Science.gov

Sample records for background temperature fluctuations

  1. Topology of microwave background fluctuations - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman

    1990-01-01

    Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.

  2. Light incoherence due to background space fluctuations

    NASA Astrophysics Data System (ADS)

    Maziashvili, Michael

    2016-12-01

    Working by analogy, we use the description of light fluctuations due to random collisions of the radiating atoms to figure out why the reduction of the coherence for light propagating a cosmological distance in the fluctuating background space is negligibly small to be observed by the stellar interferometry.

  3. Fluctuations in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Zaldarriaga, Matias

    1998-06-01

    In this thesis we investigate several aspects related to the theory of fluctuations in the Cosmic Microwave Background. We develop a new algorithm to calculate the angular power spectrum of the anisotropies which is two orders of magnitude faster than the standard Boltzmann hierarchy approach (Chapter 3). The new algorithm will become essential when comparing the observational results of the next generation of CMB experiments with theoretical predictions. The parameter space of the models is so large that an exhaustive exploration to find the best fit model will only be feasible with this new type of algorithm. We also investigate the polarization properties of the CMB field. We develop a new formalism to describe the statistics of the polarization variables that takes into account their spin two nature (Chapter 2). In Chapter 4 we explore several physical effects that create distinct features in the polarization power spectrum. We study the signature of the reionization of the universe and a stochastic background of gravitational waves. We also describe how the polarization correlation functions can be used to test the causal structure of the universe. Finally in Chapter 5 we quantify the amount of information the next generation of satellites can obtain by measuring both temperature and polarization anisotropies. We calculate the expected error bars on the cosmological parameters for the specifications of the MAP and Planck satellite missions.

  4. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2017-01-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR (near-infrared)background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC (Infrared Array Camera) observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS (Cosmic Evolution Survey) field at low ecliptic latitude where the zodiacal light intensity varies by factors of approximately 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or approximately equal to 100 arcseconds) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  5. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2016-06-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ˜2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  6. Ultraviolet background fluctuations with clustered sources

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Dizgah, Azadeh Moradinezhad; Biagetti, Matteo

    2014-11-01

    We develop a count-in-cells approach to the distribution of ultraviolet background fluctuations that includes source clustering. We demonstrate that an exact expression can be obtained if the clustering of ionizing sources follows the hierarchical ansatz. In this case, the intensity distribution depends solely on their two-point correlation function. We show that the void scaling function of high-redshift mock quasars is consistent with the negative binomial form, before applying our formalism to the description of He II-ionizing fluctuations at the end of helium reionization. The model inputs are the observed quasar luminosity function and two-point correlation at z ˜ 3. We find that, for an (comoving) attenuation length ≲55 Mpc, quasar clustering contributes less than 30 per cent of the variance of intensity fluctuations so long as the quasar correlation length does not exceed ˜15 Mpc. We investigate also the dependence of the intensity distribution on the large-scale environment. Differences in the mean He II-ionizing intensity between low- and high-density regions could be a factor of few if the sources are highly clustered. An accurate description of quasar demographics and their correlation with strong absorption systems is required to make more precise predictions.

  7. Fuel Temperature Fluctuations During Storage

    NASA Astrophysics Data System (ADS)

    Levitin, R. E.; Zemenkov, Yu D.

    2016-10-01

    When oil and petroleum products are stored, their temperature significantly impacts how their properties change. The paper covers the problem of determining temperature fluctuations of hydrocarbons during storage. It provides results of the authors’ investigations of the stored product temperature variations relative to the ambient temperature. Closeness and correlation coefficients between these values are given. Temperature variations equations for oil and petroleum products stored in tanks are deduced.

  8. Non-Gaussian microwave background fluctuations from nonlinear gravitational effects

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.; Kunstatter, G. (Editor)

    1991-01-01

    Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.

  9. Mathematical Background of 1/f Fluctuations

    SciTech Connect

    Musha, Toshimitsu

    2009-04-23

    Energy of harmonic oscillators in equilibrium decays exponentially in time when they are coupled in quadratic forms in amplitudes. In reality, however, their Hamiltonian includes higher-order coupling terms. Not all of the higher-order coupling terms contribute to the energy decay of oscillators after averaging over reservoir oscillators, and we find that one of the lowest higher-order terms makes a finite contribution to the energy decay. This effect is equivalently represented by a modified coupling coefficient of quadratic coupling terms. This modification works as a positive feedback to the action-reaction process between oscillators. Eventually the modified coupling terms generate 1/f fluctuations in energy partition among oscillators in equilibrium. It is concluded that 1/f type of energy partition is observable with harmonic oscillators if they obey the Bose-Einstein statistics regardless of whether the collective system is classical or quantum mechanical regime.

  10. Arcminute fluctuations in the microwave background from clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Markevitch, M.; Blumenthal, G. R.; Forman, W.; Jones, C.; Suniaev, R. A.

    1992-01-01

    A method for computing arcmin microwave fluctuations produced by Compton scattering of the cosmic background photons by hot electrons in clusters of galaxies is described. Microwave images of the sky for a range of Omega and primordial fluctuation spectral index n are generated which are then 'observed' to determine Delta T/T in precisely the same manner as actual observations to determine if the cluster-induced fluctuations are consistent with the measured upper limit. The geometry used by Uson and Wilkinson (1984) in the NRAO experiment and Readhead et al. (1989) in the OVRO experiment are applied to the simulated images. The 95 percent confidence lower limit for Omega is found to be about 1/10 for n = -1 (which approximates the CDM mass spectrum for clusters), while for n = 0 it is 1/7; for n = +1 the limit is 1/5 if the gas density profile extends to five core radii.

  11. Resonance of plankton communities with temperature fluctuations.

    PubMed

    Benincà, Elisa; Dakos, Vasilis; Van Nes, Egbert H; Huisman, Jef; Scheffer, Marten

    2011-10-01

    The interplay between intrinsic population dynamics and environmental variation is still poorly understood. It is known, however, that even mild environmental noise may induce large fluctuations in population abundances. This is due to a resonance effect that occurs in communities on the edge of stability. Here, we use a simple predator-prey model to explore the sensitivity of plankton communities to stochastic environmental fluctuations. Our results show that the magnitude of resonance depends on the timescale of intrinsic population dynamics relative to the characteristic timescale of the environmental fluctuations. Predator-prey communities with an intrinsic tendency to oscillate at a period T are particularly responsive to red noise characterized by a timescale of τ = T/2π. We compare these theoretical predictions with the timescales of temperature fluctuations measured in lakes and oceans. This reveals that plankton communities will be highly sensitive to natural temperature fluctuations. More specifically, we demonstrate that the relatively fast temperature fluctuations in shallow lakes fall largely within the range to which rotifers and cladocerans are most sensitive, while marine copepods and krill will tend to resonate more strongly with the slower temperature variability of the open ocean.

  12. Temperature-polarization correlations from tensor fluctuations

    SciTech Connect

    Crittenden, R.G.; Coulson, D.; Turok, N.G. |

    1995-11-15

    We study the polarization-temperature correlations on the cosmic microwave sky resulting from an initial scale-invariant spectrum of tensor (gravity wave) fluctuations, such as those which might arise during inflation. The correlation function has the opposite sign to that for scalar fluctuations on large scales, raising the possibility of a direct determination of whether the microwave anisotropies have a significant tensor component. We briefly discuss the important problem of estimating the expected foreground contamination.

  13. Classical and quantum temperature fluctuations via holography

    SciTech Connect

    Balatsky, Alexander V.; Gudnason, Sven Bjarke; Thorlacius, Larus; Zarembo, Konstantin; Krikun, Alexander; Kedem, Yaron

    2014-05-27

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  14. The North Ecliptic Pole Extragalactic Background LIght Fluctuations Survey

    NASA Astrophysics Data System (ADS)

    Bock, James; Zemcov, Michael; Cooray, Asantha; Smidt, Joseph; Serjeant, Stephen; Malkan, Matt; Matsuhara, Hideo; Matsumoto, Toshia; Matsuura, Shuji; Clements, David; Pearson, Chris; Im, Myung Shin

    2013-10-01

    We propose to image 6 deg^2 in the North Ecliptic Pole (NEP) with IRAC to determine the origin of Extragalactic Background Light (EBL) fluctuations. These Spitzer images will be combined with CIBER data at 1.1 and 1.6 um, and Akari data at 2.4, 3.2, and 4.1 um, to probe the spectrum and band-to-band correlations of the fluctuations. The fluctuations have been reported by Spitzer and Akari, and are now positively detected in new and CIBER data, but their origin is controversial. This multi-wavelength analysis will allow us to determine if EBL fluctuations arise from epoch of reionization galaxies or diffuse intra-halo light emission both by measuring their spectral energy distribution (SED) from 1.0 to 4.5 um, and by measuring the cross-correlation between different bands. The analysis uses multiple field combinations in Spitzer, CIBER and Akari data to carry out a robust measurement with multiple data combinations for internal consistency tests. In addition, the proposed survey will be used in conjunction with Akari and Herschel data in the NEP survey that has the most comprehensive multi-band infrared coverage of any degree-scale field on the sky and the best available constraints on dust phases (e.g. PAH, silicate absorption, AGN dust tori, GMCs) in galaxies. We will use this multi-wavelength coverage to cross-identify IRAC counterparts to Herschel and Akari sources and obtain SEDs of dusty, star bursting galaxies at z ~ 1 to 3 from the UV to radio, and obtain accurate PAH luminosities of Akari 7.7 um-rest detected galaxies and AGNs.

  15. Fluctuations In The Cosmic Infrared Background Using the Cosmic Infrared Background ExpeRiment (CIBER).

    NASA Astrophysics Data System (ADS)

    Smidt, Joseph; Arai, T.; Battle, J.; Bock, J. J.; Cooray, A.; Frazer, C.; Hristov, V.; Keating, B.; Kim, M.; Lee, D.; Mason, P.; Matsumoto, T.; Mitchell-Wynne, K.; Nam, U.; Renbarger, T.; Smith, A.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2012-01-01

    The clustering properties of faint unresolved sources may be probed by examining the anisotropies they create in the Cosmic Infrared Background (CIB). Using information from fluctuations in the CIB at different wavelengths allows us to disentangle how clustering relates to redshift. In this talk, preliminary measurements of clustering using data from the Cosmic Infrared Background ExpeRiment (CIBER), a rocket-borne experiment designed to detect the signatures of unresolved infrared galaxies during reionization, will be discussed. The CIBER payload contains four instruments including two wide field imagers designed to measure fluctuations in the near IR cosmic infrared background (CIB) at 1.0 and 1.6 microns on scales between 0.2 and 100 arcmin in both bands, where the clustering of high-redshift sources is expected to peak. CIBER observations may be combined with Akari/NEP and Spitzer/NDWFS near-infrared surveys to check systematic errors and to fully characterize the electromagnetic spectrum of CIB fluctuations.

  16. Probing Reionization through Near-Infrared Background Fluctuations with CIBER

    NASA Astrophysics Data System (ADS)

    Sullivan, Ian S.

    2010-01-01

    The Cosmic Infrared Background Experiment (CIBER) is a NASA sounding rocket payload that was first launched in February 2009. CIBER consists of four co-aligned instruments designed with foreground subtraction and control of systematics in mind. In addition, the platform of a sounding rocket enables observations of the NIRB outside of narrow atmospheric windows that are uncontaminated by airglow. We will present preliminary results from the first flight. CIBER seeks to measure the absolute brightness spectrum of the extragalactic NIRB, and has two spectrometers dedicated to that purpose. One, a high-resolution Fabry-Perot spectometer, is tuned to the 8545 nm Ca II line of the solar spectrum, and is designed to measure the absolute brightness of the Zodiacal Light directly, which is the source of greatest uncertainty in the NIRB spectrum. The second spectrometer measures the NIRB spectrum from 700nm to 1800nm, which spans the wavelength range where a Lyman cutoff feature from Reionization could appear. CIBER also houses two Infrared imaging telescopes, which have identical optics that give 2º x 2º field of views with 7 arcsec pixels, but have different band defining filters. The first imager has a wide band centered at 1600nm, and images the background at the expected peak of the spectrum. The imagers’ wide field of view allows them to measure the distinctive power spectrum peaking at 10 arcminutes. The second imager has a wide band centered at 1000nm that is intended to image at wavelengths shorter than the Lyman cutoff, and provides a powerful systematic test for any detection made at 1600 nm. First-light fluctuations should have a distinctive spatial power spectrum with very red 1600nm / 1000nm color, distinctly redder than the approximately solar color of any residual fluctuations arising from Zodiacal light, Galactic starlight, or low-redshift galaxies.

  17. THE COSMIC NEAR-INFRARED BACKGROUND. II. FLUCTUATIONS

    SciTech Connect

    Fernandez, Elizabeth R.; Komatsu, Eiichiro; Shapiro, Paul R.; Iliev, Ilian T.

    2010-02-20

    The near-infrared background (NIRB) is one of a few methods that can be used to observe the redshifted light from early stars at a redshift of 6 and above, and thus it is imperative to understand the significance of any detection or nondetection of the NIRB. Fluctuations of the NIRB can provide information on the first structures, such as halos and their surrounding ionized regions in the intergalactic medium (IGM). We combine, for the first time, N-body simulations, radiative transfer code, and analytic calculations of luminosity of early structures to predict the angular power spectrum (C{sub l} ) of fluctuations in the NIRB. We study in detail the effects of various assumptions about the stellar mass, the initial mass spectrum of stars, the metallicity, the star formation efficiency (f{sub *}), the escape fraction of ionizing photons (f{sub esc}), and the star formation timescale (t{sub SF}), on the amplitude as well as the shape of C{sub l} . The power spectrum of NIRB fluctuations is maximized when f{sub *} is the largest (as C{sub l} {proportional_to} f {sup 2}{sub *}) and f{sub esc} is the smallest (as more nebular emission is produced within halos). A significant uncertainty in the predicted amplitude of C{sub l} exists due to our lack of knowledge of t{sub SF} of these early populations of galaxies, which is equivalent to our lack of knowledge of the mass-to-light ratio of these sources. We do not see a turnover in the NIRB angular power spectrum of the halo contribution, which was claimed to exist in the literature, and explain this as the effect of high levels of nonlinear bias that was ignored in the previous calculations. This is partly due to our choice of the minimum mass of halos contributing to NIRB ({approx}2 x 10{sup 9} M{sub sun}), and a smaller minimum mass, which has a smaller nonlinear bias, may still exhibit a turnover. Therefore, our results suggest that both the amplitude and shape of the NIRB power spectrum provide important information

  18. Minimal cosmic background fluctuations implied by streaming motions

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Gorski, Krzysztof; Silk, Joseph

    1987-01-01

    The minimal cosmic background radiation (CBR) anisotropy implied by the presence of peculiar motions of a given amplitude on some specified scale is calculated using a new, power spectrum-independent approach. If the tentative evidence for deviations from the Hubble flow of magnitude delta V/V roughly 0.1 at V roughly 5000 km/s is confirmed, microwave background fluctuations with a coherence scale of about 2 deg and dispersion delta T/T greater than 10 to the -5th are predicted. It is found that the existing upper limits on delta T/T are not inconsistent with v(r) = 500 km/s at r = 50/h Mpc. A reduction of the observational limits on the CBR anisotropy below the authors' minimal predictions for delta T/T would challenge the current interpretation of measurements of deviations from the Hubble flow. Gravitational instability without reheating as a mechanism for generation of the large-scale structure of the universe would be in severe difficulty.

  19. Studying extragalactic background fluctuations with the Cosmic Infrared Background ExpeRiment 2 (CIBER-2)

    NASA Astrophysics Data System (ADS)

    Lanz, Alicia; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2014-08-01

    Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including

  20. Measurement of small temperature fluctuations at high average temperature

    NASA Technical Reports Server (NTRS)

    Scholl, James W.; Scholl, Marija S.

    1988-01-01

    Both absolute and differential temperature measurements were simultaneously performed as a function of time for a pixel on a high-temperature, multi-spectral, spatially and temporally varying infrared target simulator. A scanning laser beam was used to maintain a pixel at an on-the-average constant temperature of 520 K. The laser refresh rate of up to 1 kHz resulted in small-amplitude temperature fluctuations with a peak-to-peak amplitude of less than 1 K. The experimental setup to accurately measure the differential and the absolute temperature as a function of time is described.

  1. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  2. ECE imaging of electron temperature and electron temperature fluctuations (invited)

    SciTech Connect

    Deng, B. H.; Domier, C. W.; Luhmann, N. C.; Brower, D. L.; Cima, G.; Donne, A. J. H.; Oyevaar, T.; van de Pol, M. J.

    2001-01-01

    Electron cyclotron emission imaging (ECE imaging or ECEI) is a novel plasma diagnostic technique for the study of electron temperature profiles and fluctuations in magnetic fusion plasma devices. Instead of a single receiver located in the tokamak midplane as in conventional ECE radiometers, ECEI systems utilize large diameter imaging optics coupled with planar millimeter-wave imaging arrays to form multichannel ECE diagnostics with excellent spatial resolution. Combined with specially designed imaging optics, the use of these compact, low cost arrays has resulted in the excellent spatial resolution of the ECEI systems, the unique capability of two-dimensional measurements, and flexibility in the measurement of plasma fluctuations. Technical details and principles of this emerging diagnostic technique are described in this article. Illustrative experimental results are presented, together with a discussion of the further development of the diagnostic.

  3. Adaptive log-quadratic approach for target detection in nonhomogeneous backgrounds perturbed with speckle fluctuations.

    PubMed

    Magraner, Eric; Bertaux, Nicolas; Réfrégier, Philippe

    2008-12-01

    An approach for point target detection in the presence of speckle fluctuations with nonhomogeneous backgrounds is proposed. This approach is based on an automatic selection between the standard constant background model and a quadratic model for the logarithm of the background values. An improvement of the regulation of the false alarm probability in nonhomogeneous backgrounds is demonstrated.

  4. Mesoscale Temperature Fluctuations in the Southern Hemisphere Stratosphere

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.

    2008-01-01

    Isentrope surfaces in the Southern Hemisphere stratosphere reveal that air parcels undergo mesoscale temperature fluctuations that depend on latitude and season. The largest temperature fluctuations occur at high latitude winter, whereas the smallest fluctuations occur at high latitude summer. This is the same pattern found for the Northern Hemisphere stratosphere. However, the amplitude of the seasonal dependence in the Southern Hemisphere is only 37% of the Northern Hemisphere's seasonal amplitude.

  5. GENERAL: Fluctuation of Mesoscopic RLC Circuit at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yan; Wang, Ji-Suo; Fan, Hong-Yi

    2008-09-01

    We consider the fluctuation of mesoscopic RLC circuit at finite temperature since a resistance always produces Joule heat when the circuit is working. By virtue of the thermo Geld dynamics and the coherent thermo state representation we show that the quantum mechanical zero-point fluctuations of both charge and current increase with the rising temperature and the resistance value.

  6. Fluctuations in microwave background radiation due to secondary ionization of the intergalactic gas in the universe

    NASA Technical Reports Server (NTRS)

    Sunyayev, R. A.

    1979-01-01

    Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.

  7. Fluctuational shift of nematic-isotropic phase transition temperature

    NASA Astrophysics Data System (ADS)

    Kats, E. I.

    2017-02-01

    In this work we discuss a macroscopic counterpart to the microscopic mechanism of the straightening dimer mesogens conformations, proposed recently by S.M. Saliti, M.G.Tamba, S.N. Sprunt, C.Welch, G.H.Mehl, A. Jakli, J.T. Gleeson (Phys. Rev. Lett. 116, 217801 (2016)) to explain their experimental observation of the unprecedentedly large shift of the nematic-isotropic transition temperature. Our interpretation is based on singular longitudinal fluctuations of the nematic order parameter. Since these fluctuations are governed by the Goldstone director fluctuations they exist only in the nematic state. External magnetic field suppresses the singular longitudinal fluctuations of the order parameter (similarly as it is the case for the transverse director fluctuations, although with a different scaling over the magnetic field). The reduction of the fluctuations changes the equilibrium value of the modulus of the order parameter in the nematic state. Therefore it leads to additional (with respect to the mean field contribution) fluctuational shift of the nematic-isotropic transition temperature. Our mechanism works for any nematic liquid crystals, however the magnitude of the fluctuational shift increases with decrease of the Frank elastic moduli. Since some of these moduli supposed to be anomalously small for so-called bent-core or dimer nematic liquid crystals, just these liquid crystals are promising candidates for the observation of the predicted fluctuational shift of the phase transition temperature.

  8. Minute Temperature Fluctuations Detected in Eta Bootis

    NASA Astrophysics Data System (ADS)

    1994-11-01

    periods around 20 minutes. These periods are longer than those of the Sun, as expected for a star that is larger and heavier than the Sun. The figure accompanying this Press Release shows these oscillations in the form of a "power spectrum", i.e., the amount of temperature change at different values of the period. Most of the highest peaks correspond to the real oscillations in the star. The changes (fluctuations) of the temperature of Eta Bootis vary with the oscillation mode and, at the time of these observations, were mostly between 0.03 and 0.08 degrees. This diagramme provides the first strong evidence ever for solar-type oscillations in a star other than the Sun. An article with the detailed results will soon appear in the "Astronomical Journal". Agreement with Stellar Theory The measured periods of the main oscillation modes give important information about the interior of Eta Bootis. Theoretical models of the star have now been compared with these observations and the astronomers were pleased to find that the agreement is excellent, implying that current stellar theory is remarkably good. This shows that we apparently understand stars quite well, but there is of course still much to be learned. Future observations of this kind, with ground-based telescopes and possibly in a more distant future also from space, promise to open up a new and exciting way of studying stars. From now on, we will be able "to look inside" stars in great detail. Appendix: Spectral Analysis Dark spectral lines were first seen in the solar spectrum by the German physicist Johann Fraunhofer in 1814. Later, in the mid-nineteenth century, such lines were also seen in the spectra of other stars. It is now known that they are due to the upper, cooler layers in the solar and stellar atmospheres, whose atoms and molecules absorb the radiation from the hotter, deeper layers at specific wavelengths. These wavelengths serve as "footprints" of these atoms and molecules and allow astronomers to

  9. Fluctuations and disorder in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Blatter, Gianni; Ivlev, Boris

    1994-02-01

    The special material parameters of the oxide superconductors lead to a dramatic increase of the importance of thermal and quantum fluctuations. The latter can be quantified by the Ginzburg number Gi = {[T c/ }/{H 2c(0)ɛξ 3(0)] 2/2 } and the quantum resistance Q u = {(e 2/ }/{h̵}) {[ϱN/}/{ɛξ(0)]}, where H c(0), ξ(0), and ϱ N denote the thermodynamic critical field, the planar coherence length (both linearly extrapolated to zero), and the planar normal resistivity. ɛ 2 = {m/}/{M} < 1 is the anisotropy parameter. In the high Tc's (specifically for YBCO) we have Gi ≅ 10 -2 and Qu ≅ 1 and thus these parameters are by orders of magnitude larger than in conventional low- Tc superconductors. The large fluctuations lead to the melting of the vortex lattice well below the upper critical field line. The inclusion of quenched disorder as parametrized by the critical current density ratio jc/ jo drastically changes the dynamic behavior of the vortex system ( jc and jo denote the depinning and depairing current densities). We discuss the equilibrium statistical mechanics (vortex lattice melting) and the dynamic behavior (creep) of the vortex system with a particular emphasis on the role of quantum fluctuations.

  10. Correlated fluctuations of daytime skin temperature and vigilance.

    PubMed

    Romeijn, Nico; Van Someren, Eus J W

    2011-02-01

    Skin temperature shows spontaneous ultradian fluctuations during everyday-life wakefulness. Previous work showed that mild manipulations of skin temperature affect human sleep and vigilance, presumably by influencing neuronal systems involved in both thermal sensing and arousal regulation. We therefore examined whether fluctuations in skin temperature are associated with those in vigilance level under conditions similar to everyday-life situations requiring sustained attention. Eight healthy participants (30.1 ± 8.1 years, M ± SD) participated in a 2-day protocol, during which vigilance and skin temperature were assessed 4 times per day in a silent, dimly lit, temperature-controlled room. Vigilance was assessed by measuring reaction speed and lapses on a novel sustained vigilance task specifically designed to increase lapse rate and range of reaction times. Skin temperature was sampled at 30-second intervals from 3 locations: distal, intermediate, and proximal temperatures were obtained from the middle finger (T(finger) ), the wrist (T(wrist)), and the infraclavicular area (T(chest)), respectively. Furthermore, 3 distal to proximal gradients were calculated. Mixed-effect regression analyses were used to evaluate the association of the fluctuations in temperatures and gradients and those in response speed and lapse probability. Especially the spontaneous fluctuations in proximal temperature were negatively associated with fluctuations in response speed and positively with lapse rate. If individual T(chest) temperature ranges were classified into 10 deciles, they accounted for 23% of the variance in response speed and 11% of the variance in lapse rate. The findings indicate coupling between the spontaneous fluctuations in skin temperature and vigilance during the day and are compatible with the hypothesis of overlap in brain networks involved in the regulation of temperature and vigilance. From an applied point of view, especially proximal skin temperature

  11. Maps of the little bangs through energy density and temperature fluctuations

    SciTech Connect

    Basu, Sumit Chatterjee, Rupa; Nayak, Tapan K.

    2016-01-22

    Heavy-ion collisions at ultra-relativistic energies are often referred to as little bangs. We propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.

  12. Coupling of infraslow fluctuations in autonomic and central vigilance markers: skin temperature, EEG β power and ERP P300 latency.

    PubMed

    Ramautar, Jennifer R; Romeijn, Nico; Gómez-Herrero, Germán; Piantoni, Giovanni; Van Someren, Eus J W

    2013-08-01

    Even under thermoneutral conditions, skin temperature fluctuates spontaneously, most prominently at distal parts of the body. These fluctuations were shown to be associated with fluctuations in vigilance: mild manipulation of skin temperature during nocturnal sleep affects sleep depth and the power spectral density of the electroencephalogram (EEG), and fluctuations in skin temperature during daytime wakefulness are related to sleep propensity and task performance. The association of daytime skin temperature fluctuations with EEG markers of vigilance has not previously been investigated. Therefore, the present study aimed to evaluate the association between daytime fluctuations in skin temperature with those in two quantitative EEG measures: the power spectral density of background EEG, and the event related potential (ERP) elicited by visual stimuli. High-density EEG and skin temperature were obtained in eight healthy adults five times a day while they performed a visual sustained-attention task. Assessments were made after a night of normal sleep and after the challenge of a night of total sleep deprivation. Fluctuations in the distal-to-proximal skin temperature gradient measured from the earlobe and mastoid were associated with fluctuations in parieto-occipital high beta band (20-40 Hz) power of the pre-stimulus background EEG, but only after sleep deprivation. The temperature fluctuations were moreover associated with fluctuations in the latency of the P300 elicited by the stimulus. The findings demonstrate close association between fluctuations in an autonomic correlate of the vigilance state (i.e. the distal-to-proximal skin temperature gradient), and fluctuations in central nervous system correlates of the vigilance state (i.e. background EEG and ERP). The findings are of theoretical and practical relevance for the assessment and manipulation of vigilance.

  13. AKARI OBSERVATION OF THE SUB-DEGREE SCALE FLUCTUATION OF THE NEAR-INFRARED BACKGROUND

    SciTech Connect

    Seo, H. J.; Lee, Hyung Mok; Lee, Myung Gyoon; Matsumoto, T.; Jeong, W.-S.; Pyo, J.

    2015-07-10

    We report spatial fluctuation analysis of the sky brightness in the near-infrared from observations toward the north ecliptic pole (NEP) by the AKARI at 2.4 and 3.2 μm. As a follow-up study of our previous work on the Monitor field of AKARI, we used NEP deep survey data, which covered a circular area of about 0.4 square degrees, in order to extend fluctuation analysis at angular scales up to 1000″. We found residual fluctuation over the estimated shot noise at larger angles than the angular scale of the Monitor field. The excess fluctuation of the NEP deep field smoothly connects with that of the Monitor field at angular scales of a few hundred arcseconds and extends without any significant variation to larger angular scales up to 1000″. By comparing excess fluctuations at two wavelengths, we confirm a blue spectral feature similar to the result of the Monitor field. We find that the result of this study is consistent with Spitzer Space Telescope observations at 3.6 μm. The origin of the excess fluctuation in the near-infrared background remains to be determined, but we could exclude zodiacal light, diffuse Galactic light, and unresolved faint galaxies at low redshift based on the comparison with mid- and far-infrared brightness, ground-based near-infrared images.

  14. Analysis of the decay of temperature fluctuations in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1982-01-01

    The Lagrangian dispersion theory of Durbin (1980) is used to analyze experiments by Warhaft and Lumley (1978) and by Sreenivasan et al. (1980) on temperature fluctuations in grid-generated turbulence. Both theory and experiment show that the decay exponent m depends on the ratio of the initial length scales of velocity and temperature, although when this ratio is greater than 2.5 such dependence is negligible. The theory shows that m is not truly constant, but within the range covered by the experiments it is nearly so. The agreement between theory and experiment lends credence to the idea that the decay of fluctuations is controlled largely by turbulent relative dispersion.

  15. Imaging the Spatial Fluctuations in Cosmic IR Background from Reionization with CIBER

    NASA Astrophysics Data System (ADS)

    Frazer, Chris; Bock, J.; Cooray, A.; Kawada, M.; Kim, M.; Lee, D.; Levenson, L.; Matsumoto, T.; Matsumuura, S.; Mitchell-Wynne, K.; Renbarger, T.; Smidt, J.; Sullivan, I.; Arai, T.; Tsumura, K.; Wada, T.; Zemcov, M.

    2011-01-01

    The Cosmic Infrared Background Experiment (CIBER) is a rocket-born absolute photometry imaging and spectroscopy experiment optimized to detect unresolved infrared signatures of first-light galaxies that were present during reionization. The signatures from reionization are theorized to be dominant at the wavelengths upon which CIBER surveys. CIBER consists of two wide field imagers to measure the extragalactic background fluctuations in the H and I-Bands (1.6 and 0.9 microns respectively) of the cosmic infrared background (CIB) as well as two spectrometers designed to take measurements of the foreground zodiacal light and the absolute Extragalactic Background Light (EBL) spectrum They imagers are capable of examining high-redshift (z 10-20) CIB fluctuations which will facilitate in the study of surface densities of sources associated with reionization. Studies of galaxies with similar redshift parameters (z > 6) are largely unaccounted for. The spectrometer configuration consists of one low resolution spectrometer and one narrow band spectrometer. They are respectively designed to take measurements of the absolute Extragalactic Background Light (EBL) spectrum, and foreground zodiacal light. In this poster we present the specifications for both CIBER imagers and detail how the fluctuations from galaxies during reionization will be measured.

  16. Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod.

    PubMed

    van Dooremalen, Coby; Suring, Wouter; Ellers, Jacintha

    2011-09-01

    Ectotherms commonly adjust their lipid composition to ambient temperature to counteract detrimental thermal effects on lipid fluidity. However, the extent of lipid remodeling and the associated fitness consequences under continuous temperature fluctuations are not well-described. The objective of this study was to investigate the effect of repeated temperature fluctuations on fatty acid composition and thermal tolerance. We exposed the springtail Orchesella cincta to two constant temperatures of 5 and 20°C, and a continuously fluctuating treatment between 5 and 20°C every 2 days. Fatty acid composition differed significantly between constant low and high temperatures. As expected, animals were most cold tolerant in the low temperature treatment, while heat tolerance was highest under high temperature. Under fluctuating temperatures, fatty acid composition changed with temperature initially, but later in the experiment fatty acid composition stabilized and closely resembled that found under constant warm temperatures. Consistent with this, heat tolerance in the fluctuating temperature treatment was comparable to the constant warm treatment. Cold tolerance in the fluctuating temperature treatment was intermediate compared to animals acclimated to constant cold or warmth, despite the fact that fatty acid composition was adjusted to warm conditions. This unexpected finding suggests that in animals acclimated to fluctuating temperatures an additional underlying mechanism is involved in the cold shock response. Other aspects of homeoviscous adaptation may protect animals during extreme cold. This paper forms a next step to fully understand the functioning of ectotherms in more thermally variable environments.

  17. Temperature fluctuations in canonical systems: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hickman, J.; Mishin, Y.

    2016-11-01

    Molecular dynamics simulations of a quasiharmonic solid are conducted to elucidate the meaning of temperature fluctuations in canonical systems and validate a well-known but frequently contested equation predicting the mean square of such fluctuations. The simulations implement two virtual and one physical (natural) thermostat and examine the kinetic, potential, and total energy correlation functions in the time and frequency domains. The results clearly demonstrate the existence of quasiequilibrium states in which the system can be characterized by a well-defined temperature that follows the mentioned fluctuation equation. The emergence of such states is due to the wide separation of time scales between thermal relaxation by phonon scattering and slow energy exchanges with the thermostat. The quasiequilibrium states exist between these two time scales when the system behaves as virtually isolated and equilibrium.

  18. Imprint of First Stars Era in the Cosmic Infrared Background Fluctuations

    NASA Astrophysics Data System (ADS)

    Kashlinsky, Alexander

    2008-06-01

    We present the latest results on Cosmic Infrared Background (CIB) fluctuations from early epochs from deep Spitzer data. The results show the existence of significant CIB fluctuations at the IRAC wavelengths (3.6 to 8 μm) which remain after removing galaxies down to very faint levels. These fluctuations must arise from populations with a significant clustering component, but only low levels of the shot noise. There are no correlations between the source-subtracted IRAC maps and the corresponding fields observed with the HST ACS at optical wavelengths. Taken together, these data imply that 1) the sources producing the CIB fluctuations are individually faint with Sν < a few nJy at 3.6 and 4.5 μm 2) have different clustering pattern than the more recent galaxy populations; 3) are located within the first 0.7 Gyr (unless these fluctuations can somehow be produced by - so far unobserved - local galaxies of extremely low luminosity and with the unusual for local populations clustering pattern), 4) produce contribution to the net CIB flux of at least 1-2 nW m-2 sr-1 at 3.6 and 4.5 μm and must have mass-to-light ratio significantly below the present-day populations, and 5) they have angular density of ~ a few per arcsec2 and are in the confusion of the present day instruments, but can be individually observable with JWST.

  19. A self-consistent 3D model of fluctuations in the helium-ionizing background

    NASA Astrophysics Data System (ADS)

    Davies, Frederick B.; Furlanetto, Steven R.; Dixon, Keri L.

    2017-03-01

    Large variations in the effective optical depth of the He II Lyα forest have been observed at z ≳ 2.7, but the physical nature of these variations is uncertain: either the Universe is still undergoing the process of He II reionization, or the Universe is highly ionized but the He II-ionizing background fluctuates significantly on large scales. In an effort to build upon our understanding of the latter scenario, we present a novel model for the evolution of ionizing background fluctuations. Previous models have assumed the mean free path of ionizing photons to be spatially uniform, ignoring the dependence of that scale on the local ionization state of the intergalactic medium (IGM). This assumption is reasonable when the mean free path is large compared to the average distance between the primary sources of He II-ionizing photons, ≳ L⋆ quasars. However, when this is no longer the case, the background fluctuations become more severe, and an accurate description of the average propagation of ionizing photons through the IGM requires additionally accounting for the fluctuations in opacity. We demonstrate the importance of this effect by constructing 3D semi-analytic models of the helium-ionizing background from z = 2.5-3.5 that explicitly include a spatially varying mean free path of ionizing photons. The resulting distribution of effective optical depths at large scales in the He II Lyα forest is very similar to the latest observations with HST/COS at 2.5 ≲ z ≲ 3.5.

  20. Effect of Background Fluctuations on Kinetic Alfvén Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Kumari, Anju; Sharma, R. P.

    2016-07-01

    The localization of Kinetic Alfvén wave (KAW) caused by finite amplitude background density fluctuations has been studied in intermediate beta plasma. The dynamical equations are derived taking into account the ponderomotive nonlinearity of the KAW as well as background density fluctuations and then studied numerically. Numerical simulation has been performed to analyze the effect of background density fluctuations on localized structures and resulting turbulent spectrum of KAW applicable to the magnetopause. Simulation results reveal that the power spectrum deviates from Kolmogorov scaling at the transverse size of KAW, equal to ion gyroradius. Steepening of the power spectrum at shorter wavelengths may be accountable for heating and acceleration of the plasma particles. Thus the presented coupling suggests a mechanism of energy transfer from larger length-scales to smaller length-scales. The relevance of present investigation with observations collected from the THEMIS spacecraft in magnetopause is also discussed [Chaston et al., 2008]. Reference Chaston, C., J. Bonnell, J. P. McFadden, C. W. Carlson, C. Cully, O. Le Contel A. Roux, H. U. Auster, K. H. Glassmeier, V. Angelopoulos, C. T. Russell (2008), Turbulent heating and cross-field transport near the magnetopause from THEMIS, Geophys. Res. Lett., 35, L17S08.

  1. Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis

    NASA Technical Reports Server (NTRS)

    Arendt, Richard; Kashlinsky, A.; Moseley, S.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale ([greater, similar]30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the [approx]1-5 [mu]m mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low ([greater, similar]1 nW m-2 sr-1 at 3-5 [mu]m), and thus consistent with current [gamma]-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs

  2. Ion temperature fluctuation measurements using a retarding field analyzer

    SciTech Connect

    Nedzelskiy, I. S.; Silva, C.; Duarte, P.; Fernandes, H.

    2011-04-15

    The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying region of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T{sub i}= 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within {approx}25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic.

  3. Ion temperature fluctuation measurements using a retarding field analyzer.

    PubMed

    Nedzelskiy, I S; Silva, C; Duarte, P; Fernandes, H

    2011-04-01

    The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying region of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T(i) = 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within ∼25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic.

  4. OH* imager response to turbulence-induced temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Gardner, Chester S.; Vargas, Fabio A.

    2016-12-01

    The layer of the excited state hydroxyl radical (OH*) is formed in the mesopause region by the reaction of ozone (O3) and atomic hydrogen (H). We derive the theoretical expressions for the OH* brightness and rotational temperature (T*) responses to high-frequency atmospheric temperature perturbations. The theory is used to calculate the 1-D and 2-D horizontal wave number spectra of the OH* and T* image fluctuations induced by atmospheric turbulence. By applying the theory to images of a breaking gravity wave packet, acquired by the Utah State University Advanced Mesospheric Temperature Mapper, we show that existing infrared OH* imager technology can observe the evolution of gravity wave breakdown and characterize the resulting turbulent eddies in the source region and in the inertial subrange of the turbulence spectrum. For the example presented here, the RMS OH* brightness fluctuations induced by the gravity wave packet was 2.90% and by the associated turbulence was 1.07%. Unfortunately, the T* fluctuations induced by turbulence are usually too small to be observed in the OH* rotational temperature maps.

  5. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    PubMed

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.

  6. Low-temperature quantum fluctuations in overdamped ratchets.

    PubMed

    Maier, Stefan A; Ankerhold, Joachim

    2010-08-01

    At low temperatures and strong friction the time evolution of the density distribution in position follows a quantum Smoluchowski equation. Recently, also higher-order contributions of quantum fluctuations to drift and diffusion coefficients have been systematically derived. As a nontrivial situation to reveal the impact of subleading quantum corrections and to demonstrate convergence properties of the perturbation series, directed transport in ratchets is studied. It is shown that the perturbation series typically has a nonmonotonous behavior. Depending on symmetry properties higher-order contributions may even compensate current reversals induced by leading quantum fluctuations. This analysis demonstrates how to consistently treat the dynamics of overdamped quantum systems at low temperatures also in numerical applications.

  7. Reconstructing Emission from Pre-Reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Mather, J. C.; Helgason, K.; Arendt, R. G.; Bromm, V.; Moseley, S. H.

    2015-01-01

    We present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at 10 less than or approx. equal to z less than or approx. equal to 30 from a James Webb Space Telescope (JWST) NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.55 m. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and AKARI data at 25 m, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman-break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over 10 less than or approx. equal to z less than or approx. equal to 30 as the universe comes out of the Dark Ages. We apply the proposed tomography to the current SpitzerIRAC measurements at 3.6 and 4.5 m, to find that it already leads to interestingly low upper limit on emissions at z greater than or approx. equal to 30.

  8. Reconstructing Emission from Pre-reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST

    NASA Astrophysics Data System (ADS)

    Kashlinsky, A.; Mather, J. C.; Helgason, K.; Arendt, R. G.; Bromm, V.; Moseley, S. H.

    2015-05-01

    We present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at 10≲ z≲ 30 from a James Webb Space Telescope (JWST)/NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.5-5 μm. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and AKARI data at ˜2-5 μm, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman-break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over 10≲ z≲ 30 as the universe comes out of the “Dark Ages.” We apply the proposed tomography to the current Spitzer/IRAC measurements at 3.6 and 4.5 μm, to find that it already leads to interestingly low upper limit on emissions at z≳ 30.

  9. Baryon number fluctuations at finite temperature and density

    NASA Astrophysics Data System (ADS)

    Fu, Wei-jie; Pawlowski, Jan M.; Rennecke, Fabian; Schaefer, Bernd-Jochen

    2016-12-01

    We investigate baryon number fluctuations for finite temperature and density in two-flavor QCD. This is done within a QCD-improved low-energy effective theory in an extension of the approach put forward by Fu and Pawlowski [Phys. Rev. D 92, 116006 (2015), 10.1103/PhysRevD.92.116006 and Phys. Rev. D 93, 091501 (2016), 10.1103/PhysRevD.93.091501]. In the present work, we aim to improve the predictive power of this approach for large temperatures and, in partitular, large densities, that is, for small collision energies. This is achieved by taking into account the full frequency dependence of the quark dispersion. This ensures the necessary Silver Blaze property of finite density QCD for the first time, which so far was only implemented approximately. Moreover, we show that Polyakov-loop fluctuations have a sizeable impact at large temperatures and density. The results for the kurtosis of baryon number fluctuations are compared to previous effective theory results, lattice results, and recent experimental data from STAR.

  10. Measurements of fluctuating gas temperatures using compensated fine wire thermocouples

    NASA Astrophysics Data System (ADS)

    Nina, M. N. R.; Pita, G. P.

    1985-09-01

    Thermocouples with three different wire diameters (15, 40 and 50 microns) were used in association with an analog compensation circuit connected to a data acquisition system. Measurements of the time constant were performed using two different heating techniques; Joule effect and external heating by laser beam. The thermocouples were used to quantify the fluctuating temperature field in a hot air jet and in a premixed propane flame. In the reacting case the catalytic effect was evaluated by comparing coated and uncoated wires. Conclusions were also obtained regarding frequency spectra, temperature probability distribution function and time constant.

  11. Tracing the first stars with fluctuations of the cosmic infrared background.

    PubMed

    Kashlinsky, A; Arendt, R G; Mather, J; Moseley, S H

    2005-11-03

    The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as 'population III'. Recent cosmic microwave background polarization measurements indicate that stars started forming early--when the Universe was < or =200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects.

  12. Producing small scale temperature fluctuations in an airstream.

    PubMed

    Schacher, G E; Fairall, C W

    1978-10-01

    A 4.5-microm ''hot'' wire is used to heat a low-speed airstream at frequencies from dc to 400 Hz. For dc excitation the thermal noise spectrum produced was white to a frequency of 2 kHz. ac heating of the wire up to a frequency of 400 Hz (800 Hz thermal fluctuation of the airstream) yielded a good thermal signal as far as 2 cm from the hot wire. Calculation shows excellent heat transfer between the wire and airstream. The technique is very useful for calibrating the frequency response of temperature sensors and for investigating turbulent heat transfer for various flow configurations.

  13. Cross-Correlating the Cosmic Infrared and Cosmic X-Ray Background Fluctuations

    NASA Astrophysics Data System (ADS)

    Cooper, Rachel Ann; Cappelluti, Nico; Li, Yanxia; Urry, C. Megan; Guo, Joyce

    2017-01-01

    Studying unresolved (i.e., undetected) sources is a way to probe the faintest, and thus the least understood, source populations. In particular, such studies have suggested a population of high redshift accreting black holes. We present cross-power spectra and coherence between the cosmic infrared and cosmic x-ray background fluctuations, using infrared images from Spitzer Space Telescope and x-ray images from XMM-Newton of the ˜2 square degree area of the COSMOS field. We first masked all known sources and subtracted model images of the masked x-ray sources’ PSF tails so as to isolate the unresolved cosmic backgrounds. We have considered infrared data from two bands, 3.6 and 4.5 μm, and x-ray data from five bands, [0.3-0.5], [0.5-1], [1-2], [0.5-2], and [2-10] keV. We find strong correlation between the cosmic infrared and cosmic x-ray backgrounds, which suggests an origin in a common population, i.e., stars and/or growing black holes.

  14. Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis

    PubMed Central

    Matic, Vladimir; Cherian, Perumpillichira Joseph; Koolen, Ninah; Ansari, Amir H.; Naulaers, Gunnar; Govaert, Paul; Van Huffel, Sabine; De Vos, Maarten; Vanhatalo, Sampsa

    2015-01-01

    A quantitative and objective assessment of background electroencephalograph (EEG) in sick neonates remains an everyday clinical challenge. We studied whether long range temporal correlations quantified by detrended fluctuation analysis (DFA) could be used in the neonatal EEG to distinguish different grades of abnormality in the background EEG activity. Long-term EEG records of 34 neonates were collected after perinatal asphyxia, and their background was scored in 1 h epochs (8 h in each neonate) as mild, moderate or severe. We applied DFA on 15 min long, non-overlapping EEG epochs (n = 1088) filtered from 3 to 8 Hz. Our formal feasibility study suggested that DFA exponent can be reliably assessed in only part of the EEG epochs, and in only relatively short time scales (10–60 s), while it becomes ambiguous if longer time scales are considered. This prompted further exploration whether paradigm used for quantifying multifractal DFA (MF-DFA) could be applied in a more efficient way, and whether metrics from MF-DFA paradigm could yield useful benchmark with existing clinical EEG gradings. Comparison of MF-DFA metrics showed a significant difference between three visually assessed background EEG grades. MF-DFA parameters were also significantly correlated to interburst intervals quantified with our previously developed automated detector. Finally, we piloted a monitoring application of MF-DFA metrics and showed their evolution during patient recovery from asphyxia. Our exploratory study showed that neonatal EEG can be quantified using multifractal metrics, which might offer a suitable parameter to quantify the grade of EEG background, or to monitor changes in brain state that take place during long-term brain monitoring. PMID:25954174

  15. Probing the High-Redshift Universe Using Fluctuations in the Cosmic Microwave and Infrared Backgrounds

    NASA Astrophysics Data System (ADS)

    Smidt, Joseph Michael

    Background (CIB) continues to be one of the best probes of physics at the early stages of the universe. If the CMB were a purely Gaussian field, all statistical information would be contained in the power spectrum or two-point correlation function. However, non-Gaussianities ensure that new physics may be extracted from higher n-point correlation functions including the bispectrum and trispectrum of the CMB. In this thesis discuss new estimators we have formulated to probe primordial non-Gaussianity in the bispectrum and trispectrum of CMB data and the constraints we have made using WMAP data while discussing implications for inflationary models. I discuss how these same methods may be used to probe CMB Lensing. Finally, I discuss how upcoming measurements of near and far-infrared CIB fluctuations may be used to constrain the redshift of reionization and clustering of various populations of galaxies. Some preliminary results involving CANDELS, Spitzer SDWFS, CIBER and Herschel datasets is presented.

  16. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).

    PubMed

    Dertinger, T; Colyer, R; Iyer, G; Weiss, S; Enderlein, J

    2009-12-29

    Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.

  17. Temperature fluctuation of the Iceland mantle plume through time

    NASA Astrophysics Data System (ADS)

    Spice, Holly E.; Fitton, J. Godfrey; Kirstein, Linda A.

    2016-02-01

    The newly developed Al-in-olivine geothermometer was used to find the olivine-Cr-spinel crystallization temperatures of a suite of picrites spanning the spatial and temporal extent of the North Atlantic Igneous Province (NAIP), which is widely considered to be the result of a deep-seated mantle plume. Our data confirm that start-up plumes are associated with a pulse of anomalously hot mantle over a large spatial area before becoming focused into a narrow upwelling. We find that the thermal anomaly on both sides of the province at Baffin Island/West Greenland and the British Isles at ˜61 Ma across an area ˜2000 km in diameter was uniform, with Al-in-olivine temperatures up to ˜300°C above that of average mid-ocean ridge basalt (MORB) primitive magma. Furthermore, by combining our results with geochemical data and existing geophysical and bathymetric observations, we present compelling evidence for long-term (>107 year) fluctuations in the temperature of the Iceland mantle plume. We show that the plume temperature fell from its initial high value during the start-up phase to a minimum at about 35 Ma, and that the mantle temperature beneath Iceland is currently increasing.

  18. Can AGN and galaxy clusters explain the surface brightness fluctuations of the cosmic X-ray background?

    NASA Astrophysics Data System (ADS)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2017-04-01

    Fluctuations of the surface brightness of cosmic X-ray background (CXB) carry unique information about faint and low-luminosity source populations, which is inaccessible for conventional large-scale structure (LSS) studies based on resolved sources. We used XBOOTES (5ks deep Chandra X-ray Observatory ACIS-I maps of the ∼ 9 deg2 Bootes field of the NOAO Deep Wide-Field Survey) to conduct the most accurate measurement to date of the power spectrum of fluctuations of the unresolved CXB on the angular scales of 3 arcsec-17 arcmin. We find that at sub-arcmin angular scales, the power spectrum is consistent with the active galactic nucleus (AGN) shot noise, without much need for any significant contribution from their one-halo term. This is consistent with the theoretical expectation that low-luminosity AGN reside alone in their dark matter haloes. However, at larger angular scales, we detect a significant LSS signal above the AGN shot noise. Its power spectrum, obtained after subtracting the AGN shot noise, follows a power law with the slope of -0.8 ± 0.1 and its amplitude is much larger than what can be plausibly explained by the two-halo term of AGN. We demonstrate that the detected LSS signal is produced by unresolved clusters and groups of galaxies. For the flux limit of the XBOOTES survey, their flux-weighted mean redshift equals ∼ 0.3, and the mean temperature of their intracluster medium (ICM), ≈ 1.4 keV, corresponds to the mass of M500 ∼ 1013.5 M⊙. The power spectrum of CXB fluctuations carries information about the redshift distribution of these objects and the spatial structure of their ICM on the linear scales of up to ∼Mpc, i.e. of the order of the virial radius.

  19. Temperature fluctuations as a source of brown dwarf variability

    SciTech Connect

    Robinson, Tyler D.; Marley, Mark S.

    2014-04-20

    A number of brown dwarfs are now known to be variable with observed amplitudes as large as 10%-30% at some wavelengths. While spatial inhomogeneities in cloud coverage and thickness are likely responsible for much of the observed variability, it is possible that some of the variations arise from atmospheric temperature fluctuations instead of, or in addition to, clouds. To better understand the role that thermal variability might play we present a case study of brown dwarf variability using a newly developed one-dimensional, time-stepping model of atmospheric thermal structure. We focus on the effects of thermal perturbations, intentionally simplifying the problem through omission of clouds and atmospheric circulation. Model results demonstrate that thermal perturbations occurring deep in the atmosphere (at pressures greater than 10 bar) of a model T-dwarf can be communicated to the upper atmosphere through radiative heating via the windows in near-infrared water opacity. The response time depends on where in the atmosphere a thermal perturbation is introduced. We show that, for certain periodic perturbations, the emission spectrum can have complex time- and wavelength-dependent behaviors, including phase shifts in times of maximum flux observed at different wavelengths. Since different wavelengths probe different levels in the atmosphere, these variations track a wavelength-dependent set of radiative exchanges happening between different atmospheric levels as a perturbation evolves in time. We conclude that thermal—as well as cloud—fluctuations must be considered as possible contributors to the observed brown dwarf variability.

