Sample records for background traumatic brain

  1. Mild Traumatic Brain Injury

    MedlinePlus

    ... Traumatic Brain Injury mild Traumatic Brain Injury VIDEO STORIES What is TBI Measuring Severity of TBI Symptoms ... across the country. National Center for Telehealth and Technology t2health.dcoe.mil The National Center for Telehealth ...

  2. Traumatic Brain Injury and Blood-Brain Barrier Cross-Talk.

    PubMed

    Nasser, Mohammad; Bejjani, Fabienne; Raad, Mohamad; Abou-El-Hassan, Hadi; Mantash, Sarah; Nokkari, Amaly; Ramadan, Naify; Kassem, Nouhad; Mondello, Stefania; Hamade, Eva; Darwish, Hala; Zibara, Kazem; Kobeissy, Firas

    2016-01-01

    Traumatic brain injury, often referred to as the "silent epidemic," is a nondegenerative, non-congenital insult to the brain due to a blow or penetrating object that disrupts the function of the brain leading to permanent or temporary impairment of cognition, physical and psychosocial functions. Traumatic brain injury usually has poor prognosis for long-term treatment and is a major cause of mortality and morbidity worldwide; approximately 10 million deaths and/or hospitalizations annually are directly related to traumatic brain injury. Traumatic brain injury involves primary and secondary insults. Primary injury occurs during the initial insult, and results from direct or indirect force applied to the physical structures of the brain. Secondary injury is characterized by longer-term degeneration of neurons, glial cells, and vascular tissues due to activation of several proteases, glutamate and pro-inflammatory cytokine secretion. In addition, there is growing evidence that the blood-brain barrier is involved in the course of traumatic brain injury pathophysiology and has detrimental effects on the overall pathology of brain trauma, as will be discussed in this work.

  3. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  4. The neuropathology of traumatic brain injury.

    PubMed

    Mckee, Ann C; Daneshvar, Daniel H

    2015-01-01

    Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at

  5. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  6. Employment outcome four years after a severe traumatic brain injury: results of the Paris severe traumatic brain injury study.

    PubMed

    Ruet, Alexis; Jourdan, Claire; Bayen, Eléonore; Darnoux, Emmanuelle; Sahridj, Dalila; Ghout, Idir; Azerad, Sylvie; Pradat Diehl, Pascale; Aegerter, Philippe; Charanton, James; Vallat Azouvi, Claire; Azouvi, Philippe

    2017-05-18

    To describe employment outcome four years after a severe traumatic brain injury by the assessment of individual patients' preinjury sociodemographic data, injury-related and postinjury factors. A prospective, multicenter inception cohort of 133 adult patients in the Paris area (France) who had received a severe traumatic brain injury were followed up postinjury at one and four years. Sociodemographic data, factors related to injury severity and one-year functional and cognitive outcomes were prospectively collected. The main outcome measure was employment status. Potential predictors of employment status were assessed by univariate and multivariate analysis. At the four-year follow-up, 38% of patients were in paid employment. The following factors were independent predictors of unemployment: being unemployed or studying before traumatic brain injury, traumatic brain injury severity (i.e., a lower Glasgow Coma Scale score upon admission and a longer stay in intensive care) and a lower one-year Glasgow Outcome Scale-Extended score. This study confirmed the low rate of long-term employment amongst patients after a severe traumatic brain injury. The results illustrated the multiple determinants of employment outcome and suggested that students who had received a traumatic brain injury were particularly likely to be unemployed, thus we propose that they may require specific support to help them find work. Implications for rehabilitation Traumatic brain injury is a leading cause of persistent disablity and can associate cognitive, emotional, physical and sensory impairments, which often result in quality-of-life reduction and job loss. Predictors of post-traumatic brain injury unemployment and job loss remains unclear in the particular population of severe traumatic brain injury patients. The present study highlights the post-traumatic brain injury student population require a close follow-up and vocational rehabilitation. The study suggests that return to work post

  7. Concussion and Traumatic Brain Injury

    MedlinePlus

    ... please turn JavaScript on. Feature: Concussion Concussion and Traumatic Brain Injury Past Issues / Summer 2015 Table of Contents Children ... Flutie: "Be on the Safe Side." / Concussion and Traumatic Brain Injury Summer 2015 Issue: Volume 10 Number 2 Page ...

  8. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury

    PubMed Central

    Hay, Jennifer; Johnson, Victoria E.; Smith, Douglas H.; Stewart, William

    2017-01-01

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of non-boxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article. PMID:26772317

  9. Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury Research Informatics Systems

    DTIC Science & Technology

    2016-10-01

    Traumatic Brain Injury Research Informatics Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0564 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...AWARD NUMBER: W81XWH-14-1-0564 TITLE: Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury...Research Informatics Systems PRINCIPAL INVESTIGATOR: Cynthia Harrison-Felix, PhD CONTRACTING ORGANIZATION: Craig Hospital Englewood, CO 80113

  10. Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel

    PubMed Central

    Mac Donald, Christine L.; Johnson, Ann M.; Cooper, Dana; Nelson, Elliot C.; Werner, Nicole J.; Shimony, Joshua S.; Snyder, Abraham Z.; Raichle, Marcus E.; Witherow, John R.; Fang, Raymond; Flaherty, Stephen F.; Brody, David L.

    2011-01-01

    BACKGROUND Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectible intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P = 0.002), and in the right orbitofrontal white matter (P = 0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast

  11. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  12. Traumatic brain injury and delayed sequelae: a review--traumatic brain injury and mild traumatic brain injury (concussion) are precursors to later-onset brain disorders, including early-onset dementia.

    PubMed

    Kiraly, Michael; Kiraly, Stephen J

    2007-11-12

    Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  13. Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury.

    PubMed

    Carroll, Linda J; Cassidy, J David; Holm, Lena; Kraus, Jess; Coronado, Victor G

    2004-02-01

    The WHO Collaborating Centre for Neurotrauma Task Force on Mild Traumatic Brain Injury performed a comprehensive search and critical review of the literature published between 1980 and 2002 to assemble the best evidence on the epidemiology, diagnosis, prognosis and treatment of mild traumatic brain injury. Of 743 relevant studies, 313 were accepted on scientific merit and comprise our best-evidence synthesis. The current literature on mild traumatic brain injury is of variable quality and we report the most common methodological flaws. We make recommendations for avoiding the shortcomings evident in much of the current literature and identify topic areas in urgent need of further research. This includes the need for large, well-designed studies to support evidence-based guidelines for emergency room triage of children with mild traumatic brain injury and to explore more fully the issue of prognosis after mild traumatic brain injury in the elderly population. We also advocate use of standard criteria for defining mild traumatic brain injury and propose a definition.

  14. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.

    PubMed

    Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul

    2013-09-01

    Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.

  15. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  16. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  17. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  18. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  19. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  20. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    PubMed

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue

  1. Substance P Mediates Reduced Pneumonia Rates After Traumatic Brain Injury

    PubMed Central

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D.; Pritts, Timothy A.; Caldwell, Charles C.; Remick, Daniel G.; Lentsch, Alex B.

    2014-01-01

    Objectives Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Design Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Setting Academic medical centers in Cincinnati, OH, and Boston, MA. Patients/Subjects Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8–10 weeks old. Interventions Administration of a substance P receptor antagonist in mice. Measurements and Main Results Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury–associated increases in bacterial clearance and survival. Conclusions The data demonstrate that patients with traumatic

  2. Substance P mediates reduced pneumonia rates after traumatic brain injury.

    PubMed

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D; Pritts, Timothy A; Caldwell, Charles C; Remick, Daniel G; Lentsch, Alex B

    2014-09-01

    Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Academic medical centers in Cincinnati, OH, and Boston, MA. Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8-10 weeks old. Administration of a substance P receptor antagonist in mice. Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury-associated increases in bacterial clearance and survival. The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non-head-injured trauma patients and suggest that the

  3. [Prognosis in pediatric traumatic brain injury. A dynamic cohort study].

    PubMed

    Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma

    2013-01-01

    traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.

  4. Post traumatic Headache and Psychological Health: Mindfulness Training for Mild TraumaticBrain Injury

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-10-1-1021 TITLE: Post-traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury...traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...health, and quality of life of our soldiers. This project addresses multiple FY09 TBI/PH topic areas by validating an evidence-based, mind -body approach

  5. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    PubMed

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Traumatic Brain Injury: Effects on the Endocrine System

    MedlinePlus

    Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...

  7. Chronic neurodegenerative consequences of traumatic brain injury.

    PubMed

    Chauhan, Neelima B

    2014-01-01

    Traumatic brain injury (TBI) is a serious public health concern and a major cause of death and disability worldwide. Each year, an estimated 1.7 million Americans sustain TBI of which ~52,000 people die, ~275,000 people are hospitalized and 1,365,000 people are treated as emergency outpatients. Currently there are ~5.3 million Americans living with TBI. TBI is more of a disease process than of an event that is associated with immediate and long-term sensomotor, psychological and cognitive impairments. TBI is the best known established epigenetic risk factor for later development of neurodegenerative diseases and dementia. People sustaining TBI are ~4 times more likely to develop dementia at a later stage than people without TBI. Single brain injury is linked to later development of symptoms resembling Alzheimer's disease while repetitive brain injuries are linked to later development of chronic traumatic encephalopathy (CTE) and/or Dementia Pugilistica (DP). Furthermore, genetic background of ß-amyloid precursor protein (APP), Apolipoprotein E (ApoE), presenilin (PS) and neprilysin (NEP) genes is associated with exacerbation of neurodegenerative process after TBI. This review encompasses acute effects and chronic neurodegenerative consequences after TBI.

  8. Prehospital Tranexamic Acid Use for Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-2-0090 TITLE: Prehospital Tranexamic Acid Use for Traumatic Brain...2013 - 29 Sep 2014 4. TITLE AND SUBTITLE Prehospital Tranexamic Acid Use for Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...N/A 7. Appendices-N/A Page 7 Early Tranexamic Acid Use for Traumatic Brain Injury DMRDP Funding Opportunity Number: W81XWH-12-CCCJPC

  9. Post-traumatic stress disorder vs traumatic brain injury

    PubMed Central

    Bryant, Richard

    2011-01-01

    Post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI) often coexist because brain injuries are often sustained in traumatic experiences. This review outlines the significant overlap between PTSD and TBI by commencing with a critical outline of the overlapping symptoms and problems of differential diagnosis. The impact of TBI on PTSD is then described, with increasing evidence suggesting that mild TBI can increase risk for PTSD. Several explanations are offered for this enhanced risk. Recent evidence suggests that impairment secondary to mild TBI is largely attributable to stress reactions after TBI, which challenges the long-held belief that postconcussive symptoms are a function of neurological insult This recent evidence is pointing to new directions for treatment of postconcussive symptoms that acknowledge that treating stress factors following TBI may be the optimal means to manage the effects of many TBIs, PMID:22034252

  10. Combat-related headache and traumatic brain injury.

    PubMed

    Waung, Maggie W; Abrams, Gary M

    2012-12-01

    Post-traumatic headache is a commonly described complication of traumatic brain injury. Recent studies highlight differences between headache features of combat veterans who suffered traumatic brain injury compared to civilians. Not surprisingly, there is a higher rate of associated PTSD and sleep disturbances among veterans. Factors of lower socioeconomic status, rank, and multiple head injuries appear to have a similar effect on post-traumatic headache in combat-related traumatic brain injury. Areas of discordance in the literature include the effect of prolonged loss of consciousness and the prevalence of specific headache phenotypes following head trauma. To date, there have been no randomized trials of treatment for post-traumatic headache. This may be related to the variability of headache features and uncertainty of pathophysiologic mechanisms. Given this lack of data, many practitioners follow treatment guidelines for primary headaches. Additionally, because of mounting data linking PTSD to post-traumatic headache in combat veterans, it may be crucial to choose multimodal agents and take a multidisciplinary approach to combat-related headache.

