.; Nutku, Y.

    2001-07-01

    We present a general scheme for constructing the Poisson structure of super-integrable dynamical systems of which the rational Calogero-Moser system is the most interesting one. This dynamical system is 2 N-dimensional with 2 N-1 first integrals and our construction yields 2 N-1 degenerate Poisson tensors that each admit 2( N-1) Casimirs. Our results are quite generally applicable to all super-integrable systems and form an alternative to the traditional bi-Hamiltonian approach.

  3. Massively Parallel Solution of Poisson Equation on Coarse Grain MIMD Architectures

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Weinberger, D.; Roosta, R.; Gulati, S.

    1998-01-01

    In this paper a new algorithm, designated as Fast Invariant Imbedding algorithm, for solution of Poisson equation on vector and massively parallel MIMD architectures is presented. This algorithm achieves the same optimal computational efficiency as other Fast Poisson solvers while offering a much better structure for vector and parallel implementation. Our implementation on the Intel Delta and Paragon shows that a speedup of over two orders of magnitude can be achieved even for moderate size problems.

  4. Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.

    PubMed

    Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence

    2012-12-01

    A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.

  5. Efficient Levenberg-Marquardt minimization of the maximum likelihood estimator for Poisson deviates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, T; Chromy, B

    2009-11-10

    Histograms of counted events are Poisson distributed, but are typically fitted without justification using nonlinear least squares fitting. The more appropriate maximum likelihood estimator (MLE) for Poisson distributed data is seldom used. We extend the use of the Levenberg-Marquardt algorithm commonly used for nonlinear least squares minimization for use with the MLE for Poisson distributed data. In so doing, we remove any excuse for not using this more appropriate MLE. We demonstrate the use of the algorithm and the superior performance of the MLE using simulations and experiments in the context of fluorescence lifetime imaging. Scientists commonly form histograms ofmore » counted events from their data, and extract parameters by fitting to a specified model. Assuming that the probability of occurrence for each bin is small, event counts in the histogram bins will be distributed according to the Poisson distribution. We develop here an efficient algorithm for fitting event counting histograms using the maximum likelihood estimator (MLE) for Poisson distributed data, rather than the non-linear least squares measure. This algorithm is a simple extension of the common Levenberg-Marquardt (L-M) algorithm, is simple to implement, quick and robust. Fitting using a least squares measure is most common, but it is the maximum likelihood estimator only for Gaussian-distributed data. Non-linear least squares methods may be applied to event counting histograms in cases where the number of events is very large, so that the Poisson distribution is well approximated by a Gaussian. However, it is not easy to satisfy this criterion in practice - which requires a large number of events. It has been well-known for years that least squares procedures lead to biased results when applied to Poisson-distributed data; a recent paper providing extensive characterization of these biases in exponential fitting is given. The more appropriate measure based on the maximum likelihood

  6. Application of Poisson random effect models for highway network screening.

    PubMed

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer

    2014-02-01

    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Relational symplectic groupoid quantization for constant poisson structures

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Moshayedi, Nima; Wernli, Konstantin

    2017-09-01

    As a detailed application of the BV-BFV formalism for the quantization of field theories on manifolds with boundary, this note describes a quantization of the relational symplectic groupoid for a constant Poisson structure. The presence of mixed boundary conditions and the globalization of results are also addressed. In particular, the paper includes an extension to space-times with boundary of some formal geometry considerations in the BV-BFV formalism, and specifically introduces into the BV-BFV framework a "differential" version of the classical and quantum master equations. The quantization constructed in this paper induces Kontsevich's deformation quantization on the underlying Poisson manifold, i.e., the Moyal product, which is known in full details. This allows focussing on the BV-BFV technology and testing it. For the inexperienced reader, this is also a practical and reasonably simple way to learn it.

  8. A dictionary learning approach for Poisson image deblurring.

    PubMed

    Ma, Liyan; Moisan, Lionel; Yu, Jian; Zeng, Tieyong

    2013-07-01

    The restoration of images corrupted by blur and Poisson noise is a key issue in medical and biological image processing. While most existing methods are based on variational models, generally derived from a maximum a posteriori (MAP) formulation, recently sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, we propose in this paper a model containing three terms: a patch-based sparse representation prior over a learned dictionary, the pixel-based total variation regularization term and a data-fidelity term capturing the statistics of Poisson noise. The resulting optimization problem can be solved by an alternating minimization technique combined with variable splitting. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio value and the method noise, the proposed algorithm outperforms state-of-the-art methods.

  9. Tensorial Basis Spline Collocation Method for Poisson's Equation

    NASA Astrophysics Data System (ADS)

    Plagne, Laurent; Berthou, Jean-Yves

    2000-01-01

    This paper aims to describe the tensorial basis spline collocation method applied to Poisson's equation. In the case of a localized 3D charge distribution in vacuum, this direct method based on a tensorial decomposition of the differential operator is shown to be competitive with both iterative BSCM and FFT-based methods. We emphasize the O(h4) and O(h6) convergence of TBSCM for cubic and quintic splines, respectively. We describe the implementation of this method on a distributed memory parallel machine. Performance measurements on a Cray T3E are reported. Our code exhibits high performance and good scalability: As an example, a 27 Gflops performance is obtained when solving Poisson's equation on a 2563 non-uniform 3D Cartesian mesh by using 128 T3E-750 processors. This represents 215 Mflops per processors.

  10. Noise parameter estimation for poisson corrupted images using variance stabilization transforms.

    PubMed

    Jin, Xiaodan; Xu, Zhenyu; Hirakawa, Keigo

    2014-03-01

    Noise is present in all images captured by real-world image sensors. Poisson distribution is said to model the stochastic nature of the photon arrival process and agrees with the distribution of measured pixel values. We propose a method for estimating unknown noise parameters from Poisson corrupted images using properties of variance stabilization. With a significantly lower computational complexity and improved stability, the proposed estimation technique yields noise parameters that are comparable in accuracy to the state-of-art methods.

  11. Stratifying repellent-treated pine seed.

    Treesearch

    T.A. Harrington

    1960-01-01

    Germinative capacity of loblolly, shortleaf, and Virginia pine may be seriously reduced if the seed is repellent-coated and then stratified when fresh. In contrast, cold storage for a few months may largely forestall damage from later repellent treatment and stratification.

  12. Poisson filtering of laser ranging data

    NASA Technical Reports Server (NTRS)

    Ricklefs, Randall L.; Shelus, Peter J.

    1993-01-01

    The filtering of data in a high noise, low signal strength environment is a situation encountered routinely in lunar laser ranging (LLR) and, to a lesser extent, in artificial satellite laser ranging (SLR). The use of Poisson statistics as one of the tools for filtering LLR data is described first in a historical context. The more recent application of this statistical technique to noisy SLR data is also described.

  13. Understanding exchanges across turbulent/stratified zones interfaces

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Ribeiro, A.; Le Gal, P.; Aurnou, J. M.

    2013-12-01

    In many geophysical and astrophysical situations, a turbulent fluid layer is separated from a stably stratified one by a relatively sharp but deformable interface. Examples include the convective and radiative zones in stars, the atmospheric convective layer and overlying stratosphere, the Earth's outer core... While motions in the stratified layer are often neglected, it actually supports oscillatory motions called gravito-inertial waves (GIW) excited by Reynolds stresses, entropy fluctuations and interface deformations associated with the turbulence. Besides their direct observation as for instance in asteroseismology, GIW transport energy, carry momentum, break, mix... and are thus essential for accurate models of global climate and solar or core dynamics. Global integrated models including length scales and time scales spanning many orders of magnitude are required to fully address motions in turbulent and stratified zones and to understand the details of the highly non-linear couplings between rotation, meridional circulation, turbulence and waves: this is clearly very challenging from both analytical and numerical points of view. Here, we present results from two complementary laboratory experiments using water as a working fluid and salt or temperature to control the buoyancy effects, allowing to address the whole range of relevant physical issues in simplified models. In the first set-up, we take benefit from the unusual property of water that its density has a maximum value near 4oC to study its convective and oscillatory motions in a tank with a bottom boundary at about 0oC and a hotter upper surface. High precision local measurements of temperature fluctuations are performed simultaneously in the convective and stratified zones to produce the corresponding power density spectrum and probability density function. In the second set-up, a turbulent jet generated by injection of water impinges upon the interface between a uniform density layer and a

  14. Poisson-event-based analysis of cell proliferation.

    PubMed

    Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul

    2015-05-01

    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.

  15. Reference manual for the POISSON/SUPERFISH Group of Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The POISSON/SUPERFISH Group codes were set up to solve two separate problems: the design of magnets and the design of rf cavities in a two-dimensional geometry. The first stage of either problem is to describe the layout of the magnet or cavity in a way that can be used as input to solve the generalized Poisson equation for magnets or the Helmholtz equations for cavities. The computer codes require that the problems be discretized by replacing the differentials (dx,dy) by finite differences ({delta}X,{delta}Y). Instead of defining the function everywhere in a plane, the function is defined only at a finitemore » number of points on a mesh in the plane.« less

  16. Heterotrophic bacterioplankton control on organic and inorganic carbon cycle in stratified and non-stratified lakes of NW Russia

    NASA Astrophysics Data System (ADS)

    Shirokova, Liudmila; Vorobjeva, Taissia; Zabelina, Svetlana; Moreva, Olga; Klimov, Sergey; Shorina, Natalja; Chupakov, Artem; Pokrovsky, Oleg; Audry, Stephan; Viers, Jerome

    2010-05-01

    Lakes of boreal zone regulate the fate of dissolved carbon, nutrients and trace metals during their transport from the watershed to the ocean. Study of primary production - mineralization processes in the context of carbon biogeochemical cycle allows determination of the rate and mechanisms of phytoplankton biomass production and its degradation via aquatic heterotrophic bacteria. In particular, comparative study of vertical distribution of Dissolved Organic Carbon (DOC) in stratified and non-stratified lakes allows establishing the link between biological and chemical aspects of the carbon cycle which, in turns, determines an environmental stability and recovering potential of the entire ecosystem. In order to better understand the biogeochemical mechanisms that control dissolved organic and inorganic carbon migration in surface boreal waters, we studied in 2007-2009 two strongly stratified lakes (15-20 m deep) and two shallow lakes (2-4 m deep) in the Arkhangelsk region (NW Russia, White Sea basin). We conducted natural experiments of the lake water incubation for measurements of the intensity of production/mineralization processes and we determined vertical concentration of DOC during four basic hydrological seasons (winter and summer stratification, and spring and autumn lake overturn). Our seasonal studies of production/mineralization processes demonstrated high intensity of organic matter formation during summer period and significant retard of these processes during winter stagnation. During spring period, there is a strong increase of bacterial destruction of the allochtonous organic matter that is being delivered to the lake via terrigenous input. During autumn overturn, there is a decrease of the activity of phytoplankton, and the degradation of dead biomass by active bacterial community. Organic matter destruction processes are the most active in Svyatoe lake, whereas in the Beloe lake, the rate of organic matter production is significantly higher than

  17. Numerical analysis of internal waves in stratified wake flows

    NASA Astrophysics Data System (ADS)

    Fraunie, Philppe

    2014-05-01

    In laboratory investigations, increased attention has been given to internal waves generated by stationary placed oscillating sources and moving bodies in stratified fluids [1]. The main attention was paid to study flows past bodies of perfect shapes like sphere [2], cylinder [3] of thin strip [3] which are the best theoretical (analytical or numerical) studies. Due to simplicity of geometry, flow around a strip has a potential to investigate separately effects of a drag and lift forces on the body by changing the slope of the horizontally moving strip which can be placed vertically [1], horizontally [2], or be tilted under some angle to the direction of towing velocity [5]. Numeric modeling of a flow past vertical strip uniformly towing with permanent velocity in horizontal direction in a linearly stratified talk which was based on a finite differences solver adapted to the low Reynolds Navier-Stokes equation with transport equation for salinity (LES simulation [6] and RANS [7]) has demonstrated reasonable agreement with data of Schlieren visualization, density marker and probe measurements of internal wave fields. The chosen test cases allowed demonstrating the ability of selected numerical methods to represent stably stratified flows over horizontal strip [4] and hill type 2D obstacles [1, 3] with generation of internal waves. ACKNOWLEDGMENTS This research work was supported by the Region Provence Alpes Côte d'Azur - Modtercom project. The work was also supported by the Russian Foundation for Basic Research (grant 12-01-00128). REFERENCES [1] Chashechkin Yu.D., Mitkin V.V. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid // Dynamics of Atmosphere and Oceans. 2001. V. 34. P. 165-187. [2] Chashechkin, Yu. D. Hydrodynamics of a sphere in a stratified fluid // Fluid Dyn. 1989. V.24(1) P. 1-7. [3] Mitkin V. V., Chashechkin Yu. D. Transformation of hanging discontinuities into vortex systems in a

  18. Stratified charge rotary engine for general aviation

    NASA Technical Reports Server (NTRS)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  19. Variational Gaussian approximation for Poisson data

    NASA Astrophysics Data System (ADS)

    Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen

    2018-02-01

    The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.

  20. A novel method for the accurate evaluation of Poisson's ratio of soft polymer materials.

    PubMed

    Lee, Jae-Hoon; Lee, Sang-Soo; Chang, Jun-Dong; Thompson, Mark S; Kang, Dong-Joong; Park, Sungchan; Park, Seonghun

    2013-01-01

    A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6-47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials.

  1. Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach.

    PubMed

    Mohammadi, Tayeb; Kheiri, Soleiman; Sedehi, Morteza

    2016-01-01

    Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables "number of blood donation" and "number of blood deferral": as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models.

  2. Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach

    PubMed Central

    Mohammadi, Tayeb; Sedehi, Morteza

    2016-01-01

    Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables “number of blood donation” and “number of blood deferral”: as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models. PMID:27703493

  3. Beta-Poisson model for single-cell RNA-seq data analyses.

    PubMed

    Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Rantalainen, Mattias; Pawitan, Yudi

    2016-07-15

    Single-cell RNA-sequencing technology allows detection of gene expression at the single-cell level. One typical feature of the data is a bimodality in the cellular distribution even for highly expressed genes, primarily caused by a proportion of non-expressing cells. The standard and the over-dispersed gamma-Poisson models that are commonly used in bulk-cell RNA-sequencing are not able to capture this property. We introduce a beta-Poisson mixture model that can capture the bimodality of the single-cell gene expression distribution. We further integrate the model into the generalized linear model framework in order to perform differential expression analyses. The whole analytical procedure is called BPSC. The results from several real single-cell RNA-seq datasets indicate that ∼90% of the transcripts are well characterized by the beta-Poisson model; the model-fit from BPSC is better than the fit of the standard gamma-Poisson model in > 80% of the transcripts. Moreover, in differential expression analyses of simulated and real datasets, BPSC performs well against edgeR, a conventional method widely used in bulk-cell RNA-sequencing data, and against scde and MAST, two recent methods specifically designed for single-cell RNA-seq data. An R package BPSC for model fitting and differential expression analyses of single-cell RNA-seq data is available under GPL-3 license at https://github.com/nghiavtr/BPSC CONTACT: yudi.pawitan@ki.se or mattias.rantalainen@ki.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Collisional effects on the numerical recurrence in Vlasov-Poisson simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzi, Oreste; Valentini, Francesco; Camporeale, Enrico

    The initial state recurrence in numerical simulations of the Vlasov-Poisson system is a well-known phenomenon. Here, we study the effect on recurrence of artificial collisions modeled through the Lenard-Bernstein operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456–1459 (1958)]. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through an Eulerian collisional Vlasov-Poisson code. It is found that, despite being routinely used,more » an artificial collisionality is not a viable way of preventing recurrence in numerical simulations without compromising the kinetic nature of the solution. Moreover, it is shown how numerical effects associated to the generation of fine velocity scales can modify the physical features of the system evolution even in nonlinear regime. This means that filamentation-like phenomena, usually associated with low amplitude fluctuations contexts, can play a role even in nonlinear regime.« less

  5. Layering of sustained vortices in rotating stratified fluids

    NASA Astrophysics Data System (ADS)

    Aubert, O.; Le Bars, M.; Le Gal, P.

    2013-05-01

    The ocean is a natural stratified fluid layer where large structures are influenced by the rotation of the planet through the Coriolis force. In particular, the ocean Meddies are long-lived anticyclonic pancake vortices of Mediterranean origin evolving in the Atlantic Ocean: they have a saltier and warmer core than the sourrounding oceanic water, their diameters go up to 100 km and they can survive for 2 to 3 years in the ocean. Their extensive study using seismic images revealed finestructures surrounding their core (Biescas et al., 2008; Ruddick et al., 2009) corresponding to layers of constant density which thickness is about 40 m and horizontal extent is more than 10 km. These layers can have different origins: salt fingers from a double-diffusive instabilities of salt and heat (Ruddick & Gargett, 2003), viscous overturning motions from a double-diffusive instabilities of salt and momentum (McIntyre, 1970) or global modes of the quasi-geostrophic instability (Nguyen et al., 2011)? As observed by Griffiths & Linden (1981), sustained laboratory anticyclonic vortices created via a continuous injection of isodense fluid in a rotating and linearly stratified layer of salty water are quickly surrounded by layers of constant density. In the continuity of their experiments, we systematically investigated the double-diffusive instability of McIntyre by varying the Coriolis parameter f and the buoyancy frequency N of the background both in experiments and in numerical simulations, and studied the influence of the Schmidt number in numerical simulations. Following McIntyre's approach, typical length and time scales of the instability are well described by a linear stability analysis based on a gaussian model that fits both laboratory and oceanic vortices. The instability appears to be favoured by high Rossby numbers and ratios f/N. We then apply these results to ocean Meddies and conclude about their stability.

  6. An evaluation of flow-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1995-01-01

    Abstract - Flow-stratified sampling is a new method for sampling water quality constituents such as suspended sediment to estimate loads. As with selection-at-list-time (SALT) and time-stratified sampling, flow-stratified sampling is a statistical method requiring random sampling, and yielding unbiased estimates of load and variance. It can be used to estimate event...

  7. The Kramers-Kronig relations for usual and anomalous Poisson-Nernst-Planck models.

    PubMed

    Evangelista, Luiz Roberto; Lenzi, Ervin Kaminski; Barbero, Giovanni

    2013-11-20

    The consistency of the frequency response predicted by a class of electrochemical impedance expressions is analytically checked by invoking the Kramers-Kronig (KK) relations. These expressions are obtained in the context of Poisson-Nernst-Planck usual or anomalous diffusional models that satisfy Poisson's equation in a finite length situation. The theoretical results, besides being successful in interpreting experimental data, are also shown to obey the KK relations when these relations are modified accordingly.

  8. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  9. Differential expression analysis for RNAseq using Poisson mixed models

    PubMed Central

    Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny

    2017-01-01

    Abstract Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. PMID:28369632

  10. Differential expression analysis for RNAseq using Poisson mixed models.

    PubMed

    Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang

    2017-06-20

    Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Doubly stochastic Poisson process models for precipitation at fine time-scales

    NASA Astrophysics Data System (ADS)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  12. The Galactic Isotropic γ-ray Background and Implications for Dark Matter

    NASA Astrophysics Data System (ADS)

    Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj

    2018-06-01

    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.

  13. Using Computational Approaches to Improve Risk-Stratified Patient Management: Rationale and Methods

    PubMed Central

    Stone, Bryan L; Sakaguchi, Farrant; Sheng, Xiaoming; Murtaugh, Maureen A

    2015-01-01

    Background Chronic diseases affect 52% of Americans and consume 86% of health care costs. A small portion of patients consume most health care resources and costs. More intensive patient management strategies, such as case management, are usually more effective at improving health outcomes, but are also more expensive. To use limited resources efficiently, risk stratification is commonly used in managing patients with chronic diseases, such as asthma, chronic obstructive pulmonary disease, diabetes, and heart disease. Patients are stratified based on predicted risk with patients at higher risk given more intensive care. The current risk-stratified patient management approach has 3 limitations resulting in many patients not receiving the most appropriate care, unnecessarily increased costs, and suboptimal health outcomes. First, using predictive models for health outcomes and costs is currently the best method for forecasting individual patient’s risk. Yet, accuracy of predictive models remains poor causing many patients to be misstratified. If an existing model were used to identify candidate patients for case management, enrollment would miss more than half of those who would benefit most, but include others unlikely to benefit, wasting limited resources. Existing models have been developed under the assumption that patient characteristics primarily influence outcomes and costs, leaving physician characteristics out of the models. In reality, both characteristics have an impact. Second, existing models usually give neither an explanation why a particular patient is predicted to be at high risk nor suggestions on interventions tailored to the patient’s specific case. As a result, many high-risk patients miss some suitable interventions. Third, thresholds for risk strata are suboptimal and determined heuristically with no quality guarantee. Objective The purpose of this study is to improve risk-stratified patient management so that more patients will receive the

  14. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    PubMed

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν<1) or under-dispersion (ν>1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel

    2006-01-15

    Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations.

