Sample records for background stress field

  1. Conservation laws and stress-energy-momentum tensors for systems with background fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk; The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD; Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de

    2012-10-15

    This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics inmore » media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.« less

  2. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  3. Background Stress Inventory: Developing a Measure of Understudied Stress.

    PubMed

    Terrill, Alexandra L; Gjerde, Jill M; Garofalo, John P

    2015-10-01

    Background stress is an understudied source of stress that involves both ambient stress and daily hassles upon which new stressors are superimposed. To date, an accurate measure of the background stress construct has not been available. We developed the Background Stress Inventory, a 25-item self-report measure that asks respondents to indicate how distressed they have felt over the past month and the majority of the past year across five domains: financial, occupation, environment, health and social. Seven hundred seventy-two participants completed the paper-and-pencil measure; the sample was randomly split into two separate subsamples for analyses. Exploratory factor analysis suggested five factors corresponding to these domains, and confirmatory factor analysis showed acceptable global fit (X(2)(255) = 456.47, comparative fit index = 0.94, root mean square error of approximation = 0.045). Cronbach's alpha (0.89) indicated good internal reliability. Construct validity analyses showed significant positive relationships with measures of perceived stressfulness (r = 0.62) and daily hassles (0.41), p's < 0.01. Depressive symptoms (0.62) and basal blood pressure (0.21) were both significantly associated with background stress, p's < 0.01. The importance of the proposed measure is reflected in the limited research base on the impact of background stress. Systematic investigation of this measure will provide insight into this understudied form of chronic stress and its potential influence on both psychological and physical endpoints. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Cosmic microwave background trispectrum and primordial magnetic field limits.

    PubMed

    Trivedi, Pranjal; Seshadri, T R; Subramanian, Kandaswamy

    2012-06-08

    Primordial magnetic fields will generate non-gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10(-29) and 10(-19), respectively. Observational limits on CMB non-gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.

  5. Non-perturbative background field calculations

    NASA Astrophysics Data System (ADS)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  6. Stress field models from Maxwell stress functions: southern California

    NASA Astrophysics Data System (ADS)

    Bird, Peter

    2017-08-01

    shallow stress maxima and discontinuous horizontal compression at the Moho, which the new model can only approximate. The new model also lacks the spatial resolution to portray the localized stress states that may occur near the central surfaces of weak faults; instead, the model portrays the regional or background stress field which provides boundary conditions for weak faults. Peak shear stresses in one registered model and one alternate model are 120 and 150 MPa, respectively, while peak vertically integrated shear stresses are 2.9 × 1012 and 4.1 × 1012 N m-1. Channeling of deviatoric stress along the strong Great Valley and the western slope of the Peninsular Ranges is evident. In the neotectonics of southern California, it appears that deviatoric stress and long-term strain rate have a negative correlation, because regions of low heat flow are strong and act as stress guides, while undergoing very little internal deformation. In contrast, active faults lie preferentially in areas with higher heat flow, and their low strength keeps deviatoric stresses locally modest.

  7. Stress Models of the Annual Hydrospheric, Atmospheric, Thermal, and Tidal Loading Cycles on California Faults: Perturbation of Background Stress and Changes in Seismicity

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher W.; Fu, Yuning; Bürgmann, Roland

    2017-12-01

    Stresses in the lithosphere arise from multiple natural loading sources that include both surface and body forces. The largest surface loads include near-surface water storage, snow and ice, atmosphere pressure, ocean loading, and temperature changes. The solid Earth also deforms from celestial body interactions and variations in Earth's rotation. We model the seasonal stress changes in California from 2006 through 2014 for seven different loading sources with annual periods to produce an aggregate stressing history for faults in the study area. Our modeling shows that the annual water loading, atmosphere, temperature, and Earth pole tides are the largest loading sources and should each be evaluated to fully describe seasonal stress changes. In California we find that the hydrological loads are the largest source of seasonal stresses. We explore the seasonal stresses with respect to the background principal stress orientation constrained with regional focal mechanisms and analyze the modulation of seismicity. Our results do not suggest a resolvable seasonal variation for the ambient stress orientation in the shallow crust. When projecting the seasonal stresses into the background stress orientation we find that the timing of microseismicity modestly increases from an 8 kPa seasonal mean-normal-stress perturbation. The results suggest that faults in California are optimally oriented with the background stress field and respond to subsurface pressure changes, possibly due to processes we have not considered in this study. At any time a population of faults are near failure as evident from earthquakes triggered by these slight seasonal stress perturbations.

  8. A novel background field removal method for MRI using projection onto dipole fields (PDF).

    PubMed

    Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi

    2011-11-01

    For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.

    PubMed

    Seshadri, T R; Subramanian, Kandaswamy

    2009-08-21

    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.

  10. Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments

    PubMed Central

    Hartman, Yorike; Hooftman, Danny A P; Uwimana, Brigitte; Schranz, M Eric; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; Michelmore, Richard W; van Tienderen, Peter H

    2014-01-01

    The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected recombinant inbred lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and aboveground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and colocated with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated with those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses, especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives. PMID:25360276

  11. Chameleon scalar fields in relativistic gravitational backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by ourmore » analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}« less

  12. Multiphoton amplitude in a constant background field

    NASA Astrophysics Data System (ADS)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  13. Consistent compactification of double field theory on non-geometric flux backgrounds

    NASA Astrophysics Data System (ADS)

    Hassler, Falk; Lüst, Dieter

    2014-05-01

    In this paper, we construct non-trivial solutions to the 2 D-dimensional field equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The ansatz identifies 2( D - d) internal directions with a twist U M N which is directly connected to the covariant fluxes ABC . It exhibits 2( D - d) linear independent generalized Killing vectors K I J and gives rise to a gauged supergravity in d dimensions. We analyze the covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We calculate fluctuations around such vacua and show how they gives rise to massive scalars field and vectors field with a non-abelian gauge algebra. Because DFT is a background independent theory, these fields should directly correspond the string excitations in the corresponding background. For ( D - d) = 3 we perform a complete scan of all allowed covariant fluxes and find two different kinds of backgrounds: the single and the double elliptic case. The later is not T-dual to a geometric background and cannot be transformed to a geometric setting by a field redefinition either. While this background fulfills the strong constraint, it is still consistent with the Killing vectors depending on the coordinates and the winding coordinates, thereby giving a non-geometric patching. This background can therefore not be described in Supergravity or Generalized Geometry.

  14. Variations of stress fields in the Tunka Rift of the southwestern Baikal region

    NASA Astrophysics Data System (ADS)

    Lunina, O. V.; Gladkov, A. S.; Sherman, S. I.

    2007-05-01

    The stress fields in the Tunka Rift at the southwestern flank of the Baikal Rift Zone are reconstructed and analyzed on the basis of a detailed study of fracturing. The variation of these fields is of a systematic character and is caused by a complex morphological and fault-block structure of the studied territory. The rift was formed under conditions of oblique (relative to its axis) regional NW-SE extension against the background of three ancient tectonic boundaries (Sayan, Baikal, and Tuva-Mongolian) oriented in different directions. Such a geological history resulted in the development of several en echelon arranged local basins and interbasinal uplifted blocks, the strike-slip component of faulting, and the mosaic distribution of various stress fields with variable orientation of their principal vectors. The opening of basins was promoted by stress fields of a lower hierarchical rank with a near-meridional tension axis. The stress field in the western Tunka Rift near the Mondy and Turan basins is substantially complicated because the transform movements, which are responsible for the opening of the N-S-trending rift basins in Mongolia, become important as Lake Hövsgöl is approached. It is concluded that, for the most part, the Tunka Rift has not undergone multistage variation of its stress state since the Oligocene, the exception being a compression phase in the late Miocene and early Pliocene, which could be related to continental collision of the Eurasian and Indian plates. Later on, the Tunka Rift continued its tectonic evolution in the transtensional regime.

  15. Origin of the lithospheric stress field

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, Carolina; Guynn, Jerome H.

    2004-01-01

    An understanding of the tectonic stress field is geologically important because it is the agent that preserves in the crust a memory of dynamical processes. In an effort to elucidate the origin of the present state of stress of the lithosphere we use a finite element model of the Earth's lithosphere to calculate stresses induced by mantle flow, crustal heterogeneity, and topography and compare these to observations of intraplate stresses as given by the World Stress Map. We explore two models of lithospheric heterogeneity, one based directly on seismic and other observational constraints (Crust 2.0), and another that assumes isostatic compensation. Mantle tractions are computed from two models of mantle density heterogeneity: a model based on the history of subduction of the last 180 Myr, which has proved successful at accurately reproducing the present-day geoid and Cenozoic plate velocities, and a model inferred from seismic tomography. We explore the effects of varying assumptions for the viscosity structure of the mantle, and the effects of lateral variations in viscosity in the form of weak plate boundaries. We find that a combined model that includes both mantle and lithospheric sources of stress yields the best match to the observed stress field (˜60% variance reduction), although there are many regions where agreement between observed and predicted stresses is poor. The stress field produced by mantle tractions alone shows a greater degree of long-wavelength structure than is apparent in the stress observations but agrees very well with observations in some areas where radial mantle tractions are particularly strong such as in southeast Asia and the western Pacific. The stress field produced by lithospheric heterogeneity alone depends strongly on the assumed crustal model: Whereas the isostatically compensated model yields very poor agreement with observations, the model based on Crust 2.0 matches the observations about as well as mantle tractions alone

  16. Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating

    PubMed Central

    Tang, Xiaoduan; Xu, Shen; Wang, Xinwei

    2013-01-01

    Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566

  17. Background field Landau mode operators for the nucleon

    NASA Astrophysics Data System (ADS)

    Kamleh, Waseem; Bignell, Ryan; Leinweber, Derek B.; Burkardt, Matthias

    2018-03-01

    The introduction of a uniform background magnetic field breaks threedimensional spatial symmetry for a charged particle and introduces Landau mode effects. Standard quark operators are inefficient at isolating the nucleon correlation function at nontrivial field strengths. We introduce novel quark operators constructed from the twodimensional Laplacian eigenmodes that describe a charged particle on a finite lattice. These eigenmode-projected quark operators provide enhanced precision for calculating nucleon energy shifts in a magnetic field. Preliminary results are obtained for the neutron and proton magnetic polarisabilities using these methods.

  18. Moving branes in the presence of background tachyon fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Z., E-mail: z.rezaei@aut.ac.ir; Kamani, D., E-mail: kamani@aut.ac.ir

    2011-12-15

    We compute the boundary state associated with a moving Dp-brane in the presence of the open string tachyon field as a background field. The effect of the tachyon condensation on the boundary state is discussed. It leads to a boundary state associated with a lower-dimensional moving D-brane or a stationary instantonic D-brane. The former originates from condensation along the spatial directions and the latter comes from the temporal direction of the D-brane worldvolume. Using the boundary state, we also study the interaction amplitude between two arbitrary Dp{sub 1}- and Dp{sub 2}-branes. The long-range behavior of the amplitude is investigated, demonstratingmore » an obvious deviation from the conventional form, due to the presence of the background tachyon field.« less

  19. Present-day stress field of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Tingay, Mark; Morley, Chris; King, Rosalind; Hillis, Richard; Coblentz, David; Hall, Robert

    2010-02-01

    It is now well established that ridge push forces provide a major control on the plate-scale stress field in most of the Earth's tectonic plates. However, the Sunda plate that comprises much of Southeast Asia is one of only two plates not bounded by a major spreading centre and thus provides an opportunity to evaluate other forces that control the intraplate stress field. The Cenozoic tectonic evolution of the Sunda plate is usually considered to be controlled by escape tectonics associated with India-Eurasia collision. However, the Sunda plate is bounded by a poorly understood and complex range of convergent and strike-slip zones and little is known about the effect of these other plate boundaries on the intraplate stress field in the region. We compile the first extensive stress dataset for Southeast Asia, containing 275 A-D quality (177 A-C) horizontal stress orientations, consisting of 72 stress indicators from earthquakes (located mostly on the periphery of the plate), 202 stress indicators from breakouts and drilling-induced fractures and one hydraulic fracture test within 14 provinces in the plate interior. This data reveals that a variable stress pattern exists throughout Southeast Asia that is largely inconsistent with the Sunda plate's approximately ESE absolute motion direction. The present-day maximum horizontal stress in Thailand, Vietnam and the Malay Basin is predominately north-south, consistent with the radiating stress patterns arising from the eastern Himalayan syntaxis. However, the present-day maximum horizontal stress is primarily oriented NW-SE in Borneo, a direction that may reflect plate-boundary forces or topographic stresses exerted by the central Borneo highlands. Furthermore, the South and Central Sumatra Basins exhibit a NE-SW maximum horizontal stress direction that is perpendicular to the Indo-Australian subduction front. Hence, the plate-scale stress field in Southeast Asia appears to be controlled by a combination of Himalayan

  20. New type IIB backgrounds and aspects of their field theory duals

    NASA Astrophysics Data System (ADS)

    Caceres, Elena; Macpherson, Niall T.; Núñez, Carlos

    2014-08-01

    In this paper we study aspects of geometries in Type IIA and Type IIB String theory and elaborate on their field theory dual pairs. The backgrounds are associated with reductions to Type IIA of solutions with G 2 holonomy in eleven dimensions. We classify these backgrounds according to their G-structure, perform a non-Abelian T-duality on them and find new Type IIB configurations presenting dynamical SU(2)-structure. We study some aspects of the associated field theories defined by these new backgrounds. Various technical details are clearly spelled out.

  1. Separation of foreground and background from light field using gradient information.

    PubMed

    Lee, Jae Young; Park, Rae-Hong

    2017-02-01

    Studies of computer vision or machine vision applications using a light field camera have been increasing in recent years. However, the abilities that the light field camera has are not fully used in these applications. In this paper, we propose a method for direct separation of foreground and background that uses the gradient information and can be used in various applications such as pre-processing. From an optical phenomenon whereby the bundles of rays from the background are flipped, we derive that the disparity sign of the background in the captured three-dimensional scene has the opposite disparity sign of the foreground. Using the majority-weighted voting algorithm based on the gradient information with the Lambertian assumption and the gradient constraint, the foreground and background can be separated at each pixel. In regard to pre-processing, the proposed method can be used for various applications such as occlusion and saliency detection, disparity estimation, and so on. Experimental results with the EPFL light field dataset and Stanford Lytro light field dataset show that the proposed method achieves better performance in terms of the occlusion detection, and thus can be effectively used in pre-processing for saliency detection and disparity estimation.

  2. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  3. The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerick, F.; Saur, J.; Papen, M. von, E-mail: felix.gerick@uni-koeln.de

    In order to resolve and characterize anisotropy in turbulent plasma flows, a proper estimation of the background magnetic field is crucially important. Various approaches to calculating the background magnetic field, ranging from local to globally averaged fields, are commonly used in the analysis of turbulent data. We investigate how the uncertainty in the orientation of a scale-dependent background magnetic field influences the ability to resolve anisotropy. Therefore, we introduce a quantitative measure, the angle uncertainty, that characterizes the uncertainty of the orientation of the background magnetic field that turbulent structures are exposed to. The angle uncertainty can be used asmore » a condition to estimate the ability to resolve anisotropy with certain accuracy. We apply our description to resolve the spectral anisotropy in fast solar wind data. We show that, if the angle uncertainty grows too large, the power of the turbulent fluctuations is attributed to false local magnetic field angles, which may lead to an incorrect estimation of the spectral indices. In our results, an apparent robustness of the spectral anisotropy to false local magnetic field angles is observed, which can be explained by a stronger increase of power for lower frequencies when the scale of the local magnetic field is increased. The frequency-dependent angle uncertainty is a measure that can be applied to any turbulent system.« less

  4. Gender differences and the relationships of perceived background stress and psychological distress with cardiovascular responses to laboratory stressors.

    PubMed

    Allen, Michael T; Bocek, Christine M; Burch, Ashley E

    2011-09-01

    The primary aim of this study was to evaluate the relationships of perceived background stress and self-reported psychological distress on cardiovascular reactivity during acute laboratory stressors. The Perceived Stress Scale (PSS) was used as the measure of perceived background stress, and the General Health Questionnaire (GHQ) was used as the measure of psychological distress. A secondary aim was to examine whether background stress and psychological distress affected the susceptibility to induction of a negative mood using music. Heart rate (HR) and blood pressure (BP) were measured in 149 female and male college students at rest and during a stressful mental arithmetic (MA) task and a mood induction procedure. Higher scores on the GHQ were associated with lower systolic BP reactivity during the MA task by all participants. Higher scores on the PSS and GHQ were also associated with lower diastolic BP and HR reactivity, but only in females. Thus, higher self-reports of background stress and psychological distress tended to result in blunted reactivity to an acute laboratory challenge. Higher levels of background stress and psychological distress were not associated with greater susceptibility to a negative mood induction. This study adds to the growing literature indicating that potentially negative health outcomes may be associated with diminished cardiovascular reactivity under certain conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Effects of Classical Background Music on Stress, Anxiety, and Knowledge of Filipino Baccalaureate Nursing Students.

    PubMed

    Evangelista, Kevin; Macabasag, Romeo Luis A; Capili, Brylle; Castro, Timothy; Danque, Marilee; Evangelista, Hanzel; Rivero, Jenica Ana; Gonong, Michell Katrina; Diño, Michael Joseph; Cajayon, Sharon

    2017-10-28

    Previous work on the use of background music suggests conflicting results in various psychological, behavioral, and educational measures. This quasi-experiment examined the effect of integrating classical background music during a lecture on stress, anxiety, and knowledge. A total of 42 nursing students participated this study. We utilized independent sample t-test and multivariate analysis of variance to examine the effect of classical background music. Our findings suggest that the presence or absence of classical background music do not affect stress, anxiety, and knowledge scores (Λ = 0.999 F(3, 78) = 0.029, p = 0.993). We provided literature to explain the non-significant result. Although classical music failed to establish a significant influence on the dependent variables, classical background music during lecture hours can be considered a non-threatening stimulus. We recommend follow up studies regarding the role of classical background music in regulating attention control of nursing students during lecture hours.

  6. Interaction of moving branes with background massless and tachyon fields in superstring theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Z., E-mail: z.rezaei@aut.ac.ir; Kamani, D., E-mail: kamani@aut.ac.ir

    2012-02-15

    Using the boundary state formalism, we study a moving Dp-brane in a partially compact space-time in the presence of background fields: the Kalb-Ramond field B{sub {mu}{nu}}, a U(1) gauge field A{sub {alpha}}, and the tachyon field. The boundary state enables us to obtain the interaction amplitude of two branes with the above back-ground fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields, compactification of some space-time directions, motion of the branes, and the arbitrariness of the dimensions of the branes, the system is rather general. Due to the tachyon fields and velocitiesmore » of the branes, the behavior of the interaction amplitude reveals obvious differences from the conventional behavior.« less

  7. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Yue

    2017-10-01

    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  8. Stress induction in the bacteria Shewanella oneidensis and Deinococcus radiodurans in response to below-background ionizing radiation.

    PubMed

    Castillo, Hugo; Schoderbek, Donald; Dulal, Santosh; Escobar, Gabriela; Wood, Jeffrey; Nelson, Roger; Smith, Geoffrey

    2015-01-01

    The 'Linear no-threshold' (LNT) model predicts that any amount of radiation increases the risk of organisms to accumulate negative effects. Several studies at below background radiation levels (4.5-11.4 nGy h(-1)) show decreased growth rates and an increased susceptibility to oxidative stress. The purpose of our study is to obtain molecular evidence of a stress response in Shewanella oneidensis and Deinococcus radiodurans grown at a gamma dose rate of 0.16 nGy h(-1), about 400 times less than normal background radiation. Bacteria cultures were grown at a dose rate of 0.16 or 71.3 nGy h(-1) gamma irradiation. Total RNA was extracted from samples at early-exponential and stationary phases for the rt-PCR relative quantification (radiation-deprived treatment/background radiation control) of the stress-related genes katB (catalase), recA (recombinase), oxyR (oxidative stress transcriptional regulator), lexA (SOS regulon transcriptional repressor), dnaK (heat shock protein 70) and SOA0154 (putative heavy metal efflux pump). Deprivation of normal levels of radiation caused a reduction in growth of both bacterial species, accompanied by the upregulation of katB, recA, SOA0154 genes in S. oneidensis and the upregulation of dnaK in D. radiodurans. When cells were returned to background radiation levels, growth rates recovered and the stress response dissipated. Our results indicate that below-background levels of radiation inhibited growth and elicited a stress response in two species of bacteria, contrary to the LNT model prediction.

  9. Flavour fields in steady state: stress tensor and free energy

    NASA Astrophysics Data System (ADS)

    Banerjee, Avik; Kundu, Arnab; Kundu, Sandipan

    2016-02-01

    The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1-background, for d = 2, 4, and is related to conformal anomaly. For the special case of d = 2, the universal factor has a striking resemblance to the well-known heat current formula in (1 + 1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d = 6.

  10. Limitations of the background field method applied to Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Nobili, Camilla; Otto, Felix

    2017-09-01

    We consider Rayleigh-Bénard convection as modeled by the Boussinesq equations, in the case of infinite Prandtl numbers and with no-slip boundary condition. There is a broad interest in bounds of the upwards heat flux, as given by the Nusselt number Nu, in terms of the forcing via the imposed temperature difference, as given by the Rayleigh number in the turbulent regime Ra ≫ 1 . In several studies, the background field method applied to the temperature field has been used to provide upper bounds on Nu in terms of Ra. In these applications, the background field method comes in the form of a variational problem where one optimizes a stratified temperature profile subject to a certain stability condition; the method is believed to capture the marginal stability of the boundary layer. The best available upper bound via this method is Nu ≲Ra/1 3 ( ln R a )/1 15 ; it proceeds via the construction of a stable temperature background profile that increases logarithmically in the bulk. In this paper, we show that the background temperature field method cannot provide a tighter upper bound in terms of the power of the logarithm. However, by another method, one does obtain the tighter upper bound Nu ≲ Ra /1 3 ( ln ln Ra ) /1 3 so that the result of this paper implies that the background temperature field method is unphysical in the sense that it cannot provide the optimal bound.

  11. Prequantum classical statistical field theory: background field as a source of everything?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2011-07-01

    Prequantum classical statistical field theory (PCSFT) is a new attempt to consider quantum mechanics (QM) as an emergent phenomenon, cf. with De Broglie's "double solution" approach, Bohmian mechanics, stochastic electrodynamics (SED), Nelson's stochastic QM and its generalization by Davidson, 't Hooft's models and their development by Elze. PCSFT is a comeback to a purely wave viewpoint on QM, cf. with early Schrodinger. There is no quantum particles at all, only waves. In particular, photons are simply wave-pulses of the classical electromagnetic field, cf. SED. Moreover, even massive particles are special "prequantum fields": the electron field, the neutron field, and so on. PCSFT claims that (sooner or later) people will be able to measure components of these fields: components of the "photonic field" (the classical electromagnetic field of low intensity), electronic field, neutronic field, and so on. At the moment we are able to produce quantum correlations as correlations of classical Gaussian random fields. In this paper we are interested in mathematical and physical reasons of usage of Gaussian fields. We consider prequantum signals (corresponding to quantum systems) as composed of a huge number of wave-pulses (on very fine prequantum time scale). We speculate that the prequantum background field (the field of "vacuum fluctuations") might play the role of a source of such pulses, i.e., the source of everything.

  12. Virasoro conformal blocks and thermality from classical background fields

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.

    2015-11-30

    We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. Furthermore, we commentmore » on the implications of our results for the universality of black hole thermality in AdS 3 , or equivalently, the eigenstate thermalization hypothesis for CFT 2 at large central charge.« less

  13. Stress field modelling from digital geological map data

    NASA Astrophysics Data System (ADS)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is

  14. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    NASA Astrophysics Data System (ADS)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  15. Scalar field vacuum expectation value induced by gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  16. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  17. Magnetic field effects on shear and normal stresses in magnetorheological finishing.

    PubMed

    Lambropoulos, John C; Miao, Chunlin; Jacobs, Stephen D

    2010-09-13

    We use a recent experimental technique to measure in situ shear and normal stresses during magnetorheological finishing (MRF) of a borosilicate glass over a range of magnetic fields. At low fields shear stresses increase with magnetic field, but become field-independent at higher magnetic fields. Micromechanical models of formation of magnetic particle chains suggest a complex behavior of magnetorheological (MR) fluids that combines fluid- and solid-like responses. We discuss the hypothesis that, at higher fields, slip occurs between magnetic particle chains and the immersed glass part, while the normal stress is governed by the MRF ribbon elasticity.

  18. Some remarks on elastic crack-tip stress fields.

    NASA Technical Reports Server (NTRS)

    Rice, J. R.

    1972-01-01

    It is shown that if the displacement field and stress intensity factor are known as functions of crack length for any symmetrical load system acting on a linear elastic body in plane strain, then the stress intensity factor for any other symmetrical load system whatsoever on the same body may be directly determined. The result is closely related to Bueckner's (1970) weight function, through which the stress intensity factor is expressed as a sum of work-like products between applied forces and values of the weight function at their points of application. An example of the method is given wherein the solution for a crack in a remotely uniform stress field is used to generate the expression for the stress intensity factor due to an arbitrary traction distribution on the faces of a crack. A corresponding theory is developed in an appendix for three-dimensional crack problems, although this appears to be directly useful chiefly for problems in which there is axial symmetry.

  19. Cosmic microwave background polarization signals from tangled magnetic fields.

    PubMed

    Seshadri, T R; Subramanian, K

    2001-09-03

    Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500

  20. Vacuum fluctuations of the supersymmetric field in curved background

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Guberina, Branko

    2012-01-01

    We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.

  1. Quantifying the heterogeneity of the tectonic stress field using borehole data

    USGS Publications Warehouse

    Schoenball, Martin; Davatzes, Nicholas C.

    2017-01-01

    The heterogeneity of the tectonic stress field is a fundamental property which influences earthquake dynamics and subsurface engineering. Self-similar scaling of stress heterogeneities is frequently assumed to explain characteristics of earthquakes such as the magnitude-frequency relation. However, observational evidence for such scaling of the stress field heterogeneity is scarce.We analyze the local stress orientations using image logs of two closely spaced boreholes in the Coso Geothermal Field with sub-vertical and deviated trajectories, respectively, each spanning about 2 km in depth. Both the mean and the standard deviation of stress orientation indicators (borehole breakouts, drilling-induced fractures and petal-centerline fractures) determined from each borehole agree to the limit of the resolution of our method although measurements at specific depths may not. We find that the standard deviation in these boreholes strongly depends on the interval length analyzed, generally increasing up to a wellbore log length of about 600 m and constant for longer intervals. We find the same behavior in global data from the World Stress Map. This suggests that the standard deviation of stress indicators characterizes the heterogeneity of the tectonic stress field rather than the quality of the stress measurement. A large standard deviation of a stress measurement might be an expression of strong crustal heterogeneity rather than of an unreliable stress determination. Robust characterization of stress heterogeneity requires logs that sample stress indicators along a representative sample volume of at least 1 km.

  2. Energy spectrum of tearing mode turbulence in sheared background field

    NASA Astrophysics Data System (ADS)

    Hu, Di; Bhattacharjee, Amitava; Huang, Yi-Min

    2018-06-01

    The energy spectrum of tearing mode turbulence in a sheared background magnetic field is studied in this work. We consider the scenario where the nonlinear interaction of overlapping large-scale modes excites a broad spectrum of small-scale modes, generating tearing mode turbulence. The spectrum of such turbulence is of interest since it is relevant to the small-scale back-reaction on the large-scale field. The turbulence we discuss here differs from traditional MHD turbulence mainly in two aspects. One is the existence of many linearly stable small-scale modes which cause an effective damping during the energy cascade. The other is the scale-independent anisotropy induced by the large-scale modes tilting the sheared background field, as opposed to the scale-dependent anisotropy frequently encountered in traditional critically balanced turbulence theories. Due to these two differences, the energy spectrum deviates from a simple power law and takes the form of a power law multiplied by an exponential falloff. Numerical simulations are carried out using visco-resistive MHD equations to verify our theoretical predictions, and a reasonable agreement is found between the numerical results and our model.

  3. Stress analysis in high-temperature superconductors under pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  4. Holographic non-Fermi liquid in a background magnetic field

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; He, Jianyang; Mukherjee, Anindya; Shieh, Hsien-Hang

    2010-08-01

    We study the effects of a nonzero magnetic field on a class of 2+1 dimensional non-Fermi liquids, recently found in [Hong Liu, John McGreevy, and David Vegh, arXiv:0903.2477.] by considering properties of a Fermionic probe in an extremal AdS4 black hole background. Introducing a similar fermionic probe in a dyonic AdS4 black hole geometry, we find that the effect of a magnetic field could be incorporated in a rescaling of the probe fermion’s charge. From this simple fact, we observe interesting effects like gradual disappearance of the Fermi surface and quasiparticle peaks at large magnetic fields and changes in other properties of the system. We also find Landau level like structures and oscillatory phenomena similar to the de-Haas-van Alphen effect.

  5. A new barometer from stress fields around inclusions

    NASA Astrophysics Data System (ADS)

    Avadanii, Diana; Hansen, Lars; Wallis, David; Waters, David

    2017-04-01

    A key step in understanding geological and geodynamic processes is modelling the pressure-temperature paths of metamorphic rocks. Traditional thermobarometry relies on mineral assemblage equilibria and thermodynamic modelling to infer the pressures and temperatures of chemical equilibration. This approach requires the presence of specific mineral assemblages and compositions, which narrows its applicability. In this study we aim to develop a geobarometer based on mechanical interactions between inclusions and their host grains. Exhumation of minerals with inclusions causes heterogeneous residual stress fields due to the different, and often anisotropic, elastic properties of the inclusion and host. Recent studies measure residual mean stresses within inclusions using Raman spectroscopy and use those stresses as a barometer. In contrast, we map each component of the stress tensor around inclusions using high angular-resolution electron backscatter diffraction (HR-EBSD). This technique provides both higher spatial resolution and increased sensitivity to elastic strains relative to Raman spectroscopy. We focus on quartz inclusions in garnet, a common feature in metamorphic rocks. This assemblage also provides an opportunity to test our results with compositional thermobarometry. We analyse samples metamorphosed at pressures ranging from ˜ 300 MPa to ˜ 1600 MPa, as recorded by independent geobarometers. HR-EBSD reveals symmetric and lobate signals around inclusions, with elastic strains and residual stresses of the order 10-3 and ±102 -103 MPa, respectively. We solve Eshelby's problem for the 'inhomogeneous inclusion' case to simulate the elastic strain/stress field around an anisotropic ellipsoidal inclusion surrounded by an isotropic, homogeneous, infinite matrix. This model calculates the stress disturbances caused by differential expansion of an inclusion and host subjected to decompression. We additionally account for differential expansion related to cooling

  6. ON THE ROLE OF THE BACKGROUND OVERLYING MAGNETIC FIELD IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nindos, A.; Patsourakos, S.; Wiegelmann, T., E-mail: anindos@cc.uoi.gr

    2012-03-20

    The primary constraining force that inhibits global solar eruptions is provided by the overlying background magnetic field. Using magnetic field data from both the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory and the spectropolarimeter of the Solar Optical Telescope aboard Hinode, we study the long-term evolution of the background field in active region AR11158 that produced three major coronal mass ejections (CMEs). The CME formation heights were determined using EUV data. We calculated the decay index -(z/B)({partial_derivative}B/{partial_derivative}z) of the magnetic field B (i.e., how fast the field decreases with height, z) related to each event from the timemore » of the active region emergence until well after the CMEs. At the heights of CME formation, the decay indices were 1.1-2.1. Prior to two of the events, there were extended periods (of more than 23 hr) where the related decay indices at heights above the CME formation heights either decreased (up to -15%) or exhibited small changes. The decay index related to the third event increased (up to 118%) at heights above 20 Mm within an interval that started 64 hr prior to the CME. The magnetic free energy and the accumulated helicity into the corona contributed the most to the eruptions by their increase throughout the flux emergence phase (by factors of more than five and more than two orders of magnitude, respectively). Our results indicate that the initiation of eruptions does not depend critically on the temporal evolution of the variation of the background field with height.« less

  7. Improved capacitive stress transducers for high-field superconducting magnets

    NASA Astrophysics Data System (ADS)

    Benson, Christopher Pete; Holik, Eddie Frank, III; Jaisle, Andrew; McInturff, A.; McIntyre, P.

    2012-06-01

    High-field (12-18 Tesla) superconducting magnets are required to enable an increase in the energy of future colliders. Such field strength requires the use of Nb3Sn superconductor, which has limited tolerance for compressive and shear strain. A strategy for stress management has been developed at Texas A&M University and is being implemented in TAMU3, a short-model 14 Tesla stress-managed Nb3Sn block dipole. The strategy includes the use of laminar capacitive stress transducers to monitor the stresses within the coil package. We have developed fabrication techniques and fixtures, which improve the reproducibility of the transducer response both at room temperature and during cryogenic operation. This is a report of the status of transducer development.

  8. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    NASA Astrophysics Data System (ADS)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  9. A Comparison between Deep and Shallow Stress Fields in Korea Using Earthquake Focal Mechanism Inversions and Hydraulic Fracturing Stress Measurements

    NASA Astrophysics Data System (ADS)

    Lee, Rayeon; Chang, Chandong; Hong, Tae-kyung; Lee, Junhyung; Bae, Seong-Ho; Park, Eui-Seob; Park, Chan

    2016-04-01

    We are characterizing stress fields in Korea using two types of stress data: earthquake focal mechanism inversions (FMF) and hydraulic fracturing stress measurements (HF). The earthquake focal mechanism inversion data represent stress conditions at 2-20 km depths, whereas the hydraulic fracturing stress measurements, mostly conducted for geotechnical purposes, have been carried out at depths shallower than 1 km. We classified individual stress data based on the World Stress Map quality ranking scheme. A total of 20 FMF data were classified into A-B quality, possibly representing tectonic stress fields. A total of 83 HF data out of compiled 226 data were classified into B-C quality, which we use for shallow stress field characterization. The tectonic stress, revealed from the FMF data, is characterized by a remarkable consistency in its maximum stress (σ1) directions in and around Korea (N79±2° E), indicating a quite uniform deep stress field throughout. On the other hand, the shallow stress field, represented by HF data, exhibits local variations in σ1 directions, possibly due to effects of topography and geologic structures such as faults. Nonetheless, there is a general similarity in σ1 directions between deep and shallow stress fields. To investigate the shallow stress field statistically, we follow 'the mean orientation and wavelength analysis' suggested by Reiter et al. (2014). After the stress pattern analysis, the resulting stress points distribute sporadically over the country, not covering the entire region evenly. In the western part of Korea, the shallow σ1directions are generally uniform with their search radius reaching 100 km, where the average stress direction agrees well with those of the deep tectonic stress. We note two noticeable differences between shallow and deep stresses in the eastern part of Korea. First, the shallow σ1 orientations are markedly non-uniform in the southeastern part of Korea with their search radius less than 25 km

  10. Emergent kink stability of a magnetized plasma jet injected into a transverse background magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Gilmore, Mark; Hsu, Scott C.; Fisher, Dustin M.; Lynn, Alan G.

    2017-11-01

    We report experimental results on the injection of a magnetized plasma jet into a transverse background magnetic field in the HelCat linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81(1), 345810104 (2015)]. After the plasma jet leaves the plasma-gun muzzle, a tension force arising from an increasing curvature of the background magnetic field induces in the jet a sheared axial-flow gradient above the theoretical kink-stabilization threshold. We observe that this emergent sheared axial flow stabilizes the n = 1 kink mode in the jet, whereas a kink instability is observed in the jet when there is no background magnetic field present.

  11. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  12. The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

  13. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    NASA Astrophysics Data System (ADS)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by

  14. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks

    NASA Astrophysics Data System (ADS)

    Mignan, Arnaud

    2018-03-01

    The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.

  15. Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields.

    PubMed

    D'Elia, Massimo; Mariti, Marco; Negro, Francesco

    2013-02-22

    We investigate two flavor quantum chromodynamics (QCD) in the presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective θ term to first order in E[over →] · B[over →]. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, and then exploit the analytic continuation. Our results are relevant to a description of the effective pseudoscalar quantum electrodynamics-QCD interactions.

  16. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain.

    PubMed

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  17. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  18. Mechanic stress generated by a time-varying electromagnetic field on bone surface.

    PubMed

    Ye, Hui

    2018-03-19

    Bone cells sense mechanical load, which is essential for bone growth and remodeling. In a fracture, this mechanism is compromised. Electromagnetic stimulation has been widely used to assist in bone healing, but the underlying mechanisms are largely unknown. A recent hypothesis suggests that electromagnetic stimulation could influence tissue biomechanics; however, a detailed quantitative understanding of EM-induced biomechanical changes in the bone is unavailable. This paper used a muscle/bone model to study the biomechanics of the bone under EM exposure. Due to the dielectric properties of the muscle/bone interface, a time-varying magnetic field can generate both compressing and shear stresses on the bone surface, where many mechanical sensing cells are available for cellular mechanotransduction. I calculated these stresses and found that the shear stress is significantly greater than the compressing stress. Detailed parametric analysis suggests that both the compressing and shear stresses are dependent on the geometrical and electrical properties of the muscle and the bone. These stresses are also functions of the orientation of the coil and the frequency of the magnetic field. It is speculated that the EM field could apply biomechanical influence to fractured bone, through the fine-tuning of the controllable field parameters. Graphical abstract Mechanic stress on bone surface in a time-varying magnetic field.

  19. The ambient stress field in the continental margin around the Korean Peninsula and Japanese islands

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hong, T. K.; Chang, C.

    2016-12-01

    The ambient stress field is mainly influenced by regional tectonics. The stress field composition is crucial information for seismic hazard assessment. The Korean Peninsula, Japanese Islands and East Sea comprise the eastern margin of the Eurasian plate. The regions are surrounded by the Okhotsk, Pacific, and Philippine Sea plates. We investigate the regional stress field around the Korean Peninsula and Japanese islands using the focal mechanism solutions of regional earthquakes. Complex lateral and vertical variations of regional crustal stress fields are observed around a continental margin. The dominant compression directions are ENE-WSW around the Korean Peninsula and eastern China, E-W in the central East Sea and northern and southern Japan, NW-SE in the central Japan, and N-S around the northern Nankai trough. The horizontal compression directions are observed to be different by fault type, suggesting structure-dependent stress field distortion. The regional stress field change by depth and location, suggesting that the compression and tension stress may alternate in local region. The stress field and structures affect mutually, causing stress field distortion and reactivation of paleo-structures. These observation may be useful for understanding of local stress-field perturbation for seismic hazard mitigation of the region.

  20. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to

  1. Full-field stress determination in photoelasticity with phase shifting technique

    NASA Astrophysics Data System (ADS)

    Guo, Enhai; Liu, Yonggang; Han, Yongsheng; Arola, Dwayne; Zhang, Dongsheng

    2018-04-01

    Photoelasticity is an effective method for evaluating the stress and its spatial variations within a stressed body. In the present study, a method to determine the stress distribution by means of phase shifting and a modified shear-difference is proposed. First, the orientation of the first principal stress and the retardation between the principal stresses are determined in the full-field through phase shifting. Then, through bicubic interpolation and derivation of a modified shear-difference method, the internal stress is calculated from the point with a free boundary along its normal direction. A method to reduce integration error in the shear difference scheme is proposed and compared to the existing methods; the integration error is reduced when using theoretical photoelastic parameters to calculate the stress component with the same points. Results show that when the value of Δx/Δy approaches one, the error is minimum, and although the interpolation error is inevitable, it has limited influence on the accuracy of the result. Finally, examples are presented for determining the stresses in a circular plate and ring subjected to diametric loading. Results show that the proposed approach provides a complete solution for determining the full-field stresses in photoelastic models.

  2. On stress field near a stationary crack tip

    NASA Technical Reports Server (NTRS)

    Nemat-Nasser, S.; Obata, M.

    1984-01-01

    It is well known that the stress and elastic-plastic deformation fields near a crack tip have important roles in the corresponding fracture process. For elastic-perfectly-plastic solids, different solutions are given in the literature. In this work several of these solutions are examined and compared for Mode I (tension), Mode II (shear), and mixed Modes I and II loading conditions in plane strain. By consideration of the dynamic solution, it is shown that the assumption that the material is yielding all around a crack tip may not be reasonable in all cases. By admitting the existence of some elastic sectors, continuous stress fields are obtained even for mixed Modes I and II.

  3. NEW OBSERVATION OF FAILED FILAMENT ERUPTIONS: THE INFLUENCE OF ASYMMETRIC CORONAL BACKGROUND FIELDS ON SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Xu, Z.; Su, J.

    2009-05-01

    Failed filament eruptions not associated with a coronal mass ejection (CME) have been observed and reported as evidence for solar coronal field confinement on erupting flux ropes. In those events, each filament eventually returns to its origin on the solar surface. In this Letter, a new observation of two failed filament eruptions is reported which indicates that the mass of a confined filament can be ejected to places far from the original filament channel. The jetlike mass motions in the two failed filament eruptions are thought to be due to the asymmetry of the background coronal magnetic fields with respectmore » to the locations of the filament channels. The asymmetry of the coronal fields is confirmed by an extrapolation based on a potential field model. The obvious imbalance between the positive and negative magnetic flux (with a ratio of 1:3) in the bipolar active region is thought to be the direct cause of the formation of the asymmetric coronal fields. We think that the asymmetry of the background fields can not only influence the trajectories of ejecta, but also provide a relatively stronger confinement for flux rope eruptions than the symmetric background fields do.« less

  4. Stress field forming of sector array transducers for vibro-acoustography.

    PubMed

    Silva, Glauber T; Chen, Shigao; Frery, Alejandro C; Greenleaf, James F; Fatemi, Mostafa

    2005-11-01

    This paper presents a study of the stress field forming of sector array transducers for vibro-acoustography applications. The system point-spread function (PSF) is given in terms of the dynamic radiation stress exerted on a point target by a dual ultrasound beam with slightly different frequencies. The radiation stress is calculated by assuming that the resulting ultrasound beam is a plane wave. The stress is proportional to the product of the velocity potential of each incident ultrasound beam. The beamforming and stress field forming of sector array transducers are analyzed through linear acoustics. An expression for the velocity potential produced by sector array transducers is derived. The vibro-acoustography PSF is evaluated numerically. A comparison between the PSF of a sector array and a confocal transducers is presented. The compared characteristics of the PSF are sidelobe levels, transverse, and in-depth spatial resolution. Indeed, one motivation to study sector transducers is the fact the depth-of-field of these transducers should be smaller than that of same size confocal transducers. An experimental setup was used to validate the theoretical PSF of sector array transducers. Results show that the measured PSF is in good agreement with the theoretical predications. Vibro-acoustography images of a breast-phantom by both transducers are presented and discussed.

  5. Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields

    NASA Astrophysics Data System (ADS)

    Li, Xiaying; Lei, Xinglin; Li, Qi

    2018-03-01

    We investigated the responses of P-wave velocity and associated anisotropy in terms of Thomsen's parameters to isotropic and anisotropic stress fields on Longmaxi shales cored along different directions. An array of piezoelectric ceramic transducers allows us to measure P-wave velocities along numerous different propagation directions. Anisotropic parameters, including the P-wave velocity α along a symmetry axis, Thomsen's parameters ɛ and δ, and the orientation of the symmetry axis, could then be extracted by fitting Thomsen's weak anisotropy model to the experimental data. The results indicate that Longmaxi shale displays weakly intrinsic velocity anisotropy with Thomsen's parameters ɛ and δ being approximately 0.05 and 0.15, respectively. The isotropic stress field has only a slight effect on velocity and associated anisotropy in terms of Thomsen's parameters. In contrast, both the magnitude and orientation of the anisotropic stress field with respect to the shale fabric are important in controlling the evolution of velocity and associated anisotropy in a changing stress field. For shale with bedding-parallel loading, velocity anisotropy is enhanced because velocities with smaller angles relative to the maximum stress increase significantly during the entire loading process, whereas those with larger angles increase slightly before the yield stress and afterwards decrease with the increasing differential stress. For shale with bedding-normal loading, anisotropy reversal is observed, and the anisotropy is progressively modified by the applied differential stress. Before reaching the yield stress, velocities with smaller angles relative to the maximum stress increase more significantly and even exceed the level of those with larger angles. After reaching the yield stress, velocities with larger angles decrease more significantly. Microstructural features such as the closure and generation of microcracks can explain the modification of the velocity anisotropy

  6. CAPELLA: Software for stellar photometry in dense fields with an irregular background

    NASA Astrophysics Data System (ADS)

    Debray, B.; Llebaria, A.; Dubout-Crillon, R.; Petit, M.

    1994-01-01

    We describe CAPELLA, a photometric reduction package developed top automatically process images of very crowded stellar fields with an irregular background. Detection is performed by the use of a derivative filter (the laplacian of a gaussian), the measuring of position and flux of the stars uses a profile fitting technique. The Point Spread Function (PSF) is empirical. The traditional multiparmetric non-linear fit is replaced by a set of individual linear fits. The determination of the background, the detection, the definition of the PSF and the basics of the methods are successively addressed in details. The iterative procedure as well as some aspects of the sampling problem are also discussed. Precision tests, performances in uncrowded and crowded fields are given CAPELLA has been used to process crowded stellar fields obtained with different detectors such as electronographic cameras, CCD's photographic films coupled to image intensifiers. It has been applied successfully in the extreme cases of close associations of the galaxy M33, of the composite Wolf-Rayet Brey 73 in the Large Magellanic Cloud (LMC) and of the central parts of globular clusters as 47 TUC and M15.

  7. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    NASA Astrophysics Data System (ADS)

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  8. Stress field modeling of the Carpathian Basin based on compiled tectonic maps

    NASA Astrophysics Data System (ADS)

    Albert, Gáspár; Ungvári, Zsuzsanna; Szentpéteri, Krisztián

    2014-05-01

    The estimation of the stress field in the Carpathian Basin is tackled by several authors. Their modeling methods usually based on measurements (borehole-, focal mechanism- and geodesic data) and the result is a possible structural pattern of the region. Our method works indirectly: the analysis is aimed to project a possible 2D stress field over the already mapped/known/compiled lineament pattern. This includes a component-wise interpolation of the tensor-field, which is based on the generated irregular point cloud in the puffer zone of the mapped lineaments. The interpolated values appear on contour and tensor maps, and show the relative stress field of the area. In 2006 Horváth et al. compiled the 'Atlas of the present-day geodynamics of the Pannonian basin'. To test our method we processed the lineaments of the 1:1 500 000 scale 'Map of neotectonic (active) structures' published in this atlas. The geodynamic parameters (i.e. normal, reverse, right- and left lateral strike-slip faults, etc.) of the lines on this map were mostly explained in the legend. We classified the linear elements according to these parameters and created a geo-referenced mapping database. This database contains the polyline sections of the map lineaments as vectors (i.e. line sections), and the directions of the stress field as attributes of these vectors. The directions of the dip-parallel-, strike-parallel- and vertical stress-vectors are calculated from the geodynamical parameters of the line section. Since we created relative stress field properties, the eigenvalues of the vectors were maximized to one. Each point in the point cloud inherits the stress property of the line section, from which it was derived. During the modeling we tried several point-cloud generating- and interpolation methods. The analysis of the interpolated tensor fields revealed that the model was able to reproduce a geodynamic synthesis of the Carpathian Basin, which can be correlated with the synthesis of the

  9. Unified field theories, the early big bang, and the microwave background paradox

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    It is suggested that a superunified field theory incorporating gravity and possessing asymptotic freedom could provide a solution to the paradox of the isotropy of the universal 3K background radiation. Thermal equilibrium could be established in this context through interactions occurring in a temporally indefinite preplanckian era.

  10. Fractional-wrapped branes with rotation, linear motion and background fields

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Elham; Kamani, Davoud

    2017-09-01

    We obtain two boundary states corresponding to the two folds of a fractional-wrapped Dp-brane, i.e. the twisted version under the orbifold C2 /Z2 and the untwisted version. The brane has rotation and linear motion, in the presence of the following background fields: the Kalb-Ramond tensor, a U (1) internal gauge potential and a tachyon field. The rotation and linear motion are inside the volume of the brane. The brane lives in the d-dimensional spacetime, with the orbifold-toroidal structure Tn ×R 1 , d - n - 5 ×C2 /Z2 in the twisted sector. Using these boundary states we calculate the interaction amplitude of two parallel fractional Dp-branes with the foregoing setup. Various properties of this amplitude such as the long-range behavior will be analyzed.

  11. Modeling the stress dependence of Barkhausen phenomena for stress axis linear and noncollinear with applied magnetic field (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sablik, M.J.; Augustyniak, B.; Chmielewski, M.