  20. Microwave background fluctuations due to the Sunyaev-Zel'dovich effects in pancakes

    NASA Technical Reports Server (NTRS)

    Subbarao, M. U.; Szalay, A. S.; Schaefer, R. K.; Gulkis, S.; Von Gronefeld, P.

    1994-01-01

    We calculate distortions in the microwave background radiation from the Sunyaev-Zel'dovich effect, produced by hot gas in large (approximately 100 Mpc) pancakes. The large-scale distribution of the pancakes is taken to be that of a Voronoi foam. Fluctuations for this scenario are estimated to be on the order of delta T/T is approximately 10(exp -5). Using computer simulations, we produce several 32 deg x 32 deg images with 0.25 deg resolution. These images show characteristic linear features produced when a pancake is viewed nearly edge-on. By calculating the two-point and the degenerate three-point correlation functions, we are able to statistically detect such non-Gaussian features even in the presence of a relatively large amount of Gaussian noise. The degenerate three-point correlation function is found to be particularly useful since it is insensitive to correlated Gaussian noise. We also smooth our data over a 7 deg Full Width at Half Maximum (FWHM) Gaussian window to simulate the Cosmic Background Explorer Satellite (COBE) observations. We find that under such low-resolution conditions, the features are highly suppressed.

  1. Cross-correlation between X-Ray and Optical/Near-infrared Background Intensity Fluctuations

    NASA Astrophysics Data System (ADS)

    Mitchell-Wynne, Ketron; Cooray, Asantha; Xue, Yongquan; Luo, Bin; Brandt, William; Koekemoer, Anton

    2016-12-01

    Angular power spectra of optical and infrared background anisotropies at wavelengths between 0.5 and 5 μm are a useful probe of faint sources present during reionization, in addition to faint galaxies and diffuse signals at low redshift. The cross-correlation of these fluctuations with backgrounds at other wavelengths can be used to separate some of these signals. A previous study on the cross-correlation between X-ray and Spitzer fluctuations at 3.6 μm and 4.5 μm has been interpreted as evidence for direct collapse black holes present at z > 12. Here we return to this cross-correlation and study its wavelength dependence from 0.5 to 4.5 μm using Hubble and Spitzer data in combination with a subset of the 4 Ms Chandra observations in GOODS-S/ECDFS. Our study involves five Hubble bands at 0.6, 0.7, 0.85, 1.25, and 1.6 μm, and two Spitzer-IRAC bands at 3.6 μm and 4.5 μm. We confirm the previously seen cross-correlation between 3.6 μm (4.5 μm) and X-rays with 3.7σ (4.2σ) and 2.7σ (3.7σ) detections in the soft [0.5-2] keV and hard [2-8] keV X-ray bands, respectively, at angular scales above 20 arcsec. The cross-correlation of X-rays with Hubble is largely anticorrelated, ranging between the levels of 1.4σ-3.5σ for all the Hubble and X-ray bands. This lack of correlation in the shorter optical/NIR bands implies the sources responsible for the cosmic infrared background at 3.6 and 4.5 μm are at least partly dissimilar to those at 1.6 μm and shorter.

  2. Observing temperature fluctuations in humans using infrared imaging

    PubMed Central

    Liu, Wei-Min; Meyer, Joseph; Scully, Christopher G.; Elster, Eric; Gorbach, Alexander M.

    2013-01-01

    In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently. PMID:23538682

  3. A comparison of the cosmic microwave and cosmic X-ray backgrounds - Constraints on local sources of the fluctuations observed by COBE

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Jahoda, K.

    1993-01-01

    It has been suggested by Hogan (1992) that the microwave background anisotropy detected by the COBE DMR experiment (Smoot et al., 1992) might be produced by inverse Compton scattering from hot diffuse clouds of electrons in nearby superclusters. If the COBE fluctuations are due to this mechanism, then the absence of anticorrelations between maps of the cosmic microwave and cosmic X-ray backgrounds constrains the temperature (16 keV) and density (less than 2 x 10 exp -6/cu cm) of the ionized supercluster gas. Since the COBE limits on spectral distortion indicate that the temperature of the intergalactic medium is less than 10 keV, we conclude that the fluctuations observed by COBE are probably not produced by this mechanism.

  4. Fluctuations in radiation backgrounds at high redshift and the first stars

    NASA Astrophysics Data System (ADS)

    Holzbauer, Lauren Nicole

    The first stars to light up our universe are as yet unseen, but there have been many attempts to elucidate their properties. The characteristics of these stars (`Population/Pop III' stars) that we do know lie mostly within theory; they formed out of metal-free hydrogen and helium gas contained in dark matter minihalos at redshifts z 20-30. The extent to which Pop III star formation reached into later times is unknown. Current and near future instruments are incapable of resolving individual Pop III stars. Consequently, astronomers must devise creative means with which to indirectly predict and measure and their properties. In this thesis, we will investigate a few of those means. We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-alpha radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos that is necessary for star formation. By using a variation of the `halo model', which describes the spatial distribution and clustering of halos, we can efficiently generate power spectra for these backgrounds. Spatial fluctuations in the LW and (indirectly) the Lyman-alpha BG can tell us about the transition from primordial star formation to a more metal-enriched mode that marks the beginning of the second generation of stars in our Universe. The Near Infrared Background (NIRB) has for some time been considered a potential tool with which to indirectly observe the first stars. Ultraviolet (UV) emission from these stars is redshifted into the NIR band, making the NIRB amenable for hunting Pop III stellar signatures. There have been several measurements of the NIRB and subsequent theoretical studies attempting to explain them in recent years. Though controversial, residual levels of the mean NIRB intensity and anisotropies have been

  5. The dynamics of core temperature fluctuations during sawtooth oscillations on TEXT-U

    SciTech Connect

    Watts, C.; Gandy, R.F.

    1995-05-03

    Core electron temperature fluctuations are measured in a tokamak plasma where some degree of time resolution is achieved. There is a strong correlation between the turbulence level and the phase of the sawtooth oscillation. A global linear relationship between the temperature fluctuation amplitude and the electron temperature gradient scale length is found. The enhancement in fluctuations at the sawtooth crash is correlated to a steepening of the electron temperature gradient created as the sawtooth heat pulse propagates outward.

  6. Cosmic Microwave Background Fluctuations from the Kinetic Sunyaev-Zeldovich Effect as a Cosmological Probe

    NASA Astrophysics Data System (ADS)

    Park, Hyunbae; Shapiro, P.; Komatsu, E.

    2012-01-01

    We present a calculation of the kinetic Sunyaev-Zel'dovich (kSZ) effect on of the Comic Microwave Background fluctuation. We focus on the scale at the multipole moment of l = 3000 10000 that is currently being probed by the South Pole Telescope (SPT) and the Atacama Cosmology Telescope. For the post-reionization contribution of the total signal, we use the 3rd order perturbation theory (3PT) to model non-linearity of post-reionization epoch. We evaluate a non-linear expression for momentum powerspectrum in Ma and Fry (2002) with the 3PT density and velocity powerspectrum. And, we use the 3PT momentum powerspectrum to calculate the kSZ signal. We show that the 3PT is a reasonable approximation by comparing our result with previous work by Zhang, Pen and Trac (2004). For reionization contribution, we use our N-body radiative transfer simulations to take patchiness of ionization of intergalactic medium in reionization epoch into account. Using ionized fraction field in the simulation, we calculate the momentum field of the ionized gas. And, we correct for the missing power in finite size boxes of simulations. Finally, we show the kSZ calculation for different simulations with reionization scenarios. With contributions from each epoch, we predict total kSZ signal for different reionization history and put constraint on reionization scenario using an upper bound of the signal from recent SPT measurement.

  7. Temperature fluctuations driven by magnetorotational instability in protoplanetary disks

    SciTech Connect

    McNally, Colin P.; Hubbard, Alexander; Low, Mordecai-Mark Mac; Yang, Chao-Chin E-mail: ahubbard@amnh.org E-mail: ccyang@astro.lu.se

    2014-08-10

    The magnetorotational instability (MRI) drives magnetized turbulence in sufficiently ionized regions of protoplanetary disks, leading to mass accretion. The dissipation of the potential energy associated with this accretion determines the thermal structure of accreting regions. Until recently, the heating from the turbulence has only been treated in an azimuthally averaged sense, neglecting local fluctuations. However, magnetized turbulence dissipates its energy intermittently in current sheet structures. We study this intermittent energy dissipation using high resolution numerical models including a treatment of radiative thermal diffusion in an optically thick regime. Our models predict that these turbulent current sheets drive order-unity temperature variations even where the MRI is damped strongly by Ohmic resistivity. This implies that the current sheet structures where energy dissipation occurs must be well-resolved to correctly capture the flow structure in numerical models. Higher resolutions are required to resolve energy dissipation than to resolve the magnetic field strength or accretion stresses. The temperature variations are large enough to have major consequences for mineral formation in disks, including melting chondrules, remelting calcium-aluminum-rich inclusions, and annealing silicates; and may drive hysteresis: current sheets in MRI active regions could be significantly more conductive than the remainder of the disk.

  8. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  9. The bispectrum of cosmic string temperature fluctuations including recombination effects

    SciTech Connect

    Regan, Donough; Hindmarsh, Mark E-mail: m.b.hindmarsh@sussex.ac.uk

    2015-10-01

    We calculate the cosmic microwave background temperature bispectrum from cosmic strings, including the contributions from the last scattering surface, using a well-established Gaussian model for the string energy-momentum correlation functions, and a simplified model for the cosmic fluid. We check our approximation for the integrated Sachs-Wolfe (ISW) contribution against the bispectrum obtained from the full sky map of the cosmic string ISW signal used by the Planck team, obtaining good agreement. We validate our model for the last scattering surface contribution by comparing the predicted temperature power spectrum with that obtained from a full Boltzmann code treatment applied to the Unconnected Segment Model of a string network. We find that including the last scattering contribution has only a small impact on the upper limit on the string tension resulting from the bispectrum at Planck resolutions, and argue that the bispectrum is unlikely to be competitive with the power spectrum at any resolution.

  10. High-frequency fluctuations of surface temperatures in an urban environment

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  11. Effects of gas temperature fluctuations on the evolution of Nitrogenous species during coal devolatilization

    SciTech Connect

    Zhang, H.T.; Zhang, J.

    2009-02-15

    The effects of gas temperature fluctuations on the instantaneous evolution processes of nitrogenous species were investigated for pulverized coal particles undergoing devolatilization in a hot gas. The instantaneous mass variations of nitrogenous species released from the particles with diameters of 10-50 {mu} m were computed for different conditions. The instantaneous gas temperature was varied with time either in a simple harmonic way or in a random way. The calculated results showed that, under different time-average gas temperatures, the HCN evolution behaviors of particles with different diameters were all affected by the gas temperature fluctuations. The gas temperature fluctuations led to more rapid HCN release from the pulverized coal particles compared to the results obtained without gas temperature fluctuations. The effects were further enhanced by increasing the amplitude or intensity of the gas temperature fluctuations.

  12. NEW MEASUREMENTS OF THE COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER/IRAC SURVEY DATA AND THEIR COSMOLOGICAL IMPLICATIONS

    SciTech Connect

    Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.; Ashby, M. L. N.; Fazio, G. G.

    2012-07-01

    We extend previous measurements of cosmic infrared background (CIB) fluctuations to {approx}< 1 Degree-Sign using new data from the Spitzer Extended Deep Survey. Two fields with depths of {approx_equal} 12 hr pixel{sup -1} over three epochs are analyzed at 3.6 and 4.5 {mu}m. Maps of the fields were assembled using a self-calibration method uniquely suitable for probing faint diffuse backgrounds. Resolved sources were removed from the maps to a magnitude limit of mag{sub AB} {approx_equal} 25, as indicated by the level of the remaining shot noise. The maps were then Fourier transformed and their power spectra were evaluated. Instrumental noise was estimated from the time-differenced data, and subtracting this isolates the spatial fluctuations of the actual sky. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs indicating that zodiacal light contributes negligibly to the fluctuations. Comparing to 8 {mu}m power spectra shows that Galactic cirrus cannot account for the fluctuations. The signal appears isotropically distributed on the sky as required for an extragalactic origin. The CIB fluctuations continue to diverge to >10 times those of known galaxy populations on angular scales out to {approx}< 1 Degree-Sign . The low shot-noise levels remaining in the diffuse maps indicate that the large-scale fluctuations arise from the spatial clustering of faint sources well below the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with an origin in populations clustered according to the standard cosmological model ({Lambda}CDM) at epochs coinciding with the first stars era.

  13. Temporal structure of gas temperature fluctuations and ignition of fine particles

    NASA Astrophysics Data System (ADS)

    Derevich, I. V.; Galdina, D. D.

    2016-11-01

    The paper studies ignition of fine particles, i.e., irreversible growth of particle temperature from an exothermal heterogeneous reaction, with the rate approximated with the Arrhenius law. The particles are suspended in gas with fluctuating temperature, and heat transfer from the particle surface occurs according to the Newtonian law. The equations take into account the temporal structure of gas temperature fluctuations. Modern methods of functional analysis were applied for deriving a closed equation for the probability density function for the particle temperature distribution. The gas temperature fluctuations lessen the threshold for the particle ignition in the hot gas as compared with the deterministic variant. The equations for probability density function produce a closed system of conjugate equations for the average temperature and dispersion of particle temperature fluctuations. The results of simulation illustrate the phenomenon of self-speeding drift of particle temperature towards the temperature of ignition startup.

  14. Squeezing the fundamental temperature fluctuations of a high-Q microresonator

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2017-02-01

    Temperature fluctuations of an optical resonator underlie a fundamental limit of its cavity stability. Here we show that the fundamental temperature fluctuations of a high-Q microresonator can be suppressed remarkably by pure optical means without cooling the device temperature. An optical wave launched into the cavity is able to produce strong photothermal backaction which dramatically suppresses the spectral intensity of temperature fluctuations and squeezes its overall level by orders of magnitude. The proposed photothermal temperature squeezing is expected to significantly improve the stability of optical resonances, with potentially profound impact on broad applications of high-Q cavities in sensing, metrology, and nonlinear and quantum optics.

  15. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus

    PubMed Central

    2013-01-01

    Background Understanding the biology of malaria vector mosquitoes is crucial to understanding many aspects of the disease, including control and future outcomes. The development rates and survival of two Afrotropical malaria vectors, Anopheles arabiensis and Anopheles funestus, are investigated here under conditions of constant and fluctuating temperatures. These data can provide a good starting point for modelling population level consequences of temperature change associated with climate change. For comparative purposes, these data were considered explicitly in the context of those available for the third African malaria vector, Anopheles gambiae. Methods Twenty five replicates of 20–30 eggs were placed at nine constant and two fluctuating temperatures for development rate experiments and survival estimates. Various developmental parameters were estimated from the data, using standard approaches. Results Lower development threshold (LDT) for both species was estimated at 13-14°C. Anopheles arabiensis developed consistently faster than An. funestus. Optimum temperature (Topt) and development rate at this temperature (μmax) differed significantly between species for overall development and larval development. However, Topt and μmax for pupal development did not differ significantly between species. Development rate and survival of An. funestus was negatively influenced by fluctuating temperatures. By contrast, development rate of An. arabiensis at fluctuating temperatures either did not differ from constant temperatures or was significantly faster. Survival of this species declined by c. 10% at the 15°C to 35°C fluctuating temperature regime, but was not significantly different between the constant 25°C and the fluctuating 20°C to 30°C treatment. By comparison, previous data for An. gambiae indicated fastest development at a constant temperature of 28°C and highest survival at 24°C. Conclusions The three most important African malaria vectors all differ

  16. Controllable effects of quantum fluctuations on spin free-induction decay at room temperature.

    PubMed

    Liu, Gang-Qin; Pan, Xin-Yu; Jiang, Zhan-Feng; Zhao, Nan; Liu, Ren-Bao

    2012-01-01

    Fluctuations of local fields cause decoherence of quantum objects. Usually at high temperatures, thermal noises are much stronger than quantum fluctuations unless the thermal effects are suppressed by certain techniques such as spin echo. Here we report the discovery of strong quantum-fluctuation effects of nuclear spin baths on free-induction decay of single electron spins in solids at room temperature. We find that the competition between the quantum and thermal fluctuations is controllable by an external magnetic field. These findings are based on Ramsey interference measurement of single nitrogen-vacancy center spins in diamond and numerical simulation of the decoherence, which are in excellent agreement.

  17. Cosmic infrared background fluctuations of the COSMOS field in the SPLASH survey: new measurements and the cosmological explanations

    NASA Astrophysics Data System (ADS)

    Li, Yanxia

    2017-01-01

    The cosmic infrared background (CIB) is the integrated emission of all sources through cosmic time and carries an abundance of information about the star formation and galaxy growth in the Universe. Due to significant and complex foregrounds from our Galaxy, the optimal way to study the unresolved background is to actually study its fluctuations, especially at large angular scales where they reflect the clustering of unresolved galaxies. Our new measurements of the CIB fluctuations reach the largest angular scale to date for such a study, thanks to new observations of the COSMOS field from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). We analyzed Spitzer IRAC 3.6 and 4.5 um data of the whole field, with an average depth of 1.33 hour/pixel over 4 epochs spanning 2 years. We found that the auto-power spectra are consistent among various epochs and are correlated at the two channels. We confirmed the previously detected excess flux at large scales of the power spectra.The cross-correlation of the CIB fluctuations with backgrounds at other wavelengths is an extremely useful technique to understand the excess flux. The previously seen CIB and X-ray background (CXB) cross-correlation suggests significant contribution to the CIB fluctuations from accreting black holes that is much higher than among any known populations, and such a cross-correlation is also used as an evidence for the existence of direct collapse black holes in the early Universe.In this talk, we will present the first CIB fluctuation measurements of the COSMOS field using the new SPLASH data and we will also revisit the CIB and CXB cross-correlation in this field, which is about 20 times larger than the previous study and therefore with much improved significance levels. Measuring CIB fluctuations is a powerful tool to study the large-scale structure of the Universe. The CIB and CXB cross-correlation can not only provide observational constrains on the theoretical modeling of the CIB

  18. New Measurements of the Cosmic Infrared Background Fluctuations in Deep SpitzerllRAC Survey Data and their Cosmological Implications

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Ashby, M. L. N.; Fazio, G. G.; Mather, J.; Moseley, S. H.

    2012-01-01

    We extend the previous measurements of CIB fluctuations to angular scales of less than or equal to 1 degree new data obtained in the course of the 2,000+ hour Spitzer Extended Deep Survey. Two fields with completed observations of approximately equal to 12 hr/pixel are analyzed for source-subtracted CIB fluctuations at 3.6 and 4.5 micrometers. The fields, EGS and UDS, cover a total area of approximately 0.25 deg and lie at high Galactic and Ecliptic latitudes, thus minimizing cirrus and zodiacal light contributions to the fluctuations. The observations have been conducted at 3 distinct epochs separated by about 6 months. As in our previous studies, the fields were assembled using the self-calibration method which is uniquely suitable for probing faint diffuse backgrounds. The assembled fields were cleaned off the bright sources down to the low shot noise levels corresponding to AB mag approximately equal to 25, Fourier-transformed and their power spectra evaluated. The noise was estimated from the time-differenced data and subtracted from the signal isolating the fluctuations remaining above the noise levels. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs of observations indicating that zodiacal light contributes negligibly to the fluctuations. By comparing to the measurements for the same regions at 8 micrometers we demonstrate that Galactic cirrus cannot account for the levels of the fluctuations either. The signal appears isotropically distributed on the sky as required by its origin in the CIB fluctuations. This measurement thus extends our earlier results to the important range of sub-degree scales. We find that the CIB fluctuations continue to diverge to more than 10 times those of known galaxy populations on angular scales out to less than or equal to 1 degree. The low shot noise levels remaining in the diffuse maps indicate that the large scale fluctuations arise from spatial

  19. RECONSTRUCTING THE NEAR-INFRARED BACKGROUND FLUCTUATIONS FROM KNOWN GALAXY POPULATIONS USING MULTIBAND MEASUREMENTS OF LUMINOSITY FUNCTIONS

    SciTech Connect

    Helgason, Kari; Ricotti, Massimo; Kashlinsky, Alexander

    2012-06-20

    We model fluctuations in the cosmic infrared background (CIB) arising from known galaxy populations using 233 measured UV, optical, and near-IR luminosity functions (LFs) from a variety of surveys spanning a wide range of redshifts. We compare best-fit Schechter parameters across the literature and find clear indication of evolution with redshift. Providing fitting formulae for the multi-band evolution of the LFs out to z {approx} 5, we calculate the total emission redshifted into the near-IR bands in the observer frame and recover the observed optical and near-IR galaxy counts to good accuracy. Our empirical approach, in conjunction with a halo model describing the clustering of galaxies, allows us to compute the fluctuations of the unresolved CIB and compare the models to current measurements. We find that fluctuations from known galaxy populations are unable to account for the large-scale CIB clustering signal seen by Spitzer/IRAC and AKARI/IRC and continue to diverge out to larger angular scales. This holds true even if the LFs are extrapolated out to faint magnitudes with a steep faint-end slope all the way to z = 8. We also show that removing resolved sources to progressively fainter magnitude limits isolates CIB fluctuations to increasingly higher redshifts. Our empirical approach suggests that known galaxy populations are not responsible for the bulk of the fluctuation signal seen in the measurements and favors a very faint population of highly clustered sources.

  20. Dipole modulation of cosmic microwave background temperature and polarization

    SciTech Connect

    Ghosh, Shamik; Kothari, Rahul; Jain, Pankaj; Rath, Pranati K. E-mail: rahulko@iitk.ac.in E-mail: pranati@iopb.res.in

    2016-01-01

    We propose a dipole modulation model for the Cosmic Microwave Background Radiation (CMBR) polarization field. We show that the model leads to correlations between l and l+1 multipoles, exactly as in the case of temperature. We obtain results for the case of TE, EE and BB correlations. An anisotropic or inhomogeneous model of primordial power spectrum which leads to such correlations in temperature field also predicts similar correlations in CMBR polarization. We analyze the CMBR temperature and polarization data in order to extract the signal of these correlation between l and l+1 multipoles. Our results for the case of temperature using the latest PLANCK data agree with those obtained by an earlier analysis. A detailed study of the correlation in the polarization data is not possible at present. Hence we restrict ourselves to a preliminary investigation in this case.

  1. Large-scale opacity fluctuations in the Lyα forest: evidence for QSOs dominating the ionizing UV background at z ∼ 5.5-6?

    NASA Astrophysics Data System (ADS)

    Chardin, Jonathan; Puchwein, Ewald; Haehnelt, Martin G.

    2017-03-01

    Lyα forest data probing the post-reionization Universe show surprisingly large opacity fluctuations over rather large (≥50 h-1 comoving Mpc) spatial scales. We model these fluctuations using a hybrid approach utilizing the large-volume Millennium simulation to predict the spatial distribution of QSOs combined with smaller scale full hydrodynamical simulation performed with RAMSES and post-processed with the radiative transfer code ATON. We produce realistic mock absorption spectra that account for the contribution of galaxies and QSOs to the ionizing UV background. These improved models confirm our earlier findings that a significant ( ≳ 50 per cent) contribution of ionizing photons from QSOs can explain the large reported opacity fluctuations on large scales. The inferred QSO luminosity function is thereby consistent with recent estimates of the space density of QSOs at this redshift. Our simulations still somewhat struggle, however, to reproduce the very long (110 h-1 comoving Mpc) high-opacity absorption through observed in ULAS J0148+0600, perhaps suggesting an even later end of reionization than assumed in our previously favoured model. Medium-deep/medium area QSO surveys as well as targeted searches for the predicted strong transverse QSO proximity effect would illuminate the origin of the observed large-scale opacity fluctuations. They would allow us to substantiate whether UV fluctuations due to QSO are indeed primarily responsible, or whether significant contributions from other recently proposed mechanisms such as large-scale fluctuations in temperature and mean free path (even in the absence of rare bright sources) are required.

  2. Temperature dependence of vibrational frequency fluctuation of N3- in D2O

    NASA Astrophysics Data System (ADS)

    Tayama, Jumpei; Ishihara, Akane; Banno, Motohiro; Ohta, Kaoru; Saito, Shinji; Tominaga, Keisuke

    2010-07-01

    We have studied the temperature dependence of the vibrational frequency fluctuation of the antisymmetric stretching mode of N3- in D2O by three-pulse infrared (IR) photon echo experiments. IR pump-probe measurements were also carried out to investigate the population relaxation and the orientational relaxation of the same band. It was found that the time-correlation function (TCF) of the frequency fluctuation of this mode is well described by a biexponential function with a quasistatic term. The faster decay component has a time constant of about 0.1 ps, and the slower component varies from 1.4 to 1.1 ps in the temperature range from 283 to 353 K. This result indicates that liquid dynamics related to the frequency fluctuation are not highly sensitive to temperature. We discuss the relationship between the temperature dependence of the vibrational frequency fluctuation and that of the molecular motion of the system to investigate the molecular origin of the frequency fluctuation of the solute. We compare the temperature dependence of the frequency fluctuation with that of other dynamics such as dielectric relaxation of water. In contrast to the Debye dielectric relaxation time of D2O, the two time constants of the TCF of the frequency fluctuation do not exhibit strong temperature dependence. We propose a simple theoretical model for the frequency fluctuation in solutions based on perturbation theory and the dipole-dipole interaction between the vibrational mode of the solute and the solvent molecules. This model suggests that the neighboring solvent molecules in the vicinity of the solute play an important role in the frequency fluctuation. We suggest that the picosecond component of the frequency fluctuation results from structural fluctuation of the hydrogen-bonding network in water.

  3. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.

    PubMed

    Sørensen, Jesper Givskov; Schou, Mads Fristrup; Kristensen, Torsten Nygaard; Loeschcke, Volker

    2016-08-04

    Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates.

  4. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature

    PubMed Central

    Sørensen, Jesper Givskov; Schou, Mads Fristrup; Kristensen, Torsten Nygaard; Loeschcke, Volker

    2016-01-01

    Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates. PMID:27487917

  5. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  6. Anderson localization in high temperature QCD: background configuration properties and Dirac eigenmodes

    NASA Astrophysics Data System (ADS)

    Cossu, Guido; Hashimoto, Shoji

    2016-06-01

    We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the Möbius domain-wall fermion operator on configurations generated for the SU(3) gauge theory with two flavors of fermions, in the temperature range [0.9, 1.9]T c . We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop P L , in the high temperature sea of P L ˜ 1. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.

  7. Effect of Contraction on Turbulence and Temperature Fluctuations Generated by a Warm Grid

    NASA Technical Reports Server (NTRS)

    Mills, Robert R., Jr.; Corrsin, Stanley

    1959-01-01

    Hot-wire anemometer measurements were made of several statistical properties of approximately homogeneous and isotropic fields of turbulence and temperature fluctuations generated by a warm grid in a uniform airstream sent through a 4-to-1 contraction. These measurements were made both in the contraction and in the axisymmetric domain farther downstream. In addition to confirming the well-known turbulence anisotropy induced by strain, the data show effects on the skewnesses of both longitudinal velocity fluctuation (which has zero skewness in isotropic turbulence) and its derivative. The concomitant anisotropy in the temperature field accelerates the decay of temperature fluctuations.

  8. Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Haiman, Zoltán; Mesinger, Andrei; Wyithe, J. Stuart B.

    2008-12-01

    The earliest generation of stars and black holes must have established an early `Lyman-Werner' background (LWB) at high redshift, prior to the epoch of reionization. Because of the long mean free path of photons with energies hν < 13.6eV, the LWB was nearly uniform. However, some variation in the LWB is expected due to the discrete nature of the sources, and their highly clustered spatial distribution. In this paper, we compute the probability distribution function (PDF) of the LW flux that irradiates dark matter (DM) haloes collapsing at high redshift (z ~ 10). Our model accounts for (i) the clustering of DM haloes, (ii) Poisson fluctuations in the number of corresponding star-forming galaxies and (iii) scatter in the LW luminosity produced by haloes of a given mass (calibrated using local observations). We find that >99 per cent of the DM haloes are illuminated by an LW flux within a factor of 2 of the global mean value. However, a small fraction, ~10-8 to 10-6, of DM haloes with virial temperatures Tvir >~ 104 K have a close luminous neighbour within <~10 kpc, and are exposed to an LW flux exceeding the global mean by a factor of >20, or to J21,LW > 103 (in units of 10-21 erg s-1 Hz-1 sr-1 cm-2). This large LW flux can photodissociate H2 molecules in the gas collapsing due to atomic cooling in these haloes, and prevent its further cooling and fragmentation. Such close halo pairs therefore provide possible sites in which primordial gas clouds collapse directly into massive black holes (MBH ~ 104-6Msolar), and subsequently grow into supermassive (MBH >~ 109Msolar) black holes by z ~ 6.

  9. Effect of Fluctuations of Temperature During Frozen Storage on Denaturation of Fish Myofibrillar Protein

    NASA Astrophysics Data System (ADS)

    Fukuda, Yutaka; Okazaki, Emiko; Wada, Ritsuko

    The fluctuation in frozen storage temperature was set up by moving the minced meat from chub mackerel reversibly from the room of lower temperature to that of higher temperature for 7 hours every day during 180 days. The freeze denaturation of myofibrillar protein was studied in term the first-order rate (KD) of inactivation of myofibrillar Ca-ATPase. The freeze denaturation rate constant of the myofibrillar protein fluctuated between two different temperatures was same as or higher than the KD in case of constant temperature in higher temperature side.

  10. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations.

    PubMed

    Yun, G S; Lee, W; Choi, M J; Kim, J B; Park, H K; Domier, C W; Tobias, B; Liang, T; Kong, X; Luhmann, N C; Donné, A J H

    2010-10-01

    The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donné et al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfvén eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.

  11. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations

    SciTech Connect

    Yun, G. S.; Lee, W.; Choi, M. J.; Kim, J. B.; Park, H. K.; Domier, C. W.; Tobias, B.; Liang, T.; Kong, X.; Luhmann, N. C. Jr.; Donne, A. J. H.

    2010-10-15

    The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donneet al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfven eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.

  12. REGULATION OF ISOPRENE EMISSION RESPONSES TO RAPID LEAF TEMPERATURE FLUCTUATIONS

    EPA Science Inventory

    Isoprene emission from leaves is temperature dependent and may protect them from damage at high temperatures. We measured the temperature of white oak (Quercus alba L.) leaves at the top of the canopy. The largest changes in leaf temperature were associated with changes in solar ...

  13. Multifield measurement of magnetic fluctuation-induced particle flux in a high-temperature toroidal plasma

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2016-12-01

    Magnetic fluctuation-induced particle transport is explored in the high-temperature, high-beta interior of the Madison symmetric torus (MST) reversed-field pinch by performing a multifield measurement of the correlated product of magnetic and density fluctuations associated with global resistive tearing modes. Local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of Faraday-effect polarimetry measurements. Reconstructed 2D images of density and current density perturbations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved. The convective magnetic fluctuation-induced particle flux profile is measured for both standard and high-performance plasmas in MST with tokamak-like confinement, showing large reduction in the flux during improved confinement.

  14. Measurement of Yields and Fluctuations using Background and Calibration Data from the LUX Detector

    NASA Astrophysics Data System (ADS)

    Pease, Evan; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) detector is a 350-kg liquid xenon (LXe) time-projection chamber designed for the direct detection of weakly-interacting massive particles (WIMPs), a leading dark matter candidate. LUX operates on the 4850-foot level of the Sanford Underground Research Facility in Lead, SD. Monoenergetic electronic recoil (ER) peaks in the WIMP search and calibration data from the first underground science run of the LUX detector have been used to measure ER light and charge yields in LXe between 5.2 keV and 662 keV. The energy resolution of the LUX detector at these energies will also be presented. Recombination fluctuations are observed to follow a linear dependence on the number of ions for the energies in this study, and this dependence is consistent with low-energy measurements made with a tritium beta source in the LUX detector. Using these results and additional measurements of the recoil bands from tritium and D-D neutron calibrations, I will compare recombination fluctuations in LXe response to electronic and nuclear recoils. The presenter is supported by the U.S. Department of Energy, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract DE-AC05-06OR23100.

  15. Quantum Dynamics in Noisy Backgrounds: from Sampling to Dissipation and Fluctuations

    NASA Astrophysics Data System (ADS)

    Oliveira, O.; Paula, W. de; Frederico, T.; Hussein, M. S.

    2016-08-01

    We investigate the dynamics of a quantum system coupled linearly to Gaussian white noise using functional methods. By performing the integration over the noisy field in the evolution operator, we get an equivalent non-Hermitian Hamiltonian, which evolves the quantum state with a dissipative dynamics. We also show that if the integration over the noisy field is done for the time evolution of the density matrix, a gain contribution from the fluctuations can be accessed in addition to the loss one from the non-hermitian Hamiltonian dynamics. We illustrate our study by computing analytically the effective non-Hermitian Hamiltonian, which we found to be the complex frequency harmonic oscillator, with a known evolution operator. It leads to space and time localisation, a common feature of noisy quantum systems in general applications.

  16. KINETICS OF LEAF TEMPERATURE FLUCTUATION AFFECT ISOPRENE EMISSION FROM RED OAK (QUERCUS RUBRA) LEAVES

    EPA Science Inventory

    Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated the natural fluctuations on leaf temperature and the effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the to...

  17. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    SciTech Connect

    Iyengar, Anagha; Beach, Matthew; Newby, Robert J.; Fabris, Lorenzo; Heilbronn, Lawrence H.; Hayward, Jason P.

    2015-11-12

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.

  18. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    DOE PAGES

    Iyengar, Anagha; Beach, Matthew; Newby, Robert J.; ...

    2015-11-12

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction inmore » background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.« less

  19. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    NASA Astrophysics Data System (ADS)

    Iyengar, A.; Beach, M.; Newby, R. J.; Fabris, L.; Heilbronn, L. H.; Hayward, J. P.

    2015-02-01

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.

  20. Impact of fluctuating temperatures on development of the koinobiont endoparasitoid Venturia canescens.

    PubMed

    Spanoudis, Christos G; Pappas, Christos S; Delpisi, Argyroula G; Andreadis, Stefanos S; Savopoulou-Soultani, Matilda

    2015-07-01

    The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15-19.5°C with a mean of 17.6°C, 17.5-22.5°C with a mean of 19.8°C, 20-30°C with a mean of 22.7°C, 22.5-27.5°C with a mean of 25°C, 25.5-32.5°C with a mean of 28.3°C and 28.5-33°C with a mean of 30°C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7°C, respectively. Optimum temperature for development and thermal constant were 28.6°C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30°C) compared to the lowest one (29.4 days at 17.6°C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25°C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.

  1. Effects of temperature fluctuations on cuttlebone formation of cuttlefish Sepia esculenta

    NASA Astrophysics Data System (ADS)

    Lei, Shuhan; Zhang, Xiumei; Liu, Songlin; Chen, Siqing

    2012-07-01

    The morphological characteristics and the cuttlebone formation of Sepia esculenta exposed to different water temperature fluctuations were investigated under laboratory conditions. Temperature fluctuation cycles (15 cycles, 60 d in total) consisted of the following three regimes of 4 d duration: keeping water temperature in 26°C for 3 d (Group A), 2 d (Group B), 0 d (Group C, control); then keeping water temperature in 16°C for the next 1, 2, 4 d. No significant difference in the survival rate was observed between the control and temperature fluctuation groups ( P >0.05). Lamellar depositions in a temperature fluctuation cycle were 2.45±0.02 for Group A, 2.00±0.02 for Group B, and 1.78±0.02 for Group C ( P< 0.05). The relationship between age and number of lamellas in the cuttlebone of S. esculenta under each water temperature fluctuation could be described as the linear model and the number of lamellas in the cuttlebone did not correspond to actual age. Group A had the highest cuttlebone growth index (CGI), the lowest locular index (LI), and inter-streak distances comparing with those of control group. However, the number of lamellas and LI or CGI showed a quadratic relationship for each temperature fluctuation group. In addition, temperature fluctuations caused the breakage of cuttlebone dark rings, which was considered a thermal mark. The position of the breakage in the dark rings was random. This thermal mark can be used as supplementary information for marking and releasing techniques.

  2. Spin fluctuations and high-temperature superconductivity in cuprates

    NASA Astrophysics Data System (ADS)

    Plakida, Nikolay M.

    2016-12-01

    To describe the cuprate superconductors, models of strongly correlated electronic systems, such as the Hubbard or t - J models, are commonly employed. To study these models, projected (Hubbard) operators have to be used. Due to the unconventional commutation relations for the Hubbard operators, a specific kinematical interaction of electrons with spin and charge fluctuations emerges. The interaction is induced by the intraband hopping with a coupling parameter of the order of the kinetic energy of electrons W which is much larger than the antiferromagnetic exchange interaction J induced by the interband hopping. This review presents a consistent microscopic theory of spin excitations and superconductivity for cuprates where these interactions are taken into account within the Hubbard operator technique. The low-energy spin excitations are considered for the t-J model, while the electronic properties are studied using the two-subband extended Hubbard model where the intersite Coulomb repulsion V and electron-phonon interaction are taken into account.

  3. A thermodynamic fluctuation relation for temperature and energy

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2009-03-01

    The present work extends the well-known thermodynamic relation C = β2langδE2rang for the canonical ensemble. We start from the general situation of the thermodynamic equilibrium between a large but finite system of interest and a generalized thermostat, which we define in the course of the paper. The resulting identity langδβδErang = 1 + langδE2rang∂2S(E)/∂E2 can account for thermodynamic states with a negative heat capacity C < 0; at the same time, it represents a thermodynamic fluctuation relation that imposes some restrictions on the determination of the microcanonical caloric curve β(E) = ∂S(E)/∂E. Finally, we comment briefly on the implications of the present result for the development of new Monte Carlo methods and an apparent analogy with quantum mechanics.

  4. Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind

    SciTech Connect

    Bale, S. D.; Kasper, J. C.; Howes, G. G.; Quataert, E.; Salem, C.; Sundkvist, D.

    2009-11-20

    The proton temperature anisotropy in the solar wind is known to be constrained by the theoretical thresholds for pressure-anisotropy-driven instabilities. Here, we use approximately 1x10{sup 6} independent measurements of gyroscale magnetic fluctuations in the solar wind to show for the first time that these fluctuations are enhanced along the temperature anisotropy thresholds of the mirror, proton oblique firehose, and ion cyclotron instabilities. In addition, the measured magnetic compressibility is enhanced at high plasma beta (beta{sub ||} > or approx. 1) along the mirror instability threshold but small elsewhere, consistent with expectations of the mirror mode. We also show that the short wavelength magnetic fluctuation power is a strong function of collisionality, which relaxes the temperature anisotropy away from the instability conditions and reduces correspondingly the fluctuation power.

  5. Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind.

    PubMed

    Bale, S D; Kasper, J C; Howes, G G; Quataert, E; Salem, C; Sundkvist, D

    2009-11-20

    The proton temperature anisotropy in the solar wind is known to be constrained by the theoretical thresholds for pressure-anisotropy-driven instabilities. Here, we use approximately 1x10;{6} independent measurements of gyroscale magnetic fluctuations in the solar wind to show for the first time that these fluctuations are enhanced along the temperature anisotropy thresholds of the mirror, proton oblique firehose, and ion cyclotron instabilities. In addition, the measured magnetic compressibility is enhanced at high plasma beta (beta_{ parallel} greater, similar1) along the mirror instability threshold but small elsewhere, consistent with expectations of the mirror mode. We also show that the short wavelength magnetic fluctuation power is a strong function of collisionality, which relaxes the temperature anisotropy away from the instability conditions and reduces correspondingly the fluctuation power.

  6. Small-Scale Spatial Fluctuations in the Soft X-Ray Background. Degree awarded by Maryland Univ., 2000

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; White, Nicolas E. (Technical Monitor)

    2001-01-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micron data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO'S, and normal galaxies) to 9.5 +/- 0.9 keV/(sq cm s sr keV), assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T - 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T - 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/(sq cm s sr keV) in the 3/4 keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 3/4 keV band. Physical arguments suggest that small angular scale (approx. 10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (about 10(exp 5) years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales

  7. Spectral analysis of temperature and Brunt-Vaisala frequency fluctuations observed by radiosondes

    NASA Technical Reports Server (NTRS)

    Tsuda, T.; Vanzandt, T. E.; Kato, S.; Fukao, S.; Sato, T.

    1989-01-01

    Recent studies have revealed that vertical wave number spectra of wind velocity and temperture fluctuations in the troposphere and the lower stratosphere are fairly well explained by a saturated gravity wave spectrum. But N(2) (N:Brunt-Vaisala (BV) frequency) spectra seem to be better for testing the scaling of the vertical wave number spectra in layers with different stratifications, beause its energy density is proportional only to the background value of N(2), while that for temperature depends on both the BV frequency and the potential temperature. From temperature profiles observed in June to August 1987 over the MU Observatory, Japan, by using a radiosonde with 30 m height resolution, N(2) spectra are determined in the 2 to 8.5 km (troposphere) and 18.5 to 25 km (lower stratosphere) ranges. Although individual spectra show fairly large day-by-day variability, the slope of the median of 34 spectra agrees reasonably with the theoretical value of -1 in the wave number range of 6 x 10(-4) similar to 3 x 10(-3) (c/m). The ratio of the spectral energy between these two height regions is about equal to the ratio of N(2), consistent with the prediction of saturated gravity wave theory.

  8. Brain temperature fluctuation: a reflection of functional neural activation.

    PubMed

    Kiyatkin, Eugene A; Brown, P Leon; Wise, Roy A

    2002-07-01

    Although it is known that relatively large increases in local brain temperature can occur during behaviour and in response to various novel, stressful and emotionally arousing environmental stimuli, the source of this heat is not clearly established. To clarify this issue, we monitored the temperature in three brain structures (dorsal and ventral striatum, cerebellum) and in arterial blood at the level of the abdominal aorta in freely moving rats exposed to several environmental challenges ranging from traditional stressors to simple sensory stimuli (cage change, tail pinch, exposure to another male rat, a female rat, a mouse or an unexpected sound). We found that brain temperature was consistently higher than arterial blood temperature, and that brain temperature increased prior to, and to a greater extent than, the increase in blood temperature evoked by each test challenge. Thus, the local metabolic consequences of widely correlated neural activity appear to be the primary source of increases in brain temperature and a driving force behind the associated changes in body temperature.

  9. Classical heat transport and spontaneous fluctuations associated with a temperature filament in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Burke, Alexander Thomas

    1999-11-01

    We study electron heat transport and spontaneous fluctuations during the DC injection of an electron beam by a 3 mm diameter crystal of LaB 6 at 20 eV and 200 mA, into a magnetized plasma with an ambient magnetic field of 500-1500 G. Thermalization of the beam current and subsequent transport of the electron heat creates a filamentary region about 1 cm wide, on the order of the electron skin depth, c/wpe. This ``temperature filament'' extends along the field about 5 m into the 10 m long, 40 cm wide plasma column, with a peak temperature 5-20 times greater than the 0.2-0.5 eV temperature of the bulk plasma. The plasma density, on the order of 1 × 1012 cm-3, is unperturbed in the filament because the energy of the beam is below the ionization potential of helium. In the temperature filament, under quiescent conditions, we observe simultaneous axial and radial electron heat transport that occurs at the classically predicted rates within the limits of uncertainty in the electron temperature measurement of about 20%. This is based on a comparison of space-time measurements of the filament temperature with the prediction of a computer code developed specifically to model 2-dimensional classical electron heat conduction in the beamheated filament. Langmuir probes were used to measure the temperature profile of the filament, and the spontaneous fluctuations in the filament region. Non-classical or so-called anomalous transport is observed after the onset of fluctuations. Initially these fluctuations are highly coherent with a frequency on the order of 0.1 fci and an m = 1 spiral shape in the x-y plane, having a density fluctuation amplitude, dn/n, of 20% and a magnetic fluctuation amplitude, δB/ B, of.01%. Measurements of the transverse magnetic fluctuation vectors confirm the m = 1 nature of the mode. These fluctuations are identified as drift- Alfven waves. Later in time, a low-frequency fluctuation occurs, on the order of.02 fci, which is confined to the radial center

  10. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association.

    PubMed

    Delava, Emilie; Fleury, Frédéric; Gibert, Patricia

    2016-08-01

    Koinobiont parasitoid insects, which maintain intimate and long-term relationships with their arthropod hosts, constitute an association of ectothermic organisms that is particularly sensitive to temperature variations. Because temperature shows pronounced natural daily fluctuations, we examined if experiments based on a constant temperature range can mask the real effects of the thermal regime on host-parasitoid interactions. The effects of two fluctuating thermal regimes on several developmental parameters of the Drosophila larval parasitoid Leptopilina boulardi were analyzed in this study. Regime 1 included a range of 16-23-16°C and regime 2 included a range of 16-21-26-21-16°C (mean temperature 20.1°C) compared to a 20.1°C constant temperature. Under an average temperature of 20.1°C, which corresponds to a cold condition of L. boulardi development, we showed that the success of parasitism is significantly higher under a fluctuating temperature regime than at constant temperature. A fluctuating regime also correlated with a reduced development time of the parasitoids. In contrast, the thermal regime did not affect the ability of Drosophila to resist parasitoid infestation. Finally, we demonstrated that daily temperature fluctuation prevented the entry into diapause for this species, which is normally observed at a constant temperature of 21°C. Overall, the results reveal that constant temperature experiments can produce misleading results, highlighting the need to study the thermal biology of organisms under fluctuating regimes that reflect natural conditions as closely as possible. This is particularly a major issue in host-parasitoid associations, which constitute a good model to understand the effect of climate warming on interacting species.

  11. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence in Dhaka, Bangladesh.

    PubMed

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2015-01-01

    Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control.

  12. Survival of Apache Trout eggs and alevins under static and fluctuating temperature regimes

    USGS Publications Warehouse

    Recsetar, Matthew S.; Bonar, Scott A.

    2013-01-01

    Increased stream temperatures due to global climate change, livestock grazing, removal of riparian cover, reduction of stream flow, and urbanization will have important implications for fishes worldwide. Information exists that describes the effects of elevated water temperatures on fish eggs, but less information is available on the effects of fluctuating water temperatures on egg survival, especially those of threatened and endangered species. We tested the posthatch survival of eyed eggs and alevins of Apache Trout Oncorhynchus gilae apache, a threatened salmonid, in static temperatures of 15, 18, 21, 24, and 27°C, and also in treatments with diel fluctuations of ±3°C around those temperatures. The LT50 for posthatch survival of Apache Trout eyed eggs and alevins was 17.1°C for static temperatures treatments and 17.9°C for the midpoints of ±3°C fluctuating temperature treatments. There was no significant difference in survival between static temperatures and fluctuating temperatures that shared the same mean temperature, yet there was a slight difference in LT50s. Upper thermal tolerance of Apache Trout eyed eggs and alevins is much lower than that of fry to adult life stages (22–23°C). Information on thermal tolerance of early life stages (eyed egg and alevin) will be valuable to those restoring streams or investigating thermal tolerances of imperiled fishes.

  13. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    NASA Astrophysics Data System (ADS)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  14. Clarifying the role of fire heat and daily temperature fluctuations as germination cues for Mediterranean Basin obligate seeders

    PubMed Central

    Santana, Victor M.; Baeza, M. Jaime; Blanes, M. Carmen

    2013-01-01

    Background and Aims This study aims to determine the role that both direct effects of fire and subsequent daily temperature fluctuations play in the seed bank dynamics of obligate seeders from the Mediterranean Basin. The short yet high soil temperatures experienced due to passage of fire are conflated with the lower, but longer, temperatures experienced by daily fluctuations which occur after removing vegetation. These germination cues are able to break seed dormancy, but it is difficult to assess their specific level of influence because they occur consecutively after summer fires, just before the flush of germination in the wet season (autumn). Methods By applying experimental fires, seed treatments were imposed that combined fire exposure/non-fire exposure with exposure to microhabitats under a gradient of disturbance (i.e. gaps opened by fire, mechanical brushing and intact vegetation). The seeds used were representative of the main families of obligate seeders (Ulex parviflorus, Cistus albidus and Rosmarinus officinalis). Specifically, an assessment was made of (1) the proportion of seeds killed by fire, (2) seedling emergence under field conditions and (3) seeds which remained ungerminated in soil. Key Results For the three species studied, the factors that most influenced seedling emergence and seeds remaining ungerminated were microhabitats with higher temperature fluctuations after fire (gaps opened by fire and brushing treatments). The direct effect of fire decreased the seedling emergence of U. parviflorus and reduced the proportion of seeds of R. officinalis remaining ungerminated. Conclusions The relevance of depleting vegetation (and subsequent daily temperature fluctuation in summer) suggests that studies focusing on lower temperature thresholds for breaking seed dormancy are required. This fact also supports the hypothesis that the seeding capacity in Mediterranean Basin obligate seeders may have evolved as a response to a wide range of

  15. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone and Microgravity

    NASA Technical Reports Server (NTRS)

    Schweizer, Markus; Croell, Arne

    1999-01-01

    A silicon crystal growth experiment has been accomplished using the floating-zone technique under microgravity on a sounding rocket (TEXUS 36). Measurements of temperature fluctuations in the silicon melt zone due to time dependent thermocapillary convection (Marangoni convection) and an observation of the microscopic growth rate were simultaneously performed during the experiment. Temperature fluctuations of about 0.5 - 0.7 C with a frequency range < 0.5Hz were detectable. The microscopic growth rate fluctuates considerably around the average growth rate of 1 mm/min: Growth rates up to 3 to 4mm/min, close to zero mm/min, as well as negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies of temperature fluctuations, microscopic growth rates, and the dopant inhomogeneities correspond quite well, with main frequencies between 0.1 and 0.3 Hz. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, and the characteristic temperature amplitudes and frequencies. At a position 3.4mm above the interface and 1.4mm inside the melt, equivalent to the sensor tip position in the experiment, temperature fluctuations up to 1.8 C and frequencies ? 0.25Hz were found in the simulations.

  16. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone on TEXUS36

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Schweizer, Markus; Dold, P.; Kaiser, Th.; Benz, K. W.; Lichtensteiger, M.

    1999-01-01

    Several earlier (micro)g experiments have shown that time-dependent thermocapillary (Marangoni) convection is the major cause for the formation of dopant striations in floating-zone grown semiconductor crystals, at least in small-scale systems not employing RF heating. To quantify this correlation, a silicon floating-zone experiment was performed on the TEXUS36 flight (February 7, 1 998) in the monoellipsoid mirror furnace TEM02-ELLI. During the experiment, temperature fluctuations in the silicon melt zone and the microscopic growth rate were simultaneously measured. Temperature fluctuations of 0.5 C - 0.7 C with main frequencies between 0.1 Hz and 0.3 Hz were detectable. The microscopic growth rate fluctuated considerably around the average growth rate of 1 mm/min: rates from 4mm/min to negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. The frequencies associated with the dopant inhomogeneities correspond quite well with those of the temperature fluctuations and microscopic growth rates. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, to evaluate characteristic temperature amplitudes and frequencies, and to give insight into the instability mechanisms of Maran-goni convection in this configuration. The simulations were in good agreement with the experimental values, showing temperature fluctuations with frequencies f? 0.25 Hz and amplitudes up to 1.8 C at a position equivalent to that of the sensor tip in the experiment.