  16. Holographic study of conventional and negative Poisson's ratio metallic foams - Elasticity, yield and micro-deformation

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Lakes, R. S.

    1991-01-01

    An experimental study by holographic interferometry is reported of the following material properties of conventional and negative Poisson's ratio copper foams: Young's moduli, Poisson's ratios, yield strengths and characteristic lengths associated with inhomogeneous deformation. The Young's modulus and yield strength of the conventional copper foam were comparable to those predicted by microstructural modeling on the basis of cellular rib bending. The reentrant copper foam exhibited a negative Poisson's ratio, as indicated by the elliptical contour fringes on the specimen surface in the bending tests. Inhomogeneous, non-affine deformation was observed holographically in both foam materials.

  17. Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.

    PubMed

    Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui

    2016-03-16

    A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Wavelets, ridgelets, and curvelets for Poisson noise removal.

    PubMed

    Zhang, Bo; Fadili, Jalal M; Starck, Jean-Luc

    2008-07-01

    In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance. This new transform, which can be deemed as an extension of the Anscombe transform to filtered data, is simple, fast, and efficient in (very) low-count situations. We combine this VST with the filter banks of wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition schemes. By doing so, the noise-contaminated coefficients of these MS-VST-modified transforms are asymptotically normally distributed with known variances. A classical hypothesis-testing framework is adopted to detect the significant coefficients, and a sparsity-driven iterative scheme reconstructs properly the final estimate. A range of examples show the power of this MS-VST approach for recovering important structures of various morphologies in (very) low-count images. These results also demonstrate that the MS-VST approach is competitive relative to many existing denoising methods.

  19. The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chiun-Chang, E-mail: chlee@mail.nhcue.edu.tw

    2014-05-15

    The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem.more » Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.« less

  20. Toward negative Poisson's ratio composites: Investigation of the auxetic behavior of fibrous networks

    NASA Astrophysics Data System (ADS)

    Tatlier, Mehmet Seha

    Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.

  1. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels.

    PubMed

    Park, H M; Lee, J S; Kim, T W

    2007-11-15

    In the analysis of electroosmotic flows, the internal electric potential is usually modeled by the Poisson-Boltzmann equation. The Poisson-Boltzmann equation is derived from the assumption of thermodynamic equilibrium where the ionic distributions are not affected by fluid flows. Although this is a reasonable assumption for steady electroosmotic flows through straight microchannels, there are some important cases where convective transport of ions has nontrivial effects. In these cases, it is necessary to adopt the Nernst-Planck equation instead of the Poisson-Boltzmann equation to model the internal electric field. In the present work, the predictions of the Nernst-Planck equation are compared with those of the Poisson-Boltzmann equation for electroosmotic flows in various microchannels where the convective transport of ions is not negligible.

  2. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data.

    PubMed

    Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G

    2013-02-26

    The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data.

  3. Poisson's ratio from polarization of acoustic zero-group velocity Lamb mode.

    PubMed

    Baggens, Oskar; Ryden, Nils

    2015-07-01

    Poisson's ratio of an isotropic and free elastic plate is estimated from the polarization of the first symmetric acoustic zero-group velocity Lamb mode. This polarization is interpreted as the ratio of the absolute amplitudes of the surface normal and surface in-plane components of the acoustic mode. Results from the evaluation of simulated datasets indicate that the presented relation, which links the polarization and Poisson's ratio, can be extended to incorporate plates with material damping. Furthermore, the proposed application of the polarization is demonstrated in a practical field case, where an increased accuracy of estimated nominal thickness is obtained.

  4. Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhu, Jian T.

    1991-12-01

    By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.

  5. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  6. Inverse Jacobi multiplier as a link between conservative systems and Poisson structures

    NASA Astrophysics Data System (ADS)

    García, Isaac A.; Hernández-Bermejo, Benito

    2017-08-01

    Some aspects of the relationship between conservativeness of a dynamical system (namely the preservation of a finite measure) and the existence of a Poisson structure for that system are analyzed. From the local point of view, due to the flow-box theorem we restrict ourselves to neighborhoods of singularities. In this sense, we characterize Poisson structures around the typical zero-Hopf singularity in dimension 3 under the assumption of having a local analytic first integral with non-vanishing first jet by connecting with the classical Poincaré center problem. From the global point of view, we connect the property of being strictly conservative (the invariant measure must be positive) with the existence of a Poisson structure depending on the phase space dimension. Finally, weak conservativeness in dimension two is introduced by the extension of inverse Jacobi multipliers as weak solutions of its defining partial differential equation and some of its applications are developed. Examples including Lotka-Volterra systems, quadratic isochronous centers, and non-smooth oscillators are provided.

  7. New method for blowup of the Euler-Poisson system

    NASA Astrophysics Data System (ADS)

    Kwong, Man Kam; Yuen, Manwai

    2016-08-01

    In this paper, we provide a new method for establishing the blowup of C2 solutions for the pressureless Euler-Poisson system with attractive forces for RN (N ≥ 2) with ρ(0, x0) > 0 and Ω 0 i j ( x 0 ) = /1 2 [" separators=" ∂ i u j ( 0 , x 0 ) - ∂ j u i ( 0 , x 0 ) ] = 0 at some point x0 ∈ RN. By applying the generalized Hubble transformation div u ( t , x 0 ( t ) ) = /N a ˙ ( t ) a ( t ) to a reduced Riccati differential inequality derived from the system, we simplify the inequality into the Emden equation a ̈ ( t ) = - /λ a ( t ) N - 1 , a ( 0 ) = 1 , a ˙ ( 0 ) = /div u ( 0 , x 0 ) N . Known results on its blowup set allow us to easily obtain the blowup conditions of the Euler-Poisson system.

  8. Convergence of Spectral Discretizations of the Vlasov--Poisson System

    DOE PAGES

    Manzini, G.; Funaro, D.; Delzanno, G. L.

    2017-09-26

    Here we prove the convergence of a spectral discretization of the Vlasov-Poisson system. The velocity term of the Vlasov equation is discretized using either Hermite functions on the infinite domain or Legendre polynomials on a bounded domain. The spatial term of the Vlasov and Poisson equations is discretized using periodic Fourier expansions. Boundary conditions are treated in weak form through a penalty type term that can be applied also in the Hermite case. As a matter of fact, stability properties of the approximated scheme descend from this added term. The convergence analysis is carried out in detail for the 1D-1Vmore » case, but results can be generalized to multidimensional domains, obtained as Cartesian product, in both space and velocity. The error estimates show the spectral convergence under suitable regularity assumptions on the exact solution.« less

  9. Species abundance in a forest community in South China: A case of poisson lognormal distribution

    USGS Publications Warehouse

    Yin, Z.-Y.; Ren, H.; Zhang, Q.-M.; Peng, S.-L.; Guo, Q.-F.; Zhou, G.-Y.

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m??20 m, 5 m??5 m, and 1 m??1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (?? and ??) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the ?? and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/?? should be an alternative measure of diversity.

  10. Single-particle dispersion in stably stratified turbulence

    NASA Astrophysics Data System (ADS)

    Sujovolsky, N. E.; Mininni, P. D.; Rast, M. P.

    2018-03-01

    We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well-studied case of homogeneous and isotropic turbulence.

  11. Simulation model of stratified thermal energy storage tank using finite difference method

    NASA Astrophysics Data System (ADS)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  12. Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Blossey, R.; Maggs, A. C.; Podgornik, R.

    2017-06-01

    We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)], 10.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.

  13. Generic Schemes for Single-Molecule Kinetics. 2: Information Content of the Poisson Indicator.

    PubMed

    Avila, Thomas R; Piephoff, D Evan; Cao, Jianshu

    2017-08-24

    Recently, we described a pathway analysis technique (paper 1) for analyzing generic schemes for single-molecule kinetics based upon the first-passage time distribution. Here, we employ this method to derive expressions for the Poisson indicator, a normalized measure of stochastic variation (essentially equivalent to the Fano factor and Mandel's Q parameter), for various renewal (i.e., memoryless) enzymatic reactions. We examine its dependence on substrate concentration, without assuming all steps follow Poissonian kinetics. Based upon fitting to the functional forms of the first two waiting time moments, we show that, to second order, the non-Poissonian kinetics are generally underdetermined but can be specified in certain scenarios. For an enzymatic reaction with an arbitrary intermediate topology, we identify a generic minimum of the Poisson indicator as a function of substrate concentration, which can be used to tune substrate concentration to the stochastic fluctuations and to estimate the largest number of underlying consecutive links in a turnover cycle. We identify a local maximum of the Poisson indicator (with respect to substrate concentration) for a renewal process as a signature of competitive binding, either between a substrate and an inhibitor or between multiple substrates. Our analysis explores the rich connections between Poisson indicator measurements and microscopic kinetic mechanisms.

  14. An unbiased risk estimator for image denoising in the presence of mixed poisson-gaussian noise.

    PubMed

    Le Montagner, Yoann; Angelini, Elsa D; Olivo-Marin, Jean-Christophe

    2014-03-01

    The behavior and performance of denoising algorithms are governed by one or several parameters, whose optimal settings depend on the content of the processed image and the characteristics of the noise, and are generally designed to minimize the mean squared error (MSE) between the denoised image returned by the algorithm and a virtual ground truth. In this paper, we introduce a new Poisson-Gaussian unbiased risk estimator (PG-URE) of the MSE applicable to a mixed Poisson-Gaussian noise model that unifies the widely used Gaussian and Poisson noise models in fluorescence bioimaging applications. We propose a stochastic methodology to evaluate this estimator in the case when little is known about the internal machinery of the considered denoising algorithm, and we analyze both theoretically and empirically the characteristics of the PG-URE estimator. Finally, we evaluate the PG-URE-driven parametrization for three standard denoising algorithms, with and without variance stabilizing transforms, and different characteristics of the Poisson-Gaussian noise mixture.

  15. Free Falling in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.

  16. Log-normal frailty models fitted as Poisson generalized linear mixed models.

    PubMed

    Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver

    2016-12-01

    The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Bringing consistency to simulation of population models--Poisson simulation as a bridge between micro and macro simulation.

    PubMed

    Gustafsson, Leif; Sternad, Mikael

    2007-10-01

    Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.

  18. Thermal Vibrational Convection in a Two-phase Stratified Liquid

    NASA Technical Reports Server (NTRS)

    Chang, Qingming; Alexander, J. Iwan D.

    2007-01-01

    The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

  19. The transverse Poisson's ratio of composites.

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1972-01-01

    An expression is developed that makes possible the prediction of Poisson's ratio for unidirectional composites with reference to any pair of orthogonal axes that are normal to the direction of the reinforcing fibers. This prediction appears to be a reasonable one in that it follows the trends of the finite element analysis and the bounding estimates, and has the correct limiting value for zero fiber content. It can only be expected to apply to composites containing stiff, circular, isotropic fibers bonded to a soft matrix material.

  20. A Generalized QMRA Beta-Poisson Dose-Response Model.

    PubMed

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2016-10-01

    Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0Poisson model, PI(d|α,β), is a special case of the generalized model with K min = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model. © 2016 Society for Risk Analysis.

  1. Irreversible thermodynamics of Poisson processes with reaction.

    PubMed

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  2. The noncommutative Poisson bracket and the deformation of the family algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhaoting, E-mail: zhaotwei@indiana.edu

    The family algebras are introduced by Kirillov in 2000. In this paper, we study the noncommutative Poisson bracket P on the classical family algebra C{sub τ}(g). We show that P controls the first-order 1-parameter formal deformation from C{sub τ}(g) to Q{sub τ}(g) where the latter is the quantum family algebra. Moreover, we will prove that the noncommutative Poisson bracket is in fact a Hochschild 2-coboundary, and therefore, the deformation is infinitesimally trivial. In the last part of this paper, we discuss the relation between Mackey’s analogue and the quantization problem of the family algebras.

  3. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Poisson sampling - The adjusted and unadjusted estimator revisited

    Treesearch

    Michael S. Williams; Hans T. Schreuder; Gerardo H. Terrazas

    1998-01-01

    The prevailing assumption, that for Poisson sampling the adjusted estimator "Y-hat a" is always substantially more efficient than the unadjusted estimator "Y-hat u" , is shown to be incorrect. Some well known theoretical results are applicable since "Y-hat a" is a ratio-of-means estimator and "Y-hat u" a simple unbiased estimator...

  5. A Family of Poisson Processes for Use in Stochastic Models of Precipitation

    NASA Astrophysics Data System (ADS)

    Penland, C.

    2013-12-01

    Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.

  6. A Bayesian approach to parameter and reliability estimation in the Poisson distribution.

    NASA Technical Reports Server (NTRS)

    Canavos, G. C.

    1972-01-01

    For life testing procedures, a Bayesian analysis is developed with respect to a random intensity parameter in the Poisson distribution. Bayes estimators are derived for the Poisson parameter and the reliability function based on uniform and gamma prior distributions of that parameter. A Monte Carlo procedure is implemented to make possible an empirical mean-squared error comparison between Bayes and existing minimum variance unbiased, as well as maximum likelihood, estimators. As expected, the Bayes estimators have mean-squared errors that are appreciably smaller than those of the other two.

  7. Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions

    NASA Astrophysics Data System (ADS)

    Netz, R. R.; Orland, H.

    2000-02-01

    We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.

  8. The effect of different methods to compute N on estimates of mixing in stratified flows

    NASA Astrophysics Data System (ADS)

    Fringer, Oliver; Arthur, Robert; Venayagamoorthy, Subhas; Koseff, Jeffrey

    2017-11-01

    The background stratification is typically well defined in idealized numerical models of stratified flows, although it is more difficult to define in observations. This may have important ramifications for estimates of mixing which rely on knowledge of the background stratification against which turbulence must work to mix the density field. Using direct numerical simulation data of breaking internal waves on slopes, we demonstrate a discrepancy in ocean mixing estimates depending on the method in which the background stratification is computed. Two common methods are employed to calculate the buoyancy frequency N, namely a three-dimensionally resorted density field (often used in numerical models) and a locally-resorted vertical density profile (often used in the field). We show that how N is calculated has a significant effect on the flux Richardson number Rf, which is often used to parameterize turbulent mixing, and the turbulence activity number Gi, which leads to errors when estimating the mixing efficiency using Gi-based parameterizations. Supported by ONR Grant N00014-08-1-0904 and LLNL Contract DE-AC52-07NA27344.

  9. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    DOE PAGES

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse; ...

    2017-09-19

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that trackmore » multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a “soft drop multiplicity” which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.« less

  10. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that trackmore » multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a “soft drop multiplicity” which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.« less

  11. A physiologically based nonhomogeneous Poisson counter model of visual identification.

    PubMed

    Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren

    2018-04-30

    A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Ion-Conserving Modified Poisson-Boltzmann Theory Considering a Steric Effect in an Electrolyte

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-12-01

    The modified Poisson-Nernst-Planck (MPNP) and modified Poisson-Boltzmann (MPB) equations are well known as fundamental equations that consider a steric effect, which prevents unphysical ion concentrations. However, it is unclear whether they are equivalent or not. To clarify this problem, we propose an improved free energy formulation that considers a steric limit with an ion-conserving condition and successfully derive the ion-conserving modified Poisson-Boltzmann (IC-MPB) equations that are equivalent to the MPNP equations. Furthermore, we numerically examine the equivalence by comparing between the IC-MPB solutions obtained by the Newton method and the steady MPNP solutions obtained by the finite-element finite-volume method. A surprising aspect of our finding is that the MPB solutions are much different from the MPNP (IC-MPB) solutions in a confined space. We consider that our findings will significantly contribute to understanding the surface science between solids and liquids.

  13. Stratified turbulence diagnostics for high-Reynolds-number momentum wakes

    NASA Astrophysics Data System (ADS)

    Diamessis, Peter; Zhou, Qi

    2017-11-01

    We analyze a large-eddy simulation (LES) dataset of the turbulent wake behind a sphere of diameter D translating at speed U in a linearly stratified Boussinesq fluid with buoyancy frequency N. These simulations are performed at Reynolds numbers Re ≡ UD / ν ∈ { 5 ×103 , 105 , 4 ×105 } and various Froude numbers Fr ≡ 2 U /(ND) . The recently obtained data at Re = 4 ×105 , the highest Re attained so far in either simulation or laboratory, and Fr ∈ { 4 , 16 } enable us to systematically investigate the effects of Reynolds number on this prototypical localized stratified turbulent shear flow. Our analysis focuses on the time evolution of various diagnostics of stratified turbulence, such as the horizontal and vertical integral length scales, turbulent kinetic energy and its dissipation rate ɛ, and the local rate of shear between the spontaneously formed layers of vorticity within the larger-scale quasi-horizontal flow structures. This leads to a discussion of the transitions between distinct stratified flow regimes (Brethouwer et al. 2007) in the appropriately defined phase diagram, and we highlight the dynamical role of the Gibson number Gi = ɛ /(νN2) , and its dependence on the body-based Reynolds number Re . ONR Grants N00014-13-1-0665 and N00014-15-1-2513.

  14. Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios.

    PubMed

    Chen, Da; Zheng, Xiaoyu

    2018-06-14

    Nature has evolved with a recurring strategy to achieve unusual mechanical properties through coupling variable elastic moduli from a few GPa to below KPa within a single tissue. The ability to produce multi-material, three-dimensional (3D) micro-architectures with high fidelity incorporating dissimilar components has been a major challenge in man-made materials. Here we show multi-modulus metamaterials whose architectural element is comprised of encoded elasticity ranging from rigid to soft. We found that, in contrast to ordinary architected materials whose negative Poisson's ratio is dictated by their geometry, these type of metamaterials are capable of displaying Poisson's ratios from extreme negative to zero, independent of their 3D micro-architecture. The resulting low density metamaterials is capable of achieving functionally graded, distributed strain amplification capabilities within the metamaterial with uniform micro-architectures. Simultaneous tuning of Poisson's ratio and moduli within the 3D multi-materials could open up a broad array of material by design applications ranging from flexible armor, artificial muscles, to actuators and bio-mimetic materials.

  15. Formation of temperature front in stably stratified turbulence

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshifumi; Sullivan, Peter; Herring, Jackson

    2016-11-01

    An important feature of stably stratified turbulence is the significant influence of internal gravity waves which makes stably stratified turbulence unique compared to homogeneous isotropic turbulence. In this paper, we investigate the genesis of temperature fronts-a crucial subject both practically and fundamentally-in stably stratified turbulence using Direct Numerical Simulations (DNS) of the Navier-Stokes equation under the Boussinesq approximation with 10243 grid points. Vertical profiles of temperature fluctuations show almost vertically periodic sawtooth wavy structures with negative and positive layers stacked together with clear boundaries implying a sharp temperature fronts. The sawtooth waves consist of gradual decreasing temperature fluctuations with rapid recovery to a positive value as the frontal boundary is crossed vertically. This asymmetry of gradients comes from the structure that warm temperature region lies on top of cool temperature region, and can be verified in the skewed probability density function (PDF) of vertical temperature gradient. We try to extract the flow structures and mechanism for the formation and maintenance of the strong temperature front numerically.

  16. Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy

    NASA Astrophysics Data System (ADS)

    Takasaki, K.

    1990-08-01

    Symmetry properties of the space of complex (or formal) hyper-Kähler metrics are studied in the language of hyper-Kähler hierarchies. The construction of finite symmetries is analogous to the theory of Riemann-Hilbert transformations, loop group elements now taking values in a (pseudo-) group of canonical transformations of a simplectic manifold. In spite of their highly nonlinear and involved nature, infinitesimal expressions of these symmetries are shown to have a rather simple form. These infinitesimal transformations are extended to the Plebanski key functions to give rise to a nonlinear realization of a Poisson loop algebra. The Poisson algebra structure turns out to originate in a contact structure behind a set of symplectic structures inherent in the hyper-Kähler hierarchy. Possible relations to membrane theory are briefly discussed.

  17. Mean-field theory of differential rotation in density stratified turbulent convection

    NASA Astrophysics Data System (ADS)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  18. A note on Poisson goodness-of-fit tests for ionizing radiation induced chromosomal aberration samples.