    1996-04-01

    The almost linear dependence of the maximum Barkhausen noise signal amplitude on stress has made it a tool for nondestructive evaluation of residual stress. Recently, a model has been developed to account for the stress dependence of the Barkhausen noise signal. The model uses the development of Alessandro {ital et} {ital al}. who use coupled Langevin equations to derive an expression for the Barkhausen noise power spectrum. The model joins this expression to the magnetomechanical hysteresis model of Sablik {ital et} {ital al}., obtaining both a hysteretic and stress-dependent result for the magnetic-field-dependent Barkhausen noise envelope and obtaining specifically themore » almost linear stress dependence of the Barkhausen noise maximum experimentally. In this paper, we extend the model to derive the angular dependence observed by Kwun of the Barkhausen noise amplitude when stress axis is taken at different angles relative to magnetic field. We also apply the model to the experimental observation that in XC10 French steel, there is an apparent almost linear correlation with stress of hysteresis loss and of the integral of the Barkhausen noise signal over applied field {ital H}. Further, the two quantities, Barkhausen noise integral and hysteresis loss, are linearly correlated with each other. The model shows how that behavior is to be expected for the measured steel because of its sharply rising hysteresis curve. {copyright} {ital 1996 American Institute of Physics.}« less

  12. Geometry of slab, intraslab stress field and its tectonic implication in the Nankai trough, Japan

    NASA Astrophysics Data System (ADS)

    Xu, J.; Kono, Y.

    2002-07-01

    The characteristics of geometry of slabs and the intraslab stress field in the Nankai subduction zone, Japan, were analyzed based on highly accurate hypocentral data and focal mechanism solutions. The results suggest that the shallow seismic zone of the Philippine Sea slab subducts with dip angels between 10 and 22 degrees beneath Shikoku and the Kii peninsula, and between 11 and 40 degrees beneath Kyushu. Two types of seismogenic stress field exist within the slab. The stress field of down-dip compression type can be seen in the slab beneath Shikoku and the Kii peninsula, where the horizontal component of regional compression stress is NNW. On the other hand the stress field of down-dip extension type within the slab is dominant in the region from western Shikoku to Kyushu, where the direction of horizontal compressive stress is near WWN. The existence of the two types of stress field is related to the differences of slab geometry and slab age of the subduciton zone. These properties imply that slab beneath Kyushu (40 Ma) probably is older than that beneath Shikoku and the Kii peninsula (11-20 Ma). The young slab of the oceanic Philippine Sea plate subducts with a shallow angle beneath the Eurasian plate in Shikoku and the Kii peninsula. The subduction has encountered strong resistance there, resulting in a down-dip compression stress field. The down-dip extension stress field may be related to the older slab of the Philippine Sea plate which subducts beneath Kyushu with a steeper dip angle.

  13. Swim stress, motion, and deformation of active matter: effect of an external field.

    PubMed

    Takatori, Sho C; Brady, John F

    2014-12-21

    We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed "swim stress" tensor [Takatori, Yan, and Brady, Phys. Rev. Lett., 2014]. This property can be exploited in the design of soft, compressible materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics simulations.

  14. Magnetic Field Disturbances Associated with changes in Lithologic Stress

    NASA Astrophysics Data System (ADS)

    Johnston, J. M.; Budker, D.; Johnson, R. M.; Tchernychev, M.; Craig, M. S.

    2013-12-01

    In August 2013 demolition by implosion of a multistory building on the campus of California State University East Bay (CSUEB) provided a strong seismic wave source. Anticipating that this event might provide an opportunity to acquire measurements of magnetic phenomena that could be associated with temporal changes in the lithologic stress regime, we placed several total-field magnetometers in the vicinity of CSUEB. The proximity of the implosion site to the active trace of the Hayward Fault provided additional incentive to measure any magnetic response to the propagation of seismic waves. The instruments used at the implosion site included three total-field cesium vapor magnetometers. These were distributed so as to acquire measurements within 200 m of the implosion site and to straddle the Hayward fault. This experiment also used the total magnetic field measurements acquired at the Jasper Ridge Biological Preserve (JRBP) cesium vapor magnetometer in the foothills behind Stanford University, some 20 km from the implosion site, as a distant reference. All magnetometers were configured to sample at a rate of 10 Hz and were synchronized to better that 1 mSec relative to GPS time. The Magnetic field measurements were coordinated with seismic motion measurements recorded at approximately 600 residential seismic stations and several multichannel seismographs located around the demolition site. Magnetic phenomena that may be associated with lithologic stress phenomena are compared to the seismic measurements in an effort to the observe correlations between lithologic stress and the generation of an anomalous magnetic field. The coherence of the magnetic and seismic events should provide insight into the character of possible earthquake precursor magnetic signals.

  15. Stress field rotation or block rotation: An example from the Lake Mead fault system

    NASA Technical Reports Server (NTRS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-01-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  16. Stress field rotation or block rotation: An example from the Lake Mead fault system

    NASA Astrophysics Data System (ADS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-02-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  17. Igneous sills record far-field and near-field stress interactions during volcano construction: Isle of Mull, Scotland

    NASA Astrophysics Data System (ADS)

    Stephens, T. L.; Walker, R. J.; Healy, D.; Bubeck, A.; England, R. W.; McCaffrey, K. J. W.

    2017-11-01

    Sill emplacement is typically associated with horizontally mechanically layered host rocks in a near-hydrostatic far-field stress state, where contrasting mechanical properties across the layers promote transitions from dykes, or inclined sheets, to sills. We used detailed field observations from the Loch Scridain Sill Complex (Isle of Mull, UK), and mechanical models to show that layering is not always the dominant control on sill emplacement. The studied sills have consistently shallow dips (1°-25°) and cut vertically bedded and foliated metamorphic basement rocks, and horizontally bedded cover sedimentary rocks and lavas. Horizontal and shallowly-dipping fractures in the host rock were intruded with vertical opening in all cases, whilst steeply-dipping discontinuities within the sequence (i.e. vertical fractures and foliation in the basement, and vertical polygonal joints in the lavas) were not intruded during sill emplacement. Mechanical models of slip tendency, dilation tendency, and fracture susceptibility for local and overall sill geometry data, support a radial horizontal compression during sill emplacement. Our models show that dykes and sills across Mull were emplaced during NW-SE horizontal shortening, related to a far-field tectonic stress state. The dykes generally accommodated phases of NE-SW horizontal tectonic extension, whereas the sills record the superposition of the far-field stress with a near-field stress state, imposed by emplacement of the Mull Central Volcano. We show that through detailed geometric characterisation coupled with mechanical modelling, sills may be used as an indication of fluctuations in the paleostress state.

  18. Plane-parallel waves as duals of the flat background III: T-duality with torsionless B-field

    NASA Astrophysics Data System (ADS)

    Hlavatý, Ladislav; Petr, Ivo; Petrásek, Filip

    2018-04-01

    By addition of non-zero, but torsionless B-field, we expand the classification of (non-)Abelian T-duals of the flat background in four dimensions with respect to 1, 2, 3 and 4D subgroups of the Poincaré group. We discuss the influence of the additional B-field on the process of dualization, and identify essential parts of the torsionless B-field that cannot in general be eliminated by coordinate or gauge transformation of the dual background. These effects are demonstrated using particular examples. Due to their physical importance, we focus on duals whose metrics represent plane-parallel (pp-)waves. Besides the previously found metrics, we find new pp-waves depending on parameters originating from the torsionless B-field. These pp-waves are brought into their standard forms in Brinkmann and Rosen coordinates.

  19. Direct measurements of bed stress under swash in the field

    NASA Astrophysics Data System (ADS)

    Conley, Daniel C.; Griffin, John G.

    2004-03-01

    Utilizing flush mounted hot film anemometry, the bed stress under swash was measured directly in a field experiment conducted on Barret Beach, Fire Island, New York. The theory, development, and calibration of the instrument package are discussed, and results from the field experiment are presented. Examples of bed stress time series throughout a swash cycle are presented, and an ensemble averaged swash bed stress cycle is calculated. Strong asymmetry is observed between the uprush and backwash phases of the swash flow. The maximum bed shear stress exerted by the uprush is approximately double that of the backwash, while the duration of the backwash is 135% greater than that of the uprush. Friction coefficients in the swash zone are observed to be similar in magnitude to those from steady flow, with the mean observed friction coefficient equal to 0.0037. Swash friction coefficients derived from the current measurements exhibit a Reynolds number dependence similar to that observed for other flows. A systematic difference between coefficients for uprush and backwash is suggested.

  20. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  1. Dynamics of Mount Somma-Vesuvius edifice: from stress field inversion to analogue and numerical modelling

    NASA Astrophysics Data System (ADS)

    De Matteo, Ada; Massa, Bruno; D'Auria, Luca; Castaldo, Raffaele

    2017-04-01

    Geological processes are generally very complex and too slow to be directly observed in their completeness; modelling procedures overcome this limit. The state of stress in the upper lithosphere is the main responsible for driving geodynamical processes; in order to retrieve the active stress field in a rock volume, stress inversion techniques can be applied on both seismological and structural datasets. This approach has been successfully applied to active tectonics as well as volcanic areas. In this context the best approach in managing heterogeneous datasets in volcanic environments consists in the analysis of spatial variations of the stress field by applying robust techniques of inversion. The study of volcanic seismicity is an efficient tool to retrieve spatial and temporal pattern of the pre-, syn- and inter-eruptive stress field: magma migration as well as dynamics of magma chamber and hydrothermal system are directly connected to the volcanic seismicity. Additionally, analysis of the temporal variations of stress field pattern in volcanoes could be a useful monitoring tool. Recently the stress field acting on several active volcanoes has been investigated by using stress inversion techniques on seismological datasets (Massa et al., 2016). The Bayesian Right Trihedra Method (BRTM; D'Auria and Massa, 2015) is able to successfully manage heterogeneous datasets allowing the identification of regional fields locally overcame by the stress field due to volcano specific dynamics. In particular, the analysis of seismicity and stress field inversion at the Somma-Vesuvius highlighted the presence of two superposed volumes characterized by different behaviour and stress field pattern: a top volume dominated by an extensional stress field, in accordance with a gravitational spreading-style of deformation, and a bottom volume related to a regional extensional stress field. In addition, in order to evaluate the dynamics of deformation, both analogue and numerical

  2. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    USGS Publications Warehouse

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-01-01

    Characterizing the tectonic stress field is an integral part of the development of hydrothermal systems and especially for enhanced geothermal systems (EGS). With a well characterized stress field the propensity of fault slip on faults with known location and orientation can be identified. Faults that are critically oriented for faulting with respect to the stress field are known to provide natural fluid pathways. A high slip tendency makes a fault a likely candidate for reactivation during the creation of an EGS. Similarly, the stress state provides insight for the potential of larger, damaging earthquakes should extensive portions of well-oriented, larger faults be reactivated.The analysis of stress indicators such as drilling-induced fractures and borehole breakouts is the main tool to infer information on the stress state of a geothermal reservoir. The standard procedure is applicable to sub-vertical wellbore sections and highly deviated sections have to be discarded. However, in order to save costs and reduce the environmental impact most recent wells are directionally drilled with deviations that require appropriate consideration of the deviated trajectory. Here we present an analysis scheme applicable to arbitrary well trajectories or a combination of wells to infer the stress state. Through the sampling of the stress tensor along several directions additional information on the stress regime and even relative stress magnitudes can be obtained. We apply this method on image logs from the pair of wells 58-10 and 58A-10 that were drilled from the same well pad. Both wells have image logs of about 2km of their trajectories that are separated by less than 300m. For both wells we obtain a mean orientation of SHmax of N23° with large standard deviations of locations of stress indicators of 24° and 26°, respectively. While the local stress direction is highly variable along both wells with dominant wavelengths from around 50 to 500m, the mean directions are very

  3. Failure of Ceramic Composites in Non-Uniform Stress Fields

    NASA Astrophysics Data System (ADS)

    Rajan, Varun P.

    Continuous-fiber ceramic matrix composites (CMCs) are of interest as hot-section components in gas turbine engines due to their refractoriness and low density relative to metallic alloys. In service, CMCs will be subjected to spatially inhomogeneous temperature and stress fields. Robust tools that enable prediction of deformation and fracture under these conditions are therefore required for component design and analysis. Such tools are presently lacking. The present work helps to address this deficiency by developing models for CMC mechanical behavior at two length scales: that of the constituents and that of the components. Problems of interest are further divided into two categories: '1-D loadings,' in which the stresses are aligned with the fiber axes, and '2-D loadings,' in which the stress state is more general. For the former class of problems, the major outstanding issue is material fracture, not deformation. A fracture criterion based on the attainment of a global load maximum is developed, which yields results for pure bending of CMCs in reasonable agreement with available experimental data. For the latter class of problems, the understanding of both the micro-scale and macro-scale behavior is relatively immature. An approach based upon analysis of a unit cell (a single fiber surrounded by a matrix jacket) is pursued. Stress fields in the constituents of the composite are estimated using analytical models, the accuracy of which is confirmed using finite element analysis. As part of a fracture mechanics analysis, these fields enable estimation of the steady-state matrix cracking stress for arbitrary in-plane loading of a unidirectional ply. While insightful at the micro-scale, unit cell models are difficult to extend to coarser scales. Instead, material deformation is typically predicted using phenomenological constitutive models. One such model for CMC laminates is investigated and found to predict material instability where none should exist. Remedies to

  4. Three Dimensional Distribution of Sensitive Field and Stress Field Inversion of Force Sensitive Materials under Constant Current Excitation.

    PubMed

    Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei

    2018-02-28

    Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.

  5. Study on Finite Element Method of Stress Field in Aluminum Alloy High-Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Shunming; Wu, Qijun; An, Zenghui

    2017-11-01

    Three-dimensional numerical simulation model has been built by means of Advantage FEM. Perform simulation the stress fields of 7050-T7451 aluminum alloy in high speed milling process at the speed range of 628 m/min∼5946 m/min. The dynamic change and speed’s influence of stress fields and residual stress in machined layer is systematically analyzed. Some conclusions were drawn. With the cutting process development, the stress field converts to the stress state that crushing stress occupies a leading position. The magnitudes of crushing stress in all directions reduce with milling processes as the effect of Thermal-Mechanical-Coupled weakens; With the cutting speed increasing the magnitudes of crushing stress in all directions fluctuate near -950Mpa first, and then increase at the speed of 3000m/min; The residual pulling stress beneath the surface 0.03mm has been found and the magnitude increases with the cutting speed. A good agreement was obtained between predictions and experiments.

  6. Stress fields in soft material induced by injection of highly-focused microjets

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuta; Endo, Nanami; Kawamoto, Sennosuke; Kiyama, Akihito; Tagawa, Yoshiyuki

    2017-11-01

    Needle-free drug injection systems using high-speed microjets are of great importance for medical innovations since they can solve problems of the conventional needle injection systems. However, the mechanical stress acting on the skin/muscle of patients during the penetration of liquid-drug microjets had not been clarified. In this study we investigate the stress caused by the penetration of microjets into soft materials, which is compared with the stress induced by the penetration of needles. In order to capture high-speed temporal evolution of the stress field inside the material, we utilized a high-speed polarized camera and gelatin that resembles human skin. Remarkably we find clear differences in the stress fields induced by microjets and needles. On one hand, high shear stress induced by the microjets is attenuated immediately after the injection, even though the liquid stays inside the soft material. On the other hand, high-shear stress induced by the needles stays and never decays unless the needles are entirely removed from the material. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  7. The stress system generated by an electromagnetic field in a suspension of drops

    NASA Technical Reports Server (NTRS)

    Erdogan, M. E.

    1982-01-01

    The stress generated in a suspension of drops in the presence of a uniform electric field and a pure straining motion, taking into account that the magnetohydrodynamic effects are dominant was calculated. It was found that the stress generated in the suspension depended on the direction of the applied electric field, the dielectric constants, the vicosity coefficients, the conductivities, and the permeabilities of fluids inside and outside the drops. The expression of the particle stress shows that for fluids which are good conductors and poor dielectrics, especially for larger drops, magnetohydrodynamic effects end to reduce the dependence on the direction of the applied electric field.

  8. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    NASA Astrophysics Data System (ADS)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic

  9. Preliminary investigation of the roles of military background and posttraumatic stress symptoms in frequency and recidivism of intimate partner violence perpetration among court-referred men.

    PubMed

    Hoyt, Tim; Wray, Alisha M; Rielage, Jennifer Klosterman

    2014-04-01

    Significant rates of intimate partner violence (IPV) perpetration have been identified among men with military backgrounds. Research indicates posttraumatic stress symptoms place military men at increased risk for IPV perpetration, but may be negatively associated with IPV among nonmilitary samples. However, no previous studies have directly compared court-referred IPV offenders with and without military experience, which may have clinical implications if posttraumatic stress symptoms are differentially associated with IPV perpetration across these two samples. Twenty court-referred IPV offenders with military background were demographically matched with 40 court-referred IPV offenders without military background. As anticipated, self- and partner-report of physically assaultive acts and injurious acts during baseline assessment showed significantly greater physical assault and injury perpetrated by offenders with military background. However, 1-year follow-up data on convictions indicated a significantly lower rate of recidivism among offenders with military background than among nonmilitary offenders. As hypothesized, symptoms of posttraumatic stress at intake showed a significant positive correlation with IPV perpetration among offenders with military background; however, this relationship showed a negative correlation among offenders without military background. Clinical implications are discussed including treatment avenues, such as Veterans Courts and other incarceration diversion programs, which may be particularly appropriate for offenders with military backgrounds.

  10. Analytical close-form solutions to the elastic fields of solids with dislocations and surface stress

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Paliwal, Bhasker; Ougazzaden, Abdallah; Cherkaoui, Mohammed

    2013-07-01

    The concept of eigenstrain is adopted to derive a general analytical framework to solve the elastic field for 3D anisotropic solids with general defects by considering the surface stress. The formulation shows the elastic constants and geometrical features of the surface play an important role in determining the elastic fields of the solid. As an application, the analytical close-form solutions to the stress fields of an infinite isotropic circular nanowire are obtained. The stress fields are compared with the classical solutions and those of complex variable method. The stress fields from this work demonstrate the impact from the surface stress when the size of the nanowire shrinks but becomes negligible in macroscopic scale. Compared with the power series solutions of complex variable method, the analytical solutions in this work provide a better platform and they are more flexible in various applications. More importantly, the proposed analytical framework profoundly improves the studies of general 3D anisotropic materials with surface effects.

  11. Temporal and spatial stress-field reorientation in the footwall of two low-angle normal faults (lanf's): Implications for fault weakening and earthquake stress drops

    NASA Astrophysics Data System (ADS)

    Luther, A. L.; Axen, G. J.; Selverstone, J.

    2011-12-01

    Paleostress analyses from the footwall of the West Salton and Whipple detachment faults (WSD and WD, respectively), 2 lanfs, indicate both spatial and temporal stress field changes. Lanf's slip at a higher angle to S1 than predicted by Anderson. Hypotheses allowing slip on misoriented faults include a local stress field rotation in the fault zone, low friction materials, high pore-fluid pressure, and/or dynamic effects. The WSD, is part of the dextral-transtensional southern San Andreas fault system, slipped ~10 km from ~8 to 1 Ma, and the footwall exposures reflect only brittle deformation. The WD slipped at least ~40 km from ~25 to ~16 Ma, and has a mylonitic footwall overprinted by brittle deformation. Both lanf's were folded during extension. 80% of inversions that fit extension have a steeply-plunging S1, consistent with lanf slip at a high angle to S1. These require some weakening mechanism and the absence of known weak materials along these faults suggest pore-fluid pressure or dynamic effects are relevant. Most spatial S1 changes that occur are across minidetachments, which are faults sub-parallel to main faults that have similar damage zones that we interpret formed early in WD history, at the frictional-viscous transition [Selverstone et al. this session]. Their footwalls record a more moderately-plunging S1 than their hanging walls. Thus, we infer that older, deeper stress fields were rotated, consistent with a gradual rotation with depth. Alternating stress fields apparently affected many single outcrops and arise from mutually cross-cutting fracture sets that cannot be fit by a single stress field. In places where the alternation is between extensional and shortening fields, the shortening directions are subhorizontal, ~perpendicular to fold-axes and consistent with dextral-oblique slip in the case of the WSD. Commonly, S1 and S3 swap positions. In other places, two extensional stress fields differ, with S1 changing from a steep to a moderate angle to

  12. [Eating Disorders in Female High School Students: Educational and Migration Background, School-Related Stress and Performance-Orientated Classes].

    PubMed

    Grüttner, M

    2018-02-01

    Many adolescents and young adults, especially young females, suffer from eating disorders or problematic nutrition behavior. Children and adolescents with migration background as well as from a lower social class are more likely to have eating disorders 1. Although schools are an important context in these age groups, there is a lack of scientific inquiry concerning the relationship between schooling and eating disorders. The present study investigates the relationship between performance-related stress at school and eating disorders while controlling for personnel and familial resources. Interview data on the 7 th grade high school students from the National Educational Panel Study (NEPS)* starting cohort 3 are used. The dependent variable is based on the SCOFF questionnaire. Logistic regressions are calculated using information from students and parents. Performance-related stress at school is operationalized by the negative deviation of realistic from idealistic educational aspirations (EA) and unfulfilled social expectations (SE), performance-oriented class climate is operationalized by students' perception of the performance-orientation of the teacher (PT) and the expectations of classmates (EC). The results point towards an increased risk of suffering from an eating disorder due to performance-related school stress (EA: AME: 0.18; p<0.001; SE: AME: 0.12; p<0.05) and performance-oriented class climate (PT: AME: 0.05; p<0.1; EC: AME: 0.15, p<0.01). They partly explain the relation between both migration background and educational background and eating disorders. In order to prevent eating disorders in female high school students, attention should be paid to performance-orientation experienced at school and in the social background, and improved individual support for disadvantaged students should be made available. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  14. Mantle convection pattern and subcrustal stress field under Asia

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1978-01-01

    Satellite tracking and surface gravity data are used to model the subcrustal stress fields in the terrestrial mantle beneath Asia; the results permit interpretation of the tectonic and seismic systems in China. The east and west China blocks, together with five seismic zones, are identified and related to metallogenic domains on the Chinese mainland. In addition, it is shown that the subcrustal stresses beneath China are arranged perpendicularly to the major fault systems and seismic belts. Stress calculations indicate a notable zone of compression in north China, associated with the Shansi Graben, the Linfen Basin Systems and, possibly, the high seismicity of the region.

  15. Linear spin-2 fields in most general backgrounds

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael

    2016-04-01

    We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.

  16. Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats.

    PubMed

    Hirata, Riki; Togashi, Hiroko; Matsumoto, Machiko; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro

    2008-08-21

    Several lines of evidence have shown that exposure to stress impairs long-term potentiation (LTP) in the CA1 field of the hippocampus, but the detailed mechanisms for this effect remain to be clarified. The present study elucidated the synaptic mechanism of stress-induced LTP suppression in conscious, freely moving rats using electrophysiological approaches. Open field stress (i.e., novel environment stress) and elevated platform stress (i.e., uncontrollable stress) were employed. Basal synaptic transmission was significantly reduced during exposure to elevated platform stress but not during exposure to open field stress. LTP induction was blocked by elevated platform stress but not influenced by open field stress. Significant increases in serum corticosterone levels were observed in the elevated platform stress group compared with the open field stress group. Furthermore, LTP suppression induced by elevated platform stress was prevented by pretreatment with an anxiolytic drug diazepam (1 mg/kg, i.p.). These results suggest that stress-induced LTP suppression depends on the relative intensity of the stressor. The inhibitory synaptic response induced by an intense psychological stress, such as elevated platform stress, may be attributable to LTP impairment in the CA1 field of the hippocampus.

  17. Green's Function and Stress Fields in Stochastic Heterogeneous Continua

    NASA Astrophysics Data System (ADS)

    Negi, Vineet

    Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.

  18. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well knownmore » stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.« less

  19. Bi-Metallic Composite Structures With Designed Internal Residual Stress Field

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.

    2014-01-01

    Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.

  20. Seasonal variations in shallow Alaska seismicity and stress modulation from GRACE derived hydrological loading

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Fu, Y.; Burgmann, R.

    2017-12-01

    Shallow (≤50 km), low magnitude (M≥2.0) seismicity in southern Alaska is examined for seasonal variations during the annual hydrological cycle. The seismicity is declustered with a spatio-temporal epidemic type aftershock sequence (ETAS) model. The removal of aftershock sequences allows detailed investigation of seismicity rate changes, as water and ice loads modulate crustal stresses throughout the year. The GRACE surface loads are obtained from the JPL mass concentration blocks (mascons) global land and ocean solutions. The data product is smoothed with a 9˚ Gaussian filter and interpolated on a 25 km grid. To inform the surface loading model, the global solutions are limited to the region from -160˚ to -120˚ and 50˚ to 70˚. The stress changes are calculated using a 1D spherical layered earth model at depth intervals of 10 km from 10 - 50 km in the study region. To evaluate the induced seasonal stresses, we use >30 years of earthquake focal mechanisms to constrain the background stress field orientation and assess the stress change with respect to the principal stress orientation. The background stress field is assumed to control the preferred orientation of faulting, and stress field perturbations are expected to increase or decrease seismicity. The number of excess earthquakes is calculated with respect to the background seismicity rates. Here, we present preliminary results for the shallow seismicity variations and quantify the seasonal stresses associated with changes in hydrological loading.

  1. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  2. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    NASA Astrophysics Data System (ADS)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  3. Cosmic Microwave Background Mapmaking with a Messenger Field

    NASA Astrophysics Data System (ADS)

    Huffenberger, Kevin M.; Næss, Sigurd K.

    2018-01-01

    We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.

  4. BRST-BFV analysis of anomalies in bosonic string theory interacting with background gravitational field

    NASA Astrophysics Data System (ADS)

    Buchbinder, I. L.; Mistchuk, B. R.; Pershin, V. D.

    1995-02-01

    A general BRST-BFV analysis of the anomaly in string theory coupled to background fields is carried out. An exact equation for the c-valued symbol of the anomaly operator is found and the structure of its solution is studied.

  5. Analysis of the stress field and strain rate in Zagros-Makran transition zone

    NASA Astrophysics Data System (ADS)

    Ghorbani Rostam, Ghasem; Pakzad, Mehrdad; Mirzaei, Noorbakhsh; Sakhaei, Seyed Reza

    2018-01-01

    Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.

  6. Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Peng; Lau, Y. Y.; Franzi, Matthew

    2011-05-15

    We use Monte Carlo simulations and analytical calculations to derive the condition for the onset of multipactor discharge on a dielectric surface at various combinations of the bias dc electric field, rf electric field, and background pressures of noble gases, such as Argon. It is found that the presence of a tangential bias dc electric field on the dielectric surface lowers the magnitude of rf electric field threshold to initiate multipactor, therefore plausibly offering robust protection against high power microwaves. The presence of low pressure gases may lead to a lower multipactor saturation level, however. The combined effects of tangentialmore » dc electric field and external gases on multipactor susceptibility are presented.« less

  7. The generalized fracture criteria based on the multi-parameter representation of the crack tip stress field

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    The paper is devoted to the multi-parameter asymptotic description of the stress field near the crack tip of a finite crack in an infinite isotropic elastic plane medium subject to 1) tensile stress; 2) in-plane shear; 3) mixed mode loading for a wide range of mode-mixity situations (Mode I and Mode II). The multi-parameter series expansion of stress tensor components containing higher-order terms is obtained. All the coefficients of the multiparameter series expansion of the stress field are given. The main focus is on the discussion of the influence of considering the higher-order terms of the Williams expansion. The analysis of the higher-order terms in the stress field is performed. It is shown that the larger the distance from the crack tip, the more terms it is necessary to keep in the asymptotic series expansion. Therefore, it can be concluded that several more higher-order terms of the Williams expansion should be used for the stress field description when the distance from the crack tip is not small enough. The crack propagation direction angle is calculated. Two fracture criteria, the maximum tangential stress criterion and the strain energy density criterion, are used. The multi-parameter form of the two commonly used fracture criteria is introduced and tested. Thirty and more terms of the Williams series expansion for the near-crack-tip stress field enable the angle to be calculated more precisely.

  8. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles

    PubMed Central

    Cai, Xiaoming; Bian, Lei; Xu, Xiuxiu; Luo, Zongxiu; Li, Zhaoqun; Chen, Zongmao

    2017-01-01

    Attractants for pest monitoring and controlling can be developed based on plant volatiles. Previously, we showed that tea leafhopper (Empoasca onukii) preferred grapevine, peach plant, and tea plant odours to clean air. In this research, we formulated three blends with similar attractiveness to leafhoppers as peach, grapevine, and tea plant volatiles; these blends were composed of (Z)-3-hexenyl acetate, (E)-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene, benzaldehyde, and ethyl benzoate. Based on these five compounds, we developed two attractants, formula-P and formula-G. The specific component relative to tea plant volatiles in formula-P was benzaldehyde, and that in formula-G was ethyl benzoate. These two compounds played a role in attracting leafhoppers. In laboratory assays, the two attractants were more attractive than tea plant volatiles to the leafhoppers, and had a similar level of attractiveness. However, the leafhoppers were not attracted to formula-P in the field. A high concentration of benzaldehyde was detected in the background odour of the tea plantations. In laboratory tests, benzaldehyde at the field concentration was attractive to leafhoppers. Our results indicate that the field background odour can interfere with a point-releasing attractant when their components overlap, and that a successful attractant must differ from the field background odour. PMID:28150728

  9. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    NASA Astrophysics Data System (ADS)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E - N180°E (N-S), N60°E - N70°E (NE-SW), and N310°E - N320°E (NW-SE), while the dominant dip is 80° -90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E - N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  10. Calculation of Tectonic Strain Release from an Explosion in a Three-Dimensional Stress Field

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; O'Brien, M. S.

    2012-12-01

    We have developed a 3D nonlinear finite element code designed for calculation of explosions in 3D heterogeneous media and have incorporated the capability to perform explosion calculations in a prestressed medium. The effect of tectonic prestress on explosion-generated surface waves has been discussed since the 1960's. In most of these studies tectonic release was described as superposition of a tectonic source modeled as a double couple, multipole or moment tensor, plus a point explosion source. The size of the tectonic source was determined by comparison with the observed Love waves and the Rayleigh wave radiation pattern. Day et al. (1987) first attempted to perform numerical modeling of tectonic release through an axisymmetric calculation of the explosion Piledriver. To the best of our knowledge no one has previously performed numerical calculations for an explosion in a three-dimensional stress field. Calculation of tectonic release depends on a realistic representation of the stress state in the earth. In general the vertical stress is equal to the overburden weight of the material above at any given point. The horizontal stresses may be larger or smaller than this value up to the point where failure due to frictional sliding relieves the stress. In our calculations, we use the normal overburden calculation to determine the vertical stress, and then modify the horizontal stresses to some fraction of the frictional limit. This is the initial stable state of the calculation prior to introduction of the explosion. Note that although the vertical stress is still equivalent to the overburden weight, the pressure is not, and it may be either increased or reduced by the tectonic stresses. Since material strength increases with pressure, this also can substantially affect the seismic source. In general, normal faulting regimes will amplify seismic signals, while reverse faulting regimes will decrease seismic signals; strike-slip regimes may do either. We performed a

  11. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object.

    PubMed

    Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus

    2017-05-10

    To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.

  12. Background Stress State Before the 2008 Wenchuan Earthquake and the Dynamics of the Longmen Shan Thrust Belt

    NASA Astrophysics Data System (ADS)

    Wang, Kaiying; Rebetsky, Yu. L.; Feng, Xiangdong; Ma, Shengli

    2018-02-01

    A stress reconstruction was performed based on focal mechanisms around the Longmen Shan region prior to the 2008 M s 8.0 Wenchuan earthquake using a newly developed algorithm (known as MCA). The method determines the stress tensor, including principal axes orientations, and quantitative stress values, such as the effective confining pressure and maximum shear stress. The results of the MCA application using data recorded by the regional network from 1989 to April 2008 show the background stress state around the Longmen Shan belt before the Wenchuan earthquake. The characteristics of the stress orientation reveal that the Longmen Shan region is primarily under the eastward extrusion of the eastern Tibetan plateau. Non-uniform quantitative stress distributions show low stress levels in the upper crust of the middle Longmen Shan segment, which is consistent with the observed high-angle reverse faulting associated with the 2008 Wenchuan earthquake. In contrast, other study areas, such as the Bayankela block and the NW strip extending to the Sichuan basin, show high stress intensity. This feature coincides with heterogeneity in the wave speed image of the upper crust in this region, which shows high S-wave speed in the high stress areas and comparatively low S-wave speed in low stress areas. Deformation features across the Longmen Shan belt with the slow rates of convergence determined by GPS and the distribution of surface deformation rates also are in keeping with our stress results. We propose a dynamic model in which sloping uplift under the Longmen Shan, which partly counteracts the pushing force from the eastern plateau, causes the low-quantitative stresses in the upper crust beneath the Longmen Shan. The decreasing gravitational potential energy beneath the Longmen Shan leads to earthquake thrust faulting and plays an important role in the geodynamics of the area that results from ductile thickening of the deep crust behind the Sichuan basin, creating a narrow

  13. Surface Profile and Stress Field Evaluation using Digital Gradient Sensing Method

    DOE PAGES

    Miao, C.; Sundaram, B. M.; Huang, L.; ...

    2016-08-09

    Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output accurate data of that kind. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squaresmore » integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.« less

  14. Systematic review of maritime field studies about stress and strain in seafaring.

    PubMed

    Oldenburg, M; Hogan, B; Jensen, H-J

    2013-01-01

    The aim of this study was to summarize and evaluate the current scientific literature on stress and strain on seafarers on board as defined by maritime field surveys. Using a systematic review, 109 studies on the stress and strain experienced by seafarers were identified for the period January 1990 to January 2012. Only 13 of the identified maritime studies were conducted as field studies, and in 10 of these studies, the focus was on the watch system and/or on fatigue. According to the study results, sleepiness tends to be stronger in the 2-watch system than in the 3-watch system (particularly between 4:00 and 6:00 a.m.). Occasional short sleep episodes appear to provide adequate recovery. Fatigue does not appear to depend on the seafarers' age and is often associated with poor sleep quality; noise and night shifts are also considered to contribute to fatigue. Stress among the seafarers was primarily recorded in sleep diaries (9 times) and with devices for measuring physical activity (4 times). As a rule, a questionnaire was used to assess the strain on the crew on board; 7 studies also additionally recorded biometrical parameters. Only in 6 cases were several groups with different ranks on board investigated. The conducted literature review makes it clear that most maritime field studies have focused on fatigue and watch systems in the shipping industry--in each case as univariate parameters. Thus, scientific field studies with comprehensive multivariate stress and strain analyses on board are required.

  15. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  16. Statistics of Static Stress Earthquake Triggering

    NASA Astrophysics Data System (ADS)

    Nandan, S.; Ouillon, G.; Woessner, J.; Sornette, D.; Wiemer, S.

    2014-12-01

    A likely source of earthquake clustering is static and/or dynamic stresses transferred by individual events. Previous attempts to quantify the role of static stress generally considered only the stress changes caused by large events, and often discarded data uncertainties. We test the static stress change hypothesis empirically by considering all events of magnitude M≥ 2.1 and the uncertainties in location and focal mechanism in the focal mechanism catalog for Southern California between 1981 and 2010 (Yang et al., 2011). We quantify: How the waiting time between earthquakes (1) relates to the Coulomb stress change (2) induced by event Ei at the location of Ej; How significant is the Coulomb Index (CI), fraction of source-receiver pairs with positive ΔCFS interactions, conditioned on time and amplitude of ΔCFS, compared to a mean-field CI derived from the time-independent structure of the fault network. We approximate the waiting time distributions empirically by (3), which respectively consists of triggering and background rate components, tapered by an exponential term to model the finiteness of the catalog. We observe that K/(Bc^p ) (the ratio of the triggering to the background rates at t=0), the exponent p, and the Maxwell time τ all increase with |ΔCFS| and are significantly larger for positive than for negative ΔCFS's. τ varies between ~90 days and ~150 days (approximately 0.3 decades over 6 decades of variation in stress). It defines the time beyond which the memory of stress is overprinted by occurrence of other events. The CI values become significant above a threshold |ΔCFS|. The mean-field CI is 52%, while the maximum observed CI value is ~60%. Correcting for the focal plane ambiguity, those values become respectively ~55% and ~72%. Lastly, the CI values decrease with the waiting time and converge to the mean-field CI value. The increase of p-value and K/(Bc^p ) with |ΔCFS| contradicts the prediction of stress shadow regions where seismicity

  17. On the stress calculation within phase-field approaches: a model for finite deformations

    NASA Astrophysics Data System (ADS)

    Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta

    2017-08-01

    Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.

  18. Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.

    2017-03-01

    Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric Lorentz force density vanishes. However, a Lorentz surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use Hooke's law with a small-strain approximation, resulting in the Lamé- Navier equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by Hiramatsu and Oka (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the Lorentz tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the Lorentz tractions are illustrated and discussed.

  19. The effect of weld stresses on weld quality. [stress fields and metal cracking

    NASA Technical Reports Server (NTRS)

    Chihoski, R. A.

    1972-01-01

    A narrow heat source raises the temperature of a spot on a solid piece of material like metal. The high temperature of the spot decreases with distance from the spot. This is true whether the heat source is an arc, a flame, an electron beam, a plasma jet, a laser beam, or any other source of intense, narrowly defined heat. Stress and strain fields around a moving heat source are organized into a coherent visible system. It is shown that five stresses act across the weld line in turn as an arc passes. Their proportions and positions are considerably altered by weld parameters or condition changes. These pushes and pulls affect the metallurgical character and integrity of the weld area even when there is no apparent difference between after-the-fact examples.

  20. Stress Field in Brazil with Focal Mechanism: Regional and Local Patterns

    NASA Astrophysics Data System (ADS)

    Dias, F.; Assumpcao, M.

    2013-05-01

    The knowledge of stress field is fundamental not only to understand driving forces and plate deformation but also in the study of intraplate seismicity. The stress field in Brazil has been determined mainly using focal mechanisms and a few breakout data and in-situ measurements. However the stress field still is poorly known in Brazil. The focal mechanisms of recent earthquakes (magnitude lower than 5 mb) were studied using waveform modeling. We stacked the record of several teleseismic stations ( delta > 30°) stacked groups of stations separated according to distance and azimuth. Every record was visually inspected and those with a good signal/noise ratio (SNR) were grouped in windows of ten degrees distance and stacked. The teleseismic P-wave of the stacked signals was modeled using the hudson96 program of Herrmann seismology package (Herrmann, 2002) and the consistency of focal mechanism with the first-motion was checked. Some events in central Brazil were recorded by closer stations (~ 1000 km) and the moment tensor was determined with the ISOLA code (Sokos & Zahradnik, 2008). With the focal mechanisms available in literature and those obtained in this work, we were able to identify some patterns: the central region shows a purely compressional pattern (E-W SHmax), which is predicted by regional theoretical models (Richardson & Coblentz, 1996 and the TD0 model of Lithgow & Bertelloni, 2004). Meanwhile in the Amazon we find an indication of SHmax oriented in the SE-NW direction, probably caused by the Caribbean plate interaction (Meijer, 1995). In northern coastal region, the compression rotates following the coastline, which indicates an important local component related to spreading effects at the continental/oceanic transition (Assumpção, 1998) and flexural stresses caused by sedimentary load in Amazon Fan. We determine the focal mechanism of several events in Brazil using different techniques according to the available data. The major difficulty is to

  1. Background music in the dissection laboratory: impact on stress associated with the dissection experience.

    PubMed

    Anyanwu, Emeka G

    2015-06-01

    Notable challenges, such as mental distress, boredom, negative moods, and attitudes, have been associated with learning in the cadaver dissection laboratory (CDL). The ability of background music (BM) to enhance the cognitive abilities of students is well documented. The present study was designed to investigate the impact of BM in the CDL and on stress associated with the dissection experience. After 8 wk of normal dissection without BM, various genres of BM were introduced into the cadaver dissection sessions of 260 medical and dental students for 3 wk. Feedback on the impact of BM on students in the CDL and students' attitude were accessed using a questionnaire. Psychological stress assessment was done using Psychological Stress Measure 9. Two batches of 30 students each were made to dissect same areas of the body for 2 h, one batch with BM playing and the other batch without. The same examination was given to both groups at the end. Over 90% of the participants expressed a desire to incorporate BM into the CDL; 87% of the sampled population that expressed love for music also reported BM to be a very useful tool that could be used to enhance learning conditions in the CDL. A strong positive relationship was established between love for music and its perception as a tool for learning in the CDL (P < 0.001). Students that studied under the influence of BM had significantly higher scores (P < 0.001) in the overall examination result. BM reduced the level of stress associated with the dissection experience by ∼33%. Copyright © 2015 The American Physiological Society.

  2. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    NASA Astrophysics Data System (ADS)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  3. [OPEN FIELD BEHAVIOR AS A PREDICTIVE CRITERIA REFLECTING RATS CORTICOSTERONELEVEL BEFORE AND AFTER STRESS].

    PubMed

    Umriukhin, P E; Grigorchuk, O S

    2015-12-01

    In the presented study we investigated the possibility to use the open field behavior data for prediction of corticosterone level in rat blood plasma before and after stress. It is shown that the most reliable open field behavior parameters, reflecting high probability of significant upregulation of corticosterone after 3 hours of immobilization, are the short latency of first movement and low locomotor activity during the test. Rats with high corticosterone at normal non-stress conditions are characterized by low locomotor activity and on the contrary long latency period for the entrance of open field center.

  4. [Effects of psychological stress on performances in open-field test of rats and tyrosine's modulation].

    PubMed

    Chen, Wei-Qiang; Cheng, Yi-Yong; Li, Shu-Tian; Hong, Yan; Wang, Dong-Lan; Hou, Yue

    2009-02-01

    To explore the effects of different doses of tyrosine modulation on behavioral performances in open field test of psychological stress rats. The animal model of psychological stress was developed by restraint stress for 21 days. Wistar rats were randomly assigned to five groups (n = 10) as follows: control group (CT), stress control group (SCT), low, medium and high-doses of tyrosine modulation stress groups (SLT, SMT and SIT). The changes of behavioral performances were examined by open-field test. Serum levels of cortisol, norepinephrine and dopamine were also detected. The levels of serum cortisol were all increased obviously in the four stress groups, and their bodyweight gainings were diminished. The behavioral performances of SCT rats in open-field test were changed significantly in contrast to that of CT rats. However, The behavioral performances of SMT and SHT rats were not different from that of CT rats. In addition, the serum levels of norepinephrine and dopamine were downregulated obviously in SCT and SLT groups, and no differences were observed in other groups. Psychological stress can impair body behavioral performances, and moderate tyrosine modulation may improve these abnormal changes. The related mechanisms may be involved with the changes of norepinephrine and dopamine.

  5. A PERIPHERAL CHOLINERGIC PATHWAY MODULATES STRESS-INDUCED HYPERTHERMIA IN THE RAT EXPOSED TO AN OPEN FIELD.

    EPA Science Inventory

    Exposure to an open-field is psychologically stressful and leads to an elevation in core temperature (Tc). This increase in Tc associated with open-field is usually referred to as stress-induced hyperthermia (SIH) and can be blocked centrally with cyclooxygenase inhibitors suc...

  6. Effects of external stress field on the charge stability of nitrogen vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Yao, Miao-Miao; Zhu, Tian-Yuan; Shu, Da-Jun

    2017-07-01

    The interaction of the atom-like defects in semiconductors with external fields provides an avenue to quantum information processing and nanoscale sensors. Meanwhile, external fields may induce instability of the desired charge state of the defects. It is essential to understand how the charge state of a defect is affected by external fields that introduced in diverse applications. In this letter, we explore the stability of the negatively charged state (NV-) and the neutral state (NV0) of the nitrogen vacancy (NV) center in diamond under stress by first-principles calculations. We find that the relative stability of NV- to NV0 is always reduced by the stress if the NV center is free to relax its orientation. Once the NV center has formed and retains its orientation, however, the relative stability of NV- can be always enhanced by compressive stress along its trigonal symmetry axis. We believe that the results are not only significant for control of the charge stability of NV center but also enlightening for applications based on specific charge states of other kinds of defects in the stress field.

  7. Full-field fabric stress mapping by micro Raman spectroscopy in a yarn push-out test.

    PubMed

    Lei, Z K; Qin, F Y; Fang, Q C; Bai, R X; Qiu, W; Chen, X

    2018-02-01

    The full-field stress distribution of a two-dimensional plain fabric was mapped using micro Raman spectroscopy (MRS) through a novel yarn push-out test, simulating a quasi-static projectile impact on the fabric. The stress-strain relationship for a single yarn was established using a digital image correlation method in a single-yarn tensile test. The relationship between Raman peak shift and aramid Kevlar 49 yarn stress was established using MRS in a single-yarn tensile test. An out-of-plane loading test was conducted on an aramid Kevlar 49 plain fabric, and the yarn stress was measured using MRS. From the full-field fabric stress distribution, it can be observed that there is a cross-shaped distribution of high yarn stress; this result would be helpful in further studies on load transfer on a fabric during a projectile impact.

  8. 2010 August 1-2 Sympathetic Eruptions. II. Magnetic Topology of the MHD Background Field

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav S.; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Panasenco, Olga

    2017-08-01

    Using a potential field source-surface (PFSS) model, we recently analyzed the global topology of the background coronal magnetic field for a sequence of coronal mass ejections (CMEs) that occurred on 2010 August 1-2. Here we repeat this analysis for the background field reproduced by a magnetohydrodynamic (MHD) model that incorporates plasma thermodynamics. As for the PFSS model, we find that all three CME source regions contain a coronal hole (CH) that is separated from neighboring CHs by topologically very similar pseudo-streamer structures. However, the two models yield very different results for the size, shape, and flux of the CHs. We find that the helmet-streamer cusp line, which corresponds to a source-surface null line in the PFSS model, is structurally unstable and does not form in the MHD model. Our analysis indicates that, generally, in MHD configurations, this line instead consists of a multiple-null separator passing along the edge of disconnected-flux regions. Some of these regions are transient and may be the origin of the so-called streamer blobs. We show that the core topological structure of such blobs is a three-dimensional “plasmoid” consisting of two conjoined flux ropes of opposite handedness, which connect at a spiral null point of the magnetic field. Our analysis reveals that such plasmoids also appear in pseudo-streamers on much smaller scales. These new insights into the coronal magnetic topology provide some intriguing implications for solar energetic particle events and for the properties of the slow solar wind.

  9. An Exploratory Study of the Effects of Mindfulness on Perceived Levels of Stress among School-Children from Lower Socioeconomic Backgrounds

    ERIC Educational Resources Information Center

    Costello, Elizabeth; Lawler, Margaret

    2014-01-01

    Children from lower socioeconomic backgrounds are at increased risk of experiencing stress and associated social-emotional difficulties and behavioural problems, which can undermine academic performance and lead to school drop-out. Previous studies investigating the effects of mindfulness have evidenced positive outcomes among children pertaining…

  10. Effect of a chameleon scalar field on the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Anne-Christine; Schelpe, Camilla A. O.; Shaw, Douglas J.

    2009-09-15

    We show that a direct coupling between a chameleonlike scalar field and photons can give rise to a modified Sunyaev-Zel'dovich (SZ) effect in the cosmic microwave background (CMB). The coupling induces a mixing between chameleon particles and the CMB photons when they pass through the magnetic field of a galaxy cluster. Both the intensity and the polarization of the radiation are modified. The degree of modification depends strongly on the properties of the galaxy cluster such as magnetic field strength and electron number density. Existing SZ measurements of the Coma cluster enable us to place constraints on the photon-chameleon coupling.more » The constrained conversion probability in the cluster is P{sub Coma}(204 GHz)<6.2x10{sup -5} at 95% confidence, corresponding to an upper bound on the coupling strength of g{sub eff}{sup (cell)}<2.2x10{sup -8} GeV{sup -1} or g{sub eff}{sup (Kolmo)}<(7.2-32.5)x10{sup -10} GeV{sup -1}, depending on the model that is assumed for the cluster magnetic field structure. We predict the radial profile of the chameleonic CMB intensity decrement. We find that the chameleon effect extends farther toward the edges of the cluster than the thermal SZ effect. Thus we might see a discrepancy between the x-ray emission data and the observed SZ intensity decrement. We further predict the expected change to the CMB polarization arising from the existence of a chameleonlike scalar field. These predictions could be verified or constrained by future CMB experiments.« less

  11. The Somma Vesuvius stress field induced by regional tectonics: evidences from seismological and mesostructural data

    NASA Astrophysics Data System (ADS)

    Bianco, F.; Castellano, M.; Milano, G.; Ventura, G.; Vilardo, G.