  11. Cognitive Task Demands and Discourse Performance after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Byom, Lindsey; Turkstra, Lyn S.

    2017-01-01

    Background: Social communication problems are common in adults with traumatic brain injury (TBI), particularly problems in spoken discourse. Social communication problems are thought to reflect underlying cognitive impairments. Aims: To measure the contribution of two cognitive processes, executive functioning (EF) and theory of mind (ToM), to the…

  12. Military-related traumatic brain injury and neurodegeneration

    PubMed Central

    McKee, Ann C.; Robinson, Meghan E.

    2014-01-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and

  13. Military-related traumatic brain injury and neurodegeneration.

    PubMed

    McKee, Ann C; Robinson, Meghan E

    2014-06-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and

  14. Brain-derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress.

    PubMed

    Dretsch, Michael N; Williams, Kathy; Emmerich, Tanja; Crynen, Gogce; Ait-Ghezala, Ghania; Chaytow, Helena; Mathura, Venkat; Crawford, Fiona C; Iverson, Grant L

    2016-01-01

    In addition to experiencing traumatic events while deployed in a combat environment, there are other factors that contribute to the development of posttraumatic stress disorder (PTSD) in military service members. This study explored the contribution of genetics, childhood environment, prior trauma, psychological, cognitive, and deployment factors to the development of traumatic stress following deployment. Both pre- and postdeployment data on 231 of 458 soldiers were analyzed. Postdeployment assessments occurred within 30 days from returning stateside and included a battery of psychological health, medical history, and demographic questionnaires; neurocognitive tests; and blood serum for the D2 dopamine receptor (DRD2), apolipoprotein E (APOE), and brain-derived neurotropic factor (BDNF) genes. Soldiers who screened positive for traumatic stress at postdeployment had significantly higher scores in depression (d = 1.91), anxiety (d = 1.61), poor sleep quality (d = 0.92), postconcussion symptoms (d = 2.21), alcohol use (d = 0.63), traumatic life events (d = 0.42), and combat exposure (d = 0.91). BDNF Val66 Met genotype was significantly associated with risk for sustaining a mild traumatic brain injury (mTBI) and screening positive for traumatic stress. Predeployment traumatic stress, greater combat exposure and sustaining an mTBI while deployed, and the BDNF Met/Met genotype accounted for 22% of the variance of postdeployment PTSD scores (R (2)  = 0.22, P < 0.001). However, predeployment traumatic stress, alone, accounted for 17% of the postdeployment PTSD scores. These findings suggest predeployment traumatic stress, genetic, and environmental factors have unique contributions to the development of combat-related traumatic stress in military service members.

  15. Neurotherapy of Traumatic Brain Injury/Post-Traumatic Stress Symptoms in Vietnam Veterans.

    PubMed

    Nelson, David V; Esty, Mary Lee

    2015-10-01

    Previous report suggested the beneficial effects of an adaptation of the Flexyx Neurotherapy System (FNS) for the amelioration of mixed traumatic brain injury/post-traumatic stress symptoms in veterans of the Afghanistan and Iraq wars. As a novel variant of electroencephalograph biofeedback, FNS falls within the bioenergy domain of complementary and alternative medicine. Rather than learning voluntary control over the production/inhibition of brain wave patterns, FNS involves offsetting stimulation of brain wave activity by means of an external energy source, specifically, the conduction of electromagnetic energy stimulation via the connecting electroencephalograph cables. Essentially, these procedures subliminally induce strategic distortion of ongoing brain wave activity to presumably facilitate resetting of more adaptive patterns of activity. Reported herein are two cases of Vietnam veterans with mixed traumatic brain injury/post-traumatic stress symptoms, each treated with FNS for 25 sessions. Comparisons of pre- and post-treatment questionnaire assessments revealed notable decreases for all symptoms, suggesting improvements across the broad domains of cognition, pain, sleep, fatigue, and mood/emotion, including post-traumatic stress symptoms, as well as for overall activity levels. Findings suggest FNS treatment may be of potential benefit for the partial amelioration of symptoms, even in some individuals for whom symptoms have been present for decades. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  16. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  17. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  18. Lateral automobile impacts and the risk of traumatic brain injury.

    PubMed

    Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A

    2004-08-01

    We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year

  19. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  20. Transforming Research and Clinical Knowledge in Traumatic Brain Injury

    DTIC Science & Technology

    2016-12-01

    Szuflita, N., Orman, J., and Schwab, K. (2010). Advancing integrated research in psychological health and traumatic brain injury: common data ele- ments...Szuflita N, Orman J, et al. Advancing Integrated Research in Psychological Health and Traumatic Brain Injury: Common Data Elements. Arch Phys Med Rehabil...R, Gleason T, et al. Advancing integrated research in psychological health and traumatic brain injury: common data elements. Arch Phys Med Rehabil

  1. What Are Common Traumatic Brain Injury (TBI) Symptoms?

    MedlinePlus

    ... NICHD Research Information Find a Study More Information Traumatic Brain Injury (TBI) Condition Information NICHD Research Information Find a ... Care Providers Home Health A to Z List Traumatic Brain Injury (TBI) Condition Information What are common symptoms? Share ...

  2. Traumatic Alterations in Consciousness: Traumatic Brain Injury

    PubMed Central

    Blyth, Brian J.; Bazarian, Jeffrey J.

    2010-01-01

    Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244

  3. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  4. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. © 2016 International Society for Neurochemistry.

  5. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases.

    PubMed

    Cruz-Haces, Marcela; Tang, Jonathan; Acosta, Glen; Fernandez, Joseph; Shi, Riyi

    2017-01-01

    Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.

  6. Tics after traumatic brain injury.

    PubMed

    Ranjan, Nishant; Nair, Krishnan Padmakumari Sivaraman; Romanoski, Charles; Singh, Rajiv; Venketswara, Guruprasad

    2011-01-01

    Tics are involuntary non-rhythmic, stereotyped muscle contractions which can be suppressed temporarily. Tics usually start during childhood as part of Tourette syndrome. Adult onset tics are infrequent. This study reports on an adult man who developed tics 1 year after severe traumatic brain injury (TBI). Case report and review of literature. A 19-year-old man sustained TBI following a road traffic accident. He did not have tics or features of obsessive compulsive disorder before the brain injury. A year after injury he developed motor and vocal tics. Magnetic resonance image of the brain showed lesions in the basal ganglia. A search of databases Medline, EMBASE and CINHAL found only four publications on tics in adults with TBI. None of these reported cases had lesions in the basal ganglia. Tics are a rare complication of TBI. People with early onset post-traumatic tics may have had a previously unrecognized, mild tic disorder or a genetic predisposition for tics, which was unmasked by the TBI. In contrast, late post-traumatic tics could be due to delayed effects of injury on neural circuits connecting the frontal cortex and basal ganglia.

  7. Clinical trials in mild traumatic brain injury.

    PubMed

    Hoffer, Michael E; Szczupak, Mikhaylo; Balaban, Carey

    2016-10-15

    Traumatic brain injury is an increasingly prevalent injury seen in both civilian and military populations. Regardless of the mechanisms of injury, the most common sub-type of injury continues to be mild traumatic brain injury. Within the last decade, there has been tremendous growth in the literature regarding this disease entity. To describe the obstacles necessary to overcome in performing a rigorous and sound clinical research study investigating mild traumatic brain injury. This examination begins by a consideration of changing standards for good faith open and total reporting of any and all conflicts of interest or commitment. This issue is particularly critical in mTBI research. We next examine obstacles that include but are not limited to diagnostic criteria, inclusion/exclusion criteria, source of injury, previous history of injury, presence of comorbid conditions and proper informed consent of participants. Frequently, multi-center studies are necessary for adequate subject accrual with the added challenges of site coordination, data core management and site specific study conduct. We propose a total reversal to the traditional translational research approach where clinical studies drive new concepts for future basic science studies. There have been few mild traumatic brain injury clinical trials in the literature with treatments/interventions that have been able to overcome many of these described obstacles. We look forward to the results of current and ongoing clinical mild traumatic brain injury studies providing the tools necessary for the next generation of basic science projects. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    PubMed Central

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  9. Traumatic stress: effects on the brain

    PubMed Central

    Bremner, J. Douglas

    2006-01-01

    Brain areas implicated in the stress response include the amygdala, hippocampus, and prefrontal cortex. Traumatic stress can be associated with lasting changes in these brain areas. Traumatic stress is associated with increased cortisol and norepinephrine responses to subsequent stressors. Antidepressants have effets on the hippocampus that counteract the effects of stress. Findings from animal studies have been extended to patients with post-traumatic stress disorder (PTSD) showing smaller hippocampal and anterior cingulate volumes, increased amygdala function, and decreased medial prefrontal/anterior cingulate function. In addition, patients with PTSD show increased cortisol and norepinephrine responses to stress. Treatments that are efficacious for PTSD show a promotion of neurogenesis in animal studies, as well as promotion of memory and increased hippocampal volume in PTSD. PMID:17290802

  10. Traumatic Brain Injury Rehabilitation Comparative Effectiveness Research: Introduction to the Traumatic Brain Injury-Practice Based Evidence Archives Supplement.

    PubMed

    Horn, Susan D; Corrigan, John D; Dijkers, Marcel P

    2015-08-01

    This supplement of the Archives of Physical Medicine and Rehabilitation is devoted to the Traumatic Brain Injury-Practice Based Evidence study, the first practice-based evidence study, to our knowledge, of traumatic brain injury rehabilitation. The purpose of this preface is to place this study in the broader context of comparative effectiveness research and introduce the articles in the supplement. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Levetiracetam-induced neutropenia following traumatic brain injury.

    PubMed

    Bunnell, Kristen; Pucci, Francesco

    2015-01-01

    Levetiracetam is being increasingly utilized for post-traumatic brain injury seizure prophylaxis, in part because of its more favourable adverse effect profile compared to other anti-epileptics. This report highlights an unusual, clinically significant adverse drug reaction attributed to levetiracetam use in a patient with blunt traumatic brain injury. This study describes a case of isolated neutropenia associated with levetiracetam in a 52-year-old man with traumatic brain injury. The patient developed neutropenia on day 3 of therapy with levetiracetam, with an absolute neutrophil count nadir of 200. There were no other medications that may have been implicated in the development of this haematological toxicity. Neutropenia rapidly resolved upon cessation of levetiracetam therapy. Clinicians should be aware of potentially serious adverse reactions associated with levetiracetam in patients with neurological injury.

  12. Traumatic Brain Injury (TBI) in Kids

    MedlinePlus

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  13. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  14. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  15. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury

    PubMed Central

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Objectives: Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player’s life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users’ messages often reflects the prevailing culture related to a particular event or health issue. Methods: We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter® tweets related to traumatic brain injuries in sports collected during June and July 2013. Results: We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. Conclusion: While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies. PMID:28890783

  16. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    PubMed

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  17. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2014-11-01

    Award Number: W81XWH-11-2-0011 TITLE: Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Oct 2014 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...fluid percussion, traumatic brain injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids , microglia and 16

  18. Explaining Pragmatic Performance in Traumatic Brain Injury: A Process Perspective on Communicative Errors

    ERIC Educational Resources Information Center

    Bosco, Francesca M.; Angeleri, Romina; Sacco, Katiuscia; Bara, Bruno G.