    PubMed

    Higueras, Manuel; González, J E; Di Giorgio, Marina; Barquinero, J F

    2018-06-13

    To present Poisson exact goodness-of-fit tests as alternatives and complements to the asymptotic u-test, which is the most widely used in cytogenetic biodosimetry, to decide whether a sample of chromosomal aberrations in blood cells comes from an homogeneous or inhomogeneous exposure. Three Poisson exact goodness-of-fit test from the literature are introduced and implemented in the R environment. A Shiny R Studio application, named GOF Poisson, has been updated for the purpose of giving support to this work. The three exact tests and the u-test are applied in chromosomal aberration data from clinical and accidental radiation exposure patients. It is observed how the u-test is not an appropriate approximation in small samples with small yield of chromosomal aberrations. Tools are provided to compute the three exact tests, which is not as trivial as the implementation of the u-test. Poisson exact goodness-of-fit tests should be considered jointly to the u-test for detecting inhomogeneous exposures in the cytogenetic biodosimetry practice.

  19. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  20. Guidelines for Use of the Approximate Beta-Poisson Dose-Response Model.

    PubMed

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2017-07-01

    For dose-response analysis in quantitative microbial risk assessment (QMRA), the exact beta-Poisson model is a two-parameter mechanistic dose-response model with parameters α>0 and β>0, which involves the Kummer confluent hypergeometric function. Evaluation of a hypergeometric function is a computational challenge. Denoting PI(d) as the probability of infection at a given mean dose d, the widely used dose-response model PI(d)=1-(1+dβ)-α is an approximate formula for the exact beta-Poisson model. Notwithstanding the required conditions α<β and β>1, issues related to the validity and approximation accuracy of this approximate formula have remained largely ignored in practice, partly because these conditions are too general to provide clear guidance. Consequently, this study proposes a probability measure Pr(0 < r < 1 | α̂, β̂) as a validity measure (r is a random variable that follows a gamma distribution; α̂ and β̂ are the maximum likelihood estimates of α and β in the approximate model); and the constraint conditions β̂>(22α̂)0.50 for 0.02<α̂<2 as a rule of thumb to ensure an accurate approximation (e.g., Pr(0 < r < 1 | α̂, β̂) >0.99) . This validity measure and rule of thumb were validated by application to all the completed beta-Poisson models (related to 85 data sets) from the QMRA community portal (QMRA Wiki). The results showed that the higher the probability Pr(0 < r < 1 | α̂, β̂), the better the approximation. The results further showed that, among the total 85 models examined, 68 models were identified as valid approximate model applications, which all had a near perfect match to the corresponding exact beta-Poisson model dose-response curve. © 2016 Society for Risk Analysis.

  1. PLUME DISPERSION IN STABLY STRATIFIED FLOWS OVER COMPLEX TERRAIN, PHASE 2

    EPA Science Inventory

    Laboratory experiments were conducted in a stratified towing tank to investigate plume dispersion in stably stratified flows. First, plume dispersion over an idealized terrain model with a simulated elevated inversion in the atmosphere was investigated. These results were compare...

  2. CUMPOIS- CUMULATIVE POISSON DISTRIBUTION PROGRAM

    NASA Technical Reports Server (NTRS)

    Bowerman, P. N.

    1994-01-01

    The Cumulative Poisson distribution program, CUMPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), can be used independently of one another. CUMPOIS determines the approximate cumulative binomial distribution, evaluates the cumulative distribution function (cdf) for gamma distributions with integer shape parameters, and evaluates the cdf for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. CUMPOIS calculates the probability that n or less events (ie. cumulative) will occur within any unit when the expected number of events is given as lambda. Normally, this probability is calculated by a direct summation, from i=0 to n, of terms involving the exponential function, lambda, and inverse factorials. This approach, however, eventually fails due to underflow for sufficiently large values of n. Additionally, when the exponential term is moved outside of the summation for simplification purposes, there is a risk that the terms remaining within the summation, and the summation itself, will overflow for certain values of i and lambda. CUMPOIS eliminates these possibilities by multiplying an additional exponential factor into the summation terms and the partial sum whenever overflow/underflow situations threaten. The reciprocal of this term is then multiplied into the completed sum giving the cumulative probability. The CUMPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting lambda and n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 26K. CUMPOIS was

  3. Generalized master equations for non-Poisson dynamics on networks.

    PubMed

    Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud

    2012-10-01

    The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.

  4. Generalized master equations for non-Poisson dynamics on networks

    NASA Astrophysics Data System (ADS)

    Hoffmann, Till; Porter, Mason A.; Lambiotte, Renaud

    2012-10-01

    The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.

  5. Dependent Neyman type A processes based on common shock Poisson approach

    NASA Astrophysics Data System (ADS)

    Kadilar, Gamze Özel; Kadilar, Cem

    2016-04-01

    The Neyman type A process is used for describing clustered data since the Poisson process is insufficient for clustering of events. In a multivariate setting, there may be dependencies between multivarite Neyman type A processes. In this study, dependent form of the Neyman type A process is considered under common shock approach. Then, the joint probability function are derived for the dependent Neyman type A Poisson processes. Then, an application based on forest fires in Turkey are given. The results show that the joint probability function of the dependent Neyman type A processes, which is obtained in this study, can be a good tool for the probabilistic fitness for the total number of burned trees in Turkey.

  6. Multitasking domain decomposition fast Poisson solvers on the Cray Y-MP

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Fatoohi, Rod A.

    1990-01-01

    The results of multitasking implementation of a domain decomposition fast Poisson solver on eight processors of the Cray Y-MP are presented. The object of this research is to study the performance of domain decomposition methods on a Cray supercomputer and to analyze the performance of different multitasking techniques using highly parallel algorithms. Two implementations of multitasking are considered: macrotasking (parallelism at the subroutine level) and microtasking (parallelism at the do-loop level). A conventional FFT-based fast Poisson solver is also multitasked. The results of different implementations are compared and analyzed. A speedup of over 7.4 on the Cray Y-MP running in a dedicated environment is achieved for all cases.

  7. Dynamics of a prey-predator system under Poisson white noise excitation

    NASA Astrophysics Data System (ADS)

    Pan, Shan-Shan; Zhu, Wei-Qiu

    2014-10-01

    The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is investigated by using the stochastic averaging method. The averaged generalized Itô stochastic differential equation and Fokker-Planck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter ɛ2 s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.

  8. Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations.

    PubMed

    Clausen, Anders; Wang, Fengwen; Jensen, Jakob S; Sigmund, Ole; Lewis, Jennifer A

    2015-10-07

    Topology optimized architectures are designed and printed with programmable Poisson's ratios ranging from -0.8 to 0.8 over large deformations of 20% or more. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes

    NASA Astrophysics Data System (ADS)

    Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David

    2017-04-01

    -stationary dynamicss and structure of stratified fluid flows around a wedge were also studied based of the fundamental equations set using numerical modeling. Due to breaking of naturally existing background diffusion flux of stratifying agent by an impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. The flow is characterized by a wide range of values of internal scales that are absent in a homogeneous liquid. Numerical solution of the fundamental system with the boundary conditions is constructed using a solver such as stratifiedFoam developed within the frame of the open source computational package OpenFOAM using the finite volume method. The computations were performed in parallel using computing resources of the Scientific Research Supercomputer Complex of MSU (SRCC MSU) and the technological platform UniHUB. The evolution of the flow pattern of the wedge by stratified flow has been demonstrated. The complex structure of the fields of physical quantities and their gradients has been shown. Observed in experiment are multiple flow components, including upstream disturbances, internal waves and the downstream wake with submerged transient vortices well reproduced. Structural elements of flow differ in size and laws of variation in space and time. Rich fine flow structure visualized in vicinity and far from the obstacle. The global efficiency of the mixing process is measured and compared with previous estimates of mixing efficiency.

  10. Indentability of conventional and negative Poisson's ratio foams

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.; Elms, K.

    1992-01-01

    The indentation resistance of foams, both of conventional structure and of reentrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, reentrant foams had higher yield strength and lower stiffness than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for reentrant foam than conventional foam.

  11. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  12. Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1992-01-01

    The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.

  13. Using the Gamma-Poisson Model to Predict Library Circulations.

    ERIC Educational Resources Information Center

    Burrell, Quentin L.

    1990-01-01

    Argues that the gamma mixture of Poisson processes, for all its perceived defects, can be used to make predictions regarding future library book circulations of a quality adequate for general management requirements. The use of the model is extensively illustrated with data from two academic libraries. (Nine references) (CLB)

  14. Physical uniqueness of higher-order Korteweg-de Vries theory for continuously stratified fluids without background shear

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2017-10-01

    The 2nd-order Korteweg-de Vries (KdV) equation and the Gardner (or extended KdV) equation are often used to investigate internal solitary waves, commonly observed in oceans and lakes. However, application of these KdV-type equations for continuously stratified fluids to geophysical problems is hindered by nonuniqueness of the higher-order coefficients and the associated correction functions to the wave fields. This study proposes to reduce arbitrariness of the higher-order KdV theory by considering its uniqueness in the following three physical senses: (i) consistency of the nonlinear higher-order coefficients and correction functions with the corresponding phase speeds, (ii) wavenumber-independence of the vertically integrated available potential energy, and (iii) its positive definiteness. The spectral (or generalized Fourier) approach based on vertical modes in the isopycnal coordinate is shown to enable an alternative derivation of the 2nd-order KdV equation, without encountering nonuniqueness. Comparison with previous theories shows that Parseval's theorem naturally yields a unique set of special conditions for (ii) and (iii). Hydrostatic fully nonlinear solutions, derived by combining the spectral approach and simple-wave analysis, reveal that both proposed and previous 2nd-order theories satisfy (i), provided that consistent definitions are used for the wave amplitude and the nonlinear correction. This condition reduces the arbitrariness when higher-order KdV-type theories are compared with observations or numerical simulations. The coefficients and correction functions that satisfy (i)-(iii) are given by explicit formulae to 2nd order and by algebraic recurrence relationships to arbitrary order for hydrostatic fully nonlinear and linear fully nonhydrostatic effects.

  15. Electronic health record analysis via deep poisson factor models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henao, Ricardo; Lu, James T.; Lucas, Joseph E.

    Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less

  16. Electronic health record analysis via deep poisson factor models

    DOE PAGES

    Henao, Ricardo; Lu, James T.; Lucas, Joseph E.; ...

    2016-01-01

    Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less

  17. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics.

    PubMed

    De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos

    2014-06-01

    Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.

  18. Improved central confidence intervals for the ratio of Poisson means

    NASA Astrophysics Data System (ADS)

    Cousins, R. D.

    The problem of confidence intervals for the ratio of two unknown Poisson means was "solved" decades ago, but a closer examination reveals that the standard solution is far from optimal from the frequentist point of view. We construct a more powerful set of central confidence intervals, each of which is a (typically proper) subinterval of the corresponding standard interval. They also provide upper and lower confidence limits which are more restrictive than the standard limits. The construction follows Neyman's original prescription, though discreteness of the Poisson distribution and the presence of a nuisance parameter (one of the unknown means) lead to slightly conservative intervals. Philosophically, the issue of the appropriateness of the construction method is similar to the issue of conditioning on the margins in 2×2 contingency tables. From a frequentist point of view, the new set maintains (over) coverage of the unknown true value of the ratio of means at each stated confidence level, even though the new intervals are shorter than the old intervals by any measure (except for two cases where they are identical). As an example, when the number 2 is drawn from each Poisson population, the 90% CL central confidence interval on the ratio of means is (0.169, 5.196), rather than (0.108, 9.245). In the cited literature, such confidence intervals have applications in numerous branches of pure and applied science, including agriculture, wildlife studies, manufacturing, medicine, reliability theory, and elementary particle physics.

  19. Weather variability and the incidence of cryptosporidiosis: comparison of time series poisson regression and SARIMA models.

    PubMed

    Hu, Wenbiao; Tong, Shilu; Mengersen, Kerrie; Connell, Des

    2007-09-01

    Few studies have examined the relationship between weather variables and cryptosporidiosis in Australia. This paper examines the potential impact of weather variability on the transmission of cryptosporidiosis and explores the possibility of developing an empirical forecast system. Data on weather variables, notified cryptosporidiosis cases, and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics for the period of January 1, 1996-December 31, 2004, respectively. Time series Poisson regression and seasonal auto-regression integrated moving average (SARIMA) models were performed to examine the potential impact of weather variability on the transmission of cryptosporidiosis. Both the time series Poisson regression and SARIMA models show that seasonal and monthly maximum temperature at a prior moving average of 1 and 3 months were significantly associated with cryptosporidiosis disease. It suggests that there may be 50 more cases a year for an increase of 1 degrees C maximum temperature on average in Brisbane. Model assessments indicated that the SARIMA model had better predictive ability than the Poisson regression model (SARIMA: root mean square error (RMSE): 0.40, Akaike information criterion (AIC): -12.53; Poisson regression: RMSE: 0.54, AIC: -2.84). Furthermore, the analysis of residuals shows that the time series Poisson regression appeared to violate a modeling assumption, in that residual autocorrelation persisted. The results of this study suggest that weather variability (particularly maximum temperature) may have played a significant role in the transmission of cryptosporidiosis. A SARIMA model may be a better predictive model than a Poisson regression model in the assessment of the relationship between weather variability and the incidence of cryptosporidiosis.

  20. Extended Poisson process modelling and analysis of grouped binary data.

    PubMed

    Faddy, Malcolm J; Smith, David M

    2012-05-01

    A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Filtering with Marked Point Process Observations via Poisson Chaos Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei, E-mail: wsun@mathstat.concordia.ca; Zeng Yong, E-mail: zengy@umkc.edu; Zhang Shu, E-mail: zhangshuisme@hotmail.com

    2013-06-15

    We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical schememore » based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.« less

  2. Prescription-induced jump distributions in multiplicative Poisson processes.

    PubMed

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  3. Prescription-induced jump distributions in multiplicative Poisson processes

    NASA Astrophysics Data System (ADS)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  4. Mean-square state and parameter estimation for stochastic linear systems with Gaussian and Poisson noises

    NASA Astrophysics Data System (ADS)

    Basin, M.; Maldonado, J. J.; Zendejo, O.

    2016-07-01

    This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.

  5. Vectorized multigrid Poisson solver for the CDC CYBER 205

    NASA Technical Reports Server (NTRS)

    Barkai, D.; Brandt, M. A.

    1984-01-01

    The full multigrid (FMG) method is applied to the two dimensional Poisson equation with Dirichlet boundary conditions. This has been chosen as a relatively simple test case for examining the efficiency of fully vectorizing of the multigrid method. Data structure and programming considerations and techniques are discussed, accompanied by performance details.

  6. The effect of existing turbulence on stratified shear instability

    NASA Astrophysics Data System (ADS)

    Kaminski, Alexis; Smyth, William

    2017-11-01

    Ocean turbulence is an essential process governing, for example, heat uptake by the ocean. In the stably-stratified ocean interior, this turbulence occurs in discrete events driven by vertical variations of the horizontal velocity. Typically, these events have been modelled by assuming an initially laminar stratified shear flow which develops wavelike instabilities, becomes fully turbulent, and then relaminarizes into a stable state. However, in the real ocean there is always some level of turbulence left over from previous events, and it is not yet understood how this turbulence impacts the evolution of future mixing events. Here, we perform a series of direct numerical simulations of turbulent events developing in stratified shear flows that are already at least weakly turbulent. We do so by varying the amplitude of the initial perturbations, and examine the subsequent development of the instability and the impact on the resulting turbulent fluxes. This work is supported by NSF Grant OCE1537173.

  7. Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks

    NASA Astrophysics Data System (ADS)

    Frahm, Klaus M.; Shepelyansky, Dima L.

    2014-04-01

    We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.

  8. A more general system for Poisson series manipulation.

    NASA Technical Reports Server (NTRS)

    Cherniack, J. R.

    1973-01-01

    The design of a working Poisson series processor system is described that is more general than those currently in use. This system is the result of a series of compromises among efficiency, generality, ease of programing, and ease of use. The most general form of coefficients that can be multiplied efficiently is pointed out, and the place of general-purpose algebraic systems in celestial mechanics is discussed.

  9. Sample size calculations for comparative clinical trials with over-dispersed Poisson process data.

    PubMed

    Matsui, Shigeyuki

    2005-05-15

    This paper develops a new formula for sample size calculations for comparative clinical trials with Poisson or over-dispersed Poisson process data. The criteria for sample size calculations is developed on the basis of asymptotic approximations for a two-sample non-parametric test to compare the empirical event rate function between treatment groups. This formula can accommodate time heterogeneity, inter-patient heterogeneity in event rate, and also, time-varying treatment effects. An application of the formula to a trial for chronic granulomatous disease is provided. Copyright 2004 John Wiley & Sons, Ltd.

  10. Performance of Stratified and Subgrouped Disproportionality Analyses in Spontaneous Databases.

    PubMed

    Seabroke, Suzie; Candore, Gianmario; Juhlin, Kristina; Quarcoo, Naashika; Wisniewski, Antoni; Arani, Ramin; Painter, Jeffery; Tregunno, Philip; Norén, G Niklas; Slattery, Jim

    2016-04-01

    Disproportionality analyses are used in many organisations to identify adverse drug reactions (ADRs) from spontaneous report data. Reporting patterns vary over time, with patient demographics, and between different geographical regions, and therefore subgroup analyses or adjustment by stratification may be beneficial. The objective of this study was to evaluate the performance of subgroup and stratified disproportionality analyses for a number of key covariates within spontaneous report databases of differing sizes and characteristics. Using a reference set of established ADRs, signal detection performance (sensitivity and precision) was compared for stratified, subgroup and crude (unadjusted) analyses within five spontaneous report databases (two company, one national and two international databases). Analyses were repeated for a range of covariates: age, sex, country/region of origin, calendar time period, event seriousness, vaccine/non-vaccine, reporter qualification and report source. Subgroup analyses consistently performed better than stratified analyses in all databases. Subgroup analyses also showed benefits in both sensitivity and precision over crude analyses for the larger international databases, whilst for the smaller databases a gain in precision tended to result in some loss of sensitivity. Additionally, stratified analyses did not increase sensitivity or precision beyond that associated with analytical artefacts of the analysis. The most promising subgroup covariates were age and region/country of origin, although this varied between databases. Subgroup analyses perform better than stratified analyses and should be considered over the latter in routine first-pass signal detection. Subgroup analyses are also clearly beneficial over crude analyses for larger databases, but further validation is required for smaller databases.

  11. [Application of negative binomial regression and modified Poisson regression in the research of risk factors for injury frequency].

    PubMed

    Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan

    2011-11-01

    To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P < 0.0001) based on testing by the Lagrangemultiplier. Therefore, the over-dispersion dispersed data using a modified Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.

  12. Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver

    DOE PAGES

    Zhang, Bo; Lu, Benzhuo; Cheng, Xiaolin; ...

    2013-01-01

    This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fast multipole methods (FMMs), and a dynamic prioritization technique for scheduling parallel operations. For each component, we also remark on feasible approaches for further improvements in efficiency, accuracy and applicability of the AFMPB solver to large-scale long-time molecular dynamics simulations. Lastly, the potential of the solver is demonstrated with preliminary numericalmore » results.« less

  13. Optimal Stratification of Item Pools in a-Stratified Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    Chang, Hua-Hua; van der Linden, Wim J.

    2003-01-01

    Developed a method based on 0-1 linear programming to stratify an item pool optimally for use in alpha-stratified adaptive testing. Applied the method to a previous item pool from the computerized adaptive test of the Graduate Record Examinations. Results show the new method performs well in practical situations. (SLD)

  14. Critical elements on fitting the Bayesian multivariate Poisson Lognormal model

    NASA Astrophysics Data System (ADS)

    Zamzuri, Zamira Hasanah binti

    2015-10-01

    Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.

  15. Mixed Poisson distributions in exact solutions of stochastic autoregulation models.

    PubMed

    Iyer-Biswas, Srividya; Jayaprakash, C

    2014-11-01

    In this paper we study the interplay between stochastic gene expression and system design using simple stochastic models of autoactivation and autoinhibition. Using the Poisson representation, a technique whose particular usefulness in the context of nonlinear gene regulation models we elucidate, we find exact results for these feedback models in the steady state. Further, we exploit this representation to analyze the parameter spaces of each model, determine which dimensionless combinations of rates are the shape determinants for each distribution, and thus demarcate where in the parameter space qualitatively different behaviors arise. These behaviors include power-law-tailed distributions, bimodal distributions, and sub-Poisson distributions. We also show how these distribution shapes change when the strength of the feedback is tuned. Using our results, we reexamine how well the autoinhibition and autoactivation models serve their conventionally assumed roles as paradigms for noise suppression and noise exploitation, respectively.

  16. Poisson noise removal with pyramidal multi-scale transforms

    NASA Astrophysics Data System (ADS)

    Woiselle, Arnaud; Starck, Jean-Luc; Fadili, Jalal M.