    1998-06-01

    A detailed structural and geophysical study of the Somma-Vesuvius volcanic complex was carried out by integrating mesostructural measurements, focal mechanisms and shear-wave splitting analysis. Fault-slip and focal mechanism analysis indicate that the volcano is affected by NW-SE-, NE-SW-trending oblique-slip faults and by E-W-trending normal faults. Magma chamber(s) responsible for plinian/sub-plinian eruptions (i.e. A.D. 79 and 1631) formed inside the area bounded by E-W-trending normal faults. The post-1631 fissural eruptions (i.e. 1794 and 1861) occurred along the main oblique-slip fault segments. The movements of the Vesuvius faults are mainly related to the regional stress field. A local stress field superposed to the regional one is also present but evidences of magma or gravity induced stresses are lacking. The local stress field acts inside the caldera area being related to fault reactivation processes. The present-day Vesuvius seismic activity is due to both regional and local stress fields. Shear-wave splitting analysis reveals an anisotropic volume due to stress induced cracks NW-SE aligned by faulting processes. Since the depth extent of the anisotropic volume is at least 6 km b.s.l., we deduce the NW-SE-trending oblique-slip fault system represents the main discontinuity on which lies the volcano. This discontinuity is responsible for the morphological lowering of the edifice in its southwestern side.

  12. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    NASA Astrophysics Data System (ADS)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  13. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth.

    PubMed

    Knudsen, Geir K; Norli, Hans R; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1

  14. Universal field matching in craniospinal irradiation by a background-dose gradient-optimized method.

    PubMed

    Traneus, Erik; Bizzocchi, Nicola; Fellin, Francesco; Rombi, Barbara; Farace, Paolo

    2018-01-01

    The gradient-optimized methods are overcoming the traditional feathering methods to plan field junctions in craniospinal irradiation. In this note, a new gradient-optimized technique, based on the use of a background dose, is described. Treatment planning was performed by RayStation (RaySearch Laboratories, Stockholm, Sweden) on the CT scans of a pediatric patient. Both proton (by pencil beam scanning) and photon (by volumetric modulated arc therapy) treatments were planned with three isocenters. An 'in silico' ideal background dose was created first to cover the upper-spinal target and to produce a perfect dose gradient along the upper and lower junction regions. Using it as background, the cranial and the lower-spinal beams were planned by inverse optimization to obtain dose coverage of their relevant targets and of the junction volumes. Finally, the upper-spinal beam was inversely planned after removal of the background dose and with the previously optimized beams switched on. In both proton and photon plans, the optimized cranial and the lower-spinal beams produced a perfect linear gradient in the junction regions, complementary to that produced by the optimized upper-spinal beam. The final dose distributions showed a homogeneous coverage of the targets. Our simple technique allowed to obtain high-quality gradients in the junction region. Such technique universally works for photons as well as protons and could be applicable to the TPSs that allow to manage a background dose. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staruch, M.; Bussmann, K.; Finkel, P.

    2015-07-20

    Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus furthermore » improve the limit of detection and advance development of magnetic field sensing technology.« less

  16. Influence of residual thermal stresses and geometric parameters on stress and electric fields in multilayer ceramic capacitors under electric bias

    NASA Astrophysics Data System (ADS)

    Jiang, Wu-Gui; Feng, Xi-Qiao; Nan, Ce-Wen

    2008-07-01

    The stress and electric fields in multilayer ceramic capacitors (MLCCs) under an applied electric bias were investigated by using a three-dimensional finite element model of ferroelectric ceramics. A coupled thermal-mechanical analysis was first made to calculate the residual thermal stress induced by the sintering process, and then a coupled electrical-mechanical analysis was performed to predict the total stress distribution in the MLCCs under a representative applied electric bias. The effects of the number of dielectric layers, the single layer thickness as well as the residual thermal stresses on the total stresses were all examined. The numerical results show that the residual thermal stress induced by the sintering process has a significant influence on the contribution of the total stresses and, therefore, should be taken into account in the design and evaluation of MLCC devices.

  17. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster

    PubMed Central

    Yang, Chuan-Jun; Lian, Hui-Yong; Yu, Hui; Huang, Xiao-Mei; Cai, Peng

    2016-01-01

    Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118 flies were investigated at 25°C and 35°C (thermal stress). Results showed that thermal stress accelerated the death rates of CS and w1118 flies, shortened their lifespan, and influenced their locomotion rhythm and activity. The upregulated expression levels of heat shock protein (HSP) 22, HSP26, and HSP70 indicated that HSR was enhanced. Thermal stress-induced OS response increased malondialdehyde content, enhanced superoxide dismutase activity, and decreased reactive oxygen species level. The effects of thermal stress on the death rates, lifespan, locomotion, and HSP gene expression of flies, especially w1118 line, were also enhanced by ELF-EMF. In conclusion, thermal stress weakened the physiological function and promoted the HSR and OS of flies. ELF-EMF aggravated damages and enhanced thermal stress-induced HSP and OS response. Therefore, thermal stress and ELF-EMF elicited a synergistic effect. PMID:27611438

  18. Boundary element methods for the analysis of crack growth in the presence of residual stress fields

    NASA Astrophysics Data System (ADS)

    Leitao, V. M. A.; Aliabadi, M. H.; Rooke, D. P.; Cook, R.

    1998-06-01

    Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.

  19. Enhanced calculation of eigen-stress field and elastic energy in atomistic interdiffusion of alloys

    NASA Astrophysics Data System (ADS)

    Cecilia, José M.; Hernández-Díaz, A. M.; Castrillo, Pedro; Jiménez-Alonso, J. F.

    2017-02-01

    The structural evolution of alloys is affected by the elastic energy associated to eigen-stress fields. However, efficient calculations of the elastic energy in evolving geometries are actually a great challenge in promising atomistic simulation techniques such as Kinetic Monte Carlo (KMC) methods. In this paper, we report two complementary algorithms to calculate the eigen-stress field by linear superposition (a.k.a. LSA, Lineal Superposition Algorithm) and the elastic energy modification in atomistic interdiffusion of alloys (the Atom Exchange Elastic Energy Evaluation (AE4) Algorithm). LSA is shown to be appropriated for fast incremental stress calculation in highly nanostructured materials, whereas AE4 provides the required input for KMC and, additionally, it can be used to evaluate the accuracy of the eigen-stress field calculated by LSA. Consequently, they are suitable to be used on-the-fly with KMC. Both algorithms are massively parallel by their definition and thus well-suited for their parallelization on modern Graphics Processing Units (GPUs). Our computational studies confirm that we can obtain significant improvements compared to conventional Finite Element Methods, and the utilization of GPUs opens up new possibilities for the development of these methods in atomistic simulation of materials.

  20. Bose–Einstein condensates and scalar fields; exploring the similitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellanos, E.; Macías, A.; Núñez, D.

    We analyze the the remarkable analogy between the classical Klein–Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross–Pitaevskii equation for a Bose–Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein–Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross–Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas–Fermi approximation is applied to the 3–dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curvedmore » a space–time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose–Einstein condensation.« less

  1. Posttraumatic growth, depressive symptoms, posttraumatic stress symptoms, post-migration stressors and quality of life in multi-traumatized psychiatric outpatients with a refugee background in Norway

    PubMed Central

    2012-01-01

    Background Psychiatric outpatients with a refugee background have often been exposed to a variety of potentially traumatizing events, with numerous negative consequences for their mental health and quality of life. However, some patients also report positive personal changes, posttraumatic growth, related to these potentially traumatic events. This study describes posttraumatic growth, posttraumatic stress symptoms, depressive symptoms, post-migration stressors, and their association with quality of life in an outpatient psychiatric population with a refugee background in Norway. Methods Fifty five psychiatric outpatients with a refugee background participated in a cross-sectional study using clinical interviews to measure psychopathology (SCID-PTSD, MINI), and four self-report instruments measuring posttraumatic growth, posttraumatic stress symptoms, depressive symptoms, and quality of life (PTGI-SF, IES-R, HSCL-25-depression scale, and WHOQOL-Bref) as well as measures of social integration, social network and employment status. Results All patients reported some degree of posttraumatic growth, while only 31% reported greater amounts of growth. Eighty percent of the patients had posttraumatic stress symptoms above the cut-off point, and 93% reported clinical levels of depressive symptoms. Quality of life in the four domains of the WHOQOL-Bref levels were low, well below the threshold for the’life satisfaction’ standard proposed by Cummins. A hierarchic regression model including depressive symptoms, posttraumatic stress symptoms, posttraumatic growth, and unemployment explained 56% of the total variance found in the psychological health domain of the WHOQOL-Bref scale. Posttraumatic growth made the strongest contribution to the model, greater than posttraumatic stress symptoms or depressive symptoms. Post-migration stressors like unemployment, weak social network and poor social integration were moderately negatively correlated with posttraumatic growth and

  2. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tummala, Hareesh; Capolungo, Laurent; Tome, Carlos N.

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S 13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution ofmore » mechanical fields due to dislocations was found to have a non-negligible effect on such process.« less

  3. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth

    PubMed Central

    Knudsen, Geir K.; Norli, Hans R.; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1

  4. 2010 August 1–2 Sympathetic Eruptions. II. Magnetic Topology of the MHD Background Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Viacheslav S.; Mikić, Zoran; Török, Tibor

    Using a potential field source-surface (PFSS) model, we recently analyzed the global topology of the background coronal magnetic field for a sequence of coronal mass ejections (CMEs) that occurred on 2010 August 1–2. Here we repeat this analysis for the background field reproduced by a magnetohydrodynamic (MHD) model that incorporates plasma thermodynamics. As for the PFSS model, we find that all three CME source regions contain a coronal hole (CH) that is separated from neighboring CHs by topologically very similar pseudo-streamer structures. However, the two models yield very different results for the size, shape, and flux of the CHs. Wemore » find that the helmet-streamer cusp line, which corresponds to a source-surface null line in the PFSS model, is structurally unstable and does not form in the MHD model. Our analysis indicates that, generally, in MHD configurations, this line instead consists of a multiple-null separator passing along the edge of disconnected-flux regions. Some of these regions are transient and may be the origin of the so-called streamer blobs. We show that the core topological structure of such blobs is a three-dimensional “plasmoid” consisting of two conjoined flux ropes of opposite handedness, which connect at a spiral null point of the magnetic field. Our analysis reveals that such plasmoids also appear in pseudo-streamers on much smaller scales. These new insights into the coronal magnetic topology provide some intriguing implications for solar energetic particle events and for the properties of the slow solar wind.« less

  5. Background simulations for the wide field imager aboard the ATHENA X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Hauf, Steffen; Kuster, Markus; Hoffmann, Dieter H. H.; Lang, Philipp-Michael; Neff, Stephan; Pia, Maria Grazia; Strüder, Lothar

    2012-09-01

    The ATHENA X-ray observatory was a European Space Agency project for a L-class mission. ATHENA was to be based upon a simplified IXO design with the number of instruments and the focal length of the Wolter optics being reduced. One of the two instruments, the Wide Field Imager (WFI) was to be a DePFET based focal plane pixel detector, allowing for high time and spatial resolution spectroscopy in the energy-range between 0.1 and 15 keV. In order to fulfill the mission goals a high sensitivity is essential, especially to study faint and extended sources. Thus a detailed understanding of the detector background induced by cosmic ray particles is crucial. During the mission design generally extensive Monte-Carlo simulations are used to estimate the detector background in order to optimize shielding components and software rejection algorithms. The Geant4 toolkit1,2 is frequently the tool of choice for this purpose. Alongside validation of the simulation environment with XMM-Newton EPIC-pn and Space Shuttle STS-53 data we present estimates for the ATHENA WFI cosmic ray induced background including long-term activation, which demonstrate that DEPFET-technology based detectors are able to achieve the required sensitivity.

  6. Vibration energy harvesting based on stress-induced polarization switching: a phase field approach

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2017-06-01

    Different from the traditional piezoelectric vibration energy harvesting, a new strategy based on stress-induced polarization switching has been proposed in the current paper. Two related prototypes are presented and the associated advantages and drawbacks have been discussed in detail. It has been demonstrated that, with the assistance of a bias electric field, the robustness of the energy harvesters is improved. Furthermore, the real-space phase-field model has been employed to study the nonlinear hysteretic behavior involved in the proposed energy harvesting process. A substantially larger electric current associated with the stress-induced polarization switching has been demonstrated when compared with that with piezoelectric effect. In addition, the effects of bias electric potential, bias resistance, mechanical boundary conditions, charge leakage and electrodes arrangements have also been investigated by the phase-field simulation, which provides a guidance for future real implementations.

  7. The stress field below the NE German Basin: effects induced by the Alpine collision

    NASA Astrophysics Data System (ADS)

    Marotta, A. M.; Bayer, U.; Scheck, M.; Thybo, H.

    2001-02-01

    We use a thin-sheet approach for a viscous lithosphere to investigate the effects induced by the Alpine collision on the vertical deformation and regional stress in northern Europe, focusing on the NE German Basin. New seismic studies indicate a flexural-type deep crustal structure under the basin, which may be induced by compressive forces transmitted from the south and related to Alpine tectonics. Finite element techniques are used to solve the vertical deformation and stress field for a viscous European lithosphere with horizontal rheological heterogeneities. Our results support the idea that a relatively strong lithosphere below the northern margin of the German Basin at the transition into the Baltic Shield may explain the characteristic regional stress field, especially the fan-like pattern that is observed within the region.

  8. Background ELF magnetic fields in incubators: a factor of importance in cell culture work.

    PubMed

    Mild, Kjell Hansson; Wilén, Jonna; Mattsson, Mats-Olof; Simko, Myrtill

    2009-07-01

    Extremely low frequency (ELF) magnetic fields in cell culture incubators have been measured. Values of the order of tens of muT were found which is in sharp contrast to the values found in our normal environment (0.05-0.1microT). There are numerous examples of biological effects found after exposure to MF at these levels, such as changes in gene expression, blocked cell differentiation, inhibition of the effect of tamoxifen, effects on chick embryo development, etc. We therefore recommend that people working with cell culture incubators check for the background magnetic field and take this into account in performing their experiments, since this could be an unrecognised factor of importance contributing to the variability in the results from work with cell cultures.

  9. Faulting of Rocks in a Three-Dimensional Stress Field by Micro-Anticracks

    PubMed Central

    Ghaffari, H. O.; Nasseri, M. H. B.; Young, R. Paul

    2014-01-01

    Nucleation and propagation of a shear fault is known to be the result of interaction and coalescence of many microcracks. Yet the character and rate of the microcracks' interactions, and their dependence on the three-dimensional stress state are poorly understood. Here we investigate formation of microcracks during sandstone faulting under 3D-polyaxial stress fields by analyzing multi-stationary acoustic waveforms. We show that in a true three-dimensional stress state (a) faulting forms in a orthorhombic pattern, and (b) the emitted acoustic waveforms from microcracking carry a shorter rapid slip phase. The later is associated with microcracking that dominantly develops parallel to the minimum stress direction. Our results imply that due to inducing the micro-anticracks, the three-dimensional (3D) stress state can quicken dynamic weakening and rupture propagation by a factor of two relatively to simpler stress states. The results suggest a new nucleation mechanism of 3D-faulting with implications for earthquakes' instabilities, as well as the understanding of avalanches associated with dislocations. PMID:24862447

  10. Bohmian field theory on a shape dynamics background and Unruh effect

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih; Arık, Metin

    2018-05-01

    In this paper, we investigate the Unruh radiation in the Bohmian field theory on a shape dynamics background setting. Since metric and metric momentum are real quantities, the integral kernel to invert the Lichnerowicz-York equation for first order deviations due to existence of matter terms turns out to be real. This fact makes the interaction Hamiltonian real. On the other hand, the only contribution to guarantee the existence of Unruh radiation has to come from the imaginary part of the temporal part of the wave functional. We have proved the existence of Unruh radiation in this setting. It is also important that we have found the Unruh radiation via an Unruh-DeWitt detector in a theory where there is no Lorentz symmetry and no conventional space-time structure.

  11. Three-dimensional stress field around a membrane protein: atomistic and coarse-grained simulation analysis of gramicidin A.

    PubMed

    Yoo, Jejoong; Cui, Qiang

    2013-01-08

    Using both atomistic and coarse-grained (CG) models, we compute the three-dimensional stress field around a gramicidin A (gA) dimer in lipid bilayers that feature different degrees of negative hydrophobic mismatch. The general trends in the computed stress field are similar at the atomistic and CG levels, supporting the use of the CG model for analyzing the mechanical features of protein/lipid/water interfaces. The calculations reveal that the stress field near the protein-lipid interface exhibits a layered structure with both significant repulsive and attractive regions, with the magnitude of the stress reaching 1000 bar in certain regions. Analysis of density profiles and stress field distributions helps highlight the Trp residues at the protein/membrane/water interface as mechanical anchors, suggesting that similar analysis is useful for identifying tension sensors in other membrane proteins, especially membrane proteins involved in mechanosensation. This work fosters a connection between microscopic and continuum mechanics models for proteins in complex environments and makes it possible to test the validity of assumptions commonly made in continuum mechanics models for membrane mediated processes. For example, using the calculated stress field, we estimate the free energy of membrane deformation induced by the hydrophobic mismatch, and the results for regions beyond the annular lipids are in general consistent with relevant experimental data and previous theoretical estimates using elasticity theory. On the other hand, the assumptions of homogeneous material properties for the membrane and a bilayer thickness at the protein/lipid interface being independent of lipid type (e.g., tail length) appear to be oversimplified, highlighting the importance of annular lipids of membrane proteins. Finally, the stress field analysis makes it clear that the effect of even rather severe hydrophobic mismatch propagates to only about two to three lipid layers, thus putting a

  12. A stress-free model for residual stress assessment using thermoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Howell, Geoffrey; Dulieu-Barton, Janice M.; Achintha, Mithila; Robinson, Andrew F.

    2015-03-01

    Thermoelastic Stress Analysis (TSA) has been proposed as a method of obtaining residual stresses. The results of a preliminary study demonstrated that when Al-2024 plate containing holes that were plastically deformed by cold expansion process to 2% and 4% strain the thermoelastic response in the material around the hole was different to that obtained from a plate that had not experienced any plastic cold expansion (i.e. a reference specimen). This observation provides an opportunity for obtaining residual stresses based on TSA data. In many applications a reference specimen (i.e. residual stress free specimen) may not be available for comparison, so a synthetic, digital bitmap has been proposed as an alternative. An elastic finite element model is created using commercially available software Abaqus/Standard and the resultant stress field is extracted. The simulated stress field from the model is mapped onto a grid that matches the TSA pixel data from a physical reference specimen. This stress field is then converted to a ΔT/T field that can be compared to the full-field TSA data. When the reference experimental data is subtracted from the, bitmap dataset the resultant ΔT/T field is approximately zero. Further work proposes replacing the experimental reference data with that from specimens that have undergone cold expansion with the aim of revealing the regions affected by residual stress through a departure from zero in the resultant stress field. The paper demonstrates the first steps necessary for deriving the residual stresses from a general specimen using TSA.

  13. The Effect of a Tectonic Stress Field on Coal and Gas Outbursts

    PubMed Central

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions. PMID:24991648

  14. Reynolds stress flow shear and turbulent energy transfer in reversed field pinch configuration

    NASA Astrophysics Data System (ADS)

    Vianello, Nicola; Spolaore, Monica; Serianni, Gianluigi; Regnoli, Giorgio; Spada, Emanuele; Antoni, Vanni; Bergsåker, Henric; Drake, James R.

    2003-10-01

    The role of Reynolds Stress tensor on flow generation in turbulent fluids and plasmas is still an open question and the comprehension of its behavior may assist the understanding of improved confinement scenario. It is generally believed that shear flow generation may occur by an interaction of the turbulent Reynolds stress with the shear flow. It is also generally believed that this mechanism may influence the generation of zonal flow shears. The evaluation of the complete Reynolds Stress tensor requires contemporary measurements of its electrostatic and magnetic part: this requirement is more restrictive for Reversed Field Pinch configuration where magnetic fluctuations are larger than in tokamak . A new diagnostic system which combines electrostatic and magnetic probes has been installed in the edge region of Extrap-T2R reversed field pinch. With this new probe the Reynolds stress tensor has been deduced and its radial profile has been reconstructed on a shot to shot basis exploring differen plasma conditions. These profiles have been compared with the naturally occurring velocity flow profile, in particular during Pulsed Poloidal Current Drive experiment, where a strong variation of ExB flow radial profile has been registered. The study of the temporal evolution of Reynolds stress reveals the appearance of strong localized bursts: these are considered in relation with global MHD relaxation phenomena, which naturally occur in the core of an RFP plasma sustaining its configuration.

  15. Development of buoyant currents in yield stress fluids

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Karimfazli, I.

    2017-11-01

    Infinitesimal perturbations are known to decay in a motionless yield stress fluid. We present experimental evidence to reveal other mechanisms promoting free advection from a motionless background state. Development of natural convection in a cavity with differentially heated side-walls is investigated as a benchmark. Velocity and temperature fields are measured using particle image velocimetry/thermometry. We examine time evolution of the flow, compare experimental findings with theoretical predictions and comment on the striking features brought about by the yield stress.

  16. Backgrounds in Language.

    ERIC Educational Resources Information Center

    Maxwell, John C.; Long, Barbara K.

    "Backgrounds in Language," a field-tested inservice course designed for use by groups of 15 or 25 language arts teachers, provides the subject matter background teachers need to make informed decisions about what curriculum materials to use in what way, at what time, and with which students. The course is comprised of eight 2-hour sessions,…

  17. Effects of dehydroepiandrosterone supplementation during stressful military training: a randomized, controlled, double-blind field study.

    PubMed

    Taylor, Marcus K; Padilla, Genieleah A; Stanfill, Katherine E; Markham, Amanda E; Khosravi, Jasmine Y; Ward, Michael D Dial; Koehler, Matthew M

    2012-01-01

    Dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) are anabolic prehormones involved in the synthesis of testosterone. Both have been shown to exert neuroprotective effects during stress. In this randomized, controlled, double-blind field study, we examined the effects of a 12-day DHEA regimen on stress indices in military men undergoing survival training. Forty-eight men were randomized to either a DHEA treatment group or placebo control group. The treatment group received 50 mg of oral DHEA supplementation daily for 5 days during classroom training followed by 7 days of 75 mg during stressful field operations. Control subjects received identical placebo pills. Salivary assays (DHEA[S], testosterone, and cortisol) were conducted at four time points: distal pre-stress (T1), proximal pre-stress (T2), mock-captivity stress (T3), and 24 h recovery (T4). Subjective distress was also assessed at T1, T3, and T4. As expected, DHEA treatment resulted in higher salivary concentrations of DHEA and DHEAS during daily living, mock-captivity stress, and recovery. Similar patterns were observed for salivary markers of anabolic balance: DHEA/cortisol, DHEAS/cortisol, and testosterone/cortisol concentration ratios. Despite notable time effects, no group differences emerged for subjective distress. A brief, low dose DHEA regimen yielded large increases in salivary DHEA(S) concentrations and enhanced anabolic balance throughout sustained military stress. These physiological changes did not extrapolate to subjective distress.

  18. Stress fields around two pores in an elastic body: exact quadrature domain solutions.

    PubMed

    Crowdy, Darren

    2015-08-08

    Analytical solutions are given for the stress fields, in both compression and far-field shear, in a two-dimensional elastic body containing two interacting non-circular pores. The two complex potentials governing the solutions are found by using a conformal mapping from a pre-image annulus with those potentials expressed in terms of the Schottky-Klein prime function for the annulus. Solutions for a three-parameter family of elastic bodies with two equal symmetric pores are presented and the compressibility of a special family of pore pairs is studied in detail. The methodology extends to two unequal pores. The importance for boundary value problems of plane elasticity of a special class of planar domains known as quadrature domains is also elucidated. This observation provides the route to generalization of the mathematical approach here to finding analytical solutions for the stress fields in bodies containing any finite number of pores.

  19. Background fluorescence estimation and vesicle segmentation in live cell imaging with conditional random fields.

    PubMed

    Pécot, Thierry; Bouthemy, Patrick; Boulanger, Jérôme; Chessel, Anatole; Bardin, Sabine; Salamero, Jean; Kervrann, Charles

    2015-02-01

    Image analysis applied to fluorescence live cell microscopy has become a key tool in molecular biology since it enables to characterize biological processes in space and time at the subcellular level. In fluorescence microscopy imaging, the moving tagged structures of interest, such as vesicles, appear as bright spots over a static or nonstatic background. In this paper, we consider the problem of vesicle segmentation and time-varying background estimation at the cellular scale. The main idea is to formulate the joint segmentation-estimation problem in the general conditional random field framework. Furthermore, segmentation of vesicles and background estimation are alternatively performed by energy minimization using a min cut-max flow algorithm. The proposed approach relies on a detection measure computed from intensity contrasts between neighboring blocks in fluorescence microscopy images. This approach permits analysis of either 2D + time or 3D + time data. We demonstrate the performance of the so-called C-CRAFT through an experimental comparison with the state-of-the-art methods in fluorescence video-microscopy. We also use this method to characterize the spatial and temporal distribution of Rab6 transport carriers at the cell periphery for two different specific adhesion geometries.

  20. Development of the Stress of Immigration Survey: A Field Test Among Mexican Immigrant Women.

    PubMed

    Sternberg, Rosa Maria; Nápoles, Anna Maria; Gregorich, Steven; Paul, Steven; Lee, Kathryn A; Stewart, Anita L

    2016-01-01

    The Stress of Immigration Survey (SOIS) is a screening tool used to assess immigration-related stress. The mixed methods approach included concept development, pretesting, field testing, and psychometric evaluation in a sample of 131 low-income women of Mexican descent. The 21-item SOIS screens for stress related to language, immigrant status, work issues, yearning for family and home country, and cultural dissonance. Mean scores ranged from 3.6 to 4.4 (a scale of 1-5, higher is more stress). Cronbach α values were more than 0.80 for all subscales. The SOIS may be a useful screening tool for detecting high levels of immigration-related stress in low-income Mexican immigrant women.

  1. Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed

    2014-09-01

    The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.

  2. Mantle convection pattern and subcrustal stress field under South America

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1980-01-01

    The tectonic, igneous and metallogenic features of South America are discussed in terms of the crustal deformation associated with stresses due to mantle convection as inferred from the high degree harmonics in the geopotential field. The application of Runcorn's model for the laminar viscous flows in the upper mantle to satellite and gravity data results in a convection pattern which reveals the ascending flows between the descending Nazca plate and the overlying South American plate as well as segments of the descending Nazca plate beneath South America. The arc volcanism in South America is shown apparently to be related to the upwelling of high-temperature material induced by the subduction of the Nazca plate, with the South American basin systems associated with downwelling mantle flows. The resulting tensional stress fields are shown to be regions of structural kinship characterized by major concentrations of ore deposits and related to the cordillera, shield and igneous systems and the upward Andean movements. It is suggested that the upwelling convection flows in the upper mantle, coupled with crustal tension, have provided an uplift mechanism which has forced the hydrothermal systems in the basement rocks to the surface.

  3. Wide-field two-photon microscopy with temporal focusing and HiLo background rejection

    NASA Astrophysics Data System (ADS)

    Yew, Elijah Y. S.; Choi, Heejin; Kim, Daekeun; So, Peter T. C.

    2011-03-01

    Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy.

  4. Cosmological origin of anomalous radio background

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Vincent, Aaron C.

    2013-02-01

    The ARCADE 2 collaboration has reported a significant excess in the isotropic radio background, whose homogeneity cannot be reconciled with clustered sources. This suggests a cosmological origin prior to structure formation. We investigate several potential mechanisms and show that injection of relativistic electrons through late decays of a metastable particle can give rise to the observed excess radio spectrum through synchrotron emission. However, constraints from the cosmic microwave background (CMB) anisotropy, on injection of charged particles and on the primordial magnetic field, present a challenge. The simplest scenario is with a gtrsim9 GeV particle decaying into e+e- at a redshift of z ~ 5, in a magnetic field of ~ 5μG, which exceeds the CMB B-field constraints, unless the field was generated after decoupling. Decays into exotic millicharged particles can alleviate this tension, if they emit synchroton radiation in conjunction with a sufficiently large background magnetic field of a dark U(1)' gauge field.

  5. Posttraumatic growth, depressive symptoms, posttraumatic stress symptoms, post-migration stressors and quality of life in multi-traumatized psychiatric outpatients with a refugee background in Norway.

    PubMed

    Teodorescu, Dinu-Stefan; Siqveland, Johan; Heir, Trond; Hauff, Edvard; Wentzel-Larsen, Tore; Lien, Lars

    2012-07-23

    Psychiatric outpatients with a refugee background have often been exposed to a variety of potentially traumatizing events, with numerous negative consequences for their mental health and quality of life. However, some patients also report positive personal changes, posttraumatic growth, related to these potentially traumatic events. This study describes posttraumatic growth, posttraumatic stress symptoms, depressive symptoms, post-migration stressors, and their association with quality of life in an outpatient psychiatric population with a refugee background in Norway. Fifty five psychiatric outpatients with a refugee background participated in a cross-sectional study using clinical interviews to measure psychopathology (SCID-PTSD, MINI), and four self-report instruments measuring posttraumatic growth, posttraumatic stress symptoms, depressive symptoms, and quality of life (PTGI-SF, IES-R, HSCL-25-depression scale, and WHOQOL-Bref) as well as measures of social integration, social network and employment status. All patients reported some degree of posttraumatic growth, while only 31% reported greater amounts of growth. Eighty percent of the patients had posttraumatic stress symptoms above the cut-off point, and 93% reported clinical levels of depressive symptoms. Quality of life in the four domains of the WHOQOL-Bref levels were low, well below the threshold for the'life satisfaction' standard proposed by Cummins. A hierarchic regression model including depressive symptoms, posttraumatic stress symptoms, posttraumatic growth, and unemployment explained 56% of the total variance found in the psychological health domain of the WHOQOL-Bref scale. Posttraumatic growth made the strongest contribution to the model, greater than posttraumatic stress symptoms or depressive symptoms. Post-migration stressors like unemployment, weak social network and poor social integration were moderately negatively correlated with posttraumatic growth and quality of life, and positively

  6. Interaction of the branes in the presence of the background fields: The dynamical, nonintersecting, perpendicular, wrapped-fractional configuration

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Elham; Kamani, Davoud

    2017-05-01

    We shall obtain the interaction of the Dp1- and Dp2-branes in the toroidal-orbifold space-time Tn × ℝ1,d-n-5 × ℂ2/ℤ 2. The configuration of the branes is nonintersecting, perpendicular, moving-rotating, wrapped-fractional with background fields. For this, we calculate the bosonic boundary state corresponding to a dynamical fractional-wrapped Dp-brane in the presence of the Kalb-Ramond field, a U1 gauge potential and an open string tachyon field. The long-range behavior of the interaction amplitude will be extracted.

  7. Reduced yield stress for zirconium exposed to iodine: Reactive force field simulation

    DOE PAGES

    Rossi, Matthew L.; Taylor, Christopher D.; van Duin, Adri C. T.

    2014-11-04

    Iodine-induced stress-corrosion cracking (ISCC), a known failure mode for nuclear fuel cladding, occurs when iodine generated during the irradiation of a nuclear fuel pellet escapes the pellet through diffusion or thermal cracking and chemically interacts with the inner surface of the clad material, inducing a subsequent effect on the cladding’s resistance to mechanical stress. To complement experimental investigations of ISCC, a reactive force field (ReaxFF) compatible with the Zr-I chemical and materials systems has been developed and applied to simulate the impact of iodine exposure on the mechanical strength of the material. The study shows that the material’s resistance tomore » stress (as captured by the yield stress of a high-energy grain boundary) is related to the surface coverage of iodine, with the implication that ISCC is the result of adsorption-enhanced decohesion.« less

  8. The effect of stress and incentive magnetic field on the average volume of magnetic Barkhausen jump in iron

    NASA Astrophysics Data System (ADS)

    Shu, Di; Guo, Lei; Yin, Liang; Chen, Zhaoyang; Chen, Juan; Qi, Xin

    2015-11-01

    The average volume of magnetic Barkhausen jump (AVMBJ) v bar generated by magnetic domain wall irreversible displacement under the effect of the incentive magnetic field H for ferromagnetic materials and the relationship between irreversible magnetic susceptibility χirr and stress σ are adopted in this paper to study the theoretical relationship among AVMBJ v bar(magneto-elasticity noise) and the incentive magnetic field H. Then the numerical relationship among AVMBJ v bar, stress σ and the incentive magnetic field H is deduced. Utilizing this numerical relationship, the displacement process of magnetic domain wall for single crystal is analyzed and the effect of the incentive magnetic field H and the stress σ on the AVMBJ v bar (magneto-elasticity noise) is explained from experimental and theoretical perspectives. The saturation velocity of Barkhausen jump characteristic value curve is different when tensile or compressive stress is applied on ferromagnetic materials, because the resistance of magnetic domain wall displacement is different. The idea of critical magnetic field in the process of magnetic domain wall displacement is introduced in this paper, which solves the supersaturated calibration problem of AVMBJ - σ calibration curve.

  9. The University of California Institute of Environmental Stress Marathon Field Studies

    ERIC Educational Resources Information Center

    Maron, Michael B.

    2014-01-01

    In 1973, the Institute of Environmental Stress of the University of California-Santa Barbara, under the direction of Steven M. Horvath, began a series of field and laboratory studies of marathon runners during competition. As one of Horvath's graduate students, many of these studies became part of my doctoral dissertation. The rationale for…

  10. Disadvantaged family background and depression among young adults in the United States: the roles of chronic stress and self-esteem.

    PubMed

    Mossakowski, Krysia N

    2015-02-01

    Although several longitudinal studies have demonstrated that having a disadvantaged family background is a risk factor for subsequent symptoms of depression, few studies have examined the mediating mechanisms that explain this long-term relationship. Thus, this study uses US national longitudinal data and integrates social stress theory with the life course perspective by focusing on two mediating mechanisms-the chronic stress of poverty and self-esteem during the transition to adulthood. Results reveal that self-esteem largely mediates the inverse relationship between parental education and levels of depressive symptoms in young adulthood. However, the inverse relationship between parental occupational prestige and depressive symptoms among young adults is not mediated by self-esteem, but rather long durations of poverty across 16 years. Overall, these findings suggest that different components of family socioeconomic status can leave a lasting imprint on mental health via the self-concept and the chronic stress of poverty throughout the journey to adulthood. © 2013 John Wiley & Sons, Ltd.

  11. Field Performance of Timber Bridges. 16: North Siwell Road Stress-Laminated Bridge

    DOT National Transportation Integrated Search

    1998-03-01

    This report is 16th in a series of reports that documents the : field performance of timber bridges. The North Siwell Road bridge was constructed during December 1994 in Hinds County, Mississippi. The bridge is a single span, stress laminated T-beam ...

  12. Development of the Stress of Immigration Survey (SOIS): a Field Test among Mexican Immigrant Women

    PubMed Central

    Sternberg, Rosa Maria; Nápoles, Anna Maria; Gregorich, Steven; Paul, Steven; Lee, Kathryn A.; Stewart, Anita L.

    2016-01-01

    The Stress of Immigration Survey (SOIS) is a screening tool used to assess immigration-related stress. The mixed methods approach included concept development, pretesting, field-testing, and psychometric evaluation in a sample of 131 low-income women of Mexican descent. The 21-item SOIS screens for stress related to language; immigrant status; work issues; yearning for family and home country; and cultural dissonance. Mean scores ranged from 3.6 to 4.4 (1-5 scale, higher is more stress). Cronbach's alphas >.80 for all sub-scales. The SOIS may be a useful screening tool for detecting high levels of immigration-related stress in low-income Mexican immigrant women. PMID:26605954

  13. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Treesearch

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  14. Bioeffects of Static Magnetic Fields: Oxidative Stress, Genotoxic Effects, and Cancer Studies

    PubMed Central

    Ghodbane, Soumaya; Lahbib, Aida; Sakly, Mohsen; Abdelmelek, Hafedh

    2013-01-01

    The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited. PMID:24027759

  15. Stress distribution calculations through a snow slab of varying elastic modulus; comparison with stability evaluation in the field

    NASA Astrophysics Data System (ADS)

    Swinkels, Laura; Borstad, Chris

    2017-04-01

    Field observations are the main tools for assessing the snow stability concerning dry snow slab avalanche release. Often, theoretical studies cannot directly be translated into useful information for avalanche recreationists and forecasters in the field, and vice versa; field observations are not always objective and quantifiable for theoretical studies. Moreover, numerical models often simplify the snowpack and generally use an isotropic single layer slab which is not representative of the real-life situation. The aim of this study is to investigate the stress distribution in a snowpack with an elastic modulus that continuously varies with depth. The focus lies on the difference between a slab with a gradient in hardness and a slab with isotropic hardness and the effect on the calculated maximum stress and the stability evaluation in the field. Approximately 20 different snow pits were evaluated in the mountains around Tromsø, Norway and Longyearbyen, Svalbard. In addition to the standard snowpack observations, the hardness was measured using a thin-blade gauge. Extended column tests were executed for stability evaluation. Measurements from the field were used as input for stress calculations for each snow pit using a line load solution for a sloping half space with a non-homogeneous elastic modulus. The hardness measurements were used to calculate the elastic modulus and a power law relation was fit through the modulus in the slab. The calculated shear stress was compared to the estimated stability and character of the specific snowpack The results show that the approach used for this study improves the calculation of stress at a given depth, although many assumptions and simplifications were still needed. Comparison with the snow profiles indicate that calculated stresses correlate well with the observed snowpack properties and stability. The calculated shear stresses can be introduced in the standard stability index and give a better indication for the

  16. Seismic anisotropy and its relation with crust structure and stress field in the Reggio Emilia Region (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Margheriti, L.; Ferulano, M. F.; Di Bona, M.

    2006-11-01

    Shear wave splitting is measured at 14 seismic stations in the Reggio Emilia region above local background seismicity and two sequences of seismic events. The good quality of the waveforms together with the favourable distribution of earthquake foci allows us to place strong constraints on the geometry and the depth of the anisotropic volume. It is about 60 km2 wide and located between 6 and 11 km depth, inside Mesozoic age carbonate rocks. The splitting results suggest also the presence of a shallower anisotropic layer about 1 km thick and few km wide in the Pliocene-Quaternary alluvium above the Mesozoic layer. The fast polarization directions (N30°E) are approximately parallel to the maximum horizontal stress (σ1 is SSW-NNE) in the region and also parallel to the strike of the main structural features in the Reggio Emilia area. The size of the delay times suggests about 4.5 per cent shear wave velocity anisotropy. These parameters agree with an interpretation of seismic anisotropy in terms of the extensive-dilatancy anisotropy model which considers the rock volume to be pervaded by fluid-saturated microcracks aligned by the active stress field. We cannot completely rule out the contribution of aligned macroscopic fractures as the cause of the shear wave anisotropy even if the parallel shear wave polarizations we found are diagnostic of transverse isotropy with a horizontal axis of symmetry. This symmetry is commonly explained by parallel stress-aligned microcracks.

  17. To stress or not to stress: a question of models.

    PubMed

    Gray, J Megan; Chaouloff, Francis; Hill, Matthew N

    2015-01-05

    Stress research is a rapidly evolving field that encompasses numerous disciplines ranging from neuroscience to metabolism. With many new researchers migrating into the field, navigating the hows and whys of specific research questions can sometimes be enigmatic given the availability of so many models in the stress field. Additionally, as with every field, there are many seemingly minor experimental details that can have dramatic influences on data interpretation, although many of these are unknown to those not familiar with the field. The aim of this overview is to provide some suggestions and points to guide researchers moving into the stress field and highlight relevant methodological points that they should consider when choosing a model for stress and deciding how to structure a study. We briefly provide a primer on the basics of endpoint measurements in the stress field, factors to consider when choosing a model for acute stress, the difference between repeated and chronic stress, and importantly, influencing variables that modulate endpoints of analysis in stress work. Copyright © 2015 John Wiley & Sons, Inc.

  18. Performance Evaluation of a Salivary Amylase Biosensor for Stress Assessment in Military Field Research.

    PubMed

    Peng, Henry T; Savage, Erin; Vartanian, Oshin; Smith, Shane; Rhind, Shawn G; Tenn, Catherine; Bjamason, Stephen

    2016-05-01

    A convenient biosensor for real-time measurement of biomarkers for in-field psychophysiological stress research and military operations is desirable. We evaluated a hand-held device for measuring salivary amylase as a stress marker in medical technicians undergoing combat casualty care training using two different modalities in operating room and field settings. Salivary amylase activity was measured by two biosensor methods: directly sampling saliva with a test strip placed under the tongue or pipetting a fixed volume of precollected saliva onto the test strip, followed by analyzing the sample on the strip using a biosensor. The two methods were compared for their accuracy and sensitivity to detect the stress response using an enzyme assay method as a standard. The measurements from the under-the-tongue method were not as consistent with those from the standard assay method as the values obtained from the pipetting method. The under-the-tongue method did not detect any significant increase in the amylase activity due to stress in the operating room (P > 0.1), in contrast to the significant increases observed using the pipetting method and assay method with a significance level less than 0.05 and 0.1, respectively. Furthermore, the under-the-tongue method showed no increased amylase activity in the field testing, while both the pipetting method and assay method showed increased amylase activity in the same group (P < 0.1). The accuracy and consistency of the biosensors need to be improved when used to directly measure salivary amylase activity under the tongue for stress assessment in military medical training. © 2015 Her Majesty the Queen in Right of Canada. Journal of Clinical Laboratory Analysis published by Wiley Periodicals, Inc. Reproduced with the permission DRDC Editorial Board.

  19. A study of interply layer effects on the free-edge stress field of angleplied laminates

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    The general-purpose finite-element program MSC/NASTRAN is used to study the interply layer effects on the free-edge stress field of symmetric angleplied laminates subjected to uniform tensile stress. The free-edge region is modeled as a separate substructure (superelement) which enables easy mesh refinement and provides the flexibility to move the superelement along the edge. The results indicate that the interply layer reduces the stress intensity significantly at the free edge. Another important observation of the study is that the failures observed near free edges of these types of laminates could have been caused by the interlaminar shear stresses.

  20. INFORMATIONAL STRESS AS A DEPRESSION INDUCING FACTOR (EXPERIMENTAL STUDY).

    PubMed

    Matitaishvili, T; Domianidze, T; Burdjanadze, G; Nadareishvili, D; Khananashvili, M

    2017-01-01

    Chronic psychogenic stress represents the major initiating agent of psychoneural diseases including depression. We used informational stress model for the purpose of modelling chronic psychogenic stress and depression. The aim of the research was to study behavior of dominant and submissive rats at different stages of informational stress and during depression state. In order to study anxiety and depressive behavior of rats we used "forced swim", "elevated cross maze" and "open-field" tests. The obtained results showed that chronic stressing procedure performed on rats by using the mentioned "informational" stress model led to the development of depression both in dominant and submissive rats. Stressing procedure caused sharp increase of serotonin concentration in hypothalamus of dominant and submissive rats. Under behavioral depression background, sharp increase of serotonin concentration in hypothalamus has been revealed which is caused by the peculiarities of stress model (by uncontrollable stressor. Specifically, by inevitable electric painful irritation).

  1. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    PubMed

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  2. Amplification due to two-stream instability of self-electric and magnetic fields of an ion beam propagating in background plasma

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.

    2018-05-01

    Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.

  3. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  4. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  5. CORRELATION OF MRI GRADING OF BONE STRESS INJURIES WITH CLINICAL RISK FACTORS AND RETURN TO PLAY: A 5-YEAR PROSPECTIVE STUDY IN COLLEGIATE TRACK AND FIELD ATHLETES

    PubMed Central

    Nattiv, Aurelia; Kennedy, Gannon; Barrack, Michelle T.; Abdelkerim, Ashraf; Goolsby, Marci A.; Arends, Julie C.; Seeger, Leanne L.

    2015-01-01

    Background Bone stress injuries are common in track and field athletes. Knowledge of risk factors and correlation of these to magnetic resonance imaging (MRI) grading could be helpful in determining recovery time. Purpose To examine the relationships between MRI grading of bone stress injury with clinical risk factors and time to return to sport in collegiate track and field athletes. Study Design Prospective cohort over 5 years. Methods Two hundred and eleven male and female collegiate track and field and cross-country athletes were followed prospectively through their competitive seasons. All athletes had a pre-participation history, physical exam, and anthropometric measurements obtained annually. An additional questionnaire was completed regarding nutritional behaviors, menstrual patterns and prior injuries, as well as a 3-day diet record. Dual energy X-ray absorptiometry was obtained at baseline and each year of participation in the study. Athletes with clinical evidence of bone stress injuries had plain radiographs. If radiographs were negative, MRI was obtained. Bone stress injuries were evaluated by two independent radiologists utilizing an MRI grading system. MRI grading and risk factors were evaluated to identify predictors of time to return to sport. Results Thirty-four (12 males, 22 females) of the 211 collegiate athletes sustained 61 bone stress injuries during the 5-year study period. The average prospective assessment for participants was 2.1 years. MRI grade and total body bone mineral density (BMD) emerged as significant and independent predictors of time to return to sport in the multiple regression model. Specifically, the higher the MRI grade, the longer the recovery time (p<0.002). Location of bone injury at predominantly trabecular sites of the femoral neck, pubic bone and sacrum (p<0.001), and lower total body BMD (p<0.029) independently predicted prolonged time to return to sport. Conclusions Higher MRI grade, lower BMD, and skeletal sites

  6. Stressing biological samples with pulsed magnetic fields: physical aspects and experimental results

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Specchia, V.; D'Attis, S.; Giuffreda, E.; Quarta, G.; Calcagnile, L.; Bozzetti, M. P.; Nassisi, V.

    2016-05-01

    Magnetic field effects are diffused among living organisms. They are mainly studied with static or extremely low frequency fields, while scarce information is available for pulsed fields. This work is devoted to the study of the interaction between Drosophila melanogaster, both adults and larvae, and pulsed magnetic fields. We exposed the organisms to a peak field of 0.4 T, lasting for about 2 μ s, within an ad hoc designed copper coil. Adult individuals didn't present any deregulation of repetitive sequences in the germ line of Drosophila. Instead, we noticed a marked magnetic field effect in larvae. Polytene chromosomes coming from treated individuals showed the presence of heat shock puffs; the same organisms revealed also an upregulation of the genes encoding for the Hsp70 protein. These observations suggest that the larvae underwent an oxidative stress caused by the modulation of free radicals' yield induced by the magnetic field through a radical pair mechanism.

  7. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Guo, Er-Jia; Min, Taewon

    Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO 3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO 3 film, the hysteresis loop of the reflected X-ray intensity was found to resultmore » from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO 3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-fieldinduced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. In conclusion, the effect of external stress on the BiFeO 3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.« less

  8. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

    DOE PAGES

    Lee, Hyeon Jun; Guo, Er-Jia; Min, Taewon; ...

    2017-12-28

    Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO 3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO 3 film, the hysteresis loop of the reflected X-ray intensity was found to resultmore » from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO 3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-fieldinduced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. In conclusion, the effect of external stress on the BiFeO 3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.« less

  9. Temporal stress changes caused by earthquakes: A review

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-01-01

    Earthquakes can change the stress field in the Earth’s lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth’s crust at plate boundaries is “strong” or “weak.” Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  10. Temporal Stress Changes Caused by Earthquakes: A Review

    NASA Astrophysics Data System (ADS)

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-02-01

    Earthquakes can change the stress field in the Earth's lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth's crust at plate boundaries is "strong" or "weak." Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  11. Impact of a primordial magnetic field on cosmic microwave background B modes with weak lensing

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai G.

    2018-05-01

    We discuss the manner in which the primordial magnetic field (PMF) suppresses the cosmic microwave background (CMB) B mode due to the weak-lensing (WL) effect. The WL effect depends on the lensing potential (LP) caused by matter perturbations, the distribution of which at cosmological scales is given by the matter power spectrum (MPS). Therefore, the WL effect on the CMB B mode is affected by the MPS. Considering the effect of the ensemble average energy density of the PMF, which we call "the background PMF," on the MPS, the amplitude of MPS is suppressed in the wave number range of k >0.01 h Mpc-1 . The MPS affects the LP and the WL effect in the CMB B mode; however, the PMF can damp this effect. Previous studies of the CMB B mode with the PMF have only considered the vector and tensor modes. These modes boost the CMB B mode in the multipole range of ℓ>1000 , whereas the background PMF damps the CMB B mode owing to the WL effect in the entire multipole range. The matter density in the Universe controls the WL effect. Therefore, when we constrain the PMF and the matter density parameters from cosmological observational data sets, including the CMB B mode, we expect degeneracy between these parameters. The CMB B mode also provides important information on the background gravitational waves, inflation theory, matter density fluctuations, and the structure formations at the cosmological scale through the cosmological parameter search. If we study these topics and correctly constrain the cosmological parameters from cosmological observations, including the CMB B mode, we need to correctly consider the background PMF.