    2015-01-01

    Background: The purpose of this study is to investigate the pragmatic abilities of individuals with traumatic brain injury (TBI). Several studies in the literature have previously reported communicative deficits in individuals with TBI, however such research has focused principally on communicative deficits in general, without providing an…

  19. Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes

    PubMed Central

    2014-01-01

    Background Lysophosphatidic acid (LPA) is a bioactive phospholipid with a potentially causative role in neurotrauma. Blocking LPA signaling with the LPA-directed monoclonal antibody B3/Lpathomab is neuroprotective in the mouse spinal cord following injury. Findings Here we investigated the use of this agent in treatment of secondary brain damage consequent to traumatic brain injury (TBI). LPA was elevated in cerebrospinal fluid (CSF) of patients with TBI compared to controls. LPA levels were also elevated in a mouse controlled cortical impact (CCI) model of TBI and B3 significantly reduced lesion volume by both histological and MRI assessments. Diminished tissue damage coincided with lower brain IL-6 levels and improvement in functional outcomes. Conclusions This study presents a novel therapeutic approach for the treatment of TBI by blocking extracellular LPA signaling to minimize secondary brain damage and neurological dysfunction. PMID:24576351

  20. [Attentional impairment after traumatic brain injury: assessment and rehabilitation].

    PubMed

    Ríos-Lago, M; Muñoz-Céspedes, J M; Paúl-Lapedriza, N

    Attention disorders are a major problem after traumatic brain injury underlying deficits in other cognitive functions and in everyday activities, hindering the rehabilitation process and the possibility of return to work. Functional neuroimaging and neuropsychological assessment have depicted theoretical models considering attention as a complex and non-unitary process. Although there are conceptual difficulties, it seems possible to establish a theoretical background to better define attentional impairments and to guide the rehabilitation process. The aim of the present study is to review some of the most important pieces involved in the assessment and rehabilitation of attentional impairments. We also propose an appropriate model for the design of individualized rehabilitation programs. Lastly, different approaches for the rehabilitation are reviewed. Neuropsychological assessment should provide valuable strategies to better design the cognitive rehabilitation programs. It is necessary to establish a link between basic and applied neuropsychology, in order to optimize the treatments for traumatic brain injury patients. It is also emphasized that well-defined cognitive targets and skills are required, given that an unspecific stimulation of cognitive processes (pseudorehabilitation) has been shown to be unsuccessful.

  1. [Stress adaptive effects after traumatic brain injury].

    PubMed

    Teryaeva, N B; Moshkin, A V

    Neuroendocrine dysfunction, in particular impaired synthesis of anterior pituitary hormones, is a common complication of traumatic brain injury. Deficiency of tropic pituitary hormones entails a hypofunction of the related peripheral endocrine glands and can be accompanied by persistent endocrine and metabolic disorders. In particular, the hypophyseal mechanisms are the key ones in implementation of most stress effects. Adequate implementation of these mechanisms largely determines a favorable outcome in the acute stage of disease. Traumatic brain injury (as well as any significant injury) initiates a stress response that can not develop in full in the case of pituitary gland failure. It is logical to suppose that the course of the acute phase of stress in the presence of hypopituitarism is different to a certain extent from the typical course, which inevitably affects certain adaptation elements. In this review, we analyzed the adaptive effects of stress after traumatic brain injury.

  2. Plasma copeptin level predicts acute traumatic coagulopathy and progressive hemorrhagic injury after traumatic brain injury.

    PubMed

    Yang, Ding-Bo; Yu, Wen-Hua; Dong, Xiao-Qiao; Du, Quan; Shen, Yong-Feng; Zhang, Zu-Yong; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Wang, Hao; Jiang, Li; Du, Yuan-Feng

    2014-08-01

    Higher plasma copeptin levels correlate with poor clinical outcomes after traumatic brain injury. Nevertheless, their links with acute traumatic coagulopathy and progressive hemorrhagic injury are unknown. Therefore, we aimed to investigate the relationship between plasma copeptin levels, acute traumatic coagulopathy and progressive hemorrhagic injury in patients with severe traumatic brain injury. We prospectively studied 100 consecutive patients presenting within 6h from head trauma. Progressive hemorrhagic injury was present when the follow-up computerized tomography scan reported any increase in size or number of the hemorrhagic lesion, including newly developed ones. Acute traumatic coagulopathy was defined as an activated partial thromboplastic time greater than 40s and/or international normalized ratio greater than 1.2 and/or a platelet count less than 120×10(9)/L. We measured plasma copeptin levels on admission using an enzyme-linked immunosorbent assay in a blinded fashion. In multivariate logistic regression analysis, plasma copeptin level emerged as an independent predictor of progressive hemorrhagic injury and acute traumatic coagulopathy. Using receiver operating characteristic curves, we calculated areas under the curve for progressive hemorrhagic injury and acute traumatic coagulopathy. The predictive performance of copeptin was similar to that of Glasgow Coma Scale score. However, copeptin did not obviously improve the predictive value of Glasgow Coma Scale score. Thus, copeptin may help in the prediction of progressive hemorrhagic injury and acute traumatic coagulopathy after traumatic brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Traumatic Brain Injury - Multiple Languages

    MedlinePlus

    ... FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Traumatic Brain Injury URL of this page: https://medlineplus.gov/ ...

  4. Traumatic Brain Injury in the United States: An Epidemiologic Overview

    DTIC Science & Technology

    2009-01-01

    discussed. Mt Sinai J Med 76:105–110, 2009.  2009 Mount Sinai School of Medicine Key Words: epidemiology, head injury, traumatic brain injury. A...traumatic brain injury in the civilian population of the United States. J Head Trauma Rehabil 2008; 23: 394–400. 3. Sosin DM, Sniezek JE, Thurman DJ...consciousness, a practical scale. Lancet 1974; 2: 81–84. 5. Kay T, Harrington DE, Adams R, et al. Definition of mild traumatic brain injury. J Head

  5. The possibility of application of spiral brain computed tomography to traumatic brain injury.

    PubMed

    Lim, Daesung; Lee, Soo Hoon; Kim, Dong Hoon; Choi, Dae Seub; Hong, Hoon Pyo; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kang, Tae-Sin

    2014-09-01

    The spiral computed tomography (CT) with the advantage of low radiation dose, shorter test time required, and its multidimensional reconstruction is accepted as an essential diagnostic method for evaluating the degree of injury in severe trauma patients and establishment of therapeutic plans. However, conventional sequential CT is preferred for the evaluation of traumatic brain injury (TBI) over spiral CT due to image noise and artifact. We aimed to compare the diagnostic power of spiral facial CT for TBI to that of conventional sequential brain CT. We evaluated retrospectively the images of 315 traumatized patients who underwent both brain CT and facial CT simultaneously. The hemorrhagic traumatic brain injuries such as epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, and contusional hemorrhage were evaluated in both images. Statistics were performed using Cohen's κ to compare the agreement between 2 imaging modalities and sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT to conventional sequential brain CT. Almost perfect agreement was noted regarding hemorrhagic traumatic brain injuries between spiral facial CT and conventional sequential brain CT (Cohen's κ coefficient, 0.912). To conventional sequential brain CT, sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT were 92.2%, 98.1%, 95.9%, and 96.3%, respectively. In TBI, the diagnostic power of spiral facial CT was equal to that of conventional sequential brain CT. Therefore, expanded spiral facial CT covering whole frontal lobe can be applied to evaluate TBI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. [Traumatic brain injuries--forensic and expertise aspects].

    PubMed

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  7. Caring for Patients with traumatic brain injury: a survey of nurses' perceptions.

    PubMed

    Oyesanya, Tolu O; Brown, Roger L; Turkstra, Lyn S

    2017-06-01

    The purpose of this study was to determine nurses' perceptions about caring for patients with traumatic brain injury. Annually, it is estimated that over 10 million people sustain a traumatic brain injury around the world. Patients with traumatic brain injury and their families are often concerned with expectations about recovery and seek information from nurses. Nurses' perceptions of care might influence information provided to patients and families, particularly if inaccurate knowledge and perceptions are held. Thus, nurses must be knowledgeable about care of these patients. A cross-sectional survey, the Perceptions of Brain Injury Survey (PBIS), was completed electronically by 513 nurses between October and December 2014. Data were analysed with structural equation modelling, factor analysis, and pairwise comparisons. Using latent class analysis, authors were able to divide nurses into three homogeneous sub-groups based on perceived knowledge: low, moderate and high. Findings showed that nurses who care for patients with traumatic brain injury the most have the highest perceived confidence but the lowest perceived knowledge. Nurses also had significant variations in training. As there is limited literature on nurses' perceptions of caring for patients with traumatic brain injury, these findings have implications for training and educating nurses, including direction for development of nursing educational interventions. As the incidence of traumatic brain injury is growing, it is imperative that nurses be knowledgeable about care of patients with these injuries. The traumatic brain injury PBIS can be used to determine inaccurate perceptions about caring for patients with traumatic brain injury before educating and training nurses. © 2016 John Wiley & Sons Ltd.

  8. Hypersomnia Following Traumatic Brain Injury

    PubMed Central

    Watson, Nathaniel F; Dikmen, Sureyya; Machamer, Joan; Doherty, Michael; Temkin, Nancy

    2007-01-01

    Study Objectives: To evaluate the prevalence and natural history of sleepiness following traumatic brain injury. Methods: This prospective cohort study used the Sickness Impact Profile to evaluate sleepiness in 514 consecutive subjects with traumatic brain injury (TBI), 132 non-cranial trauma controls, and 102 trauma-free controls 1 month and 1 year after injury. Results: Fifty-five percent of TBI subjects, 41% of non-cranial trauma controls, and 3% of trauma-free controls endorsed 1 or more sleepiness items 1 month following injury (p < .001). One year following injury, 27% of TBI subjects, 23% of non-cranial trauma controls, and 1% of trauma-free controls endorsed 1 or more sleepiness items (p < .001). Patients with TBI were sleepier than non-cranial trauma controls at 1 month (p < .02) but not 1 year after injury. Brain-injured subjects were divided into injury-severity groups based on time to follow commands (TFC). At 1 month, the non-cranial trauma controls were less sleepy than the 1- to 6-day (p < .05), 7- to 13-day (p < .01), and 14-day or longer (p < .01) TFC groups. In addition, the ≤ 24-hour group was less sleepy then the 7- to 13-day and 14-day or longer groups (each p < .05). At 1 year, the non-cranial trauma control group (p < .05) and the ≤ 24-hour TFC group (p < .01) were less sleepy than the 14-day or longer TFC group. Sleepiness improved in 84% to 100% of subjects in the TBI TFC groups, as compared with 78% of the non-cranial trauma control group (p < .01). Conclusions: Sleepiness is common following traumatic injury, particularly TBI, with more severe injuries resulting in greater sleepiness. Sleepiness improves in many patients, particularly those with TBI. However, about a quarter of TBI subjects and non-cranial trauma control subjects remained sleepy 1 year after injury. Citation: Watson NF; Dikmen S; Machamer J et al. Hypersomnia following traumatic brain injury. J Clin Sleep Med 2007;3(4):363-368. PMID:17694724

  9. Exploratory Application of Neuropharmacometabolomics in Severe Childhood Traumatic Brain Injury.

    PubMed

    Hagos, Fanuel T; Empey, Philip E; Wang, Pengcheng; Ma, Xiaochao; Poloyac, Samuel M; Bayır, Hülya; Kochanek, Patrick M; Bell, Michael J; Clark, Robert S B