    2013-09-01

    In this paper, we introduce a method to stabilize the variance of decimated transforms using one or two variance stabilizing transforms (VST). These VSTs are applied to the 3-D Meyer wavelet pyramidal transform which is the core of the first generation 3D curvelets. This allows us to extend these 3-D curvelets to handle Poisson noise, that we apply to the denoising of a simulated cosmological volume.

  17. Indentability of conventional and negative Poisson's ratio foams

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.; Elms, K.

    1992-01-01

    The indentation resistance of foams, both of conventional structure and of re-entrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, re-entrant foams had higher yield strengths sigma(sub y) and lower stiffness E than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for re-entrant foam than conventional foam.

  18. Cost-effectiveness of risk stratified followup after urethral reconstruction: a decision analysis.

    PubMed

    Belsante, Michael J; Zhao, Lee C; Hudak, Steven J; Lotan, Yair; Morey, Allen F

    2013-10-01

    We propose a novel risk stratified followup protocol for use after urethroplasty and explore potential cost savings. Decision analysis was performed comparing a symptom based, risk stratified protocol for patients undergoing excision and primary anastomosis urethroplasty vs a standard regimen of close followup for urethroplasty. Model assumptions included that excision and primary anastomosis has a 94% success rate, 11% of patients with successful urethroplasty had persistent lower urinary tract symptoms requiring cystoscopic evaluation, patients in whom treatment failed undergo urethrotomy and patients with recurrence on symptom based surveillance have a delayed diagnosis requiring suprapubic tube drainage. The Nationwide Inpatient Sample from 2010 was queried to identify the number of urethroplasties performed per year in the United States. Costs were obtained based on Medicare reimbursement rates. The 5-year cost of a symptom based, risk stratified followup protocol is $430 per patient vs $2,827 per patient using standard close followup practice. An estimated 7,761 urethroplasties were performed in the United States in 2010. Assuming that 60% were excision and primary anastomosis, and with more than 5 years of followup, the risk stratified protocol was projected to yield an estimated savings of $11,165,130. Sensitivity analysis showed that the symptom based, risk stratified followup protocol was far more cost-effective than standard close followup in all settings. Less than 1% of patients would be expected to have an asymptomatic recurrence using the risk stratified followup protocol. A risk stratified, symptom based approach to urethroplasty followup would produce a significant reduction in health care costs while decreasing unnecessary followup visits, invasive testing and radiation exposure. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Solution of the nonlinear Poisson-Boltzmann equation: Application to ionic diffusion in cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, J.; Kosson, D.S., E-mail: david.s.kosson@vanderbilt.edu; Garrabrants, A.

    2013-02-15

    A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.

  20. Soil mixing of stratified contaminated sands.

    PubMed

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  1. Emissions from diesel and stratified charge powered cars. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, K.J.

    A total of ten passenger cars, four powered by diesel engines, two by stratified charge gasoline engines, one by a stratified charge operating on gasoline and diesel fuel, two by control equipped conventional engines, and one powered by a gas turbine, have been subjected to a wide variety of emissions evaluations. The vehicles, all late model, low mileage, included a Nissan Datsun, a Mercedes 220D, a Peugeot 504D, an Opel Rekord 2100D, a standard Capri, a stratified charge (PROCO) Capri, a low emission prototype Ford LTD, the Texaco TCCS stratified charge powered Cricket operated on gasoline and on diesel fuel,more » a Honda CVCC stratified charge, and a Chrysler gas turbine car. All were 4-cylinder except the LTD and the gas turbine. Tailpipe emissions were measured by the 1975 light duty Federal Test Procedure for gaseous emissions. Smoke and fuel economy were also determined during this test cycle. Chassis dynamometer versions of the 1974 heavy duty diesel smoke and gaseous emissions tests were employed. Odor and related instrumental-chemical measurements were made under seven steady state and three acceleration conditions. The prototype diesel odor analytical system, developed under CRC contract, was applied to the exhaust from both diesel and gasoline engines. Its use as a predictive method of diesel odor was investigated. Noise measurements were taken by SAE driveby as well as under a variety of exterior-interior conditions. Comparisons of the results for all vehicles are by emission category. The emissions from the group of diesel cars are compared to the conventional gasoline, Ford PROCO, Texas TCCS, and Honda CVCC.« less

  2. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  3. Numerical simulation of stratified flows from laboratory experiments to coastal ocean

    NASA Astrophysics Data System (ADS)

    Fraunie, Philippe

    2014-05-01

    Numeric modeling of a flow past vertical strip uniformly towing with permanent velocity in horizontal direction in a linearly stratified talk which was based on a finite differences solver adapted to the low Reynolds Navier-Stokes equation with transport equation for salinity (LES simulation [6]) has demonstrated reasonable agreement with data of schlieren visualization, density marker and probe measurements of internal wave fields. Another approach based on two different numerical methods for one specific case of stably stratified incompressible flow was developed, using the compact finite-difference discretizations. The numerical scheme itself follows the principle of semi-discretisation, with high order compact discretisation in space, while the time integration is carried out by the Strong Stability Preserving Runge-Kutta scheme. Results were compared against the reference solution obtained by the AUSM finite volume method [7]. The test case allowed demonstrating the ability of selected numerical methods to represent stably stratified flows over horizontal strip [4] and hill type 2D obstacles [1, 3] with generation of internal waves. From previous LES [4] and RANS [8] realistic simulations code, the ability of research codes to reproduce field observations is discussed. ACKNOWLEDGMENTS This research work was supported by Region Provence Alpes Côte d'Azur - Modtercom project, the Research Plan MSM 6840770010 of the Ministry of education of Czech Republic and the Russian Foundation for Basic Research (grant 12-01-00128). REFERENCES 1. Chashechkin Yu.D., Mitkin V.V. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid // Dynamics of Atmosphere and Oceans. 2001. V. 34. P. 165-187. 2. Chashechkin, Yu. D. Hydrodynamics of a sphere in a stratified fluid // Fluid Dyn. 1989. V.24(1) P. 1-7. 3. Mitkin V. V., Chashechkin Yu. D. Transformation of hanging discontinuities into vortex systems in a stratified flow

  4. An empirical Bayesian and Buhlmann approach with non-homogenous Poisson process

    NASA Astrophysics Data System (ADS)

    Noviyanti, Lienda

    2015-12-01

    All general insurance companies in Indonesia have to adjust their current premium rates according to maximum and minimum limit rates in the new regulation established by the Financial Services Authority (Otoritas Jasa Keuangan / OJK). In this research, we estimated premium rate by means of the Bayesian and the Buhlmann approach using historical claim frequency and claim severity in a five-group risk. We assumed a Poisson distributed claim frequency and a Normal distributed claim severity. Particularly, we used a non-homogenous Poisson process for estimating the parameters of claim frequency. We found that estimated premium rates are higher than the actual current rate. Regarding to the OJK upper and lower limit rates, the estimates among the five-group risk are varied; some are in the interval and some are out of the interval.

  5. Stratified vapor generator

    DOEpatents

    Bharathan, Desikan [Lakewood, CO; Hassani, Vahab [Golden, CO

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  6. Stably stratified canopy flow in complex terrain

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yi, C.; Kutter, E.

    2015-07-01

    Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.

  7. Helicity dynamics in stratified turbulence in the absence of forcing.

    PubMed

    Rorai, C; Rosenberg, D; Pouquet, A; Mininni, P D

    2013-06-01

    A numerical study of decaying stably stratified flows is performed. Relatively high stratification (Froude number ≈10(-2)-10(-1)) and moderate Reynolds (Re) numbers (Re≈ 3-6×10(3)) are considered and a particular emphasis is placed on the role of helicity (velocity-vorticity correlations), which is not an invariant of the nondissipative equations. The problem is tackled by integrating the Boussinesq equations in a periodic cubical domain using different initial conditions: a nonhelical Taylor-Green (TG) flow, a fully helical Beltrami [Arnold-Beltrami-Childress (ABC)] flow, and random flows with a tunable helicity. We show that for stratified ABC flows helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to the combined effect of stratification and large-scale coherent structures. Indeed, when the latter are missing, as in random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative "cyclostrophic" balance can be invoked to explain this behavior. No production of helicity is observed, contrary to the case of rotating and stratified flows. When helicity survives in the system, it strongly affects the temporal energy decay and the energy distribution among Fourier modes. We discover in fact that the decay rate of energy for stratified helical flows is much slower than for stratified nonhelical flows and can be considered with a phenomenological model in a way similar to what is done for unstratified rotating flows. We also show that helicity, when strong, has a measurable effect on the Fourier spectra, in particular at scales larger than the buoyancy scale, for which it displays a rather flat scaling associated with vertical shear, as observed in the planetary boundary layer.

  8. On supermatrix models, Poisson geometry, and noncommutative supersymmetric gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimčík, Ctirad

    2015-12-15

    We construct a new supermatrix model which represents a manifestly supersymmetric noncommutative regularisation of the UOSp(2|1) supersymmetric Schwinger model on the supersphere. Our construction is much simpler than those already existing in the literature and it was found by using Poisson geometry in a substantial way.

  9. Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training

    ERIC Educational Resources Information Center

    Baschera, Gian-Marco; Gross, Markus

    2010-01-01

    We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification…

  10. Relaxation in two dimensions and the 'sinh-Poisson' equation

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Matthaeus, W. H.; Stribling, W. T.; Martinez, D.; Oughton, S.

    1992-01-01

    Long-time states of a turbulent, decaying, two-dimensional, Navier-Stokes flow are shown numerically to relax toward maximum-entropy configurations, as defined by the "sinh-Poisson" equation. The large-scale Reynolds number is about 14,000, the spatial resolution is (512)-squared, the boundary conditions are spatially periodic, and the evolution takes place over nearly 400 large-scale eddy-turnover times.

  11. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  12. Persistently Auxetic Materials: Engineering the Poisson Ratio of 2D Self-Avoiding Membranes under Conditions of Non-Zero Anisotropic Strain.

    PubMed

    Ulissi, Zachary W; Govind Rajan, Ananth; Strano, Michael S

    2016-08-23

    Entropic surfaces represented by fluctuating two-dimensional (2D) membranes are predicted to have desirable mechanical properties when unstressed, including a negative Poisson's ratio ("auxetic" behavior). Herein, we present calculations of the strain-dependent Poisson ratio of self-avoiding 2D membranes demonstrating desirable auxetic properties over a range of mechanical strain. Finite-size membranes with unclamped boundary conditions have positive Poisson's ratio due to spontaneous non-zero mean curvature, which can be suppressed with an explicit bending rigidity in agreement with prior findings. Applying longitudinal strain along a singular axis to this system suppresses this mean curvature and the entropic out-of-plane fluctuations, resulting in a molecular-scale mechanism for realizing a negative Poisson's ratio above a critical strain, with values significantly more negative than the previously observed zero-strain limit for infinite sheets. We find that auxetic behavior persists over surprisingly high strains of more than 20% for the smallest surfaces, with desirable finite-size scaling producing surfaces with negative Poisson's ratio over a wide range of strains. These results promise the design of surfaces and composite materials with tunable Poisson's ratio by prestressing platelet inclusions or controlling the surface rigidity of a matrix of 2D materials.

  13. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    NASA Astrophysics Data System (ADS)

    Konno, Hidetoshi; Tamura, Yoshiyasu

    2018-01-01

    In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).

  14. Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Gillis, T.; Winckelmans, G.; Chatelain, P.

    2018-02-01

    We present a fast and efficient Fourier-based solver for the Poisson problem around an arbitrary geometry in an unbounded 3D domain. This solver merges two rewarding approaches, the lattice Green's function method and the immersed interface method, using the Sherman-Morrison-Woodbury decomposition formula. The method is intended to be second order up to the boundary. This is verified on two potential flow benchmarks. We also further analyse the iterative process and the convergence behavior of the proposed algorithm. The method is applicable to a wide range of problems involving a Poisson equation around inner bodies, which goes well beyond the present validation on potential flows.

  15. Likelihood inference for COM-Poisson cure rate model with interval-censored data and Weibull lifetimes.

    PubMed

    Pal, Suvra; Balakrishnan, N

    2017-10-01

    In this paper, we consider a competing cause scenario and assume the number of competing causes to follow a Conway-Maxwell Poisson distribution which can capture both over and under dispersion that is usually encountered in discrete data. Assuming the population of interest having a component cure and the form of the data to be interval censored, as opposed to the usually considered right-censored data, the main contribution is in developing the steps of the expectation maximization algorithm for the determination of the maximum likelihood estimates of the model parameters of the flexible Conway-Maxwell Poisson cure rate model with Weibull lifetimes. An extensive Monte Carlo simulation study is carried out to demonstrate the performance of the proposed estimation method. Model discrimination within the Conway-Maxwell Poisson distribution is addressed using the likelihood ratio test and information-based criteria to select a suitable competing cause distribution that provides the best fit to the data. A simulation study is also carried out to demonstrate the loss in efficiency when selecting an improper competing cause distribution which justifies the use of a flexible family of distributions for the number of competing causes. Finally, the proposed methodology and the flexibility of the Conway-Maxwell Poisson distribution are illustrated with two known data sets from the literature: smoking cessation data and breast cosmesis data.

  16. Ground-water resources in New Hampshire; stratified-drift aquifers

    USGS Publications Warehouse

    Medalie, Laura; Moore, R.B.

    1995-01-01

    Stratified-drift aquifers underlie about 14 percent of the land surface in New Hampshire and are an important source of ground water for commercial, industrial, domestic, and public-water supplies in the State. This report introduces terms and concepts relevant to ground-water resources, summarizes some of the important information derived from a statewide stratified-drift-aquifer investigation, and provides examples of how the findings are used . The purpose of this report is to provide an overview of the stratified-drift aquifer assessment program, thus making summary information accessible to a broad audience, including legislators, State and local officials, and the public. Different audiences will use the report in different ways . To accommodate the varied audiences, some data are summarized statewide, some are presented by major river basin, and some are provided by town. During data collection, care was taken to use consistent methods for each of the 13 study areas (fig. 1) so that results would be comparable throughout the State . If more specific or detailed information about a particular area of interest is needed, the reader is directed to one or more of the technical reports listed in the Selected References section of this report.

  17. Survival analysis of cervical cancer using stratified Cox regression

    NASA Astrophysics Data System (ADS)

    Purnami, S. W.; Inayati, K. D.; Sari, N. W. Wulan; Chosuvivatwong, V.; Sriplung, H.

    2016-04-01

    Cervical cancer is one of the mostly widely cancer cause of the women death in the world including Indonesia. Most cervical cancer patients come to the hospital already in an advanced stadium. As a result, the treatment of cervical cancer becomes more difficult and even can increase the death's risk. One of parameter that can be used to assess successfully of treatment is the probability of survival. This study raises the issue of cervical cancer survival patients at Dr. Soetomo Hospital using stratified Cox regression based on six factors such as age, stadium, treatment initiation, companion disease, complication, and anemia. Stratified Cox model is used because there is one independent variable that does not satisfy the proportional hazards assumption that is stadium. The results of the stratified Cox model show that the complication variable is significant factor which influent survival probability of cervical cancer patient. The obtained hazard ratio is 7.35. It means that cervical cancer patient who has complication is at risk of dying 7.35 times greater than patient who did not has complication. While the adjusted survival curves showed that stadium IV had the lowest probability of survival.

  18. Hydrodynamic Stability Analysis on Sheared Stratified Flow in a Convective Flow Environment

    NASA Astrophysics Data System (ADS)

    Xiao, Yuan; Lin, Wenxian; Armfiled, Steven; Kirkpatrick, Michael; He, Yinghe; Fluid Dynamics Research Group, James Cook University Team; Fluid Dynamics Research Group, University of Sydney Team

    2014-11-01

    A hydrodynamic stability analysis on the convective sheared boundary layer (SCBL) flow, where a sheared stratified flow and a thermally convective flow coexist, is carried out in this study. The linear unstable stratifications representing the convective flow are included in the TaylorGoldstein equations as an unstable factor Jb. A new unstable region corresponding to the convective instability, which is not present in pure sheared stratified flows, is found with the analysis. It is also found that the boundaries of the convective instability regions expand with increasing Jb and interact with the sheared stratified instability region. More results will be presented at the conference

  19. Updating a Classic: "The Poisson Distribution and the Supreme Court" Revisited

    ERIC Educational Resources Information Center

    Cole, Julio H.

    2010-01-01

    W. A. Wallis studied vacancies in the US Supreme Court over a 96-year period (1837-1932) and found that the distribution of the number of vacancies per year could be characterized by a Poisson model. This note updates this classic study.

  20. Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Hannah C.; Sizeland, Katie H.; Kayed, Hanan R.

    Type I collagen is the main structural component of skin, tendons, and skin products, such as leather. Understanding the mechanical performance of collagen fibrils is important for understanding the mechanical performance of the tissues that they make up, while the mechanical properties of bulk tissue are well characterized, less is known about the mechanical behavior of individual collagen fibrils. In this study, bovine pericardium is subjected to strain while small angle X-ray scattering (SAXS) patterns are recorded using synchrotron radiation. The change in d-spacing, which is a measure of fibril extension, and the change in fibril diameter are determined frommore » SAXS. The tissue is strained 0.25 (25%) with a corresponding strain in the collagen fibrils of 0.045 observed. The ratio of collagen fibril width contraction to length extension, or the Poisson's ratio, is 2.1 ± 0.7 for a tissue strain from 0 to 0.25. This Poisson's ratio indicates that the volume of individual collagen fibrils decreases with increasing strain, which is quite unlike most engineering materials. This high Poisson's ratio of individual fibrils may contribute to high Poisson's ratio observed for tissues, contributing to some of the remarkable properties of collagen-based materials.« less

  1. Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson's ratio.

    PubMed

    Li, Tiantian; Hu, Xiaoyi; Chen, Yanyu; Wang, Lifeng

    2017-08-21

    Auxetic materials exhibiting a negative Poisson's ratio are of great research interest due to their unusual mechanical responses and a wide range of potential deployment. Efforts have been devoted to exploring novel 2D and 3D auxetic structures through rational design, optimization, and taking inspiration from nature. Here we report a 3D architected lattice system showing a negative Poisson's ratio over a wide range of applied uniaxial stretch. 3D printing, experimental tests, numerical simulation, and analytical modeling are implemented to quantify the evolution of the Poisson's ratio and reveal the underlying mechanisms responsible for this unusual behavior. We further show that the auxetic behavior can be controlled by tailoring the geometric features of the ligaments. The findings reported here provide a new routine to design architected metamaterial systems exhibiting unusual properties and having a wide range of potential applications.

  2. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractionalmore » order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.« less

  3. Measurement of High Reynolds Number Stratified Turbulent Wake of a Towed Sphere

    NASA Astrophysics Data System (ADS)

    Brandt, Alan; Kalumuck, Kenneth

    2017-11-01

    Although aircraft and ships operate at Reynolds numbers significantly greater than one million, there are virtually no extant data on the turbulence of wakes at Re >106, above the drag crisis regime. The present study is designed to characterize the near-field of a stratified wake at large Reynolds numbers, Re 2 x 105 - 106, by towing a large diameter (D 0.5 m) sphere through a thermally stratified fresh water lake and a thermally stratified large salt water towing tank. Stratification produced BV frequencies, N, up to 0.07 s-1 resulting in Froude numbers F = U/ND >= 15. Three component turbulent velocities and temperature measurements were obtained using Acoustic Doppler Velocimeters (ADVs) and an array of fast response thermistors at various downstream distances. Turbulence power spectra of both the velocity and temperature signals exhibited a clear -5/3 slope over an order-of-magnitude range in wavenumber, which is generally not clearly evident in lower Re laboratory experiments. This study is sponsored by the Office of Naval Research Turbulence and Stratified Wakes Program.

  4. Poisson-Boltzmann-Nernst-Planck model

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  5. Stationary and non-stationary occurrences of miniature end plate potentials are well described as stationary and non-stationary Poisson processes in the mollusc Navanax inermis.

    PubMed

    Cappell, M S; Spray, D C; Bennett, M V

    1988-06-28

    Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.

  6. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  7. On the rising motion of a drop in stratified fluids

    NASA Astrophysics Data System (ADS)

    Bayareh, M.; Doostmohammadi, A.; Dabiri, S.; Ardekani, A. M.

    2013-10-01

    The rising dynamics of a deformable drop in a linearly stratified fluid is numerically obtained using a finite-volume/front-tracking method. Our results show that the drag coefficient of a spherical drop in a stratified fluid enhances as C_{d,s}/C_{d,h}-1˜ Fr_d^{-2.86} for drop Froude numbers in the range of 4 < Frd < 16. The role of the deformability of the drop on the temporal evolution of the motion is investigated along with stratification and inertial effects. We also present the important role of stratification on the transient rising motion of the drop. It is shown that a drop can levitate in the presence of a vertical density gradient. The drop undergoes a fading oscillatory motion around its neutrally buoyant position except for high viscosity ratio drops where the oscillation occurs around a density level lighter than the neutral buoyancy level. In addition, a detailed characterization of the flow signature of a rising drop in a linearly stratified fluid including the buoyancy induced vortices and the resultant buoyant jet is presented.