  12. Stress fields acting during lithosphere breakup above a melting mantle: A case example in West Greenland

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Geoffroy, L.; Angelier, J.; Bonin, B.; Callot, J. P.; Gélard, J. P.; Aubourg, C.

    2012-12-01

    We characterize and map the stress fields acting during plate breakup along the West Greenland volcanic margin. The determination of interpolated stress fields is based on an inversion of fault-slip data sets and magma-driven fractures, crosscutting mainly an exposed inner seaward-dipping basaltic wedge (i.e., SDRi: inner Seaward Dipping Reflectors). This SDRi is segmented along-strike, with differently oriented segments. Relative chronology of stress fields is inferred from published age results on oriented dykes. We identify two distinct tectonic episodes (P1 and P2) with a P1-P2 change over at ~ 54 Ma, i.e. during magnetic chron C24R. P1 is syn-magmatic and purely extensional. It is associated with the major crustal stretching event affecting the margin. P1 probably acted as early as the Late Palaeocene. This stress field was first homogeneous with the minimum principal stress σ3 trending ~ N060E, defining a P1A stage. During development of the SDRi, σ3 locally reoriented to become orthogonal to each margin segment and, thus, to the continentward-dipping detachment faults bounding the SDRi (P1B). P1 is coeval with lithosphere breakup and is associated with an extension orthogonal to the Labrador-Baffin axis, which is inherited from the Mesozoic. A regional and radical change of σ3 to a ~ NS trend takes place during P2, which follows on immediately from P1. P2 is also syn-magmatic. It is associated with only minor extension. σ3 runs parallel to the North American (NAM)/Greenland (GR) kinematic vector from C24R to C13. We establish therefore that the minimum horizontal stress σ3 for P1 and P2 is parallel to the relative displacement of Greenland related to NAM but not to its absolute displacement during the Tertiary. Taking into account those results as well as variations in magma chemistry from P1 to P2, we suggest that tectonic stresses at a volcanic margin could arise from the local dynamics of the melting mantle.

  13. Proteomic changes in rice leaves grown under open field high temperature stress conditions.

    PubMed

    Das, Smruti; Krishnan, P; Mishra, Vagish; Kumar, Ritesh; Ramakrishnan, B; Singh, N K

    2015-11-01

    The interactive effect of temperature with other climatic and soil factors has profound influences on the growth and development of rice. The responses of rice to high temperatures under field conditions are more important than those under the controlled conditions. To understand the genes associated with high temperature stress response in general and tolerance in particular, the expression of all those genes associated with adaptation and tolerance in rice requires proteomic analysis. High temperature stress-tolerant cv. N22 was subjected to 28/18 °C (control) and 42/32 °C (high temperature stress) at flowering stage. The plants were grown in the field under the free air temperature increment condition. The proteomic changes in rice leaves due to high temperature stress were discussed. The proteomes of leaves had about 3000 protein spots, reproducibly detected on 2-dimensional electrophoretic gels with 573 proteins differentially expressed between the control and the high temperature treatments. Putative physiological functions suggested five categories such as growth (15.4%), heat shock proteins (7.7%), regulatory proteins (26.9%), redox homeostasis proteins (11.5%) and energy and metabolism (38.5%) related proteins. The results of the present study suggest that cv. N22, an agronomically recognized temperature tolerant rice cultivar copes with high temperature stress in a complex manner. Several functional proteins play important roles in its responses. The predicted climate change events necessitate more studies using this cultivar under different simulated ecological conditions to identify proteomic changes and the associated genes to be used as biomarkers and to gain a better understanding on the biochemical pathways involved in tolerance.

  14. Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC

    NASA Astrophysics Data System (ADS)

    Renner, J.; Cervera, A.; Hernando, J. A.; Imzaylov, A.; Monrabal, F.; Muñoz, J.; Nygren, D.; Gomez-Cadenas, J. J.

    2015-12-01

    We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0νββ) decay experiments using a high-pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0νββ decay of 136Xe) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0νββ decay (0Qββ). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign of the curvature can be determined at several points along these tracks, and such information can be used to separate signal (0νββ) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (about 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0νββ experiments, aiming to fully explore the inverse hierarchy of neutrino masses.

  15. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    USGS Publications Warehouse

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  16. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations.

    PubMed

    Balbus, Steven A

    2016-10-18

    A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.

  17. Tracking Local Spatiotemporal Microfracturing Processes and Stress Field Evolution Before and After Laboratory Fault Slip

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Orlecka-Sikora, B.; Goebel, T.; Martínez-Garzón, P.; Dresen, G.; Bohnhoff, M.

    2017-12-01

    In this study we investigate details of spatial and temporal evolution of the stress field and damage at a pre-existing fault plane in laboratory stick-slip friction experiments performed on Westerly Granite sample. Specimen of 10 cm height and 4 cm diameter was deformed at a constant strain rate of 3×10-6 s-1 and confining pressure of 150 MPa. Here we analyze a series of 6 macroscopic slip events occurring on a rough fault during the course of experiment. Each macroscopic slip was associated with an intense femtoseismic acoustic emission (AE) activity recorded using a 16-channel transient recording system. To monitor the the spatiotemporal damage evolution, and unravel the micromechanical processes governing nucleation and propagation of slip events, we analyzed AE source characteristics (magnitude, seismic moment tensors, focal mechanisms), as well as the statistical properties (b-, c-, d- value) of femtoseismicity. In addition, the calculated AE focal mechanisms were used to reveal the spatiotemporal evolution of local stress field orientations and stress shape ratio coefficients over the fault plane, as well as additional parameters quantifying proximity to failure of individual fault patches. The calculated characteristics are used to comprehensively describe the complexity of the spatial and temporal evolution of the stress over the fault plane, and properties of the corresponding seismicity before and after the macroscopic slips. The observed faulting processes and characteristics are discussed in the context of global strain and stress changes, fault maturation, and earthquake stress drop.

  18. A new procedure for investigating three-dimensional stress fields in a thin plate with a through-the-thickness crack

    NASA Astrophysics Data System (ADS)

    Yi, Dake; Wang, TzuChiang

    2018-06-01

    In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J( z), the stress intensity factor K( z) and the tri-axial stress constraint level T z ( z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J( z) and T z ( z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.

  19. Therapeutic Ultrasound in Navicular Stress Injuries in Elite Track and Field Athletes.

    PubMed

    Malliaropoulos, Nikolaos; Alaseirlis, Dimosthenis; Konstantinidis, George; Papalada, Agapi; Tsifountoudis, Ioannis; Petras, Kosmas; Maffulli, Nicola

    2017-05-01

    To ascertain whether therapeutic ultrasound (TUS) can be used to assess the progression of conservative management in navicular stress injuries. This is a prospective, clinical case series. Level of evidence IV. All participants were examined and followed up in a private Sports Injury Clinic. Ten elite track and field athletes with severe dorsal midfoot pain over the navicular bone participated in this study. All patients underwent both TUS and magnetic resonance imaging (MRI) evaluation. The painful threshold of TUS on initial evaluation was a mean of 0.707 ± 149 W/cm, and MRI detected a navicular stress injury in all patients. The athletes received conservative treatment and underwent sequential TUS evaluations at 4, 8, 12 and 16 weeks. Therapeutic ultrasound pain threshold values were recorded, and the patients were additionally asked to grade local tenderness on a Visual Analogue Scale. Time to return to play was also recorded. The level of pain produced by the application of TUS on a navicular stress fracture seemed to correlate well with Visual Analogue Scale scores and the grade of fracture demonstrated on MRI. The initial low TUS painful mean value increased to a normal mean value of 1.97 ± 0.067 W/cm by 16 weeks. When clinical and TUS findings had returned to normal, the patients were allowed to return to sports activities, with no recurrences experienced during the study period. The production of pain associated with the application of TUS on a navicular stress fracture is a safe and reproducible method of monitoring the resolution of these fractures. We have used it successfully in making return-to-play decisions for elite level track and field athletes.

  20. Finite element analysis of residual stress field induced by laser shock peening

    NASA Astrophysics Data System (ADS)

    Nam, Taeksun

    The finite element method is applied to analyze the laser shock peening process (LSP) for thick parts (considered as a semi-infinite half space) and thin parts (finite thickness domain). The technology of LSP is used to enhance mechanical properties such as fatigue life, fretting fatigue life, resistance to stress corrosion cracking and surface hardness. These enhanced material properties are directly related to the magnitude and distribution of the plastic strain and associated residual stresses due to shockwaves induced by LSP. To reduce the process development cost and time, the prediction of residual stress field is very useful to provide a base design guideline for selecting appropriate LSP conditions for evaluation. An axisymmetric Finite Element Analysis (FEA) code, named SHOCKWAVE, is developed in order to complement shortcomings of applying commercial FEA codes at extremely high strain rates (as high as 104 -106/sec). The rate dependent plasticity theory is applied along with the small strain assumption. The solution process consists of an explicit dynamic loading analysis for shock loading stage and a static unloading analysis (implicit) to determine the equilibrium state for the residual stress and plastic strain fields. Some of the highlights explored in this investigation entail: (i) overstress power law models for the rate dependence, (ii) various hardening models, (iii) a second-order accurate implicit algorithm for the plastic consistency condition, (iv) an adaptively expanding domain scheme to trace the stress-free boundary condition in a simple way, (v) a special uniform meshing scheme to avoid the usual assembly process and repeated calculations for the stiffness matrix, (vi) mesh sensitivity study, (vii) comparisons with measured data provided and supported by the LSP Technologies, Inc. The dynamic behavior of Ti-6Al-4V at high strain rates can be investigated by using the split torsional Hopkinson bar experiment and by a longitudinal shock

  1. Full Field Photoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    2000-01-01

    A structural specimen coated with or constructed of photoelastic material, when illuminated with circularly polarized light will, when stressed: reflect or transmit elliptically polarized light, the direction of the axes of the ellipse and variation of the elliptically light from illuminating circular light will correspond to and indicate the direction and magnitude of the shear stresses for each illuminated point on the specimen. The principles of this invention allow for several embodiments of stress analyzing apparatus, ranging from those involving multiple rotating optical elements, to those which require no moving parts at all. A simple polariscope may be constructed having two polarizing filters with a single one-quarter waveplate placed between the polarizing filters. Light is projected through the first polarizing filter and the one-quarter waveplate and is reflected from a sub-fringe birefringent coating on a structure under load. Reflected light from the structure is analyzed with a polarizing filter. The two polarizing filters and the one-quarter waveplate may be rotated together or the analyzer alone may be rotated. Computer analysis of the variation in light intensity yields shear stress magnitude and direction.

  2. Elastic constants of stressed and unstressed materials in the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong

    2018-04-01

    A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.

  3. Full-Field Stress Determination Around Circular Discontinuity in a Tensile-Loaded Plate using x-displacements Only

    NASA Astrophysics Data System (ADS)

    Baek, Tae Hyun; Chung, Tae Jin; Panganiban, Henry

    The significant effects of stress raisers demand well-defined evaluation techniques to accurately determine the stress along the geometric boundary. A simple and accurate method for the determination of stress concentration around circular geometric discontinuity in a tensile-loaded plate is illustrated. The method is based on the least-squares technique, mapping functions, and a complex power series representation (Laurent series) of the stress functions for the calculation of tangential stress around the hole. Traction-free conditions were satisfied at the geometric discontinuity using conformal mapping and analytic continuation. In this study, we use only a relatively small amount of x-component displacement data of points away from the discontinuity of concern with their respective coordinates. Having this information we can easily obtain full-field stresses at the edge of the geometric discontinuity. Excellent results were obtained when the number of terms of the power series expansions, m=1. The maximum stress concentration calculation results using the present method and FEM using ANSYS agree well by less than one per cent difference. Experimental advantage of the method underscores the use of relatively small amount of data which are conveniently determined being away from the edge. Moreover, the small amount of measured input data needed affords the approach suitable for applications such as the multi-parameter concept used to obtain stress intensity factors from measured data. The use of laser speckle interferometry and moiré interferometry are also potential future related fields since the optical system for one-directional measurement is much simple.

  4. Field performance of stress-laminated highway bridges constructed with glued laminated timber

    Treesearch

    J.P. Wacker

    2004-01-01

    This paper summarizes the field performance of three stress-laminated deck timber bridges located in Wisconsin, New York, and Arizona. The deck superstructures of these single-span highway bridges is comprised of full-span glued laminated timber (glulam) beam laminations manufactured with southern pine, hem fir/red maple combination, and/or Douglas fir lumber species....

  5. Degradation of Au-Ti contacts of SiGe HBTs during electromagnetic field stress

    NASA Astrophysics Data System (ADS)

    Alaeddine, A.; Genevois, C.; Kadi, M.; Cuvilly, F.; Daoud, K.

    2011-02-01

    This paper addresses electromagnetic field stress effects on SiGe heterojunction bipolar transistors (HBTs)' reliability issues, focusing on the relationship between the stress-induced current and device structure degradations. The origin of leakage currents and electrical parameter shifts in failed transistors has been studied by complementary failure analysis techniques. Characterization of the structure before and after ageing was performed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). For the stressed samples, interface deformations of the titanium (Ti) thin film around all gold (Au) contacts have been clearly detected. These degradations include localized interface reaction between Au and Ti layers as well as their lateral atomic migration causing a significant reduction of Ti thickness. EDS analysis of the disordered region which is near the Si3N4 interface has shown significant signals from Au. These observations could be attributed to the coupling between high current densities induced by stress and thermal effects due to local heating effects.

  6. Spectral characterization of natural backgrounds

    NASA Astrophysics Data System (ADS)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  7. Temporal static stress drop variations due to injection activity at The Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.

    2017-07-01

    We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.

  8. Bias-stress characterization of solution-processed organic field-effect transistor based on highly ordered liquid crystals

    NASA Astrophysics Data System (ADS)

    Kunii, M.; Iino, H.; Hanna, J.

    2017-06-01

    Bias-stress effects in solution-processed, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) field effect transistors (FETs) are studied under negative and positive direct current bias. The bottom gate, bottom contact polycrystalline Ph-BTBT-10 FET with a hybrid gate dielectric of polystyrene and SiO2 shows high field effect mobility as well as a steep subthreshold slope when fabricated with a highly ordered smectic E liquid crystalline (SmE) film as a precursor. Negative gate bias-stress causes negative threshold voltage shift (ΔVth) for Ph-BTBT-10 FET in ambient air, but ΔVth rapidly decreases as the gate bias decreases and approaches to near zero when the gate bias goes down to 9 V in amplitude. In contrast, positive gate bias-stress causes negligible ΔVth even with a relatively high bias voltage. These results conclude that Ph-BTBT-10 FET has excellent bias-stress stability in ambient air in the range of low to moderate operating voltages.

  9. Background colour matching by a crab spider in the field: a community sensory ecology perspective.

    PubMed

    Defrize, Jérémy; Théry, Marc; Casas, Jérôme

    2010-05-01

    The question of whether a species matches the colour of its natural background in the perspective of the correct receiver is complex to address for several reasons; however, the answer to this question may provide invaluable support for functional interpretations of colour. In most cases, little is known about the identity and visual sensory abilities of the correct receiver and the precise location at which interactions take place in the field, in particular for mimetic systems. In this study, we focused on Misumena vatia, a crab spider meeting the criteria for assessing crypsis better than many other models, and claimed to use colour changes for both aggressive and protective crypsis. We carried out a systematic field survey to quantitatively assess the exactness of background colour matching in M. vatia with respect to the visual system of many of its receivers within the community. We applied physiological models of bird, bee and blowfly colour vision, using flower and spider spectral reflectances measured with a spectroradiometer. We observed that crypsis at long distance is systematically achieved, exclusively through achromatic contrast, in both bee and bird visions. At short distance, M. vatia is mostly chromatically detectable, whatever the substrate, for bees and birds. However, spiders can be either poorly discriminable or quite visible depending on the substrate for bees. Spiders are always chromatically undetectable for blowflies. We discuss the biological relevance of these results in both defensive and aggressive contexts of crypsis within a community sensory perspective.

  10. Effect of local stress fields on twin characteristics in HCP metals

    DOE PAGES

    Arul Kumar, M.; Beyerlein, Irene Jane; Tomé, Carlos N.

    2016-09-01

    Here we study the effect of nearest neighboring grains on the propensity for {1012} twin growth in Mg and Zr. Twin lamellae lying within one grain flanked by two neighboring grains with several orientations are considered. The fields of resolved shear stress on the twin system are calculated in the multicrystal using a three-dimensional full-field crystal plasticity Fast Fourier Transform approach. The calculations were carried out for Mg and Zr using slip threshold stresses corresponding to 300K and 76K, respectively, where twin activity is important. We show that the neighboring grain constraint tends to oppose further growth and that themore » critical applied stress needed to overcome this resistance depends on neighboring grain orientation, more strongly in Zr than in Mg. We also present results for a pair of adjacent and parallel twins at various spacings. It is found that their paired interaction increases the resistive forces for twin growth above that for an isolated twin. The critical spacing above which this enhanced resistance is removed is smaller for Zr than Mg. Our analysis reveals that these two disparate responses of Zr and Mg are both a consequence of the fact that Zr is elastically and plastically more anisotropic than Mg. Additional calculations carried out on Ti support this conclusion. Finally, these findings can help explain why, for the same grain size, more twins per grain form in Zr than in Mg, twins in Zr tend to be thinner than those in Mg, and the relationship between the thickness of the twin and its Schmid factor in Zr is not as strong as in Mg.« less

  11. Role of Prefrontal Cortex Glucocorticoid Receptors in Stress and Emotion

    PubMed Central

    McKlveen, Jessica M.; Myers, Brent; Flak, Jonathan N.; Bundzikova, Jana; Solomon, Matia B.; Seroogy, Kim B.; Herman, James P.

    2013-01-01

    Background Stress-related disorders (e.g., depression) are associated with hypothalamic-pituitary-adrenocortical axis dysregulation and prefrontal cortex (PFC) dysfunction, suggesting a functional link between aberrant prefrontal corticosteroid signaling and mood regulation. Methods We used a virally mediated knockdown strategy (short hairpin RNA targeting the glucocorticoid receptor [GR]) to attenuate PFC GR signaling in the rat PFC. Adult male rats received bilateral microinjections of vector control or short hairpin RNA targeting the GR into the prelimbic (n = 44) or infralimbic (n = 52) cortices. Half of the animals from each injection group underwent chronic variable stress, and all were subjected to novel restraint. The first 2 days of chronic variable stress were used to assess depression- and anxiety-like behavior in the forced swim test and open field. Results The GR knockdown confined to the infralimbic PFC caused acute stress hyper-responsiveness, sensitization of stress responses after chronic variable stress, and induced depression-like behavior (increased immobility in the forced swim test). Knockdown of GR in the neighboring prelimbic PFC increased hypothalamic-pituitary-adrenocortical axis responses to acute stress and caused hyper-locomotion in the open field, but did not affect stress sensitization or helplessness behavior. Conclusions The data indicate a marked functional heterogeneity of glucocorticoid action in the PFC and highlight a prominent role for the infralimbic GR in appropriate stress adaptation, emotional control, and mood regulation. PMID:23683655

  12. Extension joints: a tool to infer the active stress field orientation (case study from southern Italy)

    NASA Astrophysics Data System (ADS)

    De Guidi, Giorgio; Caputo, Riccardo; Scudero, Salvatore; Perdicaro, Vincenzo

    2013-04-01

    An intense tectonic activity in eastern Sicily and southern Calabria is well documented by the differential uplift of Late Quaternary coastlines and by the record of the strong historical earthquakes. The extensional belt that crosses this area is dominated by a well established WNW-ESE-oriented extensional direction. However, this area is largely lacking of any structural analysis able to define the tectonics at a more local scale. In the attempt to fill this gap of knowledge, we carried out a systematic analysis of extension joint sets. In fact, the systematic field collection of these extensional features, coupled with an appropriate inversion technique, allows to determine the characteristic of the causative tectonic stress field. Joints are defined as outcrop-scale mechanical discontinuities showing no evidence of shear motion and being originated as purely extensional fractures. Such tectonic features are one of the most common deformational structures in every tectonic environment and particularly abundant in the study area. A particular arrangement of joints, called "fracture grid-lock system", and defined as an orthogonal joint system where mutual abutting and crosscutting relationships characterize two geologically coeval joint sets, allow to infer the direction and the magnitude of the tectonic stress field. We performed the analyses of joints only on Pleistocene deposits of Eastern Sicily and Southern Calabria. Moreover we investigated only calcarenite sediments and cemented deposits, avoiding claysh and loose matrix-supported clastic sediments where the deformation is generally accomodated in a distributed way through the relative motion between the single particles. In the selection of the sites, we also took into account the possibility to clearly observe the geometric relationships among the joints. For this reason we chose curvilinear road cuts or cliffs, wide coastal erosional surfaces and quarries. The numerical inversions show a similar stress

  13. Far-field detection of sub-wavelength Tetris without extra near-field metal parts based on phase prints of time-reversed fields with intensive background interference.

    PubMed

    Chen, Yingming; Wang, Bing-Zhong

    2014-07-14

    Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

  14. Simultaneous Stress and Field Control of Sustainable Switching of Ferroelectric Phases

    PubMed Central

    Finkel, P.; Staruch, M.; Amin, A.; Ahart, M.; Lofland, S.E.

    2015-01-01

    In ferroelectrics, manifestation of a strong electromechanical coupling is attributed to both engineered domain morphology and phase transformations. However, realization of large sustainable and reversible strains and polarization rotation has been limited by fatigue, nonlinearity and hysteresis losses. Here, we demonstrate that large strain and polarization rotation can be generated for over 40 × 106 cycles with little fatigue by realization of a reversible ferroelectric-ferroelectric phase transition in [011] cut Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor ferroelectric single crystal. Direct tuning of this effect through combination of stress and applied electric field, confirmed both macroscopically and microscopically with x-ray and Raman scattering, reveals the local symmetry while sweeping through the transition with a low applied electric field (<0.2 MV/m) under mechanical stress. The observed change in local symmetry as determined by x-ray scattering confirms a proposed polarization rotation mechanism corresponding to a transition between rhombohedral and orthorhombic phases. These results shed more light onto the nature of this reversible transformation between two ferroelectric phases and advance towards the development of a wide range of ferroic and multiferroic devices. PMID:26345729

  15. A comparison of long-term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel T.; Shearer, Peter M.; Borsa, Adrian A.; Fialko, Yuri

    2016-01-01

    Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.

  16. Experimental evidence of stress-field-induced selection of variants in Ni-Mn-Ga ferromagnetic shape-memory alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. D.; Key Laboratory for Anisotropy and Texture of Materials; Brown, D. W.

    2007-05-01

    The in situ time-of-flight neutron-diffraction measurements captured well the martensitic transformation behavior of the Ni-Mn-Ga ferromagnetic shape-memory alloys under uniaxial stress fields. We found that a small uniaxial stress applied during phase transformation dramatically disturbed the distribution of variants in the product phase. The observed changes in the distributions of variants may be explained by considering the role of the minimum distortion energy of the Bain transformation in the effective partition among the variants belonging to the same orientation of parent phase. It was also found that transformation kinetics under various stress fields follows the scale law. The present investigationsmore » provide the fundamental approach for scaling the evolution of microstructures in martensitic transitions, which is of general interest to the condensed matter community.« less

  17. Parametrically driven scalar field in an expanding background

    NASA Astrophysics Data System (ADS)

    Yanez-Pagans, Sergio; Urzagasti, Deterlino; Oporto, Zui

    2017-10-01

    We study the existence and dynamic behavior of localized and extended structures in a massive scalar inflaton field ϕ in 1 +1 dimensions in the framework of an expanding universe with constant Hubble parameter. We introduce a parametric forcing, produced by another quantum scalar field ψ , over the effective mass squared around the minimum of the inflaton potential. For this purpose, we study the system in the context of the cubic quintic complex Ginzburg-Landau equation and find the associated amplitude equation to the cosmological scalar field equation, which near the parametric resonance allows us to find the field amplitude. We find homogeneous null solutions, flat-top expanding solitons, and dark soliton patterns. No persistent non-null solutions are found in the absence of parametric forcing, and divergent solutions are obtained when the forcing amplitude is greater than 4 /3 .

  18. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia

    2017-04-01

    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field

  19. Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps

    NASA Astrophysics Data System (ADS)

    Maury, J.; Cornet, F. H.; Cara, M.

    2014-11-01

    In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.

  20. On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin Samuel; Doetsch, Joseph; Maurer, Hansruedi; Krietsch, Hannes; Amann, Florian; Evans, Keith Frederick; Nejati, Morteza; Jalali, Mohammadreza; Valley, Benoît; Obermann, Anne Christine; Wiemer, Stefan; Giardini, Domenico

    2018-01-01

    To characterize the stress field at the Grimsel Test Site (GTS) underground rock laboratory, a series of hydrofracturing and overcoring tests were performed. Hydrofracturing was accompanied by seismic monitoring using a network of highly sensitive piezosensors and accelerometers that were able to record small seismic events associated with metre-sized fractures. Due to potential discrepancies between the hydrofracture orientation and stress field estimates from overcoring, it was essential to obtain high-precision hypocentre locations that reliably illuminate fracture growth. Absolute locations were improved using a transverse isotropic P-wave velocity model and by applying joint hypocentre determination that allowed for the computation of station corrections. We further exploited the high degree of waveform similarity of events by applying cluster analysis and relative relocation. Resulting clouds of absolute and relative located seismicity showed a consistent east-west strike and 70° dip for all hydrofractures. The fracture growth direction from microseismicity is consistent with the principal stress orientations from the overcoring stress tests, provided that an anisotropic elastic model for the rock mass is used in the data inversions. The σ1 stress is significantly larger than the other two principal stresses and has a reasonably well-defined orientation that is subparallel to the fracture plane; σ2 and σ3 are almost equal in magnitude and thus lie on a circle defined by the standard errors of the solutions. The poles of the microseismicity planes also lie on this circle towards the north. Analysis of P-wave polarizations suggested double-couple focal mechanisms with both thrust and normal faulting mechanisms present, whereas strike-slip and thrust mechanisms would be expected from the overcoring-derived stress solution. The reasons for these discrepancies can be explained by pressure leak-off, but possibly may also involve stress field rotation around the

  1. Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation

    PubMed Central

    Li, Xiaoping; Schilkey, Faye; Smith, Geoffrey B.

    2018-01-01

    Natural ionizing background radiation has exerted a constant pressure on organisms since the first forms of life appeared on Earth, so that cells have developed molecular mechanisms to avoid or repair damages caused directly by radiation or indirectly by radiation-induced reactive oxygen species (ROS). In the present study, we investigated the transcriptional effect of depriving Shewanella oneidensis cultures of background levels of radiation by growing the cells in a mine 655 m underground, thus reducing the dose rate from 72.1 to 0.9 nGy h-1 from control to treatment, respectively. RNASeq transcriptome analysis showed the differential expression of 4.6 and 7.6% of the S. oneidensis genome during early- and late-exponential phases of growth, respectively. The greatest change observed in the treatment was the downregulation of ribosomal proteins (21% of all annotated ribosomal protein genes during early- and 14% during late-exponential) and tRNA genes (14% of all annotated tRNA genes in early-exponential), indicating a marked decrease in protein translation. Other significant changes were the upregulation of membrane transporters, implying an increase in the traffic of substrates across the cell membrane, as well as the up and downregulation of genes related to respiration, which could be interpreted as a response to insufficient oxidants in the cells. In other reports, there is evidence in multiple species that some ROS not just lead to oxidative stress, but act as signaling molecules to control cellular metabolism at the transcriptional level. Consistent with these reports, several genes involved in the metabolism of carbon and biosynthesis of amino acids were also regulated, lending support to the idea of a wide metabolic response. Our results indicate that S. oneidensis is sensitive to the withdrawal of background levels of ionizing radiation and suggest that a transcriptional response is required to maintain homeostasis and retain normal growth. PMID:29768440

  2. Glacial isostatic stress shadowing by the Antarctic ice sheet

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  3. Notification: Background Investigation Services

    EPA Pesticide Factsheets

    Project #OA-FY15-0029, February 26, 2015. The Office of Inspector General (OIG) for the U.S. Environmental Protection Agency (EPA) plans to begin field work for our audit of background investigation services.

  4. Comparison between Modelled and Measured Magnetic Field Scans of Different Planar Coil Topologies for Stress Sensor Applications.

    PubMed

    Gibbs, Robert; Moreton, Gregory; Meydan, Turgut; Williams, Paul

    2018-03-21

    The investigation of planar coils of differing topologies, when combined with a magnetostrictive amorphous ribbon to form a stress-sensitive self-inductor, is an active research area for applications as stress or pressure sensors. Four topologies of planar coil (Circular, Mesh, Meander, and Square) have been constructed using copper track on 30 mm wide PCB substrate. The coils are energized to draw 0.4 A and the resulting magnetic field distribution is observed with a newly developed three-dimensional magnetic field scanner. The system is based on a variably angled Micromagnetics ® STJ-020 tunneling magneto-resistance sensor with a spatial resolution of 5-10 µm and sensitivity to fields of less than 10 A/m. These experimental results are compared with the fields computed by ANSYS Maxwell ® finite element modelling of the same topologies. Measured field shape and strength correspond well with the results of modelling, including direct observation of corner and edge effects. Three-dimensional analysis of the field shape produced by the square coil, isolating the components H ( x ) and H ( z ) , is compared with the three-dimensional field solutions from modelling. The finite element modelling is validated and the accuracy and utility of the new system for three-dimensional scanning of general stray fields is confirmed.

  5. Comparison between Modelled and Measured Magnetic Field Scans of Different Planar Coil Topologies for Stress Sensor Applications

    PubMed Central

    Moreton, Gregory

    2018-01-01

    The investigation of planar coils of differing topologies, when combined with a magnetostrictive amorphous ribbon to form a stress-sensitive self-inductor, is an active research area for applications as stress or pressure sensors. Four topologies of planar coil (Circular, Mesh, Meander, and Square) have been constructed using copper track on 30 mm wide PCB substrate. The coils are energized to draw 0.4 A and the resulting magnetic field distribution is observed with a newly developed three-dimensional magnetic field scanner. The system is based on a variably angled Micromagnetics® STJ-020 tunneling magneto-resistance sensor with a spatial resolution of 5–10 µm and sensitivity to fields of less than 10 A/m. These experimental results are compared with the fields computed by ANSYS Maxwell® finite element modelling of the same topologies. Measured field shape and strength correspond well with the results of modelling, including direct observation of corner and edge effects. Three-dimensional analysis of the field shape produced by the square coil, isolating the components H(x) and H(z), is compared with the three-dimensional field solutions from modelling. The finite element modelling is validated and the accuracy and utility of the new system for three-dimensional scanning of general stray fields is confirmed. PMID:29561809

  6. Interaction between regional and magma-induced stresses and their impact on volcano-tectonic seismicity

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D. M.; Neuberg, J. W.

    2012-10-01

    Recent seismological observations have reported volcano-tectonic (VT) earthquakes with fault-plane solutions exhibiting a change of ~ 90° in their pressure axes relative to the regional stress field. Interestingly, they are recorded mainly during periods preceding eruptive activity and coexisting with those VTs showing a regional trend. This study explains the occurrence of such trends in VT seismicity and discusses the possible patterns of earthquake locations related to the interaction of regional and magma-induced stresses caused by pressurization or depressurization of magmatic sources. Our analysis shows that in the presence of a dominant regional stress field, faulting will occur on faults whose associated slip direction is close to or in agreement with the background regional stress. Failure on faults with an opposite slip direction is unlikely to occur. As magma pressure starts counter-acting the regional stresses, the likelihood of faults to slip in either a regional or opposite sense of slip relative to regional maximum compression increases, allowing the co-existence of possible failure with both slip tendencies, however the spatial distribution of possible faulting differs. As the pressure is progressively increased, the stress patterns gradually approach those corresponding to the absence of a regional stress field. The presented modeling results have implications for volcanic monitoring routines aiming to detect changes in stress patterns. They will ultimately help to improve the correct interpretation of volcano-tectonic seismicity.

  7. Background simulations of the wide-field coded-mask camera for X-/Gamma-ray of the French-Chinese mission SVOM

    NASA Astrophysics Data System (ADS)

    Godet, Olivier; Barret, Didier; Paul, Jacques; Sizun, Patrick; Mandrou, Pierre; Cordier, Bertrand

    SVOM (Space Variable Object Monitor) is a French-Chinese mission dedicated to the study of high-redshift GRBs, which is expected to be launched in 2012. The anti-Sun pointing strategy of SVOM along with a strong and integrated ground segment consisting of two wide-field robotic telescopes covering the near-IR and optical will optimise the ground-based GRB follow-ups by the largest telescopes and thus the measurements of spectroscopic redshifts. The central instrument of the science payload will be an innovative wide-field coded-mask camera for X- /Gamma-rays (4-250 keV) responsible for triggering and localising GRBs with an accuracy better than 10 arc-minutes. Such an instrument will be background-dominated so it is essential to estimate the background level expected once in orbit during the early phase of the instrument design in order to ensure good science performance. We present our Monte-Carlo simulator enabling us to compute the background spectrum taking into account the mass model of the camera and the main components of the space environment encountered in orbit by the satellite. From that computation, we show that the current design of the camera CXG will be more sensitive to high-redshift GRBs than the Swift-BAT thanks to its low-energy threshold of 4 keV.

  8. Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: Geodynamic implications for central Mediterranean

    NASA Astrophysics Data System (ADS)

    Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed

    2015-06-01

    We compiled 123 focal mechanisms from various sources for Tunisia and adjacent regions up to Sicily, to image the current stress field in the Maghrebides chain (from Tunisia to Sicily) and its foreland. Stress inversion of all the available data provides a first-order stress field with a N150°E horizontal compression (SHmax) and a transpressional tectonic regime, but the obtained stress tensor poorly fit to the data set. We separated them into regional subsets (boxes) in function of their geographical proximity, kinematic regime, homogeneity of kinematic orientations, and tectonic setting. Their respective inversion evidences second- and third-order spatial variations in tectonic regime and horizontal stress directions. The stress field gradually changes from compression in the Maghrebides thrust belt to transpression and strike slip in the Atlassic and Pelagian foreland, respectively, where preexisting NW-SE to E-W deep faults system are reactivated. This spatial variation of the sismotectonic stress field and tectonic regime is consistent with the neotectonic stress field determined by others from fault slip data. The major Slab Transfer Edge Propagator faults (i.e., North-South Axis-Hammamet relay and Malte Escarpment), which laterally delimit the subducting slabs, play an active role in second- and third-order lateral variations of the tectonic regime and stress field orientations over the Tunisian/Sicilian domain. The past and current tectonic deformations and kinematics of the central Mediterranean are subordinately guided by the plate convergence (i.e., Africa-Eurasia), controlled or influenced by lateral slab migration/segmentation and by deep dynamics such as lithosphere-mantle interaction.

  9. Prenatal exposure to restraint or predator stresses attenuates field excitatory postsynaptic potentials in infant rats.

    PubMed

    Saboory, Ehsan; Ahmadzadeh, Ramin; Roshan-Milani, Shiva

    2011-12-01

    Exposure to stress is known to change synaptic plasticity and results in long-term depression; further, this stress precipitates seizures. In the study described here, the prenatal restraint and predator stress models were used to test the hypothesis that indirect prenatal stresses influence hippocampal synaptic potentiation and may affect seizures susceptibility in infant rats. Pregnant female Wistar rats were divided into 3 groups: control, restraint-stressed, and predator-stressed groups. Both stressed groups were exposed to the stressor on gestation days 15, 16, and 17. The restraint stress involved 1-h sessions twice daily in a Plexiglas tube and the predator stress involved 2-h sessions once daily in a cage placed within the visual range of a caged cat. Blood corticosterone (COS) levels were measured in different time points. Hippocampal slices were prepared and field excitatory postsynaptic potentials (fEPSP) were studied on postnatal day 15. Pilocarpine was administered on postnatal day 25 and mortality rates were measured after 2 and 24h. Restraint and predator stresses resulted in significantly elevated COS blood levels in dams and pups. Both the amplitude and slope of fEPSP in the CA1 area decreased significantly in the stressed groups as compared to the control. Prenatal restraint and predator stresses significantly increased the fatal effect of pilocarpine at 24h after injection. Exposure to prenatal stresses and COS blood levels elevation reduce hippocampal synaptic potentiation and increase mortality rate of seizure in infant rats and may affect on later seizure susceptibility and prognosis. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  10. Background field removal technique based on non-regularized variable kernels sophisticated harmonic artifact reduction for phase data for quantitative susceptibility mapping.

    PubMed

    Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2018-06-11

    We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.

  11. Analysis of stress fields and elastic energies in the vicinity of nanograin boundaries using the disclination approach

    NASA Astrophysics Data System (ADS)

    Sukhanov, Ivan I.; Ditenberg, Ivan A.

    2017-12-01

    The paper provides a theoretical analysis of elastic stresses and elastic energy distribution in nanostructured metal materials in the vicinity of nanograin boundaries with a high partial disclination density. The analysis demonstrates the stress field distribution in disclination grain boundary configurations as a function of nanograin size, taking into account the superposition of these stresses in screening the disclination pile-ups. It is found that the principal stress tensor components reach maximum values only in disclination planes P ≈ E/25 and that the stress gradients peak at nodal points ∂P/∂x ≈ 0.08E nm-1. The shear stress components are localized within the physical grain size, and the specific elastic energy distribution for such configurations reveals characteristic local maxima which can be the cause for physical broadening of nanograin boundaries.

  12. Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Carminati, Eugenio

    2016-01-01

    3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.

  13. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  14. Effect of interleukin-1beta on the behavior of rats during mild stress in the open-field test.

    PubMed

    Pertsov, S S; Koplik, E V; Simbirtsev, A S; Kalinichenko, L S

    2009-11-01

    We studied the effect of interleukin-1beta on the behavior of rats with different individual typological characteristics during mild stress in the open-field test. Intraperitoneal injection of interleukin-1beta (5 microg/kg, 108 U/mg) was followed by a decrease in orientation and exploratory activity of passive and, particularly, of active animals in the open field. As differentiated from rats receiving physiological saline, the initial differences in behavioral characteristics of active and passive animals were not revealed in the repeated test after injection of interleukin-1beta. We conclude that interleukin-1beta abolishes the behavioral differences between active and passive specimens in the open field. These data suggest that administration of interleukin-1beta to rats leads to reorganization of the mechanisms for emotional evaluation of adverse emotiogenic factors under conditions of mild stress in the open-field test.

  15. Field performance of timber bridges. 11, Spearfish Creek stress-laminated box-beam bridge

    Treesearch

    J. P. Wacker; M. A. Ritter; K. Stanfill-McMillan

    The Spearfish Creek bridge was constructed in 1992 in Spearfish, South Dakota. It is a single-span, stress-laminated, box-beam superstructure. Performance of the bridge is being monitored for 5 years, beginning at installation. This report summarizes results for the first 3-1/2 years of monitoring and includes information on the design, construction, and field...

  16. Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats.

    PubMed

    Szemerszky, Renáta; Zelena, Dóra; Barna, István; Bárdos, György

    2010-01-15

    It is believed that different electromagnetic fields do have beneficial and harmful biological effects. The aim of the present work was to study the long-term consequences of 50 Hz electromagnetic field (ELF-EMF) exposure with special focus on the development of chronic stress and stress-induced psychopathology. Adult male Sprague-Dawley rats were exposed to ELF-EMF (50 Hz, 0.5 mT) for 5 days, 8h daily (short) or for 4-6 weeks, 24h daily (long). Anxiety was studied in elevated plus maze test, whereas depression-like behavior of the long-treated group was examined in the forced swim test. Some days after behavioral examination, the animals were decapitated among resting conditions and organ weights, blood hormone levels as well as proopiomelanocortin mRNA level from the anterior lobe of the pituitary gland were measured. Both treatments were ineffective on somatic parameters, namely none of the changes characteristic to chronic stress (body weight reduction, thymus involution and adrenal gland hypertrophy) were present. An enhanced blood glucose level was found after prolonged ELF-EMF exposure (p=0.013). The hormonal stress reaction was similar in control and short-term exposed rats, but significant proopiomelanocortin elevation (p<0.000) and depressive-like behavior (enhanced floating time; p=0.006) were found following long-term ELF-EMF exposure. Taken together, long and continuous exposure to relatively high intensity electromagnetic field may count as a mild stress situation and could be a factor in the development of depressive state or metabolic disturbances. Although we should stress that the average intensity of the human exposure is normally much smaller than in the present experiment.

  17. Experimental study of uniaxial stress effects on Coulomb-limited mobility in p-type metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken

    2007-11-01

    Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.

  18. 2010 AUGUST 1-2 SYMPATHETIC ERUPTIONS. I. MAGNETIC TOPOLOGY OF THE SOURCE-SURFACE BACKGROUND FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, V. S.; Mikic, Z.; Toeroek, T.

    2012-11-01

    A sequence of apparently coupled eruptions was observed on 2010 August 1-2 by Solar Dynamics Observatory and STEREO. The eruptions were closely synchronized with one another, even though some of them occurred at widely separated locations. In an attempt to identify a plausible reason for such synchronization, we study the large-scale structure of the background magnetic configuration. The coronal field was computed from the photospheric magnetic field observed at the appropriate time period by using the potential field source-surface model. We investigate the resulting field structure by analyzing the so-called squashing factor calculated at the photospheric and source-surface boundaries, asmore » well as at different coronal cross-sections. Using this information as a guide, we determine the underlying structural skeleton of the configuration, including separatrix and quasi-separatrix surfaces. Our analysis reveals, in particular, several pseudo-streamers in the regions where the eruptions occurred. Of special interest to us are the magnetic null points and separators associated with the pseudo-streamers. We propose that magnetic reconnection triggered along these separators by the first eruption likely played a key role in establishing the assumed link between the sequential eruptions. The present work substantiates our recent simplified magnetohydrodynamic model of sympathetic eruptions and provides a guide for further deeper study of these phenomena. Several important implications of our results for the S-web model of the slow solar wind are also addressed.« less

  19. Evolution of the stress field in the southern Scotia Arc from the late Mesozoic to the present-day

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Galindo-Zaldívar, Jesús; Bohoyo, Fernando; Mink, Sandra

    2014-12-01

    The geological evolution of the Scotia Arc, which developed between Antarctica and South America, has facilitated the connection between the Pacific and Atlantic oceans and, has important global implications. To improve the knowledge of the late Mesozoic evolution of the southern Scotia Arc, over 6000 brittle mesostructures were measured over the last 20 years at different outcrops from the northern Antarctic Peninsula and the South Shetland Islands as well as the James Ross and South Orkney archipelagos. This dataset covers a length of more than 1000 km of the arc. Fault data were analysed using the Etchecopar, y-R, Right Dihedra, Stress Inversion and Search Grid Inversion Palaeostress Determination methods. A total of 275 stress tensors were obtained. The results showed that the maximum horizontal stress was in the ENE-WSW and the NW-SE orientations and that the horizontal extension tensors were oriented NE-SW and NW-SE. In addition, seismic activity and focal mechanism solutions were analysed using the Gephart method to establish the present-day stress field and characterise the active tectonics. The results obtained suggest that there is a regional NE-SW compression and a NW-SE extension regime at the present day. The Southern Scotia Arc has a complex geological history due to the different tectonic settings (transform, convergent and divergent) that have affected this sector during its geological evolution from the late Mesozoic until the present day. Six stress fields were obtained from the brittle mesostructure population analysis in the region. The NW-SE and N-S maximum horizontal stresses were related to a combination of Mesozoic oceanic subduction of the former Phoenix Plate under the Pacific margin of the Antarctic Plate, Mesozoic-Cenozoic subduction of the northern Weddell Sea and the Oligocene to the Middle Miocene dextral strike-slip movement between the Scotia and Antarctic plates along the South Scotia Ridge. The NE-SW compression was related to

  20. Below-Background Ionizing Radiation as an Environmental Cue for Bacteria

    DOE PAGES

    Castillo, Hugo; Smith, Geoffrey B.

    2017-02-14

    All organisms on earth grow under the influence of a natural and relatively constant dose of ionizing radiation referred to as background radiation, and so cells have different mechanisms to prevent the accumulation of damage caused by its different components. However, current knowledge of the deleterious effects of radiation on cells is based on the exposure to acute and high or to chronic, above background doses of radiation and therefore is not appropriate to explain the cellular and biochemical mechanisms that cells employ to sense and respond to chronic below-background levels. Studies at below-background radiation doses can provide insight intomore » the biological role of radiation, as suggested by several examples of what appears to be a stress response in cells grown at doses that range from 10 to 79 times lower than background. Here, we discuss some of the technical constraints to shield cells from radiation to below-background levels, as well as different approaches used to detect and measure responses to such unusual environmental conditions. Then, we present data from Shewanella oneidensis and Deinococcus radiodurans experiments that show how two taxonomically distant bacterial species sense and respond to unnaturally low levels of radiation. Finally, in brief, we grew S. oneidensis and D. radiodurans in liquid culture at dose rates of 72.05 (control) and 0.91 (treatment) nGy hr -1 (including radon) for up to 72 h and measured cell density and the expression of stress-related genes. Our results suggest that a stress response is triggered in the absence of normal levels of radiation.« less

  1. Below-Background Ionizing Radiation as an Environmental Cue for Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, Hugo; Smith, Geoffrey B.

    All organisms on earth grow under the influence of a natural and relatively constant dose of ionizing radiation referred to as background radiation, and so cells have different mechanisms to prevent the accumulation of damage caused by its different components. However, current knowledge of the deleterious effects of radiation on cells is based on the exposure to acute and high or to chronic, above background doses of radiation and therefore is not appropriate to explain the cellular and biochemical mechanisms that cells employ to sense and respond to chronic below-background levels. Studies at below-background radiation doses can provide insight intomore » the biological role of radiation, as suggested by several examples of what appears to be a stress response in cells grown at doses that range from 10 to 79 times lower than background. Here, we discuss some of the technical constraints to shield cells from radiation to below-background levels, as well as different approaches used to detect and measure responses to such unusual environmental conditions. Then, we present data from Shewanella oneidensis and Deinococcus radiodurans experiments that show how two taxonomically distant bacterial species sense and respond to unnaturally low levels of radiation. Finally, in brief, we grew S. oneidensis and D. radiodurans in liquid culture at dose rates of 72.05 (control) and 0.91 (treatment) nGy hr -1 (including radon) for up to 72 h and measured cell density and the expression of stress-related genes. Our results suggest that a stress response is triggered in the absence of normal levels of radiation.« less

  2. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  3. Stress analysis of three-dimensional roadway layout of stagger arrangement with field observation

    NASA Astrophysics Data System (ADS)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method for extracting thick (> 5 m) to ultra-thick coal seams in recent years. However, low-level recovery ratio of coal resources and top-coal loss above the supports at both ends of working face are long-term problems. Geological factors, such as large dip angle, soft rock, mining depth further complicate the problems. This paper proposes addressing this issue by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress environment surrounding head entry in the replacing working face based on the stress distribution characteristics at the triangular coal-pillar side in gob and the stress slip line field theory. In the second step, filed observation was conducted. Finally, an economic evaluation of the 3-D RLSA for extracting thick to ultra-thick seams was conducted.

  4. Optimal background matching camouflage.

    PubMed

    Michalis, Constantine; Scott-Samuel, Nicholas E; Gibson, David P; Cuthill, Innes C

    2017-07-12

    Background matching is the most familiar and widespread camouflage strategy: avoiding detection by having a similar colour and pattern to the background. Optimizing background matching is straightforward in a homogeneous environment, or when the habitat has very distinct sub-types and there is divergent selection leading to polymorphism. However, most backgrounds have continuous variation in colour and texture, so what is the best solution? Not all samples of the background are likely to be equally inconspicuous, and laboratory experiments on birds and humans support this view. Theory suggests that the most probable background sample (in the statistical sense), at the size of the prey, would, on average, be the most cryptic. We present an analysis, based on realistic assumptions about low-level vision, that estimates the distribution of background colours and visual textures, and predicts the best camouflage. We present data from a field experiment that tests and supports our predictions, using artificial moth-like targets under bird predation. Additionally, we present analogous data for humans, under tightly controlled viewing conditions, searching for targets on a computer screen. These data show that, in the absence of predator learning, the best single camouflage pattern for heterogeneous backgrounds is the most probable sample. © 2017 The Authors.