    2018-05-07

    To employ metabolomics-based pathway and network analyses to evaluate the cerebrospinal fluid metabolome after severe traumatic brain injury in children and the capacity of combination therapy with probenecid and N-acetylcysteine to impact glutathione-related and other pathways and networks, relative to placebo treatment. Analysis of cerebrospinal fluid obtained from children enrolled in an Institutional Review Board-approved, randomized, placebo-controlled trial of a combination of probenecid and N-acetylcysteine after severe traumatic brain injury (Trial Registration NCT01322009). Thirty-six-bed PICU in a university-affiliated children's hospital. Twelve children 2-18 years old after severe traumatic brain injury and five age-matched control subjects. Probenecid (25 mg/kg) and N-acetylcysteine (140 mg/kg) or placebo administered via naso/orogastric tube. The cerebrospinal fluid metabolome was analyzed in samples from traumatic brain injury patients 24 hours after the first dose of drugs or placebo and control subjects. Feature detection, retention time, alignment, annotation, and principal component analysis and statistical analysis were conducted using XCMS-online. The software "mummichog" was used for pathway and network analyses. A two-component principal component analysis revealed clustering of each of the groups, with distinct metabolomics signatures. Several novel pathways with plausible mechanistic involvement in traumatic brain injury were identified. A combination of metabolomics and pathway/network analyses showed that seven glutathione-centered pathways and two networks were enriched in the cerebrospinal fluid of traumatic brain injury patients treated with probenecid and N-acetylcysteine versus placebo-treated patients. Several additional pathways/networks consisting of components that are known substrates of probenecid-inhibitable transporters were also identified, providing additional mechanistic validation. This proof

  10. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    PubMed

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  11. Emerging treatments for traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2009-01-01

    Background This review summarizes promising approaches for the treatment of traumatic brain injury (TBI), which are either in preclinical or clinical trials. Objective The pathophysiology underlying neurological deficits after TBI is described. An overview of select therapies for TBI with neuroprotective and neurorestorative effects is presented. Methods A literature review of pre-clinical TBI studies and clinical TBI trials related to neuroprotective and neurorestorative therapeutic approaches is provided. Results/conclusion Nearly all phase II/III clinical trials in neuroprotection have failed to show any consistent improvement in outcome for TBI patients. The next decade will witness an increasing number of clinical trials which seek to translate preclinical research discoveries to the clinic. Promising drug- or cell-based therapeutic approaches include erythropoietin and its carbamylated form, statins, bone marrow stromal cells, stem cells singularly or in combination or with biomaterials to reduce brain injury via neuroprotection and promote brain remodeling via angiogenesis, neurogenesis, and synaptogenesis with a final goal to improve functional outcome of TBI patients. In addition, enriched environment and voluntary physical exercise show promise in promoting functional outcome after TBI, and should be evaluated alone or in combination with other treatments as therapeutic approaches for TBI. PMID:19249984

  12. Synergistic Mechanisms Between Traumatic Brain Injury and Migraine

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-15-1-0209 TITLE: Synergistic Mechanisms Between Traumatic Brain Injury and Migraine PRINCIPAL INVESTIGATOR: Amynah Pradhan...SUBTITLE Synergistic Mechanisms Between Traumatic Brain Injury and Migraine 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0209 5c. PROGRAM ELEMENT...and can persist for months after the initial trauma. The most severe and long lasting posttraumatic headaches are usually classified as migraine ; and

  13. Acute pathophysiological processes after ischaemic and traumatic brain injury.

    PubMed

    Kunz, Alexander; Dirnagl, Ulrich; Mergenthaler, Philipp

    2010-12-01

    Ischaemic stroke and brain trauma are among the leading causes of mortality and long-term disability in the western world. Enormous endeavours have been made to elucidate the complex pathophysiology of ischaemic and traumatic brain injury with the intention of developing new therapeutic strategies for patients suffering from these devastating diseases. This article reviews the current knowledge on cascades that are activated after ischaemic and traumatic brain injury and that lead to progression of tissue damage. Main attention will be on pathophysiological events initiated after ischaemic stroke including excitotoxicity, oxidative/nitrosative stress, peri-infarct depolarizations, apoptosis and inflammation. Additionally, specific pathophysiological aspects after traumatic brain injury will be discussed along with their similarities and differences to ischaemic brain injury. This article provides prerequisites for understanding the therapeutic strategies for stroke and trauma patients which are addressed in other articles of this issue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Anti-epileptic drugs in pediatric traumatic brain injury.

    PubMed

    Tanaka, Tomoko; Litofsky, N Scott

    2016-10-01

    Pediatric post-traumatic epilepsy incidence varies depending on reporting mechanism and injury severity; anti-epileptic drug (AEDs) use also varies with lack of quality evidence-based data. Adverse AED effects are not negligible; some may negatively affect functional outcome. This review focuses on clarifying available data. This review discusses seizures associated with traumatic brain injury in children, including seizure incidence, relationship to severity of injury, potential detrimental effects of seizures, potential benefits of AED, adverse effects of AED, new developments in preventing epileptogenesis, and suggested recommendations for patient management. English language papers were identified from PubMed using search terms including but not excluding the following: adverse drug effects, anti-epileptic drugs, children, electroencephalogram, epilepsy, epileptogenesis, head injury, levetiracetam, pediatrics, phenytoin, post-traumatic epilepsy, prevention, prophylaxis, seizures, and traumatic brain injury. Expert commentary: Identification of high-risk patients for post-traumatic seizures is a key goal. Levetiracetam may prevent epileptogenesis, as may other developments.

  15. The Impact of Traumatic Brain Injury on the Aging Brain.

    PubMed

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  16. Defense.gov Special Report: Traumatic Brain Injury

    Science.gov Websites

    Excellence TBI Resources Brainline Military The Michael E. DeBakey VA Medical Center Congressionally Directed Medical Research Program NIH: National Institute of Neurological Disorders NIH: Traumatic Brain Injury Research CDC: Give Brain Injury a Voice Center for Medical Excellence for Multimedia Brainline.org - Brain

  17. Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study.

    PubMed Central

    Jansen, H M; van der Naalt, J; van Zomeren, A H; Paans, A M; Veenma-van der Duin, L; Hew, J M; Pruim, J; Minderhoud, J M; Korf, J

    1996-01-01

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Co-PET) as a calcium tracer enables imaging of affected tissue in traumatic brain injury. The aim was to determine whether additional information can be gained by Co-PET in the diagnosis of moderate traumatic brain injury and to assess any prognostic value of Co-PET. Five patients with recent moderately severe traumatic brain injury were studied. CT was performed on the day of admission, EEG within one week, and MRI and Co-PET within four weeks of injury. Clinical assessment included neurological examination, GCS, neuropsychological testing, and Glasgow outcome scale (GOS) after one year. Co-PET showed focal uptake that extended beyond the morphological abnormalities shown by MRI and CT, in brain regions that were actually diagnosed with EEG. Thus Co-PET is potentially useful for diagnostic localisation of both structural and functional abnormalities in moderate traumatic brain injury. Images PMID:8708661

  18. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  19. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology

    PubMed Central

    Ghajari, Mazdak; Hellyer, Peter J; Sharp, David J

    2017-01-01

    Abstract Traumatic brain injury can lead to the neurodegenerative disease chronic traumatic encephalopathy. This condition has a clear neuropathological definition but the relationship between the initial head impact and the pattern of progressive brain pathology is poorly understood. We test the hypothesis that mechanical strain and strain rate are greatest in sulci, where neuropathology is prominently seen in chronic traumatic encephalopathy, and whether human neuroimaging observations converge with computational predictions. Three distinct types of injury were simulated. Chronic traumatic encephalopathy can occur after sporting injuries, so we studied a helmet-to-helmet impact in an American football game. In addition, we investigated an occipital head impact due to a fall from ground level and a helmeted head impact in a road traffic accident involving a motorcycle and a car. A high fidelity 3D computational model of brain injury biomechanics was developed and the contours of strain and strain rate at the grey matter–white matter boundary were mapped. Diffusion tensor imaging abnormalities in a cohort of 97 traumatic brain injury patients were also mapped at the grey matter–white matter boundary. Fifty-one healthy subjects served as controls. The computational models predicted large strain most prominent at the depths of sulci. The volume fraction of sulcal regions exceeding brain injury thresholds were significantly larger than that of gyral regions. Strain and strain rates were highest for the road traffic accident and sporting injury. Strain was greater in the sulci for all injury types, but strain rate was greater only in the road traffic and sporting injuries. Diffusion tensor imaging showed converging imaging abnormalities within sulcal regions with a significant decrease in fractional anisotropy in the patient group compared to controls within the sulci. Our results show that brain tissue deformation induced by head impact loading is greatest in

  20. [Effect of aminothiol anthihypoxants on hydration and peroxidation processes in traumatic brain injury].

    PubMed

    Novikov, V E; Ponamareva, N S

    2007-01-01

    The hydration (content of total, bound, and free water) and the activity of lipid peroxidation (LPO) processes in the brain have been studied in rats on the background of traumatic brain injury (TBI) dynamics. It is established that aminothiol-based anthihypoxants such as bemithyl and amthizol in a dose of 25 mg/kg alleviate changes induced by TBI. In particular, the drugs decrease the content of total and free water, increase the level of bound water, and inhibit the LPO intensity in the brain. The effect of drugs is more pronounced on the 4th and 7th day after TBI model induction.

  1. High Intensity Focused Ultrasound: A Novel Model of Mild Traumatic Brain Injury

    DTIC Science & Technology

    2013-11-07

    RE, Melo B, Christensen B, Ngo L-A, Monette G, Bradbury C. 2008. Measuring premorbid IQ in traumatic brain injury: An examination of the validity of...High Intensity Focused Ultrasound: A Novel Model of Mild Traumatic Brain Injury by Brendan J. Finton Thesis...Mild Traumatic Brain Injury" is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. Brendan J

  2. Disconnection of network hubs and cognitive impairment after traumatic brain injury.

    PubMed

    Fagerholm, Erik D; Hellyer, Peter J; Scott, Gregory; Leech, Robert; Sharp, David J

    2015-06-01

    Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These

  3. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  4. Discriminating military and civilian traumatic brain injuries.

    PubMed

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Experiences of giving and receiving care in traumatic brain injury: An integrative review.