  8. On the stability analysis of sharply stratified shear flows

    NASA Astrophysics Data System (ADS)

    Churilov, Semyon

    2018-05-01

    When the stability of a sharply stratified shear flow is studied, the density profile is usually taken stepwise and a weak stratification between pycnoclines is neglected. As a consequence, in the instability domain of the flow two-sided neutral curves appear such that the waves corresponding to them are neutrally stable, whereas the neighboring waves on either side of the curve are unstable, in contrast with the classical result of Miles (J Fluid Mech 16:209-227, 1963) who proved that in stratified flows unstable oscillations can be only on one side of the neutral curve. In the paper, the contradiction is resolved and changes in the flow stability pattern under transition from a model stepwise to a continuous density profile are analyzed. On this basis, a simple self-consistent algorithm is proposed for studying the stability of sharply stratified shear flows with a continuous density variation and an arbitrary monotonic velocity profile without inflection points. Because our calculations and the algorithm are both based on the method of stability analysis (Churilov J Fluid Mech 539:25-55, 2005; ibid, 617, 301-326, 2008), which differs essentially from usually used, the paper starts with a brief review of the method and results obtained with it.

  9. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient.

    PubMed

    Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai

    2016-06-10

    Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.

  10. Weber's law implies neural discharge more regular than a Poisson process.

    PubMed

    Kang, Jing; Wu, Jianhua; Smerieri, Anteo; Feng, Jianfeng

    2010-03-01

    Weber's law is one of the basic laws in psychophysics, but the link between this psychophysical behavior and the neuronal response has not yet been established. In this paper, we carried out an analysis on the spike train statistics when Weber's law holds, and found that the efferent spike train of a single neuron is less variable than a Poisson process. For population neurons, Weber's law is satisfied only when the population size is small (< 10 neurons). However, if the population neurons share a weak correlation in their discharges and individual neuronal spike train is more regular than a Poisson process, Weber's law is true without any restriction on the population size. Biased competition attractor network also demonstrates that the coefficient of variation of interspike interval in the winning pool should be less than one for the validity of Weber's law. Our work links Weber's law with neural firing property quantitatively, shedding light on the relation between psychophysical behavior and neuronal responses.

  11. Pareto genealogies arising from a Poisson branching evolution model with selection.

    PubMed

    Huillet, Thierry E

    2014-02-01

    We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β < α). Depending on the range of α we derive the large N limit coalescents structure, leading either to a discrete-time Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.

  12. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.

    PubMed

    Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa

    2017-06-05

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer.

    PubMed

    Lim, Jongil; Whitcomb, John; Boyd, James; Varghese, Julian

    2007-01-01

    A finite element implementation of the transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-modified Stern (NPPMS) models is presented. The NPPMS model uses multipoint constraints to account for finite ion size, resulting in realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation is used to provide a limited check of the transient models for low surface potential and dilute bulk solutions. The effects of the surface potential and bulk molarity on the electric potential and ion concentrations as functions of space and time are studied. The ability of the models to predict realistic energy storage capacity is investigated. The predicted energy is much more sensitive to surface potential than to bulk solution molarity.

  14. Direct multiangle solution for poorly stratified atmospheres

    Treesearch

    Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao

    2012-01-01

    The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used...

  15. SPONTANEOUS FORMATION OF SURFACE MAGNETIC STRUCTURE FROM LARGE-SCALE DYNAMO IN STRONGLY STRATIFIED CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@auecc.aichi-edu.ac.jp, E-mail: sano@ile.osaka-u.ac.jp

    We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α {sup 2}-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceedsmore » in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.« less

  16. Stratified coastal ocean interactions with tropical cyclones

    PubMed Central

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  17. A modified Poisson-Boltzmann equation applied to protein adsorption.

    PubMed

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reference analysis of the signal + background model in counting experiments II. Approximate reference prior

    NASA Astrophysics Data System (ADS)

    Casadei, D.

    2014-10-01

    The objective Bayesian treatment of a model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered. It is shown that the reference prior for the parameter of interest (the signal intensity) can be well approximated by the widely (ab)used flat prior only when the expected background is very high. On the other hand, a very simple approximation (the limiting form of the reference prior for perfect prior background knowledge) can be safely used over a large portion of the background parameters space. The resulting approximate reference posterior is a Gamma density whose parameters are related to the observed counts. This limiting form is simpler than the result obtained with a flat prior, with the additional advantage of representing a much closer approximation to the reference posterior in all cases. Hence such limiting prior should be considered a better default or conventional prior than the uniform prior. On the computing side, it is shown that a 2-parameter fitting function is able to reproduce extremely well the reference prior for any background prior. Thus, it can be useful in applications requiring the evaluation of the reference prior for a very large number of times.

  19. Number of pins in two-stage stratified sampling for estimating herbage yield

    Treesearch

    William G. O' Regan; C. Eugene Conrad

    1975-01-01

    In a two-stage stratified procedure for sampling herbage yield, plots are stratified by a pin frame in stage one, and clipped. In stage two, clippings from selected plots are sorted, dried, and weighed. Sample size and distribution of plots between the two stages are determined by equations. A way to compute the effect of number of pins on the variance of estimated...

  20. Properties of the endogenous post-stratified estimator using a random forests model

    Treesearch

    John Tipton; Jean Opsomer; Gretchen G. Moisen

    2012-01-01

    Post-stratification is used in survey statistics as a method to improve variance estimates. In traditional post-stratification methods, the variable on which the data is being stratified must be known at the population level. In many cases this is not possible, but it is possible to use a model to predict values using covariates, and then stratify on these predicted...

  1. Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Donner, Reik V.; Marwan, Norbert; Kurths, Jürgen

    2013-09-01

    Characterizing the mechanism of drop formation at the interface of horizontal oil-water stratified flows is a fundamental problem eliciting a great deal of attention from different disciplines. We experimentally and theoretically investigate the formation and transition of horizontal oil-water stratified flows. We design a new multi-sector conductance sensor and measure multivariate signals from two different stratified flow patterns. Using the Adaptive Optimal Kernel Time-Frequency Representation (AOK TFR) we first characterize the flow behavior from an energy and frequency point of view. Then, we infer multivariate recurrence networks from the experimental data and investigate the cross-transitivity for each constructed network. We find that the cross-transitivity allows quantitatively uncovering the flow behavior when the stratified flow evolves from a stable state to an unstable one and recovers deeper insights into the mechanism governing the formation of droplets at the interface of stratified flows, a task that existing methods based on AOK TFR fail to work. These findings present a first step towards an improved understanding of the dynamic mechanism leading to the transition of horizontal oil-water stratified flows from a complex-network perspective.

  2. Simulation on Poisson and negative binomial models of count road accident modeling

    NASA Astrophysics Data System (ADS)

    Sapuan, M. S.; Razali, A. M.; Zamzuri, Z. H.; Ibrahim, K.

    2016-11-01

    Accident count data have often been shown to have overdispersion. On the other hand, the data might contain zero count (excess zeros). The simulation study was conducted to create a scenarios which an accident happen in T-junction with the assumption the dependent variables of generated data follows certain distribution namely Poisson and negative binomial distribution with different sample size of n=30 to n=500. The study objective was accomplished by fitting Poisson regression, negative binomial regression and Hurdle negative binomial model to the simulated data. The model validation was compared and the simulation result shows for each different sample size, not all model fit the data nicely even though the data generated from its own distribution especially when the sample size is larger. Furthermore, the larger sample size indicates that more zeros accident count in the dataset.

  3. Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.

    PubMed

    Gao, Yi; Bouix, Sylvain

    2016-05-01

    Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity

    PubMed Central

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2014-01-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587

  5. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    PubMed

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  6. Oscillations in a Linearly Stratified Salt Solution

    ERIC Educational Resources Information Center

    Heavers, Richard M.

    2007-01-01

    Our physics students like to watch a ball bouncing underwater. They do this by dropping a weighted plastic ball into a 1000-ml cylinder filled with a linearly stratified salt-water solution at room temperature. The ball oscillates and comes to rest at about mid-depth. Its motion is analogous to the damped vertical oscillations of a mass hanging…

  7. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids.

    PubMed

    Wang, Shiyan; Ardekani, Arezoo M

    2015-12-02

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called "squirmer". The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001-0.04) when the swimming Reynolds number is in the range of O(0.1-100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence.

  8. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Inertial floaters in stratified turbulence

    NASA Astrophysics Data System (ADS)

    Sozza, A.; De Lillo, F.; Boffetta, G.

    2018-01-01

    We investigate numerically the dynamics and statistics of inertial particles transported by stratified turbulence, in the case of particle density intermediate in the average density profile of the fluid. Under these conditions, particles tend to form a thin layer around the corresponding fluid isopycnal. The thickness of the resulting layer is determined by a balance between buoyancy (which attracts the particle to the isopycnal) and inertia (which prevents them from following it exactly). By means of extensive numerical simulations, we explore the parameter space of the system and we find that in a range of parameters particles form fractal clusters within the layer.

  10. Maslov indices, Poisson brackets, and singular differential forms

    NASA Astrophysics Data System (ADS)

    Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.

    2014-06-01

    Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.

  11. Stratified spin-up in a sliced, square cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, R. J.; Foster, M. R.

    We previously reported experimental and theoretical results on the linear spin-up of a linearly stratified, rotating fluid in a uniform-depth square cylinder [M. R. Foster and R. J. Munro, “The linear spin-up of a stratified, rotating fluid in a square cylinder,” J. Fluid Mech. 712, 7–40 (2012)]. Here we extend that analysis to a “sliced” square cylinder, which has a base-plane inclined at a shallow angle α. Asymptotic results are derived that show the spin-up phase is achieved by a combination of the Ekman-layer eruptions (from the perimeter region of the cylinder's lid and base) and cross-slope-propagating stratified Rossby waves.more » The final, steady state limit for this spin-up phase is identical to that found previously for the uniform depth cylinder, but is reached somewhat more rapidly on a time scale of order E{sup −1/2}Ω{sup −1}/log (α/E{sup 1/2}) (compared to E{sup −1/2}Ω{sup −1} for the uniform-depth cylinder), where Ω is the rotation rate and E the Ekman number. Experiments were performed for Burger numbers, S, between 0.4 and 16, and showed that for S≳O(1), the Rossby modes are severely damped, and it is only at small S, and during the early stages, that the presence of these wave modes was evident. These observations are supported by the theory, which shows the damping factors increase with S and are numerically large for S≳O(1)« less

  12. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile

    2010-05-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these

  13. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.

    2009-09-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these

  14. More on approximations of Poisson probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, C

    1980-05-01

    Calculation of Poisson probabilities frequently involves calculating high factorials, which becomes tedious and time-consuming with regular calculators. The usual way to overcome this difficulty has been to find approximations by making use of the table of the standard normal distribution. A new transformation proposed by Kao in 1978 appears to perform better for this purpose than traditional transformations. In the present paper several approximation methods are stated and compared numerically, including an approximation method that utilizes a modified version of Kao's transformation. An approximation based on a power transformation was found to outperform those based on the square-root type transformationsmore » as proposed in literature. The traditional Wilson-Hilferty approximation and Makabe-Morimura approximation are extremely poor compared with this approximation. 4 tables. (RWR)« less

  15. Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model.

    PubMed

    Mao, Tianqi; Wang, Zhaocheng; Wang, Qi

    2017-01-23

    Single-photon avalanche diode (SPAD) is a promising photosensor because of its high sensitivity to optical signals in weak illuminance environment. Recently, it has drawn much attention from researchers in visible light communications (VLC). However, existing literature only deals with the simplified channel model, which only considers the effects of Poisson noise introduced by SPAD, but neglects other noise sources. Specifically, when an analog SPAD detector is applied, there exists Gaussian thermal noise generated by the transimpedance amplifier (TIA) and the digital-to-analog converter (D/A). Therefore, in this paper, we propose an SPAD-based VLC system with pulse-amplitude-modulation (PAM) under Poisson-Gaussian mixed noise model, where Gaussian-distributed thermal noise at the receiver is also investigated. The closed-form conditional likelihood of received signals is derived using the Laplace transform and the saddle-point approximation method, and the corresponding quasi-maximum-likelihood (quasi-ML) detector is proposed. Furthermore, the Poisson-Gaussian-distributed signals are converted to Gaussian variables with the aid of the generalized Anscombe transform (GAT), leading to an equivalent additive white Gaussian noise (AWGN) channel, and a hard-decision-based detector is invoked. Simulation results demonstrate that, the proposed GAT-based detector can reduce the computational complexity with marginal performance loss compared with the proposed quasi-ML detector, and both detectors are capable of accurately demodulating the SPAD-based PAM signals.

  16. Holographic study of non-affine deformation in copper foam with a negative Poisson's ratio of -0.8

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Lakes, R. S.

    1993-01-01

    While conventional foams have positive Poisson's ratios (become smaller in cross-section when stretched and larger when compressed), foam materials have recently been defined which possess 'reentrant' cellular architectures; in these, inwardly-protruding cell ribs are responsible for negative Poisson's ratio behavior, yielding greater resilience than conventional foams. Double-exposure holographic interferometry is presently used to examine the microdeformation of a reentrant copper foam. Attention is given to the nonaffine (inhomogeneous) deformation of this foam.

  17. Filling of a Poisson trap by a population of random intermittent searchers.

    PubMed

    Bressloff, Paul C; Newby, Jay M

    2012-03-01

    We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state. We assume that all of the particles start at one end of the track and realize sample trajectories independently generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target; the particle is removed from the system after delivering its cargo. As a further generalization of previous models, we assume that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of target detection scales as 1/N, we show that there exists a well-defined mean-field limit N→∞, in which the stochastic model reduces to a deterministic system of linear reaction-hyperbolic equations for the concentrations of particles in each of the internal states. These equations decouple from the stochastic process associated with filling the target with cargo. The latter can be modeled as a Poisson process in which the time-dependent rate of filling λ(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with n particles in terms of the waiting time density f(n)(t). The latter is determined by the integrated Poisson rate μ(t)=∫(0)(t)λ(s)ds, which in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection-diffusion equation using a quasisteady-state analysis. We compare our analytical

  18. Studying Resist Stochastics with the Multivariate Poisson Propagation Model

    DOE PAGES

    Naulleau, Patrick; Anderson, Christopher; Chao, Weilun; ...

    2014-01-01

    Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits.

  19. Stratified Simulations of Collisionless Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale,more » stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.« less

  20. Stratified Simulations of Collisionless Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro

    2017-06-01

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.

  1. Partial-Interval Estimation of Count: Uncorrected and Poisson-Corrected Error Levels

    ERIC Educational Resources Information Center

    Yoder, Paul J.; Ledford, Jennifer R.; Harbison, Amy L.; Tapp, Jon T.

    2018-01-01

    A simulation study that used 3,000 computer-generated event streams with known behavior rates, interval durations, and session durations was conducted to test whether the main and interaction effects of true rate and interval duration affect the error level of uncorrected and Poisson-transformed (i.e., "corrected") count as estimated by…

  2. Formulation of the Multi-Hit Model With a Non-Poisson Distribution of Hits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassiliev, Oleg N., E-mail: Oleg.Vassiliev@albertahealthservices.ca

    2012-07-15

    Purpose: We proposed a formulation of the multi-hit single-target model in which the Poisson distribution of hits was replaced by a combination of two distributions: one for the number of particles entering the target and one for the number of hits a particle entering the target produces. Such an approach reflects the fact that radiation damage is a result of two different random processes: particle emission by a radiation source and interaction of particles with matter inside the target. Methods and Materials: Poisson distribution is well justified for the first of the two processes. The second distribution depends on howmore » a hit is defined. To test our approach, we assumed that the second distribution was also a Poisson distribution. The two distributions combined resulted in a non-Poisson distribution. We tested the proposed model by comparing it with previously reported data for DNA single- and double-strand breaks induced by protons and electrons, for survival of a range of cell lines, and variation of the initial slopes of survival curves with radiation quality for heavy-ion beams. Results: Analysis of cell survival equations for this new model showed that they had realistic properties overall, such as the initial and high-dose slopes of survival curves, the shoulder, and relative biological effectiveness (RBE) In most cases tested, a better fit of survival curves was achieved with the new model than with the linear-quadratic model. The results also suggested that the proposed approach may extend the multi-hit model beyond its traditional role in analysis of survival curves to predicting effects of radiation quality and analysis of DNA strand breaks. Conclusions: Our model, although conceptually simple, performed well in all tests. The model was able to consistently fit data for both cell survival and DNA single- and double-strand breaks. It correctly predicted the dependence of radiation effects on parameters of radiation quality.« less

  3. Adiabatic elimination for systems with inertia driven by compound Poisson colored noise.

    PubMed

    Li, Tiejun; Min, Bin; Wang, Zhiming

    2014-02-01

    We consider the dynamics of systems driven by compound Poisson colored noise in the presence of inertia. We study the limit when the frictional relaxation time and the noise autocorrelation time both tend to zero. We show that the Itô and Marcus stochastic calculuses naturally arise depending on these two time scales, and an extra intermediate type occurs when the two time scales are comparable. This leads to three different limiting regimes which are supported by numerical simulations. Furthermore, we establish that when the resulting compound Poisson process tends to the Wiener process in the frequent jump limit the Itô and Marcus calculuses, respectively, tend to the classical Itô and Stratonovich calculuses for Gaussian white noise, and the crossover type calculus tends to a crossover between the Itô and Stratonovich calculuses. Our results would be very helpful for understanding relevant experiments when jump type noise is involved.

  4. Poisson and negative binomial item count techniques for surveys with sensitive question.

    PubMed

    Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin

    2017-04-01

    Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.

  5. Quantifying factors for the success of stratified medicine.

    PubMed

    Trusheim, Mark R; Burgess, Breon; Hu, Sean Xinghua; Long, Theresa; Averbuch, Steven D; Flynn, Aiden A; Lieftucht, Alfons; Mazumder, Abhijit; Milloy, Judy; Shaw, Peter M; Swank, David; Wang, Jian; Berndt, Ernst R; Goodsaid, Federico; Palmer, Michael C

    2011-10-31

    Co-developing a drug with a diagnostic to create a stratified medicine - a therapy that is targeted to a specific patient population on the basis of a clinical characteristic such as a biomarker that predicts treatment response - presents challenges for product developers, regulators, payers and physicians. With the aim of developing a shared framework and tools for addressing these challenges, here we present an analysis using data from case studies in oncology and Alzheimer's disease, coupled with integrated computational modelling of clinical outcomes and developer economic value, to quantify the effects of decisions related to key issues such as the design of clinical trials. This illustrates how such analyses can aid the coordination of diagnostic and drug development, and the selection of optimal development and commercialization strategies. It also illustrates the impact of the interplay of these factors on the economic feasibility of stratified medicine, which has important implications for public policy makers.

  6. Damping of Loop Oscillations in the Stratified Corona

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.; Mendoza-Briceño, C. A.

    2004-01-01

    SOHO and TRACE observations have confirmed the theoretical predictions by Roberts et al. (1984) almost two solar cycles ago, namely, coronal loops may oscillate. These oscillations, and in particular their damping, are of fundamental importance for solar physics since they can provide diagnostics of the plasma medium. In the present paper we apply this concept to hot and stratified and nonisothermal coronal loops observed by e.g. TRACE or SUMER on-board SOHO. We investigate the effect of stratification on (i) the damping of standing waves and (ii) on propagating coherent disturbances (i.e. basically slow MHD waves). The effect of stratification results, if we may say so, in an approximate 15-20% of reduction in damping time for the parameter regime that characterise hot SUMER or TRACE loops. This is a good news as theoretical speculations in the literature usually suffer from an over-estimate of the damping of oscillations caused by e.g. thermal conduction or viscosity in the non-stratified atmosphere approach.

  7. Dyadic Green's function of an eccentrically stratified sphere.

    PubMed

    Moneda, Angela P; Chrissoulidis, Dimitrios P

    2014-03-01

    The electric dyadic Green's function (dGf) of an eccentrically stratified sphere is built by use of the superposition principle, dyadic algebra, and the addition theorem of vector spherical harmonics. The end result of the analytical formulation is a set of linear equations for the unknown vector wave amplitudes of the dGf. The unknowns are calculated by truncation of the infinite sums and matrix inversion. The theory is exact, as no simplifying assumptions are required in any one of the analytical steps leading to the dGf, and it is general in the sense that any number, position, size, and electrical properties can be considered for the layers of the sphere. The point source can be placed outside of or in any lossless part of the sphere. Energy conservation, reciprocity, and other checks verify that the dGf is correct. A numerical application is made to a stratified sphere made of gold and glass, which operates as a lens.