  5. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Hamzeh, S.; Naseri, A. A.; AlaviPanah, S. K.; Mojaradi, B.; Bartholomeus, H. M.; Clevers, J. G. P. W.; Behzad, M.

    2013-04-01

    The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.

  6. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  7. Background radiation measurements at high power research reactors

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.; Prospect Collaboration

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  8. A laboratory study of mean flow generation in rotating fluids by Reynolds stress gradients

    NASA Astrophysics Data System (ADS)

    McGuinness, D. S.; Boyer, D. L.; Fernando, H. J. S.

    2001-06-01

    Laboratory experiments were conducted that demonstrate that a mean azimuthal flow can be produced by introducing Reynolds stress gradients to a rotating fluid with zero initial mean flow. This mechanism may play a role in the generation of mean currents in coastal regions. The experiments entail the establishment of turbulence in a thin annular-shaped region centered within a cylindrical test cell through the use of a vertically oscillating grid. This region rests in a horizontal plane perpendicular to the vertical axis of the tank, and the entire system is placed on a turntable to simulate background rotation. Flow visualization techniques are used to depict qualitative features of the resulting flow field. Measurements of the mean and turbulent velocity fields are performed using a two-component laser-Doppler velocimeter. The results show how rectified currents (mean flows) can be generated via Reynolds stress gradients induced by periodic forcing of the grid. In the absence of background rotation, rectified flow is observed in the radial and vertical directions only. The presence of background rotation tends to organize these motions in that the flow tends to move parallel to the turbulent source, i.e., in the azimuthal direction, with the source (strong turbulence) located to the right, facing downstream. The influence of rotation on the Reynolds stresses and their gradients as well as on the ensuing mean flow is evaluated, and the observations are examined by considering individual contributions of the terms in the Reynolds-averaged momentum equations.

  9. Background Independence and Duality Invariance in String Theory.

    PubMed

    Hohm, Olaf

    2017-03-31

    Closed string theory exhibits an O(D,D) duality symmetry on tori, which in double field theory is manifest before compactification. I prove that to first order in α^{'} there is no manifestly background independent and duality invariant formulation of bosonic string theory in terms of a metric, b field, and dilaton. To this end I use O(D,D) invariant second order perturbation theory around flat space to show that the unique background independent candidate expression for the gauge algebra at order α^{'} is inconsistent with the Jacobi identity. A background independent formulation exists instead for frame variables subject to α^{'}-deformed frame transformations (generalized Green-Schwarz transformations). Potential applications for curved backgrounds, as in cosmology, are discussed.

  10. Greybody factors for a minimally coupled scalar field in a three-dimensional Einstein-power-Maxwell black hole background

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigoris; Rincón, Ángel

    2018-04-01

    In the present work we study the propagation of a probe minimally coupled scalar field in Einstein-power-Maxwell charged black hole background in (1 +2 ) dimensions. We find analytical expressions for the reflection coefficient as well as for the absorption cross section in the low energy regime, and we show graphically their behavior as functions of the frequency for several values of the free parameters of the theory.

  11. Analysis of the stress field in a wedge using the fast expansions with pointwise determined coefficients

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. D.; Goryainov, V. V.; Danshin, A. A.

    2018-03-01

    The stress problem for the elastic wedge-shaped cutter of finite dimensions with mixed boundary conditions is considered. The differential problem is reduced to the system of linear algebraic equations by applying twice the fast expansions with respect to the angular and radial coordinate. In order to determine the unknown coefficients of fast expansions, the pointwise method is utilized. The problem solution derived has explicit analytical form and it’s valid for the entire domain including its boundary. The computed profiles of the displacements and stresses in a cross-section of the cutter are provided. The stress field is investigated for various values of opening angle and cusp’s radius.

  12. Effect of Coulomb stress on the Gutenberg-Richter law

    NASA Astrophysics Data System (ADS)

    Navas-Portella, V.; Corral, A.; Jimenez, A.

    2017-12-01

    Coulomb stress theory has been used for years in seismology to understand how earthquakes trigger each other. Whenever an earthquake occurs, the stress field changes in its neighbourhood, with places with positive values brought closer to failure, whereas negative values distance away that location from failure. Earthquake models that relate rate changes and Coulomb stress after a main event, such as the rate-and-state model, assume negative and positive stress values affect rate changes according to the same functional form. As a first order approximation, under uniform background seismicity before the main event, different values of the b-exponent in the Gutenberg-Richter law would indicate different behaviour for positive and negative stress. In this work, we study the Gutenberg-Richter law in the aftershock sequence of the Landers earthquake (California, 1992, MW=7.3). By using a statistically based fitting method, we discuss whether the sign of Coulomb stresses and the distance to the fault have a significant effect on the value of the b-exponent.

  13. Spatially extensive uniform stress fields on Venus inferred from radial dike swarm geometries: The Aphrodite Terra example

    NASA Technical Reports Server (NTRS)

    Grosfils, Eric B.; Head, James W.

    1993-01-01

    The high resolution and near global coverage of Magellan radar images is facilitating attempts to systematically investigate the stresses that have deformed the venusian crust. Here we continue earlier efforts to utilize approximately 170 large, radially lineated structures interpreted as dike swarms to assess the orientation of the regional maximum horizontal compressive stress (MHCS) which existed in their vicinities during emplacement. Examination of swarms near the equator reveals a link to broad scale regional structures, such as Aphrodite Terra, across distances in excess of 1000 km, suggesting the existence of first order stress fields which affect areas of more than 10(exp 6) sq km in a uniform fashion. Focusing further upon the Aphrodite Terra region, the MHCS field in the surrounding lowlands inferred from radial swarms is oriented approximately normal to the slope of the highland topography. This stress configuration appears, at a simple level, to be incompatible with that expected during either upwelling or downwelling construction of the highlands. In addition, the relatively undeformed geometry of the radial structures within the highlands implies that these dike swarm features formed more recently than their highly deformed surroundings. We conclude that the differential stresses which existed during emplacement of the dike swarms within and adjacent to the Aphrodite Terra highlands are related to the gravitational relaxation of pre-existing topography.

  14. Stress fields acting during lithosphere breakup above a melting mantle: A case example in West Greenland

    NASA Astrophysics Data System (ADS)

    Abdelmalak, Mansour M.; Geoffroy, Laurent; Angelier, Jacques; Bonin, Bernard; Callot, Jean-Paul; Gelard, Jean-Pierre; Aubourg, Charles

    2015-04-01

    We characterize and map the stress fields acting during plate breakup along the West Greenland volcanic margin. Interpolated stress fields are based on an inversion of fault-slip data sets and magma-driven fractures, crosscutting mainly an exposed inner seaward-dipping basaltic wedge (i.e., SDRi) segmented along-strike, with differently oriented segments. We identify two distinct tectonic episodes P1 and P2 which are both syn-magmatic and purely extensional. P1 probably acted as early as the Late Palaeocene. This stress field was first homogeneous with the minimum principal stress σ3 trending ~N060E, defining a P1A stage. During development of the SDRi, σ3 locally reoriented to become orthogonal to each margin segment (P1B). P1 is coeval with lithosphere breakup and is associated with an extension orthogonal to the Labrador-Baffin axis, which is inherited from the Mesozoic. The P1 related dykes constitute an homogeneous HKTP (High-K-Ti-P) suite. This suit displays alkaline affinities and is rich in both LILE and HFSE. A regional and radical change of σ3 to a ~NS trend took place during P2. The P1-P2 transition occurred at ~56-54 Ma i.e. during magnetic Chron C24R. P2 is associated with only minor extension and σ3 runs parallel to the North American (NAM)/Greenland kinematic displacement vector. The dykes associated with P2 are quite different and constitute a less homogeneous LKTP (Low-K-Ti-P) suite. This suite is less rich in LILE, yielding poorly fractioned chondrite-normalized REE patterns and HFSE contents similar to E-MORB, with slight U-Th and P positive anomalies. We establish therefore that the minimum horizontal stress σ3 for P1 and P2 is parallel to the relative displacement of Greenland related to NAM but not to its absolute displacement during the Tertiary. Taking into account those results as well as variations in magma chemistry from P1 to P2, we suggest that tectonic stresses at a volcanic margin could arise from the local dynamics of the

  15. Full-field measurement of surface topographies and thin film stresses at elevated temperatures by digital gradient sensing method.

    PubMed

    Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih

    2015-02-01

    Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.

  16. Renormalized stress-energy tensor for stationary black holes

    NASA Astrophysics Data System (ADS)

    Levi, Adam

    2017-01-01

    We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the t -splitting variant of the method, which was first presented for ⟨ϕ2⟩ren , to compute the RSET in a stationary, asymptotically flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.

  17. Phenoliner: A New Field Phenotyping Platform for Grapevine Research

    PubMed Central

    Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard

    2017-01-01

    In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data. PMID:28708080

  18. Phenoliner: A New Field Phenotyping Platform for Grapevine Research.

    PubMed

    Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Rose, Johann Christian; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard

    2017-07-14

    In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data.

  19. Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Pierdominici, S.; Montone, P.; Mariucci, M. T.

    2009-04-01

    The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated

  20. Total antioxidant capacity, total oxidant status and oxidative stress index in the men exposed to 1.5 T static magnetic field.

    PubMed

    Sirmatel, O; Sert, C; Sirmatel, F; Selek, S; Yokus, B

    2007-06-01

    The aim of this study was to investigate the effects of a high-strength magnetic field produced by a magnetic resonance imaging (MRI) apparatus on oxidative stress. The effects of a 1.5 T static magnetic field on the total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) in male subjects were investigated. In this study, 33 male volunteers were exposed to a 1.5 T static magnetic field for a short time and the TAC, TOS and OSI of each subject were determined. Magnetic field exposure was provided using a magnetic resonance apparatus; radiofrequency was not applied. Blood samples were taken from subjects and TAC, TOS and OSI values were measured using the methods of Erel. TAC showed a significant increase in post-exposures compared to pre-exposures to the magnetic field (p < 0.05). OSI and TOS showed a significant decrease in post-exposures compared to pre-exposures to a 1.5 T magnetic field (for each of two, p < 0.01). The 1.5 T static magnetic field used in the MRI apparatus did not yield a negative effect; on the contrary, it produced the positive effect of decreasing oxidative stress in men following short-term exposure.

  1. Seasonal variation of the impact of a stressful procedure on open field behaviour and blood corticosterone in laboratory mice.

    PubMed

    Meyer, L; Caston, J; Mensah-Nyagan, A G

    2006-02-28

    Behavioural and hormonal seasonal changes are well documented in various vertebrate species living in their natural environment but circannual variations that may occur in laboratory animals reared in standard conditions are poorly investigated. This study shows that, in laboratory mice, the effects of stress on behavioural inhibition, investigatory behaviour and blood concentration of corticosterone are seasonally dependent. No consistency was observed between the reactivity of biological structures controlling the hormonal response to stress and the behavioural activities investigated at every period of the year. During the spring time, stress, which elicited a decrease of investigatory behaviour (estimated by the walking time in an open field), increased behavioural inhibition (estimated by the percentage of walking in the central area of the open field) as well as the blood corticosterone concentration in laboratory mice. In autumn, stress had no significant effect on behaviour despite the great hormonal concentration increase. The results reveal that, at certain period of the year, a stressful procedure is unable to affect behavioural parameters in laboratory mice which were maintained in constant 12-h dark/12-h light cycle. The report constitutes a novel piece of information suggesting a potential role of the endogenous biological clock in the modulation of stress response in mammals.

  2. Sex differences and the role of acute stress in the open-field tower maze.

    PubMed

    Lipatova, Olga; Campolattaro, Matthew M; Dixon, Dawndra C; Durak, Ayse

    2018-05-15

    Many studies provide evidence that differences in spatial learning exist between males and females. However, it is necessary to consider non-mnemonic factors that may influence these findings. The present experiment investigated acquisition, retention, and the effects of stress on response- and place-learning in male and female rats. Rats were trained in an open-field tower maze. Procedures were used to minimize stress in the rats, and their ability to solve place- or response-learning in the maze was determined by analyzing a response variable (i.e., first choice correct response) that was not influenced by general locomotor activity. The results revealed that male and female rats acquire place- and response-learning at the same rate even though females moved significantly faster in the maze. However, females showed better retrieval of place-, but not response-learning compared to male rats. This effect appeared to be enhanced when the rats were tested immediately following an acute restraint stress. Furthermore, both female and male rats that were exposed to acute restraint stress showed less impairment than controls when subsequently tested in a novel situation. These findings have clinical implications that a mild physiological stress response can make one more cognitively resistant to adversities later in life. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    PubMed

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  4. Active stress field and seismotectonic features in Intra-Carpathian region of Romania

    NASA Astrophysics Data System (ADS)

    Oros, Eugen; Popa, Mihaela; Diaconescu, Mihai; Radulian, Mircea

    2017-04-01

    The Romanian Intra-Carpathian Region is located on the eastern half of Tisa-Dacia geodynamic block from the Neogene Carpathian-Pannonian Basin. The distribution of seismicity displays clear clusters and narrower zones with seismogenic potential confirmed by the damaging earthquakes recoded in the region, e.g. July 01, 1829 (Mw=6.2), October 10, 1834 (Mw=5.6), January 26, 1916 (Mw=6.4), July 12, 1991 (Mw=5.7), December 2, 1991 (Mw=5.5). The state of recent stress and deformation appears to be controlled by the interaction of plate-boundary and intraplate forces, which include the counterclockwise rotation and N-NE-directed indentation of the Adria microplate and buoyancy forces associated with differential topography and lithospheric heterogeneities. The stress field and tectonic regime are investigated at regional and local scales by the formal inversion of focal mechamisms. There can be observed short-scale lateral changes of i) tectonic regimes from compressive (reverse and strike-slip faultings) to pure extensive (normal faultings) and ii) variation of stress directions (SHmax) from NE-SW to EW and WNW-ESE towards Southern Carpathians and NS within Easter Carpathians. The changes in stress directions occur over a distance that is comparable to or smaller than the thickness of the lithosphere. A comparative analysis of stress tensor with GPS velocity/displacememt vectors shows variations from paralellism to orthogonality, suggesting different mechanisms of crustal deformations.The major seismic activity (Mw≥5.0) appears to be generally concentrated along the faults systems bordering de Tisa-Dacia Block, intersections of faults of different ages, internal shear zones and with the border of the former structural terrains, old rifts and neostructures.

  5. Electrode-stress-induced nanoscale disorder in Si quantum electronic devices

    DOE PAGES

    Park, J.; Ahn, Y.; Tilka, J. A.; ...

    2016-06-20

    Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.

  6. Background Error Correlation Modeling with Diffusion Operators

    DTIC Science & Technology

    2013-01-01

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 07-10-2013 Book Chapter Background Error Correlation Modeling with Diffusion Operators...normalization Unclassified Unclassified Unclassified UU 27 Max Yaremchuk (228) 688-5259 Reset Chapter 8 Background error correlation modeling with diffusion ...field, then a structure like this simulates enhanced diffusive transport of model errors in the regions of strong cur- rents on the background of

  7. Effect of far-field stresses and residual stresses incorporation in predicting fracture toughness of carbon nanotube reinforced yttria stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Mahato, Neelima; Nisar, Ambreen; Mohapatra, Pratyasha; Rawat, Siddharth; Ariharan, S.; Balani, Kantesh

    2017-10-01

    Yttria-stabilized zirconia (YSZ) is a potential thermal insulating ceramic for high temperature applications (>1000 °C). YSZ reinforced with multi-walled carbon nanotubes (MWNTs) was processed via spark plasma sintering to produce dense, crack-free homogeneous sample and avoid any degradation of MWNTs when sintered using conventional routes. Despite porosity, the addition of MWNT has a profound effect in improving the damage tolerance of YSZ by allowing the retention of tetragonal phase. However, at some instances, the crack lengths in the MWNT reinforced YSZ matrices have been found to be longer than the standalone counterparts. Therefore, it becomes inappropriate to apply Anstis equation to calculate fracture toughness values. In this regard, a combined analytical cum numerical method is used to estimate the theoretical fracture toughness and quantitatively analyze the mechanics of matrix cracking in the reinforced composite matrices incorporating the effects of various factors (such as far-field stresses, volume fraction of MWNTs, change in the modulus and Poisson's ratio values along with the increase in porosity, and bridging and phase transformation mechanism) affecting the fracture toughness of YSZ-MWNT composites. The results suggest that the incorporation of far-field stresses cannot be ignored in estimating the theoretical fracture toughness of YSZ-MWNT composites.

  8. Early jointing in coal and black shale: Evidence for an Appalachian-wide stress field as a prelude to the Alleghanian orogeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelder, T.; Whitaker, A.

    2006-07-15

    Early ENE-striking joints (present coordinates) within both Pennsylvanian coal and Devonian black shale of the Central and Southern Appalachians reflect an approximately rectilinear stress field with a dimension > 1500 km. This Appalachian-wide stress field (AWSF) dates from the time of joint propagation, when both the coal and shale were buried to the oil window during the 10-15 m.y. period straddling the Pennsylvanian-Permian boundary. The AWSF was generated during the final assembly of Pangea as a consequence of plate-boundary tractions arising from late-stage oblique convergence, where maximum horizontal stress, S-H, of the AWSF was parallel to the direction of closuremore » between Gondwana and Laurentia. After closure, the AWSF persisted during dextral slip of peri-Gondwanan microcontinents, when SH appears to have crosscut plate-scale trans-current faults at around 30{sup o}. Following > 10 m.y. of dextral slip during tightening of Gondwana against Laurentia, the AWSF was disrupted by local stress fields associated with thrusting on master basement decollements to produce the local orocline-shaped Alleghanian map pattern seen today.« less

  9. Field Measurements of Reynolds Stress near a Riverbank

    USGS Publications Warehouse

    Moody, J.A.; Smith, J.D.; ,

    2002-01-01

    The Reynolds stress field was measured near the bank of the Powder River in southeastern Montana. The measurements were made from the bank using an aluminum I-beam cantilevered over the water to support a carriage system for positioning an acoustic doppler velocimeter in a vertical plane perpendicular to 1) the bank and 2) the streamwise velocity field. During quasi-steady flow at the peak (71 m3s-1) of the spring snowmelt runoff in May 1996, turbulent velocities were measured at 25 Hertz along six vertical locations spaced 0.5 m apart and within about 3.5 m of the riverbank. When the turbulent velocities are transformed to the ray-isovel coordinate system appropriate for this two-dimension problem, the turbulent characteristics near the bed are consistent with similar field measurements made by others for the one-dimensional problem of uniform flow over a horizontal bed far from lateral boundaries. The three turbulent intensities, (u???2) 1/2, (v???2)1/2 and (w??? 2)1/2, normalized by the local shear velocity, u*, were essentially constant with distance above the bed along a ray and the average values were 2.1, 1.4, and 1.2. Future turbulence measurements could be improved by measuring the streamwise flow first, then determining the approximate location of the rays and isovels so that the turbulence measurements could be made along the approximated rays rather than along verticals. In addition, to improve the possibility making turbulence measurements during steady, uniform flow, the site should be carefully selected to minimize local flow accelerations caused by spatial variability of the riverbank. Also, the measurements should be made at times when the stage is constant, no local erosion or deposition of sediment occurs, and when wind velocities are small.

  10. Simulation model of fatigue crack opening/closing phenomena for predicting RPG load under arbitrary stress distribution field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyosada, M.; Niwa, T.

    1995-12-31

    In this paper, Newman`s calculation model is modified to solve his neglected effect of the change of stress distribution ahead of a crack, and to leave elastic plastic materials along the crack surface because of the compatibility of Dugdale model. In addition to above treatment, the authors introduce plastic shrinkage at an immediate generation of new crack surfaces due to emancipation of internal force with the magnitude of yield stress level during unloading process in the model. Moreover, the model is expanded to arbitrary stress distribution field. By using the model, RPG load is simulated for a center notched specimenmore » under constant amplitude loading with various stress ratios and decreased maximum load while keeping minimum load.« less

  11. Anisotropic stress in narrow sGe fin field-effect transistor channels measured using nano-focused Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nuytten, T.; Bogdanowicz, J.; Witters, L.; Eneman, G.; Hantschel, T.; Schulze, A.; Favia, P.; Bender, H.; De Wolf, I.; Vandervorst, W.

    2018-05-01

    The continued importance of strain engineering in semiconductor technology demands fast and reliable stress metrology that is non-destructive and process line-compatible. Raman spectroscopy meets these requirements but the diffraction limit prevents its application in current and future technology nodes. We show that nano-focused Raman scattering overcomes these limitations and can be combined with oil-immersion to obtain quantitative anisotropic stress measurements. We demonstrate accurate stress characterization in strained Ge fin field-effect transistor channels without sample preparation or advanced microscopy. The detailed analysis of the enhanced Raman response from a periodic array of 20 nm-wide Ge fins provides direct access to the stress levels inside the nanoscale channel, and the results are validated using nano-beam diffraction measurements.

  12. Granularity of the Diffuse Background Observed

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.; MacDonald, D.; Rothschild, R. E.; Boldt, E.; Mushotzky, R. F.; Fabian, A. C.

    1995-01-01

    First results are reported from a program for measuring the field-to-field fluctuation level of the cosmic diffuse background by using differences between the two background positions of each deep exposure with the High Energy X-ray Timing Experiment (HEXTE) instrument on the Remote X Ray Timing Explorer (RXTE). With 8 million live seconds accumulated to date a fluctuation level on the 15-25 keV band is observed which is consistent with extrapolations from the High Energy Astrophysical Observatory-1 (HEAO-1) measurements. Positive results are expected eventually at higher energies. Models of (active galactic nuclei) AGN origin will eventually be constrained by this program.

  13. Physical stress, mass, and energy for non-relativistic matter

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  14. Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus.

    PubMed

    Yang, Xue-Sen; He, Gen-Lin; Hao, Yu-Tong; Xiao, Yang; Chen, Chun-Hai; Zhang, Guang-Bin; Yu, Zheng-Ping

    2012-07-01

    The issue of possible neurobiological effects of the electromagnetic field (EMF) exposure is highly controversial. To determine whether electromagnetic field exposure could act as an environmental stimulus capable of producing stress responses, we employed the hippocampus, a sensitive target of electromagnetic radiation, to assess the changes in its stress-related gene and protein expression after EMF exposure. Adult male Sprague-Dawley rats with body restrained were exposed to a 2.45 GHz EMF at a specific absorption rate (SAR) of 6 W/kg or sham conditions. cDNA microarray was performed to examine the changes of gene expression involved in the biological effects of electromagnetic radiation. Of 2048 candidate genes, 23 upregulated and 18 downregulated genes were identified. Of these differential expression genes, two heat shock proteins (HSP), HSP27 and HSP70, are notable because expression levels of both proteins are increased in the rat hippocampus. Result from immunocytochemistry revealed that EMF caused intensive staining for HSP27 and HSP70 in the hippocampus, especially in the pyramidal neurons of cornu ammonis 3 (CA3) and granular cells of dentate gyrus (DG). The gene and protein expression profiles of HSP27 and HSP70 were further confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Our data provide direct evidence that exposure to electromagnetic fields elicits a stress response in the rat hippocampus. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Naloxone effects on behavior of inbred mice with different response to emotional stress in open field test.

    PubMed

    Nadorova, A V; Kozlovskaja, M M; Seredenin, S B

    2009-10-01

    Effects of nonspecific opiate receptor antagonist naloxone in doses of 0.1, 0.5, 1.0, 5.0, 10.0 mg/kg on open field behavior and spontaneous motor activity were studied in male BALB/c and C57Bl/6 mice. Differently directed effects of naloxone on behavioral parameters of emotional-stress reaction in BALB/c and C57Bl/6 mice were observed. Naloxone increased motor activity in the open field test in BALB/c mice, but decreased it in C57Bl/6 mice. In the absence of stress, naloxone in the studied dose range did not affect spontaneous motor activity in C57Bl/6 mice, and significantly reduced activity in BALB/c mice in doses 0.5 and 1.0 mg/kg.

  16. Correlation between the local stress and the grain misorientation in the polycrystalline Al2O3 measured by near-field luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Toru; Takigawa, Ryo

    2018-06-01

    Owing to its high spatial resolution, near-field spectroscopy is a useful method for sensing the stress in a narrow region of submicron order. Here, on the basis of the highly resolved images obtained by near-field luminescence spectroscopy, we propose a statistical method of analyzing grain anisotropy-induced stress in polycrystalline Al2O3. We focus on two characteristics of a spectra: the intensity ratio and peak shift of luminescence of two lines (R1 and R2) from Al2O3 to discuss crystal orientation and stress, respectively. By incorporating the concept of the crystal misorientation parameter using intensity ratio, an apparent correlation between the magnitude of stress and the misorientation is found. This correlation analysis provides an important insight for the investigation of local thermal stress in Al2O3.

  17. Gate bias stress in pentacene field-effect-transistors: Charge trapping in the dielectric or semiconductor

    NASA Astrophysics Data System (ADS)

    Häusermann, R.; Batlogg, B.

    2011-08-01

    Gate bias stress instability in organic field-effect transistors (OFETs) is a major conceptual and device issue. This effect manifests itself by an undesirable shift of the transfer characteristics and is associated with long term charge trapping. We study the role of the dielectric and the semiconductor separately by producing OFETs with the same semiconductor (pentacene) combined with different dielectrics (SiO2 and Cytop). We show that it is possible to fabricate devices which are immune to gate bias stress. For other material combinations, charge trapping occurs in the semiconductor alone or in the dielectric.

  18. Particle production in a gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  19. Competitive ability, stress tolerance and plant interactions along stress gradients.

    PubMed

    Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier

    2018-04-01

    Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.

  20. A new method of fully three dimensional analysis of stress field in the soil layer of a soil-mantled hillslope

    NASA Astrophysics Data System (ADS)

    Wu, Y. H.; Nakakita, E.

    2017-12-01

    Hillslope stability is highly related to stress equilibrium near the top surface of soil-mantled hillslopes. Stress field in a hillslope can also be significantly altered by variable groundwater motion under the rainfall influence as well as by different vegetation above and below the slope. The topographic irregularity, biological effects from vegetation and variable rainfall patterns couple with others to make the prediction of shallow landslide complicated and difficult. In an increasing tendency of extreme rainfall, the mountainous area in Japan has suffered more and more shallow landslides. To better assess shallow landslide hazards, we would like to develop a new mechanically-based method to estimate the fully three-dimensional stress field in hillslopes. The surface soil-layer of hillslope is modelled as a poroelastic medium, and the tree surcharge on the slope surface is considered as a boundary input of stress forcing. The modelling of groundwater motion is involved to alter effective stress state in the soil layer, and the tree root-reinforcement estimated by allometric equations is taken into account for influencing the soil strength. The Mohr-Coulomb failure theory is then used for locating possible yielding surfaces, or says for identifying failure zones. This model is implemented by using the finite element method. Finally, we performed a case study of the real event of massive shallow landslides occurred in Hiroshima in August, 2014. The result shows good agreement with the field condition.

  1. Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats.

    PubMed

    Hirata, Riki; Matsumoto, Machiko; Judo, Chika; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-07-01

    Hippocampal long-term potentiation (LTP) is suppressed not only by stress paradigms but also by low frequency stimulation (LFS) prior to LTP-inducing high frequency stimulation (HFS; tetanus), termed metaplasticity. These synaptic responses are dependent on N-methyl-D-aspartate receptors, leading to speculations about the possible relationship between metaplasticity and stress-induced LTP impairment. However, the functional significance of metaplasticity has been unclear. The present study elucidated the electrophysiological and neurochemical profiles of metaplasticity in the hippocampal CA1 field, with a focus on the synaptic response induced by the emotional stress, contextual fear conditioning (CFC). The population spike amplitude in the CA1 field was decreased during exposure to CFC, and LTP induction was suppressed after CFC in conscious rats. The synaptic response induced by CFC was mimicked by LFS, i.e., LFS impaired the synaptic transmission and subsequent LTP. Plasma corticosterone levels were increased by both CFC and LFS. Extracellular levels of gamma-aminobutyric acid (GABA), but not glutamate, in the hippocampus increased during exposure to CFC or LFS. Furthermore, electrical stimulation of the medial prefrontal cortex (mPFC), which caused decreases in freezing behavior during exposure to CFC, counteracted the LTP impairment induced by LFS. These findings suggest that metaplasticity in the rat hippocampal CA1 field is related to the neural basis of stress experience-dependent fear memory, and that hippocampal synaptic response associated stress-related processes is under mPFC regulation.

  2. Quantification and significance of fluid shear stress field in biaxial cell stretching device.

    PubMed

    Thompson, Mark S; Abercrombie, Stuart R; Ott, Claus-Eric; Bieler, Friederike H; Duda, Georg N; Ventikos, Yiannis

    2011-07-01

    A widely used commercially available system for the investigation of mechanosensitivity applies a biaxial strain field to cells cultured on a compliant silicone substrate membrane stretched over a central post. As well as intended substrate strain, this device also provides a fluid flow environment for the cultured cells. In order to interpret the relevance of experiments using this device to the in vivo and clinical situation, it is essential to characterise both substrate and fluid environments. While previous work has detailed the substrate strain, the fluid shear stresses, to which bone cells are known to be sensitive, are unknown. Therefore, a fluid structure interaction computational fluid dynamics model was constructed, incorporating a finite element technique capable of capturing the contact between the post and the silicone substrate membrane, to the underside of which the pump control pressure was applied. Flow verification experiments using 10-μm-diameter fluorescent microspheres were carried out. Fluid shear stress increased approximately linearly with radius along the on-post substrate membrane, with peak values located close to the post edge. Changes in stimulation frequency and culture medium viscosity effected proportional changes in the magnitude of the fluid shear stress (peak fluid shear stresses varied in the range 0.09-3.5 Pa), with minor effects on temporal and spatial distribution. Good agreement was obtained between predicted and measured radial flow patterns. These results suggest a reinterpretation of previous data obtained using this device to include the potential for a strong role of fluid shear stress in mechanosensitivity.

  3. Evaluation of crack-tip stress fields on microstructural-scale fracture in Al-Al2O3 interpenetrating network composites

    Treesearch

    Robert J. Moon; Mark Hoffman; Jurgen Rödel; Shigemi Tochino; Giuseppe Pezzotti

    2009-01-01

    The influence of local microstructure on the fracture process at the crack tip in a ceramic–metal composite was assessed by comparing the measured stress at a microstructural level and analogous finite element modelling (FEM). Fluorescence microprobe spectroscopy was used to investigate the influence of near-crack-tip stress fields on the resulting crack propagation at...

  4. Nonrelativistic fluids on scale covariant Newton-Cartan backgrounds

    NASA Astrophysics Data System (ADS)

    Mitra, Arpita

    2017-12-01

    The nonrelativistic covariant framework for fields is extended to investigate fields and fluids on scale covariant curved backgrounds. The scale covariant Newton-Cartan background is constructed using the localization of space-time symmetries of nonrelativistic fields in flat space. Following this, we provide a Weyl covariant formalism which can be used to study scale invariant fluids. By considering ideal fluids as an example, we describe its thermodynamic and hydrodynamic properties and explicitly demonstrate that it satisfies the local second law of thermodynamics. As a further application, we consider the low energy description of Hall fluids. Specifically, we find that the gauge fields for scale transformations lead to corrections of the Wen-Zee and Berry phase terms contained in the effective action.

  5. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress.

    PubMed

    Radhakrishnan, Ramalingam; Leelapriya, Thasari; Kumari, Bollipo Diana Ranjitha

    2012-12-01

    The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Copyright © 2012 Wiley Periodicals, Inc.

  6. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  7. GIS-based Stress Field Modeling of the North Arm of Sulawesi (NAoS) and its application in mineral prospectivity assessment

    NASA Astrophysics Data System (ADS)

    Albert, Gáspár; Szentpéteri, Krisztián

    2017-04-01

    Remotely sensed and digital map data are useful sources for regional structural analysis, including stress calculations. If the type of a given fault is determined and is considered as Andersonian, and rather juvenile instead of a reactivated one, the tectonic stress can be calculated for each of the fault segments (Albert et al. 2016). The North Arm of Sulawesi, a west-east-trending land strip of the irregular shaped Sulawesi Island, is actively deforming and the upper plate tectonic setting is quite complex in this region since it is situated above a triple junction of the Eurasian, Pacific and Australian plates. The stress currently acting in this region not only creates neotectonics but triggers subduction-related volcanism shifting from west to east on the peninsula. The volcanic centers - adjacent to transfer faults and the colliding plates at depth - appear to be the most productive areas for epithermal-porphyry mineralization systems of economic potential (Szentpéteri et al. 2015). In this work we demonstrate how the derived stress field model helps to understand the location and clustering of various mineralization types in the NAoS. We examine if this method is applicable for mineral prospectively assessments. References Albert, G., Barancsuk, Á., and Szentpéteri, K., 2016, Stress field modelling from digital geological map data: Geophysical Research Abstracts, v. 18, EGU2016-14565. Szentpéteri, K., Albert, G., and Ungvári, Z., Plate tectonic - and stress field - modeling of the North Arm of Sulawesi, Indonesia, to better understand distribution of mineral deposits styles., in Proceedings SEG 2015 I World Class Ore Deposits: Discovery to Recovery, Wrest Point Convention Centre, Hobart, Australia, September 27 - 30. 2015.

  8. Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test.

    PubMed

    Sturman, Oliver; Germain, Pierre-Luc; Bohacek, Johannes

    2018-02-16

    Stressful experiences are linked to anxiety disorders in humans. Similar effects are observed in rodent models, where anxiety is often measured in classic conflict tests such as the open-field test. Spontaneous rearing behavior, in which rodents stand on their hind legs to explore, can also be observed in this test yet is often ignored. We define two forms of rearing, supported rearing (in which the animal rears against the walls of the arena) and unsupported rearing (in which the animal rears without contacting the walls of the arena). Using an automated open-field test, we show that both rearing behaviors appear to be strongly context dependent and show clear sex differences, with females rearing less than males. We show that unsupported rearing is sensitive to acute stress, and is reduced under more averse testing conditions. Repeated testing and handling procedures lead to changes in several parameters over varying test sessions, yet unsupported rearing appears to be rather stable within a given animal. Rearing behaviors could therefore provide an additional measure of anxiety in rodents relevant for behavioral studies, as they appear to be highly sensitive to context and may be used in repeated testing designs.

  9. Assessment of occupational health problems and physiological stress among the brick field workers of West Bengal, India.

    PubMed

    Das, Banibrata

    2014-06-01

    The brick field industry is one of the oldest industries in India, which employs a large number of workers of poor socioeconomic status. The main aim of the present investigation is i) to determine the prevalence of musculoskeletal disorders among brick field workers, ii) to determine the prevalence of respiratory disorders and physiological stress among brick field workers compared to control workers. For this study, a total of 220 brick field workers and 130 control subjects were selected randomly. The control subjects were mainly involved in hand-intensive jobs. The Modified Nordic Questionnaire was applied to assess the discomfort felt among both groups of workers. Thermal stress was also assessed by measuring the WBGT index. The pulmonary functions were checked using the spirometry. Physiological assessment of the workload was carried out by recording the heart rate and blood pressure of the workers prior to work and just after work in the field. Brick field workers suffered from pain especially in the lower back (98%), hands (93%), knees (86%), wrists (85%), shoulders (76%) and neck (65%). Among the brick-making activities, brick field workers felt discomfort during spading for mud collection (98%), carrying bricks (95%) and molding (87%). The results showed a significantly lower p value < 0.001 in FVC, FEV1, FEV1/FVC ratio and PEFR in brick field workers compared to the control group. The post-activity heart rate of the brick field workers was 148.6 beats/min, whereas the systolic and diastolic blood pressure results were 152.8 and 78.5 mm/Hg, respectively. This study concludes that health of the brick field workers was highly affected due to working in unhealthy working conditions for a long period of time.

  10. Calculated and measured stresses in simple panels subject to intense random acoustic loading including the near noise field of a turbojet engine

    NASA Technical Reports Server (NTRS)

    Lassiter, Leslie W; Hess, Robert W

    1958-01-01

    Flat 2024-t3 aluminum panels measuring 11 inches by 13 inches were tested in the near noise fields of a 4-inch air jet and turbojet engine. The stresses which were developed in the panels are compared with those calculated by generalized harmonic analysis. The calculated and measured stresses were found to be in good agreement. In order to make the stress calculations, supplementary data relating to the transfer characteristics, damping, and static response of flat and curved panels under periodic loading are necessary and were determined experimentally. In addition, an appendix containing detailed data on the near pressure field of the turbojet engine is included.

  11. Holographic anisotropic background with confinement-deconfinement phase transition

    NASA Astrophysics Data System (ADS)

    Aref'eva, Irina; Rannu, Kristina

    2018-05-01

    We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent ν, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell field. The blackening function supports the Van der Waals-like phase transition between small and large black holes for a suitable first Maxwell field charge. The isotropic case corresponding to ν = 1 and zero magnetic field reproduces previously known solutions. We investigate the anisotropy influence on the thermodynamic properties of our background, in particular, on the small/large black holes phase transition diagram. We discuss applications of the model to the bottom-up holographic QCD. The RG flow interpolates between the UV section with two suppressed transversal coordinates and the IR section with the suppressed time and longitudinal coordinates due to anisotropic character of our solution. We study the temporal Wilson loops, extended in longitudinal and transversal directions, by calculating the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. We find that dynamical wall locations depend on the orientation of the quark pairs, that gives a crossover transition line between confinement/deconfinement phases in the dual gauge theory. Instability of the background leads to the appearance of the critical points ( μ ϑ,b , T ϑ,b ) depending on the orientation ϑ of quark-antiquark pairs in respect to the heavy ions collision line.

  12. Deleterious localized stress fields: the effects of boundaries and stiffness tailoring in anisotropic laminated plates

    PubMed Central

    Weaver, P. M.

    2016-01-01

    The safe design of primary load-bearing structures requires accurate prediction of stresses, especially in the vicinity of geometric discontinuities where deleterious three-dimensional stress fields can be induced. Even for thin-walled structures significant through-thickness stresses arise at edges and boundaries, and this is especially precarious for laminates of advanced fibre-reinforced composites because through-thickness stresses are the predominant drivers in delamination failure. Here, we use a higher-order equivalent single-layer model derived from the Hellinger–Reissner mixed variational principle to examine boundary layer effects in laminated plates comprising constant-stiffness and variable-stiffness laminae and deforming statically in cylindrical bending. The results show that zigzag deformations, which arise due to layerwise differences in the transverse shear moduli, drive boundary layers towards clamped edges and are therefore critically important in quantifying localized stress gradients. The relative significance of the boundary layer scales with the degree of layerwise anisotropy and the thickness to characteristic length ratio. Finally, we demonstrate that the phenomenon of alternating positive and negative transverse shearing deformation through the thickness of composite laminates, previously only observed at clamped boundaries, can also occur at other locations as a result of smoothly varying the material properties over the in-plane dimensions of the laminate. PMID:27843401

  13. Characterizing the Potential for Injection-Induced Fault Reactivation Through Subsurface Structural Mapping and Stress Field Analysis, Wellington Field, Sumner County, Kansas

    NASA Astrophysics Data System (ADS)

    Schwab, Drew R.; Bidgoli, Tandis S.; Taylor, Michael H.

    2017-12-01

    Kansas, like other parts of the central U.S., has experienced a recent increase in seismicity. Correlation of these events with brine disposal operations suggests pore fluid pressure increases are reactivating preexisting faults, but rigorous evaluation at injection sites is lacking. Here we determine the suitability of CO2 injection into the Cambrian-Ordovician Arbuckle Group for long-term storage and into a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. To determine the potential for injection-induced earthquakes, we map subsurface faults and estimate in situ stresses, perform slip and dilation tendency analyses to identify well-oriented faults relative to the estimated stress field, and determine the pressure changes required to induce slip at reservoir and basement depths. Three-dimensional seismic reflection data reveal 12 near-vertical faults, mostly striking NNE, consistent with nodal planes from moment tensor solutions from recent earthquakes in the region. Most of the faults cut both reservoirs and several clearly penetrate the Precambrian basement. Drilling-induced fractures (N = 40) identified from image logs and inversion of earthquake moment tensor solutions (N = 65) indicate that the maximum horizontal stress is approximately EW. Slip tendency analysis indicates that faults striking <020° are stable under current reservoir conditions, whereas faults striking 020°-049° may be prone to reactivation with increasing pore fluid pressure. Although the proposed injection volume (40,000 t) is unlikely to reactive faults at reservoir depths, high-rate injection operations could reach pressures beyond the critical threshold for slip within the basement, as demonstrated by the large number of injection-induced earthquakes west of the study area.

  14. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  15. Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram

    2015-11-01

    Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.

  16. Characterization and Prediction of the SPI Background

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Jean, P.; Knodlseder, J.; Skinner, G. K.; Weidenspointer, G.

    2003-01-01

    The INTEGRAL Spectrometer, like most gamma-ray instruments, is background dominated. Signal-to-background ratios of a few percent are typical. The background is primarily due to interactions of cosmic rays in the instrument and spacecraft. It characteristically varies by +/- 5% on time scales of days. This variation is caused mainly by fluctuations in the interplanetary magnetic field that modulates the cosmic ray intensity. To achieve the maximum performance from SPI it is essential to have a high quality model of this background that can predict its value to a fraction of a percent. In this poster we characterize the background and its variability, explore various models, and evaluate the accuracy of their predictions.

  17. Neogene ongoing tectonics in the Southern Ecuadorian Andes: analysis of the evolution of the stress field

    NASA Astrophysics Data System (ADS)

    Lavenu, A.; Noblet, C.; Winter, T. H.

    1995-01-01

    Microtectonic analysis of infilling deposits in South Ecuadorian Neogene basins brings to light a compressive stress field with σ1 along a NNE-SSW to NE-SW direction in the early Miocene, changing to an E-W direction in the Middle and Late Miocene. The syn-sedimentary deformations which affect the deposits of the basins suggest similar stress regimes due to a compressive ongoing tectonic system in the Miocene, for at least 15 Ma. There is a good correlation between rapid convergence in the Neogene and the time period during which the continental South Ecuadorian basins were deformed by compression (Quechua period).

  18. A pilot field evaluation on heat stress in sugarcane workers in Costa Rica: What to do next?

    PubMed Central

    Crowe, Jennifer; van Wendel de Joode, Berna; Wesseling, Catharina

    2009-01-01

    Background Climate change is producing major impacts including increasing temperatures in tropical countries, like Costa Rica, where the sugarcane industry employs thousands of workers who are exposed to extreme heat. Objectives This article outlines a pilot qualitative evaluation of working conditions and heat in the sugarcane industry. Design A literature review, direct observations and exploratory interviews with workers were conducted to reach a preliminary understanding of the dimensions of heat-related health issues in the sugarcane industry, as a basis for the design of future studies. Results The industry employs temporary workers from Nicaragua and Costa Rica as well as year-round employees. Temporary employees work 12-hour shifts during the harvest and processing (‘zafra’) season. In many cases, sugarcane field workers are required to carry their own water and often have no access to shade. Sugar mill workers are exposed to different levels of heat stress depending upon their job tasks, with the most intense heat and workload experienced by the oven (‘caldera’) cleaners. Conclusions Research is needed to achieve better understanding of the multiple factors driving and interacting with heat exposures in the sugarcane industry in order to improve the health and safety of workers while maintaining worker productivity. PMID:20052430

  19. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  20. Shear-strain energy rate distribution caused by the interplate locking along the Nankai Trough, southwest Japan: An integration analysis using stress tensor inversion and slip deficit inversion

    NASA Astrophysics Data System (ADS)

    Saito, T.; Noda, A.; Yoshida, K.; Tanaka, S.

    2017-12-01

    In the Nankai Trough, southwest Japan, the Philippine Sea Plate descends beneath the Eurasian plate. The locking, or the slip deficit, on the plate interface causes stress fluctuation in the inland area. The interplate locking does not always result in stress accumulation but also causes stress release. The stress increase/decrease is not determined only from the stress fluctuation but also depends on the background stress, in particular, its orientation. This study proposes a method to estimate the shear-strain energy increase/decrease distribution caused by the interplate locking. We at first investigated the background stress field in and around the Nankai Trough. The spatial distribution of the principal stress orientations and the stress ratio were estimated by analysis of 130,000 focal mechanisms of small earthquakes (e.g., Yoshida et al. 2015 Tectonophysics). For example, in an area called Chugoku region, the maximum and minimum compression axes were E-W and N-S directions, respectively. We also estimated the slip-deficit rate at the plate interface by analyzing GNSS data and calculated the stress fluctuation due to the deficit (e.g., Noda et al. 2013 GJI). The interplate locking causes the maximum compression in the direction of plate convergence. This is significantly different from the orientations of the background stress characterized by the E-W compressional strike-slip stress regime.. By combining the results of the background stress and the stress fluctuation, we made a map indicating the shear-strain energy change due to the interplate locking. In the Chugoku region, the shear-strain energy decreases due to the interplate locking. This is because the N-S compressional stress caused by the interplate locking compensates the N-S extensional stress in the background. The shear-strain energy increases in some parts of the analyzed areas. By statistically comparing the shear strain energy rate with the seismicity in the inland area, we found that the

  1. Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits

    PubMed Central

    Elbashir, Awad Ahmed Elawad; Gorafi, Yasir Serag Alnor; Tahir, Izzat Sidahmed Ali; Kim, June-Sik; Tsujimoto, Hisashi

    2017-01-01

    Heat stress is detrimental to wheat (Triticum aestivum L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits. We selected six tolerant plants from the population with the background of the cultivar ‘Norin 61’ (N61) and established six MNH (MSD population of N61 selected as heat stress-tolerant) lines. We grew these lines with N61 in the field and growth chamber. In the field, we used optimum and late sowings to ensure plant exposure to heat. In the growth chamber, in addition to N61, we used the heat-tolerant cultivars ‘Gelenson’ and ‘Bacanora’. We confirmed that MNH2 and MNH5 lines acquired heat tolerance. These lines had higher photosynthesis and stomata conductance and exhibited no reduction in grain yield and biomass under heat stress compared to N61. We noticed that N61 had relatively good adaptability to heat stress. Our results indicate that the MSD population includes the diversity of Aegilops tauschii and is a promising resource to uncover useful quantitative traits derived from this wild species. Selected lines could be useful for heat stress tolerance breeding. PMID:28744178

  2. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of a primordial magnetic field with log-normal distribution on the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Takahashi, Keitaro

    2011-12-01

    We study the effect of primordial magnetic fields (PMFs) on the anisotropies of the cosmic microwave background (CMB). We assume the spectrum of PMFs is described by log-normal distribution which has a characteristic scale, rather than power-law spectrum. This scale is expected to reflect the generation mechanisms and our analysis is complementary to previous studies with power-law spectrum. We calculate power spectra of energy density and Lorentz force of the log-normal PMFs, and then calculate CMB temperature and polarization angular power spectra from scalar, vector, and tensor modes of perturbations generated from such PMFs. By comparing these spectra with WMAP7, QUaD, CBI, Boomerang, and ACBAR data sets, we find that the current CMB data set places the strongest constraint at k≃10-2.5Mpc-1 with the upper limit B≲3nG.

  4. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy.

    PubMed

    Bagnall, Kevin R; Moore, Elizabeth A; Badescu, Stefan C; Zhang, Lenan; Wang, Evelyn N

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E 2 (high), A 1 longitudinal optical (LO), and E 2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  5. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  6. Electromagnetic Field Effect or Simply Stress? Effects of UMTS Exposure on Hippocampal Longterm Plasticity in the Context of Procedure Related Hormone Release

    PubMed Central

    Ladage, Kerstin; Krause-Finkeldey, Dorothee; El Ouardi, Abdessamad; Bitz, Andreas; Streckert, Joachim; Hansen, Volkert; Dermietzel, Rolf

    2011-01-01

    Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded. PMID:21573218

  7. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    NASA Astrophysics Data System (ADS)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  8. A Feasibility Study of High-Strength Bi-2223 Conductor for High-Field Solenoids

    PubMed Central

    Godeke, A; Abraimov, D V; Arroyo, E; Barret, N; Bird, M D; Francis, A; Jaroszynski, J; Kurteva, D V; Markiewicz, W D; Marks, E L; Marshall, W S; McRae, D M; Noyes, P D; Pereira, R C P; Viouchkov, Y L; Walsh, R P; White, J M

    2017-01-01

    We performed a feasibility study on a high-strength Bi2−xPbxSr2Ca2Cu3O10−x (Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries (SEI). It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥ 0.92% (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions. PMID:28360455

  9. Insights Into the Stress Field Around Bárðarbunga Volcano From the 2014/2015 Holuhraun Rifting Event

    NASA Astrophysics Data System (ADS)

    Spaans, Karsten; Hooper, Andrew

    2018-04-01

    The two weeklong rifting event at Bárðarbunga volcano in 2014 led to the Holuhraun eruption, which produced 1.5 km3 of lava and was the largest in Iceland in over 200 years. Predicting when and where an intrusion will lead to eruption requires detailed knowledge of the underlying stress field. Previous studies have explained the dike propagation path with a model that includes a tectonically induced stress field set up by a uniform amount of plate spreading across a straight rift axis. Here we test this hypothesis by modeling the tractions acting on the dike walls, constrained by data from Global Navigation Satellite System and Interferometric Synthetic Aperture Radar. Our results show that the majority of the opening and shearing in the final two dike segments is due to stresses built up by plate spreading since the last eruption at Holuhraun, as expected, but that the tectonically induced stress magnitude must be much lower to explain the movement of the dike walls further south. This result implies that most of the tectonically induced stress beneath the ice cap has been released, presumably due to intrusions associated with the Bárðarbunga volcanic system and the nearby Grímsvötn volcanic system, which have not been detected due to their subglacial nature. Modeling of the 2014 Bárðarbunga rifting event therefore not only yields insights into the event but also provides a window into undetected volcanic activity in the past.