    PubMed

    Kivunja, Stephen; River, Jo; Gullick, Janice

    2018-04-01

    To synthesise the literature on the experiences of giving or receiving care for traumatic brain injury for people with traumatic brain injury, their family members and nurses in hospital and rehabilitation settings. Traumatic brain injury represents a major source of physical, social and economic burden. In the hospital setting, people with traumatic brain injury feel excluded from decision-making processes and perceive impatient care. Families describe inadequate information and support for psychological distress. Nurses find the care of people with traumatic brain injury challenging particularly when experiencing heavy workloads. To date, a contemporary synthesis of the literature on people with traumatic brain injury, family and nurse experiences of traumatic brain injury care has not been conducted. Integrative literature review. A systematic search strategy guided by the PRISMA statement was conducted in CINAHL, PubMed, Proquest, EMBASE and Google Scholar. Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) integrative review framework guided data reduction, data display, data comparison and conclusion verification. Across the three participant categories (people with traumatic brain injury/family members/nurses) and sixteen subcategories, six cross-cutting themes emerged: seeking personhood, navigating challenging behaviour, valuing skills and competence, struggling with changed family responsibilities, maintaining productive partnerships and reflecting on workplace culture. Traumatic brain injury creates changes in physical, cognitive and emotional function that challenge known ways of being in the world for people. This alters relationship dynamics within families and requires a specific skill set among nurses. Recommendations include the following: (i) formal inclusion of people with traumatic brain injury and families in care planning, (ii) routine risk screening for falls and challenging behaviour to ensure that controls are based on

  6. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    PubMed

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    PubMed

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  8. Traumatic Brain Injury (TBI) Studies at Grady Memorial Hospital

    DTIC Science & Technology

    2010-09-01

    communication among clinicians and along the care continuum during the treatment of a patient’s emergent conditions. Ancillary reports are distributed...data necessary to improve the treatment of traumatic brain injury and compare treatment and outcomes by injury type. Specific Aims: 1. Develop and...Our research will utilize both of these tests to assess patients during treatment in the Emergency Department at GMH for mild traumatic brain

  9. 77 FR 13578 - Disability and Rehabilitation Research Project; Traumatic Brain Injury Model Systems Centers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... DEPARTMENT OF EDUCATION Disability and Rehabilitation Research Project; Traumatic Brain Injury... Rehabilitation Research Project--Traumatic Brain Injury Model Systems Centers. CFDA Number: 84.133A-5. SUMMARY... for Disability and Rehabilitation Research Projects (DRRPs) to serve as Traumatic Brain Injury Model...

  10. A review of the International Brain Research Foundation novel approach to mild traumatic brain injury presented at the International Conference on Behavioral Health and Traumatic Brain Injury.

    PubMed

    Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A

    2010-09-01

    "The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.

  11. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2012-11-01

    DATES COVERED 4 October 2011- 3 October 2012 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a...interventions aimed at modulation of the endocannabinoid (EC) system targeting degradation of 20arachidonoyl glycerlol (2- AG) and N-arachidonoyl...percussion, traumatic brain injury, blood brain barrier, neuroinflammination, neurological dysfunction, endocannabinoids . 16. SECURITY CLASSIFICATION

  12. Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel

    DTIC Science & Technology

    2011-06-02

    hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging ( DTI ), an advanced form of magnetic... DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mecha- nism of injury (e.g...other injuries but no clinical diagnosis of traumatic brain injury. Results Abnormalities revealed on DTI were consistent with traumatic axonal injury in

  13. "In my before life": relationships, coping and post-traumatic growth in adolescent survivors of a traumatic brain injury.

    PubMed

    Di Battista, Ashley; Godfrey, Celia; Soo, Cheryl; Catroppa, Cathy; Anderson, Vicki

    2014-11-01

    Explore the individual, adolescent phenomeno-logy of quality of life after traumatic brain injury. Adolescent survivors of traumatic brain injury. Qualitative interviews with 10 adolescents, mean age at assessment 17.09 years (SD 1.81). Mean time since injury 4.62 years (SD 2.89). Data were analysed using a primarily interpretative phenomenological analysis approach. Two major findings: (1) perceived quality of life was not automatically impacted by a traumatic brain injury, but when it was, the directionality of impact (positive, negative) varied depending on the life-domain; (2) changes in ability post-traumatic brain injury were attributed to the injury (more often cognitive and physical changes) or to a sense of normal maturation processes (72% and 28%, respectively). Attribution processing permeated themes of personal and social discrepancies, which also yielded themes of: altered family and relationships, roles, responsibilities, independence, coping and post-traumatic growth. All participants reported a happy life at the time of interview. The adolescents' appraisal of their identity from pre- to post-injury life was related to their current sense of well-being. Most notably was the sense of balance; participants addressed the negative and positive consequences of brain injury to qualify their sense of wellbeing.

  14. Optical imaging of cell death in traumatic brain injury using a heat shock protein-90 alkylator

    PubMed Central

    Xie, B-W; Park, D; Van Beek, E R; Blankevoort, V; Orabi, Y; Que, I; Kaijzel, E L; Chan, A; Hogg, P J; Löwik, C W G M

    2013-01-01

    Traumatic brain injury is a major public health concern and is characterised by both apoptotic and necrotic cell death in the lesion. Anatomical imaging is usually used to assess traumatic brain injuries and there is a need for imaging modalities that provide complementary cellular information. We sought to non-invasively image cell death in a mouse model of traumatic brain injury using a near-infrared fluorescent conjugate of a synthetic heat shock protein-90 alkylator, 4-(N-(S-glutathionylacetyl) amino) phenylarsonous acid (GSAO). GSAO labels both apoptotic and necrotic cells coincident with loss of plasma membrane integrity. The optical GSAO specifically labelled apoptotic and necrotic cells in culture and did not accumulate in healthy organs or tissues in the living mouse body. The conjugate is a very effective imager of cell death in brain lesions. The optical GSAO was detected by fluorescence intensity and GSAO bound to dying/dead cells was detected from prolongation of the fluorescence lifetime. An optimal signal-to-background ratio was achieved as early as 3 h after injection of the probe and the signal intensity positively correlated with both lesion size and probe concentration. This optical GSAO offers a convenient and robust means to non-invasively image apoptotic and necrotic cell death in brain and other lesions. PMID:23348587

  15. Central diabetes insipidus in pediatric severe traumatic brain injury.

    PubMed

    Alharfi, Ibrahim M; Stewart, Tanya Charyk; Foster, Jennifer; Morrison, Gavin C; Fraser, Douglas D

    2013-02-01

    To determine the occurrence rate of central diabetes insipidus in pediatric patients with severe traumatic brain injury and to describe the clinical, injury, biochemical, imaging, and intervention variables associated with mortality. Retrospective chart and imaging review. Children's Hospital, level 1 trauma center. Severely injured (Injury Severity Score ≥ 12) pediatric trauma patients (>1 month and <18 yr) with severe traumatic brain injury (presedation Glasgow Coma Scale ≤ 8 and head Maximum Abbreviated Injury Scale ≥ 4) that developed acute central diabetes insipidus between January 2000 and December 2011. Of 818 severely injured trauma patients, 180 had severe traumatic brain injury with an overall mortality rate of 27.2%. Thirty-two of the severe traumatic brain injury patients developed acute central diabetes insipidus that responded to desamino-8-D-arginine vasopressin and/or vasopressin infusion, providing an occurrence rate of 18%. At the time of central diabetes insipidus diagnosis, median urine output and serum sodium were 6.8 ml/kg/hr (interquartile range = 5-11) and 154 mmol/L (interquartile range = 149-159), respectively. The mortality rate of central diabetes insipidus patients was 87.5%, with 71.4% declared brain dead after central diabetes insipidus diagnosis. Early central diabetes insipidus onset, within the first 2 days of severe traumatic brain injury, was strongly associated with mortality (p < 0.001), as were a lower presedation Glasgow Coma Scale (p = 0.03), a lower motor Glasgow Coma Scale (p = 0.01), an occurrence of fixed pupils (p = 0.04), and a prolonged partial thromboplastin time (p = 0.04). Cerebral edema on the initial computed tomography, obtained in the first 24 hrs after injury, was the only imaging finding associated with death (p = 0.002). Survivors of central diabetes insipidus were more likely to have intracranial pressure monitoring (p = 0.03), have thiopental administered to induce coma (p = 0.04) and have received a

  16. Disequilibrium after Traumatic Brain Injury: Vestibular Mechanisms

    DTIC Science & Technology

    2012-09-01

    potentially modifiable factors. 0078 Chiropractic Sacro Occipital Technique (SOT) and Cranial Treatment Model for Traumatic Brain Injury Along with...model incorporating laboratory testing to evaluate neurotrans- mitter balance and chiropractic cranial care for the treatment of a patient with traumatic...Approach She has been under care for three years, which consisted of chiropractic sacro occipital technique (SOT) and cranial treat- ment. Within the

  17. Usability of World Health Organization Disability Assessment Schedule in chronic traumatic brain injury.

    PubMed

    Tarvonen-Schröder, Sinikka; Tenovuo, Olli; Kaljonen, Anne; Laimi, Katri

    2018-06-15

    To investigate functioning measured with the 12-item World Health Organization Disability Assessment Schedule (WHODAS 2.0) in patients with mild, moderate and severe traumatic brain injury, and to compare patients' experiences with assessments made by their significant others and by consultant neurologists. A total of 112 consecutive patients with traumatic brain injury (29 mild, 43 moderate, 40 severe) and their significant others completed a 12-item WHODAS 2.0 survey. A neurologist assessed functioning with the International Classification of Functioning, Disability and Health minimal generic set. The total patient and proxy WHODAS 2.0 sum score was rated as severe, and impairments in household tasks, learning, community life, emotional functions, concentrating, dealing with strangers, maintaining friendships, and working ability as around moderate in all 3 severity groups. In standing, walking, washing, and dressing oneself the reported impairments increased from mild in mild traumatic brain injury to moderate in severe traumatic brain injury. A neurologist rated the overall functioning, working ability, and motor activities most impaired in severe traumatic brain injury, while there were no between-group differences in energy and drive functions and emotional functions. Patients with chronic traumatic brain injury perceive a diversity of significant difficulties in activities and participation irrespective of the severity of the injury. We recommend assessing disability in traumatic brain injury with the short and understandable WHODAS 2.0 scale, when planning client-oriented services.

  18. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    PubMed

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p < .05). Considering these regions only, there were differences between individuals with persistent post-traumatic headache and healthy controls within the right lateral orbitofrontal lobe, right supramarginal gyrus, and left superior frontal lobe and no differences when comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying

  19. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One-Year Extension Funds...). ACTION: Notice of Non-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State... initially authorized by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently...

  20. Traumatic brain injury

    PubMed Central

    Risdall, Jane E.; Menon, David K.

    2011-01-01

    There is an increasing incidence of military traumatic brain injury (TBI), and similar injuries are seen in civilians in war zones or terrorist incidents. Indeed, blast-induced mild TBI has been referred to as the signature injury of the conflicts in Iraq and Afghanistan. Assessment involves schemes that are common in civilcian practice but, in common with civilian TBI, takes little account of information available from modern imaging (particularly diffusion tensor magnetic resonance imaging) and emerging biomarkers. The efficient logistics of clinical care delivery in the field may have a role in optimizing outcome. Clinical care has much in common with civilian TBI, but intracranial pressure monitoring is not always available, and protocols need to be modified to take account of this. In addition, severe early oedema has led to increasing use of decompressive craniectomy, and blast TBI may be associated with a higher incidence of vasospasm and pseudoaneurysm formation. Visual and/or auditory deficits are common, and there is a significant risk of post-traumatic epilepsy. TBI is rarely an isolated finding in this setting, and persistent post-concussive symptoms are commonly associated with post-traumatic stress disorder and chronic pain, a constellation of findings that has been called the polytrauma clinical triad. PMID:21149359

  1. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    DTIC Science & Technology

    2016-12-01

    best uses of the device for naval medicine. 14. SUBJECT TERMS traumatic brain injuries, electroencephalography, EEG, use case study 15. NUMBER OF...Traumatic Brain Injury NCS Non-Convulsive Seizures PD Parkinson’s Disease QEEG Quantitative EEG SPECT Single-Photon Emission Computerized Tomography...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION This study examines the diagnosis of traumatic brain injuries (TBI). Early detection and diagnosis is

  2. Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas.