  8. A Matter of Classes: Stratifying Health Care Populations to Produce Better Estimates of Inpatient Costs

    PubMed Central

    Rein, David B

    2005-01-01

    Objective To stratify traditional risk-adjustment models by health severity classes in a way that is empirically based, is accessible to policy makers, and improves predictions of inpatient costs. Data Sources Secondary data created from the administrative claims from all 829,356 children aged 21 years and under enrolled in Georgia Medicaid in 1999. Study Design A finite mixture model was used to assign child Medicaid patients to health severity classes. These class assignments were then used to stratify both portions of a traditional two-part risk-adjustment model predicting inpatient Medicaid expenditures. Traditional model results were compared with the stratified model using actuarial statistics. Principal Findings The finite mixture model identified four classes of children: a majority healthy class and three illness classes with increasing levels of severity. Stratifying the traditional two-part risk-adjustment model by health severity classes improved its R2 from 0.17 to 0.25. The majority of additional predictive power resulted from stratifying the second part of the two-part model. Further, the preference for the stratified model was unaffected by months of patient enrollment time. Conclusions Stratifying health care populations based on measures of health severity is a powerful method to achieve more accurate cost predictions. Insurers who ignore the predictive advances of sample stratification in setting risk-adjusted premiums may create strong financial incentives for adverse selection. Finite mixture models provide an empirically based, replicable methodology for stratification that should be accessible to most health care financial managers. PMID:16033501

  9. Variation in Outcomes for Risk-Stratified Pediatric Cardiac Surgical Operations: An Analysis of the STS Congenital Heart Surgery Database

    PubMed Central

    Jacobs, Jeffrey Phillip; O'Brien, Sean M.; Pasquali, Sara K.; Jacobs, Marshall Lewis; Lacour-Gayet, François G.; Tchervenkov, Christo I.; Austin III, Erle H.; Pizarro, Christian; Pourmoghadam, Kamal K.; Scholl, Frank G.; Welke, Karl F.; Gaynor, J. William; Clarke, David R.; Mayer, John E.; Mavroudis, Constantine

    2013-01-01

    Background. We evaluated outcomes for groups of risk-stratified operations in The Society of Thoracic Surgeons Congenital Heart Surgery Database to provide contemporary benchmarks and examine variation between centers. Methods. Patients undergoing surgery from 2005 to 2009 were included. Centers with more than 10% missing data were excluded. Discharge mortality and postoperative length of stay (PLOS) among patients discharged alive were calculated for groups of risk-stratified operations using the five Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery Congenital Heart Surgery mortality categories (STAT Mortality Categories). Power for analyzing between-center differences in outcome was determined for each STAT Mortality Category. Variation was evaluated using funnel plots and Bayesian hierarchical modeling. Results. In this analysis of risk-stratified operations, 58,506 index operations at 73 centers were included. Overall discharge mortality (interquartile range among programs with more than 10 cases) was as follows: STAT Category 1 = 0.55% (0% to 1.0%), STAT Category 2 = 1.7% (1.0% to 2.2%), STAT Category 3 = 2.6% (1.1% to 4.4%), STAT Category 4 = 8.0% (6.3% to 11.1%), and STAT Category 5 = 18.4% (13.9% to 27.9%). Funnel plots with 95% prediction limits revealed the number of centers characterized as outliers by STAT Mortality Categories was as follows: Category 1 = 3 (4.1%), Category 2 = 1 (1.4%), Category 3 = 7 (9.7%), Category 4 = 13 (17.8%), and Category 5 = 13 (18.6%). Between-center variation in PLOS was analyzed for all STAT Categories and was greatest for STAT Category 5 operations. Conclusions. This analysis documents contemporary benchmarks for risk-stratified pediatric cardiac surgical operations grouped by STAT Mortality Categories and the range of outcomes among centers. Variation was greatest for the more complex operations. These data may aid in the design and planning of quality assessment and quality improvement

  10. Bayesian Poisson hierarchical models for crash data analysis: Investigating the impact of model choice on site-specific predictions.

    PubMed

    Khazraee, S Hadi; Johnson, Valen; Lord, Dominique

    2018-08-01

    The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients

  11. Penetrative cellular convection in a stratified atmosphere. [of stars

    NASA Technical Reports Server (NTRS)

    Massaguer, J. M.; Latour, J.; Toomre, J.; Zahn, J.-P.

    1984-01-01

    In the present investigation of penetrative convection within a simple compressible model, the middle one of the three layers of differing stratification prior to the onset of convection is a convectively unstable polytrope bounded above and below by two stably stratified polytropes. One- and two-mode steady solutions with hexagonal planforms have been studied for Rayleigh numbers up to aobut 1000 times critical, and for a range of Prandtl numbers, horizontal wavenumbers, and stratifications. These indicate that the penetration into the lower stable layer by downward plumes is substantially larger in a stratified medium than in a Boussinesq fluid, and produces an extended region of adiabatic stratification. The strong asymmetry between upward and downward penetration in compressible media has major implications for the mixing of stable regions above and below stellar convection zones.

  12. Poisson-Boltzmann-Nernst-Planck model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Qiong; Wei Guowei; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species inmore » the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and

  13. Poisson-Boltzmann-Nernst-Planck model.

    PubMed

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  14. Pattern analysis of community health center location in Surabaya using spatial Poisson point process

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, Choriah Margareta; Iriawan, Nur; Winahju, Wiwiek Setya

    2017-11-01

    Community health center (puskesmas) is one of the closest health service facilities for the community, which provide healthcare for population on sub-district level as one of the government-mandated community health clinics located across Indonesia. The increasing number of this puskesmas does not directly comply the fulfillment of basic health services needed in such region. Ideally, a puskesmas has to cover up to maximum 30,000 people. The number of puskesmas in Surabaya indicates an unbalance spread in all of the area. This research aims to analyze the spread of puskesmas in Surabaya using spatial Poisson point process model in order to get the effective location of Surabaya's puskesmas which based on their location. The results of the analysis showed that the distribution pattern of puskesmas in Surabaya is non-homogeneous Poisson process and is approched by mixture Poisson model. Based on the estimated model obtained by using Bayesian mixture model couple with MCMC process, some characteristics of each puskesmas have no significant influence as factors to decide the addition of health center in such location. Some factors related to the areas of sub-districts have to be considered as covariate to make a decision adding the puskesmas in Surabaya.

  15. Forest inventory and stratified estimation: a cautionary note

    Treesearch

    John Coulston

    2008-01-01

    The Forest Inventory and Analysis (FIA) Program uses stratified estimation techniques to produce estimates of forest attributes. Stratification must be unbiased and stratification procedures should be examined to identify any potential bias. This note explains simple techniques for identifying potential bias, discriminating between sample bias and stratification bias,...

  16. The clinical benefits, ethics, and economics of stratified medicine and companion diagnostics.

    PubMed

    Trusheim, Mark R; Berndt, Ernst R

    2015-12-01

    The stratified medicine companion diagnostic (CDx) cut-off decision integrates scientific, clinical, ethical, and commercial considerations, and determines its value to developers, providers, payers, and patients. Competition already sharpens these issues in oncology, and might soon do the same for emerging stratified medicines in autoimmune, cardiovascular, neurodegenerative, respiratory, and other conditions. Of 53 oncology targets with a launched therapeutic, 44 have competing therapeutics. Only 12 of 141 Phase III candidates addressing new targets face no competition. CDx choices might alter competitive positions and reimbursement. Under current diagnostic incentives, payers see novel stratified medicines that improve public health and increase costs, but do not observe companion diagnostics for legacy treatments that would reduce costs. It would be in the interests of payers to rediscover their heritage of direct investment in diagnostic development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  18. Generating clustered scale-free networks using Poisson based localization of edges

    NASA Astrophysics Data System (ADS)

    Türker, İlker

    2018-05-01

    We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.

  19. Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.

    PubMed

    Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen

    2016-05-01

    Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.

  20. Poisson Approximation-Based Score Test for Detecting Association of Rare Variants.

    PubMed

    Fang, Hongyan; Zhang, Hong; Yang, Yaning

    2016-07-01

    Genome-wide association study (GWAS) has achieved great success in identifying genetic variants, but the nature of GWAS has determined its inherent limitations. Under the common disease rare variants (CDRV) hypothesis, the traditional association analysis methods commonly used in GWAS for common variants do not have enough power for detecting rare variants with a limited sample size. As a solution to this problem, pooling rare variants by their functions provides an efficient way for identifying susceptible genes. Rare variant typically have low frequencies of minor alleles, and the distribution of the total number of minor alleles of the rare variants can be approximated by a Poisson distribution. Based on this fact, we propose a new test method, the Poisson Approximation-based Score Test (PAST), for association analysis of rare variants. Two testing methods, namely, ePAST and mPAST, are proposed based on different strategies of pooling rare variants. Simulation results and application to the CRESCENDO cohort data show that our methods are more powerful than the existing methods. © 2016 John Wiley & Sons Ltd/University College London.

  1. Effect of family background on the educational gradient in lifetime fertility of Finnish women born 1940-50.

    PubMed

    Nisén, Jessica; Myrskylä, Mikko; Silventoinen, Karri; Martikainen, Pekka

    2014-01-01

    An inverse association between education and fertility in women has been found in many societies but the causes of this association remain inadequately understood. We investigated whether observed and unobserved family-background characteristics explained educational differences in lifetime fertility among 35,212 Finnish women born in 1940-50. Poisson and logistic regression models, adjusted for measured socio-demographic family-background characteristics and for unobserved family characteristics shared by siblings, were used to analyse the relationship between education and the number of children, having any children, and fertility beyond the first child. The woman's education and the socio-economic position of the family were negatively associated with fertility. Observed family characteristics moderately (3-28 per cent) explained the association between education and fertility, and results from models including unobserved characteristics supported this interpretation. The remaining association may represent a causal relationship between education and fertility or joint preferences that form independently of our measures of background.

  2. The Significance of an Excess in a Counting Experiment: Assessing the Impact of Systematic Uncertainties and the Case with a Gaussian Background

    NASA Astrophysics Data System (ADS)

    Vianello, Giacomo

    2018-05-01

    Several experiments in high-energy physics and astrophysics can be treated as on/off measurements, where an observation potentially containing a new source or effect (“on” measurement) is contrasted with a background-only observation free of the effect (“off” measurement). In counting experiments, the significance of the new source or effect can be estimated with a widely used formula from Li & Ma, which assumes that both measurements are Poisson random variables. In this paper we study three other cases: (i) the ideal case where the background measurement has no uncertainty, which can be used to study the maximum sensitivity that an instrument can achieve, (ii) the case where the background estimate b in the off measurement has an additional systematic uncertainty, and (iii) the case where b is a Gaussian random variable instead of a Poisson random variable. The latter case applies when b comes from a model fitted on archival or ancillary data, or from the interpolation of a function fitted on data surrounding the candidate new source/effect. Practitioners typically use a formula that is only valid when b is large and when its uncertainty is very small, while we derive a general formula that can be applied in all regimes. We also develop simple methods that can be used to assess how much an estimate of significance is sensitive to systematic uncertainties on the efficiency or on the background. Examples of applications include the detection of short gamma-ray bursts and of new X-ray or γ-ray sources. All the techniques presented in this paper are made available in a Python code that is ready to use.

  3. Questionable Validity of Poisson Assumptions in a Combined Loglinear/MDS Mapping Model.

    ERIC Educational Resources Information Center

    Gleason, John M.

    1993-01-01

    This response to an earlier article on a combined log-linear/MDS model for mapping journals by citation analysis discusses the underlying assumptions of the Poisson model with respect to characteristics of the citation process. The importance of empirical data analysis is also addressed. (nine references) (LRW)

  4. Waiting-time distributions of magnetic discontinuities: clustering or Poisson process?

    PubMed

    Greco, A; Matthaeus, W H; Servidio, S; Dmitruk, P

    2009-10-01

    Using solar wind data from the Advanced Composition Explorer spacecraft, with the support of Hall magnetohydrodynamic simulations, the waiting-time distributions of magnetic discontinuities have been analyzed. A possible phenomenon of clusterization of these discontinuities is studied in detail. We perform a local Poisson's analysis in order to establish if these intermittent events are randomly distributed or not. Possible implications about the nature of solar wind discontinuities are discussed.

  5. Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greco, A.; Matthaeus, W. H.; Servidio, S.

    2009-10-15

    Using solar wind data from the Advanced Composition Explorer spacecraft, with the support of Hall magnetohydrodynamic simulations, the waiting-time distributions of magnetic discontinuities have been analyzed. A possible phenomenon of clusterization of these discontinuities is studied in detail. We perform a local Poisson's analysis in order to establish if these intermittent events are randomly distributed or not. Possible implications about the nature of solar wind discontinuities are discussed.

  6. Poisson property of the occurrence of flip-flops in a model membrane.

    PubMed

    Arai, Noriyoshi; Akimoto, Takuma; Yamamoto, Eiji; Yasui, Masato; Yasuoka, Kenji

    2014-02-14

    How do lipid molecules in membranes perform a flip-flop? The flip-flops of lipid molecules play a crucial role in the formation and flexibility of membranes. However, little has been determined about the behavior of flip-flops, either experimentally, or in molecular dynamics simulations. Here, we provide numerical results of the flip-flops of model lipid molecules in a model membrane and investigate the statistical properties, using millisecond-order coarse-grained molecular simulations (dissipative particle dynamics). We find that there are three different ways of flip-flops, which can be clearly characterized by their paths on the free energy surface. Furthermore, we found that the probability of the number of the flip-flops is well fitted by the Poisson distribution, and the probability density function for the inter-occurrence times of flip-flops coincides with that of the forward recurrence times. These results indicate that the occurrence of flip-flops is a Poisson process, which will play an important role in the flexibilities of membranes.

  7. Stratified reproduction, family planning care and the double edge of history.

    PubMed

    Harris, Lisa H; Wolfe, Taida

    2014-12-01

    There is a growing clinical consensus that Medicaid sterilization consent protections should be revisited because they impede desired care for many women. Here, we consider the broad social and ideological contexts for past sterilization abuses, beyond informed consent. Throughout the US history, the fertility and childbearing of poor women and women of color were not valued equally to those of affluent white women. This is evident in a range of practices and policies, including black women's treatment during slavery, removal of Native children to off-reservation boarding schools and coercive sterilizations of poor white women and women of color. Thus, reproductive experiences throughout the US history were stratified. This ideology of stratified reproduction persists today in social welfare programs, drug policy and programs promoting long-acting reversible contraception. At their core, sterilization abuses reflected an ideology of stratified reproduction, in which some women's fertility was devalued compared to other women's fertility. Revisiting Medicaid sterilization regulations must therefore put issues of race, ethnicity, class, power and resources - not just informed consent - at the center of analyses.

  8. Turbulence and mixing from optimal perturbations to a stratified shear layer

    NASA Astrophysics Data System (ADS)

    Kaminski, Alexis; Caulfield, C. P.; Taylor, John

    2014-11-01

    The stability and mixing of stratified shear layers is a canonical problem in fluid dynamics with relevance to flows in the ocean and atmosphere. The Miles-Howard theorem states that a necessary condition for normal-mode instability in parallel, inviscid, steady stratified shear flows is that the gradient Richardson number, Rig is less than 1/4 somewhere in the flow. However, substantial transient growth of non-normal modes may be possible at finite times even when Rig > 1 / 4 everywhere in the flow. We have calculated the ``optimal perturbations'' associated with maximum perturbation energy gain for a stably-stratified shear layer. These optimal perturbations are then used to initialize direct numerical simulations. For small but finite perturbation amplitudes, the optimal perturbations grow at the predicted linear rate initially, but then experience sufficient transient growth to become nonlinear and susceptible to secondary instabilities, which then break down into turbulence. Remarkably, this occurs even in flows for which Rig > 1 / 4 everywhere. We will describe the nonlinear evolution of the optimal perturbations and characterize the resulting turbulence and mixing.

  9. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    PubMed

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues.

  10. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.

    PubMed

    Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D

    2011-08-22

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysing stratified medicine business models and value systems: innovation-regulation interactions.

    PubMed

    Mittra, James; Tait, Joyce

    2012-09-15

    Stratified medicine offers both opportunities and challenges to the conventional business models that drive pharmaceutical R&D. Given the increasingly unsustainable blockbuster model of drug development, due in part to maturing product pipelines, alongside increasing demands from regulators, healthcare providers and patients for higher standards of safety, efficacy and cost-effectiveness of new therapies, stratified medicine promises a range of benefits to pharmaceutical and diagnostic firms as well as healthcare providers and patients. However, the transition from 'blockbusters' to what might now be termed 'niche-busters' will require the adoption of new, innovative business models, the identification of different and perhaps novel types of value along the R&D pathway, and a smarter approach to regulation to facilitate innovation in this area. In this paper we apply the Innogen Centre's interdisciplinary ALSIS methodology, which we have developed for the analysis of life science innovation systems in contexts where the value creation process is lengthy, expensive and highly uncertain, to this emerging field of stratified medicine. In doing so, we consider the complex collaboration, timing, coordination and regulatory interactions that shape business models, value chains and value systems relevant to stratified medicine. More specifically, we explore in some depth two convergence models for co-development of a therapy and diagnostic before market authorisation, highlighting the regulatory requirements and policy initiatives within the broader value system environment that have a key role in determining the probable success and sustainability of these models. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A Hands-on Activity for Teaching the Poisson Distribution Using the Stock Market

    ERIC Educational Resources Information Center

    Dunlap, Mickey; Studstill, Sharyn

    2014-01-01

    The number of increases a particular stock makes over a fixed period follows a Poisson distribution. This article discusses using this easily-found data as an opportunity to let students become involved in the data collection and analysis process.

  13. Particle trapping: A key requisite of structure formation and stability of Vlasov–Poisson plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schamel, Hans, E-mail: hans.schamel@uni-bayreuth.de

    2015-04-15

    Particle trapping is shown to control the existence of undamped coherent structures in Vlasov–Poisson plasmas and thereby affects the onset of plasma instability beyond the realm of linear Landau theory.

  14. Treatment strategies in the acute therapy of migraine: stratified care and early intervention.

    PubMed

    D'Amico, D; Moschiano, F; Usai, S; Bussone, G

    2006-05-01

    Various treatment strategies have been proposed to help clinicians provide the most effective acute treatment for migraine patients. Stratified care is based on the concept that the most appropriate initial treatment can be prescribed after evaluation of each patient's headache characteristics. The results of a large multicentre trial showed that when patients were stratified according to disability grade, clinical outcomes were significantly better than with step-care approaches. Prospective studies have shown that treating migraines with triptans when pain is mild (early intervention) considerably increases success rates for endpoints (pain-free at 2 h, sustained pain-free state) for which triptans had relatively poor efficacy in pivotal trials, and which contribute most to patient satisfaction. Stratified care and early treatment are also cost-effective. However these strategies are not suitable for all patients. Stratified care may be rendered difficult by medication contraindications and changes in attack characteristics over time. Early triptan intervention carries a risk of medication overuse and might not be indicated in patients with lack of pain progression. Successful implementation of both strategies requires that physicians are well informed, and that they elicit an exhaustive headache history from each patient.

  15. Efficient three-dimensional Poisson solvers in open rectangular conducting pipe

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2016-06-01

    Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.

  16. On the decay of stratified wake: A numerical study

    NASA Astrophysics Data System (ADS)

    Chongsiripinyo, Karu; Sarkar, Sutanu

    2017-11-01

    In stratified fluids, wakes are longer lived with a significant reduction of mean velocity defect. G.R. Spedding (1997) and K.A. Brucker & S. Sarkar (2010) quantify decay rates in 3 phases, namely a near-wake (NW), a non-equilibrium (NEQ), and a quasi-two-dimensional (Q2D) region. Given U0 x-m , where U0 is centerline mean defect velocity and m is a decay rate, both studies observe mNW 2 / 3 , mNEQ 1 / 4 , and mQ 2 D 3 / 4 . Here, U∞, D, and N are the free-stream velocity, length scale of a wake generator, and constant background buoyancy frequency, respectively. However, M. Bonnier and O. Eiff (2002) observe mNEQ = 0.38 in their experiment and K. Chongsiripinyo and S. Sarkar (TSFP10) find mNEQ = 0.4 in their simulation. In the far wake, M. Bonnier and O. Eiff (2002) obtain mQ 2 D = 0.9 close to the value of m = 0.88 from Spedding et al. (1996) at similar flow conditions. Due to the lack of consistency, more evidence is required. The present study utilizes advantages of both body-inclusive (BI) and temporal-model (TF) simulations to not only resolve near-body statistics, but also to reduce computational expense needed. Decay rates of mean velocity defect and turbulence dissipation will be presented.