  10. Stress Management Strategies for Students: The Immediate Effects of Yoga, Humor, and Reading on Stress

    ERIC Educational Resources Information Center

    Rizzolo, Denise; Zipp, Genevieve Pinto; Stiskal, Doreen; Simpkins, Susan

    2009-01-01

    Background: Health science programs can be demanding and difficult for many students, leading to high levels of stress. High levels of stress can have a negative effect on students and subsequently the practicing clinician. Research suggests that yoga, humor, and reading are simple, effective methods to help reduce stress. To date no research…

  11. Various background pattern-effect on saccadic suppression.

    PubMed

    Mitrani, L; Radil-Weiss, T; Yakimoff, N; Mateeff, S; Bozkov, V

    1975-09-01

    It has been proved that the saccadic suppression is a phenomenon closely related to the presence of contours and structures in the visual field. Experiments were performed to clarify whether the structured background influences the pattern of attention distribution (making the stimulus detection more difficult) or whether the elevation of visual threshold is due to the "masking' effect of the moving background image over the retina. Two types of backgrounds were used therefore: those with symbolic meaning in the processing of which "psychological' mechanisms are presumably involved like picture reproductions of famous painters and photographs of nudes, and those lacking semantic significance like computer figures composed of randomly distributed black and white squares with different grain expressed as the entropy of the pattern. The results show that saccadic suppression is primarily a consequence of peripheral mechanisms, probably of lateral inhibition in the visual field occurring in the presence of moving edges over the retina. Psychological factors have to be excluded as being fundamental for saccadic suppression.

  12. The microwave background: Its smoothness and frequency distribution as an astrophysical product

    NASA Astrophysics Data System (ADS)

    Hoyle, Fred; Wickramasinghe, N. C.; Burbidge, Geoffrey

    1990-12-01

    The use of astrophysical sources in providing an understanding of the total energy density of the background is reviewed. The need of a thermalizing agent is stressed. The nearer such an agent comes to establishing thermodynamic equilibrium, the smoother the background becomes. This is shown to be true despite irregularities in the distribution of the thermalizer. The ejection of iron whiskers from galaxies and the ways in which such whiskers could affect the microwave background are discussed.

  13. Characterizing the potential for fault reactivation related to CO2 injection through subsurface structural mapping and stress field analysis, Wellington Field, Sumner County, KS

    NASA Astrophysics Data System (ADS)

    Schwab, D.; Bidgoli, T.; Taylor, M. H.

    2015-12-01

    South-central Kansas has experienced an unprecedented increase in seismic activity since 2013. The spatial and temporal relationship of the seismicity with brine disposal operations has renewed interest in the role of fluids in fault reactivation. This study focuses on determining the suitability of CO2 injection into a Cambro-Ordovician reservoir for long-term storage and a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. Our approach for determining the potential for induced seismicity has been to (1) map subsurface faults and estimate in-situ stresses, (2) perform slip and dilation tendency analysis to identify optimally-oriented faults relative to the estimated stress field, and (3) monitor surface deformation through cGPS data and InSAR imaging. Through the use of 3D seismic reflection data, 60 near vertical, NNE-striking faults have been identified. The faults range in length from 140-410 m and have vertical separations of 3-32m. A number of faults appear to be restricted to shallow intervals, while others clearly cut the top basement reflector. Drilling-induced tensile fractures (N=78) identified from image logs and inversion of earthquake focal mechanism solutions (N=54) are consistent with the maximum horizontal stress (SHmax) oriented ~E-W. Both strike-slip and normal-slip fault plane solutions for earthquakes near the study area suggest that SHmax and Sv may be similar in magnitude. Estimates of stress magnitudes using step rate tests (Shmin = 2666 psi), density logs (Sv = 5308 psi), and calculations from wells with drilling induced tensile fractures (SHmax = 4547-6655 psi) are determined at the gauge depth of 4869ft. Preliminary slip and dilation tendency analysis indicates that faults striking 0°-20° are stable, whereas faults striking 26°-44° may have a moderate risk for reactivation with increasing pore-fluid pressure.

  14. Application of H-matrices method to the calculation of the stress field in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Ohtani, M.; Hirahara, K.

    2017-12-01

    In SW Japan, the Philippine Sea plate subducts from the south and the large earthquakes around M (Magnitude) 8 repeatedly occur at the plate boundary along the Nankai Trough, called as Nankai/Tonankai earthquakes. Near the rupture area of these earthquakes, the active volcanoes lines in the Kyushu region SW Japan, such as Sakurajima volcano. There are also distributed in the Tokai-Kanto region SE Japan, such as Mt. Fuji. The eruption of Mt. Fuji in 1707, called as Hoei eruption, have occurred 49 days after the one of the series of Nankai/Tonankai earthquakes, 1707 Hoei earthquake (M8.4). It suggests that the stress field due to the earthquake sometimes helps the volcanoes to erupt. When we consider the stress change due to the earthquake, the effect of viscoelastic deformation of the crust will be important. FEM is always used for modeling such inelastic effect. However, it requires the high computational cost of O(N3), where N is the number of discretized cells of the inelastic medium. Recently, a new method based on BIEM is proposed by Barbot and Fialko (2010). In their method, calculation of the stress field due to the inelastic strain is replaced to solve the inhomogeneous Navier's equation with equivalent body forces of the inelastic strain. Then, using the stress-strain greenfunction in an elastic medium, we can take into account the inelastic effect. In this study, we employ their method to evaluate the stress change at the active volcanoes around the Nankai/Tonankai earthquakes. Their method requires the computational cost and memory storage of O(N2). We try to reduce the computational amount and the memory by applying the fast computation method of H-matrices method. With H-matrices method, a dense matrix is divided into hierarchical structure of submatrices, and each submatrix is approximated to be low rank. When we divide the viscoelastic medium into N = 8,640 or 69,120 uniform cuboid cells and apply the H-matrices method, the required storage memory for

  15. Stressed and Losing Sleep: Sleep Duration and Perceived Stress among Affluent Adolescent Females

    ERIC Educational Resources Information Center

    DeSilva Mousseau, Angela M.; Lund, Terese J.; Liang, Belle; Spencer, Renée; Walsh, Jill

    2016-01-01

    This study examined the relationship between stress and sleep duration for adolescent females from affluent backgrounds. Participants were 218 students attending two independent single-sex secondary schools. Ordinary Least Squares (OLS) regression models (cross-sectional and longitudinal) were run to examine the association between stress and…

  16. Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Shang, H. M.; Huang, J.

    1993-01-01

    Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.

  17. Employee occupational stress in banking.

    PubMed

    Michailidis, Maria; Georgiou, Yiota

    2005-01-01

    Occupational stress literature emphasizes the importance of assessment and management of work related stress. The recognition of the harmful physical and psychological effects of stress on both individuals and organizations is widely studied in many parts of the world. However, in other regions such research is only at the introductory stages. The present study examines occupational stress of employees in the banking sector. A sample of 60 bank employees at different organizational levels and educational backgrounds was used. Data collection utilized the Occupational Stress Indicator (OSI). Results of data analysis provided evidence that employees' educational levels affect the degree of stress they experience in various ways. Bank employees cannot afford the time to relax and "wind down" when they are faced with work variety, discrimination, favoritism, delegation and conflicting tasks. The study also shows the degree to which some employees tend to bring work-related problems home (and take family problems to work) depends on their educational background, the strength of the employees' family support, and the amount of time available for them to relax. Finally, the drinking habits (alcohol) of the employees were found to play a significant role in determining the levels of occupational stress.

  18. NW transverse fault system in Southern Bogota, Colombia: New seismologic and structural evidences derived from focal mechanisms and stress field determination

    NASA Astrophysics Data System (ADS)

    Angel Amaya, J.; Fierro Morales, J.; Ordoñez Potes, M.; Blanco, M.

    2012-12-01

    We present new seismological, morphotectonic and structural data of the Southern Bogota area. The goals of the study were to characterize the NW transverse fault system and to evaluate its effect on seismic wave's generation and propagation. The data set included epicenters of the RSNC (Red Sismologica Nacional de Colombia) catalog over the period 1993-2012, historical description of seismic events (period 1644-1921), structural field data (scale 1:100000) and remote sensors interpretation. The methodology included the structural analysis of over 476 faults having a known sense of offset by using a least squares iterative inversion outlined by Angelier (1984) to determinate the mean deviatoric principal stress tensor. Preliminary conclusions showed that both propagation medium and direction are determined by the structural and mechanic conditions of the Southern Bogota Shear Zone (SBSZ) defined by Fierro & Angel, (2008) as a NW-SE oblique-slip fault zone within sinistral and normal regimes. Based on both data sources (focal mechanism and field structural data) we attempted to reconstruct the stress field starting with a strike slip faulting stress regime (S2 vertical), the solution yielded a ENE-WSW orientation for horizontal principal stress (S1). It is hypothesized that the NW oblique-slip fault zone may generate and/or propagate seismic waves, as a local source, implying local hazard to Bogota the capital city of Colombia with over 8 million habitants.

  19. Background element content of the lichen Pseudevernia furfuracea: A supra-national state of art implemented by novel field data from Italy.

    PubMed

    Cecconi, Elva; Incerti, Guido; Capozzi, Fiore; Adamo, Paola; Bargagli, Roberto; Benesperi, Renato; Candotto Carniel, Fabio; Favero-Longo, Sergio Enrico; Giordano, Simonetta; Puntillo, Domenico; Ravera, Sonia; Spagnuolo, Valeria; Tretiach, Mauro

    2018-05-01

    In biomonitoring, the knowledge of background element content (BEC) values is an essential pre-requisite for the correct assessment of pollution levels. Here, we estimated the BEC values of a highly performing biomonitor, the epiphytic lichen Pseudevernia furfuracea, by means of a careful review of literature data, integrated by an extensive field survey. Methodologically homogeneous element content datasets, reflecting different exposure conditions across European and extra-European countries, were compiled and comparatively analysed. Element content in samples collected in remote areas was compared to that of potentially enriched samples, testing differences between medians for 25 elements. This analysis confirmed that the former samples were substantially unaffected by anthropogenic contributions, and their metrics were therefore proposed as a first overview at supra-national background level. We also showed that bioaccumulation studies suffer a huge methodological variability. Limited to original field data, we investigated the background variability of 43 elements in 62 remote Italian sites, characterized in GIS environment for anthropization, land use, climate and lithology at different scale resolution. The relationships between selected environmental descriptors and BEC were tested using Principal Component Regression (PCR) modelling. Elemental composition resulted significantly dependent on land use, climate and lithology. In the case of lithogenic elements, regression models correctly reproduced the lichen content throughout the country at randomly selected sites. Further descriptors should be identified only for As, Co, and V. Through a multivariate approach we also identified three geographically homogeneous macro-regions for which specific BECs were provided for use as reference in biomonitoring applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gamma-Ray Background Variability in Mobile Detectors

    NASA Astrophysics Data System (ADS)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background

  1. Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats.

    PubMed

    Fride, E; Dan, Y; Feldon, J; Halevy, G; Weinstock, M

    1986-01-01

    This study investigated the hypotheses that unpredictable prenatal stress has effects on the offspring, similar to those induced by perinatal administration of glucocorticoids and increases the vulnerability to stressful situations at adulthood. Rats were exposed to random noise and light stress throughout pregnancy. Offspring were tested for the development of spontaneous alternation behavior (SA) and at adulthood, their response to novel or aversive situations, open field, extinction and punishment following acquisition of an appetitive response and two-way active avoidance, were assessed. In prenatally stressed rats, the development of SA was significantly delayed. On repeated exposure to an open field they were less active; control rats had elevated plasma corticosterone (CCS) on days 2 and 4 of open field exposure, while prenatally stressed rats had significantly raised plasma CCS after each exposure (days 1-8). Furthermore, punishment-induced suppression of an appetitive response was enhanced. Acquisition of active avoidance was faciliated in female but reduced in male prenatally stressed offspring. It is suggested that random prenatal noise and light stress may cause impairment of development of hippocampal function which lasts into adulthood. This impairment is manifested as an increase in vulnerability and a decrease in habituation to stressful stimuli.

  2. Mechanical stress modified ferroelectric aging behavior

    NASA Astrophysics Data System (ADS)

    Xu, Tingting; Kan, Yi; Jin, Yaming; Sun, Hui; Du, Yingchao; Wu, Xiumei; Bo, Huifeng; Cai, Wei; Huang, Fengzhen; Lu, Xiaomei; Zhu, Jinsong

    2013-05-01

    Mechanical stress effect on aging behavior of Bi3.25La0.75Ti3O12 (BLT) and PbZr0.53Ti0.47O3 (PZT) films was investigated. It is found that the remnant polarization decreases with time while the coercive field increases in stress-free BLT films. For unconfined PZT films, both the remnant polarization and the coercive field decrease as time elapses. The applied tensile stress weakens the aging of remnant polarization of BLT films but strengthens the aging of coercive field, while the applied tensile stress possesses opposite effect. In contrary, the applied compressive stress simultaneously improves the aging behavior of both remnant polarization and coercive field of PZT films. Mechanical-stress-induced variation of domain wall mobility in different materials was suggested as the possible origin of these observations. This work indicates that the aging behavior modification using stress could be realized, and it is helpful for promoting the reliability of ferroelectric films for industrial applications.

  3. Cosmic microwave background radiation anisotropies in brane worlds.

    PubMed

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  4. Studying extragalactic background fluctuations with the Cosmic Infrared Background ExpeRiment 2 (CIBER-2)

    NASA Astrophysics Data System (ADS)

    Lanz, Alicia; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2014-08-01

    Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including

  5. Topology of microwave background fluctuations - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman

    1990-01-01

    Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.

  6. STRESS ETHYLENE PRODUCTION - A MEASURE OF PLANT RESPONSE TO STRESS

    EPA Science Inventory

    Contents: Introduction to the symposium; Environmental data acquisition; Plant organ chambers in plant physiology field research; Interpreting the metabolic responses of plants to water stress; Stress ethylene production.

  7. [Basic thoughts on psychopharmacological interventions through psychotherapy of severe forms of post-traumatic stress disorder: a case study].

    PubMed

    Joksimovic, Ljiljana; Wöller, Wolfgang; Kunzke, Dieter

    2013-01-01

    The present paper focuses on clinical issues concerning the psychopharmacological treatment of severe forms of post-traumatic stress disorder (PTSD).Using a case study, we discuss problems in this field against the background of psychodynamic and psychotraumatological theories. We also present strategies for the appropriate use of psychotropic drugs in the psychotherapy of PTSD.

  8. Induction of engineered residual stresses fields and enhancement of fatigue life of high reliability metallic components by laser shock processing

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Gil-Santos, A.; Peral, D.

    2013-02-01

    Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional "shot peening" technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.

  9. Infrared Thermography Approach for Effective Shielding Area of Field Smoke Based on Background Subtraction and Transmittance Interpolation.

    PubMed

    Tang, Runze; Zhang, Tonglai; Chen, Yongpeng; Liang, Hao; Li, Bingyang; Zhou, Zunning

    2018-05-06

    Effective shielding area is a crucial indicator for the evaluation of the infrared smoke-obscuring effectiveness on the battlefield. The conventional methods for assessing the shielding area of the smoke screen are time-consuming and labor intensive, in addition to lacking precision. Therefore, an efficient and convincing technique for testing the effective shielding area of the smoke screen has great potential benefits in the smoke screen applications in the field trial. In this study, a thermal infrared sensor with a mid-wavelength infrared (MWIR) range of 3 to 5 μm was first used to capture the target scene images through clear as well as obscuring smoke, at regular intervals. The background subtraction in motion detection was then applied to obtain the contour of the smoke cloud at each frame. The smoke transmittance at each pixel within the smoke contour was interpolated based on the data that was collected from the image. Finally, the smoke effective shielding area was calculated, based on the accumulation of the effective shielding pixel points. One advantage of this approach is that it utilizes only one thermal infrared sensor without any other additional equipment in the field trial, which significantly contributes to the efficiency and its convenience. Experiments have been carried out to demonstrate that this approach can determine the effective shielding area of the field infrared smoke both practically and efficiently.

  10. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice.

    PubMed

    Onaolapo, J Olakunle; Onaolapo, Y Adejoke; Akanmu, A Moses; Olayiwola, Gbola

    2016-01-01

    Effects of daily caffeine consumption on open-field behaviours, serum corticosterone and brain antioxidant levels were investigated after six hours of total sleep-deprivation in prepubertal mice. We tested the hypothesis that daily caffeine consumption may significantly alter behaviour, stress and antioxidative response of prepubertal mice to an acute episode of total sleep-deprivation. Prepubertal Swiss mice of both sexes were assigned to two main groups of 120 each (subdivided into 6 groups of 10 each, based on sex), and administered vehicle or graded oral doses of caffeine (10, 20, 40, 80 and 120 mg/kg/day) for 14 days. On day 14, a main group was subjected to 6 h of total sleep-deprivation by 'gentle-handling'. Open-field behaviours were then assessed in both groups, after which animals were euthanized, and levels of corticosterone, superoxide dismutase and glutathione peroxidase assayed. Horizontal locomotion, rearing and grooming increased significantly, compared to control, with sleep-deprived (SD) mice showing stronger caffeine-driven responses at higher doses; and SD female mice showing sustained response to caffeine, compared to respective males. Plasma corticosterone increased with increasing doses of caffeine in both non sleep-deprived (NSD) and SD mice; although SD mice had higher corticosterone levels. Sleep-deprivation and/or higher doses of caffeine were associated with derangements in brain antioxidant levels. Repeated caffeine consumption and/or acute sleep-deprivation led to significant changes in pattern of open-field behaviour and stress/antioxidant response in mice. Responses seen in the study are probably due to modulatory effects of caffeine on the total body response to stressful stimuli.

  11. In situ rock strength and far field stress in the Nankai accretionary complex: Integration of downhole data from multiple wells

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.

    2014-12-01

    Knowing the magnitude of tectonic stress and rock strength at seismically active margins is important towards understanding fault strength and failure mechanics, yet both are difficult to measure in situ. Recent work at subduction margins, including Integrated Ocean Drilling Program (IODP) Nankai Trough Subduction Zone Experiment (NanTroSEIZE) drillsites, uses the width of compressional wellbore breakouts (BO), which depends on far field stress conditions, rock strength, and borehole annular pressure (APRS), to estimate the magnitude of horizontal principal stresses (SHmax and Shmin); estimates are problematic due to uncertainty in rock strength (unconfined compressive strength/UCS- for which direct measurements are scarce) and rheology that govern stress distribution at the wellbore. We conduct a novel case study at IODP Site C0002, where a hole was drilled twice with different boundary conditions, providing an opportunity to define in situ stress and strength from field data. Site C0002 is the main deep riser borehole for NanTroSEIZE, located near the seaward edge of the Kumano Basin above the seismogenic plate boundary, ~30 km from the trench. Several boreholes were drilled at the site. During IODP Expedition 314 in 2007, Hole C0002A was drilled with a suite of logging while drilling (LWD) tools to 1401 mbsf in a riserless mode. Hole C0002F, ~70 m away, was drilled to 862 mbsf in riserless mode during Exp. 326 in 2010 and deepened to 2005 mbsf in a riser mode during Expedition 338 in 2012-2013. Increased APRS achieved by riser drilling stabilizes the borehole and suppresses BO, consistent with resistivity imaging data from Exp. 314 that document well-developed, continuous BO throughout the borehole, and data from Expedition 338 indicating few BO. We use a semi-Newtonian approach to solve for stress and UCS consistent with the observed BO width and measured APRS in the two holes over the interval from 862-2005 mbsf. Effective SHmax ranges from ~10-30 MPa and

  12. Method for deriving information regarding stress from a stressed ferromagnetic material

    DOEpatents

    Jiles, David C.

    1991-04-30

    A non-destructive evaluation technique for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.

  13. Method for deriving information regarding stress from a stressed ferromagnetic material

    DOEpatents

    Jiles, D.C.

    1991-04-30

    A nondestructive evaluation technique is disclosed for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.

  14. Effects of combined exposure to pyridostigmine bromide and shaker stress on acoustic startle response, pre-pulse inhibition and open field behavior in mice.

    PubMed

    Dubovicky, M; Paton, S; Morris, M; Mach, M; Lucot, J B

    2007-01-01

    The present study investigated the effect of combined exposure of pyridostigmine bromide (PB) and chronic shaker stress on acoustic startle responses (ASR), pre-pulse inhibition (PPI) and open field behavior of adult C57BL/6J mice. PB (10 mg kg(-1) day(-1) for 7 days) or saline was administered subcutaneously using osmotic Alzet minipumps implanted under the skin on the back of the mice. At the same time, the mice were exposed to 7 days of intermittent shaker stress. They were tested for ASR (100 dB and 120 dB stimuli) and PPI (70 dB + 100 dB and 70 dB + 120 dB) in the acoustic startle monitor system. The mice were assessed during the shaker stress on days 2 and 7 and 7, 14, 21 and 28 days after discontinuation of treatment. Separate groups of mice were tested in the open field in 15 min sessions on days 1, 3 and 6 during shaker stress and PB treatment. Exposure of mice to PB resulted in an exaggerated ASR, reduced PPI and non-significant decrease in locomotor activity. These behavioral changes were apparent only during exposure to PB. Repeated shaker stress did not have any effect on sensorimotor functions or open field behavior of mice. There was no prolonged or delayed effect of PB and/or stress on individual behavioral variables. The study found C57BL/6J mice to be behaviorally sensitive to PB treatment. (c) 2007 John Wiley & Sons, Ltd.

  15. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    USGS Publications Warehouse

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  16. Teaching about Natural Background Radiation

    ERIC Educational Resources Information Center

    Al-Azmi, Darwish; Karunakara, N.; Mustapha, Amidu O.

    2013-01-01

    Ambient gamma dose rates in air were measured at different locations (indoors and outdoors) to demonstrate the ubiquitous nature of natural background radiation in the environment and to show that levels vary from one location to another, depending on the underlying geology. The effect of a lead shield on a gamma radiation field was also…

  17. Mindfulness Training and Reductions in Teacher Stress and Burnout: Results from Two Randomized, Waitlist-Control Field Trials

    ERIC Educational Resources Information Center

    Roeser, Robert W.; Schonert-Reichl, Kimberly A.; Jha, Amishi; Cullen, Margaret; Wallace, Linda; Wilensky, Rona; Oberle, Eva; Thomson, Kimberly; Taylor, Cynthia; Harrison, Jessica

    2013-01-01

    The effects of randomization to mindfulness training (MT) or to a waitlist-control condition on psychological and physiological indicators of teachers' occupational stress and burnout were examined in 2 field trials. The sample included 113 elementary and secondary school teachers (89% female) from Canada and the United States. Measures were…

  18. Altered-stress fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Branagan, P.T.

    Altered-stress fracturing is a concept whereby a hydraulic fracture in one well is reoriented by another hydraulic fracture in a nearby location. The application is in tight, naturally fractured, anisotropic reservoirs in which conventional hydraulic fractures parallel the highly permeable natural fractures and little production enhancement is achieved by conventional hydraulic fracturing. Altered-stress fracturing can modify the stress field so that hydraulic fractures propagate across the permeable natural fractures. A field test was conducted in which stress changes of 250 to 300 psi (1.7 to 2.1 MPa) were measured in an offset well 120 ft (37 m) away during relativelymore » small minifracs in a production well. These results show that stress-altered fracturing is possible at this site and others. Analytic and finite element calculations quantify the effects of layers, stresses, and crack size. Reservoir calculations show significant enhancement compared to conventional treatments. 21 refs., 12 figs., 3 tabs.« less

  19. COSMIC INFRARED BACKGROUND FLUCTUATIONS AND ZODIACAL LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ∼2 over the range of solar elongations atmore » which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.« less

  20. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2016-06-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ˜2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  1. Distributed deformation structures in shallow water carbonates subsiding through a simple stress field (Jandaira Formation, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Bertotti, Giovanni; Bisdom, Kevin; Bezerra, Hilario; Reijmer, John; Cazarin, Carol

    2016-04-01

    Despite the scarcity of major deformation structures such as folds and faults, the flat-lying, post-rift shallow water carbonates of the Jandaira Formation (Potiguar Basin, NE Brazil) display well-organized fracture systems distributed of tens of km2. Structures observed in the outcropping carbonates are sub-vertical, generally N-S trending mode I and hybrid veins and barren fractures, sub-vertical roughly E-W trending stylolites and sub-horizontal stylolites. These features developed during subsidence in a simple and constant stress field characterized by, beside gravity, a significant horizontal stress probably of tectonic origin. The corresponding depth curves have different origin and slopes and, therefore, cross each other resulting in position of the principal stresses which change with depth. As a result, the type and amount of fractures affecting subsiding rocks change despite the fact that the far-field stresses remain constant. Following early diagenesis and porosity elimination in the first 100-200m depth, Jandaira carbonates experienced wholesale fracturing at depths of 400-800m resulting in a network of NNW-NE trending fractures partly organized in conjugate sets with a low interfault angle and a sub-vertical intersection, and sub-vertical stylolites roughly perpendicular to the fractures. Intense fluid circulation was activated as a consequence through the carbonates. With increasing subsidence, sub-horizontal stylolites formed providing calcite which precipitated in the open fractures transforming them in veins. The Jandaira formation lost thereby the permeability it had reached during the previous stage. Because of the lack of major deformation, the outcrops of the Jandaira Formation is an excellent analog for carbonate reservoirs in the Middle East, South Atlantic and elsewhere.

  2. New primordial-magnetic-field limit from the latest LIGO S5 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.

    Since the energy momentum tensor of a magnetic field always contains a spin-2 component in its anisotropic stress, stochastic primordial magnetic field (PMF) in the early universe must generate stochastic gravitational-wave (GW) background. This process will greatly affect the relic gravitational wave (RGW), which is one of the major scientific goals of the laser interferometer GW detections. Recently, the fifth science (S5) run of laser interferometer gravitational-wave observatory (LIGO) gave a latest upper limit {Omega}{sub GW}<6.9x10{sup -6} on the RGW background. Utilizing this upper limit, we derive new PMF limits: for a scale of galactic cluster {lambda}=1 Mpc, the amplitudemore » of PMF, that produced by the electroweak phase transition, has to be weaker than B{sub {lambda}{<=}4}x10{sup -7} G; for a scale of supercluster {lambda}=100 Mpc, the amplitude of PMF has to be weaker than B{sub {lambda}{<=}9}x10{sup -11} G. In this manner, GW observation has potential to make interesting contributions to the study of primordial magnetic field.« less

  3. Plenoptic background oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Klemkowsky, Jenna N.; Fahringer, Timothy W.; Clifford, Christopher J.; Bathel, Brett F.; Thurow, Brian S.

    2017-09-01

    The combination of the background oriented schlieren (BOS) technique with the unique imaging capabilities of a plenoptic camera, termed plenoptic BOS, is introduced as a new addition to the family of schlieren techniques. Compared to conventional single camera BOS, plenoptic BOS is capable of sampling multiple lines-of-sight simultaneously. Displacements from each line-of-sight are collectively used to build a four-dimensional displacement field, which is a vector function structured similarly to the original light field captured in a raw plenoptic image. The displacement field is used to render focused BOS images, which qualitatively are narrow depth of field slices of the density gradient field. Unlike focused schlieren methods that require manually changing the focal plane during data collection, plenoptic BOS synthetically changes the focal plane position during post-processing, such that all focal planes are captured in a single snapshot. Through two different experiments, this work demonstrates that plenoptic BOS is capable of isolating narrow depth of field features, qualitatively inferring depth, and quantitatively estimating the location of disturbances in 3D space. Such results motivate future work to transition this single-camera technique towards quantitative reconstructions of 3D density fields.

  4. Stress Intensity Factors for Cracking Metal Structures under Rapid Thermal Loading. Volume 2. Theoretical Background

    DTIC Science & Technology

    1989-08-01

    thermal pulse loadings. The work couples a Green’s function integration technique for transient thermal stresses with the well-known influence ... function approach for calculating stress intensity factors. A total of seven most commonly used crack models were investigated in this study. A computer

  5. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  6. Consistency restrictions on maximal electric-field strength in quantum field theory.

    PubMed

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  7. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    NASA Astrophysics Data System (ADS)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  8. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms...

  9. Neuronal Cellular Responses to Extremely Low Frequency Electromagnetic Field Exposure: Implications Regarding Oxidative Stress and Neurodegeneration

    PubMed Central

    Reale, Marcella; Kamal, Mohammad A.; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H.

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2 −, which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  10. Background Noise Analysis in a Few-Photon-Level Qubit Memory

    NASA Astrophysics Data System (ADS)

    Mittiga, Thomas; Kupchak, Connor; Jordaan, Bertus; Namazi, Mehdi; Nolleke, Christian; Figeroa, Eden

    2014-05-01

    We have developed an Electromagnetically Induced Transparency based polarization qubit memory. The device is composed of a dual-rail probe field polarization setup colinear with an intense control field to store and retrieve any arbitrary polarization state by addressing a Λ-type energy level scheme in a 87Rb vapor cell. To achieve a signal-to-background ratio at the few photon level sufficient for polarization tomography of the retrieved state, the intense control field is filtered out through an etalon filtrating system. We have developed an analytical model predicting the influence of the signal-to-background ratio on the fidelities and compared it to experimental data. Experimentally measured global fidelities have been found to follow closely the theoretical prediction as signal-to-background decreases. These results suggest the plausibility of employing room temperature memories to store photonic qubits at the single photon level and for future applications in long distance quantum communication schemes.

  11. Stress Fields Along Okinawa Trough and Ryukyu Arc Inferred From Regional Broadband Moment Tensors

    NASA Astrophysics Data System (ADS)

    Kubo, A.; Fukuyama, E.

    2001-12-01

    Most shallow earthquakes along Okinawa trough and Ryukyu arc are relatively small (M<5.5). Focal mechanism estimations for such events were difficult due to insufficient dataset. However, this situation is improved by regional broadband network (FREESIA). Lower limit of magnitude of the earthquakes determined becomes 1.5 smaller in M{}w than that of Harvard moment tensors. As a result, we could examine the stress field in more detail than Fournier et al.(2001, JGR, 106, 13751-) did based on surface geology and teleseismic moment tensors. In the NE Okinawa trough, extension axes are oblique to the trough strike, while in SW Okinawa trough, they are perpendicular to the trough. Fault type in SW is normal fault and gradually changes to mixture of normal and strike slip toward NE. In the Ryukyu arc, extension axes are parallel to the arc. Although this feature is not clear in the NW Ryukyu arc, arc parallel extension may be a major property of entire arc. Dominant fault type is normal fault and several strike slips with the same extensional component are included. The volcanic train is located at the edge of arc parallel extension field faced A simple explanation of the arc parallel extension is the response to the opening motion of the Okinawa trough. Another possible mechanism is forearc movement due to oblique subduction which is enhanced in SW. We consider that the Okinawa trough and the Ryukyu arc are independent stress provinces.

  12. Profiled Roller Stress/Fatigue Life Analysis Methodology and Establishment of an Appropriate Stress/Life Exponent

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of this work was to determine the three dimensional volumetric stress field, surface pressure distribution and actual contact area between a 0.50" square roller with different crown profiles and a flat raceway surface using Finite Element Analysis. The 3-dimensional stress field data was used in conjunction with several bearing fatigue life theories to extract appropriate values for stress-life exponents. Also, results of the FEA runs were used to evaluate the laminated roller model presently used for stress and life prediction.

  13. ANALYSIS ON THE GROUND DESTROYED FEATURES AND TECTONIC STRESS FIELD OF THE 2008 WENCHUAN EARTHQUAKE AND OUR TREATING TACTICS

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Wang, H.; Deng, Z.; You, H.

    2009-12-01

    To research the ground destroyed features and tectonic stress field of the 2008 Wenchuan Earthquake, we went the earthquake-hazard area, Hongkou Town in Dujiangyan City, Yingxiu Town in Wenchuan County, Bailu Town in Pengzhou City, Yinghua Town in Shifang City, Hanwang Town in Mianzhu City and Beichuan Cit early and late twice in 2008. The geological survey was made. Firstly, the ground destroyed features of the Wenchuan Earthquake around both Yingxiu - Beichuan Fracture and Guanxian - Jiangyou Fracture were analyzed. They mainly display as the ground crack ground, road steep slope, ground deformation, road rise high and deformation, road staggering and rupture, etc. Besides, the Wenchuan Earthquake resulted in the great deal of building collapse and lots of bridges damage even break down; It can be seen that the first floor of the building disappeared or damaged seriously; Some building still stood there although damaged by the earthquake; A few of building was damaged slightly and kept intact structure. Furthermore, the earthquake caused earth slide, mudflow and rolling stone, which lead to the building destroyed seriously, river blocked up, the life line engineering destroyed. Secondly, the phenomena of the ground destroy were analyzed preliminarily. The seismic intensity was determined based on the field investigation. The damaged situation of the construction was concluded. Based on the principle of structure geology and making use of the Stereographic projection, the stress field was analyzed according to the attitude, structural nature and relations among the fracture, fault scratch and joint fissure as well as the characteristics of ground deformation thirdly. The geodynamics of the 2008 Wenchuan Earthquake are probed into preliminarily. The main compressive stress (the maximum main stress) σ1 took Northeast by east direction, and the main tensile stress (the minimum main stress)σ3 took Northwest by north direction. The main fracture shows as the right

  14. Measuring heterogenous stress fields in a 3D colloidal glass

    NASA Astrophysics Data System (ADS)

    Lin, Neil; Bierbaum, Matthew; Bi, Max; Sethna, James; Cohen, Itai

    Glass in our common experience is hard and fragile. But it still bends, yields, and flows slowly under loads. The yielding of glass, a well documented yet not fully understood flow behavior, is governed by the heterogenous local stresses in the material. While resolving stresses at the atomic scale is not feasible, measurements of stresses at the single particle level in colloidal glasses, a widely used model system for atomic glasses, has recently been made possible using Stress Assessment from Local Structural Anisotropy (SALSA). In this work, we use SALSA to visualize the three dimensional stress network in a hard-sphere glass during start-up shear. By measuring the evolution of this stress network we identify local-yielding. We find that these local-yielding events often require only minimal structural rearrangement and as such have most likely been ignored in previous analyses. We then relate these micro-scale yielding events to the macro-scale flow behavior observed using bulk measurements.

  15. A cross-language study of perception of lexical stress in English.

    PubMed

    Yu, Vickie Y; Andruski, Jean E

    2010-08-01

    This study investigates the question of whether language background affects the perception of lexical stress in English. Thirty native English speakers and 30 native Chinese learners of English participated in a stressed-syllable identification task and a discrimination task involving three types of stimuli (real words/pseudowords/hums). The results show that both language groups were able to identify and discriminate stress patterns. Lexical and segmental information affected the English and Chinese speakers in varying degrees. English and Chinese speakers showed different response patterns to trochaic vs. iambic stress across the three types of stimuli. An acoustic analysis revealed that two language groups used different acoustic cues to process lexical stress. The findings suggest that the different degrees of lexical and segmental effects can be explained by language background, which in turn supports the hypothesis that language background affects the perception of lexical stress in English.

  16. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2017-01-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR (near-infrared)background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC (Infrared Array Camera) observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS (Cosmic Evolution Survey) field at low ecliptic latitude where the zodiacal light intensity varies by factors of approximately 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or approximately equal to 100 arcseconds) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  17. yStreX: yeast stress expression database

    PubMed Central

    Wanichthanarak, Kwanjeera; Nookaew, Intawat; Petranovic, Dina

    2014-01-01

    Over the past decade genome-wide expression analyses have been often used to study how expression of genes changes in response to various environmental stresses. Many of these studies (such as effects of oxygen concentration, temperature stress, low pH stress, osmotic stress, depletion or limitation of nutrients, addition of different chemical compounds, etc.) have been conducted in the unicellular Eukaryal model, yeast Saccharomyces cerevisiae. However, the lack of a unifying or integrated, bioinformatics platform that would permit efficient and rapid use of all these existing data remain an important issue. To facilitate research by exploiting existing transcription data in the field of yeast physiology, we have developed the yStreX database. It is an online repository of analyzed gene expression data from curated data sets from different studies that capture genome-wide transcriptional changes in response to diverse environmental transitions. The first aim of this online database is to facilitate comparison of cross-platform and cross-laboratory gene expression data. Additionally, we performed different expression analyses, meta-analyses and gene set enrichment analyses; and the results are also deposited in this database. Lastly, we constructed a user-friendly Web interface with interactive visualization to provide intuitive access and to display the queried data for users with no background in bioinformatics. Database URL: http://www.ystrexdb.com PMID:25024351

  18. Staff Stress and Burnout in Intellectual Disability Services: Work Stress Theory and Its Application

    ERIC Educational Resources Information Center

    Devereux, Jason; Hastings, Richard; Noone, Steve

    2009-01-01

    Background: Staff in intellectual disability services can be at risk of stress and burnout at work. Given that staff well-being has implications for the quality of life of the staff themselves and people with intellectual disabilities themselves, this is an important research and practical topic. In this paper, we review work stress theories that…

  19. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V., E-mail: s.j.shepherd@brad.ac.uk, E-mail: s.zharkov@hull.ac.uk, E-mail: valentina.zharkova@northumbria.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in differentmore » layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.« less

  20. Changes in tectonic stress field in the northern Sunda Shelf Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjia, H.D.; Liew, K.K.

    1994-07-01

    The Tertiary hydrocarbon basins of the northern Sunda Shelf are underlain by continental and attenuated continental crust characterized by moderate to high average geothermic gradients in excess of 5[degrees]C/100 m. In the Malay basin, Oligocene and younger sediments are more than 12 km thick. The smaller basins (which are commonly half grabens) and probably also the main Malay basin were developed as pull-apart depressions associated with regional north-to-northwest-striking wrench faults. Initial basin subsidence took place during the Oligocene, but at least one small basin may have developed as early as the Jurassic. Sense of movement of the regional wrench faultsmore » was reversed during middle to late Miocene and in some of these faults, evidence was found for yet a younger phase of lateral displacement. These offsets range up to 45 km right-laterally along north-trending fault zones. During most of the Cenozoic, succeeding wrench faulting with sense of movement in the opposite direction caused structural inversion of the basin-filling sediments, which became folded. The regional wrench faults act as domain boundaries, each tectonic domain being characterized by different stress fields. The evolving stress system can be attributed to varying degrees of interference of plate motions coupled with changes in movement directions and/or rates of the Pacific plate Indian Ocean-Australian plate and possible expulsion of southeast Asian crustal slabs following the collision of the Indian subplate with the Eurasian plate.« less

  1. The Anisotropy of the Microwave Background to l=3500: Mosaic Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Pearson, T. J.; Mason, B. S.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J. L.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 deg (sup 2) of sky in three pairs of fields, each approximately 145 feet x 165 feet, using overlapping pointings: (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales approximately 6 feet-15 feet, corresponding to masses approximately 5-80 x 10(exp 14) solar mass at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution delta l approximately 200 and are consistent with earlier results in the multipole range l approximately less than 1000. The power spectrum is detected with high signal-to-noise ratio in the range 300 approximately less than l approximately less than 1700. For 1700 approximately less than l approximately less than 3000 the observations are consistent with the results from more sensitive CBI deep-field observations. The results agree with the extrapolation of cosmological models fitted to observations at lower l, and show the predicted drop at high l (the "damping tail").

  2. Time-dependent wellbore breakout growth caused by drilling-induced pore pressure transients: Implications for estimations of far field stress magnitude

    NASA Astrophysics Data System (ADS)

    Olcott, K. A.; Saffer, D. M.; Elsworth, D.

    2013-12-01

    One method used to constrain principal stress orientations and magnitudes in the crust combines estimates of rock strength with observations of wellbore failures, including drilling-induced tensile fractures (DITF) and compressional borehole breakouts (BO). This method has been applied at numerous Integrated Ocean Drilling Program (IODP) boreholes drilled into sediments in a wide range of settings, including the Gulf of Mexico, the N. Japan and Costa Rican subduction margins, and the Nankai Trough Accretionary Prism. At Nankai and N. Japan, BO widths defined by logging-while-drilling (LWD) resistivity images have been used to estimate magnitudes of far-field horizontal tectonic stresses. At several drillsites (C0010, C0002, and C0011), sections of the borehole were relogged with LWD after the hole was left open for times ranging from ~30 min to 3 days; times between acquisition were associated with pipe connections (~30 min), cleaning and circulating the hole (up to ~3 hr), and evacuation of the site for weather (~3 days). Relogged portions exhibit widening of BO, hypothesized to reflect time-dependent re-equilibration of instantaneous changes in pore fluid pressure (Pf) induced by opening the borehole. In this conceptual model, Pf decrease caused by initial excavation of the borehole and resulting changes in the state of stress at the borehole wall lead to an initial strengthening of the sediment. Re-equilibration of Pf results in time-dependent weakening of the sediment and subsequent BO growth. If correct, this hypothesis implies that stress magnitudes estimated by BO widths could be significantly underestimated. We test this idea using a finite-element model in COMSOL multiphysics that couples fluid flow and deformation in a poroelastic medium. We specify far-field horizontal principal stresses (SHmax and Shmin) in the model domain. At the start of simulations/at the time of borehole opening, we impose a decreased stress at the borehole wall. We consider a

  3. Stress Field Variation after the 2001 Skyros Earthquake, Greece, Derived from Seismicity Rate Changes

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, K.; Papadimitriou, E.; Orlecka-Sikora, B.; Karakostas, V.

    2012-04-01

    The spatial variation of the stress field (ΔCFF) after the 2001 strong (Mw=6.4) Skyros earthquake in North Aegean Sea, Greece, is investigated in association with the changes of earthquake production rates. A detailed slip model is considered in which the causative fault is consisted of several sub-faults with different coseismic slip onto each one of them. First the spatial distribution of aftershock productivity is compared with the static stress changes due to the coseismic slip. Calculations of ΔCFF are performed at different depths inside the seismogenic layer, defined from the vertical distribution of the aftershocks. Seismicity rates of the smaller magnitude events with M≥Mc for different time increments before and after the main shock are then derived from the application of a Probability Density Function (PDF). These rates are computed by spatially smoothing the seismicity and for this purpose a normal grid of rectangular cells is superimposed onto the area and the PDF determines seismicity rate values at the center of each cell. The differences between the earthquake occurrence rates before and after the main shock are compared and used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an independent estimation of stress changes. This model incorporates the physical properties of the fault zones (characteristic relaxation time, fault constitutive parameters, effective friction coefficient) with a probabilistic estimation of the spatial distribution of seismicity rates, derived from the application of the PDF. The stress patterns derived from the previously mentioned approaches are compared and the quantitative correlation between the respective results is accomplished by the evaluation of Pearson linear correlation coefficient and its confidence intervals to quantify their significance. Different assumptions and combinations of the physical and statistical parameters are tested for

  4. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance

    DOE PAGES

    Sardi, Maria; Rovinskiy, Nikolay; Zhang, Yaoping; ...

    2016-07-22

    We report a major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast)more » strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Lastly, our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms.« less

  5. Re-conceptualizing stress: Shifting views on the consequences of stress and its effects on stress reactivity

    PubMed Central

    Liu, Jenny J. W.

    2017-01-01

    Background The consequences of stress are typically regarded from a deficit-oriented approach, conceptualizing stress to be entirely negative in its outcomes. This approach is unbalanced, and may further hinder individuals from engaging in adaptive coping. In the current study, we explored whether negative views and beliefs regarding stress interacted with a stress framing manipulation (positive, neutral and negative) on measures of stress reactivity for both psychosocial and physiological stressors. Method Ninety participants were randomized into one of three framing conditions that conceptualized the experience of stress in balanced, unbalanced-negative or unbalanced-positive ways. After watching a video on stress, participants underwent a psychosocial (Trier Social Stress Test), or a physiological (CO2 challenge) method of stress-induction. Subjective and objective markers of stress were assessed. Results Most of the sampled population regarded stress as negative prior to framing. Further, subjective and objective reactivity were greater to the TSST compared to the CO2 challenge. Additionally, significant cubic trends were observed in the interactions of stress framing and stress-induction methodologies on heart rate and blood pressure. Balanced framing conditions in the TSST group had a significantly larger decrease in heart rate and diastolic blood pressure following stress compared to the positive and negative framing conditions. Conclusion Findings confirmed a deficit-orientation of stress within the sampled population. In addition, results highlighted the relative efficacy of the TSST compared to CO2 as a method of stress provocation. Finally, individuals in framing conditions that posited stress outcomes in unbalanced manners responded to stressors less efficiently. This suggests that unbalanced framing of stress may have set forth unrealistic expectations regarding stress that later hindered individuals from adaptive responses to stress. Potential

  6. Dependence of electrical and time stress in organic field effect transistor with low temperature forming gas treated Al2O3 gate dielectrics.

    PubMed

    Lee, Sunwoo; Chung, Keum Jee; Park, In-Sung; Ahn, Jinho

    2009-12-01

    We report the characteristics of the organic field effect transistor (OFET) after electrical and time stress. Aluminum oxide (Al2O3) was used as a gate dielectric layer. The surface of the gate oxide layer was treated with hydrogen (H2) and nitrogen (N2) mixed gas to minimize the dangling bond at the interface layer of gate oxide. According to the two stress parameters of electrical and time stress, threshold voltage shift was observed. In particular, the mobility and subthreshold swing of OFET were significantly decreased due to hole carrier localization and degradation of the channel layer between gate oxide and pentacene by electrical stress. Electrical stress is a more critical factor in the degradation of mobility than time stress caused by H2O and O2 in the air.

  7. Background feature descriptor for offline handwritten numeral recognition

    NASA Astrophysics Data System (ADS)

    Ming, Delie; Wang, Hao; Tian, Tian; Jie, Feiran; Lei, Bo

    2011-11-01

    This paper puts forward an offline handwritten numeral recognition method based on background structural descriptor (sixteen-value numerical background expression). Through encoding the background pixels in the image according to a certain rule, 16 different eigenvalues were generated, which reflected the background condition of every digit, then reflected the structural features of the digits. Through pattern language description of images by these features, automatic segmentation of overlapping digits and numeral recognition can be realized. This method is characterized by great deformation resistant ability, high recognition speed and easy realization. Finally, the experimental results and conclusions are presented. The experimental results of recognizing datasets from various practical application fields reflect that with this method, a good recognition effect can be achieved.

  8. A Flexible Cosmic Ultraviolet Background Model

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2016-10-01

    HST studies of the IGM, of the CGM, and of reionization-era galaxies are all aided by ionizing background models, which are a critical input in modeling the ionization state of diffuse, 10^4 K gas. The ionization state in turn enables the determination of densities and sizes of absorbing clouds and, when applied to the Ly-a forest, the global ionizing emissivity of sources. Unfortunately, studies that use these background models have no way of gauging the amount of uncertainty in the adopted model other than to recompute their results using previous background models with outdated observational inputs. As of yet there has been no systematic study of uncertainties in the background model and there unfortunately is no publicly available ultraviolet background code. A public code would enable users to update the calculation with the latest observational constraints, and it would allow users to experiment with varying the background model's assumptions regarding emissions and absorptions. We propose to develop a publicly available ionizing background code and, as an initial application, quantify the level of uncertainty in the ionizing background spectrum across cosmic time. As the background model improves, so does our understanding of (1) the sources that dominate ionizing emissions across cosmic time and (2) the properties of diffuse gas in the circumgalactic medium, the WHIM, and the Ly-a forest. HST is the primary telescope for studying both the highest redshift galaxies and low-redshift diffuse gas. The proposed program would benefit HST studies of the Universe at z 0 all the way up to z = 10, including of high-z galaxies observed in the HST Frontier Fields.