    PubMed

    Dayan, Peter S; Holmes, James F; Schutzman, Sara; Schunk, Jeffrey; Lichenstein, Richard; Foerster, Lillian A; Hoyle, John; Atabaki, Shireen; Miskin, Michelle; Wisner, David; Zuspan, SallyJo; Kuppermann, Nathan

    2014-08-01

    We aimed to determine the association between scalp hematoma characteristics and traumatic brain injuries in young children with blunt head trauma who have no other symptoms or signs suggestive of traumatic brain injuries (defined as "isolated scalp hematomas"). This was a secondary analysis of children younger than 24 months with minor blunt head trauma from a prospective cohort study in 25 Pediatric Emergency Care Applied Research Network emergency departments. Treating clinicians completed a structured data form. For children with isolated scalp hematomas, we determined the prevalence of and association between scalp hematoma characteristics and (1) clinically important traumatic brain injury (death, neurosurgery for traumatic brain injury, intubation >24 hours for traumatic brain injury, or positive computed tomography (CT) scan in association with hospitalization ≥2 nights for traumatic brain injury); and (2) traumatic brain injury on CT. Of 10,659 patients younger than 24 months were enrolled, 2,998 of 10,463 (28.7%) with complete data had isolated scalp hematomas. Clinically important traumatic brain injuries occurred in 12 patients (0.4%; 95% confidence interval [CI] 0.2% to 0.7%); none underwent neurosurgery (95% CI 0% to 0.1%). Of 570 patients (19.0%) for whom CTs were obtained, 50 (8.8%; 95% CI 6.6% to 11.4%) had traumatic brain injuries on CT. Younger age, non-frontal scalp hematoma location, increased scalp hematoma size, and severe injury mechanism were independently associated with traumatic brain injury on CT. In patients younger than 24 months with isolated scalp hematomas, a minority received CTs. Despite the occasional presence of traumatic brain injuries on CT, the prevalence of clinically important traumatic brain injuries was very low, with no patient requiring neurosurgery. Clinicians should use patient age, scalp hematoma location and size, and injury mechanism to help determine which otherwise asymptomatic children should undergo

  3. Prevalence of traumatic brain injury in incarcerated groups compared to the general population: a meta-analysis.

    PubMed

    Farrer, Thomas J; Hedges, Dawson W

    2011-03-30

    Traumatic brain injury can cause numerous behavioral abnormalities including aggression, violence, impulsivity, and apathy, factors that can be associated with criminal behavior and incarceration. To better characterize the association between traumatic brain injury and incarceration, we pooled reported frequencies of lifetime traumatic brain injury of any severity among incarcerated samples and compared the pooled frequency to estimates of the lifetime prevalence of traumatic brain injury in the general population. We found a significantly higher prevalence of traumatic brain injury in the incarcerated groups compared to the general population. As such, there appears to be an association between traumatic brain injury and incarceration. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    indicator of mTBI. Further, these results establish a baseline data set, which may be useful in comparing concussed individuals. 14. SUBJECT TERMS... Concussion , mild traumatic brain injury (mTBI), traumatic brain injury (TBI), balance, Sensory Organization Test, Balance Error Scoring System, center of...43 5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 44 Appendix A Military Acute Concussion Evaluation 47

  5. Standardizing Data Collection in Traumatic Brain Injury

    DTIC Science & Technology

    2010-01-01

    om th is p ro of . 15 Definitions of mild TBI vary considerably across studies ( Comper et al 2005). The American Congress of Rehabilitation...451-627. Comper P, Bisschop S, Carnide N, Tricco A (2005). A Systematic Review of Treatments for Mild Traumatic Brain Injury. Brain Injury 19, 863

  6. Pathophysiological links between traumatic brain injury and post-traumatic headaches

    PubMed Central

    Ruff, Robert L.; Blake, Kayla

    2016-01-01

    This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD. PMID:27635228

  7. Neuropathology and brain weight in traumatic-crush asphyxia.

    PubMed

    Al-Sarraj, Safa; Laxton, Ross; Swift, Ben; Kolar, Alexander J; Chapman, Rob C; Fegan-Earl, Ashley W; Cary, Nat R B

    2017-11-01

    Traumatic (crush) asphyxia is a rare condition caused by severe compression of the chest and trunk leading to often extreme so-called asphyxial signs, including cyanosis in head and neck regions, multiple petechiae, and subconjunctival haemorrhage as well as neurological manifestations. To investigate the neuropathology and brain weight in traumatic asphyxia caused by different accidents such as industrial accidents and road traffic collision. Post mortem records of 20 cases of traumatic asphyxia (TA) resulting from different causes of which four brains are available for comprehensive neuropathological examination. The expected brain weights for given body height and associated 95% confidence range were calculated according to the following formula: baseline brain weight (BBW) + body height x rate (g/cm). The 95% confidence range was calculated by adding and subtracting the standard error (SE) x 1.96 (7-8). There was a trend for higher brain weight in the TA cohort but it was not significant (1494 g vs 1404 g, p = 0.1). The upper limits of the brain weight of 95% confidence was 1680 g vs 1660 g, p = 0.9. The neuropathological examination of four available brains from the TA cohort showed severe congestion of blood vessels, perivascular haemorrhages and occasional βAPP deposits consistent with early axonal disruption. Brain examination is informative as part of investigation of TA. Developing ischaemic changes and an increase in brain weight are the most likely indicators of a prolonged period of patient's survival. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  9. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury☆

    PubMed Central

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-01-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828

  10. Cerebrovascular Pressure Reactivity in Children With Traumatic Brain Injury.

    PubMed

    Lewis, Philip M; Czosnyka, Marek; Carter, Bradley G; Rosenfeld, Jeffrey V; Paul, Eldho; Singhal, Nitesh; Butt, Warwick

    2015-10-01

    Traumatic brain injury is a significant cause of morbidity and mortality in children. Cerebral autoregulation disturbance after traumatic brain injury is associated with worse outcome. Pressure reactivity is a fundamental component of cerebral autoregulation that can be estimated using the pressure-reactivity index, a correlation between slow arterial blood pressure, and intracranial pressure fluctuations. Pressure-reactivity index has shown prognostic value in adult traumatic brain injury, with one study confirming this in children. Pressure-reactivity index can identify a cerebral perfusion pressure range within which pressure reactivity is optimal. An increasing difference between optimal cerebral perfusion pressure and cerebral perfusion pressure is associated with worse outcome in adult traumatic brain injury; however, this has not been investigated in children. Our objective was to study pressure-reactivity index and optimal cerebral perfusion pressure in pediatric traumatic brain injury, including associations with outcome, age, and cerebral perfusion pressure. Prospective observational study. ICU, Royal Children's Hospital, Melbourne, Australia. Patients with traumatic brain injury who are 6 months to 16 years old, are admitted to the ICU, and require arterial blood pressure and intracranial pressure monitoring. None. Arterial blood pressure, intracranial pressure, and end-tidal CO2 were recorded electronically until ICU discharge or monitoring cessation. Pressure-reactivity index and optimal cerebral perfusion pressure were computed according to previously published methods. Clinical data were collected from electronic medical records. Outcome was assessed 6 months post discharge using the modified Glasgow Outcome Score. Thirty-six patients were monitored, with 30 available for follow-up. Pressure-reactivity index correlated with modified Glasgow Outcome Score (Spearman ρ = 0.42; p = 0.023) and was higher in patients with unfavorable outcome (0.23 vs -0

  11. Vision rehabilitation interventions following mild traumatic brain injury: a scoping review.

    PubMed

    Simpson-Jones, Mary E; Hunt, Anne W

    2018-04-10

    To broadly examine the literature to identify vision interventions following mild traumatic brain injury. Objectives are to identify: (1) evidence-informed interventions for individuals with visual dysfunction after mild traumatic brain injury; (2) professions providing these interventions; (3) gaps in the literature and areas for further research. A scoping review was conducted of four electronic databases of peer-reviewed literature from the databases earliest records to June 2017. Articles were included if the study population was mild traumatic brain injury/concussion and a vision rehabilitation intervention was tested. Two independent reviewers screened articles for inclusion, extracted data, and identified themes. The initial search identified 3111 records. Following exclusions, 22 articles were included in the final review. Nine studies evaluated optical devices, such as corrective spectacles, contact lenses, prisms, or binasal occlusion. Two studies assessed vision therapy. Ten studies examined vision therapy using optical devices. One study investigated hyperbaric oxygen therapy. Optometrists performed these interventions in most of the studies. Future research should address quality appraisal of this literature, interventions that include older adult and pediatric populations, and interdisciplinary interventions. There are promising interventions for vision deficits following mild traumatic brain injury. However, there are multiple gaps in the literature that should be addressed by future research. Implications for Rehabilitation Mild traumatic brain injury may result in visual deficits that can contribute to poor concentration, headaches, fatigue, problems reading, difficulties engaging in meaningful daily activities, and overall reduced quality of life. Promising interventions for vision rehabilitation following mild traumatic brain injury include the use of optical devices (e.g., prism glasses), vision or oculomotor therapy (e.g., targeted exercises to

  12. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

    PubMed Central

    Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-01-01

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560

  13. Cerebrovascular regulation, exercise, and mild traumatic brain injury

    PubMed Central

    Meehan, William P.; Iverson, Grant L.; Taylor, J. Andrew

    2014-01-01

    A substantial number of people who sustain a mild traumatic brain injury report persistent symptoms. Most common among these symptoms are headache, dizziness, and cognitive difficulties. One possible contributor to sustained symptoms may be compromised cerebrovascular regulation. In addition to injury-related cerebrovascular dysfunction, it is possible that prolonged rest after mild traumatic brain injury leads to deconditioning that may induce physiologic changes in cerebral blood flow control that contributes to persistent symptoms in some people. There is some evidence that exercise training may reduce symptoms perhaps because it engages an array of cerebrovascular regulatory mechanisms. Unfortunately, there is very little work on the degree of impairment in cerebrovascular control that may exist in patients with mild traumatic brain injury, and there are no published studies on the subacute phase of recovery from this injury. This review aims to integrate the current knowledge of cerebrovascular mechanisms that might underlie persistent symptoms and seeks to synthesize these data in the context of exploring aerobic exercise as a feasible intervention to treat the underlying pathophysiology. PMID:25274845

  14. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for...multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to identify progressive tau...after traumatic brain injury. Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in

  15. Incidence of Traumatic Brain Injury Across the Full Disease Spectrum: A Population-Based Medical Record Review Study

    PubMed Central

    Leibson, Cynthia L.; Brown, Allen W.; Ransom, Jeanine E.; Diehl, Nancy N.; Perkins, Patricia K.; Mandrekar, Jay; Malec, James F.

    2012-01-01

    Background Extremely few objective estimates of traumatic brain injury incidence include all ages, both sexes, all injury mechanisms, and the full spectrum from very mild to fatal events. Methods We used unique Rochester Epidemiology Project medical records-linkage resources, including highly sensitive and specific diagnostic coding, to identify all Olmsted County, MN, residents with diagnoses suggestive of traumatic brain injury regardless of age, setting, insurance, or injury mechanism. Provider-linked medical records for a 16% random sample were reviewed for confirmation as definite, probable, possible (symptomatic), or no traumatic brain injury. We estimated incidence per 100,000 person-years for 1987–2000 and compared these record-review rates with rates obtained using Centers for Disease Control and Prevention (CDC) data-systems approach. For the latter, we identified all Olmsted County residents with any CDC-specified diagnosis codes recorded on hospital/emergency department administrative claims or death certificates 1987–2000. Results Of sampled individuals, 1257 met record-review criteria for incident traumatic brain injury; 56% were ages 16–64 years, 56% were male, 53% were symptomatic. Mechanism, sex, and diagnostic certainty differed by age. The incidence rate per 100,000 person-years was 558 (95% confidence interval = 528–590) versus 341 (331–350) using the CDC data system approach. The CDC approach captured only 40% of record-review cases. Seventy-four percent of missing cases presented to hospital/emergency department; none had CDC-specified codes assigned on hospital/emergency department administrative claims or death certificates; 66% were symptomatic. Conclusions Capture of symptomatic traumatic brain injuries requires a wider range of diagnosis codes, plus sampling strategies to avoid high rates of false-positive events. PMID:21968774

  16. BPSD following traumatic brain injury.

    PubMed

    Anghinah, Renato; Freire, Fabio Rios; Coelho, Fernanda; Lacerda, Juliana Rhein; Schmidt, Magali Taino; Calado, Vanessa Tomé Gonçalves; Ianof, Jéssica Natuline; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson Luis

    2013-01-01

    Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI) in Brazil. We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD) findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.