  17. Effects of temperature fluctuations of IUE data quality

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.; Turnrose, B. E.; Bohlin, R. C.

    1981-01-01

    Analysis of IUE calibration lamp images shows that variation in the temperature of the scientific instrument causes shifts in the location of the spectral format with respect to the reseau grid on the detector and in the location of the reseaux themselves. In high dispersion, a camera head amplifier temperature difference of 6C corresponds to a shift of 4 pixels in the spectral format for LWR and 2 pixels for SWP along the dispersion direction. Shifts perpendicular to the disperson (for the same temperature difference) are less than one pixel for both cameras. In low dispersion spectra, the shifts are similar but orthogonal to those described above with the larger motion lying in the direction perpendicular to the dispersion. In both dispersion modes, the observed shifts are apparently independent of wavelength. In high dispersion, the constant pixel shift mimics a constant velocity error.

  18. Fluctuations of conserved charges at finite temperature from lattice QCD

    NASA Astrophysics Data System (ADS)

    Borsányi, Szabolcs; Fodor, Zoltán; Katz, Sándor D.; Krieg, Stefan; Ratti, Claudia; Szabó, Kálman

    2012-01-01

    We present the full results of the Wuppertal-Budapest lattice QCD collaboration on flavor diagonal and non-diagonal quark number susceptibilities with 2 + 1 staggered quark flavors, in a temperature range between 125 and 400 MeV. The light and strange quark masses are set to their physical values. Lattices with N t = 6, 8, 10, 12, 16 are used. We perform a continuum extrapolation of all observables under study. A Symanzik improved gauge and a stout-link improved staggered fermion action is utilized. All results are compared to the Hadron Resonance Gas model predictions: good agreement is found in the temperature region below the transition.

  19. Preliminary measurements of velocity, density and total temperature fluctuations in compressible subsonic flow

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Johnson, C. B.; Basnett, C. B.

    1983-01-01

    The heat transfer characteristics of a three-wire hot-wire probe operated with a constant temperature anemometer were investigated in the subsonic compressible flow regime. The sensitivity coefficients, with respect to velocity, density and total temperature, were measured and the results were used to calculate the velocity, density, and total temperature fluctuations in the test section of the Langley 0.3-m Transonic Cryogenic Tunnel (TCT). These results were extended to give estimates for fluctuations due to vorticity, sound, and entropy. In addition, attempts were made to determine the major source of disturbances in the 0.3-m TCT.

  20. Cosmic microwave background: Polarization and temperature anisotropies from symmetric structures

    NASA Astrophysics Data System (ADS)

    Baccigalupi, Carlo

    1999-06-01

    Perturbations in the cosmic microwave background (CMB) are generated by primordial inhomogeneities. I consider the case of CMB anisotropies from one single ordered perturbation source, or seed, existing well before decoupling between matter and radiation. Such structures could have been left by high energy symmetries breaking in the early universe. I focus on the cases of spherical and cylindrical symmetry of the seed. I give general analytic expressions for the polarization and temperature linear perturbations, factoring out of the Fourier integral the dependence on the photon propagation direction and on the geometric coordinates describing the seed. I show how the CMB perturbations manifestly reflect the symmetries of their seeds. In particular, polarization is uniquely linked to the shape of the source because of its tensorial nature. CMB anisotropies are obtained with a line of sight integration. They are a function of the position and orientation of the seed along the photons path. This treatment highlights the undulatory properties of the CMB. I show with numerical examples how the polarization and temperature perturbations propagate beyond the size of their seeds, reaching the CMB sound horizon at the time considered. Just like the waves from a pebble thrown in a pond, CMB anisotropy from a seed intersecting the last scattering surface appears as a series of temperature and polarization waves surrounding the seed, extending on the scale of the CMB sound horizon at decoupling, roughly 1 deg in the sky. Each wave is characterized by its own value of the CMB perturbation, with the same mean amplitude of the signal coming from the seed interior; as expected for a linear structure with size L<=H-1 and density contrast δ at decoupling, the temperature anisotropy is δT/T~=δ(L/H-1)2, roughly ten times stronger than the polarization. These waves could allow one to distinguish relics from high energy processes of the early universe from pointlike astrophysical

  1. Measurements of temperature and pressure fluctuations in the T prime 2 cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, A.; Dor, J. B.; Breil, J. F.

    1980-01-01

    Cold wire measurement of temperature fluctuations were made in a DERAT T'2 induction powered cryogenic wind tunnel for 2 types of liquid nitrogen injectors. Thermal turbulence measured in the tranquilization chamber depends to a great extent on the injector used; for fine spray of nitrogen drops, this level of turbulence seemed completely acceptable. Fluctuations in static pressure taken from the walls of the vein by Kulite sensors showed that there was no increase in aerodynamic noise during cryogenic gusts.

  2. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste.

    PubMed

    Wu, Man-chang; Sun, Ke-wei; Zhang, Yong

    2006-03-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 degrees C to 20 degrees C suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions of 8.0 g/(L.d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 degrees C) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation; (3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation.

  3. Spatial Fluctuations in the Diffuse Cosmic X-Ray Background. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shafer, R. A.

    1983-01-01

    The bright, essentially isotropic, X-ray sky flux above 2 keV yields information on the universe at large distances. However, a definitive understanding of the origin of the flux is lacking. Some fraction of the total flux is contributed by active galactic nuclei and clusters of galaxies, but less than one percent of the total is contributed by the or approximately 3 keV band resolved sources, which is the band where the sky flux is directly observed. Parametric models of AGN (quasar) luminosity function evolution are examined. Most constraints are by the total sky flux. The acceptability of particular models hinges on assumptions currently not directly testable. The comparison with the Einstein Observatory 1 to keV low flux source counts is hampered by spectral uncertainties. A tentative measurement of a large scale dipole anisotropy is consistent with the velocity and direction derived from the dipole in the microwave background. The impact of the X-ray anisotropy limits for other scales on studies of large-scale structure in the universe is sketched. Models of the origins of the X-ray sky flux are reviewed, and future observational programs outlined.

  4. Zero-Temperature Fluctuations in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.; Wehr, J.

    2016-06-01

    We consider the energy difference restricted to a finite volume for certain pairs of incongruent ground states (if they exist) in the d-dimensional Edwards-Anderson Ising spin glass at zero temperature. We prove that the variance of this quantity with respect to the couplings grows proportionally to the volume in any d ≥ 2. An essential aspect of our result is the use of the excitation metastate. As an illustration of potential applications, we use this result to restrict the possible structure of spin glass ground states in two dimensions.

  5. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Foy, E.; Rowan, G.; Goldstein, D.

    1982-01-01

    The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well.

  6. Interface fluctuations and kinetics of nucleation in helium at ultralow temperatures

    NASA Astrophysics Data System (ADS)

    Onuki, Akira

    1995-01-01

    Interface fluctuations and kinetics of nucleating droplets are studied in4He and3He-4He mixtures at ultralow temperatures in the dissipationless regime. We firstly discuss the droplet number density arising as quantum fluctuations and secondly derive the Rayleigh-Plesset equation for a droplet in a metastable fluid. This equation, which is well-known in classical hydrodynamics, governs kinetics of domain growth at very low temperatures. Thirdly, the quantum nucleation rate is shown to be much enhanced by high-frequency acoustic or electric field, however small its amplitude is, when the period of oscillation 2π/ω is shorter than the time τ s of tunnelling through the potential barrier. Fourthly, we examine equilibrium fluctuations of a planar interface which macroscopically separates two phases. The correlation function of the interface displacement is shown to cross over from the classical expression into a newly found quantum expression as the temperature is lowered.

  7. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  8. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk

    PubMed Central

    Nelson, William A.; Paaijmans, Krijn P.; Thomas, Matthew B.; Bjørnstad, Ottar N.

    2017-01-01

    Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population’s capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk.

  9. Geographic variation in the flood-induced fluctuating temperature requirement for germination in Setaria parviflora seeds.

    PubMed

    Mollard, F P O; Insausti, P

    2011-07-01

    Our aim was to search for specific seed germinative strategies related to flooding escape in Setaria parviflora, a common species across the Americas. For this purpose, we investigated induction after floods, in relation to fluctuating temperature requirements for germination in seeds from mountain, floodplain and successional grasslands. A laboratory experiment was conducted in which seeds were imbibed or immersed in water at 5°C. Seeds were also buried in flood-prone and upland grasslands and exhumed during the flooding season. Additionally, seeds were buried in flooded or drained grassland mesocosms. Germination of exhumed seeds was assayed at 25°C or at 20°C/30°C in the dark or in the presence of red light pulses. After submergence or soil flooding, a high fraction (>32%) of seeds from the floodplain required fluctuating temperatures to germinate. In contrast, seeds from the mountains showed maximum differences in germination between fluctuating and constant temperature treatment only after imbibition (35%) or in non-flooded soil conditions (40%). The fluctuating temperature requirement was not clearly related to the foregoing conditions in the successional grassland seeds. Maximum germination could also be attained with red light pulses to seeds from mountain and successional grasslands. Results show that the fluctuating temperature requirement might help floodplain seeds to germinate after floods, indicating a unique feature of the dormancy of S. parviflora seeds from floodplains, which suggests an adaptive advantage aimed at postponing emergence during inundation periods. In contrast, the fluctuating temperature required for germination among seeds from mountain and successional grasslands show its importance for gap detection.

  10. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    PubMed

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  11. Temperature fluctuations and the thermodynamic determination of the cooperativity length in glass forming liquids

    NASA Astrophysics Data System (ADS)

    Chua, Y. Z.; Zorn, R.; Holderer, O.; Schmelzer, J. W. P.; Schick, C.; Donth, E.

    2017-03-01

    The aim of this paper is to decide which of the two possible thermodynamic expressions for the cooperativity length in glass forming liquids is the correct one. In the derivation of these two expressions, the occurrence of temperature fluctuations in the considered nanoscale subsystems is either included or neglected. Consequently, our analysis gives also an answer to the widely discussed problem whether temperature fluctuations have to be generally accounted for in thermodynamics or not. To this end, the characteristic length-scales at equal times and temperatures for propylene glycol were determined independently from AC calorimetry in both the above specified ways and from quasielastic neutron scattering (QENS), and compared. The result shows that the cooperative length determined from QENS coincides most consistently with the cooperativity length determined from AC calorimetry measurements for the case that the effect of temperature fluctuations is incorporated in the description. This conclusion indicates that—accounting for temperature fluctuations—the characteristic length can be derived by thermodynamic considerations from the specific parameters of the liquid at glass transition and that temperature does fluctuate in small systems.

  12. Effects of fluctuating temperature and food availability on reproduction and lifespan.

    PubMed

    Schwartz, Tonia S; Pearson, Phillip; Dawson, John; Allison, David B; Gohlke, Julia M

    2016-12-15

    Experimental studies on energetics and aging often remove two major factors that in part regulate the energy budget in a normal healthy individual: reproduction and fluctuating environmental conditions that challenge homeostasis. Here we use the cyclical parthenogenetic Daphnia pulex to evaluate the role of a fluctuating thermal environment on both reproduction and lifespan across six food concentrations. We test the hypotheses that (1) caloric restriction extends lifespan; (2) maximal reproduction will come with a cost of shortened lifespan; and (3) at a given food concentration, relative to a metabolically equivalent constant temperature environment a diel fluctuating thermal environment will alter the allocation of energy to reproduction and lifespan to maintain homeostasis. We did not identify a level of food concentration that extended lifespan in response to caloric restriction, and we found no cost of reproduction in terms of lifespan. Rather, the individuals at the highest food levels generally had the highest reproductive output and the longest lifespans, the individuals at the intermediate food level decreased reproduction and maintained lifespan, and the individuals at the three lower food concentrations had a decrease in reproduction and lifespan as would be predicted with increasing levels of starvation. Fluctuating temperature had no effect on lifespan at any food concentration, but delayed time to reproductive maturity and decreased early reproductive output at all food concentrations. This suggests that a fluctuating temperature regimen activates molecular pathways that alter energy allocation. The costs of fluctuating temperature on reproduction were not consistent across the lifespan. Statistical interactions for age of peak reproduction and lifetime fecundity suggest that senescence of the reproductive system may vary between temperature regimens at the different food concentrations.

  13. Observation of Aharonov-Bohm and Al'tshuler-Aronov-Spivak oscillations in the background of universal conductance fluctuations in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Mtsuko, Davie; Aslan, Tahir; Ncube, Siphephile; Coleman, Christopher; Wamwangi, Daniel; Bhattacharyya, Somnath

    2016-02-01

    Magnetoresistance (MR) oscillations of multiple periodicities are recorded in singly connected silicon nanowires of diameter ≈50 \\text{nm} . At 100 K we observe oscillations of periodicity ≈1.78 \\text{T} and 0.444 T corresponding to h/e and h/4e Aharonov-Bohm (AB) oscillations, whereas at 10 K we record periodicities of 0.98 T, 0.49 T and 0.25 T corresponding to h/e, h/2e (Al'tshuler-Aronov-Spivak (AAS)) and h/4e oscillations. At 2.5 K we find magnetoresistance oscillations with multiple periodicities of 1.3 T, 0.52 T, and 0.325 T corresponding to AB and AAS oscillations. The h/2e and h/4e peaks can be attributed to the interference of time-reversed paths originating from the core orbits that scatter coherently on the surface of the nanowires multiple times. We also observed 20 mT and 60 mT oscillations of small amplitude superimposed on a quasi-periodic background which we attribute to the quantum interference of special surface states associated with skipping orbits that propagate quasi-ballistically. The aperiodic fluctuations in the MR at all temperatures are universal conductance fluctuations (UCF) originating from randomly spaced impurity scattering in the core of the nanowire.

  14. Seasonal cycle dependence of temperature fluctuations in the atmosphere. Master's thesis

    SciTech Connect

    Tobin, B.F.

    1994-08-01

    The correlation statistics of meteorological fields have been of interest in weather forecasting for many years and are also of interest in climate studies. A better understanding of the seasonal variation of correlation statistics can be used to determine how the seasonal cycle of temperature fluctuations should be simulated in noise-forced energy balance models. It is shown that the length scale does have a seasonal dependence and will have to be handled through the seasonal modulation of other coefficients in noise-forced energy balance models. The temperature field variance and spatial correlation fluctuations exhibit seasonality with fluctuation amplitudes larger in the winter hemisphere and over land masses. Another factor contributing to seasonal differences is the larger solar heating gradient in the winter.

  15. Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

    PubMed

    Park, Kyoung-Duck; Muller, Eric A; Kravtsov, Vasily; Sass, Paul M; Dreyer, Jens; Atkin, Joanna M; Raschke, Markus B

    2016-01-13

    Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes.

  16. Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Kogut, A.; Hinshaw, G.; Banday, A. J.; Wright, E. L.; Gorski, K. M.; Wilkinson, D. T.; Weiss, R.; Smoot, G. F.; Meyer, S. S.

    1994-01-01

    The first two years of Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (delta-T)(sub rms) (7 deg) = 44 +/- 7 micro-K and (delta-T)(sub rms) (10 deg) = 30.5 +/- 2.7 micro-K at 7 deg and 10 deg angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)(sup 1/2) = 36 +/- 5 micro-K (68% CL) for the unsmoothed (7 deg resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to R(exp n). The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.01, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31+/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 14.3(sup + 5.2 sub -3.3) micro-K (12.8(sup + 5.2 sub -3.3) micro-K0 with a spectral index n = 1.42(sup + 0.49 sub -0.55)(n = 1.53(sup + 0.49 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.2 +/- 11.5 micro-K (17.4 +/- 1.5 micro-K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 17.4(sup + 7.5 sub -5.2) micro-K (15.8(sup + 7.5 sub -5.2) micro-K) with a spectral index n = 1.11(sup + 0.60 sub -0.55) (n = 1.22(sup + 0.60 sub -0.55). With n fixed to 1.0 the most likely

  17. Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Kogut, A.; Hinshaw, G.; Banday, A. J.; Wright, E. L.; Gorski, K. M.; Wilkinson, D. T.; Weiss, R.; Smoot, G. F.; Meyer, S. S.; Mather, J. C.; Lubin, P.; Loewenstein, K.; Lineweaver, C.; Keegstra, P.; Kaita, E.; Jackson, P. D.; Cheng, E. S.

    1994-12-01

    The first two years of Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (delta-T)rms (7 deg) = 44 +/- 7 micro-K and (delta-T)rms (10 deg) = 30.5 +/- 2.7 micro-K at 7 deg and 10 deg angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)1/2 = 36 +/- 5 micro-K (68% CL) for the unsmoothed (7 deg resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to Rn. The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.01, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31+/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Qrms-PS = 14.3+5.2-3.3 micro-K (12.8+5.2-3.3 micro-K0 with a spectral index n = 1.42+0.49-0.55 (n = 1.53+0.49-0.55. With n fixed to 1.0 the most likely amplitude is 18.2 +/- 11.5 micro-K (17.4 +/- 1.5 micro-K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Qrms-PS = 17.4+7.5-5.2 micro-K (15.8+7.5-5.2 micro-K) with a spectral index n = 1.11+0.60-0.55 (n = 1.22+0.60-0.55. With n fixed to 1.0 the most likely amplitude is 18.6 +/- 1.6 micro-K (18.2 +/- 1.6 micro-K). The marginal likelihood of n is 1.11 +/- 0.40 (1.22 +/- 0.40). Our best

  18. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone on TEXUS36

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Schweizer, Markus; Dold, P.; Kaiser, Th.; Lichtensteiger, M.; Benz, K. W.

    1999-01-01

    Several pg experiments on sounding rockets and the Space Shuttle have shown that time-dependent thermocapillary (Marangoni) convection is the major cause for the formation of dopant striations in floating-zone grown semiconductor crystals, at least in small-scale systems not employing RF heating. To quantify this correlation, a silicon floating-zone experiment was performed during the TEXUS36 flight (February 7, 1 998) in the monoellipsoid mirror furnace TEM02-ELLI. During the experiment, temperature fluctuations in the silicon melt zone and the microscopic growth rate were simultaneously measured. Temperature fluctuations of 0.5 C - 0.7 C with main frequencies between 0.1 Hz and 0.3Hz were detectable. The microscopic growth rate fluctuated considerably around the average growth rate of 1 mm/min: rates from 4mm/min to negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies associated with the dopant inhomogeneities correspond quite well with those of the temperature fluctuations and microscopic growth rates. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, to evaluate characteristic temperature amplitudes and frequencies, and to give insight into the instability mechanisms of Marangoni convection in this configuration. The simulations were in good agreement with the experimental values, showing temperature fluctuations with frequencies? 0.25 Hz and amplitudes up to 1.8 C at a position equivalent to that of the sensor tip in the experiment.

  19. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone Under Microgravity

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Schweizer, Markus; Dold, P.; Kaiser, T.; Lichtensteiger, M.; Benz, K. W.

    1999-01-01

    USA Several microgravity experiments on sounding rockets and the Space Shuttle have shown that time-dependent thermocapillary (Marangoni) convection is the major cause for the formation of dopant striations in floating-zone grown semiconductor crystals, at least in small-scale systems not employing RF heating. To quantify this correlation, a silicon floating-zone experiment was performed during the TEXUS36 flight (February 7, 1998) in the monoellipsoid mirror furnace TEM02-ELLI. During the experiment, temperature fluctuations in the silicon melt zone and the microscopic growth rate were simultaneously measured. Temperature fluctuations of 0.5 C - 0.7 C with main frequencies between 0.1 Hz and 0.3 Hz were detectable. The microscopic growth rate fluctuated considerably around the average growth rate of 1 mm/min: rates from 4 mm/min to negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies associated with the dopant inhomogeneities correspond quite well with those of the temperature fluctuations and microscopic growth rates. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, to evaluate characteristic temperature amplitudes and frequencies, and to give insight into the instability mechanisms of Marangoni convection in this configuration. The simulations were in good agreement with the experimental values, showing temperature fluctuations with frequencies ? 0.25 Hz and amplitudes up to 1.8 C at a position equivalent to that of the sensor tip in the experiment.

  20. Effects of rapid temperature fluctuations prior to breeding on reproductive efficiency in replacement gilts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we determined that rapidly cooling pigs after acute heat stress (HS) resulted in a pathological condition, and because rapid temperature fluctuations are often associated with reduced reproductive success in sows it lends itself to the hypothesis that these conditions may be linked. Study ...

  1. Analytical Comparisons of Tree Ring Data, Greenland Ice Core Temperatures and Temperature Fluctuations of the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Otto, James; Roberts, Jim; Dahiya, Jai

    2012-10-01

    Embedded in various events on Earth are data that allow us to map the temperature of the Earth over many years. In this work we have chosen the temperature fluctuations in the Sargasso sea, the changing patterns in tree ring growth and temperature fluctuations in Greenland ice core samples for comparison with a goal to understanding the patterns in global warming. Signatures have been identified that predate the Industrial Revolution, which had been blamed for much of global warming, that indicate that Earth temperatures have enjoyed numerous intervals of both global warming and global cooling. The intention of this work is not to stir controversy but to make comparisons of scientific data and processes rather than rely on popular opinion or deduction by ``experts'' in climatology to explain global warming.

  2. Quantum suppression of fluctuations and temperatures of reconstructed A ˜ 30 quasi-projectiles

    NASA Astrophysics Data System (ADS)

    Stein, B. C.; Bonasera, A.; Souliotis, G. A.; Zheng, H.; Cammarata, P. J.; Echeverria, A. J.; Heilborn, L.; Keksis, A. L.; Kohley, Z.; Mabiala, J.; Marini, P.; May, L. W.; McIntosh, A. B.; Richers, C.; Shetty, D. V.; Soisson, S. N.; Tripathi, R.; Wuenschel, S.; Yennello, S. J.

    2014-02-01

    Suppression of multiplicity fluctuations has been observed for three light fermions (protons, tritons and 3He) in the multifragmentation of reconstructed hot quasi-projectiles produced in collisions of 32S (45 MeV/nucleon) with 112Sn. This suppression, predicted by recent calculations, is attributed to Pauli blocking and has also been observed in experiments with trapped Fermi gases. Experimental results on nuclear temperature and density employing a quantal approach based on momentum and multiplicity fluctuations are also presented. The extracted temperatures show a noticeable reduction when compared to a similarly derived classical method. This reduction in temperature is in agreement with previous predictions indicating that classically derived methods overpredict nuclear temperature as they do not take into account the Fermi motion of the nucleons. The present results underline the role of quantum statistics in nuclear disassembly and suggest the need for proper quantum treatment when dealing with the thermodynamic properties of fragmenting heavy ions.

  3. Fluctuation-induced conductivity of superconductors above the transition temperature - Regularization of the Maki diagram.

    NASA Technical Reports Server (NTRS)

    Keller, J.; Korenman, V.

    1972-01-01

    The Maki contribution to the conductivity above the superconducting transition temperature is regularized within the framework of the BCS theory. This is achieved through the renormalization of the impurity-scattering vertex by inclusion of the effects of pair fluctuations. The conductivity is evaluated for a thin film. It depends only on the reduced temperature and the normal resistance per square. Fair agreement is found with Al films over a wide temperature range. Agreement is not found with experiments on Bi, Pb, and Ga films, which apparently contain a strong additional pair-breaking effect. The temperature range in which interactions among fluctuations become important in the Maki conductivity is generally larger than that given by the Ginzburg criterion.

  4. Prediction of growth of Pseudomonas fluorescens in milk during storage under fluctuating temperature.

    PubMed

    Lin, Hao; Shavezipur, Mohammad; Yousef, Ahmed; Maleky, Farnaz

    2016-03-01

    Accurate prediction of growth of undesirable organisms (e.g., Pseudomonas fluorescens) in perishable foods (e.g., milk), held under sub-ideal storage conditions, can help ensure the quality and safety of these foods at the point of consumption. In this investigation, we inoculated sterile milk with P. fluorescens (~10(3) cfu/mL) and monitored inoculum growth behavior at constant and fluctuating storage temperatures. Three storage temperatures, 4 °C, 15 °C and 29 °C, were selected to simulate proper refrigeration conditions (4 °C) and temperature abuse, respectively. To simulate temperature fluctuation, milk held at 4 °C was subjected to temperature shifts to 15 °C or 29 °C for 4 to 6h. A modified logistic model was used to obtain the best-fit curve for the microbial growth under constant storage temperature. The specific growth rates at 4 °C, 15 °C, and 29 °C, obtained from experimental data, were 0.056 ± 0.00, 0.17 ± 0.05, and 0.46 ± 0.02 h(-1), respectively, and the lag time values were 29.5 ± 4.2, 12.7 ± 4.4, and 2.8 ± 0.3h, respectively. A model predicting bacterial growth under different temperature fluctuations was obtained using the growth parameters extracted from constant temperature experiments. Growth behavior predicted by the fluctuating temperature model and that obtained experimentally were in good agreement. Lag time exhibited a larger variation compared with specific growth rate, suggesting that it depends not only on growth temperature but also on the sample population and temperature gradient. Additionally, experimental data showed that changing the temperature during the lag phase induced an additional lag time before growth; however, no significant lag time was observed under the temperature fluctuation during the exponential phase. The results of this study provide information for precise shelf-life determination and reduction of food waste, particularly for milk and milk-containing food products.

  5. The effects of fluctuating culture temperature on stress tolerance and antioxidase expression in Esteya vermicola.

    PubMed

    Wang, Yun-bo; Pang, Wen-xing; Yv, Xiao-na; Li, Jing-jie; Zhang, Yong-an; Sung, Chang-keun

    2015-02-01

    The endoparasitic nematophagous fungus, Esteya vermicola, has shown great potential as a biological control agent against the pine wood nematode, Bursaphelenchus xylophilus. Fluctuating culture temperatures can affect fungal yields and fungal tolerance to desiccation, UV radiation, H2O2, and heat stress, as well as antioxidase expression. To explore these effects, E. vermicola cultured under five temperature ranges, 26°C, 15-26°C, 26-35°C, 20-30°C, and 15-35°C, were compared. The cultures grown at lower temperatures showed better growth, stronger tolerance to desiccation, UV, and H2O2 stresses, and increased catalase expression, However, these cultures also showed weaker heat stress tolerance and lower superoxide dismutase expression than the higher-temperature cultures. In particular, the E. vermicola cultured at 20-30°C, i.e., fluctuating in a narrow range around the optimal temperature, showed the best performance. Therefore, for production in practical applications, this narrowly fluctuating, moderate temperature appears to be optimal for yield and stress tolerance in E. vermicola.

  6. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    SciTech Connect

    Ruan, John J.; Anderson, Scott F.; Agol, Eric; Dexter, Jason

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  7. A large temperature fluctuation may trigger an epidemic erythromelalgia outbreak in China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Yonghui; Lin, Hualiang; Lv, Xiaojuan; Xiao, Jianpeng; Zeng, Weilin; Gu, Yuzhou; Rutherford, Shannon; Tong, Shilu; Ma, Wenjun

    2015-03-01

    Although erythromelalgia (EM) has been documented in the literature for almost 150 years, it is still poorly understood. To overcome this limitation, we examined the spatial distribution of epidemic EM, and explored the association between temperature fluctuation and epidemic EM outbreaks in China. We searched all peer-reviewed literature on primary epidemic EM outbreaks in China. A two-stage model was used to characterize the relationship between temperature fluctuation and epidemic EM outbreaks. We observed that epidemic EM outbreaks were reported from 13 provinces during 1960-2014 and they mainly occurred between February and March in southern China. The majority of EM cases were middle school students, with a higher incidence rate in female and resident students. The major clinical characteristics of EM cases included burning, sharp, tingling and/or stinging pain in toes, soles and/or dorsum of feet, fever, erythema and swelling. A large ``V''-shaped fluctuation of daily average temperature (TM) observed during the epidemic EM outbreaks was significantly associated with the number of daily EM cases (β = 1.22, 95%CI: 0.66 ~ 1.79), which indicated that this ``V''-shaped fluctuation of TM probably triggered the epidemic EM outbreaks.

  8. Gaussian fluctuations in the two-dimensional BCS-BEC crossover: finite temperature properties

    NASA Astrophysics Data System (ADS)

    Bighin, G.; Salasnich, L.

    2016-02-01

    The role of fluctuations is enhanced in lower dimensionality systems: in a two dimensions off- diagonal long-range order is destroyed by the fluctuations at any finite temperature, drastically modifying the critical properties with respect to the three-dimensional counterpart. Recently two-dimensional systems of interacting fermions have been the subject of Montecarlo studies and experimental investigations, in particular an ultracold gas of attractive fermions with a widely tunable interaction due to a Feshbach resonance has been realized and the Berezinskii- Kosterlitz-Thouless transition has been observed. The present work deals with the theoretical description of an ultracold Fermi gas: we discuss the role of Gaussian fluctuations of the order parameter in the equation of state, in particular we take into account the first sound velocity, showing that the inclusion of order parameter fluctuations is needed in order to get the correct composite-boson limit in the strong-coupling regime. The theory is also compared with experimental data. Finally we focus on the superfluid density in the weak-coupling, intermediate and strong-coupling regimes at finite temperature, through which the Berezinskii-Kosterlitz-Thouless critical temperature is obtained.

  9. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    SciTech Connect

    H. Park; E. Mazzucato; T. Munsat; C.W. Domier; M. Johnson; N.C. Luhmann, Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-05-07

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q {approx} 1 surface for the first time.

  10. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  11. Occupation number and fluctuations in the finite-temperature Bose-Hubbard model

    SciTech Connect

    Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.

    2004-07-01

    We study the occupation numbers and number fluctuations of ultracold atoms in deep optical lattices for finite-temperatures within the Bose-Hubbard model. Simple analytical expressions for the mean occupation number and number fluctuations are obtained in the weak-hopping regime using an interpolation between results from different perturbation approaches in the Mott-insulator and superfluid phases. With this approach the magnitude of number fluctuations under a wide range of experimental conditions can be estimated and the properties of the finite-temperature phase diagram can be studied. These analytical results are compared to exact one-dimensional numerical calculations using a finite temperature variant of the density-matrix renormalization group (DMRG) method and found to have a high degree of accuracy. We find very good agreement, also in the crossover 'thermal' region. We also analyze the influence of finite temperature on the behavior of the system in the vicinity of the zero-temperature phase transition, in one, two, and three dimensions.

  12. Upper temperature tolerance of loach minnow under acute, chronic, and fluctuating thermal regimes

    USGS Publications Warehouse

    Widmer, A.M.; Carveth, C.J.; Bonar, Scott A.; Simms, J.R.

    2006-01-01

    We used four methods to estimate the upper lethal temperature of loach minnow Rhinichthys cobitis: the lethal thermal method (LTM), chronic lethal method (CLM), acclimated chronic exposure (ACE) method with static temperatures, and ACE method with diel temperature fluctuations. The upper lethal temperature of this species ranged between 32??C and 38??C, depending on the method and exposure time; however, temperatures as low as 28??C resulted in slowed growth compared with the control groups. In LTM trials, we increased temperatures 0.3??C/min and death occurred at 36.8 ?? 0.2??C (mean ?? SE) for fish (37-19 mm total length) acclimated to 30??C and at 36.4 ?? 0.07??C for fish acclimated to 25??C. In CLM trials, temperatures were increased more slowly (1??C/d), allowing fish to acclimate. Mean temperature at death was 33.4 ?? 0.1??C for fish 25-35 mm and 32.9 ?? 0.4??C for fish 45-50 mm. In the ACE experiment with static temperatures, we exposed fish for 30 d to four constant temperatures. No fish (20-40 mm) survived beyond 30 d at 32??C and the 30-d temperature lethal to 50% of the test animals was 30.6??C. Growth at static 28??C and 30??C was slower than growth at 25??C, suggesting that fish were stressed at sublethal temperatures. In ACE trials with diel temperature fluctuations of 4,6, and 10??C and a 32??C peak temperature, over 80% of fish (20-40 mm) survived 30 d. Although brief exposures to 32??C were not lethal, the growth of fish in the three fluctuating-temperature treatments was significantly less than the growth at the ambient temperature (25-29??C). To minimize thermal stress and buffer against temperature spikes, we recommend that loach minnow habitat be managed to avoid water temperatures above 28??C. ?? Copyright by the American Fisheries Society 2006.

  13. Effects of fluctuating temperature on mortality, stress, and energy reserves of juvenile coho salmon

    SciTech Connect

    Thomas, R.E.; Gharrett, J.A.; Carls, M.G.; Rice, S.D.; Moles, A.; Korn, S.

    1986-01-01

    The effects of fluctuating diel temperature cycles on survival, growth, plasma cortisol and glucose concentrations, liver weight, and liver glycogen of juvenile coho salmon Oncorhynchus kisutch were determined. Temperature cycles (10-13/sup 0/, 9-15/sup 0/, 8-17/sup 0/, and 6.5-20/sup 0/C) were selected to stimulate observed temperatures in clear-cuts of southeastern Alaska. Different levels of feeding, including starvation, were used in each of the tests. LT50s (peak temperature within a cycle producing 50% mortality) were 28/sup 0/C for age-0 fish (350 mg) and 26/sup 0/ for age-II fish (22-g presmolts). Cyclic temperatures for 40 d, averaging 11/sup 0/C daily, did not influence growth of age-0 fish on any food ration as compared to controls held at a constant 11/sup 0/C. Plasma cortisol and glucose concentrations were significantly greater in fish maintained for 20 d in the 6.5-20/sup 0/C cycle but not different in fish in 10-13/sup 0/ and 9-15/sup 0/ cycles or a constant 11/sup 0/C. These elevated concentrations may be indicators of long-term stress. Plasma cortisol concentrations were lower in starved fish than in fed fish at all temperature regimes; however, fluctuating temperature did not enhance starvation effects on cortisol levels. Diel temperature cycles did not affect liver weights or liver glycogen concentrations.

  14. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-05-21

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature τ ≡ (T − T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

  15. Temperature reconstruction from the length fluctuations of small glaciers in the eastern Alps (northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Zecchetto, Stefano; Serandrei-Barbero, Rossana; Donnici, Sandra

    2016-09-01

    In this study, a linear model computing the air temperature fluctuations from the measured glacier snout fluctuations has been applied, for the first time, to three small glaciers in the western Tauern Alps (eastern Alps) in the period 1929-2011. The considered glaciers, with areas between 0.2 and 1.3 km^2 , are characterized by relevant time variations of their morphology, length and slope. The model requires the knowledge of two parameters: the glacier climate sensitivity C_s and the glacier response time τ both depending on the glacier morphological characteristics and on the precipitation. Applied to the glaciers assuming C_s and τ as in the original formulation, it underestimates the temperature increase of {≈ } 1.8°C derived over the whole period from the in situ data. Given the characteristics of these small glaciers, these parameters have been recalibrated by means of a non-linear least-square regression using an independent set of glaciers. Their mean value is of about 210 m/K and 3.8 years respectively. With the recalibrated values of the new glacier climate sensitivity C^*_s and response time τ ^* , the temperature fluctuations derived by the model reproduce well those obtained from the observed temperatures computed over the hydrological year, with linear correlations between 0.8 and 0.9. The increase of the modeled mean temperature over the whole period fits in with that derived from observed temperature. Considering that the length fluctuations of these small glaciers affect significantly their slope and length, we tested the impact in the model of a time dependent formulation of C_s and τ : the results indicate slight improvements both in the values of the correlation between the reconstructed and the observed temperature fluctuations and in the global temperature increase. Given the above value of climate sensitivity, the large retreat of the small alpine glaciers threatens their survival within a few decades, but the morphological changes in

  16. Local burst model of CMB temperature fluctuations: scattering in primordial hydrogen lines

    NASA Astrophysics Data System (ADS)

    Dubrovich, V. K.; Grachev, S. I.

    2015-10-01

    The propagation of an instantaneous burst of isotropic radiation from the time of its onset at some redshift z 0 to the time of its detection at the present epoch (at z = 0) is considered within the framework of a flat Universe. Thomson scattering by free electrons and scattering in primordial hydrogen lines (H α, H β, P α, and P β) are believed to be the sources of opacity, with the single-scattering albedo in the lines being calculated by taking into account the deexcitation of the upper levels of the transitions being considered under the action of background blackbody radiation. The profiles of these lines in the burst spectrum at the present epoch have been constructed for various z0 at various distances from the burst center. To a first approximation, these profiles do not depend on the burst radiation spectrum and intensity. It is shown that the lines are purely absorption ones at a sufficiently large distance, but an emission component can appear with decreasing distance, which strengthens as the distance decreases, while the absorption component weakens. The absorption depth in the combined profile can reach 2 ×10-4 for the H α and H β lines and 7 × 10-6 for the P α and P β lines. In this case, the relative amplitude of the temperature fluctuations lies within the range 10-7-10-9. The calculations have been performed for bursts with different characteristic initial sizes. At the same z 0, the hydrogen line profiles essentially coincide for sizes smaller than some value, and the contrast of the lines decreases with increasing burst size for greater ones.

  17. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.

    PubMed

    Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James

    2015-12-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of

  18. Response of New zealand mudsnails Potamopyrgus antipodarum to freezing and near freezing fluctuating water temperatures

    USGS Publications Warehouse

    Moffitt, Christine M.; James, Christopher A.

    2012-01-01

    We explored the resilience of the invasive New Zealand mudsnail Potamopyrgus antipodarum to fluctuating winter freezing and near-freezing temperature cycles in laboratory tests. Our goal was to provide data to confirm field observations of mortality and presumed mortality in stream habitats with fluctuating freezing to near-freezing temperatures. We tested individuals from 2 locations with distinctly different thermal regimes and population densities. One location had low snail densities and water temperatures with strong diel and seasonal water variation. The other location had high snail densities and nearly constant water temperatures. Groups of individuals from both locations were tested in each of 3 laboratory-created diel thermal cycles around nominal temperatures of 0, 2, or 4°C. Mortality occurred in cycles around 0°C in both populations, and little to no mortality occurred at temperatures >0°C. Individuals from both sources held in diel 0°C cycles for 72 h showed 100% mortality. Our findings support observations from published field studies that survival was limited in infested habitats subject to freezing temperatures.

  19. Gas Temperature Measurements of Fluctuating Coal - MHD Plasmas Using Modified Line Reversal.

    NASA Astrophysics Data System (ADS)

    Winkleman, Bradley Carl

    The technique of modified line reversal is investigated and developed to allow accurate measurements on fluctuating coal fired magnetohydrodynamic plasmas and flows. Generalized modified line reversal equations applicable to any geometry and optical system are developed and presented. The generalized equations are specialized to the two most common optical systems, focussed and collimated, employed for modified line reversal measurements. Approximations introduced by specializing to the specific optical systems are investigated. Vignetting of the optical system images is shown to introduce large biases in the temperature measurement for certain optical configurations commonly applied. It is shown that symmetric optical systems are unacceptable for line reversal measurements. The errors introduced by non-simultaneous measurement of the required line reversal parameters due to rapidly fluctuating plasma characteristics are characterized. Line reversal signal and temperature measurements made on a coal fired MHD plasma are used to quantify the error in the temperature measurement due to non-simultaneous sampling of the measured line reversal parameters. A simple modified line reversal system based on interference filters and photodiodes that employs spatial separation to obtain the required line reversal parameters is described. Gas temperatures measured with devices using both the spatial and temporal separation techniques are compared. Modified line reversal temperature measurements are compared to theoretically predicted temperatures as well as CARS and high velocity thermocouple temperature measurements.

  20. Temperature fluctuations and infrared emission from dust particles in a hot gas

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1986-01-01

    In this paper, the effect of temperature fluctuations in very small dust particles caused by electronic collisions with an ambient hot gas, is calculated. The dust-temperature distribution differs strongly from that derived on the basis of equilibrium heating models, peaking at lower temperatures in the stochastically heated case. The resulting infrared spectrum is broadened at short wavelengths, giving much more emission than expected from equilibrium calculations, and at long wavelengths exhibits a lower color temperature. Dust-temperature fluctuations are thus expected to play an important role in determining the infrared spectrum of dusty, X-ray-emitting plasmas. A power-law distribution of grain radii extended to very small grain sizes will have a distinct infrared spectrum characterized by an infrared excess at the Wien side of the spectrum. This excess emission represents a high-temperature component in the spectrum, resulting from the stochastic heating of very small dust particles. Its magnitude depends on the grain-size distribution and the temperature and density of the ambient hot gas. This excess emission may be observed by IRAS in supernova remnants and rich clusters of galaxies.

  1. Measurements of density, temperature, and their fluctuations in turbulent supersonic flow using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, Douglas G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.

  2. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Freethy, S. J.; Conway, G. D.; Classen, I.; Creely, A. J.; Happel, T.; Köhn, A.; Vanovac, B.; White, A. E.

    2016-11-01

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρtor = 0.82, 0.75, and 0.68, respectively.

  3. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    PubMed

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  4. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission.

    PubMed

    Freethy, S J; Conway, G D; Classen, I; Creely, A J; Happel, T; Köhn, A; Vanovac, B; White, A E

    2016-11-01

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρtor = 0.82, 0.75, and 0.68, respectively.

  5. Discriminating low frequency components from long range persistent fluctuations in daily atmospheric temperature variability

    NASA Astrophysics Data System (ADS)

    Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.

    2009-07-01

    This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.

  6. Discriminating low frequency components from long range persistent fluctuations in daily atmospheric temperature variability

    NASA Astrophysics Data System (ADS)

    Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.

    2009-02-01

    This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.

  7. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated Electron Cyclotron Emission

    NASA Astrophysics Data System (ADS)

    Freethy, S.; Conway, G. D.; Classen, I.; Creely, A. J.; Happel, T.; Vanovac, B.; White, A. E.; ASDEX Upgrade Team

    2016-10-01

    First measurements of core (r/a < 0.95) turbulent electron temperature fluctuations made on the ASDEX Upgrade (AUG) tokamak using a Correlation Electron Cyclotron Emission (CECE) technique are presented. Validation of gyro-kinetic models against measurements of the underlying turbulent micro-structure are essential for developing predictive capabilities for future devices. In tokamak plasmas, turbulent temperature fluctuations are sufficiently broadband ( 0.5 MHz) and low-amplitude ( 1%) that conventional radiometer techniques are fundamentally unable to detect them and a correlation technique is required to further extract the signals. An application of the spectral decorrelation method had been designed and built for AUG. This CECE radiometer shares an optical path with a reflectometer and is sensitive to wavenumbers perpendicular to the magnetic field k⊥ up to 0.76 cm-1 . An upgrade to the focusing mirror will increase this range to k⊥ up to 1.4 cm-1. Measurements in Helium plasmas have been made at three radial locations simultaneously, providing a profile of the temperature fluctuation amplitude in the outer core of Electron Cyclotron Resonance Heated heated L-mode plasmas. New results and future plans will be presented. This work is supported by the US DOE under Grant DE-SC0006419.

  8. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics.

    PubMed

    Stadler, A M; Garvey, C J; Bocahut, A; Sacquin-Mora, S; Digel, I; Schneider, G J; Natali, F; Artmann, G M; Zaccai, G

    2012-11-07

    Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.

  9. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    PubMed

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  10. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  11. Temperature dependence of universal fluctuations in the two-dimensional harmonic XY model.

    PubMed

    Palma, G

    2006-04-01

    We compute exact analytical expressions for the skewness and kurtosis in the two-dimensional harmonic XY model. These quantities correspond to the third and fourth normalized moments of the probability density function (PDF) of the magnetization of the model. From their behavior, we conclude that they depend explicitly on the system temperature even in the thermodynamic limit, and hence the PDF itself must depend on it. Our results correct the hypothesis called universal fluctuations, they confirm and extend previous results which showed a T dependence of the PDF, including perturbative expansions within the XY model up to first order in temperature.

  12. Making cosmic microwave background temperature and polarization maps with MADAM

    NASA Astrophysics Data System (ADS)

    Keihänen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Sirviö, A.-S.

    2010-02-01

    MADAM is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the form of a noise prior. The method in its early form was presented in an earlier work by Keihänen et al. (2005, MNRAS, 360, 390). In this paper we present an update of the method, extended to non-averaged data, and include polarization. In this method the baseline length is a freely adjustable parameter, and destriping can be performed at a different map resolution than that of the final maps. We show results obtained with simulated data. This study is related to Planck LFI activities.

  13. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  14. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  15. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations.

    PubMed

    Dai, Xiaojiao; Jiang, Yanyi; Hang, Chao; Bi, Zhiyi; Ma, Longsheng

    2015-02-23

    The temperature stability of optical reference cavities is significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In this paper, the thermal time constant and thermal sensitivity of reference cavities are analyzed when reference cavities respond to environmental perturbations via heat transfer of thermal conduction and thermal radiation separately. The analysis as well as simulation results indicate that a reference cavity enclosed in multiple layers of thermal shields with larger mass, higher thermal capacity and lower emissivity is found to have a larger thermal time constant and thus a smaller sensitivity to environmental temperature perturbations. The design of thermal shields for reference cavities may vary according to experimentally achievable temperature stability and the coefficient of thermal expansion of reference cavities. A temperature fluctuation-induced length instability of reference cavities as low as 6 × 10(-16) on a day timescale can be achieved if a two-layer thermal shield is inserted between a cavity with the coefficient of thermal expansion of 1 × 10(-10) /K and an outer vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours.

  16. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  17. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST.

    PubMed

    Cao, Qifo; Liu, Yong; Zhao, Hailin; Zhou, Tianfu; Ti, Ang; Hu, Liqun

    2016-11-01

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R - R0)/a, R0 = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation with a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of kθ < 2.4 cm(-1). The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).

  18. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

    NASA Astrophysics Data System (ADS)

    Cao, Qifo; Liu, Yong; Zhao, Hailin; Zhou, Tianfu; Ti, Ang; Hu, Liqun

    2016-11-01

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R - R0)/a, R0 = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation with a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of kθ < 2.4 cm-1. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).

  19. Ultrafast spectroscopy diagnostic to measure localized ion temperature and toroidal velocity fluctuations

    SciTech Connect

    Uzun-Kaymak, I. U.; Fonck, R. J.; McKee, G. R.; Schoenbeck, N.; Smith, D.; Winz, G.; Yan, Z.

    2010-10-15

    A dual-channel high-efficiency, high-throughput custom spectroscopic system has been designed and implemented at DIII-D to measure localized ion thermal fluctuations associated with drift wave turbulence. A large-area prism-coupled transmission grating and high-throughput collection optics are employed to observe C VI emission centered near {lambda}=529 nm. The diagnostic achieves 0.25 nm resolution over a 2.0 nm spectral band via eight discrete spectral channels. A turbulence-relevant time resolution of 1 {mu}s is achieved using cooled high-speed avalanche photodiodes and ultralow-noise preamplifiers. The system sensitivity is designed to provide measurements of normalized ion temperature fluctuations on the order of {delta}T{sub i}/T{sub i}{<=}1%.

  20. Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen's slope approach

    NASA Astrophysics Data System (ADS)

    Atta-ur-Rahman; Dawood, Muhammad

    2017-02-01

    This article deals with the spatio-statistical analysis of temperature trend using Mann-Kendall trend model (MKTM) and Sen's slope estimator (SSE) in the eastern Hindu Kush, north Pakistan. The climate change has a strong relationship with the trend in temperature and resultant changes in rainfall pattern and river discharge. In the present study, temperature is selected as a meteorological parameter for trend analysis and slope magnitude. In order to achieve objectives of the study, temperature data was collected from Pakistan Meteorological Department for all the seven meteorological stations that falls in the eastern Hindu Kush region. The temperature data were analysed and simulated using MKTM, whereas for the determination of temperature trend and slope magnitude SSE method have been applied to exhibit the type of fluctuations. The analysis reveals that a positive (increasing) trend in mean maximum temperature has been detected for Chitral, Dir and Saidu Sharif met stations, whereas, negative (decreasing) trend in mean minimum temperature has been recorded for met station Saidu Sharif and Timergara. The analysis further reveals that the concern variation in temperature trend and slope magnitude is attributed to climate change phenomenon in the region.

  1. Movement of Five Nematode Species through Sand Subjected to Natural Temperature Gradient Fluctuations

    PubMed Central

    Robinson, A. F.

    1994-01-01

    Temperature gradient fluctuations that occur naturally as a result of heating and cooling of the soil surface were reproduced within 15-cm-d, 15-cm-long acrylic tubes filled with moist sand. Sunny and rainy periods during the late summer in eastern Texas were simulated. Five ecologically different nematode species were adapted to fluctuating temperatures for 20-36 hours at a simulated depth of 12.5 cm before being injected simultaneously into the centers of tubes at that depth. When heat waves were propagated horizontally to eliminate gravitational effects, the movement of Ditylenchus phyllobius, Steinernema glaseri, and Heterorhabditis bacteriophora relative to the thermal surface was rapid and largely random. However, Rotylenchulus reniformis moved away from and Meloidogyne incognita moved toward the thermal surface. When heat waves were propagated upward or downward, responses to temperature were the same as when propagated horizontally, irrespective of gravity. The initial direction of movement 1.5 hours after introduction to 20-era-long tubes at five depths at five intervals within a 24-hour cycle indicated that M. incognita moved away from and R. reniformis moved toward the temperature to which last exposed. Differences in movement of the five species tested relative to gravity appeared related to body length, with the smallest nematodes moving downward and the largest moving upward. PMID:19279868

  2. Rayleigh Scattering Diagnostic for Measurement of Temperature, Velocity, and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.

  3. Quasi-linear theory of electron density and temperature fluctuations with application to MHD generators and MPD arc thrusters

    NASA Technical Reports Server (NTRS)

    Smith, M.

    1972-01-01

    Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.

  4. Quasi-linear theory of electron density and temperature fluctuations with application to MHD generators and MPD arc thrusters.

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1972-01-01

    Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.

  5. Diurnal temperature fluctuation effects on potatoes grown with 12 hr photoperiods

    NASA Technical Reports Server (NTRS)

    Bennett, S. M.; Tibbitts, T. W.; Cao, W.

    1991-01-01

    This study was designed to characterize the growth responses of potato (Solanum tuberosum L.) to diurnal temperature fluctuations. Potato plants of two cultivars, Norland and Denali, were grown for 90 days under 12 hr photoperiod in walk-in growth rooms at the University of Wisconsin Biotron. The alternating temperature was 22 C light/14 C dark and compared to a constant 18 C as control. At all temperature regimes vapor pressure deficit was maintained at 0.62 kPa (70% relative humidity [correction of humdidity] at 18 C). Plant height, plant dry weight, tuber dry weight, and harvest index were overall greater under the warm light/cool dark alternating temperatures than under the constant temperature. The differences between temperature treatments were greater for Denali than for Norland. Alternating temperatures increased Denali tuber weights by 25%, but no significant increase was found with Norland. Also the total plant weight was increased over 20% with Denali, but increased with Norland in only one of the two replications of the experiment. This study documents that alternating temperatures are a benefit to some cultivars but may not be of benefit to all cultivars.