  9. Local redistribution of blood under the effect of fixation stress against a background of hypokinesia

    NASA Technical Reports Server (NTRS)

    Kovalev, O. A.; Lysak, V. F.; Severovostokova, V. I.; Shermetevskaya, S. K.

    1980-01-01

    Fixation stress was used as a model of emotional disturbance. The effect of previous restrictions on mobility on the local redistribution of blood resulting from fixation stress was examined. Disturbances in carbohydrate which result from prolonged hypokinesia was studied. Radioactivity was used to determine the local redistribution of blood. Modified factor analysis was used to study the results of the experiment.

  10. Show what you know and deal with stress yourself: a qualitative interview study of medical interns’ perceptions of stress and gender

    PubMed Central

    2014-01-01

    Background Medical students report high stress levels and in particular, the clinical phase is a demanding one. The field of medicine is still described as having a patriarchal culture which favors aspects like a physicians’ perceived certainty and rationalism. Also, the Effort-Recovery Model explains stress as coming from a discrepancy between job demands, job control, and perceived work potential. Gendered differences in stress are reported, but not much is known about medical interns’ perceptions of how gender plays in relation to stress. The aim of this study is to explore how medical interns experience and cope with stress, as well as how they reflect on the gendered aspects of stress. Methods In order to do this, we have performed a qualitative study. In 2010–2011, semi-structured qualitative interviews were conducted with seventeen medical interns across all three years of the Masters programme (6 male, 11 female) at a Dutch medical school. The interview guide is based on gender theory, the Effort-Recovery Model, and empirical literature. Transcribed interviews have been analyzed thematically. Results First, stress mainly evolves from having to prove one’s self and show off competencies and motivation (“Show What You Know…”). Second, interns seek own solutions for handling stress because it is not open for discussion (… “And Deal With Stress Yourself”). Patient encounters are a source of pride and satisfaction rather than a source of stress. But interns report having to present themselves as ‘professional and self-confident’, remaining silent about experiencing stress. Female students are perceived to have more stress and to study harder in order to live up to expectations. Conclusions The implicit message interns hear is to remain silent about insecurities and stress, and, in particular, female students might face disadvantages. Students who feel less able to manifest the ‘masculine protest’ may benefit from a culture that

  11. Probing Earth's State of Stress

    NASA Astrophysics Data System (ADS)

    Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.

    2016-12-01

    The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.

  12. Stressed and unstressed Ge:Ga detector arrays for airborne astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, G.J.; Beeman, J.W.; Haller, E.E.

    1992-11-01

    We have constructed and used two dimensional arrays of both unstressed and stressed Ge:GA photoconductive detectors for far-infrared astronomy from the Kuiper Airborne Observatory (KAO). The 25 element (5 x 5) arrays are designed for a new cryogenically cooled spectrometer, the MPE/UCB Far-Infrared Imaging Fabry-Perot Interferometer (FIFI). All of the pixels for the stressed array performed well on the first flights with FIFI; 25% of the detectors in the array are more sensitive than our best single element detector, with background limited noise equivalent powers (NEPs) [approx lt] 3.0 [times] 10[sup [minus]15] W Hz[sup [minus]1/2] at 158 [mu]m and 40more » km s[sup [minus]1] spectral resolution. The average array element performs within [plus minus] 15% of this value. With a bias field of 0.1 V/cm, the average detector response is 20 [plus minus] 6 Amp/Watt at 158 [mu]m. The cutoff wavelength and response also compare well with our single element detectors. The unstressed array delivers significantly better performance than our single element detector due to the lower thermal background in the new spectrometer. The average background limited NEP at 88 [mu]m and 35 km s[sup [minus]1] spectral resolution is approx. 7 [times] 10[sup [minus]15] W Hz[sup [minus]1/2]. 18 refs., 10 figs., 2 tabs.« less

  13. Metal-as-insulation variant of no-insulation HTS winding technique: pancake tests under high background magnetic field and high current at 4.2 K

    NASA Astrophysics Data System (ADS)

    Lécrevisse, T.; Badel, A.; Benkel, T.; Chaud, X.; Fazilleau, P.; Tixador, P.

    2018-05-01

    In the framework of a project aiming at fabricating a 10 T high temperature superconducting (HTS) insert to operate in a 20 T background field, we are investigating the behavior of pancakes consisting of a REBCO HTS tape co-wound with a stainless steel tape (metal-as-insulation (MI) coil). The MI winding is inducing a significant turn-to-turn electrical resistance which helps to reduce the charging time delay. Despite this resistance, the self-protection feature of no-insulation coils is still enabled, thanks to the voltage limit of the power supply. We have built a single pancake coil representative of the pancake that will be used in the insert and performed tests under very high background magnetic field. Our coil experienced over 100 heater induced quenches without a measureable increase of its internal resistance. We have gathered stability and quench behavior data for magnetic fields and engineering current densities (je ) in the range of 0–17 T and 0–635 A mm‑2 respectively. We also present our very first experiments on the insert/outsert interaction in the case of a resistive magnet fault. We show that if self-protection of the MI winding is really effective in the case of a MI coil quench, a major issue comes from the outsert fault which induces a huge current inside the MI coil.

  14. Inter-Annual Variability of Soil Moisture Stress Function in the Wheat Field

    NASA Astrophysics Data System (ADS)

    Akuraju, V. R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. B.

    2014-12-01

    Root-zone soil moisture content is a key variable that controls the exchange of water and energy fluxes between land and atmosphere. In the soil-vegetation-atmosphere transfer (SVAT) schemes, the influence of root-zone soil moisture on evapotranspiration (ET) is parameterized by the soil moisture stress function (SSF). Dependence of actual ET: potential ET (fPET) or evaporative fraction to the root-zone soil moisture via SSF can also be used inversely to estimate root-zone soil moisture when fPET is estimated by remotely sensed land surface states. In this work we present fPET versus available soil water (ASW) in the root zone observed in the experimental farm sites in Victoria, Australia in 2012-2013. In the wheat field site, fPET vs ASW exhibited distinct features for different soil depth, net radiation, and crop growth stages. Interestingly, SSF in the wheat field presented contrasting shapes for two cropping years of 2012 and 2013. We argue that different temporal patterns of rainfall (and resulting soil moisture) during the growing seasons in 2012 and 2013 are responsible for the distinctive SSFs. SSF of the wheat field was simulated by the Agricultural Production Systems sIMulator (APSIM). The APSIM was able to reproduce the observed fPET vs. ASW. We discuss implications of our findings for existing modeling and (inverse) remote sensing approaches relying on SSF and alternative growth-stage-dependent SSFs.

  15. Stress and the Workplace: A Comparison of Occupational Fields.

    ERIC Educational Resources Information Center

    Matthews, Doris B.; Casteel, Jim Frank

    Stress in various occupations is of interest to managers, counselors, and personnel workers. A study was undertaken to examine, through the use of self-report scales, stress-related characteristics of workers in occupations which require many and varied human interactions. Subjects were 244 full-time employees in six professions: health services,…

  16. Oxidative stress and psychological functioning among medical students

    PubMed Central

    Srivastava, Rani; Batra, Jyoti

    2014-01-01

    Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA) levels) and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression) among medical/paramedical students of 1st and 3rd year). Materials and Methods: A total of 150 students; 75 from 1st year (2010–2011) and75 from 3rd year (2009–2010); of medical and paramedical background were assessed on level of MDA (oxidative stress) and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given. PMID:25788802

  17. Solving a methodological challenge in work stress evaluation with the Stress Assessment and Research Toolkit (StART): a study protocol

    PubMed Central

    2013-01-01

    Background Stress evaluation is a field of strong interest and challenging due to several methodological aspects in the evaluation process. The aim of this study is to propose a study protocol to test a new method (i.e., the Stress Assessment and Research Toolkit) to assess psychosocial risk factors at work. Design This method addresses several methodological issues (e.g., subjective vs. objective, qualitative vs quantitative data) by assessing work-related stressors using different kinds of data: i) organisational archival data (organisational indicators sheet); ii) qualitative data (focus group); iii) worker perception (questionnaire); and iv) observational data (observational checklist) using mixed methods research. In addition, it allows positive and negative aspects of work to be considered conjointly, using an approach that considers at the same time job demands and job resources. Discussion The integration of these sources of data can reduce the theoretical and methodological bias related to stress research in the work setting, allows researchers and professionals to obtain a reliable description of workers’ stress, providing a more articulate vision of psychosocial risks, and allows a large amount of data to be collected. Finally, the implementation of the method ensures in the long term a primary prevention for psychosocial risk management in that it aims to reduce or modify the intensity, frequency or duration of organisational demands. PMID:23799950

  18. Massive graviton on arbitrary background: derivation, syzygies, applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Laura; Deffayet, Cédric; IHES, Institut des Hautes Études Scientifiques,Le Bois-Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette

    2015-06-23

    We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a “reference metric' which is present in the non perturbative formulation. Wemore » show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized.« less

  19. Massive graviton on arbitrary background: derivation, syzygies, applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Laura; Deffayet, Cédric; Strauss, Mikael von, E-mail: bernard@iap.fr, E-mail: deffayet@iap.fr, E-mail: strauss@iap.fr

    2015-06-01

    We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a ''reference metric' which is present in the non perturbative formulation. Wemore » show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized.« less

  20. The EPIC-MOS Particle-Induced Background Spectra

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Sowden, S. L.

    2007-01-01

    In order to analyse diffuse emission that fills the field of view, one must accurately characterize the instrumental backgrounds. For the XMM-Newton EPIC instrument these backgrounds include a temporally variable "quiescent" component. as well as the strongly variable soft proton contamination. We have characterized the spectral and spatial response of the EPIC detectors to these background components and have developed tools to remove these backgrounds from observations. The "quiescent" component was characterized using a combination of the filter-wheel-closed data and a database of unexposed-region data. The soft proton contamination was characterized by differencing images and spectra taken during flared and flare-free intervals. After application of our modeled backgrounds, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear spectral evidence of solar wind charge exchange emission. Using a large sample of blank sky data, we show that strong magnetospheric SWCX emission requires elevated solar wind fluxes; observations through the densest part of the magnetosheath are not necessarily strongly contaminated with SWCX emission.

  1. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.

    PubMed

    Romero, Pascual; Botía, Pablo; Keller, Markus

    2017-09-01

    Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather

  2. Analysis of Biaxial Stress Fields in Plates Cracking at Elevated Temperatures

    DTIC Science & Technology

    1989-10-19

    used . Based on the enhanced theory, it is predicted that the minimum resolvable stress amplitude using thermographic stress analysis will be...because of limitations in the commercial thermographic equipment used . Based on the enhanced theory, it is predicted that the minimum resolvable stress...amplitude using thermographic stress analysis will be approximately independent of temperature, provided relevant thermal and mechanical material

  3. Revealing infinite derivative gravity's true potential: The weak-field limit around de Sitter backgrounds

    NASA Astrophysics Data System (ADS)

    Edholm, James

    2018-03-01

    General Relativity is known to produce singularities in the potential generated by a point source. Our universe can be modeled as a de Sitter (dS) metric and we show that ghost-free infinite derivative gravity (IDG) produces a nonsingular potential around a dS background, while returning to the GR prediction at large distances. We also show that although there are an apparently infinite number of coefficients in the theory, only a finite number actually affect the predictions. By writing the linearized equations of motion in a simplified form, we find that at distances below the Hubble length scale, the difference between the IDG potential around a flat background and around a de Sitter background is negligible.

  4. Near Field Observations of Seismicity in Volcanic Environments: A Read-Made Field Laboratory

    NASA Astrophysics Data System (ADS)

    Bean, C. J.; Thun, J.; Eibl, E. P. S.; Benson, P. M.; Rowley, P.; Lokmer, I.; Cauchie, L.

    2017-12-01

    Volcanic environments experience periods of rapid stress fluctuations and consequent seismicity. This volcano seismicity is diverse in character, spanning the range from discrete high frequency events through low-frequency earthquakes and tremor. The inter-relationships between these events appear to be controlled by edifice rheology, stress state and the presence of fluids (which help modulate the stress field). In general volcanoes are accessible to instrumentation, allowing near-field access to the seismicity at play. Here we present results from a range of field, numerical and laboratory experiments that demonstrate the controls that rheology and strain rate play on seismicity type. In particular we demonstrate the role played by internal friction angles on the initiation and evolution of seismicity, in dry weak-compliant volcanic materials. Furthermore we show the importance of near field observation in constraining details of the seismic source, in a meso-scale field setting.

  5. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.

    PubMed

    Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu

    2016-07-01

    We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.

  6. [Post-traumatic stress disorder after childbirth].

    PubMed

    Korábová, I; Masopustová, Z

    2016-01-01

    The aim of this paper is to introduce the issue of post-traumatic stress disorder after childbirth to health care professionals. The text focuses on the diagnostic definition of post-traumatic stress disorder after childbirth, symptoms, physiological background, prevalence, course, risk factors and consequences of post-traumatic stress disorder after childbirth for a woman, her child and her partner. Options for interventions and therapy are outlined as well.

  7. AdS/CFT and local renormalization group with gauge fields

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ken; Sakai, Tadakatsu

    2016-03-01

    We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a (d+1)-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector β-functions, and some of their interesting properties are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for d=4. A relation between a choice of schemes and a virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic c-theorem by determining a full family of schemes where a trace anomaly coefficient is related with a holographic c-function.

  8. Betaine synthesis and accumulation in barley during field water-stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitz, W.D.; Ladyman, J.A.R.; Hanson, A.D.

    1982-01-01

    The timing and extent of betaine accumulation by mature leaves of barley (Hordeum vulgare L.) were followed in irrigated (I) and non-irrigated (N-I) plots under rain-shelters. In the N-I crop, leaf water potential (/sup psi/leaf) began to fall at the five-leaf stage, continued to drop steadily until maturity, and reached a minimum of about -35 bars. Betaine accumulation started in the N-I crop about a week after the decline in /sup psi/leaf began and continued until about 10 days post-anthesis. The maximum betaine concentration attained by N-I leaves (100 ..mu..mol/g dry wt) was three times that in I leaves. Betainemore » accumulation by upper leaves was due mainly to de novo synthesis in these leaves, because: (1) there was little /sup 14/C-import into upper leaves when (/sup 14/C)betaine was applied to lower leaves, and (2) attached upper leaves of N-I plants rapidly converted supplied (/sup 14/C)ethanolamine to (/sup 14/C)betaine during the peak period of betaine accumulation. Phosphatidylcholine (PC) behaved as an intermediate in the conversion of (/sup 14/C)ethanolamine to betaine. The estimated peak metabolic cost of betaine biosynthesis via PC by stressed leaves (about 2 mg hexose/g dry wt/day) approached the cost of protein turnover in the same leaves (3 to 5 mg hexose/g dry wt/day) as estimated from (/sup 3/H) lysine incorporation. In N-I plants, cessation of betaine synthesis preceded the onset of senescence by several days, indicating that continuous betaine production is not mandatory for leaf function at lowered /sup psi/leaf. These field results are consistent with an adaptive value for betaine accumulation in barley during prolonged water stress. A search for genetic variation in betaine-accumulating potential in barley is now warranted.« less

  9. Simulation of PEP-II Accelerator Backgrounds Using TURTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, R.J.; Fieguth, T.; /SLAC

    2006-02-15

    We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using LPTURTLE, a modified version of the DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full program of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modeling of limiting apertures in bothmore » collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.« less

  10. Saliency Detection on Light Field.

    PubMed

    Li, Nianyi; Ye, Jinwei; Ji, Yu; Ling, Haibin; Yu, Jingyi

    2017-08-01

    Existing saliency detection approaches use images as inputs and are sensitive to foreground/background similarities, complex background textures, and occlusions. We explore the problem of using light fields as input for saliency detection. Our technique is enabled by the availability of commercial plenoptic cameras that capture the light field of a scene in a single shot. We show that the unique refocusing capability of light fields provides useful focusness, depths, and objectness cues. We further develop a new saliency detection algorithm tailored for light fields. To validate our approach, we acquire a light field database of a range of indoor and outdoor scenes and generate the ground truth saliency map. Experiments show that our saliency detection scheme can robustly handle challenging scenarios such as similar foreground and background, cluttered background, complex occlusions, etc., and achieve high accuracy and robustness.

  11. Residual stress measurements in carbon steel

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Min, N.

    1986-01-01

    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.

  12. Academic Achievement, Perceived Stress, Admission Data, and Sociodemographic Background Among Therapy Students in Israel.

    PubMed

    Jacob, Tamar; Einstein, Ofira

    2017-01-01

    Academic achievement (AA) is of great importance in the academic world. The aims of this study were to: 1) identify contributors to AA of physical therapy (PT) students; 2) evaluate students' perceived stress (PS); and 3) identify contributors to PS. A cross-sectional study involving three undergraduate PT classes in a single academic year was performed 1 week prior to final examinations. Current grade point average (GPA) and admission data were collected from administrative records. Additional data, collected using an online questionnaire, included the Perceived Stress Scale 10 (PSS), Scale for Assessing Academic Stress (SAAS), and selected sociodemographic variables. Regression analysis identified contributors to AA and to PS. Records of 153 students and questionnaires of 118 students were included in the study. Combined grades from psychometric tests and matriculation exams at admission, low PS, absence due to military reserve service during the academic year, and participation in the second and third years of the PT program accounted for a modest variance (31.1% ) in students' GPA. The low contribution of admission criteria to GPA suggests that there is no justification for raising the level of the present criteria.

  13. A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds

    NASA Astrophysics Data System (ADS)

    Bär, Christian; Strohmaier, Alexander

    2016-11-01

    We discuss the chiral anomaly for a Weyl field in a curved background and show that a novel index theorem for the Lorentzian Dirac operator can be applied to describe the gravitational chiral anomaly. A formula for the total charge generated by the gravitational and gauge field background is derived directly in Lorentzian signature and in a mathematically rigorous manner. It contains a term identical to the integrand in the Atiyah-Singer index theorem and another term involving the {η}-invariant of the Cauchy hypersurfaces.

  14. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia)

    NASA Astrophysics Data System (ADS)

    Gómez-Alba, Sebastián; Fajardo-Zarate, Carlos Eduardo; Vargas, Carlos Alberto

    2016-11-01

    At least 156 earthquakes (Mw 2.8-4.4) were detected in Puerto Gaitán, Colombia (Eastern Llanos Basin) between April 2013 and December 2014. Out of context, this figure is not surprising. However, from its inception in 1993, the Colombian National Seismological Network (CNSN) found no evidence of significant seismic events in this region. In this study, we used CNSN data to model the rupture front and orientation of the highest-energy events. For these earthquakes, we relied on a joint inversion method to estimate focal mechanisms and, in turn, determine the area's fault trends and stress tensor. While the stress tensor defines maximum stress with normal tendency, focal mechanisms generally represent normal faults with NW orientation, an orientation which lines up with the tracking rupture achieved via Back Projection Imaging for the study area. We ought to bear in mind that this anomalous earthquake activity has taken place within oil fields. In short, the present paper argues that, based on the spatiotemporal distribution of seismic events, hydrocarbon operations may induce the study area's seismicity.

  15. Correlated full-field and pointwise temporally resolved measurements of thermomechanical stress inside an operating power transistor

    NASA Astrophysics Data System (ADS)

    Borza, Dan N.; Gautrelet, Christophe

    2015-01-01

    The paper describes a measurement system based on time-resolved speckle interferometry, able to record long series of thermally induced full-field deformation maps of die and wire bonds inside an operating power transistor. The origin of the deformation is the transistor heating during its normal operation. The full-field results consist in completely unwrapped deformation maps for out-of-plane displacements greater than 14 μm, with nanometer resolution, in presence of discontinuities due to structural and material inhomogeneity. These measurements are synchronized with the measurement of heatsink temperature and of base-emitter junction temperature, so as to provide data related to several interacting physical parameters. The temporal histories of the displacement are also accessible for any point. They are correlated with the thermal and electrical time series. Mechanical full-field curvatures may also be estimated, making these measurements useful for inspecting physical origins of thermomechanical stresses and for interacting with numerical models used in reliability-related studies.

  16. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  17. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  18. Derivational Suffixes as Cues to Stress Position in Reading Greek

    ERIC Educational Resources Information Center

    Grimani, Aikaterini; Protopapas, Athanassios

    2017-01-01

    Background: In languages with lexical stress, reading aloud must include stress assignment. Stress information sources across languages include word-final letter sequences. Here, we examine whether such sequences account for stress assignment in Greek and whether this is attributable to absolute rules involving accenting morphemes or to…

  19. Occupational role stress is associated with higher cortisol reactivity to acute stress.

    PubMed

    Wirtz, Petra H; Ehlert, Ulrike; Kottwitz, Maria U; La Marca, Roberto; Semmer, Norbert K

    2013-04-01

    We investigated whether occupational role stress is associated with differential levels of the stress hormone cortisol in response to acute psychosocial stress. Forty-three medication-free nonsmoking men aged between 22 and 65 years (mean ± SEM: 44.5 ± 2) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We assessed occupational role stress in terms of role conflict and role ambiguity (combined into a measure of role uncertainty) as well as further work characteristics and psychological control variables including time pressure, overcommitment, perfectionism, and stress appraisal. Moreover, we repeatedly measured salivary cortisol and blood pressure levels before and after stress exposure, and several times up to 60 min thereafter. Higher role uncertainty was associated with a more pronounced cortisol stress reactivity (p = .016), even when controlling for the full set of potential confounders (p < .001). Blood pressure stress reactivity was not associated with role uncertainty. Our findings suggest that occupational role stress in terms of role uncertainty acts as a background stressor that is associated with increased HPA-axis reactivity to acute stress. This finding may represent a potential mechanism regarding how occupational role stress may precipitate adverse health outcomes.

  20. The diffuse infrared background - COBE and other observations

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.; Murdock, T.; Toller, G.; Spiesman, W.; Weiland, J.

    1991-01-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) satellite is designed to conduct a sensitive search for an isotropic cosmic infrared background radiation over the spectral range from 1 to 300 micrometers. The cumulative emissions of pregalactic, protogalactic, and evolving galactic systems are expected to be recorded in this background. The DIRBE instrument, a 10 spectral band absolute photometer with an 0.7 deg field of view, maps the full sky with high redundancy at solar elongation angles ranging from 64 to 124 degrees to facilitate separation of interplanetary, Galactic, and extragalactic sources of emission. Initial sky maps show the expected character of the foreground emissions, with relative minima at wavelengths of 3.4 micrometers and longward of 100 micrometers. Extensive modelling of the foregrounds, just beginning, will be required to isolate the extragalactic component. In this paper, we summarize the status of diffuse infrared background observations from the DIRBE, and compare preliminary results with those of recent rocket and satellite instruments.

  1. Longitudinal leading-twist distribution amplitude of the J /ψ meson within the background field theory

    NASA Astrophysics Data System (ADS)

    Fu, Hai-Bing; Zeng, Long; Cheng, Wei; Wu, Xing-Gang; Zhong, Tao

    2018-04-01

    We make a detailed study on the J /ψ meson longitudinal leading-twist distribution amplitude ϕ2;J /ψ ∥ by using the QCD sum rules within the background field theory. By keeping all the nonperturbative condensates up to dimension 6, we obtain accurate QCD sum rules for the moments ⟨ξn;J /ψ ∥⟩. The first three ones are ⟨ξ2;J /ψ ∥⟩=0.083 (12 ), ⟨ξ4;J /ψ ∥⟩=0.015 (5 ), and ⟨ξ6;J /ψ ∥⟩=0.003 (2 ), respectively. Those values indicate a single peaked behavior for ϕ2;J /ψ ∥. As an application, we adopt the QCD light-cone sum rules to calculate the Bc meson semileptonic decay Bc+→J /ψ ℓ+νℓ. We obtain Γ (Bc+→J /ψ ℓ+νℓ)=(89.67-19.06+24.76)×10-15 GeV and ℜ(J /ψ ℓ+νℓ)=0.21 7-0.057+0.069, which agree with both the extrapolated next-to-leading order pQCD prediction and the new CDF measurement within errors.

  2. Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient Nicotiana attenuata plants to compensate for their structural deficiencies.

    PubMed

    Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T

    2012-08-01

    The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.

  3. Mechanical reinforcement for RACC cables in high magnetic background fields

    NASA Astrophysics Data System (ADS)

    Bayer, C. M.; Gade, P. V.; Barth, C.; Preuß, A.; Jung, A.; Weiß, K. P.

    2016-02-01

    Operable in liquid helium, liquid hydrogen or liquid nitrogen, high temperature superconductor (HTS) cables are investigated as future alternatives to low temperature superconductor (LTS) cables in magnet applications. Different high current HTS cable concepts have been developed and optimized in the last years—each coming with its own benefits and challenges. As the Roebel assembled coated conductor (RACC) is the only fully transposed HTS cable investigated so far, it is attractive for large scale magnet and accelerator magnet applications when field quality and alternating current (AC) losses are of highest importance. However, due to its filamentary character, the RACC is very sensitive to Lorentz forces. In order to increase the mechanical strength of the RACC, each of the HTS strands was covered by an additional copper tape. After investigating the maximum applicable transverse pressure on the strand composition, the cable was clamped into a stainless steel structure to reinforce it against Lorentz forces. A comprehensive test has been carried out in the FBI facility at 4.2 K in a magnetic field of up to 12 T. This publication discusses the maximum applicable pressure as well as the behaviour of the RACC cable as a function of an external magnetic field.

  4. Relationship Between Far Field Stresses, Fluid Flow and High-Pressure Deserpentinization in Subducting Slabs: a Case Study From the Almirez Ultramafic Massif

    NASA Astrophysics Data System (ADS)

    Dilissen, Nicole; Hidas, Károly; Garrido, Carlos J.; López Sánchez-Vizcaíno, Vicente; Kahl, Wolf-Achim; Padrón-Navarta, José Alberto; Jesús Román-Alpiste, Manuel

    2017-04-01

    Serpentinite dehydration during prograde metamorphism plays a crucial role in subduction dynamics. Observations from exhumed paleo-subduction metamorphic terranes suggest that the discharge of deserpentinization fluids from the subducting slab takes place along different pathways and mechanisms [e.g. 1-3]. Analysis of intermediate-depth focal solutions in active subduction zones indicates that slabs are subjected to different principal stress fields characterized primarily by downdip compression and downdip tension [4]. Although it is well known that far field stresses play a crucial role on fluid flow channeling, their potential impact on the kinetics of serpentinite dehydration and subsequent fluid escape in subducting slabs is still poorly understood. Here, we present a detailed structural and microstructural study to investigate the relationships between far field stresses, fluid flow and high-pressure deserpentinization in the Almirez ultramafic massif (Betic Cordillera, SE Spain) [1, 2]. This massif preserves the high-pressure breakdown of antigorite (Atg-) serpentinite to prograde chlorite (Chl-) harzburgite, which are separated by a sharp isograd [2, 5]. The Chl-harzburgite reaction products show either a granofels or spinifex-like texture indicating crystallization under different overstepping of the Atg-out reaction. The two different textural types of Chl-harzburgite occur below the Atg-out isograd as alternating, meter-wide lenses with either a granofels or spinifex texture. From field measurements, we infer that during antigorite dehydration the minimum compressive stress was subnormal to the dehydration front and the paleo-slab surface. This stress field is consistent with subduction zones with slabs under downdip compression at intermediate depths [4]. The detailed microstructural study —combining µ-CT and EBSD-SEM [6]— of Chl-harzburgite across a c. 15 m wide lens reveals that the SPO and CPO of olivines with contrasting textures are strongly

  5. The Emotional Stress Reaction Questionnaire (ESRQ): Measurement of Stress Reaction Level in Field Conditions in 60 Seconds

    DTIC Science & Technology

    2011-04-01

    of coherence, secondary appraisal , cognitive emotion-focused coping , self-rated performance, self-rated health and a low moral stress reaction. The...1989). Personality, appraisal and cognitive coping processes, and performance during various conditions of stress . Military Psychology, 1, 167-182...Psychology, 2, 63-78. Larsson, G., Kempe, S., & Starrin, B. (1988). Appraisal and coping processes in acute, time-limited stressful situations: A

  6. Leaves of field-grown mastic trees suffer oxidative stress at the two extremes of their lifespan.

    PubMed

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2012-08-01

    Leaf senescence is a complex phenomenon occurring in all plant species, but it is still poorly understood in plants grown in Mediterranean field conditions and well-adapted to harsh climatic conditions. To better understand the physiological processes underlying leaf senescence in mastic trees (Pistacia lentiscus L.), we evaluated leaf growth, water and N content, photosystem II (PSII) photochemistry, lipid peroxidation and levels of photosynthetic pigments, antioxidants, abscisic acid, and salicylic acid and jasmonic acid during the complete leaf lifespan, from early expansion to late senescence in relation to natural climatic conditions in the field. While mature leaves suffered from water and N deficit during late spring and summer, both young (emerging) and old (senescing) leaves were most sensitive to photo-oxidative stress, as indicated by reductions in the F(v)/F(m) ratio and enhanced lipid peroxidation during late autumn and winter. Reductions in the F(v)/F(m) ratio were associated with low α-tocopherol (vitamin E) levels, while very old, senescing leaves additionally showed severe anthocyanin losses. We have concluded that both young (emerging) and old (senescing) leaves suffer oxidative stress in mastic trees, which may be linked in part to suboptimal temperatures during late autumn and winter as well as to low vitamin E levels. © 2012 Institute of Botany, Chinese Academy of Sciences.

  7. A field test of group based exposure therapy with 102 veterans with war-related posttraumatic stress disorder.

    PubMed

    Ready, David J; Thomas, Kaprice R; Worley, Virginia; Backscheider, Andrea G; Harvey, Leigh Anne C; Baltzell, David; Rothbaum, Barbara Olasov

    2008-04-01

    Group-based exposure therapy (GBET) was field-tested with 102 veterans with war-related posttraumatic stress disorder (PTSD). Nine to 11 patients attended 3 hours of group therapy per day twice weekly for 16-18 weeks. Stress management and a minimum of 60 hours of exposure was included (3 hours of within-group war-trauma presentations per patient, 30 hours of listening to recordings of patient's own war-trauma presentations and 27 hours of hearing other patients' war-trauma presentations). Analysis of assessments conducted by treating clinicians pre-, post- and 6-month posttreatment suggests that GBET produced clinically significant and lasting reductions in PTSD symptoms for most patients on both clinician symptoms ratings (6-month posttreatment effect size delta = 1.22) and self-report measures with only three dropouts.

  8. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review

    PubMed Central

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-01-01

    Background Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. Scope This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. Conclusions The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes. PMID:19815570

  9. Effects of lead exposure on oxidative stress biomarkers and plasma biochemistry in waterbirds in the field.

    PubMed

    Martinez-Haro, Monica; Green, Andy J; Mateo, Rafael

    2011-05-01

    Medina lagoon in Andalusia has one of the highest densities of spent lead (Pb) shot in Europe. Blood samples from waterbirds were collected in 2006-2008 to measure Pb concentration (PbB), δ-aminolevulinic acid dehydratase (ALAD), oxidative stress biomarkers and plasma biochemistry. PbB above background levels (>20 μg/dl) was observed in 19% (n=59) of mallards (Anas platyrhynchos) and in all common pochards (Aythya ferina) (n=4), but common coots (Fulica atra) (n=37) and moorhens (Gallinula chloropus) (n=12) were all <20 μg/dl. ALAD ratio in mallards and coots decreased with PbB levels >6 μg/dl. In mallards, an inhibition of glutathione peroxidase (GPx) and an increased level of oxidized glutathione (oxGSH) in red blood cells (RBC) were associated with PbB levels >20 μg/dl. In coots, PbB levels were negatively related to vitamin A and carotenoid levels in plasma, and total glutathione in RBCs; and positively related with higher superoxide dismutase and GPx activities and % oxGSH in RBCs. Overall, the results indicate that previously assumed background levels of PbB for birds need to be revised. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Influence of detector noise and background noise on detection-system

    NASA Astrophysics Data System (ADS)

    Song, Yiheng; Wang, Zhiyong

    2018-02-01

    Study the noise by detectors and background light ,we find that the influence of background noise on the detection is more than that of itself. Therefore, base on the fiber coupled beam splitting technique, the small area detector is used to replace the large area detector. It can achieve high signal-to-noise ratio (SNR) and reduce the speckle interference of the background light. This technique is expected to solve the bottleneck of large field of view and high sensitivity.

  11. The Role of Cultural Background and Team Divisions in Developing Social Learning Relations in the Classroom

    ERIC Educational Resources Information Center

    Rienties, Bart; Nanclares, Núria Hernández; Jindal-Snape, Divya; Alcott, Peter

    2013-01-01

    A common assumption is that students prefer to work together with students from similar cultural backgrounds. In a group work context, students from different cultural backgrounds are "forced" to work together. This might lead to stress and anxiety but at the same time may allow students to learn from different perspectives. The prime…

  12. Background oriented schlieren in a density stratified fluid.

    PubMed

    Verso, Lilly; Liberzon, Alex

    2015-10-01

    Non-intrusive quantitative fluid density measurement methods are essential in the stratified flow experiments. Digital imaging leads to synthetic schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an extension to one of these methods, called background oriented schlieren, is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multimedia imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide a non-intrusive full-field density measurements of transparent liquids.

  13. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  14. Stress studies in EFG

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Experimental work in support of stress studies in high speed silicon sheet growth has been emphasized in this quarter. Creep experiments utilizing four-point bending have been made in the temperature range from 1000 C to 1360 C in CZ silicon as well as on EFG ribbon. A method to measure residual stress over large areas using laser interferometry to map strain distributions under load is under development. A fiber optics sensor to measure ribbon temperature profiles has been constructed and is being tested in a ribbon growth furnace environment. Stress and temperature field modeling work has been directed toward improving various aspects of the finite element computing schemes. Difficulties in computing stress distributions with a very high creep intensity and with non-zero interface stress have been encountered and additional development of the numerical schemes to cope with these problems is required. Temperature field modeling has been extended to include the study of heat transfer effects in the die and meniscus regions.

  15. Improved assumed-stress hybrid shell element with drilling degrees of freedom for linear stress, buckling, and free vibration analyses

    NASA Technical Reports Server (NTRS)

    Rengarajan, Govind; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    An improved four-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger-Reissner variational principle and the shape functions are formulated directly for the four-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has nine independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling, and linear free vibration problems. The element is validated with standard tests cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.

  16. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  17. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  18. Three-dimensional analysis of surface crack-Hertzian stress field interaction

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Hsu, Y.

    1989-01-01

    The results are presented of a stress intensity factor analysis of semicircular surface cracks in the inner raceway of an engine bearing. The loading consists of a moving spherical Hertzian contact load and an axial stress due to rotation and shrink fit. A 3-D linear elastic Boundary Element Method code was developed to perform the stress analysis. The element library includes linear and quadratic isoparametric surface elements. Singular quarter point elements were employed to capture the square root displacement variation and the inverse square root stress singularity along the crack front. The program also possesses the capability to separate the whole domain into two subregions. This procedure enables one to solve nonsymmetric fracture mechanics problems without having to separate the crack surfaces a priori. A wide range of configuration parameters was investigated. The ratio of crack depth to bearing thickness was varied from one-sixtieth to one-fifth for several different locations of the Hertzian load. The stress intensity factors for several crack inclinations were also investigated. The results demonstrate the efficiency and accuracy of the Boundary Element Method. Moreover, the results can provide the basis for crack growth calculations and fatigue life prediction.

  19. The Radio Background below 100 MHz

    NASA Astrophysics Data System (ADS)

    Dowell, Jayce; Taylor, Greg B.

    2018-05-01

    The recent detection of the “cosmic dawn” redshifted 21 cm signal at 78 MHz by the Experiment to Detect the Global EoR Signatures (EDGES) differs significantly from theoretical predictions. In particular, the absorption trough is roughly a factor of two stronger than the most optimistic theoretical models. The early interpretations of the origin of this discrepancy fall into two categories. The first is that there is increased cooling of the gas due to interactions with dark matter, while the second is that the background radiation field includes a contribution from a component in addition to the cosmic microwave background (CMB). In this Letter we examine the feasibility of the second idea using new data from the first station of the Long Wavelength Array. The data span 40–80 MHz and provide important constraints on the present-day background in a frequency range where there are few surveys with absolute temperature calibration suitable for measuring the strength of the radio monopole. We find support for a strong, diffuse radio background that was suggested by the ARCARDE 2 results in the 3–10 GHz range. We find that this background is well modeled by a power law with a spectral index of ‑2.58 ± 0.05 and a temperature at the rest frame 21 cm frequency of {603}-92+102 mK.

  20. Transcriptome comparison in the pituitary-adrenal axis between Beagle and Chinese Field dogs after chronic stress exposure.

    PubMed

    Luo, Wei; Fang, Meixia; Xu, Haiping; Xing, Huijie; Nie, Qinghua

    2015-10-01

    Chronic stress can induce a series of maladjustments, and the response to stress is partly regulated by the hypothalamus-pituitary-adrenal axis. The aim of this study was to investigate the genetic mechanisms of this axis regulating stress responsiveness. The pituitary and adrenal cortex of Beagle and Chinese Field Dog (CFD) from a stress exposure group [including Beagle pituitary 1 (BP1), CFD pituitary 1 (CFDP1), Beagle adrenal cortex 1 (BAC1), CFD adrenal cortex 1 (CFDAC1)] and a control group [including Beagle pituitary 2 (BP2), CFD pituitary 2 (CFDP2), Beagle adrenal cortex 2 (BAC2), CFD adrenal cortex 2 (CFDAC2)], selected to perform RNA-seq transcriptome comparisons, showed that 40, 346, 376, 69, 70, 38, 57 and 71 differentially expressed genes were detected in BP1 vs. BP2, CFDP1 vs. CFDP2, BP1 vs. CFDP1, BP2 vs. CFDP2, BAC1 vs. BAC2, CFDAC1 vs. CFDAC2, BAC1 vs. CFDAC1 and BAC2 vs. CFDAC2 respectively. NPB was a gene common to BAC1 vs. BAC2 and CFDAC1 vs. CFDAC2, indicating it was a potential gene affecting response to chronic stress, regardless of the extent of chronic stress induced. PLP1 was a gene common to BP1 vs. CFDP1 and BP2 vs. CFDP2, suggesting its important roles in affecting the stress-tolerance difference between the two breeds, regardless of whether there was stress exposure or not. Pathway analysis found 12, 4, 11 and 1 enriched pathway in the comparisons of BP1 vs. CFDP1, BP2 vs. CFDP2, CFDP1 vs. CFDP2 and BAC1 vs. BAC2 respectively. Glutamatergic synapse, neuroactive ligand-receptor interaction, retrograde endocannabinoid signaling, GABAergic synapse, calcium signaling pathway and dopaminergic synapse were the most significantly enriched pathways in both CFDP1 vs. CFDP2 and BP1 vs. CFDP1. GO, KEGG pathway and gene network analysis demonstrated that GRIA3, GRIN2A, GRIN2B and NPY were important in regulating the stress response in CFD. Nevertheless, ADORA1, CAMK2A, GRM1, GRM7 and NR4A1 might be critical genes contributing to the stress

  1. Stress profile influences learning approach in a marine fish

    PubMed Central

    Trompf, Larissa; Williamson, Jane E.; Brown, Culum

    2017-01-01

    The spatial learning skills of high and low stress juvenile mulloway (Argyrosomus japonicus) were tested in a dichotomous choice apparatus. Groups of fish were formed based on background blood cortisol levels and required to learn the location of a food reward hidden in one of two compartments. Low stress fish characterised by low background levels of the stress hormone cortisol had higher activity levels and entered both rewarded and unrewarded rooms frequently. Within the first week of exposure, however, their preference for the rewarded room increased, indicative of learning. Fish that had high background levels of cortisol, in contrast, showed low levels of activity but when they chose between the two rooms they chose the rewarded room most often but showed less improvement over time. After 12 days in the apparatus, both low and high stress fish had similar ratios of rewarded vs unrewarded room entrances. Our results suggest that proactive coping styles may increase exposure to novel contexts and thus favour faster learning but at the cost of reduced initial accuracy. PMID:28607840

  2. Seismic sensitivity of normal-mode coupling to Lorentz stresses in the Sun

    NASA Astrophysics Data System (ADS)

    Hanasoge, Shravan M.

    2017-09-01

    Understanding the governing mechanism of solar magnetism remains an outstanding challenge in astrophysics. Seismology is the most compelling technique to infer the internal properties of the Sun and stars. Waves in the Sun, nominally acoustic, are sensitive to the emergence and cyclical strengthening of magnetic field, evidenced by measured changes in resonant oscillation frequencies that are correlated with the solar cycle. The inference of internal Lorentz stresses from these measurements has the potential to significantly advance our appreciation of the dynamo. Indeed, seismological inverse theory for the Sun is well understood for perturbations in composition, thermal structure and flows but, is not fully developed for magnetism, owing to the complexity of the ideal magnetohydrodynamic (MHD) equation. Invoking first-Born perturbation theory to characterize departures from spherically symmetric hydrostatic models of the Sun and applying the notation of generalized spherical harmonics, we calculate sensitivity functions of seismic measurements to the general time-varying Lorentz stress tensor. We find that eigenstates of isotropic (I.e. acoustic only) background models are dominantly sensitive to isotropic deviations in the stress tensor and much more weakly than anisotropic stresses (and therefore challenging to infer). The apple cannot fall far from the tree.

  3. Radiative improvement of the lattice nonrelativistic QCD action using the background field method and application to the hyperfine splitting of quarkonium states.

    PubMed

    Hammant, T C; Hart, A G; von Hippel, G M; Horgan, R R; Monahan, C J

    2011-09-09

    We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.

  4. Thermoelastic stress in oceanic lithosphere due to hotspot reheating

    NASA Technical Reports Server (NTRS)

    Zhu, Anning; Wiens, Douglas A.

    1991-01-01

    The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.

  5. Non-localized trapping effects in AlGaN/GaN heterojunction field-effect transistors subjected to on-state bias stress

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Yu; Hashizume, Tamotsu

    2012-04-01

    For AlGaN/GaN heterojunction field-effect transistors, on-state-bias-stress (on-stress)-induced trapping effects were observed across the entire drain access region, not only at the gate edge. However, during the application of on-stress, the highest electric field was only localized at the drain side of the gate edge. Using the location of the highest electric field as a reference, the trapping effects at the gate edge and at the more distant access region were referred to as localized and non-localized trapping effect, respectively. Using two-dimensional-electron-gas sensing-bar (2DEG-sensing-bar) and dual-gate structures, the non-localized trapping effects were investigated and the trap density was measured to be ˜1.3 × 1012 cm-2. The effect of passivation was also discussed. It was found that both surface leakage currents and hot electrons are responsible for the non-localized trapping effects with hot electrons having the dominant effect. Since hot electrons are generated from the 2DEG channel, it is highly likely that the involved traps are mainly in the GaN buffer layer. Using monochromatic irradiation (1.24-2.81 eV), the trap levels responsible for the non-localized trapping effects were found to be located at 0.6-1.6 eV from the valence band of GaN. Both trap-assisted impact ionization and direct channel electron injection are proposed as the possible mechanisms of the hot-electron-related non-localized trapping effect. Finally, using the 2DEG-sensing-bar structure, we directly confirmed that blocking gate injected electrons is an important mechanism of Al2O3 passivation.

  6. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    PubMed

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  7. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    NASA Astrophysics Data System (ADS)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  8. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    USGS Publications Warehouse

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  9. Mean-field theory of differential rotation in density stratified turbulent convection

    NASA Astrophysics Data System (ADS)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  10. Electric line source illumination of a chiral cylinder placed in another chiral background medium

    NASA Astrophysics Data System (ADS)

    Aslam, M.; Saleem, A.; Awan, Z. A.

    2018-05-01

    An electric line source illumination of a chiral cylinder embedded in a chiral background medium is considered. The field expressions inside and outside of a chiral cylinder have been derived using the wave field decomposition approach. The effects of various chiral cylinders, chiral background media and source locations upon the scattering gain pattern have been investigated. It is observed that the chiral background reduces the backward scattering gain as compared to the free space background for a dielectric cylinder. It is also studied that by moving a line source away from a cylinder reduces the backward scattering gain for a chiral cylinder placed in a chiral background under some specific conditions. A unique phenomenon of reduced scattering gain has been observed at a specific observation angle for a chiral cylinder placed in a chiral background having an electric line source location of unity free space wavelength. An isotropic scattering gain pattern is observed for a chiral nihility background provided that if cylinder is chiral or chiral nihility type. It is also observed that this isotropic behaviour is independent of background and cylinder chirality.

  11. Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration

    PubMed Central

    Hanlon, R.T.; Chiao, C.-C.; Mäthger, L.M.; Barbosa, A.; Buresch, K.C.; Chubb, C.

    2008-01-01

    Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define—qualitatively and quantitatively—the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive patterns that primarily enhance disruptiveness but aid background matching as well. There is great variation within each of the three body pattern types, but by defining their chief characteristics we lay the groundwork to test camouflage concepts by correlating background statistics with those of the body pattern. We describe at least three ways in which background matching can be achieved in cephalopods. Disruptive patterns in cuttlefish possess all four of the basic components of ‘disruptiveness’, supporting Cott's hypotheses, and we provide field examples of disruptive coloration in which the body pattern contrast exceeds that of the immediate surrounds. Based upon laboratory testing as well as thousands of images of camouflaged cephalopods in the field (a sample is provided on a web archive), we note that size, contrast and edges of background objects are key visual cues that guide cephalopod camouflage patterning. Mottle and disruptive patterns are frequently mixed, suggesting that background matching and disruptive mechanisms are often used in the same pattern. PMID:19008200

  12. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2005-08-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.

  13. Field performance of stress-laminated timber bridges on low-volume roads

    Treesearch

    M. A. Ritter; J. P. Wacker; S. R. Duwadi

    1995-01-01

    Stress-laminated timber bridges were first introduced in the United States in the late 1980s. Since that time, the concept of stress-laminating has received a great deal of attention and hundreds of bridges have been built. Most of these bridges are located on rural low-volume roads. To evaluate the performance of stress-laminated bridges, the United States Department...

  14. Unbound motion on a Schwarzschild background: Practical approaches to frequency domain computations

    NASA Astrophysics Data System (ADS)

    Hopper, Seth

    2018-03-01

    Gravitational perturbations due to a point particle moving on a static black hole background are naturally described in Regge-Wheeler gauge. The first-order field equations reduce to a single master wave equation for each radiative mode. The master function satisfying this wave equation is a linear combination of the metric perturbation amplitudes with a source term arising from the stress-energy tensor of the point particle. The original master functions were found by Regge and Wheeler (odd parity) and Zerilli (even parity). Subsequent work by Moncrief and then Cunningham, Price and Moncrief introduced new master variables which allow time domain reconstruction of the metric perturbation amplitudes. Here, I explore the relationship between these different functions and develop a general procedure for deriving new higher-order master functions from ones already known. The benefit of higher-order functions is that their source terms always converge faster at large distance than their lower-order counterparts. This makes for a dramatic improvement in both the speed and accuracy of frequency domain codes when analyzing unbound motion.

  15. The EPIC-MOS Particle-Induced Background Spectrum

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2006-01-01

    We have developed a method for constructing a spectrum of the particle-induced instrumental background of the XMM-Newton EPIC MOS detectors that can be used for observations of the diffuse background and extended sources that fill a significant fraction of the instrument field of view. The strength and spectrum of the particle-induced background, that is, the background due to the interaction of particles with the detector and the detector surroundings, is temporally variable as well as spatially variable over individual chips. Our method uses a combination of the filter-wheel-closed data and a database of unexposed-region data to construct a spectrum of the "quiescent" background. We show that, using this method of background subtraction, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear evidence of solar wind charge exchange emission. We use the blank sky observations to show that contamination by SWCX emission is a strong function of the solar wind proton flux, and that observations through the flanks of the magnetosheath appear to be contaminated only at much higher solar wind fluxes. We have also developed a spectral model of the residual soft proton flares, which allows their effects to be removed to a substantial degree during spectral fitting.

  16. Evaluation of critical shear stresses for consolidated cohesive sediment depositions by using PIV compared with field measurements

    NASA Astrophysics Data System (ADS)

    Harb, Gabriele; Haun, Stefan

    2013-04-01

    especially the effect of the layer structure in the sediment samples was controlling the erosion mechanism. The results of the experiments showed also that the obtained average shear stress was above most of the values found in previous conducted studies, which may be explained by consolidation effects in the reservoirs. Additional conducted vane strength measurements have been carried out in situ. The in the field obtained vane strength values were set in relation to the critical shear stresses derived by the experimental tests from the laboratory and to data from a previous conducted study to develop a new relation function. This function may be used in future studies for a rough estimation of the critical shear stress, based on in situ measured vane strength values.