  17. Correlates of invalid neuropsychological test performance after traumatic brain injury.

    PubMed

    Donders, Jacobus; Boonstra, Tyler

    2007-03-01

    To investigate external correlates of invalid test performance after traumatic brain injury, as assessed by the California Verbal Learning Test - Second Edition (CVLT-II) and Word Memory Test (WMT). Consecutive 2-year series of rehabilitation referrals with a diagnosis of traumatic brain injury (n = 87). Logistic regression analysis was used to determine which demographic and neurological variables best differentiated those with vs. without actuarial CVLT-II or WMT evidence for invalid responding. Twenty-one participants (about 24%) performed in the invalid range. The combination of a premorbid psychiatric history with minimal or no coma was associated with an approximately four-fold increase in the likelihood of invalid performance. Premorbid psychosocial complicating factors constitute a significant threat to validity of neuropsychological test results after (especially mild) traumatic brain injury. At the same time, care should be taken to not routinely assume that all persons with mild traumatic brain injury and premorbid psychiatric histories are simply malingering. The WMT appears to be a promising instrument for the purpose of identifying those cases where neuropsychological test results are confounded by factors not directly related to acquired cerebral impairment.

  18. Catecholamines and cognition after traumatic brain injury

    PubMed Central

    Jenkins, Peter O.; Mehta, Mitul A.

    2016-01-01

    Abstract Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296

  19. The clinical spectrum of sport-related traumatic brain injury.

    PubMed

    Jordan, Barry D

    2013-04-01

    Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.

  20. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    PubMed

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  1. EPO improved neurologic outcome in rat pups late after traumatic brain injury.

    PubMed

    Schober, Michelle E; Requena, Daniela F; Rodesch, Christopher K

    2018-05-01

    In adult rats, erythropoietin improved outcomes early and late after traumatic brain injury, associated with increased levels of Brain Derived Neurotrophic Factor. Using our model of pediatric traumatic brain injury, controlled cortical impact in 17-day old rats, we previously showed that erythropoietin increased hippocampal neuronal fraction in the first two days after injury. Erythropoietin also decreased activation of caspase3, an apoptotic enzyme modulated by Brain Derived Neurotrophic Factor, and improved Novel Object Recognition testing 14 days after injury. Data on long-term effects of erythropoietin on Brain Derived Neurotrophic Factor expression, histology and cognitive function after developmental traumatic brain injury are lacking. We hypothesized that erythropoietin would increase Brain Derived Neurotrophic Factor and improve long-term object recognition in rat pups after controlled cortical impact, associated with increased neuronal fraction in the hippocampus. Rats pups received erythropoietin or vehicle at 1, 24, and 48 h and 7 days after injury or sham surgery followed by histology at 35 days, Novel Object Recognition testing at adulthood, and Brain Derived Neurotrophic Factor measurements early and late after injury. Erythropoietin improved Novel Object Recognition performance and preserved hippocampal volume, but not neuronal fraction, late after injury. Improved object recognition in erythropoietin treated rats was associated with preserved hippocampal volume late after traumatic brain injury. Erythropoietin is approved to treat various pediatric conditions. Coupled with exciting experimental and clinical studies suggesting it is beneficial after neonatal hypoxic ischemic brain injury, our preliminary findings support further study of erythropoietin use after developmental traumatic brain injury. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Towards sustainable traumatic brain injury care systems: healthcare leadership imperatives in Canada.

    PubMed

    Caro, Denis

    2011-01-01

    Traumatic brain injuries pose strategic population health challenges in the face of burgeoning clinical demands that continue to tax capital, financial, and social resource capacities. The sustainability of traumatic brain injury care systems depends on paradigmatic shifts in healthcare leadership thinking. In quest for high-performance care and sustained quality of life for traumatic brain injury patients, this article presents a unique paradigm of seven care performance layers and seven health leadership imperatives that together form the paradigm for the systemic sustainability of TBI care systems of the future.

  3. Medical Management of the Severe Traumatic Brain Injury Patient.

    PubMed

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  4. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  5. Brain imaging and behavioral outcome in traumatic brain injury.

    PubMed

    Bigler, E D

    1996-09-01

    Brain imaging studies have become an essential diagnostic assessment procedure in evaluating the effects of traumatic brain injury (TBI). Such imaging studies provide a wealth of information about structural and functional deficits following TBI. But how pathologic changes identified by brain imaging methods relate to neurobehavioral outcome is not as well known. Thus, the focus of this article is on brain imaging findings and outcome following TBI. The article starts with an overview of current research dealing with the cellular pathology associated with TBI. Understanding the cellular elements of pathology permits extrapolation to what is observed with brain imaging. Next, this article reviews the relationship of brain imaging findings to underlying pathology and how that pathology relates to neurobehavioral outcome. The brain imaging techniques of magnetic resonance imaging, computerized tomography, and single photon emission computed tomography are reviewed. Various image analysis procedures, and how such findings relate to neuropsychological testing, are discussed. The importance of brain imaging in evaluating neurobehavioral deficits following brain injury is stressed.

  6. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    PubMed

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can

  7. Determinants of Glasgow outcome scale in patients with severe traumatic brain injury for better quality of life

    NASA Astrophysics Data System (ADS)

    Dharmajaya, R.; Sari, D. K.; Ganie, R. A.

    2018-03-01

    Primary and secondary brain injury may occur with severe traumatic brain injury. Secondary traumatic brain injury results in a more severe effect compared to primary traumatic brain injury. Therefore, prevention of secondary traumatic brain injury is necessary to obtain maximum therapeutic results and accurate determination of prognosis and better quality of life. This study aimed to determine accurate and noninvasive prognostic factors in patients with severe traumatic brain injury. It was a cohort study on 16 subjects. Intracranial pressure was monitored within the first 24 hours after traumatic brain injury. Examination of Brain-Derived Neurotrophic Factor (BDNF) and S100B protein were conducted four times. The severity of outcome was evaluated using Glasgow Outcome Scale (GOS) three months after traumatic brain injury. Intracranial pressure measurement performed 24 hours after traumatic brain injury, low S100B protein (<2μg/L) 120 hours after injury and increased BDNF (>6.16pg/ml) 48 hours after injury indicate good prognosis and were shown to be significant predictors (p<0.05) for determining the quality of GOS. The conclusion is patient with a moderate increase in intracranial pressure Intracranial pressure S100B protein, being inexpensive and non-invasive, can substitute BDNF and intracranial pressure measurements as a tool for determining prognosis 120 hours following traumatic brain injury.

  8. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    PubMed

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  9. Rehabilitation Treatment and Progress of Traumatic Brain Injury Dysfunction

    PubMed Central

    Dang, Baoqi; Chen, Wenli; He, Weichun

    2017-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability. Worldwide, it is the leading cause of disability in the under 40s. Behavioral problems, mood, cognition, particularly memory, attention, and executive function are commonly impaired by TBI. Spending to assist, TBI survivors with disabilities are estimated to be costly per year. Such impaired functional outcomes following TBI can be improved via various rehabilitative approaches. The objective of the present paper is to review the current rehabilitation treatment of traumatic brain injury in adults. PMID:28491478

  10. Traumatic Brain Injury and Infectious Encephalopathy in Children From Four Resource-Limited Settings in Africa.

    PubMed

    Fink, Ericka L; von Saint Andre-von Arnim, Amelie; Kumar, Rashmi; Wilson, Patrick T; Bacha, Tigist; Aklilu, Abenezer Tirsit; Teklemariam, Tsegazeab Laeke; Hooli, Shubhada; Tuyisenge, Lisine; Otupiri, Easmon; Fabio, Anthony; Gianakas, John; Kochanek, Patrick M; Angus, Derek C; Tasker, Robert C

    2018-04-16

    To assess the frequency, interventions, and outcomes of children presenting with traumatic brain injury or infectious encephalopathy in low-resource settings. Prospective study. Four hospitals in Sub-Saharan Africa. Children age 1 day to 17 years old evaluated at the hospital with traumatic brain injury or infectious encephalopathy. None. We evaluated the frequency and outcomes of children presenting consecutively over 4 weeks to any hospital department with traumatic brain injury or infectious encephalopathy. Pediatric Cerebral Performance Category score was assessed pre morbidity and at hospital discharge. Overall, 130 children were studied (58 [45%] had traumatic brain injury) from hospitals in Ethiopia (n = 51), Kenya (n = 50), Rwanda (n = 20), and Ghana (n = 7). Forty-six percent had no prehospital care, and 64% required interhospital transport over 18 km (1-521 km). On comparing traumatic brain injury with infectious encephalopathy, there was no difference in presentation with altered mental state (80% vs 82%), but a greater proportion of traumatic brain injury cases had loss of consciousness (80% vs 53%; p = 0.004). Traumatic brain injury patients were older (median [range], 120 mo [6-204 mo] vs 13 mo [0.3-204 mo]), p value of less than 0.001, and more likely male (73% vs 51%), p value of less than 0.01. In 78% of infectious encephalopathy cases, cause was unknown. More infectious encephalopathy cases had a seizure (69% vs 12%; p < 0.001). In regard to outcome, infectious encephalopathy versus traumatic brain injury: hospital lengths of stay were longer for infectious encephalopathy (8 d [2-30 d] vs 4 d [1-36 d]; p = 0.003), discharge rate to home, or for inpatient rehabilitation, or death differed between infectious encephalopathy (85%, 1%, and 13%) and traumatic brain injury (79%, 12%, and 1%), respectively, p value equals to 0.044. There was no difference in the proportion of children surviving with normal or mild disability (73% traumatic brain injury vs

  11. Narrative literature review: Health, activity and participation issues for women following traumatic brain injury.

    PubMed

    O'Reilly, Kate; Wilson, Nathan; Peters, Kath

    2017-06-06

    This narrative review will draw attention to the current limitations within the literature related to women following traumatic brain injury in order to stimulate discussion and inform future directions for research. There is a wide-ranging body of research about traumatic brain injury with the higher incidence of brain injury among males reflected in this body of work. As a result, the specific gendered issues facing women with traumatic brain injury are not as well understood. A search of electronic databases was conducted using the terms "traumatic brain injury", "brain injury", "women", "participation", "concussion" and "outcomes". The 36 papers revealed the following five themes (1) Relationships and life satisfaction; (2) Perception of self and body image; (3) Meaningful occupation; (4) Sexuality and sexual health; and (5) Physical function. Without research, which focuses specifically on the experience of women and girls with traumatic brain injury there is a risk that clinical care, policy development and advocacy services will not effectively accommodate them. Implications for rehabilitation Exploring the gendered issues women may experience following traumatic brain injury will enhance clinicians understanding of the unique challenges they face. Such information has the potential to guide future directions for research, policy, and practice. Screening women for hormonal imbalances such as hypopituitarism following traumatic brain injury is recommended as this may assist clinicians in addressing the far reaching implications in regard to disability, quality of life and mood. The growing literature regarding the cumulative effect of repeat concussions following domestic violence and women's increased risk of sport-related concussion may assist clinicians in advocating for appropriate rehabilitation and community support services.