  17. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.

    PubMed

    Schmidt, Philip J; Pintar, Katarina D M; Fazil, Aamir M; Topp, Edward

    2013-09-01

    Dose-response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose-response model parameters are estimated using limited epidemiological data is rarely quantified. Second-order risk characterization approaches incorporating uncertainty in dose-response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta-Poisson dose-response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta-Poisson dose-response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta-Poisson dose-response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta-Poisson model are proposed, and simple algorithms to evaluate actual beta-Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta-Poisson dose-response model parameters is attributable to the absence of low-dose data. This region includes beta-Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility. © Her Majesty the Queen in Right of Canada 2013. Reproduced with the permission of the Minister of the Public Health Agency of Canada.

  18. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, D., E-mail: Daniel.Brinkman@asu.edu; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287; Heitzinger, C., E-mail: Clemens.Heitzinger@asu.edu

    2014-01-15

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.

  19. Use of the negative binomial-truncated Poisson distribution in thunderstorm prediction

    NASA Technical Reports Server (NTRS)

    Cohen, A. C.

    1971-01-01

    A probability model is presented for the distribution of thunderstorms over a small area given that thunderstorm events (1 or more thunderstorms) are occurring over a larger area. The model incorporates the negative binomial and truncated Poisson distributions. Probability tables for Cape Kennedy for spring, summer, and fall months and seasons are presented. The computer program used to compute these probabilities is appended.

  20. Theory of negative refraction in periodic stratified metamaterials.

    PubMed

    Rukhlenko, Ivan D; Premaratne, Malin; Agrawal, Govind P

    2010-12-20

    We present a general theory of negative refraction in periodic stratified heterostructures with an arbitrary number of homogeneous, isotropic, nonmagnetic layers in a unit cell. With a 4×4-matrix technique, we derive analytic expressions for the normal modes of such a heterostructure slab, introduce the average refraction angles of the energy flow and wavevector for the TE- and TM-polarized plane waves falling obliquely on the slab, and derive expressions for the reflectivity and transmissivity of the whole slab. For a specific case, in which all layers in a unit cell are much thinner than the wavelength of light, we obtain approximate simple formulae for the effective refraction angles. Using the example of a semiconductor heterostructure slab with two layers in a unit cell, we demonstrate that ultrathin layers are preferable for metamaterial applications because they enable higher transmissivity within the frequency band of negative refraction. Our theory can be used to study the optical properties of any stratified metamaterial, irrespective of whether semiconductors or metals are employed for fabricating its various layers, because it includes absorption within each layer.

  1. Balance in non-hydrostatic rotating stratified turbulence

    NASA Astrophysics Data System (ADS)

    McKiver, William J.; Dritschel, David G.

    It is now well established that two distinct types of motion occur in geophysical turbulence: slow motions associated with potential vorticity advection and fast oscillations due to inertiamaster variable this is known as balance. In real geophysical flows, deviations from balance in the form of inertiaimbalance|N/f) where optimal potential vorticity balancenonlinear quasi-geostrophic balance’ procedure expands the equations of motion to second order in Rossby number but retains the exact (unexpanded) definition of potential vorticity. This proves crucial for obtaining an accurate estimate of balanced motions. In the analysis of rotating stratified turbulence at Ro1 and N/f1, this procedure captures a significantly greater fraction of the underlying balance than standard (linear) quasi-geostrophic balance (which is based on the linearized equations about a state of rest). Nonlinear quasi-geostrophic balance also compares well with optimal potential vorticity balance, which captures the greatest fraction of the underlying balance overall.More fundamentally, the results of these analyses indicate that balance dominates in carefully initialized simulations of freely decaying rotating stratified turbulence up to O(1) Rossby numbers when N/f1. The fluid motion exhibits important quasi-geostrophic features with, in particular, typical height-to-width scale ratios remaining comparable to f/N.

  2. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids

    PubMed Central

    Wang, Shiyan; Ardekani, Arezoo M.

    2015-01-01

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288

  3. Semi-Poisson statistics in quantum chaos.

    PubMed

    García-García, Antonio M; Wang, Jiao

    2006-03-01

    We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described exactly by semi-Poisson statistics (SP) typical of pseudointegrable systems. It is also shown that our results are universal, namely, they depend exclusively on the presence of the steplike singularity and are not modified by smooth perturbations of the potential or the addition of a magnetic flux. Although the quantum properties of our system are similar to those of a disordered conductor at the Anderson transition, we report important quantitative differences in both the level statistics and the multifractal dimensions controlling the transition. Finally, the study of quantum transport properties suggests that the classical singularity induces quantum anomalous diffusion. We discuss how these findings may be experimentally corroborated by using ultracold atoms techniques.

  4. Effect of family background on the educational gradient in lifetime fertility of Finnish women born 1940–50

    PubMed Central

    Nisén, Jessica; Myrskylä, Mikko; Silventoinen, Karri; Martikainen, Pekka

    2014-01-01

    An inverse association between education and fertility in women has been found in many societies but the causes of this association remain inadequately understood. We investigated whether observed and unobserved family-background characteristics explained educational differences in lifetime fertility among 35,212 Finnish women born in 1940–50. Poisson and logistic regression models, adjusted for measured socio-demographic family-background characteristics and for unobserved family characteristics shared by siblings, were used to analyse the relationship between education and the number of children, having any children, and fertility beyond the first child. The woman's education and the socio-economic position of the family were negatively associated with fertility. Observed family characteristics moderately (3–28 per cent) explained the association between education and fertility, and results from models including unobserved characteristics supported this interpretation. The remaining association may represent a causal relationship between education and fertility or joint preferences that form independently of our measures of background. PMID:24946905

  5. Parameter Estimation in Astronomy with Poisson-Distributed Data. 1; The (CHI)2(gamma) Statistic

    NASA Technical Reports Server (NTRS)

    Mighell, Kenneth J.

    1999-01-01

    Applying the standard weighted mean formula, [Sigma (sub i)n(sub i)ssigma(sub i, sup -2)], to determine the weighted mean of data, n(sub i), drawn from a Poisson distribution, will, on average, underestimate the true mean by approx. 1 for all true mean values larger than approx.3 when the common assumption is made that the error of the i th observation is sigma(sub i) = max square root of n(sub i), 1).This small, but statistically significant offset, explains the long-known observation that chi-square minimization techniques which use the modified Neyman'chi(sub 2) statistic, chi(sup 2, sub N) equivalent Sigma(sub i)((n(sub i) - y(sub i)(exp 2)) / max(n(sub i), 1), to compare Poisson - distributed data with model values, y(sub i), will typically predict a total number of counts that underestimates the true total by about 1 count per bin. Based on my finding that weighted mean of data drawn from a Poisson distribution can be determined using the formula [Sigma(sub i)[n(sub i) + min(n(sub i), 1)](n(sub i) + 1)(exp -1)] / [Sigma(sub i)(n(sub i) + 1)(exp -1))], I propose that a new chi(sub 2) statistic, chi(sup 2, sub gamma) equivalent, should always be used to analyze Poisson- distributed data in preference to the modified Neyman's chi(exp 2) statistic. I demonstrated the power and usefulness of,chi(sub gamma, sup 2) minimization by using two statistical fitting techniques and five chi(exp 2) statistics to analyze simulated X-ray power - low 15 - channel spectra with large and small counts per bin. I show that chi(sub gamma, sup 2) minimization with the Levenberg - Marquardt or Powell's method can produce excellent results (mean slope errors approx. less than 3%) with spectra having as few as 25 total counts.

  6. Profiling of poorly stratified atmospheres with scanning lidar

    Treesearch

    C. E. Wold; V. A. Kovalev; A. P. Petkov; W. M. Hao

    2012-01-01

    The direct multiangle solution may allow inversion of the scanning lidar data even when the requirement of the horizontally stratified atmosphere is poorly met. The solution is based on two principles: (1) The signal measured in zenith is the core source for extracting the information about the atmospheric aerosol loading, and (2) The multiangle signals are used as...

  7. Poisson regression models outperform the geometrical model in estimating the peak-to-trough ratio of seasonal variation: a simulation study.

    PubMed

    Christensen, A L; Lundbye-Christensen, S; Dethlefsen, C

    2011-12-01

    Several statistical methods of assessing seasonal variation are available. Brookhart and Rothman [3] proposed a second-order moment-based estimator based on the geometrical model derived by Edwards [1], and reported that this estimator is superior in estimating the peak-to-trough ratio of seasonal variation compared with Edwards' estimator with respect to bias and mean squared error. Alternatively, seasonal variation may be modelled using a Poisson regression model, which provides flexibility in modelling the pattern of seasonal variation and adjustments for covariates. Based on a Monte Carlo simulation study three estimators, one based on the geometrical model, and two based on log-linear Poisson regression models, were evaluated in regards to bias and standard deviation (SD). We evaluated the estimators on data simulated according to schemes varying in seasonal variation and presence of a secular trend. All methods and analyses in this paper are available in the R package Peak2Trough[13]. Applying a Poisson regression model resulted in lower absolute bias and SD for data simulated according to the corresponding model assumptions. Poisson regression models had lower bias and SD for data simulated to deviate from the corresponding model assumptions than the geometrical model. This simulation study encourages the use of Poisson regression models in estimating the peak-to-trough ratio of seasonal variation as opposed to the geometrical model. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    PubMed

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  9. Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics

    NASA Astrophysics Data System (ADS)

    Paillusson, Fabien; Blossey, Ralf

    2010-11-01

    Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of “nonlocal” electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ɛ(q) , where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, “local” formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.

  10. Fission meter and neutron detection using poisson distribution comparison

    DOEpatents

    Rowland, Mark S; Snyderman, Neal J

    2014-11-18

    A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

  11. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  12. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology.

    PubMed

    Renner, Ian W; Warton, David I

    2013-03-01

    Modeling the spatial distribution of a species is a fundamental problem in ecology. A number of modeling methods have been developed, an extremely popular one being MAXENT, a maximum entropy modeling approach. In this article, we show that MAXENT is equivalent to a Poisson regression model and hence is related to a Poisson point process model, differing only in the intercept term, which is scale-dependent in MAXENT. We illustrate a number of improvements to MAXENT that follow from these relations. In particular, a point process model approach facilitates methods for choosing the appropriate spatial resolution, assessing model adequacy, and choosing the LASSO penalty parameter, all currently unavailable to MAXENT. The equivalence result represents a significant step in the unification of the species distribution modeling literature. Copyright © 2013, The International Biometric Society.

  13. Stability of Poisson Equilibria and Hamiltonian Relative Equilibria by Energy Methods

    NASA Astrophysics Data System (ADS)

    Patrick, George W.; Roberts, Mark; Wulff, Claudia

    2004-12-01

    We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum Methods. Using a topological generalisation of Lyapunov’s result that an extremal critical point of a conserved quantity is stable, we show that a Poisson equilibrium is stable if it is an isolated point in the intersection of a level set of a conserved function with a subset of the phase space that is related to the topology of the symplectic leaf space at that point. This criterion is applied to generalise the energy-momentum method to Hamiltonian systems which are invariant under non-compact symmetry groups for which the coadjoint orbit space is not Hausdorff. We also show that a G-stable relative equilibrium satisfies the stronger condition of being A-stable, where A is a specific group-theoretically defined subset of G which contains the momentum isotropy subgroup of the relative equilibrium. The results are illustrated by an application to the stability of a rigid body in an ideal irrotational fluid.

  14. The elastic properties of cancerous skin: Poisson's ratio and Young's modulus.

    PubMed

    Tilleman, Tamara Raveh; Tilleman, Michael M; Neumann, Martino H A

    2004-12-01

    The physical properties of cancerous skin tissue have rarely been measured in either fresh or frozen skin specimens. Of interest are the elastic properties associated with the skin's ability to deform, i.e., to stretch and compress. Two constants--Young's modulus and Poisson's ratio--represent the basic elastic behavior pattern of any elastic material, including skin. The former relates the applied stress on a specimen to its deformation via Hooke's law, while the latter is the ratio between the axial and lateral strains. To investigate the elastic properties of cancerous skin tissue. For this purpose 23 consecutive cancerous tissue specimens prepared during Mohs micrographic surgery were analyzed. From these specimens we calculated the change in radial length (defined as the radial strain) and the change in tissue thickness (defined as axial strain). Based on the above two strains we determined a Poisson ratio of 0.43 +/- 0.12 and an average Young modulus of 52 KPa. Defining the elastic properties of cancerous skin may become the first step in turning elasticity into a clinical tool. Correlating these constants with the histopathologic features of a cancerous tissue can contribute an additional non-invasive, in vivo and in vitro diagnostic tool.

  15. The Dependent Poisson Race Model and Modeling Dependence in Conjoint Choice Experiments

    ERIC Educational Resources Information Center

    Ruan, Shiling; MacEachern, Steven N.; Otter, Thomas; Dean, Angela M.

    2008-01-01

    Conjoint choice experiments are used widely in marketing to study consumer preferences amongst alternative products. We develop a class of choice models, belonging to the class of Poisson race models, that describe a "random utility" which lends itself to a process-based description of choice. The models incorporate a dependence structure which…

  16. Extent of Atypical Hyperplasia Stratifies Breast Cancer Risk in Two Independent Cohorts of Women

    PubMed Central

    Degnim, Amy C.; Dupont, William D.; Radisky, Derek C.; Vierkant, Robert A.; Frank, Ryan D.; Frost, Marlene H.; Winham, Stacey J.; Sanders, Melinda E.; Smith, Jeffrey R.; Page, David L.; Hoskin, Tanya L.; Vachon, Celine M.; Ghosh, Karthik; Hieken, Tina J.; Denison, Lori A.; Carter, Jodi M.; Hartmann, Lynn C.; Visscher, Daniel W.

    2016-01-01

    Background Women with atypical hyperplasia (AH) on breast biopsy have a substantially increased risk of breast cancer (BC). Here we report BC risk with AH extent and subtype in two separate cohorts. Methods All samples containing AH were included from two cohorts of benign breast disease, Mayo Clinic and Nashville. Histology review quantified the number of foci of atypical ductal hyperplasia (ADH) and atypical lobular hyperplasia (ALH). BC risk was stratified for number of AH foci within AH subtypes. Results The study included 708 Mayo and 466 Nashville AH subjects. In the Mayo Cohort, increasing foci of AH was associated with a significant increase in risk of BC, both for ADH (RR’s of 2.61, 5.21, and 6.36 for 1, 2, and 3+ foci, p=0.006 for linear trend) and for ALH (RR’s of 2.56, 3.50, and 6.79 for 1, 2, and 3+ foci, p=0.001 for linear trend). In the Nashville Cohort, RR’s of BC for ADH were 2.70, 5.17, and 15.06 for 1, 2, and 3+ foci respectively (p<0.001 for linear trend); for ALH, RR’s also increased but not significantly (2.61, 3.48, and 4.02, p=0.148). Combining both Mayo and Nashville samples, risk increased significantly for 1, 2, and 3+ foci: RR’s of 2.65, 5.19, and 8.94 for ADH (p<0.001), and 2.58, 3.49, and 4.97 for ALH (p=0.001). Conclusions In two independent cohort studies of benign breast disease, extent of atypia stratifies long-term breast cancer risk for ADH and ALH. PMID:27352219

  17. Orientational analysis of planar fibre systems observed as a Poisson shot-noise process.

    PubMed

    Kärkkäinen, Salme; Lantuéjoul, Christian

    2007-10-01

    We consider two-dimensional fibrous materials observed as a digital greyscale image. The problem addressed is to estimate the orientation distribution of unobservable thin fibres from a greyscale image modelled by a planar Poisson shot-noise process. The classical stereological approach is not straightforward, because the point intensities of thin fibres along sampling lines may not be observable. For such cases, Kärkkäinen et al. (2001) suggested the use of scaled variograms determined from grey values along sampling lines in several directions. Their method is based on the assumption that the proportion between the scaled variograms and point intensities in all directions of sampling lines is constant. This assumption is proved to be valid asymptotically for Boolean models and dead leaves models, under some regularity conditions. In this work, we derive the scaled variogram and its approximations for a planar Poisson shot-noise process using the modified Bessel function. In the case of reasonable high resolution of the observed image, the scaled variogram has an approximate functional relation to the point intensity, and in the case of high resolution the relation is proportional. As the obtained relations are approximative, they are tested on simulations. The existing orientation analysis method based on the proportional relation is further experimented on images with different resolutions. The new result, the asymptotic proportionality between the scaled variograms and the point intensities for a Poisson shot-noise process, completes the earlier results for the Boolean models and for the dead leaves models.

  18. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also

  19. Stratified charge rotary engine combustion studies

    NASA Astrophysics Data System (ADS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  20. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  1. The accurate solution of Poisson's equation by expansion in Chebyshev polynomials

    NASA Technical Reports Server (NTRS)

    Haidvogel, D. B.; Zang, T.

    1979-01-01

    A Chebyshev expansion technique is applied to Poisson's equation on a square with homogeneous Dirichlet boundary conditions. The spectral equations are solved in two ways - by alternating direction and by matrix diagonalization methods. Solutions are sought to both oscillatory and mildly singular problems. The accuracy and efficiency of the Chebyshev approach compare favorably with those of standard second- and fourth-order finite-difference methods.

  2. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    PubMed Central

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  3. Poisson-Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain.

    PubMed

    Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi

    2018-03-29

    The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson-Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson-Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods.

  4. Classifying next-generation sequencing data using a zero-inflated Poisson model.

    PubMed

    Zhou, Yan; Wan, Xiang; Zhang, Baoxue; Tong, Tiejun

    2018-04-15

    With the development of high-throughput techniques, RNA-sequencing (RNA-seq) is becoming increasingly popular as an alternative for gene expression analysis, such as RNAs profiling and classification. Identifying which type of diseases a new patient belongs to with RNA-seq data has been recognized as a vital problem in medical research. As RNA-seq data are discrete, statistical methods developed for classifying microarray data cannot be readily applied for RNA-seq data classification. Witten proposed a Poisson linear discriminant analysis (PLDA) to classify the RNA-seq data in 2011. Note, however, that the count datasets are frequently characterized by excess zeros in real RNA-seq or microRNA sequence data (i.e. when the sequence depth is not enough or small RNAs with the length of 18-30 nucleotides). Therefore, it is desired to develop a new model to analyze RNA-seq data with an excess of zeros. In this paper, we propose a Zero-Inflated Poisson Logistic Discriminant Analysis (ZIPLDA) for RNA-seq data with an excess of zeros. The new method assumes that the data are from a mixture of two distributions: one is a point mass at zero, and the other follows a Poisson distribution. We then consider a logistic relation between the probability of observing zeros and the mean of the genes and the sequencing depth in the model. Simulation studies show that the proposed method performs better than, or at least as well as, the existing methods in a wide range of settings. Two real datasets including a breast cancer RNA-seq dataset and a microRNA-seq dataset are also analyzed, and they coincide with the simulation results that our proposed method outperforms the existing competitors. The software is available at http://www.math.hkbu.edu.hk/∼tongt. xwan@comp.hkbu.edu.hk or tongt@hkbu.edu.hk. Supplementary data are available at Bioinformatics online.

  5. A fast parallel 3D Poisson solver with longitudinal periodic and transverse open boundary conditions for space-charge simulations

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2017-10-01

    A three-dimensional (3D) Poisson solver with longitudinal periodic and transverse open boundary conditions can have important applications in beam physics of particle accelerators. In this paper, we present a fast efficient method to solve the Poisson equation using a spectral finite-difference method. This method uses a computational domain that contains the charged particle beam only and has a computational complexity of O(Nu(logNmode)) , where Nu is the total number of unknowns and Nmode is the maximum number of longitudinal or azimuthal modes. This saves both the computational time and the memory usage of using an artificial boundary condition in a large extended computational domain. The new 3D Poisson solver is parallelized using a message passing interface (MPI) on multi-processor computers and shows a reasonable parallel performance up to hundreds of processor cores.

  6. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs.