  17. Graviton propagator from background-independent quantum gravity.

    PubMed

    Rovelli, Carlo

    2006-10-13

    We study the graviton propagator in Euclidean loop quantum gravity. We use spin foam, boundary-amplitude, and group-field-theory techniques. We compute a component of the propagator to first order, under some approximations, obtaining the correct large-distance behavior. This indicates a way for deriving conventional spacetime quantities from a background-independent theory.

  18. On the determination of stress fields and displacements in a thin elastoplastic plate containing elastic inclusion - a shim

    NASA Astrophysics Data System (ADS)

    Kovalev, A. V.; Rusina, E. Y.; Yakovlev, A. Y.

    2018-03-01

    The paper is devoted to the determination of the stress-strain state of a mechanical structure, which consists of a thin infinite elastoplastic plate with a hole and a continuous fine elastic inclusion. The complexity of this problem lies in the fact that the shape of the boundary between the elastic and plastic zones in the plate is not known in advance. The small parameter method is used as the solution method, while the small parameter characterizes the deviation of the shape of the contour from the circle and the perturbation of external static boundary conditions. As the zero solution, the axisymmetric elastoplastic state of the plate with inclusion is chosen. Two variants of inclusion fixation in a plate are considered: inclusion is enclosed with tension or soldered. As a result of solving the problem within the framework of ideal plasticity, the distribution of the stress and displacement fields and the shape of the elastoplastic boundary are obtained. To illustrate the case of a plane-stressed state, the results of a numerical experiment on the mathematical model obtained are presented.

  19. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Rosenfeld, Leslie K.; Robertson, George L.

    2012-01-01

    In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the

  20. Design of a randomized controlled trial on the effect on return to work with coaching plus light therapy and pulsed electromagnetic field therapy for workers with work-related chronic stress.

    PubMed

    Schoutens, Antonius M C; Frings-Dresen, Monique H W; Sluiter, Judith K

    2016-07-19

    Work-related chronic stress is a common problem among workers. The core complaint is that the employee feels exhausted, which has an effect on the well-being and functioning of the employee, and an impact on the employer and society. The employee's absence is costly due to lost productivity and medical expenses. The usual form of care for work-related chronic stress is coaching, using a cognitive-behavioural approach whose primary aim is to reduce symptoms and improve functioning. Light therapy and pulsed electromagnetic field therapy are used for the treatment of several mental and physical disorders. The objective of this study is to determine whether coaching combined with light therapy plus pulsed electromagnetic field therapy is an effective treatment for reducing absenteeism, fatigue and stress, and improving quality of life compared to coaching alone. The randomized placebo-controlled trial consists of three arms. The population consists of 90 participants with work-related chronic stress complaints. The research groups are: (i) intervention group; (ii) placebo group; and (iii) control group. Participants in the intervention group will be treated with light therapy/pulsed electromagnetic field therapy for 12 weeks, twice a week for 40 min, and coaching (once a fortnight for 50 min). The placebo group receives the same treatment but with the light and pulsed electromagnetic field switched to placebo settings. The control group receives only coaching for 12 weeks, a course of six sessions, once a fortnight for 50 min. The primary outcome is the level of return to work. Secondary outcomes are fatigue, stress and quality of life. Outcomes will be measured at baseline, 6 weeks, 12 and 24 weeks after start of treatment. This study will provide information about the effectiveness of coaching and light therapy plus pulsed electromagnetic field therapy on return to work, and secondly on fatigue, stress and quality of life in people with work-related chronic

  1. Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Martínez-Garzón, P.; Zaliapin, I. V.; Ben-Zion, Y.; Kwiatek, G.; Bohnhoff, M.

    2017-12-01

    We investigate earthquake clustering properties from three geothermal reservoirs to clarify how earthquake patterns respond to hydraulic activities. We process ≈ 9 years from four datasets corresponding to the Geysers (both the entire field and a local subset), Coso and Salton Sea geothermal fields, California. For each, the completeness magnitude, b-value and fractal dimension are calculated and used to identify seismicity clusters using the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b]. Estimations of temporal evolution of different clustering properties in relation to hydraulic parameters point to different responses of earthquake dynamics to hydraulic operations in each case study. The clustering at the Geysers at local scale and Salton Sea are most and least affected by hydraulic activities, respectively. The response of the earthquake clustering from different datasets to the hydraulic activities may reflect the regional seismo-tectonic complexity as well as the dimension of the geothermal activities performed (e.g. number of active wells and superposition of injection + production activities).Two clustering properties significantly respond to hydraulic changes across all datasets: the background rates and the proportion of clusters consisting of a single event. Background rates are larger at the Geysers and Coso during high injection-production periods, while the opposite holds for the Salton Sea. This possibly reflects the different physical mechanisms controlling seismicity at each geothermal field. Additionally, a lower proportion of singles is found during time periods with higher injection-production rates. This may reflect decreasing effective stress in areas subjected to higher pore pressure and larger earthquake triggering by stress transfer.

  2. Does the low hole transport mass in <110> and <111> Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard

    2012-06-01

    The hole surface roughness and phonon limited mobility in the silicon <100>, <110>, and <111> square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high <110> and <111> valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in <100> and <110> wires. The <111> channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for <110> wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.

  3. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    PubMed

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  4. Stress in Medical Students in a Problem-Based Learning Curriculum

    ERIC Educational Resources Information Center

    Dagistani, Ahmad; Al Hejaili, Fawwaz; Binsalih, Salih; Al Jahdali, Hamdan; Al Sayyari, Abdulla

    2016-01-01

    Background: This study aims to assess stress level and its drivers among medical students using a PBL teaching system Method: Higher Education Stress Inventory (HESI,) was used to assess stress among medical students. All students in the College of Medicine were enrolled. Results: The response rate was 99%.The prevalence of stress was 54.7%. The…

  5. cStress: Towards a Gold Standard for Continuous Stress Assessment in the Mobile Environment

    PubMed Central

    Hovsepian, Karen; al’Absi, Mustafa; Ertin, Emre; Kamarck, Thomas; Nakajima, Motohiro; Kumar, Santosh

    2015-01-01

    Recent advances in mobile health have produced several new models for inferring stress from wearable sensors. But, the lack of a gold standard is a major hurdle in making clinical use of continuous stress measurements derived from wearable sensors. In this paper, we present a stress model (called cStress) that has been carefully developed with attention to every step of computational modeling including data collection, screening, cleaning, filtering, feature computation, normalization, and model training. More importantly, cStress was trained using data collected from a rigorous lab study with 21 participants and validated on two independently collected data sets — in a lab study on 26 participants and in a week-long field study with 20 participants. In testing, the model obtains a recall of 89% and a false positive rate of 5% on lab data. On field data, the model is able to predict each instantaneous self-report with an accuracy of 72%. PMID:26543926

  6. A linear least squares approach for evaluation of crack tip stress field parameters using DIC

    NASA Astrophysics Data System (ADS)

    Harilal, R.; Vyasarayani, C. P.; Ramji, M.

    2015-12-01

    In the present work, an experimental study is carried out to estimate the mixed-mode stress intensity factors (SIF) for different cracked specimen configurations using digital image correlation (DIC) technique. For the estimation of mixed-mode SIF's using DIC, a new algorithm is proposed for the extraction of crack tip location and coefficients in the multi-parameter displacement field equations. From those estimated coefficients, SIF could be extracted. The required displacement data surrounding the crack tip has been obtained using 2D-DIC technique. An open source 2D DIC software Ncorr is used for the displacement field extraction. The presented methodology has been used to extract mixed-mode SIF's for specimen configurations like single edge notch (SEN) specimen and centre slant crack (CSC) specimens made out of Al 2014-T6 alloy. The experimental results have been compared with the analytical values and they are found to be in good agreement, thereby confirming the accuracy of the algorithm being proposed.

  7. The initial stage of uranium oxidation: mechanism of UO(2) scale formation in the presence of a native lateral stress field.

    PubMed

    Chernia, Z; Ben-Eliyahu, Y; Kimmel, G; Braun, G; Sariel, J

    2006-11-23

    In this work, an oxidation model for alpha-uranium is presented. It describes the internally lateral stress field built in the oxide scale during the reaction. The thickness of the elastic, stress-preserving oxide (UO(2+x)) scale is less than 0.5 microm. A lateral, 6.5 GPa stress field has been calculated from strains derived from line shifts (delta(2theta)) as measured by the X-ray diffraction of UO(2). It is shown that in the elastic growth domain, (110) is the main UO(2) growth plane for gas-solid oxidation. The diffusion-limited oxidation mechanism discussed here is based on the known "2:2:2" cluster theory which describes the mechanism of fluorite-based hyperstoichiometric oxides. In this study, it is adapted to describe oxygen-anion hopping. Anion hopping toward the oxide-metal interface proceeds at high rates in the [110] direction, hence making this pipeline route the principal growth direction in UO(2) formation. It is further argued that growth in the pure elastic domain of the oxide scale should be attributed entirely to anion hopping in 110. Anions, diffusing isotropically via grain boundaries and cracks, are shown to have a significant impact on the overall oxidation rate in relatively thick (>0.35 microm) oxide scales if followed by an avalanche break off in the postelastic regime. Stress affects oxidation in the elastic domain by controlling the hopping rate directly. In the postelastic regime, stress weakens hopping, indirectly, by enhancing isotropic diffusion. Surface roughness presents an additional hindering factor for the anion hopping. In comparison to anisotropic hopping, diffusion of isotropic hopping has a lower activation energy barrier. Therefore, a relatively stronger impact at lower temperatures due to isotropic diffusion is displayed.

  8. Stress anisotropy and velocity anisotropy in low porosity shale

    NASA Astrophysics Data System (ADS)

    Kuila, U.; Dewhurst, D. N.; Siggins, A. F.; Raven, M. D.

    2011-04-01

    Shales are known for often marked intrinsic anisotropy of many of their properties, including strength, permeability and velocity for example. In addition, it is well known that anisotropic stress fields can also have a significant impact on anisotropy of velocity, even in an isotropic medium. This paper sets out to investigate the ultrasonic velocity response of well-characterised low porosity shales from the Officer Basin in Western Australia to both isotropic and anisotropic stress fields and to evaluate the velocity response to the changing stress field. During consolidated undrained multi-stage triaxial tests on core plugs cut normal to bedding, V pv increases monotonically with increasing effective stress and V s1 behaves similarly although with some scatter. V ph and V sh remain constant initially but then decrease within each stage of the multi-stage test, although velocity from stage to stage at any given differential stress increases. This has the impact of decreasing both P-wave (ɛ) and S-wave anisotropy (γ) through application of differential stress within each loading stage. However, increasing the magnitude of an isotropic stress field has little effect on the velocity anisotropies. The intrinsic anisotropy of the shale remains reasonably high at the highest confining pressures. The results indicate the magnitude and orientation of the stress anisotropy with respect to the shale microfabric has a significant impact on the velocity response to changing stress fields.

  9. Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997-2009

    NASA Astrophysics Data System (ADS)

    Clark, Deborah A.; Clark, David B.; Oberbauer, Steven F.

    2013-06-01

    A directional change in tropical-forest productivity, a large component in the global carbon budget, would affect the rate of increase in atmospheric carbon dioxide ([CO2]). One current hypothesis is that "CO2 fertilization" has been increasing tropical forest productivity. Some lines of evidence instead suggest climate-driven productivity declines. Relevant direct field observations remain extremely limited for this biome. Using a unique long-term record of annual field measurements, we assessed annual aboveground net primary productivity (ANPP) and its relation to climatic factors and [CO2] in a neotropical rainforest through 1997-2009. Over this 12 year period, annual productivity did not increase, as would be expected with a dominant CO2 fertilization effect. Instead, the negative responses of ANPP components to climatic stress far exceeded the small positive responses associated with increasing [CO2]. Annual aboveground biomass production was well explained (73%) by the independent negative effects of increasing minimum temperatures and greater dry-season water stress. The long-term records enable a first field-based estimate of the [CO2] response of tropical forest ANPP: 5.24 g m-2 yr-1 yr-1 (the summed [CO2]-associated increases in two of the four production components; the largest component, leaf litterfall, showed no [CO2] association). If confirmed by longer data series, such a small response from a fertile tropical rainforest would indicate that current global models overestimate the benefits from CO2 fertilization for this biome, where most forests' poorer nutrient status more strongly constrains productivity responses to increasing [CO2]. Given the rapidly intensifying warming across tropical regions, tropical forest productivity could sharply decline through coming decades.

  10. Extremely Low Frequency Magnetic Field (50 Hz, 0.5 mT) Reduces Oxidative Stress in the Brain of Gerbils Submitted to Global Cerebral Ischemia

    PubMed Central

    Rauš Balind, Snežana; Selaković, Vesna; Radenović, Lidija; Prolić, Zlatko; Janać, Branka

    2014-01-01

    Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia. PMID:24586442

  11. Classical Field Theory and the Stress-Energy Tensor

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2015-09-01

    This book is a concise introduction to the key concepts of classical field theory for beginning graduate students and advanced undergraduate students who wish to study the unifying structures and physical insights provided by classical field theory without dealing with the additional complication of quantization. In that regard, there are many important aspects of field theory that can be understood without quantizing the fields. These include the action formulation, Galilean and relativistic invariance, traveling and standing waves, spin angular momentum, gauge invariance, subsidiary conditions, fluctuations, spinor and vector fields, conservation laws and symmetries, and the Higgs mechanism, all of which are often treated briefly in a course on quantum field theory. The variational form of classical mechanics and continuum field theory are both developed in the time-honored graduate level text by Goldstein et al (2001). An introduction to classical field theory from a somewhat different perspective is available in Soper (2008). Basic classical field theory is often treated in books on quantum field theory. Two excellent texts where this is done are Greiner and Reinhardt (1996) and Peskin and Schroeder (1995). Green's function techniques are presented in Arfken et al (2013).

  12. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories.

    PubMed

    Dong, Xi

    2016-06-24

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy S_{n} is described by two coefficients: f_{b}(n) for traceless extrinsic curvature deformations and f_{c}(n) for Weyl tensor deformations. We provide the first calculation of the coefficient f_{b}(n) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture f_{b}(n)=f_{c}(n), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  13. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Dong, Xi

    2016-06-01

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  14. Estimating fluid-induced stress change from observed deformation

    DOE PAGES

    Vasco, D. W.; Harness, Paul; Pride, Steve; ...

    2016-12-19

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  15. Estimating fluid-induced stress change from observed deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D. W.; Harness, Paul; Pride, Steve

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  16. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  17. Performance enhancement in uniaxially tensile stressed GeSn n-channel fin tunneling field-effect transistor: Impact of stress direction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-04-01

    In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.

  18. Calving relation for tidewater glaciers based on detailed stress field analysis

    NASA Astrophysics Data System (ADS)

    Mercenier, Rémy; Lüthi, Martin P.; Vieli, Andreas

    2018-02-01

    Ocean-terminating glaciers in Arctic regions have undergone rapid dynamic changes in recent years, which have been related to a dramatic increase in calving rates. Iceberg calving is a dynamical process strongly influenced by the geometry at the terminus of tidewater glaciers. We investigate the effect of varying water level, calving front slope and basal sliding on the state of stress and flow regime for an idealized grounded ocean-terminating glacier and scale these results with ice thickness and velocity. Results show that water depth and calving front slope strongly affect the stress state while the effect from spatially uniform variations in basal sliding is much smaller. An increased relative water level or a reclining calving front slope strongly decrease the stresses and velocities in the vicinity of the terminus and hence have a stabilizing effect on the calving front. We find that surface stress magnitude and distribution for simple geometries are determined solely by the water depth relative to ice thickness. Based on this scaled relationship for the stress peak at the surface, and assuming a critical stress for damage initiation, we propose a simple and new parametrization for calving rates for grounded tidewater glaciers that is calibrated with observations.

  19. Anisotropic quantum quench in the presence of frustration or background gauge fields: A probe of bulk currents and topological chiral edge modes

    NASA Astrophysics Data System (ADS)

    Killi, Matthew; Trotzky, Stefan; Paramekanti, Arun

    2012-12-01

    Bosons and fermions, in the presence of frustration or background gauge fields, can form many-body ground states that support equilibrium charge or spin currents. Motivated by the experimental creation of frustration or synthetic gauge fields in ultracold atomic systems, we propose a general scheme by which making a sudden anisotropic quench of the atom tunneling across the lattice and tracking the ensuing density modulations provides a powerful and gauge-invariant route to probing diverse equilibrium current patterns. Using illustrative examples of trapped superfluid Bose and normal Fermi systems in the presence of artificial magnetic fluxes on square lattices, and frustrated bosons in a triangular lattice, we show that this scheme to probe equilibrium bulk current order works independent of particle statistics. We also show that such quenches can detect chiral edge modes in gapped topological states, such as quantum Hall or quantum spin Hall insulators.

  20. Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device.

    PubMed

    Bensalem, Sakina; Lopes, Filipa; Bodénès, Pierre; Pareau, Dominique; Français, Olivier; Le Pioufle, Bruno

    2018-06-01

    One way envisioned to overcome part of the issues biodiesel production encounters today is to develop a simple, economically viable and eco-friendly process for the extraction of lipids from microalgae. This study investigates the lipid extraction efficiency from the microalga Chlamydomonas reinhardtii as well as the underlying mechanisms. We propose a new methodology combining a pulsed electric field (PEF) application and mechanical stresses as a pretreatment to improve lipid extraction with solvents. Cells enriched in lipids are therefore submitted to electric field pulses creating pores on the cell membrane and then subjected to a mechanical stress by applying cyclic pressures on the cell wall (using a microfluidic device). Results showed an increase in lipid extraction when cells were pretreated by the combination of both methods. Microscopic observations showed that both pretreatments affect the cell structure. Finally, the dependency of solvent lipid extraction efficiency with the cell wall structure is discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Holography for Schrödinger backgrounds

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Skenderis, Kostas; Taylor, Marika; van Rees, Balt C.

    2011-02-01

    We discuss holography for Schrödinger solutions of both topologically massive gravity in three dimensions and massive vector theories in ( d + 1) dimensions. In both cases the dual field theory can be viewed as a d-dimensional conformal field theory (two dimensional in the case of TMG) deformed by certain operators that respect the Schrödinger symmetry. These operators are irrelevant from the viewpoint of the relativistic conformal group but they are exactly marginal with respect to the non-relativistic conformal group. The spectrum of linear fluctuations around the background solutions corresponds to operators that are labeled by their scaling dimension and the lightcone momentum k v . We set up the holographic dictionary and compute 2-point functions of these operators both holographically and in field theory using conformal perturbation theory and find agreement. The counterterms needed for holographic renormalization are non-local in the v lightcone direction.

  2. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    NASA Astrophysics Data System (ADS)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  3. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir; Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar; Thamburaja, P., E-mail: prakash.thamburaja@gmail.com

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substratemore » and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.« less

  4. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.

    PubMed

    Song, Lili; Jiang, Lin; Chen, Yue; Shu, Yongjun; Bai, Yan; Guo, Changhong

    2016-09-01

    Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa.

  5. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  6. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  7. The origin of excellent gate-bias stress stability in organic field-effect transistors employing fluorinated-polymer gate dielectrics.

    PubMed

    Kim, Jiye; Jang, Jaeyoung; Kim, Kyunghun; Kim, Haekyoung; Kim, Se Hyun; Park, Chan Eon

    2014-11-12

    Tuning of the energetic barriers to charge transfer at the semiconductor/dielectric interface in organic field-effect transistors (OFETs) is achieved by varying the dielectric functionality. Based on this, the correlation between the magnitude of the energy barrier and the gate-bias stress stability of the OFETs is demonstrated, and the origin of the excellent device stability of OFETs employing fluorinated dielectrics is revealed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preschool Teachers' Professional Background, Process Quality, and Job Attitudes: A Person-Centered Approach

    ERIC Educational Resources Information Center

    Jeon, Lieny; Buettner, Cynthia K.; Hur, Eunhye

    2016-01-01

    Research Findings: This exploratory study identified preschool teacher quality profiles in early childhood education settings using 9 indicators across teachers' professional background, observed process quality, and job attitudes toward teaching (e.g., job-related stress, satisfaction, and intention to leave the job). The sample consisted of 96…

  9. History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats.

    PubMed

    Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu

    2015-01-01

    Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.

  10. Investigating the effect of background magnetic field on the resonance condition between EMIC waves and relativistic electrons

    NASA Astrophysics Data System (ADS)

    Woodger, L. A.; Millan, R. M.

    2017-12-01

    Balloon-borne x-ray detectors observe bremsstrahlung from precipitating electrons, offering a unique opportunity to observe sustained precipitation from a quasi-geosynchronous platform. Recent balloon observations of duskside relativistic electron precipitation (REP) on BARREL confirm that Electro-Magnetic Ion Cyclotron (EMIC) waves cause electron precipitation [e.g. Li et al., 2014]. However, BARREL observations show precipitation does not occur everywhere that waves are observed; precipitation is confined to narrow magnetic local time (MLT) regions in the duskside magnetosphere [Blum et al., 2015]. Furthermore, modulation of relativistic electron precipitation on Ultra Low Frequency (ULF) wave (f < 20 mHz) timescales has been reported in several events from balloon X-ray observations [Foat et al., 1998; Millan et al., 2002]. Wave-particle interaction between relativistic electrons and EMIC waves is a highly debated loss processes contributing to the dynamics of Earth's radiation belts. We present REP from balloon x-ray observations in the context of precipitation driven by EMIC waves. We investigate how background magnetic field strength could drive the localization, distribution, and temporal structure of the precipitating electrons.

  11. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  12. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    PubMed Central

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  13. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening

    NASA Astrophysics Data System (ADS)

    Sun, Rujian; Li, Liuhe; Zhu, Ying; Zhang, Lixin; Guo, Wei; Peng, Peng; Li, Bo; Guo, Chao; Liu, Lei; Che, Zhigang; Li, Weidong; Sun, Jianfei; Qiao, Hongchao

    2017-09-01

    Laser shock peening (LSP), an innovative surface treatment technique, generates compressive residual stress on the surface of metallic components to improve their fatigue performance, wear resistance and corrosion resistance. To illustrate the dynamic response during LSP and residual stress fields after LSP, this study conducted FEM simulations of LSP in a Ti6Al4V alloy. Results showed that when power density was 7 GW cm-2, a plastic deformation occurred at 10 ns during LSP and increased until the shock pressure decayed below the dynamic yield strength of Ti6Al4V after 60 ns. A maximum tensile region appeared beneath the surface at around 240 ns, forming a compressive-tensile-compressive stress sandwich structure with a thickness of 98, 1020 and 606 μm for each layer. After the model became stabilized, the value of the surface residual compressive stress was 564 MPa at the laser spot center. Higher value of residual stress across the surface and thicker compressive residual stress layers were achieved by increasing laser power density, impact times and spot sizes during LSP. A ‘Residual stress hole’ occurred with a high laser power density of 9 GW cm-2 when laser pulse duration was 10 ns, or with a long laser pulse duration of 20 ns when laser power density was 7 GW cm-2 for Ti6Al4V. This phenomenon occurred because of the permanent reverse plastic deformation generated at laser spot center.

  14. Intraplate Stress Field in South America Derived from Earthquake Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Dias, F. L.; Assumpcao, M.

    2017-12-01

    We present an updated compilation of earthquake focal mechanisms in Brazil together with the sub-Andean region through more obtained solutions together with published results from the literature and catalogs of international agencies. Stress orientations from breakouts and in-situ measurements were also compiled. The focal mechanisms were classified according to WSM (World Stress Map) criteria.For Brazil, we have 82 earthquakes with the mechanism that has been determined since 1978, begin that three new from this study. Focal mechanisms in Brazil show reverse, strike-slip and normal faulting while all events in the sub-Andean region have reverse (majority) or strike-slip mechanisms. For sub-Andean region have reverse (majority) or strike-slip mechanisms. Normal mechanisms can be found only in high attitudes. The mechanisms were grouped by proximity to be inverted for the stress tensor. We use the bootstrap technique to analyze the stability of the tensor. In SE Brazil and the Chaco-Pantanal basins, S1 tends to be oriented roughly E-W with S2 approximately equal to S3. This stress pattern changes to purely compressional (both SHmax and Shmin larger than Sv) in the São Francisco craton. A rotation of SHmax from E-W to SE-NW is suggested towards the Amazon region. Along the Atlantic margin, the regional stresses are affected by coastal effects. This coastal effect tends to make SHmax parallel to the coastline and Shmin (usually S3) perpendicular to the coastline. Few breakout data and in-situ measurements are available in Brazil and are generally consistent with the pattern derived from the earthquake focal mechanisms. In the sub-Andean region, the intermediate principal stress (S2) is also compressional, a feature that is not always reproduced in numerical models published in the literature. In mid-plate South America stresses seem to vary in nature and orientation. Although numerical models of global lithospheric stresses tend to reproduce the main large

  15. Crustal Fracturing Field and Presence of Fluid as Revealed by Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Pastori, M.; Piccinini, D.; de Gori, P.; Margheriti, L.; Barchi, M. R.; di Bucci, D.

    2010-12-01

    In the last three years, we developed, tested and improved an automatic analysis code (Anisomat+) to calculate the shear wave splitting parameters, fast polarization direction (φ) and delay time (∂t). The code is a set of MatLab scripts able to retrieve crustal anisotropy parameters from three-component seismic recording of local earthquakes using horizontal component cross-correlation method. The analysis procedure consists in choosing an appropriate frequency range, that better highlights the signal containing the shear waves, and a length of time window on the seismogram centered on the S arrival (the temporal window contains at least one cycle of S wave). The code was compared to other two automatic analysis code (SPY and SHEBA) and tested on three Italian areas (Val d’Agri, Tiber Valley and L’Aquila surrounding) along the Apennine mountains. For each region we used the anisotropic parameters resulting from the automatic computation as a tool to determine the fracture field geometries connected with the active stress field. We compare the temporal variations of anisotropic parameters to the evolution of vp/vs ratio for the same seismicity. The anisotropic fast directions are used to define the active stress field (EDA model), finding a general consistence between fast direction and main stress indicators (focal mechanism and borehole break-out). The magnitude of delay time is used to define the fracture field intensity finding higher value in the volume where micro-seismicity occurs. Furthermore we studied temporal variations of anisotropic parameters and vp/vs ratio in order to explain if fluids play an important role in the earthquake generation process. The close association of anisotropic and vp/vs parameters variations and seismicity rate changes supports the hypothesis that the background seismicity is influenced by the fluctuation of pore fluid pressure in the rocks.

  16. Detection of cosmic microwave background structure in a second field with the Cosmic Anisotropy Telescope

    NASA Astrophysics Data System (ADS)

    Baker, Joanne C.; Grainge, Keith; Hobson, M. P.; Jones, Michael E.; Kneissl, R.; Lasenby, A. N.; O'Sullivan, C. M. M.; Pooley, Guy; Rocha, G.; Saunders, Richard; Scott, P. F.; Waldram, E. M.

    1999-10-01

    We describe observations at frequencies near 15GHz of the second 2x2deg^2 field imaged with the Cambridge Cosmic Anisotropy Telescope (CAT). After the removal of discrete radio sources, structure is detected in the images on characteristic scales of about half a degree, corresponding to spherical harmonic multipoles in the range l~330-680. A Bayesian analysis confirms that the signal arises predominantly from the cosmic microwave background (CMB) radiation for multipoles in the lower half of this range; the average broad-band power in a bin with centroid l=422 (θ~51arcmin) is estimated to be ΔTT 2.1-0.5+0.4 x10-5. For multipoles centred on l=615 (θ~35arcmin), we find contamination from Galactic emission is significant, and constrain the CMB contribution to the measured power in this bin to be ΔTT<2.0x10^-5 (1σ upper limit). These new results are consistent with the first detection made by CAT in a completely different area of sky. Together with data from other experiments, this new CAT detection adds weight to earlier evidence from CAT for a downturn in the CMB power spectrum on scales smaller than 1deg. Improved limits on the values of H0 and Ω are determined using the new CAT data.

  17. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.

    PubMed

    Park, Seong-Im; Kim, Young-Saeng; Kim, Jin-Ju; Mok, Ji-Eun; Kim, Yul-Ho; Park, Hyang-Mi; Kim, Il-Sup; Yoon, Ho-Sung

    2017-08-01

    Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields. Copyright © 2017. Published by Elsevier GmbH.

  18. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress.

    PubMed

    Mridha, Nilimesh; Chattaraj, Sudipta; Chakraborty, Debashis; Anand, Anjali; Aggarwal, Pramila; Nagarajan, Shantha

    2016-09-01

    Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre-sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies. Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes. Seeds exposed to SMF (strength: 100 mT, exposure: 1 h) led to increase in root volume and surface area by 70% and 65%, respectively. This enabled the crop to utilize 60% higher moisture during the active growth period (78-118 days after sowing), when soil moisture became limiting. Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control). Seed pre-treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi-arid regions, helping in augmenting its production. It could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released. Bioelectromagnetics. 37:400-408, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Stress measurements in Kuzbass mines using photoelastic sensors

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, E.

    1996-06-01

    The basic amount of known measurements of stressed state in front of development workings' faces was carried out with the use of hydraulic sensors, which give an information about principal stresses without their separation. Besides, the availability of pipe-line and cumbersome equipment make more complicated and sometimes impossible the process of stresses' measurements during works in mining process. In our opinion, the borehole and photoelastic sensors at high degree satisfy with the conditions of stresses' measurements in front of mining workings' faces. The principal idea of the method is in the usage of proper face advancing aiming the estimation of the field stresses in its neighborhood. Borehole and photoelastic sensors, fixed in the advanced boreholes, drilled from the active face react to the field change of stresses or deformation caused by working face advancing. While obtaining this information we may judge about the distribution of additional stresses in rock of face's neighborhood and concentration of stresses in front of face. The usage of cavity (because of face advancing) in the quality of disturbing influence in combination with the properties of ring photoelastic sensor to given an information about magnitude and direction of secondary principle stresses, permits us to obtain rather a simple and not labor consuming method of investigation of field additional stresses in the working's face neighborhood.

  20. Stress field sensitivity analysis within Mesozoic successions in the Swiss Alpine foreland using 3-D-geomechanical-numerical models

    NASA Astrophysics Data System (ADS)

    Reiter, Karsten; Hergert, Tobias; Heidbach, Oliver

    2016-04-01

    impact of fault geometry and frictional properties is observed within a distance of <1 km. The major impact on the stress state is caused by the variability of the geomechanical stratigraphy. The stress anisotropy increases when tectonic shortening is applied to the models. Stress magnitudes and anisotropy are largest within the stiff formations such as limestone. These stiff formations carry the load due to far field tectonic forces, whereas weak formations, like the argillaceous target horizon for the waste disposal, exhibits smaller stress magnitudes. Using the fracture potential as a more unambiguous indicator, the stiff overburden rocks are closer to failure than the target horizon for the repository, whereas stiff formations below the target rocks are far from failure.

  1. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanGordon, James A.; Kovaleski, Scott D., E-mail: kovaleskis@missouri.edu; Norgard, Peter

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-opticmore » effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1

  2. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    PubMed

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  3. Light scalars on cosmological backgrounds

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi

    2018-01-01

    We study the behaviour of a light quartically self-interacting scalar field ϕ on curved backgrounds that may be described with the cosmological equation state parameter w. At leading order in the non-perturbative 2PI expansion we find a general formula for the variance < {\\widehat{φ}}^2> and show for several previously unexplored cases, including matter domination and kination, that the curvature of space can induce a significant excitation of the field. We discuss how the generation of a non-zero variance for w ≠ -1 can be understood as a process of self-regulation of the infrared divergences very similarly to what is known to occur in de Sitter space. To conclude, the appearance of an effective mass due to self-interaction is generic for a light scalar in curved space and can have important implications for reheating, vacuum stability and dark matter generation.

  4. Family Background and Educational Path of Italian Graduates

    ERIC Educational Resources Information Center

    Vergolini, Loris; Vlach, Eleonora

    2017-01-01

    In this paper, we analyse social inequalities along the horizontal dimension of education in Italy. More precisely, we focus on the role of family background in completing specific fields of study at both secondary and tertiary levels of education. To mitigate the limitations of the traditional sequential model, we construct a typology of…

  5. Higgs effective potential in a perturbed Robertson-Walker background

    NASA Astrophysics Data System (ADS)

    Maroto, Antonio L.; Prada, Francisco

    2014-12-01

    We calculate the one-loop effective potential of a scalar field in a Robertson-Walker background with scalar metric perturbations. A complete set of orthonormal solutions of the perturbed equations is obtained by using the adiabatic approximation for comoving observers. After analyzing the problem of renormalization in inhomogeneous backgrounds, we get the explicit contribution of metric perturbations to the effective potential. We apply these results to the Standard Model Higgs field and evaluate the effects of metric perturbations on the Higgs mass and on its vacuum expectation value. Space-time variations are found, which are proportional to the gravitational slip parameter, with a typical amplitude of the order of Δ ϕ /ϕ ≃10-11 on cosmological scales. We also discuss possible astrophysical signatures in the Solar System and in the Milky Way that could open new possibilities to explore the symmetry breaking sector of the electroweak interactions.

  6. Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions

    USGS Publications Warehouse

    Kastrup, U.; Zoback, M.L.; Deichmann, N.; Evans, Kenneth F.; Giardini, D.; Michael, A.J.

    2004-01-01

    This study is devoted to a systematic analysis of the state of stress of the central European Alps and northern Alpine foreland in Switzerland based on focal mechanisms of 138 earthquakes with magnitudes between 1 and 5. The most robust feature of the results is that the azimuth of the minimum compressive stress, S3, is generally well constrained for all data subsets and always lies in the NE quadrant. However, within this quadrant, the orientation of S3 changes systematically both along the structural strike of the Alpine chain and across it. The variation in stress along the mountain belt from NE to SW involves a progressive, counterclockwise rotation of S3 and is most clear in the foreland, where it amounts to 45??-50??. This pattern of rotation is compatible with the disturbance to the stress field expected from the indentation of the Adriatic Block into the central European Plate, possibly together with buoyancy forces arising from the strongly arcuate structure of the Moho to the immediate west of our study area. Across the Alps, the variation in azimuth of S3 is defined by a progressive, counterclockwise rotation of about 45?? from the foreland in the north across the Helvetic domain to the Penninic nappes in the south and is accompanied by a change from a slight predominance of strike-slip mechanisms in the foreland to a strong predominance of normal faulting in the high parts of the Alps. The observed rotation can be explained by the perturbation of the large-scale regional stress by a local uniaxial deviatoric tension with a magnitude similar to that of the regional differential stress and with an orientation perpendicular to the strike of the Alpine belt. The tensile nature and orientation of this stress is consistent with the "spreading" stress expected from lateral density changes due to a crustal root beneath the Alps. Copyright 2004 by the American Geophysical Union.

  7. An illustrated gardener's guide to transgenic Arabidopsis field experiments.

    PubMed

    Frenkel, Martin; Jänkänpää, Hanna Johansson; Moen, Jon; Jansson, Stefan

    2008-01-01

    Field studies with transgenic Arabidopsis lines have been performed over 8 yr, to better understand the influence that certain genes have on plant performance. Many (if not most) plant phenotypes cannot be observed under the near constant, low-stress conditions in growth chambers, making field experiments necessary. However, there are challenges in performing such experiments: permission must be obtained and regulations obeyed, the profound influence of uncontrollable biotic and abiotic factors has to be considered, and experimental design has to be strictly controlled. The aim here is to provide inspiration and guidelines for researchers who are not used to setting up such experiments, allowing others to learn from our mistakes. This is believed to be the first example of a 'manual' for field experiments with transgenic Arabidopsis plants. Many of the challenges encountered are common for all field experiments, and many researchers from ecological backgrounds are skilled in such methods. There is huge potential in combining the detailed mechanistic understanding of molecular biologists with ecologists' expertise in examining plant performance under field conditions, and it is suggested that more interdisciplinary collaborations will open up new scientific avenues to aid analyses of the roles of genetic and physiological variation in natural systems.

  8. Nonrelativistic trace and diffeomorphism anomalies in particle number background

    NASA Astrophysics Data System (ADS)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2018-04-01

    Using the heat kernel method, we compute nonrelativistic trace anomalies for Schrödinger theories in flat spacetime, with a generic background gauge field for the particle number symmetry, both for a free scalar and a free fermion. The result is genuinely nonrelativistic, and it has no counterpart in the relativistic case. Contrary to naive expectations, the anomaly is not gauge invariant; this is similar to the nongauge covariance of the non-Abelian relativistic anomaly. We also show that, in the same background, the gravitational anomaly for a nonrelativistic scalar vanishes.

  9. Non-Gaussian microwave background fluctuations from nonlinear gravitational effects

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.; Kunstatter, G. (Editor)

    1991-01-01

    Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.

  10. The feature of the focal mechanism solutions and tectonic stress field around the focus of Zaduo earthquake (Ms 6.3) in eastern Tibet

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zeng, Z.; Shuang, X.; Li, X.

    2017-12-01

    On 17th October, 2016, an earthquake of Ms6.3 occurred in Zaduo County, Qinghai Province (32.9°N, 95.0°E), 159 km away from the epicenter of Yushu Ms7.3 earthquake in 2011. The earthquake is located in the eastern Tibet Plateau and the north region of Eastern Himalayan Syntaxis. Using the broadband seismic waveform data form regional networks, we determined the focal mechanism solutions (FMSs) of 83 earthquakes (M>3.5) occurred in Zaduo and its adjacent areas from 2009 to 2017. We also collected another 63 published FMSs and then inversed the current tectonic stress field in study region using the damped linear inversion method. The results show that the Zaduo earthquake is a normal oblique earthquake. The FMSs in our study region are mainly in strike-slip and normal fault patterns. The strike-slip earthquakes are mainly distributed in Yushu-Ganzi, Zaduo and Yanshiping fault zones, and the normal faulting events occurred in Nu Jiang fault zone and Nierong County and its vicinity, the south and southwest of the study areas. The tectonic stress field results indicate that the stress distribution in the north and east of the study region changes homogeneously and slowly. From west to east, the σ1 gradually changes from NNE to NE direction, and the σ3 varies from NWW to NW direction. Both the maximum (σ1) and minimum (σ3) principal stress axes in the study area are nearly horizontal, except in the Nu Jiang fault zone and its vicinity, the south of the study area, which is in a normal faulting stress regime (σ1 is vertical and σ3 is horizontal). The localized normal faulting stress field in the south area, which is almost limited in a semicircle, indicates that a high pressure and low viscosity body with low S-wave velocity and high conductivity might exists beneath the anomaly area. And there may be another semicircle abnormal area beyond the south of the study region. Waveform data for this study are provided by Data Management Centre of China National Seismic

  11. Modeling of grain boundary stresses in Alloy 600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozaczek, K.J.; Sinharoy, A.; Ruud, C.O.

    1995-04-01

    Corrosive environments combined with high stress levels and susceptible microstructures can cause intergranular stress corrosion cracking (IGSCC) of Alloy 600 components on both primary and secondary sides of pressurized water reactors. One factor affecting the IGSCC is intergranular carbide precipitation controlled by heat treatment of Alloy 600. This study is concerned with analysis of elastic stress fields in vicinity of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbides precipitated in the matrix and at a grain boundary triple point. The local stress concentration which can lead to IGSCC initiation was studied using a two-dimensional finite element model. The intergranular precipitatesmore » are more effective stress raisers than the intragranular precipitates. The combination of the elastic property mismatch and the precipitate shape can result in a local stress field substantially different than the macroscopic stress. The maximum local stresses in the vicinity of the intergranular precipitate were almost twice as high as the applied stress.« less

  12. 3D geomechanical modeling and numerical simulation of in-situ stress fields in shale reservoirs: A case study of the lower Cambrian Niutitang formation in the Cen'gong block, South China

    NASA Astrophysics Data System (ADS)

    Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Wang, Ruyue; Yin, Shuai; Li, Ang; Fu, Fuquan

    2017-08-01

    An analysis of the in-situ state of stress in a shale reservoir was performed based on comprehensive information about the subsurface properties from wellbores established during the development of an oil and gas field. Industrial-level shale gas production has occurred in the Niutitang formation of the lower Cambrian Cen'gong block, South China. In this study, data obtained from hydraulic fracturing, drilling-induced fractures, borehole breakout, global positioning system (GPS), and well deviation statistics have been used to determine the orientation of the maximum horizontal principal stress. Additionally, hydraulic fracturing and multi-pole array acoustic logging (XMAC) were used to determine the vertical variations in the in-situ stress magnitude. Based on logging interpretation and mechanical experiments, the spatial distributions of mechanical parameters were obtained by seismic inversion, and a 3D heterogeneous geomechanical model was established using a finite element stress analysis approach to simulate the in-situ stress fields. The effects of depth, faults, rock mechanics, and layer variations on the principal stresses, horizontal stress difference (Δσ), horizontal stress difference coefficient (Kh), and stress type coefficient (Sp) were determined. The results show that the direction of the maximum principal stress is ESE 120°. Additionally, the development zones of natural fractures appear to correlate with regions with high principal stress differences. At depths shallower than 375 m, the stress type is mainly a thrust faulting stress regime. At depths ranging from 375 to 950 m, the stress type is mainly a strike-slip faulting stress regime. When the depth is > 950 m, the stress type is mainly a normal faulting stress regime. Depth, fault orientation, and rock mechanics all affect the type of stress. The knowledge regarding the Cen'gong block is reliable and can improve borehole stability, casing set point determination, well deployment

  13. Does intraplate brittle deformation indicate far-field stress signals? A case study of Central Europe

    NASA Astrophysics Data System (ADS)

    Navabpour, Payman; Kley, Jonas; Le Breton, Eline; van Hinsbergen, Douwe J. J.; Ustaszewski, Kamil

    2017-04-01

    Even though Central Europe has been located within a plate interior since the end of the Variscan orogeny, its intracontinental basins and highs recorded a succession of different tectonic regimes throughout the Mesozoic and Cenozoic, which were coeval with events at distant plate margins. A long Triassic-Cretaceous period of weak subsidence with intermittent extension was followed by NNE-SSW contraction in the Late Cretaceous-Paleocene. Renewed extension led to the formation of the Cenozoic Rift System and eventually evolved to the present-day variable stress regimes with a consistent NW-SE-oriented maximum horizontal shortening, SHmax. The detailed knowledge of this evolution relies on exhaustive lithostratigraphy and geochronological datasets, as well as on reconstruction of successive states of paleostress that controlled the formation and/or inversion of intracontinental basins. In combination, these data provide an excellent opportunity of linking the intracontinental deformation to the lithospheric plate boundary kinematics. Regional-scale analysis of fault kinematics in Central Europe unveiled a succession of consistent stress states for the crystalline basement and sedimentary cover of the brittle crust. These states of stress include a post-Triassic normal faulting regime with NE-SW-trending σ3 axis, strike-slip and thrust faulting regimes with NNE-SSW-trending σ1 axis, supposedly of Late Cretaceous age, and two younger events of normal and strike-slip faulting regimes with NW-SE-trending σ3 and σ1 axes, respectively. In this study, we report on the first attempts of linking the central European intraplate kinematics to changes in relative motion between the plates. The integration of stress fields with plate boundary kinematics suggests that the Late Cretaceous contraction may be explained by a change in African plate motion with respect to Eurasia from SE-directed sinistral transform to NNE-directed convergence. The reorientation of contraction to

  14. Using Hyperspectral Imagery to Identify Turfgrass Stresses

    NASA Technical Reports Server (NTRS)

    Hutto, Kendall; Shaw, David

    2008-01-01

    The use of a form of remote sensing to aid in the management of large turfgrass fields (e.g. golf courses) has been proposed. A turfgrass field of interest would be surveyed in sunlight by use of an airborne hyperspectral imaging system, then the raw observational data would be preprocessed into hyperspectral reflectance image data. These data would be further processed to identify turfgrass stresses, to determine the spatial distributions of those stresses, and to generate maps showing the spatial distributions. Until now, chemicals and water have often been applied, variously, (1) indiscriminately to an entire turfgrass field without regard to localization of specific stresses or (2) to visible and possibly localized signs of stress for example, browning, damage from traffic, or conspicuous growth of weeds. Indiscriminate application is uneconomical and environmentally unsound; the amounts of water and chemicals consumed could be insufficient in some areas and excessive in most areas, and excess chemicals can leak into the environment. In cases in which developing stresses do not show visible signs at first, it could be more economical and effective to take corrective action before visible signs appear. By enabling early identification of specific stresses and their locations, the proposed method would provide guidance for planning more effective, more economical, and more environmentally sound turfgrass-management practices, including application of chemicals and water, aeration, and mowing. The underlying concept of using hyperspectral imagery to generate stress maps as guides to efficient management of vegetation in large fields is not new; it has been applied in the growth of crops to be harvested. What is new here is the effort to develop an algorithm that processes hyperspectral reflectance data into spectral indices specific to stresses in turfgrass. The development effort has included a study in which small turfgrass plots that were, variously, healthy or

  15. The Essential Link for Students with Disabilities from Diverse Backgrounds: Forging Partnerships with Families.

    ERIC Educational Resources Information Center

    Boscardin, Mary Lynn; Brown-Chidsey, Rachel; Gonzalez-Martinez, Julio C.

    2001-01-01

    This article urges educators and administrators to collaborate closely with families of students with disabilities from diverse linguistic, racial, and cultural backgrounds and participate in training activities that stress best practices for facilitating the participation of the family. The role of the Individualized Education Program in forging…

  16. Superhorizon electromagnetic field background from Higgs loops in inflation

    NASA Astrophysics Data System (ADS)

    Kaya, Ali

    2018-03-01

    If Higgs is a spectator scalar, i.e. if it is not directly coupled to the inflaton, superhorizon Higgs modes must have been exited during inflation. Since Higgs is unstable its decay into photons is expected to seed superhorizon photon modes. We use in-in perturbation theory to show that this naive physical expectation is indeed fulfilled via loop effects. Specifically, we calculate the first order Higgs loop correction to the magnetic field power spectrum evaluated at some late time after inflation. It turns out that this loop correction becomes much larger than the tree-level power spectrum at the superhorizon scales. This suggests a mechanism to generate cosmologically interesting superhorizon vector modes by scalar-vector interactions.

  17. Stress studies in EFG

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A program to study stress generation mechanisms in silicon sheet growth was started. The purpose of the research is to define post-growth temperature profiles for the sheet that can minimize its stress during growth at high speeds, e.g., greater than 3 cm/min. The initial tasks described concern work in progress toward the development of computing capabilities to (1) model stress-temperature relationships in steady-state ribbon growth, and (2) provide a means to calculate realistic temperature fields in ribbon, given growth system component temperatures as boundary conditions. If it is determined that low stress configurations can be achieved, the modeling is to be tested experimentally by constructing low-stress growth systems for EFG silicon ribbon.

  18. Sources of background light on space based laser communications links

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    We discuss the sources and levels of background light that should be expected on space based laser communication (lasercom) crosslinks and uplinks, as well as on downlinks to ground stations. The analyses are valid for both Earth orbiting satellites and inter-planetary links. Fundamental equations are derived suitable for first order system engineering analyses of potential lasercom systems. These divide sources of background light into two general categories: extended sources which fill the field of view of a receiver's optics, and point sources which cannot be resolved by the optics. Specific sources of background light are discussed, and expected power levels are estimated. For uplinks, reflected sunlight and blackbody radiation from the Earth dominates. For crosslinks, depending on specific link geometry, sources of background light may include the Sun in the field of view (FOV), reflected sunlight and blackbody radiation from planets and other bodies in the solar system, individual bright stars in the FOV, the amalgam of dim stars in the FOV, zodiacal light, and reflected sunlight off of the transmitting spacecraft. For downlinks, all of these potentially come into play, and the effects of the atmosphere, including turbulence, scattering, and absorption contribute as well. Methods for accounting for each of these are presented. Specific examples are presented to illustrate the relative contributions of each source for various link geometries.

  19. Modeling a distribution of point defects as misfitting inclusions in stressed solids

    NASA Astrophysics Data System (ADS)

    Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.

    2014-05-01

    The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.

  20. Ki aikido: a solution to stress.

    PubMed

    Wiles, L

    1990-03-10

    It is common knowledge that the life of the general dental practitioner is extremely stressful. Different dentists resort to various ways of unwinding--perhaps a game of golf, a sailing trip, or mending the odd clock as occupational therapy. These are all ways of getting away from the stress of day-to-day work--but perhaps the time has come to look for a more fundamental solution. How many dentists have considered taking up a martial art to alleviate the problem of stress? Here, we outline the background of ki aikido and its practical applications in daily life.