  6. [Responses of Chinese pine tree ring in Shenyang suburb (Fu Mausoleum) to global temperature fluctuation].

    PubMed

    Chen, Zhen-Ju; He, Xing-Yuan; Chen, Wei; Sun, Yu; Zhang, Chun-Tao; Fu, Yin-Dong; Tian, Wei; Liu, Tie-Hong

    2007-09-01

    In this paper, the correlations between the variations of Chinese pine (Pinus tabulaeformis Carr.) tree ring width in Shenyang suburb (Fu Mausoleum) and the local temperature variables, Global Surface Air Temperature Anomaly (GSATA) from 1880 to 2004, Global Land-Ocean Temperature (GLOTI) from 1880 to 2004 and North Hemisphere Temperature Anomaly (NHTA) from 1880 to 2004 were studied. Some close correlations were detected, and the local temperature variables, GSATA, GLOTI and NHTA had some similar influences on the Chinese pine tree ring width. The air temperature in last winter (December and January) and in spring (April and May) affected the growth of Chinese pine significantly (P < 0.05). There existed a 3-8-year periodicity of the variation of Chinese pine tree ring width and the GSATA, GLOTI and NHTA, and the 19.3-year and 23.2-year quasi-periodicity of the variation of Chinese pine tree ring width corresponded with the 20.8-year quasi-periodicity of GSATA, GLOTI and NHTA. This study suggested that the Chinese pine tree ring width in Shenyang Fu Mausoleum had positive correlations with global-scale temperature fluctuation, and the temperature increase in the past had a positive effect on the Chinese pine growth.

  7. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Rhodes, T. L.; Carter, T. A.; McKee, G. R.; Shafer, M. W.; Staebler, G. M.; Burrell, K. H.; DeBoo, J. C.; Prater, R.

    2010-02-15

    New measurements show that long-wavelength (k{sub t}hetarho{sub s}<0.5) electron temperature fluctuations can play an important role in determining electron thermal transport in low-confinement mode (L-mode) tokamak plasmas. In neutral beam-heated L-mode tokamak plasmas, electron thermal transport and the amplitude of long-wavelength electron temperature fluctuations both increase in cases where local electron cyclotron heating (ECH) is used to modify the plasma profiles. In contrast, the amplitude of simultaneously measured long-wavelength density fluctuations does not significantly increase. Linear stability analysis indicates that the ratio of the trapped electron mode (TEM) to ion temperature gradient (ITG) mode growth rates increases in the cases with ECH. The increased importance of the TEM drive relative to the ITG mode drive in the cases with ECH may be associated with the increases in electron thermal transport and electron temperature fluctuations.

  8. Determination of humidity and temperature fluctuations based on MOZAIC data and parametrisation of persistent contrail coverage for general circulation models

    NASA Astrophysics Data System (ADS)

    Gierens, K. M.; Schumann, U.; Smit, H. G. J.; Helten, M.; Zängl, G.

    1997-08-01

    Humidity and temperature fluctuations at pressure levels between 166 and 290 hPa on the grid scale of general circulation models for a region covered by the routes of airliners, mainly over the Atlantic, have been determined by evaluation of the data obtained with almost 2000 flights within the MOZAIC programme. It is found that the distributions of the fluctuations cannot be modelled by Gaussian distributions, because large fluctuations appear with a relatively high frequency. Lorentz distributions were used for the analytical representation of the fluctuation distributions. From these a joint probability distribution has been derived for simultaneous temperature and humidity fluctuations. This function together with the criteria for the formation and persistence of contrails are used to derive the maximum possible fractional coverage of persistent contrails in a grid cell of a GCM. This can be employed in a statistical formulation of contrail appearance in a climate model.

  9. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    DOE PAGES

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  10. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    SciTech Connect

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  11. Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Massey, G. A.; Lemon, C. J.

    1984-01-01

    A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.

  12. The influence of temperature fluctuations on hot-wire measurements in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Örlü, Ramis; Malizia, Fabio; Cimarelli, Andrea; Schlatter, Philipp; Talamelli, Alessandro

    2014-07-01

    There are no measurement techniques for turbulent flows capable of reaching the versatility of hot-wire probes and their frequency response. Nevertheless, the issue of their spatial resolution is still a matter of debate when it comes to high Reynolds number near-wall turbulence. Another, so far unattended, issue is the effect of temperature fluctuations—as they are, e.g. encountered in non-isothermal flows—on the low and higher-order moments in wall-bounded turbulent flows obtained through hot-wire anemometry. The present investigation is dedicated to document, understand, and ultimately correct these effects. For this purpose, the response of a hot-wire is simulated through the use of velocity and temperature data from a turbulent channel flow generated by means of direct numerical simulations. Results show that ignoring the effect of temperature fluctuations, caused by temperature gradients along the wall-normal direction, introduces—despite a local mean temperature compensation of the velocity reading—significant errors. The results serve as a note of caution for hot-wire measurements in wall-bounded turbulence, and also where temperature gradients are more prevalent, such as heat transfer measurements or high Mach number flows. A simple correction scheme involving only mean temperature quantities (besides the streamwise velocity information) is finally proposed that leads to a substantial bias error reduction.

  13. Toxin production and growth of pathogens subjected to temperature fluctuations simulating consumer handling of cold cuts.

    PubMed

    Røssvoll, Elin; Rønning, Helene Thorsen; Granum, Per Einar; Møretrø, Trond; Hjerpekjøn, Marianne Røine; Langsrud, Solveig

    2014-08-18

    It is crucial for the quality and safety of ready-to-eat (RTE) foods to maintain the cold chain from production to consumption. The effect of temperature abuse related to daily meals and elevated refrigerator temperatures on the growth and toxin production of Bacillus cereus, Bacillus weihenstephanensis and Staphylococcus aureus and the growth of Listeria monocytogenes and Yersinia enterocolitica was studied. A case study with temperature loggings in the domestic environment during Easter and Christmas holidays was performed to select relevant time and temperature courses. A model for bacterial surface growth on food using nutrient agar plates exposed to variations in temperatures was used to simulate food stored at different temperatures and exposed to room temperature for short periods of time. The results were compared with predicted growth using the modeling tool ComBase Predictor. The consumers exposed their cold cuts to room temperatures as high as 26.5°C with an average duration of meals was 47 min daily for breakfast/brunch during the vacations. Short (≤ 2 h) daily intervals at 25°C nearly halved the time the different pathogens needed to reach levels corresponding to the levels associated with human infection or intoxication, compared with the controls continuously stored at refrigerator temperature. Although the temperature fluctuations affected growth of both B. weihenstephanensis and S. aureus, toxin production was only detected at much higher cell concentrations than what has been associated with human intoxications. Therefore, growth of L. monocytogenes and Y. enterocolitica was found to be the limiting factor for safety. In combination with data on temperature abuse in the domestic environment, modeling programs such as ComBase Predictor can be efficient tools to predict growth of some pathogens but will not predict toxin production.

  14. Electron Temperature Fluctuations Associated with the Weakly Coherent Mode in the Edge of I-mode Plasmas

    NASA Astrophysics Data System (ADS)

    White, A. E.; Phillips, P.; Whyte, D. G.; Hubbard, A. E.; Sung, C.; Hughes, J. W.; Dominguez, A.; Terry, J.; Cziegler, I.

    2012-03-01

    New measurements of electron temperature fluctuations associated with the weakly coherent mode (WCM) during improved mode, or I-mode plasmas at Alcator C-Mod are presented in this poster [A. E. White, et al. Nuclear Fusion, 51, 113005 (2011)]. The measurements are made with a 32-channel, high-resolution profile ECE radiometer. The WCM electron temperature fluctuations are localized to a 1 cm region inside the last closed flux surface. The WCM electron temperature fluctuation level is measured in several different I-mode discharges and is in the range 1-2%, which is up to an order of magnitude smaller than the WCM density fluctuation level. The WCM edge fluctuations observed in I-mode are believed to play a role in increasing particle transport but not energy transport in the edge of I-mode plasmas. The large difference between normalized density and electron temperature fluctuation amplitudes provides new evidence that the WCM fluctuations can separately affect energy and particle transport.

  15. Electron temperature fluctuations associated with the weakly coherent mode in the edge of I-mode plasmas

    NASA Astrophysics Data System (ADS)

    White, A. E.; Phillips, P.; Whyte, D. G.; Hubbard, A. E.; Sung, C.; Hughes, J. W.; Dominguez, A.; Terry, J.; Cziegler, I.

    2011-11-01

    New measurements of electron temperature fluctuations associated with the weakly coherent mode (WCM) during improved mode, or I-mode plasmas (Whyte et al 2010 Nucl. Fusion. 50 105005) at Alcator C-Mod (Marmar et al 2007 Fusion. Sci. Technol. 51 3261) are presented in this paper. The measurements are made with a 32-channel, high-resolution profile electron cyclotron emission radiometer. The WCM electron temperature fluctuations are localized to a 1 cm region inside the last closed flux surface. The WCM electron temperature fluctuation level is measured in several different I-mode discharges and is in the range 1%<\\tilde T_e/T_e<2% , which is an order of magnitude smaller than the WCM density fluctuation level. The WCM edge fluctuations observed in I-mode are believed to play a role in increasing particle transport but not energy transport in the edge of I-mode plasmas. The large difference between normalized density and electron temperature fluctuation amplitudes provides new evidence that the WCM fluctuations can separately affect energy and particle transport.

  16. Daily temperature fluctuations unpredictably influence developmental rate and morphology at a critical early larval stage in a frog

    PubMed Central

    2013-01-01

    Background Environmental temperature has profound consequences for early amphibian development and many field and laboratory studies have examined this. Most laboratory studies that have characterized the influence of temperature on development in amphibians have failed to incorporate the realities of diel temperature fluctuations (DTF), which can be considerable for pond-breeding amphibians. Results We evaluated the effects of different ecologically relevant ranges of DTF compared with effects of constant temperatures on development of embryos and larvae of the Korean fire-bellied toad (Bombina orientalis). We constructed thermal reaction norms for developmental stage, snout- vent length, and tail length by fitting a Gompertz-Gaussian function to measurements taken from embryos after 66 hours of development in 12 different constant temperature environments between 14°C and 36°C. We used these reaction norms as null models to test the hypothesis that developmental effects of DTF are more than the sum of average constant temperature effects over the distribution of temperatures experienced. We predicted from these models that growth and differentiation would be positively correlated with average temperature at low levels of DTF but not at higher levels of DTF. We tested our prediction in the laboratory by rearing B. orientalis embryos at three average temperatures (20°C, 24°C, and 28°C) and four levels of thermal variation (0°C, 6°C, 13°C, and 20°C). Several of the observed responses to DTF were significantly different from both predictions of the model and from responses in constant temperature treatments at the same average temperatures. At an average temperature of 24°C, only the highest level of DTF affected differentiation and growth rates, but at both cooler and warmer average temperatures, moderate DTF was enough to slow developmental and tail growth rates. Conclusions These results demonstrate that both the magnitude of DTF range and thermal

  17. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    SciTech Connect

    Finnemore, Douglas K.

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La2-xSrxCuO4-δ, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H $\\parallel$ c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below Tc, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the Tc0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La2-xSrxCuO4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to Tc. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξc becomes comparable to the spacing between adjacent CuO2 layers s at sufficiently high magnetic field near Hc2.

  18. Circadian fluctuation in heat production of young calves at different ambient temperatures in relation to posture.

    PubMed

    Schrama, J W; Noordhuizen, J P; Arieli, A; Brandsma, H A; van der Linden, J M; Verstegen, M W

    1994-03-01

    Circadian fluctuations in the effect of ambient temperature (Ta) on heat production (Htot) and its relation to posture were investigated in young calves in this study. Twenty-three 6-d-old Holstein-Friesian male calves were assigned to one of four Ta treatments: 5, 9, 13, or 18 degrees C. Heat production was measured per calf continuously every 9 min by indirect calorimetry for 5 d. The posture during these 9-min periods was derived from physical activity measurements by Doppler-radar meters. Heat production varied within a day; it was highest when calves were drinking (milk or water). The influence of Ta on Htot was larger for the light (including feeding periods) than for the dark phase of the day, being related to the larger Ta effect during the feeding periods. Lower critical temperatures (LCT) were 14.1, 15.2, and 16.8 degrees C and extra thermal heat productions below LCT (ETH) were 8.48, 8.28, and 11.55 kJ.kg-.75.d-1.C degrees-1 for the dark, the light (excluding feeding periods), and the feeding phase during the day, respectively. Time spent standing was not affected by Ta but varied during the day (24-h period). Averaged over Ta, 51% of the within day variation in Htot was accounted for by the calf's posture. Correction of Htot for the time spent standing reduced the difference in both ETH and LCT between phases of the day. The present study demonstrates that circadian fluctuations exist in the thermal requirements of young calves. Part of these fluctuations are related to within-day variation in time spent standing.

  19. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations.

    PubMed

    Wang, Xia; Tang, Sanyi; Cheke, Robert A

    2016-12-21

    An outbreak of dengue fever in Guangdong province in 2014 was the most serious outbreak ever recorded in China. Given the known positive correlation between the abundance of mosquitoes and the number of dengue fever cases, a stage structured mosquito model was developed to investigate the cause of the large abundance of mosquitoes in 2014 and its implications for outbreaks of the disease. Data on the Breteau index (number of containers positive for larvae per 100 premises investigated), temperature and precipitation were used for model fitting. The egg laying rate, the development rate and the mortality rates of immatures and adults were obtained from the estimated parameters. Moreover, effects of daily fluctuations of temperature on these parameters were obtained and the effects of temperature and precipitation were analyzed by simulations. Our results indicated that the abundance of mosquitoes depended not only on the total annual precipitation but also on the distribution of the precipitation. The daily mean temperature had a nonlinear relationship with the abundance of mosquitoes, and large diurnal temperature differences can reduce the abundance of mosquitoes. In addition, effects of increasing precipitation and temperature were interdependent. Our findings suggest that the large abundance of mosquitoes in 2014 was mainly caused by the distribution of the precipitation. In the perspective of mosquito control, our results reveal that it is better to clear water early and spray insecticide between April and August in case of limited resources.

  20. How to detect fluctuating stripes in the high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Kivelson, S. A.; Bindloss, I. P.; Fradkin, E.; Oganesyan, V.; Tranquada, J. M.; Kapitulnik, A.; Howald, C.

    2003-10-01

    This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for extracting information concerning such local order from experiments, with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems—an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are viewed as a form of micro phase separation. The authors present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.

  1. Air temperature drives 140 years of fluctuations at a major Greenlandic tidewater glacier.

    NASA Astrophysics Data System (ADS)

    Lea, James M.; Mair, Douglas WF; Nick, Faezeh M.; Rea, Brice R.; Nienow, Peter W.

    2014-05-01

    The primary controls on the fluctuations of tidewater glaciers are currently poorly understood. Both oceanic and atmospheric forcing mechanisms have been invoked to explain observed changes. Numerical modelling simulations have previously utilised only relatively short observational records for calibration and validation. Hence the longer term climatic controls on tidewater glacier stability are not well known. Herein we apply a 1-D numerical flow-band model with a crevasse water depth calving criterion (Nick et al., 2010) to Kangiata Nunaata Sermia (KNS), SW Greenland. We force the model using air and sea surface temperature records for the period 1871-2012. Model sensitivity to climate forcing was determined by varying climatic tuning coefficients using a Monte Carlo approach. The output from 1500 model runs was compared against observations of terminus position and glacier geometry from the last 140 years. The results of best-fit model runs were then used to evaluate the relative sensitivity of KNS to changes in atmospheric or oceanic forcing. Our results show that all best-fit model runs have tuning coefficients associated with strong atmospheric forcing, but do not all require strong oceanic forcing. This suggests that changes in air temperature are the primary driver of the terminus fluctuations of KNS from 1866-2012, and may be the principal climatic control on glacier stability for similar tidewater glaciers in Greenland.

  2. Measurement of temperature and density fluctuations in turbulence using an ultraviolet laser

    NASA Technical Reports Server (NTRS)

    Massey, G. A.

    1984-01-01

    Noninvasive measurement of density and temperature fluctuations in turbulent air flow was examined. The approach used fluorescence of oxygen molecules which are selectively excited by a tunable vacuum ultraviolet laser beam. The strength of the fluorescence signal and its dependence on laser wavelength vary with the density and temperature of the air in the laser beam. Because fluorescence can be detected at 90 degrees from the beam propagation direction, spatial resolution in three dimensions, rather than path-integrated measurements can be achieved. With spatial resolutions of the order of a millimeter and at supersonic air velocities it is necessary to perform each measurement in a time of the order of a microsecond; this is possible by by using laser pulses of ten nanosecond duration. In this method atmospheric O2 is excited by the emission of a tunable ArF excimer laser, and the fluorescence, which spans the 210 to 420 range, is detected by an ultraviolet phototube.

  3. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    PubMed

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  4. Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations.

    PubMed

    Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai

    2016-02-01

    It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.83±2.49% DW, 42.80±2.97% DW and 36.13±2.27% DW under different temperature fluctuation of 11 °C, 25 °C, 7 °C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations.

  5. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature.

    PubMed

    Nuin, Maider; Alfaro, Begoña; Cruz, Ziortza; Argarate, Nerea; George, Susie; Le Marc, Yvan; Olley, June; Pin, Carmen

    2008-10-31

    Kinetic models were developed to predict the microbial spoilage and the sensory quality of fresh fish and to evaluate the efficiency of a commercial time-temperature integrator (TTI) label, Fresh Check(R), to monitor shelf life. Farmed turbot (Psetta maxima) samples were packaged in PVC film and stored at 0, 5, 10 and 15 degrees C. Microbial growth and sensory attributes were monitored at regular time intervals. The response of the Fresh Check device was measured at the same temperatures during the storage period. The sensory perception was quantified according to a global sensory indicator obtained by principal component analysis as well as to the Quality Index Method, QIM, as described by Rahman and Olley [Rahman, H.A., Olley, J., 1984. Assessment of sensory techniques for quality assessment of Australian fish. CSIRO Tasmanian Regional Laboratory. Occasional paper n. 8. Available from the Australian Maritime College library. Newnham. Tasmania]. Both methods were found equally valid to monitor the loss of sensory quality. The maximum specific growth rate of spoilage bacteria, the rate of change of the sensory indicators and the rate of change of the colour measurements of the TTI label were modelled as a function of temperature. The temperature had a similar effect on the bacteria, sensory and Fresh Check kinetics. At the time of sensory rejection, the bacterial load was ca. 10(5)-10(6) cfu/g. The end of shelf life indicated by the Fresh Check label was close to the sensory rejection time. The performance of the models was validated under fluctuating temperature conditions by comparing the predicted and measured values for all microbial, sensory and TTI responses. The models have been implemented in a Visual Basic add-in for Excel called "Fish Shelf Life Prediction (FSLP)". This program predicts sensory acceptability and growth of spoilage bacteria in fish and the response of the TTI at constant and fluctuating temperature conditions. The program is freely

  6. Optical measurements of fluctuating temperatures in a supersonic turbulent flow using one- and two-photon, laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1984-01-01

    A laser-induced fluorescence technique has been developed that provides a practical means of nonintrusively measuring the instantaneous temperatures in low-temperature turbulent flows. The capabilities of the method are reviewed, and its application to a simple, two-dimensional, turbulent boundary-layer flow at Mach 2 is reported. Measurements of the average temperature distribution through the boundary layer and the magnitudes of temperature fluctuations about their average values are presented.

  7. Optical measurements of fluctuating temperatures in a supersonic turbulent flow using one- and two-photon, laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1984-01-01

    A laser-induced fluorescence technique was developed that provides a practical means of nonintrusively measuring the instantaneous temperatures in low-temperature turbulent flows. The capabilities of the method are reviewed, and its application to a simple, two-dimensional, turbulent boundary-layer flow at Mach 2 is reported. Measurements of the average temperature distribution through the boundary layer and the magnitudes of temperature fluctuations about their average values are presented.

  8. Effect of Diurnal Fluctuating versus Constant Temperatures on Germination of 445 Species from the Eastern Tibet Plateau

    PubMed Central

    Liu, Kun; Baskin, Jerry M.; Baskin, Carol C.; Bu, Haiyan; Du, Guozhen; Ma, Miaojun

    2013-01-01

    Germination response to fluctuating temperatures is a mechanism by which seeds detect gaps in vegetation canopies and depth of burial in soil, and it is very important for plants. Thus, studies on the effect of fluctuating temperature on germination at the community level are valuable for understanding community structure and biodiversity maintenance. We determined the effects of two alternating temperatures (5/25°C and 10/20°C) and one constant temperature (15°C) on seed germination of 445 species in a grassland community on the eastern Tibet Plateau. Seed mass was determined for each species, and data on habitat, type of life cycle, altitudinal distribution and functional group (graminoids or forbs) were obtained from the literature. Taking all species into account, alternating temperatures increased germination percentages regardless of amplitude. Overall, species growing in disturbed ground showed a significant germination response to temperature fluctuation, but those living in Alpine/subalpine meadow, forest margin /scrub, marshland and dry sunny slope habitats did not. Species distributed only at high elevations (>2000m) did not show a significant germination response to temperature fluctuation, whereas those occurring at both high and low elevations had a significant positive response. Germination of annuals/biennials was significantly promoted by 5/25°C, but not by 10/20°C, whereas germination of perennials was significantly promoted by both 5/25°C and 10/20°C. Small-seeded species were more likely than large-seeded species to respond positively to fluctuating temperatures. Germination of forbs had a positive response to temperature fluctuation, but germination of graminoids did not. Regeneration ability by seeds for about 36% of the species studied in the grassland can be increased by temperature fluctuation. The differential response among species to alternating vs. constant temperatures helps maintain community structure and biodiversity. A

  9. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  10. Steady state RANS simulations of temperature fluctuations in single phase turbulent mixing

    SciTech Connect

    Kickhofel, J.; Fokken, J.; Kapulla, R.; Prasser, H. M.

    2012-07-01

    Single phase turbulent mixing in nuclear power plant circuits where a strong temperature gradient is present is known to precipitate pipe failure due to thermal fatigue. Experiments in a square mixing channel offer the opportunity to study the phenomenon under simple and easily reproducible boundary conditions. Measurements of this kind have been performed extensively at the Paul Scherrer Inst. in Switzerland with a high density of instrumentation in the Generic Mixing Experiment (GEMIX). As a fundamental mixing phenomena study closely related to the thermal fatigue problem, the experimental results from GEMIX are valuable for the validation of CFD codes striving to accurately simulate both the temperature and velocity fields in single phase turbulent mixing. In the experiments two iso-kinetic streams meet at a shallow angle of 3 degrees and mix in a straight channel of square cross-section under various degrees of density, temperature, and viscosity stratification over a range of Reynolds numbers ranging from 5*10{sup 3} to 1*10{sup 5}. Conductivity measurements, using wire-mesh and wall sensors, as well as optical measurements, using particle image velocimetry, were conducted with high temporal and spatial resolutions (up to 2.5 kHz and 1 mm in the case of the wire mesh sensor) in the mixing zone, downstream of a splitter plate. The present paper communicates the results of RANS modeling of selected GEMIX tests. Steady-state CFD calculations using a RANS turbulence model represent an inexpensive method for analyzing large and complex components in commercial nuclear reactors, such as the downcomer and reactor pressure vessel heads. Crucial to real world applicability, however, is the ability to model turbulent heat fluctuations in the flow; the Turbulent Heat Flux Transport model developed by ANSYS CFX is capable, by implementation of a transport equation for turbulent heat fluxes, of readily modeling these values. Furthermore, the closure of the turbulent heat

  11. Information entropy of activation process: Application for low-temperature fluctuations of a myoglobin molecule

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.

    2015-11-01

    Activation process for unimolecular reaction has been considered by means of radiation theory. The formulae of information entropy of activation have been derived for the Boltzmann-Arrhenius model and the activation process model (APM). The physical meaning of this entropy has been determined. It is a measure of conversion of thermal radiation energy to mechanical energy that moves atoms in a molecule during elementary activation act. It is also a measure of uncertainty of this energy conversion. The uncertainty is due to unevenness of distribution function representing the activation process. It has been shown that Arrhenius dependence is caused by the entropy change. Efficiency comparison of the two models under consideration for low-temperature fluctuations of a myoglobin molecule structure shows that the APM should be favored over the Boltzmann-Arrhenius one.

  12. Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory

    NASA Astrophysics Data System (ADS)

    Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas

    2013-03-01

    The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.

  13. Damage Evolution in Al Wire Bonds Subjected to a Junction Temperature Fluctuation of 30 K

    NASA Astrophysics Data System (ADS)

    Agyakwa, Pearl A.; Yang, Li; Arjmand, Elaheh; Evans, Paul; Corfield, Martin R.; Johnson, C. Mark

    2016-07-01

    Ultrasonically bonded heavy Al wires subjected to a small junction temperature fluctuation under power cycling from 40°C to 70°C were investigated using a non-destructive three-dimensional (3-D) x-ray tomography evaluation approach. The occurrence of irreversible deformation of the microstructure and wear-out under such conditions were demonstrated. The observed microstructures consist of interfacial and inter-granular cracks concentrated in zones of stress intensity, i.e., near heels and emanating from interface precracks. Interfacial voids were also observed within the bond interior. Degradation rates of `first' and `stitch' bonds are compared and contrasted. A correlative microscopy study combining perspectives from optical microscopy with the x-ray tomography results clarifies the damage observed. An estimation of lifetime is made from the results and discussed in the light of existing predictions.

  14. The effects of eggshell temperature fluctuations during incubation on welfare status and gait score of broilers.

    PubMed

    Ipek, A; Sozcu, A

    2016-06-01

    The aim of the current study was to determine the effects of different eggshell temperatures (EST); low (33.3 to 36.7°C), control (37.8 to 38.2°C), and high (38.9 to 40.0°C) during 10 to 18 days of incubation on welfare status including foot pad dermatitis (FPD), hock dermatitis (HD) and feathering status, and gait score in broilers. Score 2, 4, and 5 of FPD were found to be similar among the treatment groups, whereas a score of 3 was found to be higher in the control and high EST groups (27.7% and 29.2%) compred to the low EST group (16.9%). The eggshell temperature fluctuations were significantly affected the incidence of HD, whereas broiler sex did not. All of the broilers in the high EST group had HD with various scores, while a percentage of 21.1% and 6.9% of broilers had the score 1 of HD in the low and control EST groups, respectively. Feathering status showed a difference between body parts including wing, neck, back, and vent and also a general mean score of broilers from low EST treatment had the highest score for feathering. A higher incidence of gait score was observed in broilers from the control EST treatment than low and high EST groups. This can be attributed to a higher live weight of broilers from the control EST group. On the other hand, the incidence of a gait score of 3 and 4 was found for broilers from control and high EST treatment groups. Male and female broilers from the high EST group had the higher gait score. In conclusion, gait score and welfare status of broilers were affected by fluctuations in EST between 10 and 18 days of incubation.

  15. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes << 7 × 10(exp -177 erg sq. cm/ s. We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  16. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Passaro, Andrea; LaGraff, John E.; Oldfield, Martin L. G.; Biagioni, Leonardo; Moss, Roger W.; Battelle, Ryan T.; Povinelli, Louis A. (Technical Monitor)

    2003-01-01

    The present research concerns the development of high-frequency pressure and temperature probes and related instrumentation capable of performing spectral characterization of unsteady pressure and temperature fluctuations over the 0.05 20 kHz range, at the exit of a gas turbine combustor operating at conditions close to nominal ones for large power generation turbomachinery. The probes used a transient technique pioneered at Oxford University; in order to withstand exposure to the harsh environment the probes were fitted on a rapid injection and cooling system jointly developed by Centrospazio CPR and Syracuse University. The experimental runs were performed on a large industrial test rig being operated by ENEL Produzione. The achieved results clearly show the satisfactory performance provided by this diagnostic tool, even though the poor location of the injection port prevented the tests from yielding more insight of the core flow turbulence characteristics. The pressure and temperature probes survived several dozen injections in the combustor hot jet, while consistently providing the intended high frequency performance. The apparatus was kept connected to the combustor during long duration firings, operating as an unobtrusive, self contained, piggy-back experiment: high frequency flow samplings were remotely recorded at selected moments corresponding to different combustor operating conditions.

  17. Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.

    1999-01-01

    We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.

  18. Development of a Technique for Measuring Local Electric Field Fluctuations in High Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Bakken, M. R.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.

    2016-10-01

    A novel diagnostic for measuring local electric field fluctuations in high temperature plasmas is being developed. It employs high-speed measurements of the spectral separation and/or line intensities of the motional Stark effect (MSE) Hα multiplet emitted from a low divergence, 80 keV diagnostic neutral beam. A spatial heterodyne spectrometer (SHS) coupled to a 500 kHz CMOS camera provides the high resolution ( 0.025 nm) and throughput (<=0.1 cm2str) required for the measurement. The Fizeau fringe pattern produced by the SHS provides the Fourier transform of the input spectrum. Line broadening due to the large collection lens at the tokamak can be compensated by phase correcting the resulting fringe pattern. Based on simple tokamak turbulence scalings, Ẽ /EMSE 10-3 is expected for the core plasma in present experiments. To observe these low fluctuation levels, cross-correlation between adjacent spatial points and/or simultaneously measured ñ will be employed to suppress photon noise that is comparable to the turbulent signal. The SHS Littrow wavenumber and grating constant can be chosen to reduce the number of detectors needed to resolve changes in the input spectrum. This allows multi-spatial point measurements using 4-6 discrete photodiodes each, with no loss in sensitivity to Ẽ /EMSE . To validate this diagnostic concept, the diagnostic neutral beam will be fired into a magnetized target plasma (B <=0.5 T) comparable to a tokamak edge, with Ẽ applied parallel or perpendicular to EMSE via biased electrodes. Work supported by US DOE Grant DE-FG02-89ER53296.

  19. CROSS-CORRELATING COSMIC INFRARED AND X-RAY BACKGROUND FLUCTUATIONS: EVIDENCE OF SIGNIFICANT BLACK HOLE POPULATIONS AMONG THE CIB SOURCES

    SciTech Connect

    Cappelluti, N.; Comastri, A.; Kashlinsky, A.; Mather, J. C.; Moseley, S. H.; Arendt, R. G.; Finoguenov, A.; Fazio, G. G.; Hasinger, G.; Miyaji, T.

    2013-05-20

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an {approx_equal} 8' Multiplication-Sign 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 {mu}m and 4.5 {mu}m and the Chandra [0.5-2] keV data has been detected, at angular scales {approx}> 20'', with an overall significance of {approx_equal} 3.8{sigma} and {approx_equal} 5.6{sigma}, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 {mu}m and 4.5 {mu}m magnitudes m{sub AB} {approx}> 25-26 and [0.5-2] keV X-ray fluxes <<7 Multiplication-Sign 10{sup -17} erg cm{sup 2} s{sup -1}. We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations.

  20. A high speed data acquisition and analysis system for transonic velocity, density, and total temperature fluctuations

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1988-01-01

    The high speed Dynamic Data Acquisition System (DDAS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAS replaces both a recording mechanism and a separate data processing system. The data acquisition and data reduction process has been combined within DDAS. DDAS receives input from hot wires and anemometers, amplifies and filters the signals with computer controlled modules, and converts the analog signals to digital with real-time simultaneous digitization followed by digital recording on disk or tape. Automatic acquisition (either from a computer link to an existing wind tunnel acquisition system, or from data acquisition facilities within DDAS) collects necessary calibration and environment data. The generation of hot wire sensitivities is done in DDAS, as is the application of sensitivities to the hot wire data to generate turbulence quantities. The presentation of the raw and processed data, in terms of root mean square values of velocity, density and temperature, and the processing of the spectral data is accomplished on demand in near-real-time- with DDAS. A comprehensive description of the interface to the DDAS and of the internal mechanisms will be prosented. A summary of operations relevant to the use of the DDAS will be provided.

  1. Effects of fluctuating moisture and temperature regimes on the persistence of quiescent conidia of Isaria fumosorosea.

    PubMed

    Bouamama, N; Vidal, C; Fargues, J

    2010-10-01

    Conidia of Isaria fumosorosea were submitted to three regimes of temperature and moisture to simulate microclimatic conditions which prevail in temperate (43% RH and 28 degrees C to 98% RH and 15 degrees C), subtropical (75% RH and 35 degrees C to 98% RH and 25 degrees C), and arid areas (13% RH and 40 degrees C to 33% RH and 15 degrees C) with daily fluctuating cycles. Germination, conidial viability, and virulence to Spodoptera frugiperda larvae were less affected after 20 days exposure under temperate cycling conditions than under arid and subtropical conditions. Exposure of conidia for 20 days to constant nocturnal simulated conditions of any tested regime weakly affected conidial persistence, whereas diurnal conditions exerted the most detrimental effects of high temperatures. However, when tested at both 45 degrees C and 50 degrees C at 33% RH for 160 h, the persistence of I. fumosorosea conidia was relatively higher than expected. These results emphasize that climatic conditions prevailing in environments and ecological fitness of fungal isolates have to be taken into account for assessing microbial control strategies.

  2. Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth.

    PubMed

    Chown, Steven L; Haupt, Tanya M; Sinclair, Brent J

    2016-02-01

    Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate - temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0-10 °C, 5-15 °C, and 10-20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3-14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5-15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.

  3. Comparison of three approaches to model grapevine organogenesis in conditions of fluctuating temperature, solar radiation and soil water content

    PubMed Central

    Pallas, B.; Loi, C.; Christophe, A.; Cournède, P. H.; Lecoeur, J.

    2011-01-01

    Background and Aims There is increasing interest in the development of plant growth models representing the complex system of interactions between the different determinants of plant development. These approaches are particularly relevant for grapevine organogenesis, which is a highly plastic process dependent on temperature, solar radiation, soil water deficit and trophic competition. Methods The extent to which three plant growth models were able to deal with the observed plasticity of axis organogenesis was assessed. In the first model, axis organogenesis was dependent solely on temperature, through thermal time. In the second model, axis organogenesis was modelled through functional relationships linking meristem activity and trophic competition. In the last model, the rate of phytomer appearence on each axis was modelled as a function of both the trophic status of the plant and the direct effect of soil water content on potential meristem activity. Key Results The model including relationships between trophic competition and meristem behaviour involved a decrease in the root mean squared error (RMSE) for the simulations of organogenesis by a factor nine compared with the thermal time-based model. Compared with the model in which axis organogenesis was driven only by trophic competition, the implementation of relationships between water deficit and meristem behaviour improved organogenesis simulation results, resulting in a three times divided RMSE. The resulting model can be seen as a first attempt to build a comprehensive complete plant growth model simulating the development of the whole plant in fluctuating conditions of temperature, solar radiation and soil water content. Conclusions We propose a new hypothesis concerning the effects of the different determinants of axis organogenesis. The rate of phytomer appearance according to thermal time was strongly affected by the plant trophic status and soil water deficit. Futhermore, the decrease in meristem

  4. Structural instability and phase co-existence driven non-Gaussian resistance fluctuations in metal nanowires at low temperatures

    NASA Astrophysics Data System (ADS)

    Bid, Aveek; Raychaudhuri, A. K.

    2016-11-01

    We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ˜30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of 1/f behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy {E}{{a}}˜ 35 meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.

  5. Structural instability and phase co-existence driven non-Gaussian resistance fluctuations in metal nanowires at low temperatures.

    PubMed

    Bid, Aveek; Raychaudhuri, A K

    2016-11-11

    We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ∼30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of [Formula: see text] behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy [Formula: see text] meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.

  6. Physiological fluctuations in brain temperature as a factor affecting electrochemical evaluations of extracellular glutamate and glucose in behavioral experiments.

    PubMed

    Kiyatkin, Eugene A; Wakabayashi, Ken T; Lenoir, Magalie

    2013-05-15

    The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1-4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals.

  7. Simulated Seasonal Photoperiods and Fluctuating Temperatures Have Limited Effects on Blood Feeding and Life History in Aedes triseriatus (Diptera: Culicidae)

    PubMed Central

    Westby, K. M.

    2015-01-01

    Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255

  8. Finite-temperature and finite-time scaling of the directed polymer free energy with respect to its geometrical fluctuations.

    PubMed

    Agoritsas, Elisabeth; Bustingorry, Sebastian; Lecomte, Vivien; Schehr, Grégory; Giamarchi, Thierry

    2012-09-01

    We study the fluctuations of the directed polymer in 1+1 dimensions in a Gaussian random environment with a finite correlation length ξ and at finite temperature. We address the correspondence between the geometrical transverse fluctuations of the directed polymer, described by its roughness, and the fluctuations of its free energy, characterized by its two-point correlator. Analytical arguments are provided in favor of a generic scaling law between those quantities, at finite time, nonvanishing ξ, and explicit temperature dependence. Numerical results are in good agreement both for simulations on the discrete directed polymer and on a continuous directed polymer (with short-range correlated disorder). Applications to recent experiments on liquid crystals are discussed.

  9. Local atom-number fluctuations in quantum gases at finite temperature

    SciTech Connect

    Klawunn, M.; Recati, A.; Stringari, S.; Pitaevskii, L. P.

    2011-09-15

    We investigate the number fluctuations in small cells of quantum gases pointing out important deviations from the thermodynamic limit fixed by the isothermal compressibility. Both quantum and thermal fluctuations in weakly as well as highly compressible fluids are considered. For the two-dimensional (2D) superfluid Bose gas we find a significant quenching of fluctuations with respect to the thermodynamic limit, in agreement with recent experimental findings. An enhancement of the thermal fluctuations is instead predicted for the 2D dipolar superfluid Bose gas, which becomes dramatic when the size of the sample cell is of the order of the wavelength of the rotonic excitation induced by the interaction.

  10. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Li, Y.; de Noblet-Ducoudré, N.; Davin, E. L.; Zeng, N.; Motesharrei, S.; Li, S. C.; Kalnay, E.

    2015-10-01

    Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extra-tropics. In this study, we use an earth system model to investigate how deforestation at various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends non-linearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions, but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decreases in absorbed shortwave radiation due to increased albedo and decreases in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate on modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry) climate favors larger (smaller) evapotranspiration change, thus warming (cooling) is more likely to occur. Further analysis on the contribution of individual biophysical factors (albedo, roughness, and evapotranspiration efficiency) reveals that the latitudinal signature embodied in the temperature change probably result from the background climate conditions rather than the initial biophysical perturbation.

  11. The cosmic microwave background radiation temperature at a redshift of 2.34.

    PubMed

    Srianand, R; Petitjean, P; Ledoux, C

    The existence of the cosmic microwave background radiation is a fundamental prediction of hot Big Bang cosmology, and its temperature should increase with increasing redshift. At the present time (redshift z = 0), the temperature has been determined with high precision to be T(CMBR)(0) = 2.726 +/- 0.010 K. In principle, the background temperature can be determined using measurements of the relative populations of atomic fine-structure levels, which are excited by the background radiation. But all previous measurements have achieved only upper limits, thus still formally permitting the radiation temperature to be constant with increasing redshift. Here we report the detection of absorption lines from the first and second fine-structure levels of neutral carbon atoms in an isolated cloud of gas at z = 2.3371. We also detected absorption due to several rotational transitions of molecular hydrogen, and fine-structure lines of singly ionized carbon. These constraints enable us to determine that the background radiation was indeed warmer in the past: we find that T(CMBR)(z = 2.3371) is between 6.0 and 14 K. This is in accord with the temperature of 9.1 K predicted by hot Big Bang cosmology.

  12. Atomic configuration and properties of austenitic steels at finite temperature: Effect of longitudinal spin fluctuations

    NASA Astrophysics Data System (ADS)

    Ruban, A. V.; Dehghani, M.

    2016-09-01

    High-temperature atomic configurations of fcc Fe-Cr-Ni alloys with alloy composition close to austenitic steel are studied in statistical thermodynamic simulations with effective interactions obtained in ab initio calculations. The latter are done taking longitudinal spin fluctuations (LSF) into consideration within a quasiclassical phenomenological model. It is demonstrated that the magnetic state affects greatly the alloy properties, and in particular, it is shown that the LSF substantially modify the bonding and interatomic interactions of fcc Fe-Cr-Ni alloys even at ambient conditions. The calculated atomic short-range order is in reasonable agreement with existing experimental data for Fe0.56Cr0.21Ni0.23 , which has strong preference for the (001)-type ordering between Ni and Cr atoms. A similar ordering tendency is found for the Fe0.75Cr0.17Ni0.08 alloy composition, which approximately corresponds to the widely used 304 and 316 austenitic steel grades.

  13. Electron temperature fluctuations changes associated with ELM suppression by RMP in DIII-D

    NASA Astrophysics Data System (ADS)

    Sung, C.; Wang, G.; Rhodes, T.; Peebles, W.

    2015-11-01

    New results in this presentation show an increase in broadband electron temperature fluctuations (T~e) during ELM suppression by resonant magnetic perturbations (RMP). This measurement is obtained via correlation ECE (CECE) near the top of the pedestal (ρ ~ 0.9 - 0.96). This T~e increase is significant, (>40%), and occurs after the ELM suppression but not between ELMS. This may imply an increase in thermal transport facilitated by the increased T~e levels. Considering that the changes in gradient scale length during ELMs with RMP are complicated, it is possible that the mechanism responsible for changing T~e is different compared to previously observed changes in ñe [G. R. McKee et al NF 2013]. This possibility, and the nature of the T~e , will be studied through profile analysis and linear gyrokinetic analysis using TGLF [J. E. Kinsey et al PoP 2008]. In addition, the relation between the T~e and an observed low frequency coherent mode will be investigated. Work supported by the US DOE under DE-FG02-08ER54984 and DE-FC02-04ER54698.

  14. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach

    NASA Astrophysics Data System (ADS)

    Xin, Xian-yin; Qin, Si-xue; Liu, Yu-xin

    2014-10-01

    We investigate the quark number fluctuations up to the fourth order in the matter composed of two light flavor quarks with isospin symmetry and at finite temperature and finite chemical potential using the Dyson-Schwinger equation approach of QCD. In order to solve the quark gap equation, we approximate the dressed quark-gluon vertex with the bare one and adopt both the Maris-Tandy model and the infrared constant (Qin-Chang) model for the dressed gluon propagator. Our results indicate that the second, third, and fourth order fluctuations of net quark number all diverge at the critical endpoint (CEP). Around the CEP, the second order fluctuation possesses obvious pump while the third and fourth order ones exhibit distinct wiggles between positive and negative. For the Maris-Tandy model and the Qin-Chang model, we give the pseudocritical temperature at zero quark chemical potential as Tc=146 MeV and 150 MeV, and locate the CEP at (μEq,TE)=(120,124) MeV and (124,129) MeV, respectively. In addition, our results manifest that the fluctuations are insensitive to the details of the model, but the location of the CEP shifts to low chemical potential and high temperature as the confinement length scale increases.

  15. Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior

    NASA Astrophysics Data System (ADS)

    Griffin, Alison R.

    A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 mum wide and overlapped to form a 25 mum by 25 mum junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1--2°C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of

  16. Ultra-fast charge exchange spectroscopy for turbulent ion temperature fluctuation measurements on the DIII-D tokamak (invited)

    SciTech Connect

    Uzun-Kaymak, I. U.; Fonck, R. J.; McKee, G. R.

    2012-10-15

    A novel two-channel, high throughput, high efficiency spectrometer system has been developed to measure impurity ion temperature and toroidal velocity fluctuations associated with long-wavelength turbulence and other plasma instabilities. The spectrometer observes the emission of the n= 8-7 hydrogenic transition of C{sup +5} ions ({lambda}{sub air}= 529.06 nm) resulting from charge exchange reactions between deuterium heating beams and intrinsic carbon. Novel features include a large, prism-coupled high-dispersion, volume-phase-holographic transmission grating and high-quantum efficiency, high-gain, low-noise avalanche photodiode detectors that sample emission at 1 MHz. This new diagnostic offers an order-of-magnitude increase in sensitivity compared to earlier ion thermal turbulence measurements. Increased sensitivity is crucial for obtaining enough photon statistics from plasmas with much less impurity content. The irreducible noise floor set by photon statistics sets the ultimate sensitivity to plasma fluctuations. Based on the measured photon flux levels for the entire spectral line, photon noise levels for T(tilde sign){sub i}/T{sub i} and V(tilde sign){sub i}/V{sub i} of {approx}1% are expected, while statistical averaging over long data records enables reduction in the detectable plasma fluctuation levels to values less than that. Broadband ion temperature fluctuations are observed to near 200 kHz in an L-mode discharge. Cross-correlation with the local beam emission spectroscopy measurements demonstrates a strong coupling of the density and temperature fields, and enables the cross-phase measurements between density and ion temperature fluctuations.

  17. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K

    SciTech Connect

    Rancova, Olga; Abramavicius, Darius; Jankowiak, Ryszard

    2015-06-07

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  18. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Li, Yan; De Noblet-Ducoudré, Nathalie; Davin, Edouard L.; Motesharrei, Safa; Zeng, Ning; Li, Shuangcheng; Kalnay, Eugenia

    2016-03-01

    Previous modeling and empirical studies have shown that the biophysical impact of deforestation is to warm the tropics and cool the extratropics. In this study, we use an earth system model of intermediate complexity to investigate how deforestation on various spatial scales affects ground temperature, with an emphasis on the latitudinal temperature response and its underlying mechanisms. Results show that the latitudinal pattern of temperature response depends nonlinearly on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions but is dampened in tropical regions. Incremental forest removal leads to increasingly larger cooling in temperate and boreal regions, while the temperature increase saturates in tropical regions. The latitudinal and spatial patterns of the temperature response are driven by two processes with competing temperature effects: decrease in absorbed shortwave radiation due to increased albedo and decrease in evapotranspiration. These changes in the surface energy balance reflect the importance of the background climate in modifying the deforestation impact. Shortwave radiation and precipitation have an intrinsic geographical distribution that constrains the effects of biophysical changes and therefore leads to temperature changes that are spatially varying. For example, wet (dry) climate favors larger (smaller) evapotranspiration change; thus, warming (cooling) is more likely to occur. Our analysis reveals that the latitudinal temperature change largely results from the climate conditions in which deforestation occurs and is less influenced by the magnitude of individual biophysical changes such as albedo, roughness, and evapotranspiration efficiency.

  19. Estrous cycle fluctuations in sex and ingestive behavior are accentuated by exercise or cold ambient temperatures.

    PubMed

    Abdulhay, Amir; Benton, Noah A; Klingerman, Candice M; Krishnamoorthy, Kaila; Brozek, Jeremy M; Schneider, Jill E

    2014-06-01

    This article is part of a Special Issue "Energy Balance". In female Syrian hamsters (Mesocricetus auratus), low circulating levels of ovarian steroids are associated with increased food hoarding and decreased sexual motivation, but these effects are exaggerated in food-restricted females. To determine whether cold ambient temperature has the same effects as food restriction, groups of hamsters were fed ad libitum while they were housed at either 5 °C or 22 °C, and then tested for behavior for 90 min on each day of the estrous cycle. In females housed at 22 °C, high levels of sexual motivation and low levels of food hoarding were seen every day of the estrous cycle. In females housed at 5 °C, high levels of sexual motivation were restricted to the periovulatory day. On the three nonestrous days, these females showed high levels of food hoarding, but not food intake. A separate cohort of females were provided with access to running wheels and housed at 22 °C. They showed high levels of sexual motivation restricted to the periovulatory day, similar to the pattern of sexual motivation seen in cold-housed females. Unlike cold-housed females, those with running wheels showed low levels of food hoarding and high levels of food intake. Food restriction, cold housing, and access to wheels had no significant effect on plasma estradiol or progesterone concentrations, but significantly decreased plasma leptin concentrations. All three energetic challenges unmask estrous cycle fluctuations in sexual motivation that are obscured in laboratory conditions, i.e., isolation in a small cage with an overabundance of food.

  20. The role of spatial scale and background climate in the latitudinal temperature response to deforestation

    NASA Astrophysics Data System (ADS)

    Li, Y.; De Noblet-Decoudre, N.; Davin, E.; Zeng, N.; Motesharrei, S.; Li, S.; Kalnay, E.; Guo, S.

    2015-12-01

    Previous modeling and observational studies have shown that the biophysical impact of deforestation is warming in the tropics and cooling in extra-tropics. In this study, we performed experiments with an earth system model to investigate how deforestation at various spatial scales affects ground temperature, with emphasis on the latitudinal temperature response and the underlining mechanisms. Results show that the latitudinal pattern of temperature response non-linearly depends on the spatial extent of deforestation and the fraction of vegetation change. Compared with regional deforestation, temperature change in global deforestation is greatly amplified in temperate and boreal regions, but is dampened in tropical region. Incremental forest removal fraction leads to increasingly larger cooling under higher removal fraction in temperate and boreal regions, while the temperature increase saturates in tropical region. The latitudinal and spatial patterns of the temperature response are mainly determined by two processes with competing temperature effects, i.e., decreases in absorbed shortwave radiation and in evapotranspiration (ET). These changes in surface energy balance reflect the important role of background climate on modifying the deforestation impact, because shortwave radiation and precipitation have intrinsic geographical distribution, which constrain the effects of biophysical changes and therefore lead to spatially varying temperature change. For example, wet (dry) climate favors larger (smaller) ET change, thus warming (cooling) is more likely to occur. Further analysis on the contribution of individual biophysical factor (albedo, roughness, and evapotranspiration efficiency) reveals that the latitudinal signature embodied in the temperature change likely arises from background climate conditions rather than from the initial biophysical perturbation.

  1. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  2. Superconducting transition temperatures and coherence length in non-s-wave pairing materials correlated with spin-fluctuation mediated interaction

    NASA Astrophysics Data System (ADS)

    Angilella, G. G.; March, N. H.; Pucci, R.

    2002-03-01

    Following earlier work on electron or hole liquids flowing through assemblies with magnetic fluctuations, we have recently exposed a marked correlation of the superconducting temperature Tc, for non-s-wave pairing materials, with coherence length ξ and effective mass m*. The very recent study of Abanov et al. [Europhys. Lett. 54, 488 (2001)] and the prior investigation of Monthoux and Lonzarich [Phys. Rev. B 59, 14 598 (1999)] have each focused on the concept of a spin-fluctuation temperature Tsf, which again is intimately related to Tc. For the d-wave pairing via antiferromagnetic spin fluctuations in the cuprates, these studies are brought into close contact with our own work, and the result is that kBTsf~ħ2/m*ξ2. This demonstrates that ξ is also determined by such antiferromagnetic spin-fluctuation mediated pair interaction. The coherence length in units of the lattice spacing is then essentially given in the cuprates as the square root of the ratio of two characteristic energies, namely, the kinetic energy of localization of a charge carrier of mass m* in a specified magnetic correlation length to the hopping energy. The quasi-two-dimensional ruthenate Sr2RuO4, with Tc~1.3 K, has p-wave spin-triplet pairing and so is also briefly discussed here.

  3. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice.

    PubMed

    Ewert, Marcela; Deming, Jody W

    2014-08-01

    Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting.

  4. New Measurements of the Cosmic Background Radiation Temperature at3.3 mm Wavelength

    SciTech Connect

    Witebsky, C.; Smoot, G.; De Amici, G.; Friedman, S.D.