    PubMed

    Jeong, Eun Gyo; Kwon, Seonil; Han, Jun Hee; Im, Hyeon-Gyun; Bae, Byeong-Soo; Choi, Kyung Cheol

    2017-05-18

    Understanding the mechanical behaviors of encapsulation barriers under bending stress is important when fabricating flexible organic light-emitting diodes (FOLEDs). The enhanced mechanical characteristics of a nano-stratified barrier were analyzed based on a defect suppression mechanism, and then experimentally demonstrated. Following the Griffith model, naturally-occurring cracks, which were caused by Zn etching at the interface of the nano-stratified structure, can curb the propagation of defects. Cross-section images after bending tests provided remarkable evidence to support the existence of a defect suppression mechanism. Many visible cracks were found in a single Al 2 O 3 layer, but not in the nano-stratified structure, due to the mechanism. The nano-stratified structure also enhanced the barrier's physical properties by changing the crystalline phase of ZnO. In addition, experimental results demonstrated the effect of the mechanism in various ways. The nano-stratified barrier maintained a low water vapor transmission rate after 1000 iterations of a 1 cm bending radius test. Using this mechanically enhanced hybrid nano-stratified barrier, FOLEDs were successfully encapsulated without losing mechanical or electrical performance. Finally, comparative lifetime measurements were conducted to determine reliability. After 2000 hours of constant current driving and 1000 iterations with a 1 cm bending radius, the FOLEDs retained 52.37% of their initial luminance, which is comparable to glass-lid encapsulation, with 55.96% retention. Herein, we report a mechanically enhanced encapsulation technology for FOLEDs using a nano-stratified structure with a defect suppression mechanism.

  7. Efficacy of tofacitinib in patients with rheumatoid arthritis stratified by background methotrexate dose group.

    PubMed

    Fleischmann, R; Mease, P J; Schwartzman, S; Hwang, L-J; Soma, K; Connell, C A; Takiya, L; Bananis, E

    2017-01-01

    Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). This post hoc analysis investigated the effect of methotrexate (MTX) dose on the efficacy of tofacitinib in patients with RA. ORAL Scan (NCT00847613) was a 2-year, randomized, Phase 3 trial evaluating tofacitinib in MTX-inadequate responder (IR) patients with RA. Patients received tofacitinib 5 or 10 mg twice daily (BID), or placebo, with low (≤12.5 mg/week), moderate (>12.5 to <17.5 mg/week), or high (≥17.5 mg/week) stable background MTX. Efficacy endpoints (at months 3 and 6) included American College of Rheumatology (ACR) 20/50/70 response rates, and mean change from baseline in Clinical Disease Activity Index (CDAI), Disease Activity Score in 28 joints (DAS28)-4(erythrocyte sedimentation rate [ESR]), Health Assessment Questionnaire-Disability Index (HAQ-DI), and modified Total Sharp score. 797 patients were treated with tofacitinib 5 mg BID (N = 321), tofacitinib 10 mg BID (N = 316), or placebo (N = 160); 242, 333, and 222 patients received low, moderate, and high MTX doses, respectively. At months 3 and 6, ACR20/50/70 response rates were greater for both tofacitinib doses vs placebo across all MTX doses. At month 3, mean changes from baseline in CDAI and HAQ-DI were significantly greater for both tofacitinib doses vs placebo, irrespective of MTX category; improvements were maintained at month 6. Both tofacitinib doses demonstrated improvements in DAS28-4(ESR), and less structural progression vs placebo, across MTX doses at month 6. Tofacitinib plus MTX showed greater clinical and radiographic efficacy than placebo in MTX-IR patients with RA, regardless of MTX dose.

  8. Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr × Holstein F2 population

    PubMed Central

    Silva, Fabyano Fonseca; Tunin, Karen P.; Rosa, Guilherme J.M.; da Silva, Marcos V.B.; Azevedo, Ana Luisa Souza; da Silva Verneque, Rui; Machado, Marco Antonio; Packer, Irineu Umberto

    2011-01-01

    Now a days, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr × Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable. PMID:22215960

  9. Sojourning with the Homogeneous Poisson Process.

    PubMed

    Liu, Piaomu; Peña, Edsel A

    2016-01-01

    In this pedagogical article, distributional properties, some surprising, pertaining to the homogeneous Poisson process (HPP), when observed over a possibly random window, are presented. Properties of the gap-time that covered the termination time and the correlations among gap-times of the observed events are obtained. Inference procedures, such as estimation and model validation, based on event occurrence data over the observation window, are also presented. We envision that through the results in this paper, a better appreciation of the subtleties involved in the modeling and analysis of recurrent events data will ensue, since the HPP is arguably one of the simplest among recurrent event models. In addition, the use of the theorem of total probability, Bayes theorem, the iterated rules of expectation, variance and covariance, and the renewal equation could be illustrative when teaching distribution theory, mathematical statistics, and stochastic processes at both the undergraduate and graduate levels. This article is targeted towards both instructors and students.

  10. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  11. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.

    PubMed

    Chen, Duan

    2017-11-01

    In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.

  12. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia

    PubMed Central

    Bragulla, Hermann H; Homberger, Dominique G

    2009-01-01

    Historically, the term ‘keratin’ stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as ‘prekeratins’ or ‘cytokeratins’. Currently, the term ‘keratin’ covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are

  13. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  14. Reconstruction of refractive index profile of a stratified medium

    NASA Astrophysics Data System (ADS)

    Vogelzang, E.; Ferwerda, H. A.; Yevick, D.

    In this paper, a method for determining the permittivity profile of a stratified medium terminated by a perfect conductor from the (complex) reflectivity is presented. The calculations are based on the Gelfand-Levitan and the Marchenko equations. The bound modes of the system are explicitly taken into account.

  15. Crystallization of a compositionally stratified basal magma ocean

    NASA Astrophysics Data System (ADS)

    Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas

    2018-03-01

    Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.

  16. Crenothrix are major methane consumers in stratified lakes.

    PubMed

    Oswald, Kirsten; Graf, Jon S; Littmann, Sten; Tienken, Daniela; Brand, Andreas; Wehrli, Bernhard; Albertsen, Mads; Daims, Holger; Wagner, Michael; Kuypers, Marcel Mm; Schubert, Carsten J; Milucka, Jana

    2017-09-01

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N 2 O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.

  17. Efficient Radiative Transfer for Dynamically Evolving Stratified Atmospheres

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.

    2017-12-01

    We present a fast multi-level and multi-atom non-local thermodynamic equilibrium radiative transfer method for dynamically evolving stratified atmospheres, such as the solar atmosphere. The preconditioning method of Rybicki & Hummer (RH92) is adopted. But, pressed for the need of speed and stability, a “second-order escape probability” scheme is implemented within the framework of the RH92 method, in which frequency- and angle-integrals are carried out analytically. While minimizing the computational work needed, this comes at the expense of numerical accuracy. The iteration scheme is local, the formal solutions for the intensities are the only non-local component. At present the methods have been coded for vertical transport, applicable to atmospheres that are highly stratified. The probabilistic method seems adequately fast, stable, and sufficiently accurate for exploring dynamical interactions between the evolving MHD atmosphere and radiation using current computer hardware. Current 2D and 3D dynamics codes do not include this interaction as consistently as the current method does. The solutions generated may ultimately serve as initial conditions for dynamical calculations including full 3D radiative transfer. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  18. Supervised Gamma Process Poisson Factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dylan Zachary

    This thesis develops the supervised gamma process Poisson factorization (S- GPPF) framework, a novel supervised topic model for joint modeling of count matrices and document labels. S-GPPF is fully generative and nonparametric: document labels and count matrices are modeled under a uni ed probabilistic framework and the number of latent topics is controlled automatically via a gamma process prior. The framework provides for multi-class classification of documents using a generative max-margin classifier. Several recent data augmentation techniques are leveraged to provide for exact inference using a Gibbs sampling scheme. The first portion of this thesis reviews supervised topic modeling andmore » several key mathematical devices used in the formulation of S-GPPF. The thesis then introduces the S-GPPF generative model and derives the conditional posterior distributions of the latent variables for posterior inference via Gibbs sampling. The S-GPPF is shown to exhibit state-of-the-art performance for joint topic modeling and document classification on a dataset of conference abstracts, beating out competing supervised topic models. The unique properties of S-GPPF along with its competitive performance make it a novel contribution to supervised topic modeling.« less

  19. Anisotropic norm-oriented mesh adaptation for a Poisson problem

    NASA Astrophysics Data System (ADS)

    Brèthes, Gautier; Dervieux, Alain

    2016-10-01

    We present a novel formulation for the mesh adaptation of the approximation of a Partial Differential Equation (PDE). The discussion is restricted to a Poisson problem. The proposed norm-oriented formulation extends the goal-oriented formulation since it is equation-based and uses an adjoint. At the same time, the norm-oriented formulation somewhat supersedes the goal-oriented one since it is basically a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the error in evaluating a chosen scalar output with the consequence that, as mesh size is increased (more degrees of freedom), only this output is proven to tend to its continuous analog while the solution field itself may not converge. A remarkable quality of goal-oriented metric-based adaptation is the mathematical formulation of the mesh adaptation problem under the form of the optimization, in the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm of the approximation error. The norm is prescribed by the user and the method allows addressing the case of multi-objective adaptation like, for example in aerodynamics, adaptating the mesh for drag, lift and moment in one shot. In this work, we consider the basic linear finite-element approximation and restrict our study to L2 norm in order to enjoy second-order convergence. Numerical examples for the Poisson problem are computed.

  20. Estimating the intensity of a cyclic Poisson process in the presence of additive and multiplicative linear trend

    NASA Astrophysics Data System (ADS)

    Wayan Mangku, I.

    2017-10-01

    In this paper we survey some results on estimation of the intensity function of a cyclic Poisson process in the presence of additive and multiplicative linear trend. We do not assume any parametric form for the cyclic component of the intensity function, except that it is periodic. Moreover, we consider the case when there is only a single realization of the Poisson process is observed in a bounded interval. The considered estimators are weakly and strongly consistent when the size of the observation interval indefinitely expands. Asymptotic approximations to the bias and variance of those estimators are presented.

  1. NON-HOMOGENEOUS POISSON PROCESS MODEL FOR GENETIC CROSSOVER INTERFERENCE.

    PubMed

    Leu, Szu-Yun; Sen, Pranab K

    2014-01-01

    The genetic crossover interference is usually modeled with a stationary renewal process to construct the genetic map. We propose two non-homogeneous, also dependent, Poisson process models applied to the known physical map. The crossover process is assumed to start from an origin and to occur sequentially along the chromosome. The increment rate depends on the position of the markers and the number of crossover events occurring between the origin and the markers. We show how to obtain parameter estimates for the process and use simulation studies and real Drosophila data to examine the performance of the proposed models.

  2. Evaluation of lattice sums by the Poisson sum formula

    NASA Technical Reports Server (NTRS)

    Ray, R. D.

    1975-01-01

    The Poisson sum formula was applied to the problem of summing pairwise interactions between an observer molecule and a semi-infinite regular array of solid state molecules. The transformed sum is often much more rapidly convergent than the original sum, and forms a Fourier series in the solid surface coordinates. The method is applicable to a variety of solid state structures and functional forms of the pairwise potential. As an illustration of the method, the electric field above the (100) face of the CsCl structure is calculated and compared to earlier results obtained by direct summation.

  3. Turbulent circulation above the surface heat source in stably stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-10-01

    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".

  4. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  5. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    NASA Astrophysics Data System (ADS)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  6. Quantum image pseudocolor coding based on the density-stratified method

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na

    2015-05-01

    Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.

  7. Poisson-Lie duals of the η deformed symmetric space sigma model

    NASA Astrophysics Data System (ADS)

    Hoare, Ben; Seibold, Fiona K.

    2017-11-01

    Poisson-Lie dualising the η deformation of the G/H symmetric space sigma model with respect to the simple Lie group G is conjectured to give an analytic continuation of the associated λ deformed model. In this paper we investigate when the η deformed model can be dualised with respect to a subgroup G0 of G. Starting from the first-order action on the complexified group and integrating out the degrees of freedom associated to different subalgebras, we find it is possible to dualise when G0 is associated to a sub-Dynkin diagram. Additional U1 factors built from the remaining Cartan generators can also be included. The resulting construction unifies both the Poisson-Lie dual with respect to G and the complete abelian dual of the η deformation in a single framework, with the integrated algebras unimodular in both cases. We speculate that extending these results to the path integral formalism may provide an explanation for why the η deformed AdS5 × S5 superstring is not one-loop Weyl invariant, that is the couplings do not solve the equations of type IIB supergravity, yet its complete abelian dual and the λ deformed model are.

  8. STDP allows fast rate-modulated coding with Poisson-like spike trains.

    PubMed

    Gilson, Matthieu; Masquelier, Timothée; Hugues, Etienne

    2011-10-01

    Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (~10-20 ms) for sufficiently many inputs (~100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks.

  9. Evaluation of Tensile Young's Modulus and Poisson's Ratio of a Bi-modular Rock from the Displacement Measurements in a Brazilian Test

    NASA Astrophysics Data System (ADS)

    Patel, Shantanu; Martin, C. Derek

    2018-02-01

    Unlike metals, rocks show bi-modularity (different Young's moduli and Poisson's ratios in compression and tension). Displacements monitored during the Brazilian test are used in this study to obtain the Young's modulus and Poisson's ratio in tension. New equations for the displacements in a Brazilian test are derived considering the bi-modularity in the stress-strain relations. The digital image correlation technique was used to monitor the displacements of the Brazilian disk flat surface. To validate the Young's modulus and Poisson's ratio obtained from the Brazilian test, the results were compared with the values from the direct tension tests. The results obtained from the Brazilian test were repetitive and within 3.5% of the value obtained from the direct tension test for the rock tested.

  10. The Poisson-Boltzmann theory for the two-plates problem: some exact results.

    PubMed

    Xing, Xiang-Jun

    2011-12-01

    The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

  11. SL(2,C) gravity on noncommutative space with Poisson structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao Yangang; Zhang Shaojun

    2010-10-15

    The Einstein's gravity theory can be formulated as an SL(2,C) gauge theory in terms of spinor notations. In this paper, we consider a noncommutative space with the Poisson structure and construct an SL(2,C) formulation of gravity on such a space. Using the covariant coordinate technique, we build a gauge invariant action in which, according to the Seiberg-Witten map, the physical degrees of freedom are expressed in terms of their commutative counterparts up to the first order in noncommutative parameters.

  12. HYDRODYNAMIC AND TRANSPORT MODELING STUDY IN A HIGHLY STRATIFIED ESTUARY

    EPA Science Inventory

    This paper presents the preliminary results of hydrodynamic and salinity predictions and the implications to an ongoing contaminated sediment transport and fate modeling effort in the Lower Duwamish Waterway (LDW), Seattle, Washington. The LDW is highly strati-fied when freshwate...

  13. Poisson equation for the three-loop ladder diagram in string theory at genus one

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-11-01

    The three-loop ladder diagram is a graph with six links and four cubic vertices that contributes to the D12ℛ4 amplitude at genus one in type II string theory. The vertices represent the insertion points of vertex operators on the toroidal worldsheet and the links represent scalar Green functions connecting them. By using the properties of the Green function and manipulating the various expressions, we obtain a modular invariant Poisson equation satisfied by this diagram, with source terms involving one-, two- and three-loop diagrams. Unlike the source terms in the Poisson equations for diagrams at lower orders in the momentum expansion or the Mercedes diagram, a particular source term involves a five-point function containing a holomorphic and a antiholomorphic worldsheet derivative acting on different Green functions. We also obtain simple equalities between topologically distinct diagrams, and consider some elementary examples.

  14. Normal forms of dispersive scalar Poisson brackets with two independent variables

    NASA Astrophysics Data System (ADS)

    Carlet, Guido; Casati, Matteo; Shadrin, Sergey

    2018-03-01

    We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for which a well-known triviality result exists, the Miura equivalence classes are parametrised by an infinite number of constants, which we call numerical invariants of the brackets. We obtain explicit formulas for the first few numerical invariants.

  15. Shocks and currents in stratified atmospheres with a magnetic null point

    NASA Astrophysics Data System (ADS)

    Tarr, Lucas A.; Linton, Mark

    2017-08-01

    We use the resistive MHD code LARE (Arber et al 2001) to inject a compressive MHD wavepacket into a stratified atmosphere that has a single magnetic null point, as recently described in Tarr et al 2017. The 2.5D simulation represents a slice through a small ephemeral region or area of plage. The strong gradients in field strength and connectivity related to the presence of the null produce substantially different dynamics compared to the more slowly varying fields typically used in simple sunspot models. The wave-null interaction produces a fast mode shock that collapses the null into a current sheet and generates a set of outward propagating (from the null) slow mode shocks confined to field lines near each separatrix. A combination of oscillatory reconnection and shock dissipation ultimately raise the plasma's internal energy at the null and along each separatrix by 25-50% above the background. The resulting pressure gradients must be balanced by Lorentz forces, so that the final state has contact discontinuities along each separatrix and a persistent current at the null. The simulation demonstrates that fast and slow mode waves localize currents to the topologically important locations of the field, just as their Alfvenic counterparts do, and also illustrates the necessity of treating waves and reconnection as coupled phenomena.

  16. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  17. Damage localization and quantification of composite stratified beam Structures using residual force method

    NASA Astrophysics Data System (ADS)

    Behtani, A.; Bouazzouni, A.; Khatir, S.; Tiachacht, S.; Zhou, Y.-L.; Abdel Wahab, M.

    2017-05-01

    In this paper, the problem of using measured modal parameters to detect and locate damage in beam composite stratified structures with four layers of graphite/epoxy [0°/902°/0°] is investigated. A technique based on the residual force method is applied to composite stratified structure with different boundary conditions, the results of damage detection for several damage cases demonstrate that using residual force method as damage index, the damage location can be identified correctly and the damage extents can be estimated as well.

  18. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    PubMed

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Simultaneous measurement of the Young's modulus and the Poisson ratio of thin elastic layers.

    PubMed

    Gross, Wolfgang; Kress, Holger

    2017-02-07

    The behavior of cells and tissue is greatly influenced by the mechanical properties of their environment. For studies on the interactions between cells and soft matrices, especially those applying traction force microscopy the characterization of the mechanical properties of thin substrate layers is essential. Various techniques to measure the elastic modulus are available. Methods to accurately measure the Poisson ratio of such substrates are rare and often imply either a combination of multiple techniques or additional equipment which is not needed for the actual biological studies. Here we describe a novel technique to measure both parameters, the Youngs's modulus and the Poisson ratio in a single experiment. The technique requires only a standard inverted epifluorescence microscope. As a model system, we chose cross-linked polyacrylamide and poly-N-isopropylacrylamide hydrogels which are known to obey Hooke's law. We place millimeter-sized steel spheres on the substrates which indent the surface. The data are evaluated using a previously published model which takes finite thickness effects of the substrate layer into account. We demonstrate experimentally for the first time that the application of the model allows the simultaneous determination of both the Young's modulus and the Poisson ratio. Since the method is easy to adapt and comes without the need of special equipment, we envision the technique to become a standard tool for the characterization of substrates for a wide range of investigations of cell and tissue behavior in various mechanical environments as well as other samples, including biological materials.

  20. Formation and dynamics of a chemically stratified layer below the Earth's CMB

    NASA Astrophysics Data System (ADS)

    Bouffard, M.; Labrosse, S.; Choblet, G.; Aubert, J.; Fournier, A.

    2017-12-01

    Seismological and magnetic observations are compatible with the presence of a stratified layer below the Earth's CMB (Lay and Young, 1990; Tanaka, 2007; Gubbins, 2007; Helffrich and Kaneshima, 2010; Lesur et al., 2015) and the existence of such a layer has also been predicted by several theoretical arguments listed below. The proposed thickness varies from 60 km to several hundreds of kilometers across the literature, but is usually close to 100 km. The layer may be thermally stratified if the CMB heat flow is subadiabatic (Gubbins et al., 1982; Labrosse et al., 1997; Lister and Buffett, 1998; Labrosse, 2015) but the possibility of a stratification of chemical origin has also been evoked. Various mechanisms have been proposed for the formation of a chemically stratified layer and include barodiffusion i.e. diffusion of light elements against the pressure gradient (Fearn and Loper, 1981; Braginsky, 2006; Gubbins and Davies, 2013), chemical plumes and blobs that would be able to reach the CMB where they would accumulate (Loper, 1989; Braginsky, 1994; Moffatt and Loper, 1994; Loper, 2007) or ascending droplets in a Fe-S system kept from mixing by surface tension (Franck, 1982). Layering may also be present if immiscible liquids evolve as the composition changes due to inner core growth (Helffrich and Kaneshima, 2004). To finish, Buffett and Seagle (2010) also studied the possibility that light elements be dissolved from the mantle into the core, forming a lighter layer that could grow by diffusion over long time scales. So far, no numerical simulation of core dynamics has been able to validate any of these potential mechanisms and produce a chemically stratified layer in a self-consistent manner. Using a particle-in-cell method newly implemented in the code PARODY (E. Dormy, J. Aubert) allowing to perform simulations of thermochemical convection in the infinite Lewis number limit (neglecting the compositional diffusivity), I will show that a chemically stratified