    1986-02-01

    We have measured the temperature of the cosmic background radiation (CBR) at 3.3 mm wavelength in 1982, 1983, and 1984 as part of a larger project to determine the CBR temperature at five wavelengths from 12 cm to 3.3 mm (Smoot et al. 1985). The 3.3-mm measurements yield a brightness temperature of 2.57 K with a 1{sigma} uncertainty of 20.12 K. This paper describes the instrument, the measurement techniques, and the data-analysis procedures used. Our result is in good agreement with recent measurements at comparable wavelengths by Meyer and Jura (1985) and by Peterson, Richards, and Timusk (1985), but it disagrees with the temperatures reported by Woody and Richards (1981).

  5. Feasibility study of SiGHT: a novel ultra low background photosensor for low temperature operation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fan, A.; Fiorillo, G.; Galbiati, C.; Guan, M. Y.; Korga, G.; Pantic, E.; Razeto, A.; Renshaw, A.; Rossi, B.; Suvorov, Y.; Wang, H.; Yang, C. G.

    2017-02-01

    Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors that can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. The introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this paper.

  6. A spatial length scale analysis of turbulent temperature and velocity fluctuations within and above an orchard canopy

    USGS Publications Warehouse

    Wang, Y.S.; Miller, D.R.; Anderson, D.E.; Cionco, R.M.; Lin, J.D.

    1992-01-01

    Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions.

  7. Short-Scale Turbulent Fluctuations Driven by the Electron-Temperature Gradient in the National Spherical Torus Experiment

    SciTech Connect

    Mazzucato, E.; Smith, D. R.; Bell, R. E.; Kaye, S.; Davis, W.; Hosea, J.; LeBlanc, B; Wilson, J. R.; Ryan, Philip Michael; Domier, C. W.; Luhmann, N. C.; Yuh, H.; Lee, W.; Park, H.

    2008-01-01

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k?e 0:1 0:4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  8. Interferometric fiber-optic gyroscope performance owing to temperature-induced index fluctuations in the fiber: effect on bias modulation

    NASA Astrophysics Data System (ADS)

    Knudsen, Sverre; Bløtekjær, Kjell

    1995-06-01

    An analysis of the noise floor owing to temperature-induced index fluctuations in the fiber of a dynamically biased interferometric fiber-optic gyroscope is presented. A comparison with shot noise indicates that, for a harmonic bias modulation, thermal noise in the fiber dominates for fiber lengths longer than \\similar 1 - 2km when practical source power levels are considered. The noise can be reduced or eliminated by the proper choice of modulation frequency or waveform.

  9. A high speed data acquisition system for the analysis of velocity, density, and total temperature fluctuations at transonic speeds

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.; Jones, Gregory S.; Stainback, P. Calvin

    1988-01-01

    The use of a high-speed Dynamic Data Acquisition System (DDAS) to measure simultaneously velocity, density, and total temperature fluctuations is described. The DDAS is used to automate the acquisition of hot-wire calibration data. The data acquisition, data handling, and data reporting techiques used by DDAS are described. Sample data are used to compare results obtained with the DDAS with those obtained from the FM tape and post-test digitization method.

  10. Mosselbay environmental conditions and sea-surface temperature fluctuations during the Late Holocene

    NASA Astrophysics Data System (ADS)

    Hahn, Annette; Andò, Sergio; Frenzel, Peter; Kugel, Martin; Mollenhauer, Gesine; Schefuß, Enno; Zabel, Matthias

    2016-04-01

    our current stage of research, we attribute this to a southward shift of the SHW and a strengthening in Aghulas current speed during this period. Cohen, A.L. and Tyson, P.D., 1995. Sea-surface temperature fluctuations during the Holocene off the south coast of Africa: implications for terrestrial climate and rainfall. The Holocene 5 (3), 304-312.

  11. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  12. Infrared radiometry-based background-compensated thermometric instrument for noncontact temperature and friction measurements

    NASA Astrophysics Data System (ADS)

    Li, L.; Mandelis, A.; Garcia, J.; Eccles, C.

    2001-05-01

    The design and performance of a novel thermometric instrument featuring thermalemission-intensity harmonic modulation, noncontact infrared radiometric detection, and stray background suppression is described. The instrumental principle depends on thermal (blackbody) emission of Planck radiation from a heated surface. It was developed to measure small temperature rises caused by frictional heating. A low-power He-Ne heating laser was used to investigate the sensitivity and estimate a figure-of-merit (FOM) for the instrument. Background compensation leading to signal baseline suppression was partly achieved with a differential mechanical chopper blade, designed to induce destructive interference of infrared radiation superposition from heated and reference spots on a ceramic sample coated with a metallic thin film. Additional background suppression was achieved by lock-in amplifier signal amplitude and phase compensation through an externally superposed wave at the same chopping frequency. The FOM of the noncontact thermometric instrument was 159.9±8.5. The system sensitivity (minimum temperature rise) for the particular thin-film/ceramic material was estimated to be 0.18-0.23 °C.

  13. Ultrasonic thermometry simulation in a random fluctuating medium: Evidence of the acoustic signature of a one-percent temperature difference.

    PubMed

    Nagaso, M; Moysan, J; Benjeddou, S; Massacret, N; Ploix, M A; Komatitsch, D; Lhuillier, C

    2016-05-01

    We study the development potential of ultrasonic thermometry in a liquid fluctuating sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In particular we study if small temperature variations in the sodium flow of e.g. about 1% of the sodium temperature, i.e., about 5°C, can have a reliably-measurable acoustic signature. Since to our knowledge no experimental setups are available for such a study, and considering the practical difficulties of experimentation in sodium, we resort to a numerical technique for full wave propagation called the spectral-element method, which is a highly accurate finite-element method owing to the high-degree basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature difference of one percent in the case of a static temperature gradient as well as in the presence of a random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline the potential of ultrasonic thermometry in such a context.

  14. ON MEASURING THE COSMIC MICROWAVE BACKGROUND TEMPERATURE AT REDSHIFT 0.89

    SciTech Connect

    Sato, M.; Menten, K. M.; Reid, M. J.; Carilli, C. L.

    2013-02-20

    We report on a measurement of the temperature of the cosmic microwave background radiation field, T {sub CMB}, at z = 0.88582 by imaging HC{sub 3}N(3 <- 2) and (5 <- 4) absorption in the foreground galaxy of the gravitationally lens magnified radio source PKS 1830-211 using the Very Long Baseline Array and the phased Very Large Array. Low-resolution imaging of the data yields a value of T {sub rot} = 5.6{sup +2.5} {sub -0.9} K for the rotational temperature, T {sub rot}, which is consistent with the temperature of the cosmic microwave background at the absorber's redshift of 2.73(1 + z) K. However, our high-resolution imaging reveals that the absorption peak position of the foreground gas is offset from the continuum peak position of the synchrotron radiation from PKS 1830-211SW, which indicates that the absorbing cloud is covering only part of the emission from PKS 1830-211, rather than the entire core-jet region. This changes the line-to-continuum ratios, and we find T {sub rot} between 1.1 and 2.5 K, which is lower than the expected value. This shows that previous T {sub rot} measurements could be biased due to unresolved structure.

  15. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    NASA Astrophysics Data System (ADS)

    Livescu, Daniel; Gerashchenko, Sergiy

    2016-11-01

    The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous and viscous-inviscid) at different Atwood numbers, At, and, when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. Compared to the Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of a background temperature gradient, when the viscosity is temperature dependent.

  16. Correlation Electron Temperature Fluctuation Measurements on Alcator C-Mod and ASDEX Upgrade: Cross Machine Comparisons and Transport Model Validation

    NASA Astrophysics Data System (ADS)

    White, A. E.; Creely, A. J.; Freethy, S.; Cao, N.; Conway, G. D.; Goerler, T.; Happel, T.; Howard, N. T.; Inman, C.; Rice, J. E.; Rodriguez Fernandez, P.; Sung, C.; C-Mod, Alcator; Upgrade, Asdex

    2016-10-01

    Correlation Electron Cyclotron Emission diagnostics have been developed for Alcator C-Mod and ASDEX Upgrade. Measurements of long wavelength (ktheta rhos <0.5) electron temperature fluctuations have been measured in the core plasma (0.5 temperature fluctuations, and the correlation with density fluctuations, which can be measured with coupled radiometer / reflectometer diagnostics, provide valuable constraints on gyrokinetic models. Recent results in transport model validation at both C-Mod and AUG are presented. This work is supported by the US DOE under Grants DE-SC0006419 and DEFC02-99ER54512-CMOD.

  17. The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation

    SciTech Connect

    Hamann, Jan; Wong, Yvonne Y Y E-mail: ywong@mppmu.mpg.de

    2008-03-15

    We estimate the effect of the experimental uncertainty in the measurement of the temperature of the cosmic microwave background (CMB) on the extraction of cosmological parameters from future CMB surveys. We find that even for an ideal experiment limited only by cosmic variance up to l=2500 for both the temperature and polarization measurements, the projected cosmological parameter errors are remarkably robust against the uncertainty of 1 mK in the firas CMB temperature monopole measurement. The maximum degradation in sensitivity is 20%, for the baryon density estimate, relative to the case in which the monopole is known infinitely well. While this degradation is acceptable, we note that reducing the uncertainty in the current temperature measurement by a factor of five will bring it down to {approx}1%. We also estimate the effect of the uncertainty in the dipole temperature measurement. Assuming the overall calibration of the data to be dominated by the dipole error of 0.2% from firas, the sensitivity degradation is insignificant and does not exceed 10% in any parameter direction.

  18. Effect of fluctuations on time-averaged multi-line NO-LIF thermometry measurements of the gas-phase temperature

    NASA Astrophysics Data System (ADS)

    Feroughi, Omid M.; Kronemayer, Helmut; Dreier, Thomas; Schulz, Christof

    2015-09-01

    Multi-line NO laser-induced fluorescence (LIF) thermometry enables accurate gas-phase temperature imaging in combustion systems through least-squares fitting of excitation spectra. The required excitation wavelength scan takes several minutes which systematic biases the results in case of temperature fluctuations. In this work, the effect of various types (linear, Gaussian and bimodal) and amplitudes of temperature fluctuations is quantified based on simulated NO-LIF excitation spectra. Temperature fluctuations of less than ±5 % result in a negligible error of less than ±1 % in temperature for all cases. Bimodal temperature distributions have the largest effect on the determined temperature. Symmetric temperature fluctuations around 900 K have a negligible effect. At lower mean temperatures, fluctuations cause a positive bias leading to over-predicted mean temperatures, while at higher temperatures the bias is negative. The results of the theoretical analysis were applied as a guide for interpreting experimental multi-line NO-LIF temperature measurements in a mildly turbulent pilot-plant scale flame reactor dedicated for nanoparticle synthesis.

  19. A real time dynamic data acquisition and processing system for velocity, density, and total temperature fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1991-01-01

    The real time Dynamic Data Acquisition and Processing System (DDAPS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAPS replaces both a recording mechanism and a separate data processing system. DDAPS receives input from hot wire anemometers. Amplifiers and filters condition the signals with computer controlled modules. The analog signals are simultaneously digitized and digitally recorded on disk. Automatic acquisition collects necessary calibration and environment data. Hot wire sensitivities are generated and applied to the hot wire data to compute fluctuations. The presentation of the raw and processed data is accomplished on demand. The interface to DDAPS is described along with the internal mechanisms of DDAPS. A summary of operations relevant to the use of the DDAPS is also provided.

  20. Characterization of a high-temperature superconducting bearing for use in a cosmic microwave background polarimeter

    NASA Astrophysics Data System (ADS)

    Hull, John R.; Hanany, Shaul; Matsumura, Tomotake; Johnson, Bradley; Jones, Terry

    2005-02-01

    We have previously presented a design for a cosmic microwave background (CMB) polarimeter in which a cryogenically cooled half-wave plate rotates by means of a high-temperature superconducting (HTS) bearing. Here, a prototype bearing, consisting of a commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured its coefficient of friction and vibrational property as a function of several parameters, including temperature between 15 and 83 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm and ambient pressure of {\\sim }10^{- 7} Torr. We concluded that the low rotational drag of the HTS bearing would allow rotations for long periods with minimal input power and negligible wear and tear, thus making this technology suitable for a future satellite mission.

  1. A measurement of the cosmic microwave background temperature at 7.5 GHz

    NASA Technical Reports Server (NTRS)

    Levin, S.; Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Limon, M.; Smoot, G.

    1992-01-01

    The temperature of the cosmic microwave background (CMB) radiation at a frequency of 7.5 GHz (4 cm wavelength) is measured, obtaining a brightness temperature of T(CMB) = 2.70 +/- 0.08 K (68 percent confidence level). The measurement was made from a site near the geographical South Pole during the austral spring of 1989 and was part of an international collaboration to measure the CMB spectrum at low frequencies with a variety of radiometers from several different sites. This recent result is in agreement with the 1988 measurement at the same frequency, which was made from a different site with significantly different systematic errors. The combined result of the 1988 and 1989 measurements is 2.64 +/- 0.06 K.

  2. Measurements of the cosmic microwave background temperature at 1.47 GHz

    NASA Technical Reports Server (NTRS)

    Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Levin, S. M.; Limon, M.; Smoot, G. F.; Witebsky, C.

    1993-01-01

    We have used a radio-frequency-gain total-power radiometer to measure the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California in 1988 September and from the South Pole in 1989 December. The CMB thermodynamic temperature, T(CMB), is 2.27 +/- 0.25 K (68 percent confidence limit) measured from White Mountain and 2.26 +/- 0.20 K from the South Pole site. The combined result is 2.26 +/- 0.19 K. The correction for Galactic emission has been derived from scaled low-frequency maps and constitutes the main source of error. The atmospheric signal is extrapolated from our zenith scan measurements at higher frequencies. These results are consistent with our previous measurement at 1.41 GHz and about 2.5 sigma from the 2.74 +/- 0.01 K global average CMB temperature.

  3. Constraining the Redshift Evolution of the Cosmic Microwave Background Blackbody Temperature with PLANCK Data.

    NASA Astrophysics Data System (ADS)

    de Martino, I.; Génova-Santos, R.; Atrio-Barandela, F.; Ebeling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.

    2015-08-01

    We constrain the deviation of adiabatic evolution of the universe using the data on the cosmic microwave background (CMB) temperature anisotropies measured by the Planck satellite and a sample of 481 X-ray selected clusters with spectroscopically measured redshifts. To avoid antenna beam effects, we bring all of the maps to the same resolution. We use a CMB template to subtract the cosmological signal while preserving the Thermal Sunyaev-Zeldovich (TSZ) anisotropies; next, we remove galactic foreground emissions around each cluster and we mask out all known point sources. If the CMB blackbody temperature scales with redshift as T{(z)={T}0(1+z)}1-α , we constrain deviations of adiabatic evolution to be α = -0.007 ± 0.013, consistent with the temperature-redshift relation of the standard cosmological model. This result could suffer from a potential bias δα associated with the CMB template. We quantify it to be | δ α | ≤slant 0.02, with the same sign as the measured value of α. Our result is free from those biases associated with using TSZ selected clusters; it represents the best constraint to date of the temperature-redshift relation of the Big Bang model using only CMB data, confirming previous results.

  4. Fast cosmological parameter estimation from microwave background temperature and polarization power spectra

    NASA Astrophysics Data System (ADS)

    Jimenez, Raul; Verde, Licia; Peiris, Hiranya; Kosowsky, Arthur

    2004-07-01

    We improve the algorithm of Kosowsky, Milosavljevic, and Jimenez for computing power spectra of the cosmic microwave background. The present algorithm computes not only the temperature power spectrum but also the E- and B-mode polarization and the temperature-polarization cross power spectra, providing the accuracy required for current cosmological parameter estimation. Both unlensed and lensed (with non-linear evolution) power spectra are provided up to l=3000 for temperature and polarization signals. We refine the optimum set of cosmological parameters for computing the power spectra as perturbations around a fiducial model, leading to an accuracy better than 0.5% for the temperature power spectrum throughout the region of parameter space within the Wilkinson Microwave Anisotropic Probe’s first-year 3σ confidence region. This accuracy is comparable to the difference between the widely used CMBFAST code of Seljak and Zaldarriaga and Boltzmann codes. Our algorithm (CMBWARP) makes possible a full exploration of the likelihood region for eight cosmological parameters in about one hour on a laptop computer. We provide the code to compute power spectra as well as the Markov chain Monte Carlo algorithm for cosmological parameters estimation at http://www.physics.upenn.edu/˜raulj/CMBwarp.

  5. Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodnius prolixus.

    PubMed

    Fargues, J; Luz, C

    2000-04-01

    The effect of both moisture and temperature on the infective potential of Beauveria bassiana to the Chagas' disease vector, Rhodnius prolixus, was studied under fluctuating regimes. At constant 25 degrees C, contaminated first-instar nymphs exposed to increasing daily periods of initial exposure to 97% RH, followed by transfer to reduced humidity (43, 53, 75, and 86% RH), showed a significant reduction in mortality when the 97% RH exposure time declined from 12 to 8 h per day. The duration of disease incubation depended on the daily 97% RH exposure time. Under fluctuating regimes of both humidity (97% RH versus 75% RH) and temperature (15/28, 20/25, 25/28, and 25/35 degrees C), first-instar mortality was affected by weather conditions, daily 97% RH exposure time (8, 12, and 16 h per day), and number of temperature and humidity fluctuations before transferring tested insects to constant unfavorable conditions. In most cases, at 12/12 h alternating cycles, high and rapid mortality required five cycles. Under these fluctuating regimes, fungus-induced mortality and mortality time were similarly affected in third- and fifth-instar nymphs by the daily 97% RH exposure time. Despite a lower susceptibility of older larval stages, mortality rates in insects exposed for at least 12 h per day at 97% RH remained very high except at 15 degrees C. Moisture and temperature regimes at 12/12 h cycling significantly affected the dose-mortality response in first-instar nymphs. The most favorable conditions consisted of 97%-20 degrees C combined with either 75%-25 degrees C or 43%-25 degrees C. Under less favorable alternating conditions (lower and higher temperatures) the amounts of inoculum required for killing 50% of first-instar nymphs were 10 or 20 times higher. From a vector control standpoint, daily high humidity appears to be the most crucial climatic constraint. B. bassiana has the potential to control R. prolixus populations with applications made during the rainy seasons

  6. An Analysis of Recent Measurements of the Temperature of theCosmic Microwave Background Radiation

    SciTech Connect

    Smoot, G.; Levin, S.M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cm are well fit by a blackbody spectrum at 2.74 {+-} 0.02 K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u = 0.021 {+-} 0.002 and temperature 2.823 {+-} 0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential {mu}{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  7. MeV-scale reheating temperature and thermalization of the neutrino background

    NASA Astrophysics Data System (ADS)

    Kawasaki, M.; Kohri, K.; Sugiyama, Naoshi

    2000-07-01

    The late-time entropy production by massive particle decay induces various cosmological effects in the early epoch and modifies the standard scenario. We investigate the thermalization process of the neutrinos after entropy production by solving the Boltzmann equations numerically. We find that if the large entropy is produced at t~1 sec, the neutrinos are not thermalized very well and do not have the perfect Fermi-Dirac distribution. Then the freeze-out value of the neutron to proton ratio is altered considerably and the produced light elements, especially 4He, are drastically changed. Comparing with the observational light element abundances, we find that TR<~0.7 MeV is excluded at 95 % C.L. We also study the case in which the massive particle has a decay mode into hadrons. Then we find that TR should be a little higher, i.e., TR>~2.5-4 MeV, for the hadronic branching ratio Bh=10-2-1. The possible influence of late-time entropy production on the large scale structure formation and temperature anisotropies of cosmic microwave background is studied. It is expected that the future satellite experiments (MAP and PLANCK) to measure anisotropies of cosmic microwave background radiation temperature will be able to detect the vestige of the late-time entropy production as a modification of the effective number of the neutrino species Neffν.

  8. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    DOE R&D Accomplishments Database

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  9. Effects of rf power on electron density and temperature, neutral temperature, and T{sub e} fluctuations in an inductively coupled plasma

    SciTech Connect

    Camparo, James; Fathi, Gilda

    2009-05-15

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  10. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    SciTech Connect

    Gerashchenko, Sergiy; Livescu, Daniel

    2016-07-28

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.

  11. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    NASA Astrophysics Data System (ADS)

    Gerashchenko, S.; Livescu, D.

    2016-07-01

    The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.

  12. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE PAGES

    Gerashchenko, Sergiy; Livescu, Daniel

    2016-07-28

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  13. The lensing and temperature imprints of voids on the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Neyrinck, Mark; Mao, Qingqing; Peacock, John A.; Szapudi, Istvan; Berlind, Andreas A.

    2017-04-01

    We have searched for the signature of cosmic voids in the cosmic microwave background (CMB), in both the Planck temperature and lensing-convergence maps; voids should give decrements in both. We use ZOBOV voids from the Data Release 12 Sloan Digital Sky Survey CMASS galaxy sample. We base our analysis on N-body simulations, to avoid a posteriori bias. For the first time, we detect the signature of voids in CMB lensing: the significance is 3.2σ, close to Λ cold dark matter (ΛCDM) in both amplitude and projected density-profile shape. A temperature dip is also seen, at modest significance (2.3σ), with an amplitude about six times the prediction. This temperature signal is induced mostly by voids with radii between 100 and 150 h-1 Mpc, while the lensing signal is mostly contributed by smaller voids - as expected; lensing relates directly to density, while integrated Sachs-Wolfe effect (ISW) depends on gravitational potential. The void abundance in observations and simulations agree as well. We also repeated the analysis excluding lower significance voids: no lensing signal is detected with an upper limit of about twice the ΛCDM prediction. But the mean temperature decrement now becomes non-zero at the 3.7σ level (similar to that found by Granett et al.), with an amplitude about 20 times the prediction. However, the observed dependence of temperature on void size is in poor agreement with simulations, whereas the lensing results are consistent with ΛCDM theory. Thus, the overall tension between theory and observations does not favour non-standard theories of gravity, despite the hints of an enhanced amplitude for the ISW effect from voids.

  14. Gravity Wave Variance in LIMS Temperatures. Part I: Variability and Comparison with Background Winds.

    NASA Astrophysics Data System (ADS)

    Fetzer, Eric J.; Gille, John C.

    1994-09-01

    Small-scale features in temperature data from the Limb Infrared Monitor of the Stratosphere satellite experiment are isolated by subtracting profiles of globally mapped temperatures (containing zonal waves 0-6) from inverted temperature profiles. These features are interpreted as internal gravity waves. The preponderance of the variance is associated with the longest wavelengths, corresponding to the lowest frequencies (inertio-gravity waves). The data include approximately 2000 daily soundings between late October 1978 and late May 1979, all longitudes, latitudes from about 65°S to 85°N, and altitudes from the tropopause to the middle mesosphere (pressures from 100 to 0.1 mb). Zonal-mean gravity wave variance is compared with background winds, and variance maps are presented for five one-week periods: early November, early January, early February, late March, and early May. Time-height plots of zonal mean wave variance and background winds in the latitude bands 45°-55°S, 5°S-5°N, and 45°-55°N are also presented. Variance ranges from about 2.0 K2 in the northern late spring lower stratosphere to about 315 K2 in the northern late fall mesosphere. The Northern Hemisphere gravity wave variance field undergoes an approximate twofold increase between fall and early winter, but the maximum remains quasi-stationary; during the same period the mesospheric jet moves by several thousand kilometers. The Northern Hemisphere gravity wave field is strongly distorted by the late January minor warming, and decreases gradually between early March and late May. The tropical gravity wave variance is approximately constant with time below 40 km, but shows an increasingly strong semiannual signal above 40 km. The tropical maximum extends through January and February but is confined in altitude near 60 km. Southern Hemisphere variance decreases toward a broad minimum in January and February, but climbs rapidly after the autumnal equinox. The gravity wave variance fields during

  15. The Cosmic Microwave Background Temperature at 2.64 and 1.32 Millimeters

    NASA Astrophysics Data System (ADS)

    Meyer, David Michael

    We present very high signal-to-noise (S/N > 2000) observations of the 3874 (ANGSTROM) band of interstellar CN toward (zeta) Oph, (zeta) Per, and (omicron) Per. Our measured equivalent widths for the R(0), R(1), R(2), and P(1) absorption lines toward (zeta) Oph agree with previous photoelectric, but not photographic, findings. In the (zeta) Oph, (zeta) Per, and (omicron) Per lines of sight, the saturation-corrected CN line strengths yield respective excitation temperatures of 2.72 (+OR-) 0.05 K, 2.76 (+OR -) 0.05 K, and 2.78 (+OR-) 0.07 K for the J = 0 (--->) 1 rotational transition at 2.64 mm. The excellent agreement among these temperatures confirms the expectation that the cosmic microwave background radiation (CMB) is primarily responsible for populating the excited rotational levels of interstellar CN. With small corrections for the local CN excitation due to electron impact, the J = 0 (--->) 1 excitation temperatures toward (zeta) Oph, (zeta) Per, and (omicron) Per are all consistent with a CMB brightness temperature of 2.70 (+OR-) 0.04 K at 2.64 mm. This value represents the most precise determination to date of the CMB intensity at any wavelength. The quality of our spectra has also enabled us to identify a previously undetected telluric feature at 3873.1 (ANGSTROM) which may have confused earlier attempts to measure the (zeta) Oph CN R(2) line strength. the CN J = 1 (--->) 2 excitation temperatures yielded by our unprecedented set of R(2) measurements toward (zeta) Oph, (zeta) Per, and (omicron) Per indicate a CMB temperature of 2.76 (+OR-) 0.02 K at 1.32 mm. Our temperatures at 2.64 mm and 1.32 mm are consistent with a 2.7 K blackbody spectrum for the CMB and do not support the spectral distortions observed near these wavelengths by Woody and Richards (1981). Since these spectral distortions could have been understood in terms of grain-thermalized Population III starlight at large redshifts, our findings severely constrain the extent to which Population

  16. Synergistic effect of daily temperature fluctuations and matching light-dark cycle enhances population growth and synchronizes oviposition behavior in a soil arthropod.

    PubMed

    Liefting, Maartje; Cosijn, Jarno; Ellers, Jacintha

    2017-01-01

    Some major aspects of insect life, like development time and reproduction, can benefit from fluctuating temperatures rather than a constant temperature regime. The benefit of fluctuating temperature has generally been attributed to the non-linear properties of the relationship of many life history traits with temperature. Daily temperature rise, however, usually coincide with the light phase of the photoperiodic cycle and there could be a benefit in linking daily temperature fluctuations with light and dark phases e.g. to anticipate the change in temperature. Such synergistic effects have primarily been studied in the light of activity patterns and gene expression, but have not yet been shown to extend to population dynamics and aspects of individual fitness like oviposition behavior. We therefore explored possible synergistic effects on life history traits of the springtail Orchesella cincta. We first test the primary effect of ecologically relevant temperature fluctuations of different amplitudes on population growth and total population mass. The slowest population growth was observed in the constant temperature regime treatment and the highest population growth in the regime with high amplitude fluctuations. In a second experiment, population growth and oviposition rhythm were measured under four different regimes; a constant light and temperature regime, thermoperiod only, photoperiod only and thermoperiod and photoperiod aligned as under natural conditions. The regime in which thermoperiod was aligned with photoperiod resulted in a higher population growth than could be realized by either factor alone. Also, significantly fewer eggs were laid in the constant temperature/light regime than in the other three regimes, strongly suggesting that this regime is stressful to O. cincta. Additionally, the fraction of eggs laid at night was highest in the regime with the combined temperature and light cycle. In conclusion, our results show that under these experimental

  17. On the definition of temperature and its fluctuations in small systems.

    PubMed

    Boltachev, Grey Sh; Schmelzer, Jürn W P

    2010-10-07

    An analysis of the limits of applicability of the thermodynamic definition of temperature to small systems is given. It is shown that the classical thermodynamic definition, (dS/dU)=1/T (S being the entropy, U the energy, and T the absolute temperature), is not applicable to small systems. It results in an uncertainty in the definition of temperature of the order O(1/N), where N is the number of particles in the system. An alternative definition of temperature is proposed based on the statistical-mechanical description of ensembles of particles. Applying this definition to perfect gases, a rigorous expression for the distribution of temperatures is obtained valid also for small systems and even in the limit N→1. In contrast to alternative approaches based on the thermodynamic definition of temperature, this distribution retains the thermodynamic equilibrium conditions with respect to temperature (equality of average temperature of the small system and temperature of the thermostat) also for small systems resolving in this way a widely discussed in the past problem between thermodynamics and its statistical-mechanical interpretation. Further, a generalization of this distribution to nonideal systems of interacting particles is developed. The results are applied to an interpretation of recent molecular dynamics simulations of argon condensation. Some further consequences and different possible definitions of temperature for macroscopic systems are discussed briefly as well.

  18. Diagnosis of equilibrium magnetic profiles, current transport, and internal structures in a reversed-field pinch using electron temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Parke, Eli

    Due to long fast ion confinement times, neutral beam injection (NBI) on the Madison Symmetric Torus (MST) yields large fast ion populations with substantial density gradients. Novel application of the unique high-rep-rate (>10 kHz) Thomson scattering diagnostic on MST has enabled characterization of a newly observed beam-driven instability, and detailed measurement of equilibrium changes caused by the fast ion population. While previous work has focused on high-frequency energetic particle modes (EPMs), recent observations indicate that fast ions drive a bursting instability near the plasma rotation frequency under appropriate conditions. The mode chirps strongly, with a frequency of approximately 7 kHz in the plasma reference frame at peak amplitude. Bursts are correlated with EPM activity and core neutral particle analyzer signals drop by 30% during a burst, suggesting that this mode participates in avalanches of the higher frequency EPMs and drives enhanced fast ion transport. Electron temperature fluctuations correlated with this low-frequency mode exhibit a core-peaked structure with a sensitive dependence on the safety factor q. Although this mode has not yet been positively identified, its characteristics and internal structure are suggestive of an internal kink (fishbone) or beta-induced Alfven eigenmode. In addition to driving EPMs, the large fast ion population also modifies the current profile. An increase in on-axis current density driven by NBI is offset by a reduction in the mid-radius, leading to net-zero current drive. This results in a slight flattening of the safety factor profile, observed by precise measurement of the rational surface locations of the dominant tearing modes; these are identified from the phase flip in correlated electron temperature fluctuations recorded by Thomson scattering. For the core n = 6 rational surface, an inward shift of 1.1 +/- 0.6 cm is observed, with an estimated reduction in q0 of 5%. This technique provides a

  19. Quantitative reconstruction of temperature in northern Japan for the last 2000 years and the influential factors to determine climatic fluctuation

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Hatta, Yoshiki; Ota, Yuki; Yoshida, Akihiro; Habu, Junko

    2016-04-01

    A coastal sedimentary core at St. 5 in Uchiura Bay in northern Japan provided an opportunity to quantitatively estimate terrestrial atmospheric temperatures (AT) using the alkenone proxy because of their strong correlation with summer sea surface temperatures (SSTs) (r2 >0.90). In other words, when we can estimate SST, we can reconstruct AT quantitatively at high time resolution (10-30 years for the last 2K). During the last two millennia, SSTs fluctuated by 4.9 °C before 20 century, reaching two maximum in 1820 AD (22.3°C) and 760 AD (22.0 °C) and two minima around 145 AD (17.4 °C) and 1080 AD (17.4 °C). The SST profile is generally consistent with those obtained from western and central Japan by us (3 sites) and from East Asia by Cook (2013) but shows some differences. Although the MWP (Medieval Warm Period) was not identified in this study because a cold climate prevailed in 990-1100 AD. Particularly low temperatures around 1000-1100 AD can be verified by historical documents from in and around the ancient capital city of Kyoto (Ishii, 2002). The reconstructed SOI (Southern Oscillation Index) data suggest that the equatorial Pacific was predominantly in an El Niño phase in 900-1200 AD. Under modern conditions, during an El Niño episode, the Pacific high is weakened, with reduced atmospheric pressure in the western North Pacific in the vicinity of Japan. This results in an enhanced Okhotsk high, which tends to be accompanied by a cold and cloudy/rainy summer in Japan. A cold climate was definitely observed in 1550-1700 AD, which almost corresponded to the LIA (Little Ice Age). A cold event around 1650 AD can be attributed to big eruptions at Komagatake. This resulted in severe cold type of famine, which is evidenced by historical documents. Because several factors, including external forcing (e.g., solar activity) and internal forcing (e.g., volcanic activity, ENSO, and the Asian monsoon), can affect the climate, we compared SST fluctuations with each of

  20. Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Rubashev, B. M.

    1978-01-01

    The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

  1. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology.

    PubMed

    Marshall, David J; McQuaid, Christopher D

    2011-01-22

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30-40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and -0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis.

  2. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology

    PubMed Central

    Marshall, David J.; McQuaid, Christopher D.

    2011-01-01

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30–40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and −0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis. PMID:20685714

  3. Novel mechanism for temperature-independent transitions in flexible molecules: role of thermodynamic fluctuations.

    PubMed

    Teslenko, V I; Petrov, E G; Verkhratsky, A; Krishtal, O A

    2010-04-30

    A novel physical mechanism is proposed to explain the temperature-independent transition reactions in molecular systems. The mechanism becomes effective in the case of conformation transitions between quasi-isoenergetic molecular states. It is shown that at room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of temperature dependence in the stochastically averaged rate constants. As an example, a physical interpretation of temperature-independent onset of P2X{3} receptor desensitization in neuronal membranes is provided.

  4. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    PubMed

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  5. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    PubMed Central

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  6. Correlations of velocity and temperature fluctuations in the stagnation-point flow of circular cylinder in turbulent flow

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    1988-01-01

    Boundary layer flow and turbulence transport analyses to study the influence of the free-stream turbulence on the surface heat transfer rate and the skin friction around the stagnation point of a circular cylinder in a turbulent flow are presented. The analyses are formulated with the turbulent boundary layer equations, the Reynolds stress transport equations and the k - epsilon two-equation turbulence modeling. The analyses are used to calculate the time-averaged turbulence double correlations, the mean flow properties, the surface heat transfer rate and the skin friction with an isotropic turbulence in the freestream. The analytical results are described and compared with the existing experimental measurements. Depending on the free-stream turbulence properties, the turbulence kinetic energy can increase or decrease as the flow moves toward the surface. However, the turbulence kinetic energy induces large Reynolds normal stresses at the boundary layer edge. The Reynolds normal stresses change the boundary layer profiles of the time-averaged double correlations of the velocity and temperature fluctuations, the surface heat transfer rate and the skin friction. The free-stream turbulence dissipation rate can affect the stagnation-point heat transfer rate but the influence of the free-stream temperature fluctuation on the heat transfer rate is insignificant.

  7. Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Wang, Yin; He, Xiaozhou; Tong, Penger

    2016-12-01

    We report simultaneous measurements of the mean temperature profile θ (z ) and temperature variance profile η (z ) near the lower conducting plate of a specially designed quasi-two-dimensional cell for turbulent Rayleigh-Bénard convection. The measured θ (z ) is found to have a universal scaling form θ (z /δ ) with varying thermal boundary layer (BL) thickness δ , and its functional form agrees well with the recently derived BL equation by Shishkina et al. [Phys. Rev. Lett. 114, 114302 (2015), 10.1103/PhysRevLett.114.114302]. The measured η (z ) , on the other hand, is found to have a scaling form η (z /δ ) only in the near-wall region with z /δ ≲2 . Based on the experimental findings, we derive a BL equation for η (z /δ ) , which is in good agreement with the experimental results. These BL equations thus provide a common framework for understanding the effect of BL fluctuations.

  8. Effect of constant and fluctuating temperature on daily melatonin production by eyecups from Rana perezi.

    PubMed

    Valenciano, A I; Alonso-Gómez, A L; Alonso-Bedate, M; Delgado, M J

    1997-04-01

    We analysed the effect of daily temperature cycles in relation to constant temperature on day/night melatonin synthesis in frog eyecups in culture. Eyecups were cultured for 24 h under 12L:12D photoperiod and two thermal regimes, constant temperature (25, 15 and 5 degrees C) and thermoperiod (WL/CD, thermophase coinciding with photophase and cryophase coinciding with scotophase; and CL/WD, cryophase coinciding with photophase and thermophase coinciding with scotophase). A negative correlation between ocular serotonin N-acetyltransferase activity and culture temperature for both diurnal and nocturnal activities has been observed. This effect of increased ocular activity at low temperature is more pronounced than the well-known stimulatory effect of darkness, and it does not depend on the photoperiod phase. The lack of interactions between the phase of photoperiod and culture temperature indicates that the effects of both factors are independent. Night-time temperature is the key factor in determining the amplitude of the melatonin rhythm in the Rana perezi retina. However, daytime temperature can not counteract the inhibitory effect of light on ocular melatonin synthesis.

  9. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations.

    PubMed

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging.

  10. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations

    PubMed Central

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging. PMID:27789976

  11. Measurements of the cosmic microwave background temperature at 1.47 GHz

    SciTech Connect

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus_minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus_minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus_minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus_minus} 0.02,K global average CMB temperature.

  12. Measurements of the cosmic microwave background temperature at 1. 47 GHz

    SciTech Connect

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

  13. Measuring the Redshift Dependence of The Cosmic Microwave Background Monopole Temperature With Planck Data

    NASA Technical Reports Server (NTRS)

    De Martino, I.; Atrio-Barandela, F.; Da Silva, A.; Ebling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C. J. A. P.

    2012-01-01

    We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude approximately 1 microK or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter a in the redshift scaling T (z) = T0(1 + z)(sup 1-alpha), with an accuracy of sigma(sub alpha) = 0.011 in the most optimal case and with sigma alpha = 0.018 for a less optimal case. These results represent a factor of 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.

  14. Imitating seasonal temperature fluctuations for the H2S corrosion of 304L and 316L austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Davoodi, A.; Babaiee, M.; Pakshir, M.

    2013-07-01

    Temperature fluctuations are inevitable in sour oil and gas production. In this study, the H2S corrosion of 304L and 316L alloys was investigated at pH 3 and temperatures of 20-60 °C using DC and AC electrochemical techniques. Two-fold increases in the corrosion rates of both alloys were reported with increases in temperature to 60 °C. In the 304L alloy, the surface layer was observed to be 3% rougher and 34% thicker than that of the 316L alloy. The two alloys exhibited different corrosion behaviors in the temperature ranges of 20-40 °C and 40-60 °C. Although the 316L alloy revealed a greater corrosion resistance at the free potential condition, the passivation on the 304L alloy was significantly greater than that of the 316L alloy at 40 °C and 15 ppm H2S. The FeS2 and combined FeS2-MoS2 compounds contributed to the surface layer constituents in the 304L and 316L alloys, respectively. The increase in temperature kinetically provided more favorable conditions for FeS2 than MoS2 formation, i.e. it had a relatively constructive effect on the 304L alloy passivation.

  15. Temperature preference and reproductive fitness of the annual killifish Austrofundulus limnaeus exposed to constant and fluctuating temperatures.

    PubMed

    Podrabsky, Jason E; Clelen, Dustin; Crawshaw, Larry I

    2008-04-01

    Austrofundulus limnaeus thrive in ephemeral ponds that may experience temperatures spanning a range of over 20 degrees C on a daily basis. We hypothesized that A. limnaeus may have mechanisms, either behavioral or physiological, that allow them to support successful reproduction in this environment. To evaluate this hypothesis, we exposed male and female adult A. limnaeus to constant 26 degrees C and cycling 21-37 degrees C acclimation regimes in the laboratory and then determined their temperature preference and reproductive fitness. Temperature preference was determined using a thermal gradient. We demonstrated that A. limnaeus is capable of accurate behavioral thermoregulation, has a final thermal preferendum near 26 degrees C, and exhibits a daily cycle of temperature preference. Exposure to a cycling temperature regime has an acute effect on thermal preference that differs between the sexes. Reproductive capability was negatively affected by the cyclic temperature exposure. These findings suggest that thermal partitioning between males and females may be a natural part of the ecology of A. limnaeus. In addition, it appears that behavioral thermoregulation, or partitioning of reproductive events to the cool parts of the thermoperiod, are likely to be critical to support successful reproduction in natural populations of A. limnaeus.

  16. Progress Toward a New Technique for Measuring Local Electric Field Fluctuations in High Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Liben, M. M.; Thompson, D. S.; Winz, G. R.

    2015-11-01

    A new diagnostic measuring local Ez(r,t) fluctuations is being developed at the Pegasus Toroidal Experiment. A novel multiple volume phase holographic grating spectrometer, designed to have high resolution (0.25Å) and high étendue (U = 0.01cm2-ster), measures the line separation of the π components of the Hα motional Stark spectrum of emitted beam light. The spectra are recorded at high frequency (fNy ~ 500kHz) by a high speed CMOS imaging detector. The groove density of the objective grating is varied linearly along its surface to counter geometric Doppler broadening. A low divergence (Ω ~ 0.5o) , 80kV, 2.5A H0 diagnostic neutral beam is being deployed on Pegasus. The beam uses a washer-stack arc ion source to maximize full energy species fraction in the injected neutral beam. Laboratory tests of the ion source demonstrate stable, repeatable plasmas with Te <= 20eV and ne ~ 5x1017m-3, sufficient to sustain a 6mA/cm2 current density at the focal plane for up to 20ms. A three phase resonant converter power supply, with low amplitude (δV/80kV ~ 0.05%), high frequency (frip ~ 280kHz) ripple, is in development to provide the 80kV accelerator power. This research supported by US D.O.E. Grant DE-FG02-89ER53296.

  17. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements

    NASA Astrophysics Data System (ADS)

    Brázdil, R.; Zahradníček, P.; Pišoft, P.; Štěpánek, P.; Bělínová, M.; Dobrovolný, P.

    2012-04-01

    The history of early meteorological observations using instruments in the Czech Lands is described (the longest temperature series for Prague-Klementinum starts in 1775, precipitation series for Brno in 1803). Using the PRODIGE method, long-term monthly temperature and precipitation series from selected secular stations were homogenized (for 10 and 12 stations, respectively). All the seasonal and annual temperature series for the common period 1882-2010 show a significant positive linear trend with accelerated warming from the 1970s onwards. No significant linear trends were disclosed in the series of seasonal and annual precipitation totals. Correlation coefficients between the Czech series analysed decrease as distances between measuring stations increase. A sharper decrease of correlations for precipitation totals displays much weaker spatial relationships than those for mean temperatures. The highest correlations between all stations appeared in 1921-1950, the lowest in 1891-1920 (temperature) and 1981-2010 (precipitation). Wavelet analysis reveals that very distinct annual cycles, as well as the slightly weaker semi-annual ones, are better expressed for temperature series than for precipitation. Statistically significant cycles longer than one year are temporally unstable and sporadic for precipitation while in the temperature series cycles of 7.4-7.7a (a = year) and 17.9-18.4a were recorded as significant by all stations in 1882-2010 (quasi-biennial cycle of 2.1-2.2a for half the stations). Czech homogenous temperature series correlate best with those of the Northern Hemisphere for annual, spring and summer values (with significant correlation coefficients between 0.60 and 0.70), but this relation is temporally unstable. Circulation indices, such as the North Atlantic Oscillation Index (NAOI) and the Central European Zonal Index (CEZI) may explain the greater part of Czech temperature variability, especially from December to March and for the winter; however

  18. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Zahradníček, Pavel; Pišoft, Petr; Štěpánek, Petr; Bělínová, Monika; Dobrovolný, Petr

    2012-10-01

    The history of early meteorological observations using instruments in the Czech Lands is described (the longest temperature series for Prague-Klementinum starts in 1775, precipitation series for Brno in 1803). Using the PRODIGE method, long-term monthly temperature and precipitation series from selected secular stations were homogenised (for 10 and 12 stations, respectively). All the seasonal and annual temperature series for the common period 1882-2010 show a significant positive linear trend with accelerated warming from the 1970s onwards. No significant linear trends were disclosed in the series of seasonal and annual precipitation totals. Correlation coefficients between the Czech series analysed decrease as distances between measuring stations increase. A sharper decrease of correlations for precipitation totals displays much weaker spatial relationships than those for mean temperatures. The highest correlations between all stations appeared in 1921-1950, the lowest in 1891-1920 (temperature) and 1981-2010 (precipitation). Wavelet analysis reveals that very distinct annual cycles as well as the slightly weaker semi-annual ones are better expressed for temperature series than for precipitation. Statistically significant cycles longer than 1 year are temporally unstable and sporadic for precipitation, while in the temperature series cycles of 7.4-7.7 and 17.9-18.4 years were recorded as significant by all stations in 1882-2010 (quasi-biennial cycle of 2.1-2.2 years for half the stations). Czech homogenous temperature series correlate best with those of the Northern Hemisphere for annual, spring and summer values (with significant correlation coefficients between 0.60 and 0.70), but this relation is temporally unstable. Circulation indices, such as the North Atlantic Oscillation Index (NAOI) and the Central European Zonal Index (CEZI), may explain the greater part of Czech temperature variability, especially from December to March and for the winter; however

  19. The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah

    NASA Astrophysics Data System (ADS)

    Smith, Felisa A.; Betancourt, Julio L.

    2003-03-01

    Animals respond to climatic change by adapting or by altering distributional patterns. How an animal responds is influenced by where it is positioned within its geographic range; the probability of extirpation is increased near range boundaries. Here, we examine the impact of Holocene climatic fluctuations on a small mammalian herbivore, the bushy-tailed woodrat ( Neotoma cinerea), at five locations within south central Idaho and northwestern Utah. Previous work demonstrated that woodrats adapt to temperature shifts by altering body size. We focus here on the relationship between body mass, temperature, and location within the geographic range. Body mass is estimated by measuring fossil fecal pellets, a technique validated in earlier work. Overall, we find the predicted phenotypic response to climate change: animals were larger during cold periods, and smaller during warmer episodes. However, we also identify several time periods when changes in environmental temperature exceeded the adaptive flexibility of N. cinerea. A smaller-bodied species, the desert woodrat ( N. lepida) apparently invaded lower elevation sites during the mid-Holocene, despite being behaviorally and physically subordinate to N. cinerea. Analysis of contemporary patterns of body size and thermal tolerances for both woodrat species suggests this was because of the greater heat tolerance of N. lepida. The robust spatial relationship between contemporary body size and ambient temperature is used as a proxy to reconstruct local climate during the Holocene.

  20. The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah

    USGS Publications Warehouse

    Smith, F.A.; Betancourt, J.L.

    2003-01-01

    Animals respond to climatic change by adapting or by altering distributional patterns. How an animal responds is influenced by where it is positioned within its geographic range; the probability of extirpation is increased near range boundaries. Here, we examine the impact of Holocene climatic fluctuations on a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), at five locations within south central Idaho and northwestern Utah. Previous work demonstrated that woodrats adapt to temperature shifts by altering body size. We focus here on the relationship between body mass, temperature, and location within the geographic range. Body mass is estimated by measuring fossil fecal pellets, a technique validated in earlier work. Overall, we find the predicted phenotypic response to climate change: Animals were larger during cold periods, and smaller during warmer episodes. However, we also identify several time periods when changes in environmental temperature exceeded the adaptive flexibility of N. cinerea. A smaller-bodied species, the desert woodrat (N. lepida) apparently invaded lower elevation sites during the mid-Holocene, despite being behaviorally and physically subordinate to N. cinerea. Analysis of contemporary patterns of body size and thermal tolerances for both woodrat species suggests this was because of the greater heat tolerance of N. lepida. The robust spatial relationship between contemporary body size and ambient temperature is used as a proxy to reconstruct local climate during the Holocene. ?? 2003 Elsevier Science (USA). All rights reserved.

  1. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE PAGES

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; ...

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  2. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    SciTech Connect

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.

  3. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream.

    PubMed

    Peng, Jing; Cao, Zhen-Dong; Fu, Shi-Jian

    2014-10-01

    We investigated the effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action (SDA) and growth performance of juvenile Chinese bream (Parabramis pekinensis). The critical thermal maxima (CTmax), critical thermal minima (CTmin), lethal thermal maxima (LTmax), lethal thermal minima (LTmin), critical swimming speed (Ucrit) and fast-start escape response after 30 d acclimation to three constant temperatures (15, 20 and 25 °C) and one diel-fluctuating temperature (20±5 °C) were measured. In addition, feeding rate (FR), feeding efficiency (FE) and specific growth rate (SGR) were measured. The diel-fluctuating temperature group showed lower CTmin than the 20 °C group but a similar CTmax, indicating a wider thermal scope. SDA linearly increased with the temperature. Temperature variation between 20 and 25 °C had little effect on either swimming or growth performance. However, fish in the 15 °C group exhibited much poorer swimming and growth performance than those in the 20 °C group. Ucrit decreased slightly under low acclimation temperature due to the pronounced improvement in swimming efficiency under cold temperature. Fish in the diel-fluctuating temperature group fed more but exhibited similar SGR compared to 20 °C group, possibly due in part to an increase in energy expenditure to cope with the temperature fluctuation. The narrower thermal scope and lower CTmax of Chinese bream together with the conservation of CTmax with temperature acclimation, suggests that local water temperature elevations may have more profound effects on Chinese bream than on other fish species in the Three Gorges Reservoir.

  4. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering

    PubMed Central

    Roedig, Philip; Duman, Ramona; Sanchez-Weatherby, Juan; Vartiainen, Ismo; Burkhardt, Anja; Warmer, Martin; David, Christian; Wagner, Armin; Meents, Alke

    2016-01-01

    Recent success at X-ray free-electron lasers has led to serial crystallography experiments staging a comeback at synchrotron sources as well. With crystal lifetimes typically in the millisecond range and the latest-generation detector technologies with high framing rates up to 1 kHz, fast sample exchange has become the bottleneck for such experiments. A micro-patterned chip has been developed from single-crystalline silicon, which acts as a sample holder for up to several thousand microcrystals at a very low background level. The crystals can be easily loaded onto the chip and excess mother liquor can be efficiently removed. Dehydration of the crystals is prevented by keeping them in a stream of humidified air during data collection. Further sealing of the sample holder, for example with Kapton, is not required. Room-temperature data collection from insulin crystals loaded onto the chip proves the applicability of the chip for macromolecular crystallography. Subsequent structure refinements reveal no radiation-damage-induced structural changes for insulin crystals up to a dose of 565.6 kGy, even though the total diffraction power of the crystals has on average decreased to 19.1% of its initial value for the same dose. A decay of the diffracting power by half is observed for a dose of D 1/2 = 147.5 ± 19.1 kGy, which is about 1/300 of the dose before crystals show a similar decay at cryogenic temperatures. PMID:27275143

  5. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage

    PubMed Central

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75–85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy. PMID:26428064

  6. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage.

    PubMed

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06 g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75-85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy.

  7. Consistent Temperature Coupling with Thermal Fluctuations of Smooth Particle Hydrodynamics and Molecular Dynamics

    PubMed Central

    Ganzenmüller, Georg C.; Hiermaier, Stefan; Steinhauser, Martin O.

    2012-01-01

    We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain – internal energy and heat capacity versus particle velocity – are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance. PMID:23300586

  8. Measured temperature fluctuations and Reynolds number in turbulent Rayleigh-Bénard convection with varying roughness size

    NASA Astrophysics Data System (ADS)

    Xie, Yichao; Xia, Keqing

    2016-11-01

    We present measurements of the temperature fluctuations σT and of the Reynolds number Re in turbulent Rayleigh-Bénard convection in cylindrical cell with pyramid-shaped rough top and bottom plates. To study the effects of roughness size, we varied a roughness parameter λ, defined as a single roughness height h (kept at a constant of 8 mm) over its base width d, from 0.5 to 4.0. Fluorinert Liquid FC-770 was used as the working fluid with the Rayleigh number Ra varying from 4.49 × 109 to 9.94 × 1010 and Prandtl number Pr kept at 23.34. It is found that σT in both cell center and sidewall increases dramatically with λ. The scaling exponent of the normalized σT with respect to Ra increases from -0.16 to -0.09 at cell center and -0.23 to -0.08 near sidewall when λ is increased from 0.5 to 4.0. The Reynolds number Re based on the circulation time of the large-scale circulation (LSC) also increases with λ, suggesting a faster LSC. The scaling exponent of Re with respect to Ra increases from 0.47 to 0.55 with λ increased from 0.5 to 4.0. The study reveals that the flow and temperature fluctuations are very sensitive to the perturbation induced by rough plate with vary λ. This work is supported by the Hong Kong Research Grant Council under Grant Number N_CUHK437/15.

  9. Temperature fluctuation in Rayleigh-Bénard convection: Logarithmic vs power-law

    NASA Astrophysics Data System (ADS)

    He, Yu-Hao; Xia, Ke-Qing

    2016-11-01

    We present an experimental measurement of the rms temperature (σT) profile in two regions inside a large aspect ratio (Γ = 4 . 2) rectangular Rayleigh-Bénard convection cell. The Rayleigh number (Ra) is from 3 . 2 ×107 to 1 . 9 ×108 at fixed Prandtl number (Pr = 4 . 34). It is found that, in one region, where the boundary layer is sheared by a large-scale wind, σT versus the distance (z) above the bottom plate, obeys power law over one decade, whereas in another region, where plumes concentrate and move upward (plume-ejection region), the profile of σT has a logarithmic dependence on z. When normalized by a typical temperature scale θ*, the profiles of σT at different Rayleigh numbers collapse onto a single curve, indicating a university of σT profile with respect to Ra . This work is supported by the Hong Kong Research Grant Council under Grant Number N_CUHK437/15.

  10. A study of radiometric surface temperatures: Their fluctuations, distribution and meaning. [Voves, France

    NASA Technical Reports Server (NTRS)

    Perrier, A.; Itier, B.; Boissard, P. (Principal Investigator); Goillot, C.; Belluomo, P.; Valery, P.

    1980-01-01

    A consecutive night and day flight and measurements on the ground, were made in the region of Voves, south of Chartres. The statistical analysis of the thermal scanner data permitted the establishment of criteria for the homogeneity of surfaces. These criteria were used in defining the surface temperature values which are most representative for use in an energy balance approach to evapotranspiration (day) and heat balance (night). For a number of maize fields that airborne thermal scanner data permitted a detailed energy analysis of different fields of a same crop to be carried out. Such a detailed analysis was not necessary for a calculation of crop evapotranspiration which could be evaluated from the mean temperature of the crop surface. A differential analysis day night is of interest for enhancing the contrast between types of surfaces, as well as for a better definition of the daily energy balance. It should be stressed that, for a homogeneous region, a study such as the present one, could be carried out on a relatively small part of the total surface, as the results for a surface of 2.5 x 2 sq km were not significantly different from those obtained from a surface three times larger.

  11. Relieving tensions related to the lensing of the cosmic microwave background temperature power spectra

    NASA Astrophysics Data System (ADS)

    Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Rouillé d'Orfeuil, B.; Spinelli, M.; Tristram, M.

    2017-01-01

    The angular power spectra of the cosmic microwave background (CMB) temperature anisotropies reconstructed from Planck data seem to present "too much" gravitational lensing distortion. This is quantified by the control parameter AL that should be compatible with unity for a standard cosmology. With the class Boltzmann solver and the profile-likelihood method, for this parameter we measure a 2.6σ shift from 1 using the Planck public likelihoods. We show that, owing to strong correlations with the reionization optical depth τ and the primordial perturbation amplitude As, a 2σ tension on τ also appears between the results obtained with the low (ℓ ≤ 30) and high (30 < ℓ ≲ 2500) multipoles likelihoods. With Hillipop, another high-ℓ likelihood built from Planck data, this difference is lowered to 1.3σ. In this case, the AL value is still in disagreement with unity by 2.2σ, suggesting a non-trivial effect of the correlations between cosmological and nuisance parameters. To better constrain the nuisance foregrounds parameters, we include the very-high-ℓ measurements of the Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) experiments and obtain AL = 1.03 ± 0.08. The Hillipop+ACT+SPT likelihood estimate of the optical depth is τ = 0.052 ± 0.035, which is now fully compatible with the low-ℓ likelihood determination. After showing the robustness of our results with various combinations, we investigate the reasons for this improvement that results from a better determination of the whole set of foregrounds parameters. We finally provide estimates of the Λ cold dark matter parameters with our combined CMB data likelihood.

  12. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    PubMed Central

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2015-01-01

    Distance measurements using double electron–electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation. PMID:25442776

  13. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2014-11-01

    Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.

  14. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  15. Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Wang, Yin; He, Xiaozhou; Tong, Penger

    2016-11-01

    We report simultaneous measurements of the mean temperature profile θ (z) and temperature variance profile η (z) near the lower conducting plate of a specially designed quasi-two-dimensional cell for turbulent Rayleigh-Bénard convection. The measured θ (z) is found to have a universal scaling form θ (z / δ) with varying thermal boundary layer (BL) thickness δ, and its functional form agrees well with the recently derived BL equation by Shishkina et al. The measured η (z) , on the other hand, is found to have a scaling form η (z / δ) only in the near-wall region with z / δ < 2 . Based on the experimental findings, we derive a new BL equation for η (z / δ) , which is in good agreement with the experimental results. The new BL equations thus provide a common framework for understanding the effect of BL fluctuations. This work was supported by the Research Grants Council of Hong Kong SAR and by the China Thousand Young Talents Program.

  16. Oxygen consumption in the shrimp, Palaemonetes pugio, exposed to fluctuating temperatures and food contaminated with the diaromatic petroleum hydrocarbon, dimethylnaphthalene

    NASA Astrophysics Data System (ADS)

    Dillon, T. M.

    1983-04-01

    Oxygen consumption rates ( V˙o 2) in the grass shrimp Palaemonetes pugio were determined after a 32 day exposure to fluctuating temperatures (FT) (18-22°C) and/or dimethylnaphthalene (DMN)-contaminated food (0·24 μg DMN g wet wt -1) and again after a 16 day recovery period of stable temperatures (20°C) and uncontaminated food. Ingestion of DMN-contaminated food for 32 days resulted in elevated V˙>o 2 in shrimp exposed to declining oxygen concentrations. After the 32 day exposure period, FT had no significant effect on V˙o 2 at 15, 20 and 25°C, tissue V˙o 2 and V˙o 2 in declining oxygen. Hemolymph copper concentrations were significantly depressed in shrimp exposed to DMN-contaminated food. After the 16 day recovery period, shrimp from the FT regime exhibited depressed V˙o 2 when exposed to 25°C but not to 15°C. These depressed respiratory rates were offset by the stimulatory effect of DMN-contaminated food. These respiration studies were generally unproductive in explaining the previously reported effects of FT and DMN-contaminated food on the survival of P. pugio under hypoxic conditions.

  17. A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Yu’e; Xu, Ting; Guo, Feifei; Tang, Huashan; Li, Xiang; Wang, Pengfei; Qian, Wenfeng; Xue, Yongbiao

    2016-01-01

    The sessile plants have evolved diverse intrinsic mechanisms to control their proper development under variable environments. In contrast to plastic vegetative development, reproductive traits like floral identity often show phenotypic robustness against environmental variations. However, it remains obscure about the molecular basis of this phenotypic robustness. In this study, we found that eg1 (extra glume1) mutants of rice (Oryza savita L.) showed floral phenotypic variations in different growth locations resulting in a breakdown of floral identity robustness. Physiological and biochemical analyses showed that EG1 encodes a predominantly mitochondria-localized functional lipase and functions in a high temperature-dependent manner. Furthermore, we found that numerous environmentally responsive genes including many floral identity genes are transcriptionally repressed in eg1 mutants and OsMADS1, OsMADS6 and OsG1 genetically act downstream of EG1 to maintain floral robustness. Collectively, our results demonstrate that EG1 promotes floral robustness against temperature fluctuation by safeguarding the expression of floral identify genes through a high temperature-dependent mitochondrial lipid pathway and uncovers a novel mechanistic insight into floral developmental control. PMID:27367609

  18. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Influence of atmospheric fluctuations of the induced temperature on the characteristics of laser radiation

    NASA Astrophysics Data System (ADS)

    Banakh, Viktor A.; Smalikho, I. N.

    1987-10-01

    The expression for the function representing the second-order mutual coherence of a laser beam propagating in a turbulent atmosphere under thermal self-interaction conditions is derived in the aberration-free approximation. An analysis is made of the width of a beam, its wind refraction, and the radius of coherence as a function of the initial coherence of the radiation, of conditions of diffraction on the transmitting aperture, and of fluctuations of the wind velocity. It is shown that on increase in the power the coherence radius of cw laser radiation first increases because of thermal defocusing and then decreases due to the appearance (because of fluctuations of the wind velocity) of induced temperature inhomogeneities in air in the beam localization region. The conditions under which fluctuations of the induced temperature have a significant influence on the coherence of the radiation are determined.

  19. 2D/3D electron temperature fluctuations near explosive MHD instabilities accompanied by minor and major disruptions

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Park, H. K.; Yun, G. S.; Lee, W.; Luhmann, N. C., Jr.; Lee, K. D.; Ko, W.-H.; Park, Y.-S.; Park, B. H.; In, Y.

    2016-06-01

    Minor and major disruptions by explosive MHD instabilities were observed with the novel quasi 3D electron cyclotron emission imaging (ECEI) system in the KSTAR plasma. The fine electron temperature (T e) fluctuation images revealed two types of minor disruptions: a small minor disruption is a q∼ 2 localized fast transport event due to a single m/n  =  2/1 magnetic island growth, while a large minor disruption is partial collapse of the q≤slant 2 region with two successive fast heat transport events by the correlated m/n  =  2/1 and m/n  =  1/1 instabilities. The m/n  =  2/1 magnetic island growth during the minor disruption is normally limited below the saturation width. However, as the additional interchange-like perturbation grows near the inner separatrix of the 2/1 island, the 2/1 island can expand beyond the limit through coupling with the cold bubble formed by the interchange-like perturbation.

  20. Logarithmic spatial variations and universal f-1 power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection.

    PubMed

    He, Xiaozhou; van Gils, Dennis P M; Bodenschatz, Eberhard; Ahlers, Guenter

    2014-05-02

    We report measurements of the temperature variance σ(2)(z,r) and frequency power spectrum P(f,z,r) (z is the distance from the sample bottom and r the radial coordinate) in turbulent Rayleigh-Bénard convection (RBC) for Rayleigh numbers Ra = 1.6 × 10(13) and 1.1 × 10(15) and for a Prandtl number Pr ≃ 0.8 for a sample with a height L = 224 cm and aspect ratio D/L=0.50 (D is the diameter). For z/L ≲ 0.1 σ(2)(z,r) was consistent with a logarithmic dependence on z, and there was a universal (independent of Ra, r, and z) normalized spectrum which, for 0.02 ≲ fτ(0) ≲ 0.2, had the form P(fτ(0)) = P(0)(fτ(0))(-1) with P(0) = 0.208 ± 0.008 a universal constant. Here τ(0) = sqrt[2R] where R is the radius of curvature of the temperature autocorrelation function C(τ) at τ = 0. For z/L ≃ 0.5 the measurements yielded P(fτ(0))∼(fτ(0))(-α) with α in the range from 3/2 to 5/3. All the results are similar to those for velocity fluctuations in shear flows at sufficiently large Reynolds numbers, suggesting the possibility of an analogy between the flows that is yet to be determined in detail.

  1. Infrequent cavity-forming fluctuations in HPr from Staphylococcus carnosus revealed by pressure- and temperature-dependent tyrosine ring flips

    PubMed Central

    Hattori, Mineyuki; Li, Hua; Yamada, Hiroaki; Akasaka, Kazuyuki; Hengstenberg, Wolfgang; Gronwald, Wolfram; Kalbitzer, Hans Robert

    2004-01-01

    Infrequent structural fluctuations of a globular protein is seldom detected and studied in detail. One tyrosine ring of HPr from Staphylococcus carnosus, an 88-residue phosphocarrier protein with no disulfide bonds, undergoes a very slow ring flip, the pressure and temperature dependence of which is studied in detail using the on-line cell high-pressure nuclear magnetic resonance technique in the pressure range from 3 MPa to 200 MPa and in the temperature range from 257 K to 313 K. The ring of Tyr6 is buried sandwiched between a β-sheet and α-helices (the water-accessible area is less than 0.26 nm2), its hydroxyl proton being involved in an internal hydrogen bond. The ring flip rates101~105 s−1 were determined from the line shape analysis of Hδ1, δ2 and Hɛ1,ɛ2 of Tyr6, giving an activation volume ΔV‡ of 0.044 ± 0.008 nm3 (27 mL mol−1), an activation enthalpy ΔH‡ of 89 ± 10 kJ mol−1, and an activation entropy ΔS‡ of 16 ± 2 JK−1 mol−1. The ΔV‡ and ΔH‡ values for HPr found previously for Tyr and Phe ring flips of BPTI and cytochrome c fall within the range of ΔV‡ of 28 to 51 mL mol−1 and ΔH‡ of 71 to 155 kJ mol−1. The fairly common ΔV‡ and ΔH‡ values are considered to represent the extra space or cavity required for the ring flip and the extra energy required to create a cavity, respectively, in the core part of a globular protein. Nearly complete cold denaturation was found to take place at 200 MPa and 257 K independently from the ring reorientation process. PMID:15557257

  2. Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1-xFx measured by muon spin rotation.

    PubMed

    Drew, A J; Pratt, F L; Lancaster, T; Blundell, S J; Baker, P J; Liu, R H; Wu, G; Chen, X H; Watanabe, I; Malik, V K; Dubroka, A; Kim, K W; Rössle, M; Bernhard, C

    2008-08-29

    Muon spin rotation experiments were performed on the pnictide high temperature superconductor SmFeAsO1-xFx with x=0.18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the formation of an unconventional superconducting state. An estimate of the in-plane penetration depth lambda ab(0)=190(5) nm was obtained, which confirms that the pnictide superconductors obey an Uemura-style relationship between Tc and lambda ab(0);(-2).

  3. UF-CHERS Measurements of Ion Temperature and Toroidal Rotation Fluctuations Associated with the Edge Harmonic Oscillation in Quiescent H-mode Plasmas

    NASA Astrophysics Data System (ADS)

    Truong, D. D.; Fonck, R. J.; McKee, G. R.; Yan, Z.; Grierson, B. A.

    2016-10-01

    The UF-CHERS (Ultra Fast CHarge Exchange Recombination Spectroscopy) diagnostic at DIII-D measures local, long-wavelength ion temperature and toroidal velocity fluctuations at turbulence-relevant spatiotemporal scales from emission of the CVI n=8 ->7 transition. During Quiescent H-mode (QH-mode) plasmas, which offer ELM-free improved confinement, UF-CHERS measurements observed coherent, low frequency (fo 10kHz) pedestal oscillations in Ti and vtor at the Edge Harmonic Oscillation (EHO) frequency while several modes between 35-75 kHz are suppressed when the EHO appears. Although broadband ion temperature and density fluctuations were reduced by the EHO, the toroidal rotation showed increased fluctuation amplitude. Investigating ion temperature and toroidal fluctuations associated with the EHO may provide insights into the saturated instability driving the EHO. Supported by DOE Grants DE-FG02-08ER54999, DE-FC02-04ER54698, and NSF GRFP Grant DGE-1256259.

  4. Small-scale fluctuations and angular correlations of the X-ray background in the HEAO 1 A-2 energy band - Constraints on clustering of X-ray sources

    NASA Technical Reports Server (NTRS)

    Martin-Mirones, J. M.; De Zotti, G.; Franceschini, A.; Boldt, E. A.; Marshall, F. E.; Danese, L.; Persic, M.

    1991-01-01

    HEAO 1 A-2 all-sky survey data have been used to determine the amplitude of intensity fluctuations of the extragalactic 2-10 keV X-ray background (XRB) over an effective solid angle of 1.84 sq deg and their angular correlation function on angular scales of less than 3 deg. A good empirical fit to the data is obtained assuming that the integral counts in the A-2 band have a slope of 1.65 + 0.06 or - 0.07. Alternatively, the data may imply a significant clustering of extragalactic X-ray sources.

  5. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus

    PubMed Central

    2011-01-01

    Background The study of speciation in the marine realm is challenging because of the apparent absence of physical barriers to dispersal, which are one of the main drivers of genetic diversity. Although phylogeographic studies using mitochondrial DNA (mtDNA) information often reveal significant genetic heterogeneity within marine species, the evolutionary significance of such diversity is difficult to interpret with these markers. In the northwestern (NW) Pacific, several studies have emphasised the potential importance of sea-level regression during the most recent glaciations as a driver of genetic diversity in marine species. These studies have failed, however, to determine whether the period of isolation was long enough for divergence to attain speciation. Among these marine species, the cosmopolitan estuarine-dependent fish Mugil cephalus represents an interesting case study. Several divergent allopatric mtDNA lineages have been described in this species worldwide, and three occur in sympatry in the NW Pacific. Results Ten nuclear microsatellites were surveyed to estimate the level of genetic isolation of these lineages and determine the role of sea-level fluctuation in the evolution of NW Pacific M. cephalus. Three cryptic species of M. cephalus were identified within this region (NWP1, 2 and 3) using an assignment test on the microsatellite data. Each species corresponds with one of the three mtDNA lineages in the COI phylogenetic tree. NWP3 is the most divergent species, with a distribution range that suggests tropical affinities, while NWP1, with a northward distribution from Taiwan to Russia, is a temperate species. NWP2 is distributed along the warm Kuroshio Current. The divergence of NWP1 from NWP2 dates back to the Pleistocene epoch and probably corresponds to the separation of the Japan and China Seas when sea levels dropped. Despite their subsequent range expansion since this period of glaciation, no gene flow was observed among these three lineages

  6. The Temperature of the Cosmic Background Radiation: Results fromthe 1987 and 1988 Measurements at 3.8 GHz

    SciTech Connect

    De Amici, Giovanni; Bensadoun, M.; Bersanelli, M.; Kogut, A.; Levine, S.; Smoot, George F.; Witebsky, C.

    1989-11-10

    We have measured the temperature of the cosmic background radiation (CBR) at a frequency of 3.8 GHz (7.9 cm wavelength), during two consecutive summers, obtaining a brightness temperature, T{sub CBR}, of 2.56 {+-} 0.08 K in 1987 and 2.71 {+-} 0.07 K in 1988 (68% confidence level). The new results are in agreement with our previous measurement at 3.7 GHz obtained in 1986, and have smaller error bars. Combining measurements from all three years we obtain T{sub CBR} = 2.64 {+-} 0.07 K.

  7. Temperature-fluctuation-sensitive accumulative effect of the phase measurement errors in low-coherence interferometry in characterizing arrayed waveguide gratings.

    PubMed

    Zhao, Changyun; Wei, Bing; Yang, Longzhi; Wang, Gencheng; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2015-09-20

    We investigate the accumulative effect of the phase measurement errors in characterizing optical multipath components by low-coherence interferometry. The accumulative effect is caused by the fluctuation of the environment temperature, which leads to the variation of the refractive index of the device under test. The resulting phase measurement errors accumulate with the increasing of the phase difference between the two interferometer arms. Our experiments were carried out to demonstrate that the accumulative effect is still obvious even though the thermo-optical coefficient of the device under test is quite small. Shortening the measurement time to reduce the fluctuation of the environment temperature can effectively restrain the accumulative effect. The experiments show that when the scanning speed increases to 4.8 mm/s, the slope of the phase measurement errors decreases to 5.52×10(-8), which means the accumulative effect can be ignored.

  8. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  9. Temporal fluctuations of the Sea Surface Temperature and Chlorophyll-a along of coral reef systems located on the Western coastal zone of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    de Jesús Salas Pérez, José; Ocaña Valencia, Angel; González Gandara, Carlos

    2014-05-01

    On the coastal zone of the western Gulf of Mexico (GM), there are a variety of coral reef systems which are influenced by river discharge and macro-scale circulation of the GM. The goal of this study is determine if the main fluctuations of the chlorophyll-a and sea surface temperature values (measured from monthly satellite images of sensors Aqua Modis and NOAA-AVHRR in the period of 2008-2011) in coral reef systems, are determined by river discharges or macro-scale circulation of the basin. Moreover determine if the temporal fluctuations of those parameters are correlated between them and thus asses the relationship between them. The most norther coral reef system (Lobos) is classified as mesotrophic-eutrophic. The middle coral reef system (Tuxpan) is ranked as oligotrophic-mesotrophic. Toward the southern region of the western littoral of the GM the coral reefs systems (PNSAV and Coatzacoalcos) are classified as eutrophic. Regarding to Sea Surface Temperature (SST) fluctuations, all coral reef systems showed an almost similar behavior, winter is the season with cool waters (19-23°C). Then in spring, the temperature values increases to about 25°C. Summer season have warm waters (29-30°C). Slightly different, fall decrease their water temperatures to 28°C. The northern coral reef systems (Lobos-Tuxpan) are colder than that the coral reef systems of the southern region (PNSAV-Coatzacoalcos). Those fluctuations, in chlorophyll-a and SST are induced by cyclonic and anticyclonic gyres generated in the Loop current, which impact in the northern region, while the southern region is influenced by river discharge and the presence of a cyclonic gyre of the Campeche bay. But northern and southern coral reef systems are mainly affected by waters of the northern GM advected by winds blowing from the north, mainly in winter.

  10. High temperature effects on Pi54 conferred resistance to Magnaporthe oryzae in two genetic backgrounds of Oryza sativa.

    PubMed

    Onaga, Geoffrey; Wydra, Kerstin; Koopmann, Birger; Chebotarov, Dmytro; Séré, Yakouba; Von Tiedemann, Andreas

    2017-02-21

    The global temperatures are predicted to rise due to climate change. However, knowledge on the mechanisms underlying the effect of high temperature (HT) on plant pathogen interaction is limited. We investigated the effect of elevated temperature on host phenotypic, biochemical and gene expression patterns in the rice-Magnaporthe oryzae (Mo) pathosystem using two genetic backgrounds, Co39 (Oryzae sativa-indica) and LTH (O. sativa-japonica) with (CO and LT) and without (Co39 and LTH) R gene (Pi54). After exposure to 28°C and 35°C the two genetic backgrounds showed contrasting responses to Mo. At 28°C, CO, Co39 and LTH displayed a more severe disease phenotype than LT. Surprisingly, CO became resistant to Mo after exposure to 35°C. CO and LT were used for further analysis to determine the defence related biochemical and transcriptome changes associated with HT induced resistance. Pre-exposure to 35°C triggered intense callose deposits and cell wall fluorescence of the attacked epidermal cells, as well as, increased hydrogen peroxide (H2O2) and salicylic acid (SA) levels. Transcriptional changes due to combined stress (35°C+Mo) were largely overridden by pathogen infection in both backgrounds, suggesting that the plants tended to shift their response to the pathogen. However, significant differences in global gene expression patterns occurred between CO and LT in response to both single (35°C and Mo) and double stress (35°C+Mo). Collectively, our results suggest that rice lines carrying Pi54 respond to Mo by rapid induction of callose and H2O2, and that these resistance mechanisms are amplified at HT. The relative difference in disease severity between CO and LT at 28°C suggests that the genetic background of japonica rice facilitates the function of Pi54 more than the background of indica rice. The phenotypic plasticity and gene expression differences between CO and LT reveal the presence of intricate background specific molecular signatures that may

  11. Potential Fluctuations at Low Temperatures in Mesoscopic-Scale SmTiO3/SrTiO3/SmTiO3 Quantum Well Structures.

    PubMed

    Hardy, Will J; Isaac, Brandon; Marshall, Patrick; Mikheev, Evgeny; Zhou, Panpan; Stemmer, Susanne; Natelson, Douglas

    2017-03-28

    Heterointerfaces of SrTiO3 with other transition metal oxides make up an intriguing family of systems with a bounty of coexisting and competing physical orders. Some examples, such as LaAlO3/SrTiO3, support a high carrier density electron gas at the interface whose electronic properties are determined by a combination of lattice distortions, spin-orbit coupling, defects, and various regimes of magnetic and charge ordering. Here, we study electronic transport in mesoscale devices made with heterostructures of SrTiO3 sandwiched between layers of SmTiO3, in which the transport properties can be tuned from a regime of Fermi-liquid like resistivity (ρ ∝ T(2)) to a non-Fermi liquid (ρ ∝ T(5/3)) by controlling the SrTiO3 thickness. In mesoscale devices at low temperatures, we find unexpected voltage fluctuations that grow in magnitude as T is decreased below 20 K, are suppressed with increasing contact electrode size, and are independent of the drive current and contact spacing distance. Magnetoresistance fluctuations are also observed, which are reminiscent of universal conductance fluctuations but not entirely consistent with their conventional properties. Candidate explanations are considered, and a mechanism is suggested based on mesoscopic temporal fluctuations of the Seebeck coefficient. An improved understanding of charge transport in these model systems, especially their quantum coherent properties, may lead to insights into the nature of transport in strongly correlated materials that deviate from Fermi liquid theory.

  12. Modulation of equatorial Pacific sea surface temperature response to westerly wind events by the oceanic background state

    NASA Astrophysics Data System (ADS)

    Puy, Martin; Vialard, Jérôme; Lengaigne, Matthieu; Guilyardi, Eric; Voldoire, Aurore; Madec, Gurvan

    2016-12-01

    Equatorial Pacific Westerly Wind Events (WWEs) impact ENSO evolution through their local and remote oceanic response. This response depends upon the WWE properties (duration, intensity, fetch…) but also on the underlying oceanic state. Oceanic simulations with an identical idealised western Pacific WWE applied every 3 months on seasonally and interannually varying oceanic conditions over the 1980-2012 period allow characterizing and understanding the modulation of the WWE response by the oceanic background state. These simulations reveal that the amplitude of the Sea Surface Temperature (SST) response, which can vary by one order of magnitude, is far more sensitive to the oceanic background conditions than the dynamical response to WWEs. The amplitude of the surface-flux driven cooling in the western Pacific is strongly modulated by zonal advection, through interannual variations in the background SST zonal gradient. The amplitude of the warming at the warm pool eastern edge is controlled by horizontal advection, and varies as a function of the zonal SST gradient and distance between the WWE and warm pool eastern edge. The amplitude of the eastern Pacific warming varies as a function of the background thermocline depth and local winds. Overall, only the amplitude of the WWE-driven western Pacific cooling can be clearly related to the phase of ENSO, while the WWE driven SST response in the central and eastern Pacific is more diverse and less easily related to large-scale properties. The implications of these findings for ENSO predictability are discussed.

  13. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  14. Life cycle and reproductive patterns of Triatoma rubrovaria (Blanchard, 1843) (Hemiptera: Reduviidae) under constant and fluctuating conditions of temperature and humidity.

    PubMed

    Damborsky, Miryam P; Bar, María E; Gorla, David

    2005-01-01

    The aim of this study was to evaluate the temperature and relative humidity influence in the life cycle, mortality and fecundity patterns of Triatoma rubrovaria. Four cohorts with 60 recently laid eggs each were conformed. The cohorts were divided into two groups. In the controlled conditions group insects were maintained in a dark climatic chamber under constant temperature and humidity, whereas triatomines of the ambiental temperature group were maintained at room temperature. Average incubation time was 15.6 days in the controlled conditions group and 19.1 days in the ambiental temperature. In group controlled conditions the time from egg to adult development lasted 10 months while group ambiental temperature took four months longer. Egg eclosion rate was 99.1% and 98.3% in controlled conditions and ambiental temperature, respectively. Total nymphal mortality in controlled conditions was 52.6% whereas in ambiental temperature was 51.8%. Mean number of eggs/female was 817.6 controlled conditions and 837.1 ambiental temperature. Fluctuating temperature and humidity promoted changes in the life cycle duration and in the reproductive performance of this species, although not in the species mortality.

  15. Dual-Array Electron Cyclotron Emission Imaging (ECEI): a New Millimeter Wave Imaging System for Electron Temperature Fluctuation on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Luhmann, N. C., Jr.; Tobias, B. J.; Domier, C. W.; Kong, X.; Liang, T.; Jaspers, R.; Donne, A. J. H.; Smith, M.; Nazikian, R.; Park, H. K.

    2009-11-01

    A new diagnostic tool has been developed for simultaneous real-time imaging of electron temperature fluctuations at both the high and low field sides. Separate imaging arrays spanning 75 to 110 and 90 to 140 GHz, respectively consist of 160 channels (20 vertical by 8 radial) with ˜1 cm^2 resolution, providing up to 55 cm of vertical plasma coverage. Fluctuations of 1% are measurable on μs time-scales. The technical capabilities of this diagnostic, as well as potential physics issues to be investigated, are discussed. The details of the constituent technologies, including advanced antennas and substrate lenses, quasi-optical planar filter components, and double down-conversion heterodyne signal detection will be addressed.

  16. Cosmological perturbations of quantum-mechanical origin and anisotropy of the microwave background

    NASA Technical Reports Server (NTRS)

    Grishchuk, L. P.

    1993-01-01

    Cosmological perturbations generated quantum mechanically (as a particular case, during inflation) possess statistical properties of squeezed quantum states. The power spectra of the perturbations are modulated and the angular distribution of the produced temperature fluctuations of the cosmic microwave background radiation is quite specific. An exact formula is derived for the angular correlation function of the temperature fluctuations caused by squeezed gravitational waves. The predicted angular pattern can, in principle, be revealed by observations like those by the Cosmic Background Explorer.

  17. Application of the Cluster Variation Method to Anisotropic Polarization Fluctuations in KD 2PO 4-Type Crystals above and below the Transition Temperature

    NASA Astrophysics Data System (ADS)

    Wada, Koh; Ogawa, Yoshihiro

    1998-01-01

    The cluster variation method (CVM) in the cactus approximation is applied to a pseudo-spin Ising Hamiltonian of the Slater-Takagi model for KD2PO4-type hydrogen-bonded ferroelectrics to calculate the wave-number dependent susceptibility χ( q), mainly focussing on the ferroelectric phase.The strong anisotropy of polarization fluctuations along the easy z-axis is shown to appear not only in the paraelectric phase but also in the ferroelectric phase when the ice-rule limit is approached. An analytical expression of the spontaneous polarization is fully utilized for calculations on χ( q) below the transition temperature.

  18. On the importance of high-frequency air-temperature fluctuations for spectroscopic corrections of open-path carbon dioxide flux measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Helbig, Manuel; Sonnentag, Oliver

    2015-04-01

    A growing number of studies report systematic differences in CO2 flux estimates obtained with the two main types of gas analyzers: compared to eddy-covariance systems based on closed-path (CP) gas analyzers, systems with open-path (OP) gas analyzers systematically overestimate CO2 uptake during daytime periods with high positive sensible heat fluxes, while patterns for differences in nighttime CO2 exchange are less obvious. These biases have been shown to correlate with the sign and the magnitude of the sensible heat flux and to introduce large uncertainties when calculating annual CO2 budgets. In general, CP and OP gas analyzers commonly used to measure the CO2 density in the atmosphere operate on the principle of infrared light absorption approximated by Beer-Lambert's law. Non-dispersive interference-based optical filter elements are used to select spectral bands with strong attenuation of light transmission, characteristic to the gas of interest. The intensity of the light passing through the optical sensing path depends primarily on the amount of absorber gas in the measurement volume. Besides the density of the gas, barometric pressure and air temperature are additional factors affecting the strength and the half-width of the absorption lines. These so-called spectroscopic effects are accounted for by measuring barometric pressure and air temperature in the sensing path and scaling the light-intensity measurements before applying the calibration equation. This approach works well for CP gas analyzers with an intake tube that acts as a low-pass filter on fast air-temperature fluctuations. Low-frequency response temperature sensors in the measurement cell are therefore sufficient to account for spectroscopic temperature effects. In contrast, OP gas analyzers are exposed to high-frequency air-temperature fluctuations associated with the atmospheric surface-layer turbulent heat exchange. If not corrected adequately, these fast air-temperature variations can cause

  19. DIRECT MEASUREMENT OF THE ANGULAR POWER SPECTRUM OF COSMIC MICROWAVE BACKGROUND TEMPERATURE ANISOTROPIES IN THE WMAP DATA

    SciTech Connect

    Chiang, Lung-Yih; Chen, Fei-Fan

    2012-05-20

    The angular power spectrum of the cosmic microwave background temperature anisotropies is one of the most important characteristics in cosmology that can shed light on the properties of the universe such as its geometry and total density. Using flat sky approximation and Fourier analysis, we estimate the angular power spectrum from an ensemble of the least foreground-contaminated square patches from the Wilkinson Microwave Anisotropy Probe W and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking orthogonality in spherical harmonic analysis because we are able to mask out the bright Galactic plane region, thereby rendering a direct measurement of the angular power spectrum. We test and confirm the Gaussian statistical characteristic of the selected patches, from which the first and second acoustic peaks of the power spectrum are reproduced, and the third peak is clearly visible, albeit with some noise residual at the tail.

  20. Sub-250nm room temperature optical gain from AlGaN materials with strong compositional fluctuations

    NASA Astrophysics Data System (ADS)

    Pecora, Emanuele; Zhang, Wei; Sun, Haiding; Nikiforov, A.; Yin, Jian; Paiella, Roberto; Moustakas, Theodore; Dal Negro, Luca

    2013-03-01

    Compact and portable deep-UV LEDs and laser sources are needed for a number of engineering applications including optical communications, gas sensing, biochemical agent detection, disinfection, biotechnology and medical diagnostics. We investigate the deep-UV optical emission and gain properties of AlxGa1-xN/AlyGa1-yN multiple quantum wells structure. These structures were grown by molecular-beam epitaxy on 6H-SiC substrates resulting in either homogeneous wells or various degrees of band-structure compositional fluctuations in the form of cluster-like features within the wells. We measured the TE-polarized amplified spontaneous emission in the sample with cluster-like features and quantified the optical absorption/gain coefficients and gain spectra by the Variable Stripe Length (VSL) technique under ultrafast optical pumping. We report blue-shift and narrowing of the emission, VSL traces, gain spectra, polarization studies, and the validity of the Schalow-Townes relation to demonstrate a maximum net modal gain of 120 cm-1 at 250 nm in the sample with strong compositional fluctuations. Moreover, we measure a very low gain threshold (15 μJ/cm2) . On the other hand, we found that samples with homogeneous quantum wells lead to absorption only. In addition, we report gain measurements in graded-index-separate-confined heterostructure (GRINSCH) designed to increase the device optical confinement factor.

  1. Thermal Stability of the New Soliton Transported Bio-Energy Under Influence of Fluctuations of Characteristic Parameters at Biological Temperature in the Protein Molecules

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Zhang, Huai-Wu; Yu, Jia-Feng; Luo, Yu-Hui

    The dynamic behaviors of the new soliton in the improved Davydov model in the protein molecules at biological temperature have been numerically simulated by utilizing the dynamic equations for the bio-energy transport and the Runge-Kutta way. In this simulation the influences of the temperature and structure disorders of the protein molecules on the soliton transporting the bio-energy have been completely considered. We find that the new soliton is quite stable in the cases of motion of a long time of 300 ps and of disorders of the structures of the proteins at biological temperatures of 300 K-320 K. The disorders of the structures contain the disorder of mass sequence of amino acids and the fluctuations of the coupling constant, force constant and dipole- dipole interaction constant and ground state energy of the proteins, designating the features of its structure and interactions between the particles in it. However, the soliton disperses in the cases of higher temperature of 325 K and larger structure disorders. The numerical results show that the new soliton is very robust against the influences of the thermal perturbation and structure disorders at biological temperature 300 K, its lifetime and critical temperature are at least 300 ps at 300 K and 320 K, respectively. These results are also consistent with analytical data.

  2. Seasonal variation in parasite infection patterns of marine fish species from the Northern Wadden Sea in relation to interannual temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Schade, Franziska M.; Raupach, Michael J.; Mathias Wegner, K.

    2016-07-01

    Marine environmental conditions are naturally changing throughout the year, affecting life cycles of hosts as well as parasites. In particular, water temperature is positively correlated with the development of many parasites and pathogenic bacteria, increasing the risk of infection and diseases during summer. Interannual temperature fluctuations are likely to alter host-parasite interactions, which may result in profound impacts on sensitive ecosystems. In this context we investigated the parasite and bacterial Vibrionaceae communities of four common small fish species (three-spined stickleback Gasterosteus aculeatus, Atlantic herring Clupea harengus, European sprat Sprattus sprattus and lesser sand eel Ammodytes tobianus) in the Northern Wadden Sea over a period of two years. Overall, we found significantly increased relative diversities of infectious species at higher temperature differentials. On the taxon-specific level some macroparasite species (trematodes, nematodes) showed a shift in infection peaks that followed the water temperatures of preceding months, whereas other parasite groups showed no effects of temperature differentials on infection parameters. Our results show that even subtle changes in seasonal temperatures may shift and modify the phenology of parasites as well as opportunistic pathogens that can have far reaching consequences for sensitive ecosystems.

  3. Fluctuating pressures measured beneath a high-temperature, turbulent boundary layer on a flat plate at Mach number of 5

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.

    1989-01-01

    Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.

  4. Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. III. Acute and chronic effects of CAPs on heart rate, heart-rate fluctuation, and body temperature.

    PubMed

    Hwang, Jing-Shiang; Nadziejko, Christine; Chen, Lung Chi

    2005-04-01

    Normal mice (C57) and mice prone to develop atherosclerosis (ApoE-/-) were implanted with electrocardiograph (EKG), core body temperature, and motion transmitters were exposed daily for 6 h to Tuxedo, NY, concentrated ambient particles (CAPs) for 5 day/wk during the spring and summer of 2003. The series of 5-min EKG monitoring and body-temperature measurements were obtained for each animal in the CAPs and filtered air sham exposure groups. Our hypothesis was that chronic exposure could cause cumulative health effects. We used our recently developed nonparametric method to estimate the daily time periods that mean heart rates (HR), body temperature, and physical activity differed significantly between the CAPs and sham exposed group. CAPs exposure most affected heart rate between 1:30 a.m. and 4:30 a.m. With the response variables being the average heart rate, body temperature, and physical activity, we adopted a two-stage modeling approach to obtain the estimates of chronic and acute effects on the changes of these three response variables. In the first stage, a time-varying model estimated daily crude effects. In the second stage, the true means of the estimated crude effects were modeled with a polynominal function of time for chronic effects, a linear term of daily CAPs exposure concentrations for acute effects, and a random component for unknown noise. A Bayesian framework combined these two stages. There were significant decreasing patterns of HR, body temperature, and physical activity for the ApoE-/- mice over the 5 mo of CAPs exposure, with smaller and nonsignificant changes for the C57 mice. The chronic effect changes of the three response variables for ApoE-/- mice were maximal in the last few weeks. There was also a significant relationship between CAPs exposure concentration and short-term changes of heart rate in ApoE-/- mice during exposure. Response variables were also defined for examining fluctuations of 5-min heart rates within long (i.e., 3-6 h

  5. Comparison of temperature fluctuations at multiple anatomical locations in cattle during exposure to bovine viral diarrhea virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rectal temperature is generally considered the “gold standard” for monitoring temperature changes associated with environmental, immunological or endocrine stimuli in cattle. With the development of new telemetry systems, other anatomical locations and methods can be utilized to help continuously m...

  6. Phasic and tonic fluctuations in brain, muscle, and skin temperatures during motivated drinking behavior in rats: physiological correlates of motivation and reward.

    PubMed

    Smirnov, Michael S; Kiyatkin, Eugene A

    2010-01-15

    Since brain metabolism is accompanied by heat production, measurement of brain temperature offers a method for assessing global alterations in metabolic neural activity. This approach, high-resolution (5-s bin) temperature recording from the nucleus accumbens (NAcc), temporal muscle, and facial skin, was used to study motivated drinking behavior in rats. Experienced animals were presented with a cup containing 5-ml of Coca-Cola(R) (Coke) beverage that resulted, within certain latencies, in initiation of a continuous chain of licking until all liquid was fully consumed. While cup presentation induced rapid, gradual NAcc temperature increase peaking at the start of drinking, temperatures slowly decreased during Coke consumption, but phasically increased again in the post-consumption period when rats were hyperactive, showing multiple interactions with an empty cup. Muscle temperatures followed a similar pattern, but the changes were weaker and delayed compared to those in the brain. Skin temperature rapidly dropped after cup presentation, steadily maintained at low levels during consumption, and slowly restored during the post-consumption period. Substitution of the expected Coke with either sugar-free Diet Coke(R) or water resulted in numerous drinking attempts but ultimately no consumption. During these tests, locomotor activation was much greater and more prolonged, brain and muscle temperatures increased monophasically, and their elevation was significantly greater than that with regular Coke tests. Food deprivation decreased drinking latencies, did not change the pattern of temperature fluctuations during Coke consumption, but temperature elevations were greater than in controls. Our data suggest sustained neural activation triggered by appetitive stimuli and associated with activational (seeking) aspects of appetitive motivated behavior. This seeking-related activation is rapidly ceased following consumption, suggesting this change as a neural correlate of

  7. Carbon films embedded by nickel nanoparticles: fluctuation in hopping rate and variable-range hopping with respect to annealing temperature

    NASA Astrophysics Data System (ADS)

    Dalouji, Vali; Elahi, Smohammad; Solaymani, Shahram; Ghaderi, Atefeh; Elahi, Hossein

    2016-05-01

    In this work, the electrical properties of carbon-nickel films annealed at different temperatures (573, 773, 1073 and 1273 K) in the temperature range 15-300 K were investigated. The films were grown by radio frequency magnetron co-sputtering on quartz substrates at room temperature. The multiphonon hopping conduction mechanism is found to dominate the electrical transport in the temperature range 150-300 K. It can be seen that the room-temperature hopping rate (ΓRT) at 773 K has maximum value of 56.8 × 105 s-1. Our results of conductivity measurements at high temperature are in good agreement with strong carrier-lattice coupling model; on the other hand, the conductivity in the range 15-50 K is well described in terms of variable-range hopping (VRH) conduction mechanism. The localized state density around Fermi level N( E F) and the average hopping energy W hop at low temperature for the films annealed at 773 K have maximum value of 2.23 × 1023 (cm-3 eV-1) and minimum value of 9.74 × 10-4 eV, respectively.

  8. Difference in responses of two coastal species to fluctuating salinities and temperatures: Potential modification of specific distribution areas in the context of global change

    NASA Astrophysics Data System (ADS)

    Trancart, Thomas; Feunteun, Eric; Lefrançois, Christel; Acou, Anthony; Boinet, Christophe; Carpentier, Alexandre

    2016-05-01

    In the past several years, all numerical models have forecasted an increase in extreme climatic events linked to global change. Estuarine waters at the interface of marine and freshwater bodies are among the most volatile ecosystems, particularly for aquatic species, and will be strongly influenced by the temperature with extreme flooding events. This study aimed to quantify the acclimation capacity of coastal fish species to estuarine plume modifications. The thicklip mullet (Chelon labrosus) and European seabass (Dicentrarchus labrax) were selected as representative species of estuarine ecological guilds. These fish were subjected to an experiment mimicking a brief freshwater intrusion (35-5). These experiments were conducted at two different temperatures that these two species would encounter during their incursion from the sea through estuarine waters to freshwater habitats. The experimental results confirmed the high capacity for acclimation of both species to changes in salinity and temperature. Interspecific differences were observed. For example, the salinity has a greater effect on the metabolism of the seabass than on that of the mullets. Meanwhile, the temperature has a greater effect on the mullets. These differences in metabolic responses to fluctuating salinities and temperatures may modify the use of estuarine waters by these species and should be considered when predicting future specific distribution areas in the context of global change.

  9. Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2015-05-01

    The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of

  10. Bioreactor performance and quantitative analysis of methanogenic and bacterial community dynamics in microbial electrolysis cells during large temperature fluctuations.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Nanqi

    2012-06-19

    The use of microbial electrolysis cells (MECs) for H(2) production generally finds H(2) sink by undesirable methanogenesis at mesophilic temperatures. Previously reported approaches failed to effectively inhibit methanogenesis without the addition of nongreen chemical inhibitors. Here, we demonstrated that the CH(4) production and the number of methanogens in single-chamber MECs could be restricted steadily to a negligible level by continuously operating reactors at the relatively low temperature of 15 °C. This resulted in a H(2) yield and production rate comparable to those obtained at 30 °C with less CH(4) production (CH(4)% < 1%). However, this operation at 15 °C should be taken from the initial stage of anodic biofilm formation, when the methanogenic community has not yet been established sufficiently. Maintaining MECs operating at 20 °C was not effective for controlling methanogenesis. The varying degrees of methanogenesis observed in MECs at 30 °C could be completely inhibited at 4 and 9 °C, and the total number of methanogens (mainly hydrogenotrophic methanogens) could be reduced by 68-91% during 32-55 days of operation at the low temperatures. However, methanogens cannot be eliminated completely at these temperatures. After the temperature is returned to 30 °C, the CH(4) production and the number of total methanogens can rapidly rise to the prior levels. Analysis of bacterial communities using 454 pyrosequencing showed that changes in temperature had no a substantial impact on composition of dominant electricity-producing bacteria ( Geobacter ). The results of our study provide more information toward understanding the temperature-dependent control of methanogenesis in MECs.

  11. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    PubMed

    Reynolds, Andy M; Reynolds, Don R; Smith, Alan D; Chapman, Jason W

    2010-12-29

    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction.

  12. In situ measurements of density fluctuations and compressibility in silica glasses as a function of temperature and thermal history

    SciTech Connect

    Levelut, C.; Faivre, A; Le Parc, R.; Champagnon, B.; Hazemann, J.-L.; Simon, J.-P.

    2005-12-01

    In this paper, small-angle x-ray scattering measurements are used to determine the different compressibility contributions, as well as the isothermal compressibility {chi}{sub T}{sup 0} in thermal equilibrium in silica glasses having different thermal histories. Using two different methods of analysis, in the supercooled liquid and in the glassy state, we obtain, respectively, the temperature and fictive temperature dependences of {chi}{sub T}{sup 0}. The values obtained in the glass and supercooled liquid states are very close to each other. They agree with previous determinations of the literature. The compressibility in the glass state slightly decreases with increasing fictive temperature. The relaxational part of the compressibility is also calculated and compared to previous determinations. We discussed the small differences between the different determinations.

  13. Effects of local and core body temperature on grip force modulation during movement-induced load force fluctuations.

    PubMed

    Cheung, Stephen S; Reynolds, Luke F; Macdonald, Mark A B; Tweedie, Constance L; Urquhart, Robin L; Westwood, David A

    2008-05-01

    Impaired manual functioning often occurs when the hands are exposed to cold temperatures, but the underlying mechanism is not clearly understood. Tactile feedback is thought to provide important information during object manipulations in order to scale and regulate grip forces; however, topical anaesthetic-induced tactile sensation impairments may not realistically simulate the systemic neuromuscular impairment of the whole hand that could occur during cold temperature exposure. In two experiments, we studied the impact of (1) local hand cooling [thermoneutral finger skin temperature, cold (<8 degrees C)] and (2) core body temperature (thermoneutral core body temperature, pre-heated by 0.5 degrees C, pre-cooled by 0.5 degrees C) with cold hands on manual dexterity and the ability to control and co-ordinate grip forces during a cyclical load-lifting task. In Experiment 1 (n = 10), hand cooling significantly decreased Purdue Pegboard performance (P = 0.002), while increasing grip force by approximately 5 N during the cyclical load-lifting task compared to thermoneutral (P = 0.037). The temporal co-ordination of grip and load forces was unaffected by hand cooling. In Experiment 2 (n = 11), pegboard performance was impaired following hand cooling (P < 0.001), and to a greater extent when the body was pre-cooled (p < 0.001). However, neither grip force (P = 0.99) nor the temporal co-ordination of grasping and lifting forces (P = 0.85) were affected by core body temperature. These data support the existence of a robust centrally controlled feedforward system able to anticipate the dynamics of manual manipulations and accordingly regulate the temporal co-ordination of fingertip forces during object manipulation. This centrally controlled mechanism appears to differ from the mechanisms governing other aspects of manual dexterity.

  14. Assessing the relationship between global warming and mortality: lag effects of temperature fluctuations by age and mortality categories.

    PubMed

    Yu, Weiwei; Mengersen, Kerrie; Hu, Wenbiao; Guo, Yuming; Pan, Xiaochuan; Tong, Shilu

    2011-07-01

    Although interests in assessing the relationship between temperature and mortality have arisen due to climate change, relatively few data are available on lag structure of temperature-mortality relationship, particularly in the Southern Hemisphere. This study identified the lag effects of mean temperature on mortality among age groups and death categories using polynomial distributed lag models in Brisbane, Australia, a subtropical city, 1996-2004. For a 1 °C increase above the threshold, the highest percent increase in mortality on the current day occurred among people over 85 years (7.2% (95% CI: 4.3%, 10.2%)). The effect estimates among cardiovascular deaths were higher than those among all-cause mortality. For a 1 °C decrease below the threshold, the percent increases in mortality at 21 lag days were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%) for people aged over 85 years and with cardiovascular diseases, respectively. These findings may have implications for developing intervention strategies to reduce and prevent temperature-related mortality.

  15. Ion Temperature Fluctuations in ELMy H-mode of the X3 EC-heated Plasmas on TCV

    SciTech Connect

    Karpushov, A. N.; Duval, B. P.; Schlatter, Ch.

    2008-03-19

    This paper focuses on interpreting variations in the NPA measured energy distribution of neutral fluxes from the TCV high density H-mode plasma discharges with strong third harmonic electron cyclotron heating (P{sub X3}>P{sub {omega}}). Two quasi-stationary regimes: ELMy H-mode and ELM-free H-mode, routinely and reproducibly obtained in TCV, with a plasma density 5-10x10{sup 19} m{sup -3}, electron temperature 2-3 keV and ion temperature of 0.7-1.0 keV. The ELMy X3-heated H-mode plasma on TCV is significantly perturbed by ELMs, sawteeth activity and modes. In X3-heated plasmas ELMs are characterised by increased amplitudes and lower frequencies than are typical in ohmic H-modes with strong sawteeth synchronised with ELM cycle. The energy losses per ELM can exceed the 15% of the total stored energy and the plasma density and electron temperature profiles were resolved during the ELM cycle. NPA measurements in the presence of ELMs and sawteeth cannot be explained with the classical theory of two-body Coulomb electron-ion collisions alone. Additional effects (such as a modification of the ion temperature radial profile and/or ion redistribution in the coordinate and velocity space due to plasma perturbations) must be considered.

  16. The 500-year temperature and precipitation fluctuations in the Czech Lands derived from documentary evidence and instrumental measurements

    NASA Astrophysics Data System (ADS)

    Dobrovolný, Petr; Brázdil, Rudolf; Kotyza, Oldřich; Valášek, Hubert

    2010-05-01

    Series of temperature and precipitation indices (in ordinal scale) based on interpretation of various sources of documentary evidence (e.g. narrative written reports, visual daily weather records, personal correspondence, special prints, official economic records, etc.) are used as predictors in the reconstruction of mean seasonal temperatures and seasonal precipitation totals for the Czech Lands from A.D. 1500. Long instrumental measurements from 1771 (temperatures) and 1805 (precipitation) are used as a target values to calibrate and verify documentary-based index series. Reconstruction is based on linear regression with variance and mean adjustments. Reconstructed series were compared with similar European documentary-based reconstructions as well as with reconstructions based on different natural proxies. Reconstructed series were analyzed with respect to trends on different time-scales and occurrence of extreme values. We discuss uncertainties typical for documentary evidence from historical archives. Besides the fact that reports on weather and climate in documentary archives cover all seasons, our reconstructions provide the best results for winter temperatures and summer precipitation. However, explained variance for these seasons is comparable to other existing reconstructions for Central Europe.

  17. Profiles of second- to third-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with Rotational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2014-11-01

    The rotational Raman lidar of the University of Hohenheim (UHOH) measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m). The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL) including the interfacial layer (IL). The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E, 110 m a.s.l.) within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 Observational Prototype Experiment (HOPE), which is embedded in the German project HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction). First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then profiles of the second

  18. Late-Pleistocene and Holocene remains of Hysterocarpus traski (Tule Perch) from Clear Lake, California, and inferred Holocene temperature fluctuations

    USGS Publications Warehouse

    Casteel, R.W.; Adam, D.P.; Sims, J.D.

    1977-01-01

    The remains of scales of Hysterocarpus traski Gibbons (Tule perch) were found throughout a 27.44-m core from Clear Lake. Most scales occurred between the mud surface and deposits approximately 11,000 years old. Changes in growth rates of the animals were examined by measuring scale annuli and applying an empirically established regression of fish length on scale radius. The data indicate a pattern of accelerating growth rates, reaching a peak between {reversed tilde equals}4000 and 2800 BP. After {reversed tilde equals}2800 BP, growth rates decline markedly. Because the growth rates of these animals are essentially dependent on temperature, the changes observed in the patterns of growth probably reflect changes in climate in the northern Coast Range. The general pattern of inferred temperature increase during the early and middle Holocene, ending between {reversed tilde equals}4000 and 2800 BP, is consistent with evidence from tree-line studies and palynology indicating higher temperatures in parts of the western United States during this period. ?? 1977.

  19. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  20. A comprehensive model to determine the effects of temperature and species fluctuations on reactions in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Antaki, P. J.

    1981-01-01

    The joint probability distribution function (pdf), which is a modification of the bivariate Gaussian pdf, is discussed and results are presented for a global reaction model using the joint pdf. An alternative joint pdf is discussed. A criterion which permits the selection of temperature pdf's in different regions of turbulent, reacting flow fields is developed. Two principal approaches to the determination of reaction rates in computer programs containing detailed chemical kinetics are outlined. These models represent a practical solution to the modeling of species reaction rates in turbulent, reacting flows.

  1. Ameliorative effects of melatonin administration and photoperiods on diurnal fluctuations in cloacal temperature of Marshall broiler chickens during the hot dry season

    NASA Astrophysics Data System (ADS)

    Sinkalu, Victor O.; Ayo, Joseph O.; Adelaiye, Alexander B.; Hambolu, Joseph O.

    2015-01-01

    Experiments were performed with the aim of determining the effect of melatonin administration on diurnal fluctuations in cloacal temperature (CT) of Marshall broiler chickens during the hot dry season. Birds in group I (12L:12D cycle) were raised under natural photoperiod of 12-h light and 12-h darkness, without melatonin supplementation, while those in group II (LL) were kept under 24-h continuous lighting, without melatonin administration. Broiler chickens in group III (LL + melatonin) were raised under 24-h continuous lighting, with melatonin supplementation at 0.5 mg/kg per os. The cloacal temperatures of 15 labeled broiler chickens from each group were measured at 6:00, 13:00, and 19:00 h, 7 days apart, from days 14-42. Temperature-humidity index was highest at day 14 of the study, with the value of 36.72 ± 0.82 °C but lowest at day 28 with the value of 30.91 ± 0.80 °C ( P < 0.0001). The overall mean hourly cloacal temperature value of 41.51 ± 0.03 °C obtained in the 12L:12D cycle birds was significantly higher ( P < 0.001) than the value of 41.16 ± 0.03 °C recorded in the melatonin-treated group but lower than that of 41.65 ± 0.03 °C obtained in the LL birds. Mortality due to hyperthermia commenced at day 28 in both 12L:12D cycle and LL broiler chickens but was delayed till day 42 in LL + MEL broiler chickens. In conclusion, melatonin administration alleviated the deleterious effects of heat stress on broiler chickens by maintaining their cloacal temperature at relatively low values.

  2. Ameliorative effects of melatonin administration and photoperiods on diurnal fluctuations in cloacal temperature of Marshall broiler chickens during the hot dry season.

    PubMed

    Sinkalu, Victor O; Ayo, Joseph O; Adelaiye, Alexander B; Hambolu, Joseph O

    2015-01-01

    Experiments were performed with the aim of determining the effect of melatonin administration on diurnal fluctuations in cloacal temperature (CT) of Marshall broiler chickens during the hot dry season. Birds in group I (12L:12D cycle) were raised under natural photoperiod of 12-h light and 12-h darkness, without melatonin supplementation, while those in group II (LL) were kept under 24-h continuous lighting, without melatonin administration. Broiler chickens in group III (LL + melatonin) were raised under 24-h continuous lighting, with melatonin supplementation at 0.5 mg/kg per os. The cloacal temperatures of 15 labeled broiler chickens from each group were measured at 6:00, 13:00, and 19:00 h, 7 days apart, from days 14-42. Temperature-humidity index was highest at day 14 of the study, with the value of 36.72 ± 0.82 °C but lowest at day 28 with the value of 30.91 ± 0.80 °C (P < 0.0001). The overall mean hourly cloacal temperature value of 41.51 ± 0.03 °C obtained in the 12L:12D cycle birds was significantly higher (P < 0.001) than the value of 41.16 ± 0.03 °C recorded in the melatonin-treated group but lower than that of 41.65 ± 0.03 °C obtained in the LL birds. Mortality due to hyperthermia commenced at day 28 in both 12L:12D cycle and LL broiler chickens but was delayed till day 42 in LL + MEL broiler chickens. In conclusion, melatonin administration alleviated the deleterious effects of heat stress on broiler chickens by maintaining their cloacal temperature at relatively low values.

  3. On the finite-temperature generalization of the C-theorem and the interplay between classical and quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Danchev, Daniel M.; Tonchev, Nicholay S.

    1999-10-01

    The behaviour of the finite-temperature C-function, defined by Neto and Fradkin (1993 Nucl. Phys. B 400 525), is analysed within a d -dimensional exactly solvable lattice model, recently considered by Vojta (1996 Phys. Rev. B 53 710), which is of the same universality class as the quantum nonlinear O(n) sigma model in the limit nicons/Journals/Common/rightarrow" ALT="rightarrow" ALIGN="TOP"/>icons/Journals/Common/infty" ALT="infty" ALIGN="TOP"/>. The scaling functions of C for the cases d = 1 (absence of long-range order), d = 2 (existence of a quantum critical point), d = 4 (existence of a line of finite-temperature critical points that ends up with a quantum critical point) are derived and analysed. The locations of regions where C is monotonically increasing (which depend significantly on d) are exactly determined. The results are interpreted within the finite-size scaling theory that has to be modified for d = 4.

  4. Diurnal and seasonal fluctuations in rectal temperature, respiration and heart rate of pack donkeys in a tropical savannah zone.

    PubMed

    Ayo, Joseph O; Dzenda, Tavershima; Olaifa, Folashade; Ake, Stephen A; Sani, Ismaila

    2014-01-01

    The study was designed to determine diurnal and seasonal changes in basic physiologic responses of donkeys adapted to the tropical Savannah. The rectal temperature (RT), respiratory rate (RR) and heart rate (HR) of six male Nubian pack donkeys, and the dry-bulb temperature (DBT), relative humidity and heat index of the experimental site were concurrently recorded hourly, from 06:00 h to 18:00 h (GMT +1), for three days, spread 1 week apart, during the cold-dry (harmattan), hot-dry and humid (rainy) seasons, in an open grazing field. Values of the physiologic parameters recorded during the morning (06:00 h-11:00 h) were lower (P<0.001) than those obtained in the afternoon (12:00 h-15:00 h) and evening (16:00 h-18:00 h) hours in all seasons, but the robustness of the diurnal rhythm differed (P<0.05) between seasons. Many diurnal hourly DBT mean values recorded during the harmattan and hot-dry seasons fell outside the established thermoneutral zone for tropically-adapted donkeys, while those obtained during the rainy season were within the zone, indicating that the dry seasons were more thermally stressful to the donkeys than the humid season. Overall mean RT dropped (P<0.05) during the harmattan season. The RR rose, while HR dropped (P<0.001) during the hot-dry season. In conclusion, daytime and season had profound influence on RT, RR and HR of the donkeys, therefore, diurnal and seasonal variations should be taken into account during clinical evaluation before reaching conclusion on health status and fitness for work in donkeys.

  5. Genotype-specific responses of fluctuating asymmetry and of preadult survival to the effects of lead and temperature stress in Drosophila melanogaster.

    PubMed

    Polak, Michal; Kroeger, David E; Cartwright, Iain L; Ponce deLeon, Claudia

    2004-01-01

    Although fluctuating asymmetry (FA) increases with exposure to certain types of environmental stressors such as temperature extremes, relatively little is known about the effects of interaction (e.g., synergism) between known sources of environmental stress on FA. Knowledge of such interaction effects, and of the magnitude of genotype-by-environment interaction, are of fundamental importance toward predicting the usefulness of FA as a bioindicator of environmental pollution. We tested for synergistic effects on FA between elevated temperature and exposure to lead, and examined FA responses simultaneously in four genetic strains of Drosophila melanogaster known to differ in their degree of developmental instability, and presumably in their buffering capacity. In the absence of heavy metal, bristle FA increased with temperature, but in the presence of lead, FA at high temperature (30 (degrees)C) was reduced to levels similar, or below, that at lower temperature (25 (degrees)C). This temperature by lead interaction was statistically significant, but paradoxical in that the disruptive effects of temperature appeared to be attenuated in the presence of the heavy metal. In no case was there a significant effect of lead on bristle FAs, despite documented assimilation of heavy metal by flies, and in no case was the genotype by environment interaction significant. Whereas lead treatment did not influence survival, survival was reduced at the high temperature, but significantly so only in one genetic strain (Oregon-R). There was no relationship between survival and FA across stress treatments within lines. Thus, any disproportionate stress-induced mortality in developmentally unstable classes (developmental selection) was unlikely to bias the FA results. Our results underscore the need for independent replication of significant findings before FA-based biomonitoring can be responsibly and effectively implemented. The results call for caution in using FA as a biomarker of

  6. A circular equilibrium model for local gyrokinetic simulations of ion temperature gradient fluctuations in reversed field pinches

    SciTech Connect

    Tangri, Varun; Terry, P. W.; Waltz, R. E.

    2011-05-15

    A simple large-aspect-ratio (R{sub 0}/r) circular equilibrium model is developed for low-beta reversed field pinch (RFP) geometry. The model is suitable for treating small scale instability and turbulent transport driven by ion temperature gradient (ITG) and related electron drift modes in gyrokinetic simulations. The equilibrium model is an RFP generalization of the common tokamak s-{alpha} model to small safety factor (q), where the poloidal field dominates the toroidal field. The model accommodates the RFP toroidal field reversal (where q vanishes) by generalizing the cylindrical force-free Bessel function model (BFM) [J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)] to toroidal geometry. The global equilibrium can be described in terms of the RFP field reversal and pinch parameters [F,{Theta}]. This new toroidal Bessel function model (TBFM) has been incorporated into the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J.Comput. Phys. 186, 545 (2003)] and used here to explore local electrostatic ITG adiabatic electron instability rates for typical low-q RFP parameters.

  7. Interannual fluctuations of sea-air CO2 fluxes and carbon transport between 1950 and 2000: Biological and temperature effects deduced from OBCMSs

    NASA Astrophysics Data System (ADS)

    Winguth, A.; Dobbel, M.; Maier-Reimer, E.; Wentzel, P.

    2003-04-01

    Factors controlling the interannual variability of air-sea CO2 in response to the changes in temperature, circulation, and phytoplankton or zooplankton are not well known and controversially discussed. A recent analysis of pCO2 data by Takahasi et al. (2002) show the importance of high-latitude northern and southern oceans as a sink for atmospheric CO2. These areas are source areas for deep an intermediate water masses and hence represents a direct connection between the atmosphere and the deep oceans. We are using two coupled ocean general circulation - marine ecosystem models with different resolution, the NPZD-type HAMOCC4 coupled to the LSG and the C-HOPE, to explore how biology, temperature, and circulation changes can explain some of the agreements and discrepancies between the data and the model in these regions. These exploratory sensitivity experiments are designed to be a first step towards a currently developed inverse ecosystem model to quantify large-scale interannual-to-decadal fluctuations of the marine carbon cycle and to provide more accurate predictions of the climate system.

  8. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest.

    PubMed

    Kosugi, Yoshiko; Matsuo, Naoko

    2006-09-01

    Seasonal fluctuations in leaf gas exchange parameters were investigated in three evergreen (Quercus glauca Thunb., Cinnamomum camphora Sieb. and Castanopsis cuspidata Schottky) and one deciduous (Quercus serrata Thunb.) co-occurring, dominant tree species in a temperate broad-leaved forest. Dark respiration rate (Rn), maximum carboxylation rate (Vcmax) and stomatal coefficient (m), the ratio of stomatal conductance to net assimilation rate after adjustment to the vapor pressure deficit and internal carbon dioxide (CO2) concentration, were derived inversely from instantaneous field gas exchange data (one-point method). The normalized values of Rn and Vcmax at the reference temperature of 25 degrees C (Rn25, Vcmax25) and their temperature dependencies (Delta Ha(Rn), Delta Ha(Vcmax)) were analyzed. Parameter Vcmax25 ranged from 24.0-40.3 micromol m(-2) s(-1) and Delta Ha(Vcmax) ranged from 29.1- 67.0 kJ mol(-1). Parameter Rn25 ranged from 0.6-1.4 micromol m(-2) s(-1) and Delta Ha(Rn) ranged from 47.4-95.4 kJ mol(-1). The stomatal coefficient ranged from 7.2-8.2. For the three evergreen trees, a single set of Vcmax25 and Rn25 parameters and temperature dependence curves produced satisfactory estimates of carbon uptake throughout the year, except during the period of simultaneous leaf fall and leaf expansion, which occurs in April and May. In the deciduous oak, declines in Vcmax25 were observed after summer, along with changes in Vcmax25 and Rn25 during the leaf expansion period. In all species, variation in m during periods of leaf expansion and drought should be considered in modeling studies. We conclude that the changes in normalized gas exchange parameters during periods of leaf expansion and drought need to be considered when modeling carbon uptake of evergreen broad-leaved species.

  9. Growth of Escherichia coli O157:H7 and Listeria monocytogenes in packaged fresh-cut romaine mix at fluctuating temperatures during commercial transport, retail storage, and display.

    PubMed

    Zeng, Wenting; Vorst, Keith; Brown, Wyatt; Marks, Bradley P; Jeong, Sanghyup; Pérez-Rodríguez, Fernando; Ryser, Elliot T

    2014-02-01

    Temperature abuse during commercial transport and retail sale of leafy greens negatively impacts both microbial safety and product quality. Consequently, the effect of fluctuating temperatures on Escherichia coli O157:H7 and Listeria monocytogenes growth in commercially-bagged salad greens was assessed during transport, retail storage, and display. Over a 16-month period, a series of time-temperature profiles for bagged salads were obtained from five transportation routes covering four geographic regions (432 profiles), as well as during retail storage (4,867 profiles) and display (3,799 profiles). Five different time-temperature profiles collected during 2 to 3 days of transport, 1 and 3 days of retail storage, and 3 days of retail display were then duplicated in a programmable incubator to assess E. coli O157:H7 and L. monocytogenes growth in commercial bags of romaine lettuce mix. Microbial growth predictions using the Koseki-Isobe and McKellar-Delaquis models were validated by comparing the root mean square error (RMSE), bias, and the acceptable prediction zone between the laboratory growth data and model predictions. Monte Carlo simulations were performed to calculate the probability distribution of microbial growth from 8,122,127,472 scenarios during transport, cold room storage, and retail display. Using inoculated bags of retail salad, E. coli O157:H7 and L. monocytogenes populations increased a maximum of 3.1 and 3.0 log CFU/g at retail storage. Both models yielded acceptable RMSEs and biases within the acceptable prediction zone for E. coli O157:H7. Based on the simulation, both pathogens generally increased <2 log CFU/g during transport, storage, and display. However, retail storage duration can significantly impact pathogen growth. This large-scale U.S. study-the first using commercial time/temperature profiles to assess the microbial risk of leafy greens-should be useful in filling some of the data gaps in current risk assessments for leafy greens.

  10. Reversible fluctuation rectifier

    NASA Astrophysics Data System (ADS)

    Sokolov, I. M.

    1999-10-01

    The analysis of a Feynman's ratchet system [J. M. R. Parrondo and P. Español, Am. J. Phys. 64, 1125 (1996)] and of its electrical counterpart, a diode engine [I. M. Sokolov, Europhys. Lett. 44, 278 (1998)] has shown that ``fluctuation rectifiers'' consisting of a nonlinear element (ratchet, diode) and a linear element (vane, resistor) kept at different temperatures always show efficiency smaller than the Carnot value, thus indicating the irreversible mode of operation. We show that this irreversibility is not intrinsic for a system in simultaneous contact with two heat baths at different temperatures and that a fluctuation rectifier can work reversibly. This is illustrated by a model with two diodes switched in opposite directions, where the Carnot efficiency is achieved when backward resistivity of the diodes tends to infinity.

  11. Enhancement of Structural fluctuation in the region connecting two kinds of critical points in temperature-pressure-composition three-dimensional phase diagram: Raman studies of benzene/CO2 binary systems up to supercritical region.

    PubMed

    Nakayama, Hideyuki; Murai, Miki; Tono-oka, Mariko; Masuda, Kumiko; Ishii, Kikujiro

    2007-03-01

    Pressure dependence of Raman spectra of benzene/CO2 two-component systems was systematically studied at different temperatures and compositions. We estimated the magnitude of inhomogeneous component in Raman bandwidth to get information on the structural fluctuation in the system. It was found that the inhomogeneous bandwidth attains a maximum on an isothermal plane in the temperature-pressure-composition three-dimensional phase diagram when the state point crosses the line connecting the region where the density fluctuation is large (the vicinity of the critical point of neat CO2) and the region where the concentration fluctuation in a binary system is enhanced (the vicinity of the critical solution point). By accumulating such data, we found that the points of large structural fluctuation comprise a sheet that includes the extension line of the gas-liquid equilibrium line in the phase diagram of neat CO2 and the line connecting critical solution points of the two-component system at different temperatures. Interaction between benzene and CO2 molecules in the supercritical region is briefly discussed.

  12. Frequency fluctuations in silicon nanoresonators

    PubMed Central

    Sansa, Marc; Sage, Eric; Bullard, Elizabeth C.; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K.; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L.; Jourdan, Guillaume; Hentz, Sébastien

    2016-01-01

    Frequency stability is key to performance of nanoresonators. This stability is thought to reach a limit with the resonator’s ability to resolve thermally-induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature, and found a similar discrepancy. We propose a new method to show this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices. PMID:26925826

  13. The temperature of the cosmic microwave background radiation at 3.8 GHz - Results of a measurement from the South Pole site

    NASA Technical Reports Server (NTRS)

    De Amici, Giovanni; Limon, Michele; Smoot, George F.; Bersanelli, Marco; Kogut, AL; Levin, Steve

    1991-01-01

    As part of an international collaboration to measure the low-frequency spectrum of the cosmic microwave background (CMB) radiation, its temperature was measured at a frequency of 3.8 GHz, during the austral spring of 1989, obtaining a brightness temperature, T(CMB), of 2.64 +/-0.07 K (68 percent confidence level). The new result is in agreement with previous measurements at the same frequency obtained in 1986-88 from a very different site and has comparable error bars. Combining measurements from all years, T(CMB) = 2.64 +/-0.06 K is obtained.

  14. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    NASA Astrophysics Data System (ADS)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  15. Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories.

    PubMed

    Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M

    2016-07-01

    The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs.

  16. The unusual smoothness of the extragalactic unresolved radio background

    SciTech Connect

    Holder, Gilbert P.

    2014-01-01

    If the radio background is coming from cosmological sources, there should be some amount of clustering due to the large scale structure in the universe. Simple models for the expected clustering combined with the recent measurement by ARCADE-2 of the mean extragalactic temperature lead to predicted clustering levels that are substantially above upper limits from searches for anisotropy on arcminute scales using the Australia Telescope Compact Array and the Very Large Array. The rms temperature variations in the cosmic radio background appear to be more than a factor of 10 smaller (in temperature) than the fluctuations in the cosmic infrared background. It is therefore extremely unlikely that this background comes from galaxies, galaxy clusters, or any sources that trace dark matter halos at z ≲ 5, unless typical sources are smooth on arcminute scales, requiring typical sizes of several Mpc.

  17. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  18. Concerning gauge field fluctuations around classical configurations

    SciTech Connect

    Dietrich, Dennis D.

    2009-05-15

    We treat the fluctuations of non-Abelian gauge fields around a classical configuration by means of a transformation from the Yang-Mills gauge field to a homogeneously transforming field variable. We use the formalism to compute the effective action induced by these fluctuations in a static background without Wu-Yang ambiguity.

  19. Generalised tensor fluctuations and inflation

    SciTech Connect

    Cannone, Dario; Tasinato, Gianmassimo; Wands, David E-mail: g.tasinato@swansea.ac.uk

    2015-01-01

    Using an effective field theory approach to inflation, we examine novel properties of the spectrum of inflationary tensor fluctuations, that arise when breaking some of the symmetries or requirements usually imposed on the dynamics of perturbations. During single-clock inflation, time-reparameterization invariance is broken by a time-dependent cosmological background. In order to explore more general scenarios, we consider the possibility that spatial diffeomorphism invariance is also broken by effective mass terms or by derivative operators for the metric fluctuations in the Lagrangian. We investigate the cosmological consequences of the breaking of spatial diffeomorphisms, focussing on operators that affect the power spectrum of fluctuations. We identify the operators for tensor fluctuations that can provide a blue spectrum without violating the null energy condition, and operators for scalar fluctuations that lead to non-conservation of the comoving curvature perturbation on superhorizon scales even in single-clock inflation. In the last part of our work, we also examine the consequences of operators containing more than two spatial derivatives, discussing how they affect the sound speed of tensor fluctuations, and showing that they can mimic some of the interesting effects of symmetry breaking operators, even in scenarios that preserve spatial diffeomorphism invariance.

  20. FROM THE HISTORY OF PHYSICS: How Gamow calculated the temperature of the background radiation or a few words about the fine art of theoretical physics

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    1994-08-01

    In a paper published in 1953, i.e., more than a decade before the observational discovery of the cosmic microwave background radiation, George Gamow predicted theoretically the temperature of this radiation. He estimated it to be 7 K, which is very close to the subsequently measured value of about 3 K. Gamow found the present temperature of the background radiation on the basis of general formulas of cosmological dynamics. This prediction was in no way related to primordial nucleosynthesis.This circumstance has and is still causing misunderstanding in those cases in which the authors have raised doubts about Gamow's results, although an actual error has never been demonstrated. A detailed analysis makes it possible to understand how Gamow's calculation is possible. The problem lies in the fact that Gamow makes a certain additional implicit assumption which allows him to dispense with information on nucleosynthesis. This assumption is discussed in the context of the state of cosmology in the period from the fifties to the seventies, and of the current status of this branch of science.

  1. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals.

    PubMed

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M

    2015-05-01

    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation.

  2. Cosmic Microwave Background Data Analysis

    NASA Astrophysics Data System (ADS)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    About 400,000 years after the Big Bang the temperature of the Universe fell to about a few thousand degrees. As a result, the previously free electrons and protons combined and the Universe became neutral. This released a radiation which we now observe as the cosmic microwave background (CMB). The tiny fluctuations* in the temperature and polarization of the CMB carry a wealth of cosmological information. These so-called temperature anisotropies were predicted as the imprints of the initial density perturbations which gave rise to the present large-scale structures such as galaxies and clusters of galaxies. This relation between the present-day Universe and its initial conditions has made the CMB radiation one of the most preferred tools to understand the history of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the Big Bang theory and ruled out the only other available theory at that time - the steady-state theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]- orbited in 1989-1996. COBE made the most accurate measurements of the CMB frequency spectrum and confirmed it as being a black-body to within experimental limits. This made the CMB spectrum the most precisely measured black-body spectrum in nature. The CMB has a thermal black-body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9mmwavelength. The results of COBE inspired a series of ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 5.1) was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported

  3. Resonant tunneling of fluctuation Cooper pairs

    SciTech Connect

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.

  4. Resonant tunneling of fluctuation Cooper pairs

    DOE PAGES

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formore » direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less

  5. CMBEASY: An object-oriented code for the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Doran, Michael; Seljak, Uros; Zaldarriaga, Matias

    2010-07-01

    CMBEASY is a software package for calculating the evolution of density fluctuations in the universe. Most notably, the Cosmic Microwave Background temperature anisotropies. It features a Markov Chain Monte Carlo driver and many routines to compute likelihoods of any given model. It is based on the CMBFAST package by Uros Seljak and Matias Zaldarriaga.

  6. Limits from the soft X-ray background on the temperature of old neutron stars and on the flux of superheavy magnetic monopoles

    NASA Astrophysics Data System (ADS)

    Kolb, E. W.; Turner, M. S.

    1984-11-01

    Using recent observations of the diffuse, soft X-ray background, we obtain upper limits of 49 eV to the average surface temperature and 1032 ergs s-1 to the total photon luminosity of old (˜ 1010 yr) neutron stars in the Galaxy. If neutron stars are kept hot through monopole-induced nucleon decay, this limit corresponds to a monopole flux limit of FM(σ0 β) < 3r x 10-23 cm-2 sr-1 s-1, where the cross section for catalyzed nucleon decay times the monopole-nucleon relative velocity is σ v = 10-28(σ0 βc) cm2 (β = v/c), and r=LTOT/Lγ is the ratio of the total luminosity to the photon luminosity of a neutron star whose surface temperature T ≍ 50 eV. For conventional neutron star equations of state r ≍ 1, while for the more exotic ones r can be O(103-104). Although our temperature limit places a very stringent limit on the monopole flux, it does not significantly constrain other mechanisms for heating old neutron stars.

  7. A sky temperature survey at 19.2 GHz using a balloon borne Dicke radiometer for anisotropy tests of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Cottingham, David A.

    A large area sky survey at a resolution of 3 degrees carried out with a balloon-borne Dicke radiometer using a liquid helium cooled ruby maser amplifier is described. The instrument and method of observation are described. The data from one flight of the instrument are analyzed to produce a map of sky temperature covering roughly declination -15 to +75 degrees and right ascension 7 to 23 h at a typical sensitivity of 1.5 mK per 3 degrees resolution element. The calibration of this map in terms of antenna temperature is accurate to 3 percent. Analysis of the sky map indicates that the components of the dipole anisotropy of the cosmic microwave background (CMB) are (in thermodynamic temperature) Taux = -3.46 + or - 0.09 mK, Tauy = 0.41 + or - 0.07 mK, Tauz = -0.50 + or - 0.08 mK, implying that the magnitude is Tau = 3.52 + or - 0.08 mK and has its bright pole at alpha = 11 h 33 m + or - 6 m, delta + -8.2 deg + or - 1.5 deg (statistical errors). These data place an upper bound of delta T/T less than .0002 (95 percent confidence level) on anisotropy of the CMB other than the dipole at all angular scales greater than 3 degrees.

  8. Principle of minimal work fluctuations.

    PubMed

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  9. Principle of minimal work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality =e-β Δ F , a change in the fluctuations of e-β W may impact how rapidly the statistical average of e-β W converges towards the theoretical value e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-β W. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-β W, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-β W. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014), 10.1103/PhysRevE.90.052132].

  10. Effect of random charge fluctuation on strongly coupled dusty Plasma

    SciTech Connect

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-07

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  11. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  12. Robustness of cosmic neutrino background detection in the cosmic microwave background

    SciTech Connect

    Audren, Benjamin; Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia; Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi; Lesgourgues, Julien; Niro, Viviana; Tram, Thomas

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  13. Water-level fluctuations, water temperatures, and tilts in sandbars -6.5R, 43.1L, and 172.3L, Grand Canyon, Arizona, 1990-93

    USGS Publications Warehouse

    Carpenter, Michael C.; Crosswhite, Jason A.; Carruth, R.L.

    1995-01-01

    Rill erosion, slumping, and fissuring develop on seepage faces of many sandbars along the Colorado River in the Grand Canyon at low river stage. Three sandbars were instrumented with sensors for continual monitoring of stage, pore pressure, ground-water temperature, and tilt to determine the relation between ground-water flow and sandbar deformation. Data were collected from October 1990 to July 1993 at sandbar -6.5R, which had 17 pore- pressure sensors, 1 stage sensor, 19 temperature sensors, and 8 tilt sensors. Data were collected from April 1991 to March 1993 at sandbar 172.3L, which had 15 pore-pressure sensors, 1 stage sensor, 29 temperature sensors, and 10 tilt sensors. Atten- uation of water-level fluctuation from the zone of fluctuating river stage to the back of the sandbars ranged from 70 percent at sandbar -6.5R to 40 percent for sandbars 43.1L and 172.3L. Shallow tilt occurred at sandbar 43.1L from July 7 to August 10, 1991. Tilt occurred at sandbar 172.3L on May 7-8, June 18-19, and September 1-2, 1991; July 3 and 31, 1992; January 12, 14, 20-21, and 31, 1993; and February 21 and 24, 1993.

  14. Scientific results from the Cosmic Background Explorer (COBE)

    PubMed Central

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383

  15. Effects of finite beam and plasma temperature on the growth rate of a two-stream free electron laser with background plasma

    SciTech Connect

    Mahdizadeh, N.; Aghamir, F. M.

    2013-02-28

    A fluid theory is used to derive the dispersion relation of two-stream free electron laser (TSFEL) with a magnetic planar wiggler pump in the presence of background plasma (BP). The effect of finite beams and plasma temperature on the growth rate of a TSFEL has been verified. The twelve order dispersion equation has been solved numerically. Three instabilities, FEL along with the TS and TS-FEL instabilities occur simultaneously. The analysis in the case of cold BP shows that when the effect of the beam temperature is taken into account, both instable bands of wave-number and peak growth rate in the TS instability increase, but peak growth of the FEL and TS-FEL instabilities decreases. Thermal motion of the BP causes to diminish the TS instability and it causes to decrease the FEL and TS-FEL instabilities. By increasing the beam densities and lowering initial velocities (in the collective Raman regime), growth rate of instabilities increases; however, it has opposite behavior in the Campton regime.

  16. Measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background from 100 square degrees of SPTPOL data

    SciTech Connect

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Crawford, T. M.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Hanson, D.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.

    2015-05-18

    Here, we present measurements of $E$-mode polarization and temperature-$E$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100~\\sqdeg\\ of sky with arcminute resolution at $150\\,$GHz. We also report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $500 < \\ell \\leq5000$. These power spectra improve on previous measurements in the high-$\\ell$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from \\planck\\, and previous SPT measurements with a six-parameter \\LCDM cosmological model. Furthermore, we find that the best-fit parameters are consistent with previous results. The improvement in high-$\\ell$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50\\,mJy in unpolarized flux at 150\\,GHz, we find a 95\\% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $D_\\ell = \\ell (\\ell+1) C_\\ell / 2 \\pi < 0.40 \\ \\mu{\\mbox{K}}^2$ at $\\ell=3000$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $\\ell < 3600$, and possibly much higher in $\\ell.$

  17. MEASUREMENTS OF E-MODE POLARIZATION AND TEMPERATURE-E-MODE CORRELATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA

    SciTech Connect

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Crawford, T. M.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Hanson, D.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.

    2015-05-18

    We present measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 ${{{\\rm deg} }^{2}}$ of sky with arcminute resolution at 150 GHz. We report the E-mode angular auto-power spectrum (EE) and the temperature-E-mode angular cross-power spectrum (TE) over the multipole range 500 < ℓ ≤ 5000. These power spectra improve on previous measurements in the high-ℓ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from Planck, and previous SPT measurements with a six-parameter ΛCDM cosmological model. We find that the best-fit parameters are consistent with previous results. The improvement in high-ℓ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50 mJy in unpolarized flux at 150 GHz, we find a 95% confidence upper limit on unclustered point-source power in the EE spectrum of ${{D}_{\\ell }}=\\ell (\\ell +1){{C}_{\\ell }}/2\\pi \\lt 0.40\\ \\mu {{{\\rm K}}^{2}}$ at $\\ell =3000$, indicating that future EE measurements will not be limited by power from unclustered point sources in the multipole range $\\ell \\lt 3600$, and possibly much higher in $\\ell .$

  18. Fluctuational electrodynamics of hyperbolic metamaterials

    SciTech Connect

    Guo, Yu; Jacob, Zubin

    2014-06-21

    We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.

  19. The glassy state of crambin and the THz time scale protein-solvent fluctuations possibly related to protein function

    PubMed Central

    2014-01-01

    Background THz experiments have been used to characterize the picosecond time scale fluctuations taking place in the model, globular protein crambin. Results Using both hydration and temperature as an experimental parameter, we have identified collective fluctuations (<= 200 cm−1) in the protein. Observation of the protein dynamics in the THz spectrum from both below and above the glass transition temperature (Tg) has provided unique insight into the microscopic interactions and modes that permit the solvent to effectively couple to the protein thermal fluctuations. Conclusions Our findings suggest that the solvent dynamics on the picosecond time scale not only contribute to protein flexibility but may also delineate the types of fluctuations that are able to form within the protein structure. PMID:25184036

  20. Theory of Threshold Fluctuations in Nerves

    PubMed Central

    Lecar, Harold; Nossal, Ralph

    1971-01-01

    Threshold fluctuations in axon firing can arise as a result of electrical noise in the excitable membrane. A general theoretical expression for the fluctuations is applied to the analysis of three sources of membrane noise: Johnson noise, excess 1/f noise, and sodium conductance fluctuations. Analytical expressions for the width of the firing probability curve are derived for each of these noise sources. Specific calculations are performed for the node of Ranvier of the frog, and attention is given to the manner in which threshold fluctuations are affected by variations of temperature, ion concentrations, and the application of various drugs. Comparison with existing data suggests that threshold fluctuations can best be explained by sodium conductance fluctuations. Additional experiments directed at distinguishing among the various noise sources are proposed. PMID:5167401

  1. Quantum density fluctuations in classical liquids.

    PubMed

    Ford, L H; Svaiter, N F

    2009-01-23

    We discuss the density fluctuations of a fluid due to zero point motion, assuming a linear dispersion relation. We argue that density fluctuations in a fluid can be a useful analog model for better understanding fluctuations in relativistic quantum field theory. We calculate the differential cross section for light scattering by the zero point density fluctuations, and find a result proportional to the fifth power of the light frequency. We give some estimates of the relative magnitude of this effect compared to the scattering by thermal density fluctuations, and find that it can be of the order 13% for liquid neon at optical frequencies. This relative magnitude is proportional to frequency and inversely proportional to temperature. Although the scattering by zero point density fluctuation is small, it may be observable.

  2. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect

    Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  3. Strong Coupling Between Winter Climatic Fluctuations and Development of Phytoplankton in the Deep Lakes South of the Alps Assessed Using Long-Term in Situ and Satellite Temperature Data

    NASA Astrophysics Data System (ADS)

    Salmaso, N.; Pareeth, S.; Cerasino, L.; Neteler, M.

    2014-12-01

    Recent investigations showed that the winter climate in the lake district south of the Alps was strongly affected by specific prominent modes of low-frequency atmospheric variability relevant for the Mediterranean area (namely the East Atlantic pattern, EA, and the Eastern Mediterranean Pattern, EMP). In Lake Garda, the winter interannual fluctuations of EA and EMP triggered a long-chain of causally-linked effects on the physical structure of the lake and biological communities. Since 1991, and contrary to the summer months, the long-term increase of the mean winter water temperatures in the mixolimnion (0-50 m, ca. 0.01 °C yr-1) was statistically not-significant, coinciding, as confirmed by longer annual 1971-2014 series, with a period of relatively winter stable temperatures. Superimposed to the long-term trend, the deep hypolimnion showed different periods of warming caused by a downward transport of heat by turbulent diffusion during stratification. These phases were terminated by sudden cooling and overturn during harsh winters associated with negative EA and positive EMP values. The long term saw tooth temperature dynamics had a strong impact on the transport of hypolimnetic nutrients towards the surface, fuelling the development of eutrophic species, namely toxic cyanobacteria during the summer months. Other changes in the trophic webs included modifications in the phenology of the dominant zooplankton cladocerans. In the subalpine lake district, changes were documented not only at the level of species, but also genotypes, with a positive selection of cyanobacterial strains with strong gas-vesicles (i.e. best adapted to higher hydrostatic pressures) in lakes experiencing deep mixing. The study of the effects of climatic fluctuations and long-term changes was based on monthly field data. In this work, the evaluation will be further investigated also using high resolution satellite temperature data recorded using Moderate-resolution Imaging Spectroradiometer

  4. Measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background from 100 square degrees of SPTPOL data

    DOE PAGES

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; ...

    2015-05-18

    Here, we present measurements ofmore » $E$-mode polarization and temperature-$E$$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100~\\sqdeg\\ of sky with arcminute resolution at $$150\\,$GHz. We also report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $$500 < \\ell \\leq5000$$. These power spectra improve on previous measurements in the high-$$\\ell$$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from \\planck\\, and previous SPT measurements with a six-parameter \\LCDM cosmological model. Furthermore, we find that the best-fit parameters are consistent with previous results. The improvement in high-$$\\ell$$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50\\,mJy in unpolarized flux at 150\\,GHz, we find a 95\\% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $$D_\\ell = \\ell (\\ell+1) C_\\ell / 2 \\pi < 0.40 \\ \\mu{\\mbox{K}}^2$$ at $$\\ell=3000$$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $$\\ell < 3600$$, and possibly much higher in $$\\ell.$$« less

  5. The Cosmic Infrared Background Experiment

    NASA Astrophysics Data System (ADS)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  6. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Zabek, D.; Taylor, J.; Ayel, V.; Bertin, Y.; Romestant, C.; Bowen, C. R.

    2016-07-01

    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1-5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate-lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm-3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.

  7. Fluctuation relation for qubit calorimetry

    NASA Astrophysics Data System (ADS)

    Kupiainen, Antti; Muratore-Ginanneschi, Paolo; Pekola, Jukka; Schwieger, Kay

    2016-12-01

    Motivated by proposed thermometry measurement on an open quantum system, we present a simple model of an externally driven qubit interacting with a finite-sized fermion environment acting as a calorimeter. The derived dynamics is governed by a stochastic Schrödinger equation coupled to the temperature change of the calorimeter. We prove a fluctuation relation and deduce from it a notion of entropy production. Finally, we discuss the first and second law associated with the dynamics.

  8. Fluctuation relation for qubit calorimetry.

    PubMed

    Kupiainen, Antti; Muratore-Ginanneschi, Paolo; Pekola, Jukka; Schwieger, Kay

    2016-12-01

    Motivated by proposed thermometry measurement on an open quantum system, we present a simple model of an externally driven qubit interacting with a finite-sized fermion environment acting as a calorimeter. The derived dynamics is governed by a stochastic Schrödinger equation coupled to the temperature change of the calorimeter. We prove a fluctuation relation and deduce from it a notion of entropy production. Finally, we discuss the first and second law associated with the dynamics.

  9. The microwave background anisotropies: Observations

    PubMed Central

    Wilkinson, David

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320

  10. Merits and qualms of work fluctuations in classical fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Deng, Jiawen; Tan, Alvis Mazon; Hänggi, Peter; Gong, Jiangbin

    2017-01-01

    Work is one of the most basic notions in statistical mechanics, with work fluctuation theorems being one central topic in nanoscale thermodynamics. With Hamiltonian chaos commonly thought to provide a foundation for classical statistical mechanics, here we present general salient results regarding how (classical) Hamiltonian chaos generically impacts on nonequilibrium work fluctuations. For isolated chaotic systems prepared with a microcanonical distribution, work fluctuations are minimized and vanish altogether in adiabatic work protocols. For isolated chaotic systems prepared at an initial canonical distribution at inverse temperature β , work fluctuations depicted by the variance of e-β W are also minimized by adiabatic work protocols. This general result indicates that, if the variance of e-β W diverges for an adiabatic work protocol, it diverges for all nonadiabatic work protocols sharing the same initial and final Hamiltonians. Such divergence is hence not an isolated event and thus greatly impacts on the efficiency of using Jarzynski's equality to simulate free-energy differences. Theoretical results are illustrated in a Sinai model. Our general insights shall boost studies in nanoscale thermodynamics and are of fundamental importance in designing useful work protocols.

  11. Merits and qualms of work fluctuations in classical fluctuation theorems.

    PubMed

    Deng, Jiawen; Tan, Alvis Mazon; Hänggi, Peter; Gong, Jiangbin

    2017-01-01

    Work is one of the most basic notions in statistical mechanics, with work fluctuation theorems being one central topic in nanoscale thermodynamics. With Hamiltonian chaos commonly thought to provide a foundation for classical statistical mechanics, here we present general salient results regarding how (classical) Hamiltonian chaos generically impacts on nonequilibrium work fluctuations. For isolated chaotic systems prepared with a microcanonical distribution, work fluctuations are minimized and vanish altogether in adiabatic work protocols. For isolated chaotic systems prepared at an initial canonical distribution at inverse temperature β, work fluctuations depicted by the variance of e^{-βW} are also minimized by adiabatic work protocols. This general result indicates that, if the variance of e^{-βW} diverges for an adiabatic work protocol, it diverges for all nonadiabatic work protocols sharing the same initial and final Hamiltonians. Such divergence is hence not an isolated event and thus greatly impacts on the efficiency of using Jarzynski's equality to simulate free-energy differences. Theoretical results are illustrated in a Sinai model. Our general insights shall boost studies in nanoscale thermodynamics and are of fundamental importance in designing useful work protocols.

  12. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities.

    PubMed

    Demidov, V I; Koepke, M E; Raitses, Y

    2010-10-01

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  13. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities

    SciTech Connect

    Demidov, V. I.; Koepke, M. E.; Raitses, Y.

    2010-10-15

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  14. Fluctuations in Cerebral Hemodynamics

    DTIC Science & Technology

    2007-11-02

    Determination of scaling properties Detrended Fluctuations Analysis (see (28) and references therein) is commonly used to determine scaling...pressure (averaged over a cardiac beat) of a healthy subject. First 1000 values of the time series are shown. (b) Detrended fluctuation analysis (DFA...1000 values of the time series are shown. (b) Detrended fluctuation analysis of the time series shown in (a). Fig . 3 Side-by-side boxplot for the

  15. Turbulent Kinetic Energy and Temperature Variance Dissipation in Laboratory Generated Rayleigh-Benard Turbulence Designed to Study the Distortion of Light by Underwater Microstructure Fluctuations

    DTIC Science & Technology

    2015-05-11

    turbulence environment allowing the variation of turbulence intensity. Convective turbulence is generated in a large Rayleigh-Bénard type tank (5m by...energy and temperature variance dissipation rates in the tank, for different convective strengths. Optical image degradation in the tank is then...dynamics simulations of convective turbulence emulating the tank environment. These numerical simulations supplement the sparse laboratory measurements

  16. Effect of daily fluctuations in ambient temperature on reproductive failure traits of Landrace and Yorkshire sows under Thai tropical environmental conditions.

    PubMed

    Jaichansukkit, Teerapong; Suwanasopee, Thanathip; Koonawootrittriron, Skorn; Tummaruk, Padet; Elzo, Mauricio A

    2017-03-01

    The aim of this study was to determine the effects of daily ranges and maximum ambient temperatures, and other risk factors on reproductive failure of Landrace (L) and Yorkshire (Y) sows under an open-house system in Thailand. Daily ambient temperatures were added to information on 35,579 litters from 5929 L sows and 1057 Y sows from three commercial herds. The average daily temperature ranges (ADT) and the average daily maximum temperatures (PEAK) in three gestation periods from the 35th day of gestation to parturition were classified. The considered reproductive failure traits were the occurrences of mummified fetuses (MM), stillborn piglets (STB), and piglet death losses (PDL) and an indicator trait for number of piglets born alive below the population mean (LBA). A multiple logistic regression model included farrowing herd-year-season (HYS), breed group of sow (BG), parity group (PAR), number of total piglets born (NTB), ADT1, ADT2, ADT3, PEAK1, PEAK2, and PEAK3 as fixed effects, while random effects were animal, repeated observations, and residual. Yorkshire sows had a higher occurrence of LBA than L sows (P = 0.01). The second to fifth parities sows had lower reproductive failures than other parities. The NTB regression coefficients of log-odds were positive (P < 0.01) for all traits. Narrower ranges of ADT3 increased the occurrence of MM, STB, and PDL (P < 0.01), while higher PEAK3 increased the occurrence of MM, STB, PDL, and LBA (P < 0.001). To reduce the risk of reproductive failures, particularly late in gestation, producers would need to closely monitor their temperature management strategies.

  17. Fluctuation relations for spintronics.

    PubMed

    López, Rosa; Lim, Jong Soo; Sánchez, David

    2012-06-15

    Fluctuation relations are derived in systems where the spin degree of freedom and magnetic interactions play a crucial role. The form of the nonequilibrium fluctuation theorems relies on the assumption of a local balance condition. We demonstrate that in some cases the presence of magnetic interactions violates this condition. Nevertheless, fluctuation relations can be obtained from the microreversibility principle sustained only at equilibrium as a symmetry of the cumulant generating function for spin currents. We illustrate the spintronic fluctuation relations for a quantum dot coupled to partially polarized helical edge states.

  18. [Consequences of short term fluctuations of environmental temperatures in calves--Part 1: Immediate reactions of the respiratory system, the cardiovascular system, metabolism and thermal regulation].

    PubMed

    Elmer, S; Reinhold, P

    2002-04-01

    Clinically healthy calves (aged 3-6 weeks) were exposed to defined ambient temperature for 4 hours (cold: 5 degrees C, 60% humidity, n = 12; warm: 35 degrees C, 60% humidity, n = 11). During the exposure of each animal in a climatic chamber, certain parameters of lung function, respiratory mechanics, blood gas analysis, circulation, metabolism and thermal regulation were registered simultaneously in order to study immediate physiological consequences of different environmental conditions. In comparison to control calves (18-20 degrees C, 60% humidity, n = 13) an insufficient adaptation of these young calves was noticed in both cold and warm conditions. At 5 degrees C, marked changes in lung function were observed, i.e. airway constriction, pulmonary hypertension, and ventilation-perfusion-mismatching leading to hypoxemia and hypercapnia. Due to compensation by the circulatory system, a sufficient O2-consumption of the organism as well as an unchanged body temperature were maintained. At 35 degrees C, the respiratory pattern changed to panting and a higher dead space ventilation. No changes were observed in pulmonary gas exchange and blood arterialisation. Due to hyperventilation, the partial pressure for CO2 decreased in blood. Since the body temperature increased continuously, thermal regulation was insufficient. This situation would have led to animals collapsing after a period of heat stress lasting longer than 4 hours. In conclusion, young calves up to the age of 6 weeks were not able to tolerate acute changes in ambient temperature. This was true for cold conditions (5 degrees C) as well as for hot conditions (35 degrees C). The results of this study should be taken into account in order to optimise transport and farming conditions.

  19. Fluctuations of thermal conductivity and morphological stability

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Gillies, D. C.; Lehoczky, S. L.

    1995-01-01

    Compositional fluctuations of the binary alloy result in the corresponding fluctuations of the thermal conductivity of the material. During crystal growth, these fluctuations can significantly modify the local temperature fields at the liquid-solid interface. This, in turn, will affect the morphological stability of the growing interface. In this work, the temperature dependence of the thermal conductivity of the solid phase has been included into the Mullins-Sekerka formalism. A significant effect on the onset of the instability of planar interface has been predicted. It has been found, in particular, that for binary systems with the segregation coefficient above unity a flat interface is always unstable. The shape of the interface fluctuation should have a single harmonic character with a well defined wavelength.

  20. Theory of stress fluctuations

    PubMed

    Wallace

    2000-09-01

    The current status of the theory of stress fluctuations is marked by two circumstances: no currently available formulas are valid for a metallic system, and a series of contradictory formulas remains unresolved. Here we derive formulas for shear- and isotropic-stress energy fluctuations, in the primary statistical mechanics ensembles. These formulas are valid for a classical monatomic system representing a metal or nonmetal, in cubic crystal, amorphous solid, or liquid phases. Current contradictions in fluctuation formulas are resolved through the following observations. First, the expansion of a dynamical variable A in terms of the fluctuations explicit in a given ensemble distribution, for example deltaA=adeltaN+bdeltaH in the grand canonical ensemble, is correct if and only if deltaA is a function only of deltaN and deltaH. The common use of this expansion has produced incorrect fluctuation formulas. Second, the thermodynamic fluctuations of Landau and Lifshitz do not correspond to statistical mechanics fluctuations, and the two types of fluctuations have essentially different values.

  1. Revisiting detrended fluctuation analysis

    PubMed Central

    Bryce, R. M.; Sprague, K. B.

    2012-01-01

    Half a century ago Hurst introduced Rescaled Range (R/S) Analysis to study fluctuations in time series. Thousands of works have investigated or applied the original methodology and similar techniques, with Detrended Fluctuation Analysis becoming preferred due to its purported ability to mitigate nonstationaries. We show Detrended Fluctuation Analysis introduces artifacts for nonlinear trends, in contrast to common expectation, and demonstrate that the empirically observed curvature induced is a serious finite-size effect which will always be present. Explicit detrending followed by measurement of the diffusional spread of a signals' associated random walk is preferable, a surprising conclusion given that Detrended Fluctuation Analysis was crafted specifically to replace this approach. The implications are simple yet sweeping: there is no compelling reason to apply Detrended Fluctuation Analysis as it 1) introduces uncontrolled bias; 2) is computationally more expensive than the unbiased estimator; and 3) cannot provide generic or useful protection against nonstationaries. PMID:22419991

  2. Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records

    NASA Astrophysics Data System (ADS)

    Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo; Kuhn, Gerhard; Yu, Zhitong

    2014-09-01

    Late Holocene glacier variations in westernmost Tibetan Plateau were studied based on the analysis of grain size, magnetic susceptibility, and elements from an 8.3 m long distal glaciolacustrine sediment core of Kalakuli Lake. Our results show that there are four glacier expansion episodes occurring in 4200-3700 calibrated years (cal years) B.P., 2950-2300 cal years B.P., 1700-1070 cal years B.P., and 570-100 cal years B.P. and four glacier retreat periods of 3700-2950 cal years B.P., 2300-1700 cal years B.P., 1070-570 cal years B.P., and 50 cal years B.P.-present. The four glacier expansion episodes are generally in agreement with the glacier activities indicted by the moraines at Muztagh Ata and Kongur Shan, as well as with the late Holocene ice-rafting events in the North Atlantic. Over the last 2000 years, our reconstructed glacier variations are in temporal agreement with reconstructed temperature from China and the Northern Hemisphere, indicating that glacier variations at centennial time scales are very sensitive to temperature in western Tibetan Plateau.

  3. The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions

    PubMed Central

    Song, Young Hun

    2016-01-01

    Plants have become physiologically adapted to a seasonally shifting environment by evolving many sensory mechanisms. Seasonal flowering is a good example of adaptation to local environmental demands and is crucial for maximizing reproductive fitness. Photoperiod and temperature are major environmental stimuli that control flowering through expression of a floral inducer, FLOWERING LOCUS T (FT) protein. Recent discoveries made using the model plant Arabidopsis thaliana have shown that the functions of photoreceptors are essential for the timing of FT gene induction, via modulation of the transcriptional activator CONSTANS (CO) at transcriptional and posttranslational levels in response to seasonal variations. The activation of FT transcription by the fine-tuned CO protein enables plants to switch from vegetative growth to flowering under inductive environmental conditions. The present review briefly summarizes our current understanding of the molecular mechanisms by which the information of environmental stimuli is sensed and transduced to trigger FT induction in leaves. PMID:27788575

  4. The cosmic infrared background experiment

    NASA Astrophysics Data System (ADS)

    Bock, James; Battle, John; Cooray, Asantha; Kawada, Mitsunobu; Keating, Brian; Lange, Andrew; Lee, Dae-Hea; Matsumoto, Toshio; Matsuura, Shuji; Pak, Soojong; Renbarger, Tom; Sullivan, Ian; Tsumura, Kohji; Wada, Takehiko; Watabe, Toyoki

    2006-03-01

    The extragalactic background, based on absolute measurements reported by DIRBE and IRTS at 1.2 and 2.2 μm, exceeds the brightness derived from galaxy counts by up to a factor 5. Furthermore, both DIRBE and the IRTS report fluctuations in the near-infrared sky brightness that appear to have an extra-galactic origin, but are larger than expected from local ( z = 1-3) galaxies. These observations have led to speculation that a new class of high-mass stars or mini-quasars may dominate primordial star formation at high-redshift ( z ˜ 10-20), which, in order to explain the excess in the near-infrared background, must be highly luminous but produce a limited amount of metals and X-ray photons. Regardless of the nature of the sources, if a significant component of the near-infrared background comes from first-light galaxies, theoretical models generically predict a prominent near-infrared spectral feature from the redshifted Lyman cutoff, and a distinctive fluctuation power spectrum. We are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The cameras will search for spatial fluctuations in the background on angular scales from 7″ to 2°, where a first-light galaxy signature is expected to peak, over a range of angular scales poorly covered by previous experiments. CIBER will determine if the fluctuations reported by the IRTS arise from first-light galaxies or have a local origin. In a short rocket flight CIBER has sensitivity to probe fluctuations 100× fainter than IRTS/DIRBE, with sufficient resolution to remove local-galaxy correlations. By jointly observing regions of the sky studied by Spitzer and ASTRO-F, CIBER will build a multi-color view of the near

  5. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios

    USGS Publications Warehouse

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio

    2000-01-01

    We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern

  6. Spatial fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  7. Hadronic Correlations and Fluctuations

    SciTech Connect

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  8. Continuous information flow fluctuations

    NASA Astrophysics Data System (ADS)

    Rosinberg, Martin Luc; Horowitz, Jordan M.

    2016-10-01

    Information plays a pivotal role in the thermodynamics of nonequilibrium processes with feedback. However, much remains to be learned about the nature of information fluctuations in small-scale devices and their relation with fluctuations in other thermodynamics quantities, like heat and work. Here we derive a series of fluctuation theorems for information flow and partial entropy production in a Brownian particle model of feedback cooling and extend them to arbitrary driven diffusion processes. We then analyze the long-time behavior of the feedback-cooling model in detail. Our results provide insights into the structure and origin of large deviations of information and thermodynamic quantities in autonomous Maxwell's demons.

  9. Temperature Measurement of a Miniature Ceramic Heater in the Presence of an Extended Interfering Background Radiation Source Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    Temperature measurement of small (millimeter size) objects is generally difficult and demanding. Measurement involving ceramic materials using the traditional one- and two-color pyrometer is difficult because of their complex optical properties, such as low emissivity which may vary with both temperature and wavelength. Pyrometry applications in an environment with an interfering radiation source of extended dimension adds extra complexity to the process. We show that the multiwavelength pyrometer successfully measured the temperatures of a millimeter (mm) size ceramic heater under these demanding conditions.

  10. Scaling metabolic rate fluctuations

    PubMed Central

    Labra, Fabio A.; Marquet, Pablo A.; Bozinovic, Francisco

    2007-01-01

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a “universal” form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents −0.352 and −1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913

  11. Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics.

    PubMed

    Híjar, Humberto; Sutmann, Godehard

    2011-04-01

    In this work we study the behavior of mesoscopic fluctuations of a fluid simulated by Multiparticle Collision Dynamics when this is applied together with a local thermostatting procedure that constrains the strength of temperature fluctuations. We consider procedures in which the thermostat interacts with the fluid at every simulation step as well as cases in which the thermostat is applied only at regular time intervals. Due to the application of the thermostat temperature fluctuations are forced to relax to equilibrium faster than they do in the nonthermostatted, constant-energy case. Depending on the interval of application of the thermostat, it is demonstrated that the thermodynamic state changes gradually from isothermal to adiabatic conditions. In order to exhibit this effect we compute from simulations diverse correlation functions of the hydrodynamic fluctuating fields. These correlation functions are compared with those predicted by a linearized hydrodynamic theory of a simple fluid in which a thermostat is applied locally. We find a good agreement between the model and the numerical results, which confirms that hydrodynamic fluctuations in Multiparticle Collision Dynamics in the presence of the thermostat have the properties expected for spontaneous fluctuations in fluids in contact with a heat reservoir.

  12. Entropic interaction between fluctuating twin boundaries

    NASA Astrophysics Data System (ADS)

    Chen, Dengke; Kulkarni, Yashashree

    2015-11-01

    Nanotwinned metals have opened up exciting avenues for the design of high-strength, high-ductility materials owing to the extraordinary properties of twin boundaries. The recent advances in the fabrication of nanostructured materials with twin lamella on the order of a mere few atomic layers call for a closer examination of the stability of these structural motifs, especially at high temperatures. This paper presents a study of the entropic interaction between fluctuating twin boundaries by way of atomistic simulations and statistical mechanics based analysis. The simulations reveal that fluctuations of twin boundaries are considerably enhanced in the presence of adjoining twin boundaries as their spacing, d, decreases. In addition, the theoretical analysis shows that fluctuating twin boundaries indeed exhibit an attractive entropic interaction which enhances their thermal fluctuations and that the entropic force decreases as 1 /d2. This finite temperature interaction between twin boundaries is fundamentally distinct from the well-known repulsive entropic interaction followed by fluctuating lipid membranes as well as many crystalline membranes and interfaces. This rather surprising attraction between fluctuating twin boundaries is attributed to their shear coupled normal motion.

  13. Harmonic inpainting of the cosmic microwave background sky: Formulation and error estimate

    SciTech Connect

    Inoue, Kaiki Taro; Cabella, Paolo; Komatsu, Eiichiro

    2008-06-15

    We develop a new interpolation scheme, based on harmonic inpainting, for reconstructing the cosmic microwave background temperature data within the Galaxy mask from the data outside the mask. We find that, for scale-invariant isotropic random Gaussian fluctuations, the developed algorithm reduces the errors in the reconstructed map for the odd-parity modes significantly for azimuthally symmetric masks with constant galactic latitudes. For a more realistic Galaxy mask, we find a modest improvement in the even-parity modes as well.

  14. Fluidized Granular Medium as an Instance of the Fluctuation Theorem

    NASA Astrophysics Data System (ADS)

    Feitosa, Klebert; Menon, Narayanan

    2004-04-01

    We study the statistics of the power flux into a collection of inelastic beads maintained in a fluidized steady state by external mechanical driving. The power shows large fluctuations, including frequent large negative fluctuations, about its average value. The relative probabilities of positive and negative fluctuations in the power flux are in close accord with the fluctuation theorem of Gallavotti and Cohen, even at time scales shorter than those required by the theorem. We also compare an effective temperature that emerges from this analysis to the kinetic granular temperature.

  15. Fluidized granular medium as an instance of the fluctuation theorem.

    PubMed

    Feitosa, Klebert; Menon, Narayanan

    2004-04-23

    We study the statistics of the power flux into a collection of inelastic beads maintained in a fluidized steady state by external mechanical driving. The power shows large fluctuations, including frequent large negative fluctuations, about its average value. The relative probabilities of positive and negative fluctuations in the power flux are in close accord with the fluctuation theorem of Gallavotti and Cohen, even at time scales shorter than those required by the theorem. We also compare an effective temperature that emerges from this analysis to the kinetic granular temperature.

  16. Thermally induced chronic developmental stress in coho salmon: Integrating measures of mortality, early growth and fluctuating asymmetry

    USGS Publications Warehouse

    Campbell, W.B.; Emlen, J.M.; Hershberger, W.K.

    1998-01-01

    Developmental stability, or homeostasis, facilitates the production of consistent phenotypes by buffering against stress. Fluctuating asymmetry is produced by developmental instability and is manifested as small random departures from bilateral symmetry. Increased fluctuating asymmetry is thought to parallel compromised fitness, in part, because stress promotes energy dissipation. Compensatory energy expenditures within the organism are required to complete development, thus promoting instability through reductions in homeostasis. Increased heterozygosity may enhance developmental stability by reducing energy dissipation from stress through increased metabolic efficiency, possibly by providing greater flexibility in metabolic pathways. Traditionally, fluctuating asymmetry has been used as a bioindicator of chronic stress, provided that selective mortality of less fit individuals did not reduce stress-mediated increases in fluctuating asymmetry to background levels produced by natural developmental error, or create data inconsistencies such as higher asymmetry in groups exposed to lower stress. Unfortunately, absence of selective mortality and its effects, while often assumed, can be difficult to substantiate. We integrated measures of early growth, mortality, fluctuating asymmetry (mandibular pores, pectoral finrays, pelvic finrays, and gillrakers on the upper and lower arms of the first branchial arch) and directional asymmetry (branchiostegal rays) to assess chronic thermal stress (fluctuating temperatures as opposed to ambient temperatures) in developing eggs from two different coho salmon (Oncorhynchus kisutch) stocks and their reciprocal hybrids. Hybridization provided insight on the capacity of heterozygosity to reduce stress during development. Although egg losses were consistently higher in crosses exposed to fluctuating temperatures, egg mortality was predominantly a function of maternal stock of origin. Post-hatch losses were higher in crosses exposed to

  17. PREFACE: Correlations and Fluctuations in Relativistic Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Roland, Gunther; Trainor, Tom

    2005-01-01

    Study of correlations and fluctuations in relativistic nuclear collisions addresses fundamental aspects of quantum chromodynamics (QCD) and the properties of strongly-interacting matter at extreme density and temperature. Correlations and fluctuations reveal the nature of QCD, first through the structure of elementary collisions and then through the properties and dynamics of the colored medium produced in heavy ion (HI) collisions. Five years after first RHIC data we are experiencing a paradigm shift: from two-state indicators that the QCD phase boundary has been traversed to quantitative study of the structure of the QCD medium in the temperature interval Tc 3Tc above the boundary. The expected role of correlations and fluctuations has changed, and has increased in importance relative to single-particle measures. In this workshop we have reviewed correlation and fluctuation measurements in the context of our current theoretical understanding of nuclear collisions and have explored the connections among different measurement approaches. Three themes have emerged, in descending order of correlated-particle transverse momentum pt: high-pt 'triggered' jet correlations and recombination (most interesting at intermediate pt but based on perturbative QCD concepts), fluctuations and correlations which focus on structure at lower pt but are nevertheless dominated by (low-Q2) parton fragment correlations, and critical fluctuations and equilibration which emphasize the long-time and large-scale behavior of the bulk QCD medium. Correlation measurements reveal that RHIC collisions are complex; local structure appears to be dominated by low-Q2 parton fragmentation. High-pt correlations probe the QCD medium at larger scales and shorter times. Provocative phenomena appear at SPS energies where quieter circumstances offer the possibility to observe significant critical fluctuations. New techniques provide unification of high-pt jet correlations with lower-pt fluctuation

  18. Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope.

    PubMed

    Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed

    2011-07-08

    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

  19. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  20. Nonequilibrium fluctuation-dissipation inequality and nonequilibrium uncertainty principle.

    PubMed

    Fleming, C H; Hu, B L; Roura, Albert

    2013-07-01

    The fluctuation-dissipation relation is usually formulated for a system interacting with a heat bath at finite temperature, and often in the context of linear response theory, where only small deviations from the mean are considered. We show that for an open quantum system interacting with a nonequilibrium environment, where temperature is no longer a valid notion, a fluctuation-dissipation inequality exists. Instead of being proportional, quantum fluctuations are bounded below by quantum dissipation, whereas classically the fluctuations vanish at zero temperature. The lower bound of this inequality is exactly satisfied by (zero-temperature) quantum noise and is in accord with the Heisenberg uncertainty principle, in both its microscopic origins and its influence upon systems. Moreover, it is shown that there is a coupling-dependent nonequilibrium fluctuation-dissipation relation that determines the nonequilibrium uncertainty relation of linear systems in the weak-damping limit.

  1. Doping dependence of fluctuation diamagnetism in high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Sarkar, Kingshuk; Banerjee, Sumilan; Mukerjee, Subroto; Ramakrishnan, T. V.

    2016-02-01

    Using a recently proposed Ginzburg-Landau-like lattice free energy functional due to Banerjee et al. (2011) we calculate the fluctuation diamagnetism of high-Tc superconductors as a function of doping, magnetic field and temperature. We analyse the pairing fluctuations above the superconducting transition temperature in the cuprates, ranging from the strong phase fluctuation dominated underdoped limit to the more conventional amplitude fluctuation dominated overdoped regime. We show that a model where the pairing scale increases and the superfluid density decreases with underdoping produces features of the observed magnetization in the pseudogap region, in good qualitative and reasonable quantitative agreement with the experimental data. In particular, we explicitly show that even when the pseudogap has a pairing origin the magnetization actually tracks the superconducting dome instead of the pseudogap temperature, as seen in experiment. We discuss the doping dependence of the 'onset' temperature for fluctuation diamagnetism and comment on the role of vortex core-energy in our model.

  2. Current fluctuations in a two dimensional model of heat conduction

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Garrido, Pedro L.; Hurtado, Pablo I.

    2011-03-01

    In this work we study numerically and analytically current fluctuations in the two-dimensional Kipnis-Marchioro-Presutti (KMP) model of heat conduction. For that purpose, we use a recently introduced algorithm which allows the direct evaluation of large deviations functions. We compare our results with predictions based on the Hydrodynamic Fluctuation Theory (HFT) of Bertini and coworkers, finding very good agreement in a wide interval of current fluctuations. We also verify the existence of a well-defined temperature profile associated to a given current fluctuation which depends exclusively on the magnitude of the current vector, not on its orientation. This confirms the recently introduced Isometric Fluctuation Relation (IFR), which results from the time-reversibility of the dynamics, and includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by timereversibility on the statistics of nonequilibrium fluctuations.

  3. Data analysis of cosmic microwave background experiments

    NASA Astrophysics Data System (ADS)

    Abroe, Matthew Edmund

    2004-12-01

    The cosmic microwave background (CMB) is a powerful tool for determining and constraining the fundamental properties of our universe. In this thesis we present various computational and statistical techniques used to analyze datasets from CMB experiments, and apply them to both simulated and actual datasets. The algorithms presented in this thesis perform a variety of tasks in relation to the goal of extracting scientific information from CMB data sets. The CMB anisotropy power spectrum is sensitive to numerous parameters that determine the evolutionary and large scale properties of our universe. Now that numerous experiments have mapped the CMB intensity fluctuations on overlapping regions of the sky it is important to ensure that the various experiments are indeed observing the same signal. We cross-correlate the cosmic microwave background temperature anisotropy maps from the WMAP, MAXIMA-I, and MAXIMA-II experiments. The results conclusively show that the three experiments not only display the same statistical properties of the CMB anisotropy, but also detect the same features wherever the observed sky areas overlap. We conclude that the contribution of systematic errors to these maps is negligible and that MAXIMA and WMAP have accurately mapped the cosmic microwave background anisotropy. Due to a quadrapole anisotropy at last scattering it is predicted that the CMB photons should be linearly polarized, and that the polarization intensity will be roughly an order of magnitude lower than the intensity fluctuations. Two computationally intensive methods for simulating the CMB polarization signal on the sky are presented. Now that CMB polarization experiments are currently producing data sets new algorithms for analyzing polarization time stream data must be developed and tested. We demonstrate how to generate simulations of a polarization experiment in the temporal domain and apply these simulations to the MAXIPOL case. We develop a maximum likelihood map making

  4. Noncontact Friction and Force Fluctuations between Closely Spaced Bodies

    SciTech Connect

    Stipe, B. C.; Mamin, H. J.; Stowe, T. D.; Kenny, T. W.; Rugar, D.

    2001-08-27

    Noncontact friction between a Au(111) surface and an ultrasensitive gold-coated cantilever was measured as a function of tip-sample spacing, temperature, and bias voltage using observations of cantilever damping and Brownian motion. The importance of the inhomogeneous contact potential is discussed and comparison is made to measurements over dielectric surfaces. Using the fluctuation-dissipation theorem, the force fluctuations are interpreted in terms of near-surface fluctuating electric fields interacting with static surface charge.

  5. Superconducting fluctuations and the Nernst effect

    NASA Astrophysics Data System (ADS)

    Ussishkin, Iddo; Sondhi, S. L.; Huse, David A.

    2003-03-01

    We consider the contribution of superconducting fluctuations above the critical temperature to thermal transport in general, and the Nernst effect in particular. The contribution is considered using both the Gaussian approximation to the stochastic time-dependent Ginzburg-Landau equation and within a diagrammatic approach. We compare our results with recent measurements of the Nernst effect in the cuprates by Ong and collaborators.

  6. Critical point fluctuations in supported lipid membranes.

    PubMed

    Connell, Simon D; Heath, George; Olmsted, Peter D; Kisil, Anastasia

    2013-01-01

    In this paper, we demonstrate that it is possible to observe many aspects of critical phenomena in supported lipid bilayers using atomic force microscopy (AFM) with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L(d)-L(o) region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T(c)) and characterised using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. Below T(c) roughening of the domain boundaries occurred due to the reduction in line tension close to the critical point. Smaller scale density fluctuations were also detected just below T(c). At T(c), we believe we have observed fluctuations on length scales greater than 10 microm. The region of critically fluctuating 10-100 nm nanodomains has been found to extend a considerable distance above T(c) to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.

  7. Nonequilibrium mesoscopic conductance fluctuations

    NASA Astrophysics Data System (ADS)

    Ludwig, T.; Blanter, Ya. M.; Mirlin, A. D.

    2004-12-01

    We investigate the amplitude of mesoscopic fluctuations of the differential conductance of a metallic wire at arbitrary bias voltage V . For noninteracting electrons, the variance ⟨δg2⟩ increases with V . The asymptotic large- V behavior is ⟨δg2⟩˜V/Vc (where eVc=D/L2 is the Thouless energy), in agreement with the earlier prediction by Larkin and Khmelnitskii. We find, however, that this asymptotics has a very small numerical prefactor and sets in at very large V/Vc only, which strongly complicates its experimental observation. This high-voltage behavior is preceded by a crossover regime, V/Vc≲30 , where the conductance variance increases by a factor ˜3 as compared to its value in the regime of universal conductance fluctuations (i.e., at V→0 ). We further analyze the effect of dephasing due to the electron-electron scattering on ⟨δg2⟩ at high voltages. With the Coulomb interaction taken into account, the amplitude of conductance fluctuations becomes a nonmonotonic function of V . Specifically, ⟨δg2⟩ drops as 1/V for voltages V≫gVc , where g is the dimensionless conductance. In this regime, the conductance fluctuations are dominated by quantum-coherent regions of the wire adjacent to the reservoirs.

  8. Fluctuating transport in microstructures

    SciTech Connect

    Xie, X.

    1988-01-01

    In this dissertation, we study electronic transport properties of various kinds of quasi-one dimensional (Q1D) systems. The dissertation can be divided into the following categories: (1) Conductance fluctuations and phase coherence in microstructures. We study the conductance fluctuations for three different regimes of electronic transport: ballistic, diffusive and variable-range-hopping (VRH). Various numerical methods are used in the calculations. In the VRH problem, we also examine the possibility of observing the Aharonov-Bohm effect. We develop a technique based on the recursive Kubo formula to study the universal conductance fluctuations in the diffusive regime. Close comparison with relevant experiments is made and good agreement is found. (2) Drude transport properties of quasi-one dimensional systems. In this problem, we calculate the density of states and Drude conductivity for the screened impurity scattering using many body theory. The DOS and conductivity show strong oscillatory behavior as a function of the Fermi-energy. Self-consistency is included in our theory. Good agreement with experiment is found. (3) Transport in quasicrystals. In solving this problem we use the Landauer formula approach. We find that the electrical resistance of a finite 1D Fibonacci-sequence quasicrystal shows strong fluctuations as resonant tunneling occurs through the allowed energy states of the system. Power law localization and self-similarity can be seen in the transport properties. A possible experiment to observe this phenomenon is suggested.

  9. Fluctuating Asymmetry and Intelligence

    ERIC Educational Resources Information Center

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  10. Assessment of the effects of scrape-off layer fluctuations on first wall sputtering with the TOKAM-2D turbulence code

    NASA Astrophysics Data System (ADS)

    Marandet, Y.; Nace, N.; Valentinuzzi, M.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Genesio, P.; Mellet, N.

    2016-11-01

    Plasma material interactions on the first wall of future tokamaks such as ITER and DEMO are likely to play an important role, because of turbulent radial transport. The latter results to a large extent from the radial propagation of plasma filaments through a tenuous background. In such a situation, mean field descriptions (on which transport codes rely) become questionable. First wall sputtering is of particular interest, especially in a full W machine, since it has been shown experimentally that first wall sources control core contamination. In ITER, beryllium sources will be one of the important actors in determining the fuel retention level through codeposition. In this work, we study the effect of turbulent fluctuations on mean sputtering yields and fluxes, relying on a new version of the TOKAM-2D code which includes ion temperature fluctuations. We show that fluctuations enhance sputtering at sub-threshold impact energies, by more than an order of magnitude when fluctuation levels are of order unity.

  11. Detection of polarization in the cosmic microwave background using DASI

    NASA Astrophysics Data System (ADS)

    Kovac, John M.

    2004-06-01

    The past several years have seen the emergence of a new standard cosmological model in which small temperature differences in the cosmic microwave background (CMB) on degree angular scales are understood to arise from acoustic oscillations in the hot plasma of the early universe sourced by primordial adiabatic density fluctuations. In the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the universe. Given knowledge of the temperature angular power spectrum, this theoretical framework yields a prediction for the level of the CMB polarization with essentially no free parameters. A determination of the CMB polarization would therefore provide a critical test of the underlying theoretical framework of this standard model. In this thesis, we report the detection of polarized anisotropy in the Cosmic Microwave Background radiation with the Degree Angular Scale Interferometer (DASI), located at the Amundsen-Scott South Pole research station. Observations in all four Stokes parameters were obtained within two 3°4 FWHM fields separated by one hour in Right Ascension. The fields were selected from the subset of fields observed with DASI in 2000 in which no point sources were detected and are located in regions of low Galactic synchrotron and dust emission. The temperature angular power spectrum is consistent with previous measurements and its measured frequency spectral index is -0.01 (-0.16 to 0.14 at 68% confidence), where zero corresponds to a 2.73 K Planck spectrum. The power spectrum of the detected polarization is consistent with theoretical predictions based on the interpretation of CMB anisotropy as arising from primordial scalar adiabatic fluctuations. Specifically, E-mode polarization is detected at high confidence (4.9σ). Assuming a shape for the power spectrum consistent with previous temperature measurements, the level found for the E- mode polarization

  12. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  13. Lowest Landau level diamagnetic fluctuations in niobium

    NASA Astrophysics Data System (ADS)

    Salem-Sugui, Said; Friesen, M.; Alvarenga, A. D.; Schilling, Osvaldo F.; Gandra, F. G.; Doria, M. M.

    2004-08-01

    We have performed a magnetic study of a bulk metallic sample of Nb with critical temperature Tc = 8.5 K. Magnetization measurements taken for magnetic fields greater than 1 kOe show a superconducting transition that becomes broader as the field is increased. The data are well described by lowest Landau level (LLL) fluctuation theory. A scaling analysis yields values for the superconducting transition temperature under field Tc( H) which are consistent with Hc2( T).

  14. Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei

    NASA Astrophysics Data System (ADS)

    Rhine Kumar, A. K.; Arumugam, P.; Dang, N. Dinh

    2015-04-01

    Apart from the higher limits of isospin and temperature, the properties of atomic nuclei are intriguing and less explored at the limits of lowest but finite temperatures. At very low temperatures there is a strong interplay between the shell (quantal fluctuations), statistical (thermal fluctuations), and residual pairing effects as evidenced from the studies on giant dipole resonance (GDR). In our recent work [Phys. Rev. C 90, 044308 (2014), 10.1103/PhysRevC.90.044308], we have outlined some of our results from a theoretical approach for such warm nuclei where all these effects are incorporated along within the thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. In this article, we present the complete formalism based on the microscopic-macroscopic approach for determining the deformation energies and a macroscopic approach which links the deformation to GDR observables. We discuss our results for the nuclei 97Tc,120Sn,179Au, and 208Pb, and corroborate with the experimental data available. The TSFM could explain the data successfully at low temperature only with a proper treatment of pairing and its fluctuations. More measurements with better precision could yield rich information about several phase transitions that can happen in warm nuclei.

  15. An 8-Bit 600-MSps Flash ADC Using Interpolating and Background Self-Calibrating Techniques

    NASA Astrophysics Data System (ADS)

    Paik, Daehwa; Asada, Yusuke; Miyahara, Masaya; Matsuzawa, Akira

    This paper describes a flash ADC using interpolation (IP) and cyclic background self-calibrating techniques. The proposed IP technique that is cascade of capacitor IP and gate IP with dynamic double-tail latched comparator reduces non-linearity, power consumption, and occupied area. The cyclic background self-calibrating technique periodically suppresses offset mismatch voltages caused by static fluctuation and dynamic fluctuation due to temperature and supply voltage changes. The ADC has been fabricated in 90-nm 1P10M CMOS technology. Experimental results show that the ADC achieves SNDR of 6.07bits without calibration and 6.74bits with calibration up to 500MHz input signal at sampling rate of 600MSps. It dissipates 98.5mW on 1.2-V supply. FoM is 1.54pJ/conv.

  16. Fluctuation of heat current in Josephson junctions

    SciTech Connect

    Virtanen, P.; Giazotto, F.

    2015-02-15

    We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  17. Current Status and Perspectives of Cosmic Microwave Background Observations

    NASA Astrophysics Data System (ADS)

    Bersanelli, Marco; Maino, Davide; Mennella, Aniello

    2004-04-01

    Measurements of the cosmic microwave background (CMB) radiation provide a unique opportunity for a direct study of the primordial cosmic plasma at redshift z ~103. The angular power spectra of temperature and polarisation fluctuations are powerful observational objectives as they encode information on fundamental cosmological parameters and on the physics of the early universe. A large number of increasingly ambitious balloon-borne and ground-based experiments have been carried out following the first detection of CMB anisotropies by COBE-DMR, probing the angular power spectrum up to high multipoles. The recent data from WMAP provide a new major step forward in measurements percision. The ESA mission ``Planck Surveyor'', to be launched in 2007, is the third-generation satellite devoted to CMB imaging. Planck is expected to extract the full cosmological information from temperature anisotropies and to open up new fronteers in the CMB field.

  18. Conductance fluctuations in nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Ningjia

    1997-12-01

    In this Ph.D thesis the conductance fluctuations of different physical origins in semi-conductor nanostructures were studied using both diagrammatic analytical methods and large scale numerical techniques. In the "mixed" transport regime where both mesoscopic and ballistic features play a role, for the first time I have analytically calculated the non-universal conductance fluctuations. This mixed regime is reached when impurities are distributed near the walls of a quantum wire, leaving the center region ballistic. I have discovered that the existence of a ballistic region destroys the universal conductance fluctuations. The crossover behavior of the fluctuation amplitude from the usual quasi-1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are identified. My analytical predictions were confirmed by a direct numerical simulation by evaluating the Landauer formula. In another direction, I have made several studies of conductance or resistance oscillations and fluctuations in systems with artificial impurities in the ballistic regime. My calculation gave explanations of all the experimental results concerning the classical focusing peaks of the resistance versus magnetic field, the weak localization peak in a Sinai billiard system, the formation of a chaotic billiard, and predicted certain transport features which were indeed found experimentally. I have further extended the calculation to study the Hall resistance in a four-terminal quantum dot in which there is an antidot array. From my numerical data I analyzed the classical paths of electron motion and its quantum oscillations. The results compare well with recent experimental studies on similar systems. Since these billiard systems could provide quantum chaotic dynamics, I have made a detailed study of the consequence of such dynamics. In particular I have investigated the resonant transmission of electrons in these chaotic systems, and found that the level

  19. Chiral vacuum fluctuations in quantum gravity.

    PubMed

    Magueijo, João; Benincasa, Dionigi M T

    2011-03-25

    We examine tensor perturbations around a de Sitter background within the framework of Ashtekar's variables and its cousins parameterized by the Immirzi parameter γ. At the classical level we recover standard cosmological perturbation theory, with illuminating insights. Quantization leads to real novelties. In the low energy limit we find a second quantized theory of gravitons which displays different vacuum fluctuations for right and left gravitons. Nonetheless right and left gravitons have the same (positive) energies, resolving a number of paradoxes suggested in the literature. The right-left asymmetry of the vacuum fluctuations depends on γ and the ordering of the Hamiltonian constraint, and it would leave a distinctive imprint in the polarization of the cosmic microwave background, thus opening quantum gravity to observational test.

  20. BOOK REVIEW: The Cosmic Microwave Background The Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Coles, Peter

    2009-08-01

    With the successful launch of the European Space Agency's Planck satellite earlier this year the cosmic microwave background (CMB) is once again the centre of attention for cosmologists around the globe. Since its accidental discovery in 1964 by Arno Penzias and Robert Wilson, this relic of the Big Bang has been subjected to intense scrutiny by generation after generation of experiments and has gradually yielded up answers to the deepest questions about the origin of our Universe. Most recently, the Wilkinson Microwave Anisotropy Probe (WMAP) has made a full-sky analysis of the pattern of temperature and polarization variations that helped establish a new standard cosmological model, confirmed the existence of dark matter and dark energy, and provided strong evidence that there was an epoch of primordial inflation. Ruth Durrer's book reflects the importance of the CMB for future developments in this field. Aimed at graduate students and established researchers, it consists of a basic introduction to cosmology and the theory of primordial perturbations followed by a detailed explanation of how these manifest themselves as measurable variations in the present-day radiation field. It then focuses on the statistical methods needed to obtain accurate estimates of the parameters of the standard cosmological model, and finishes with a discussion of the effect of gravitational lensing on the CMB and on the evolution of its spectrum. The book apparently grew out of various lecture notes on CMB anisotropies for graduate courses given by the author. Its level and scope are well matched to the needs of such an audience and the presentation is clear and well-organized. I am sure that this book will be a useful reference for more senior scientists too. If I have a criticism, it is not about what is in the book but what is omitted. In my view, one of the most exciting possibilities for future CMB missions, including Planck, is the possibility that they might discover physics

  1. Force fluctuations in stretching a tethered polymer

    NASA Astrophysics Data System (ADS)

    Varghese, Anoop; Vemparala, Satyavani; Rajesh, R.

    2013-08-01

    The recently proposed fluctuation relation in unfolding forces [Phys. Rev. E1539-375510.1103/PhysRevE.84.060101 84, 060101(R) (2011)] is reexamined taking into account the explicit time dependence of the force distribution. The stretching of a tethered Rouse polymer is exactly solved and the ratio of the probabilities of positive to negative forces is shown to be an exponential in force. Extensive steered molecular dynamics simulations of unfolding of deca alanine peptide confirm the form of fluctuation relation proposed earlier, but with explicit correct time dependence of unfolding forces taken into account. From exact calculations and simulations, a linear dependence of the constant in the exponential of the fluctuation relation on average unfolding forces and inverse temperature is proposed.

  2. The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas

    SciTech Connect

    Viñas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jaime A.

    2014-01-15

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the β{sub e} increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron–proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  3. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  4. Multiscale Fluctuation Analysis Revisited

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Kiyono, Ken; Yamamoto, Yoshiharu

    2007-07-01

    Ubiquitous non-Gaussianity of the probability density of (time-series) fluctuations in many real world phenomena has been known and modelled extensively in recent years. Similarly, the analysis of (multi)scaling properties of (fluctuations in) complex systems has become a standard way of addressing unknown complexity. Yet the combined analysis and modelling of multiscale behaviour of probability density — multiscale PDF analysis — has only recently been proposed for the analysis of time series arising in complex systems, such as the cardiac neuro-regulatory system, financial markets or hydrodynamic turbulence. This relatively new technique has helped significantly to expand the previously obtained insights into the phenomena addressed. In particular, it has helped to identify a novel class of scale invariant behaviour of the multiscale PDF in healthy heart rate regulation during daily activity and in a market system undergoing crash dynamics. This kind of invariance reflects invariance of the system under renormalisation and resembles behaviour at criticality of a system undergoing continuous phase transition — indeed in both phenomena, such phase transition behaviour has been revealed. While the precise mechanism underlying invariance of the PDF under system renormalisation of both systems discussed is not to date understood, there is an intimate link between the non-Gaussian PDF characteristics and the persistent invariant correlation structure emerging between fluctuations across scale and time.

  5. Fluctuations of the Free Energy of the Spherical Sherrington-Kirkpatrick Model

    NASA Astrophysics Data System (ADS)

    Baik, Jinho; Lee, Ji Oon

    2016-10-01

    We consider the fluctuations of the free energy for the 2-spin spherical Sherrington-Kirkpatrick model with no magnetic field. We show that the law of the fluctuations converges to the Gaussian distribution when the temperature is above the critical temperature, and to the GOE Tracy-Widom distribution when the temperature is below the critical temperature. The orders of the fluctuations are markedly different in these two regimes. A universality of the limit law is also proved.

  6. A correlation between the cosmic microwave background and large-scale structure in the Universe.

    PubMed

    Boughn, Stephen; Crittenden, Robert

    2004-01-01

    Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.

  7. The Fluctuation Theorem

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.

    2002-11-01

    The question of how reversible microscopic equations of motion can lead to irreversible macroscopic behaviour has been one of the central issues in statistical mechanics for more than a century. The basic issues were known to Gibbs. Boltzmann conducted a very public debate with Loschmidt and others without a satisfactory resolution. In recent decades there has been no real change in the situation. In 1993 we discovered a relation, subsequently known as the Fluctuation Theorem (FT), which gives an analytical expression for the probability of observing Second Law violating dynamical fluctuations in thermostatted dissipative non-equilibrium systems. The relation was derived heuristically and applied to the special case of dissipative non-equilibrium systems subject to constant energy 'thermostatting'. These restrictions meant that the full importance of the Theorem was not immediately apparent. Within a few years, derivations of the Theorem were improved but it has only been in the last few of years that the generality of the Theorem has been appreciated. We now know that the Second Law of Thermodynamics can be derived assuming ergodicity at equilibrium, and causality. We take the assumption of causality to be axiomatic. It is causality which ultimately is responsible for breaking time reversal symmetry and which leads to the possibility of irreversible macroscopic behaviour. The Fluctuation Theorem does much more than merely prove that in large systems observed for long periods of time, the Second Law is overwhelmingly likely to be valid. The Fluctuation Theorem quantifies the probability of observing Second Law violations in small systems observed for a short time. Unlike the Boltzmann equation, the FT is completely consistent with Loschmidt's observation that for time reversible dynamics, every dynamical phase space trajectory and its conjugate time reversed 'anti-trajectory', are both solutions of the underlying equations of motion. Indeed the standard proofs of

  8. Magnetism of metals in the dynamic spin-fluctuation theory

    NASA Astrophysics Data System (ADS)

    Melnikov, N. B.; Reser, B. I.

    2016-12-01

    We overview new developments in spin-fluctuation theory, which describes magnetic properties of ferromagnetic metals at finite temperatures. We present a detailed analysis of the underlying techniques and compare numerical results with experiment.

  9. Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation

    NASA Astrophysics Data System (ADS)

    Ortiz de Zárate, José M.; Sengers, Jan V.

    2013-02-01

    We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.

  10. The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations

    NASA Astrophysics Data System (ADS)

    Ebrahimnejad, Hadi; Sawatzky, George A.; Berciu, Mona

    2014-12-01

    Understanding what controls the dynamics of the quasiparticle that results when a hole is doped into an antiferromagnetically ordered CuO2 layer is the first necessary step in the quest for a theory of the high-temperature superconductivity in cuprates. Here we show that the long-held belief that the quantum spin fluctuations of the antiferromagnetic background play a key role in determining this dynamics is wrong. Indeed, we demonstrate that the correct, experimentally observed quasiparticle dispersion is generically obtained for a three-band model describing the hole moving on the oxygen sublattice and coupled to a Néel lattice of spins without spin fluctuations. We argue that results from one-band model studies actually support this conclusion, and that this significant conceptual change in our understanding of this phenomenology opens the way to studying few-hole dynamics, to accurately gauge the strength of the `magnetic glue’ and its contribution to superconductivity.

  11. An analog model for quantum lightcone fluctuations in nonlinear optics

    SciTech Connect

    Ford, L.H.; De Lorenci, V.A.; Menezes, G.; Svaiter, N.F.

    2013-02-15

    We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. - Highlights: Black-Right-Pointing-Pointer Lightcone fluctuations, quantum fluctuations of the effective speed of light, are a feature of quantum gravity. Black-Right-Pointing-Pointer Nonlinear dielectrics have a variable speed of light, analogous to the effects of gravity. Black-Right-Pointing-Pointer Fluctuating electric fields create the effect of lightcone fluctuations in a nonlinear material. Black-Right-Pointing-Pointer We propose to use squeezed light in a nonlinear material as an analog model of lightcone fluctuations. Black-Right-Pointing-Pointer Variation in the speed of propagation of pulses is the observational signature of lightcone fluctuations.

  12. De Sitter Space Without Dynamical Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2016-06-01

    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.

  13. Theory of superconducting fluctuations in magnesium diboride

    NASA Astrophysics Data System (ADS)

    Varlamov, Andrei; Koshelev, Alexei; Vinokur, Valerii

    2006-03-01

    A theory of fluctuations in two-band superconductor MgB2 is developed. Since the standard Ginzburg-Landau (GL) approach fails in description of its properties, we generalize it basing on the microscopic theory of a two-band superconductor. Calculating the microscopic fluctuation propagator, we build up the nonlocal two-band GL functional and the corresponding time-dependent GL equations. This allows us to calculate the main fluctuation observables. Temperature dependencies of the fluctuation specific heat, magnetic susceptibility, and in-plane conductivity are determined by the same function which interpolates between two regimes: the standard GL regime very close to Tc, where superconductivity is described by the unique order parameter for both bands, and the regime of dominating σ-band which is settled at temperatures slightly further away from Tc. This work was supported by the U.S. DOE, Office of Science, under contract # W-31-109-ENG-38. A.A.V. acknowledges the support of the FIRB project of the Italian Ministry of Science and Education.

  14. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.

    PubMed

    Wang, Jianhui; He, Jizhou; Ma, Yongli

    2011-05-01

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  15. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble

    SciTech Connect

    Wang Jianhui; He Jizhou; Ma Yongli

    2011-05-15

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  16. Effects of surface potential fluctuations on DLTS of MOS structure

    NASA Astrophysics Data System (ADS)

    Özder, Serhat; Atilgan, İsmai˙l.; Katircioǧlu, Bayram

    1996-02-01

    Although the conventional large signal deep-level transient spectroscopy (DLTS) technique is immune to surface potential fluctuations resulting from interface charge inhomogeneities in a MOS structure, in energy resolved, small signal DLTS, the eventual surface potential fluctuation should be considered. In this paper, the effect of the potential fluctuation on the temperature-scan DLTS signal for a given gate bias has been carried out. In fact, this effect shifts the DLTS peak position to lower temperatures and decreases the peak amplitude, leading to an apparent energy position and lower Dit values, respectively.

  17. Fluctuations, Intermittency and Predictivity

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    This chapter considers the various mechanisms capable of producing amplitude and duration variations in the various dynamo models introduced in Chap. 3 (10.1007/978-3-642-32093-4_3). After a survey of observed and inferred fluctuation patterns of the solar cycle, the effects on the basic cycle of stochastic forcing, dynamical nonlinearities and time delay are considered in turn. The occurrence of intermittency in a subset of these models is then investigated, with an eye on explaining Grand Minima observed in the solar activity record. The chapter closes with a brief discussion of solar cycle prediction schemes based on dynamo models.

  18. Anisotropies in the cosmic microwave background: an analytic approach

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; Sugiyama, Naoshi

    1995-05-01

    We introduce a conceptually simple yet powerful analytic method which traces the structure of cosmic microwave background anisotropies to better than 5%-10% in temperature fluctuations on all scales. It is applicable to any model in which the gravitational potential is known and last scattering is sufficiently early. Moreover, it recovers and explains the presence of the 'Doppler peaks' at degree scales as driven acoustic oscillations of the photon-baryon fluid. We treat in detail such subtleties as the time dependence of the gravitational driving force, anisotropic stress from the neutrino quadrupole, and damping during the recombination process, again all from an analytic standpoint. We apply this formalism to the standard cold dark matter model to gain physical insight into the anisotropies, including the dependence of the peak locations and heights on cosmological parameters such as Omegab and h. Furthermore, the ionization history controls damping due to the finite thickness of the last scattering surface, which is in fact mianly caused by photon diffusion. In addition to being a powerful probe into the nature of anisotropies, this treatment can be used in place of the standard Boltzmann code where 5%-10% accuracy in temperature fluctuations is satisfactory and/or speed is essential. Equally importantly, it can be used as a portable standard by which numerical codes can be tested and compared.

  19. Fluctuation relations for anisotropic systems

    NASA Astrophysics Data System (ADS)

    Villavicencio-Sanchez, R.; Harris, R. J.; Touchette, H.

    2014-02-01

    Currents of particles or energy in driven non-equilibrium steady states are known to satisfy certain symmetries, referred to as fluctuation relations, determining the ratio of the probabilities of positive fluctuations to negative ones. A generalization of these fluctuation relations has been proposed recently for extended non-equilibrium systems of dimension greater than one, assuming, crucially, that they are isotropic (Hurtado P. I., Pérez-Espigares C., del Pozo J. J. and Garrido P. L., Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 7704). Here we relax this assumption and derive a fluctuation relation for d-dimensional systems having anisotropic bulk driving rates. We test the validity of this anisotropic fluctuation relation by calculating the particle current fluctuations in the 2d anisotropic zero-range process, using both exact and fluctuating hydrodynamic approaches.

  20. Differentiating CDM and baryon isocurvature models with 21 cm fluctuations

    SciTech Connect

    Kawasaki, Masahiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: sekiguti@icrr.u-tokyo.ac.jp

    2011-10-01

    We discuss how one can discriminate models with cold dark matter (CDM) and baryon isocurvature fluctuations. Although current observations such as cosmic microwave background (CMB) can severely constrain the fraction of such isocurvature modes in the total density fluctuations, CMB cannot differentiate CDM and baryon ones by the shapes of their power spectra. However, the evolution of CDM and baryon density fluctuations are different for each model, thus it would be possible to discriminate those isocurvature modes by extracting information on the fluctuations of CDM/baryon itself. We discuss that observations of 21 cm fluctuations can in principle differentiate these modes and demonstrate to what extent we can distinguish them with future 21 cm surveys. We show that, when the isocurvature mode has a large blue-tilted initial spectrum, 21 cm surveys can clearly probe the difference.

  1. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic

    2015-07-01

    Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.

  2. Fluctuation effects in grain growth

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gyoon; Park, Yong Bum

    2016-08-01

    In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.

  3. Effect of thermal fluctuations on spin degrees of freedom in spinor Bose-Einstein condensates

    SciTech Connect

    Pogosov, W. V.; Machida, K.

    2006-08-15

    We consider the effect of thermal fluctuations on rotating spinor F=1 condensates in axially symmetric vortex phases, when all the three hyperfine states are populated. We show that the relative phase among different components of the order parameter can fluctuate strongly due to the weakness of the interaction in the spin channel. These fluctuations can be significant even at low temperatures. Fluctuations of relative phase lead to significant fluctuations of the local transverse magnetization of the condensate. We demonstrate that these fluctuations are much more pronounced for the antiferromagnetic state than for the ferromagnetic one.

  4. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    SciTech Connect

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical

  5. Background events in microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Vallerga, J.; Wargelin, B.

    1988-01-01

    Measurements have been made to assess the characteristics and origins of background events in microchannel plates (MCPs). An overall background rate of about 0.4 events/sq cm persec has been achieved consistently for MCPs that have been baked and scrubbed. The temperature and gain of the MCPs are found to have no significant effect on the background rate. Detection of 1.46-MeV gamma rays from the MCP glass confirms the presence of K-40, with a concentration of 0.0007 percent, in MCP glass. It is shown that beta decay from K-40 is sufficient to cause the background rate and spectrum observed. Anticoincidence measurements indicate the the background rate caused by cosmic ray interactions is small (less than 0.016 events/sq cm per sec).

  6. Fluctuating structure of aqueous organic nanodroplets

    NASA Astrophysics Data System (ADS)

    Hrahsheh, Fawaz; Wilemski, Gerald

    2013-05-01

    Supercooled and nano-confined water occurs frequently as nanometer-sized aqueousorganic aerosol droplets that are ubiquitous in the atmosphere and in many industrial processes. Nanodroplet structure is important because it influences droplet growth and evaporation rates, heterogeneous reaction rates, and radiative properties. We used classical molecular dynamic simulations to study the structure of binary water-nonane and ternary water-butanol-nonane nanodroplets for several temperatures and droplet sizes. We found that nonspherical, phase-separated Russian Doll (RD) structures occur for water/nonane nanodroplets at all temperatures studied, 220K-300K. The RD structure consists of a nearly spherical water droplet partially wetted by a convex lens of nonane. We then studied the effects of butanol on the wetting of the water/butanol core-shell droplet by the nonane lens. At low concentrations, butanol acts as a surfactant to significantly enhance the wetability of the water droplet by nonane. At 250 K, with sufficient butanol and nonane, perfect wetting (thin film formation by nonane) occurs. Perfect wetting also occurs at higher temperatures, 270 K to 300 K, but this wetting state is progressively destabilized at higher temperature. All of the nanodroplets studied undergo distinct transitions between partial dewetting and perfect wetting states due to isothermal fluctuations in the local distribution of butanol on the surface of the water core. These fluctuations favor the wetted state at lower temperatures and the dewetted state at higher temperatures.

  7. The fluctuation test.

    PubMed

    Bridges, B A

    1980-11-01

    The fluctuation test is an assay for the detection of mutation induction in bacteria by chemicals, carried out in liquid medium, and scored by counting the number out of around 50 tubes or wells that turn yellow. It is suitable for the Ames Salmonella strains or for Escherichia coli WP2 trp and its derivatives. Calcium precipitated microsomes, S9 fraction or freshly prepared hepatocytes can be incorporated for metabolic activation. It is comparable to the Ames test in its ability to detect mutagens and carcinogens and generally shares the limitations of that test as regards extrapolation to animals and man. Its disadvantages are that it is marginally slower and slightly more labour intensive than the Ames protocol. For certain applications, however, these disadvantages may be offset by the advantages of somewhat greater sensitivity, ability to be automated, and facility for using hepatocytes for metabolic activation. The test is particularly suitable for the testing of aqueous samples containing low levels of mutagen.

  8. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  9. Nanoscale thermal fluctuation spectroscopy

    NASA Astrophysics Data System (ADS)

    Garrity, Patrick Louis

    The utilization of thermal fluctuations or Johnson/Nyquist noise as a spectroscopic method to determine transport properties in conductors or semiconductors is developed in this paper. The autocorrelation function is obtained from power spectral density measurements thus enabling electronic transport property calculation through the Green-Kubo formalism. This experimental approach is distinct from traditional numerical methods such as molecular dynamics simulations, which have been used to extract the autocorrelation function and directly related physics only. This work reports multi-transport property measurements consisting of the electronic relaxation time, resistivity, mobility, diffusion coefficient, electronic contribution to thermal conductivity and Lorenz number from experimental data. Double validation of the experiment was accomplished through the use of a standard reference material and a standard measurement method, i.e. four-probe collinear resistivity technique. The advantages to this new experimental technique include the elimination of any required thermal or potential gradients, multi-transport property measurements within one experiment, very low error and the ability to apply controlled boundary conditions while gathering data. This research has experimentally assessed the gas pressure and flow effects of helium and argon on 30 nm Au and Cu thin films. The results show a reduction in Au and Cu electronic thermal conductivity and electrical resistivity when subjected to helium and argon pressure and flow. The perturbed electronic transport coefficients, attributed to increased electron scattering at the surface, were so dominant that further data was collected through straight-forward resistance measurements. The resistance data confirmed the thermal noise measurements thus lending considerable evidence to the presence of thin film surface scattering due to elastic and inelastic gas particle scattering effects with the electron ensemble. Keywords

  10. Dark energy from primordial inflationary quantum fluctuations.

    PubMed

    Ringeval, Christophe; Suyama, Teruaki; Takahashi, Tomo; Yamaguchi, Masahide; Yokoyama, Shuichiro

    2010-09-17

    We show that current cosmic acceleration can be explained by an almost massless scalar field experiencing quantum fluctuations during primordial inflation. Provided its mass does not exceed the Hubble parameter today, this field has been frozen during the cosmological ages to start dominating the Universe only recently. By using supernovae data, completed with baryonic acoustic oscillations from galaxy surveys and cosmic microwave background anisotropies, we infer the energy scale of primordial inflation to be around a few TeV, which implies a negligible tensor-to-scalar ratio of the primordial fluctuations. Moreover, our model suggests that inflation lasted for an extremely long period. Dark energy could therefore be a natural consequence of cosmic inflation close to the electroweak energy scale.

  11. Transport generated by dichotomous fluctuations

    NASA Astrophysics Data System (ADS)

    Kula, J.; Czernik, T.; łuczka, J.

    1996-02-01

    Overdamped motion of Brownian particles in spatially periodic potentials and subjected to fluctuations modeled by asymmetric exponentially correlated two-state noise of zero mean value is considered. The probability current is presented in a closed form and analyzed in asymptotic regimes of very long and very short correlation times of the fluctuations. E