  12. Traumatic brain injury in modern war

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  13. Acromegaly resolution after traumatic brain injury: a case report.

    PubMed

    Cob, Alejandro

    2014-09-02

    Anterior hypopituitarism is a common complication of head trauma, with a prevalence of 30% to 70% among long-term survivors. This is a much higher frequency than previously thought and suggests that most cases of post-traumatic hypopituitarism remain undiagnosed and untreated. Symptoms of hypopituitarism are very unspecific and very similar to those in traumatic brain injury patients in general, which makes hypopituitarism difficult to diagnose. The factors that predict the likelihood of developing hypopituitarism following traumatic brain injury remain poorly understood. The incidence of a specific hormone deficiency is variable, with growth hormone deficiency reported in 18% to 23% of cases. A 23-year-old Hispanic man with a 2-year history of hypertension and diabetes presented with severe closed-head trauma producing diffuse axonal injury, subarachnoid hemorrhage and a brain concussion. A computed tomography scan showed a pituitary macroadenoma. The patient has clinical features of acromegaly and gigantism without other pituitary hyperfunctional manifestations or mass effect syndrome. A short-term post-traumatic laboratory test showed high levels of insulin like growth factor 1 and growth hormone, which are compatible with a growth hormone-producing pituitary tumor. At the third month post-trauma, the patient's levels of insulin like growth factor 1 had decreased to low normal levels, with basal low levels of growth hormone. A glucose tolerance test completely suppressed the growth hormone, which confirmed resolution of acromegaly. An insulin tolerance test showed lack of stimulation of growth hormone and cortisol, demonstrating hypopituitarism of both axes. Even though hypopituitarism is a frequent complication of traumatic brain injury, there are no reports in the literature, to the best of my knowledge, of patients with hyperfunctional pituitary adenomas, such as growth hormone-producing adenoma, that resolved after head trauma. A clear protocol has not yet

  14. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury.

    PubMed

    Helmy, Adel; De Simoni, Maria-Grazia; Guilfoyle, Mathew R; Carpenter, Keri L H; Hutchinson, Peter J

    2011-11-01

    There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Imaging of Traumatic Brain Injury.

    PubMed

    Bodanapally, Uttam K; Sours, Chandler; Zhuo, Jiachen; Shanmuganathan, Kathirkamanathan

    2015-07-01

    Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Outcomes in nursing home patients with traumatic brain injury.

    PubMed

    Lueckel, Stephanie N; Kosar, Cyrus M; Teno, Joan M; Monaghan, Sean F; Heffernan, Daithi S; Cioffi, William G; Thomas, Kali S

    2018-05-09

    Traumatic brain injury is a leading cause of death and disability in the United States. In survivors, traumatic brain injury remains a leading contributor to long-term disability and results in many patients being admitted to skilled nursing facilities for postacute care. Despite this very large population of traumatic brain injury patients, very little is known about the long-term outcomes of traumatic brain injury survivors, including rates of discharge to home or risk of death in long-term nursing facilities. We hypothesized that patient demographics and functional status influence outcomes of patients with traumatic brain injury admitted to skilled nursing facilities. We conducted a retrospective cohort study of Medicare fee-for-service beneficiaries aged 65 and older discharged alive and directly from hospital to a skilled nursing facility between 2011 and 2014 using the prospectively maintained Federal Minimum Data Set combined with Medicare claims data and the Centers for Medicare and Medicaid Services Vital Status files. Records were reviewed for demographic and clinical characteristics at admission to the skilled nursing facility, including age, sex, cognitive function, ability to communicate, and motor function. Activities of daily living were reassessed at discharge to calculate functional improvement. We used robust Poisson regression with skilled nursing facility fixed effects to calculate relative risks and 99% confidence intervals for mortality and functional improvement associated with the demographic and clinical characteristics present at admission. Linear regression was used to calculate adjusted mean duration of stay. Overall, 87,292 Medicare fee-for-service beneficiaries with traumatic brain injury were admitted to skilled nursing facilities. The mean age was 84 years, with 74% of patients older than age 80. Generally, older age, male sex, and poor cognitive or functional status at admission to a skilled nursing facility were associated with

  17. Practitioner Review: Beyond Shaken Baby Syndrome--What Influences the Outcomes for Infants following Traumatic Brain Injury?

    ERIC Educational Resources Information Center

    Ashton, Rebecca

    2010-01-01

    Background: Traumatic brain injury (TBI) in infancy is relatively common, and is likely to lead to poorer outcomes than injuries sustained later in childhood. While the headlines have been grabbed by infant TBI caused by abuse, often known as shaken baby syndrome, the evidence base for how to support children following TBI in infancy is thin.…

  18. School Reentry Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  19. The Predictive Brain State: Timing Deficiency in Traumatic Brain Injury?

    PubMed Central

    Ghajar, Jamshid; Ivry, Richard B.

    2015-01-01

    Attention and memory deficits observed in traumatic brain injury (TBI) are postulated to result from the shearing of white matter connections between the prefrontal cortex, parietal lobe, and cerebellum that are critical in the generation, maintenance, and precise timing of anticipatory neural activity. These fiber tracts are part of a neural network that generates predictions of future states and events, processes that are required for optimal performance on attention and working memory tasks. The authors discuss the role of this anticipatory neural system for understanding the varied symptoms and potential rehabilitation interventions for TBI. Preparatory neural activity normally allows the efficient integration of sensory information with goal-based representations. It is postulated that an impairment in the generation of this activity in traumatic brain injury (TBI) leads to performance variability as the brain shifts from a predictive to reactive mode. This dysfunction may constitute a fundamental defect in TBI as well as other attention disorders, causing working memory deficits, distractibility, a loss of goal-oriented behavior, and decreased awareness. “The future is not what is coming to meet us, but what we are moving forward to meet.” —Jean-Marie Guyau1 PMID:18460693

  20. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  1. Traumatic brain injury.

    PubMed

    Barlow, Karen Maria

    2013-01-01

    In childhood, traumatic brain injury (TBI) poses the unique challenges of an injury to a developing brain and the dynamic pattern of recovery over time, inflicted TBI and its medicolegal ramifications. The mechanisms of injury vary with age, as do the mechanisms that lead to the primary brain injury. As it is common, and is the leading cause of death and disability in the USA and Canada, prevention is the key, and we may need increased legislation to facilitate this. Despite its prevalence, there is an almost urgent need for research to help guide the optimal management and improve outcomes. Indeed, contrary to common belief, children with severe TBI have a worse outcome and many of the consequences present in teenage years or later. The treatment needs, therefore, to be multifaceted and starts at the scene of the injury and extends into the home and school. In order to do this, the care needs to be multidisciplinary from specialists with a specific interest in TBI and to involve the family, and will often span many decades. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    PubMed

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.

  3. Traumatic Brain Injury and Vocational Rehabilitation.

    ERIC Educational Resources Information Center

    Corthell, David W., Ed.

    Intended to serve as a resource guide on traumatic brain injury for rehabilitation practitioners, the book's 10 chapters are grouped into sections which provide an introduction and examine aspects of evaluation, treatment and placement planning, and unresolved issues. Chapters have the following titles and authors: "Scope of the Problem" (Marilyn…

  4. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    PubMed

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported < 3 symptoms and 1 ≥ 3 symptoms, all exhibiting GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  5. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    PubMed

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2012-10-01

    W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury 5a. CONTRACT NUMBER 5b...The grantee previously found screened that the combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function

  7. The neural basis of impaired self-awareness after traumatic brain injury

    PubMed Central

    Ham, Timothy E.; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H.; Leech, Robert

    2014-01-01

    Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at ‘rest’. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self

  8. The neural basis of impaired self-awareness after traumatic brain injury.

    PubMed

    Ham, Timothy E; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H; Leech, Robert; Sharp, David J

    2014-02-01

    Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at 'rest'. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self

  9. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study

    PubMed Central

    Tisdall, Martin M.; Girbes, Armand R.; Martinian, Lillian; Thom, Maria; Kitchen, Neil; Smith, Martin

    2011-01-01

    Traumatic brain injury causes diffuse axonal injury and loss of cortical neurons. These features are well recognized histologically, but their in vivo monitoring remains challenging. In vivo cortical microdialysis samples the extracellular fluid adjacent to neurons and axons. Here, we describe a novel neuronal proteolytic pathway and demonstrate the exclusive neuro-axonal expression of Pavlov’s enterokinase. Enterokinase is membrane bound and cleaves the neurofilament heavy chain at positions 476 and 986. Using a 100 kDa microdialysis cut-off membrane the two proteolytic breakdown products, extracellular fluid neurofilament heavy chains NfH476−986 and NfH476−1026, can be quantified with a relative recovery of 20%. In a prospective clinical in vivo study, we included 10 patients with traumatic brain injury with a median Glasgow Coma Score of 9, providing 640 cortical extracellular fluid samples for longitudinal data analysis. Following high-velocity impact traumatic brain injury, microdialysate extracellular fluid neurofilament heavy chain levels were significantly higher (6.18 ± 2.94 ng/ml) and detectable for longer (>4 days) compared with traumatic brain injury secondary to falls (0.84 ± 1.77 ng/ml, <2 days). During the initial 16 h following traumatic brain injury, strong correlations were found between extracellular fluid neurofilament heavy chain levels and physiological parameters (systemic blood pressure, anaerobic cerebral metabolism, excessive brain tissue oxygenation, elevated brain temperature). Finally, extracellular fluid neurofilament heavy chain levels were of prognostic value, predicting mortality with an odds ratio of 7.68 (confidence interval 2.15–27.46, P = 0.001). In conclusion, this study describes the discovery of Pavlov’s enterokinase in the human brain, a novel neuronal proteolytic pathway that gives rise to specific protein biomarkers (NfH476−986 and NfH476−1026) applicable to in vivo monitoring of diffuse

  10. Diagnostic imaging of traumatic brain injury.

    PubMed

    Furlow, Bryant

    2006-01-01

    In this Directed Reading, the history and epidemiology of traumatic brain injury (TBI) will be briefly introduced, the physical and physiological nature of TBI reviewed and the role of imaging in the assessment of TBI patients described. New imaging techniques and recent findings about the neurological correlates of TBI symptoms and outcomes from studies using different imaging modalities and techniques will also be discussed. This directed reading will focus on closed-head TBI; penetrating missile brain injuries, such as those caused by bullet wounds, will not be reviewed.

  11. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  12. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  13. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    PubMed

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  14. The blood-brain barrier as a target in traumatic brain injury treatment.

    PubMed

    Thal, Serge C; Neuhaus, Winfried

    2014-11-01

    Traumatic brain injury (TBI) is one of the most frequent causes of death in the young population. Several clinical trials have unsuccessfully focused on direct neuroprotective therapies. Recently immunotherapeutic strategies shifted into focus of translational research in acute CNS diseases. Cross-talk between activated microglia and blood-brain barrier (BBB) could initiate opening of the BBB and subsequent recruitment of systemic immune cells and mediators into the brain. Stabilization of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage and acute neurodegeneration. This review provides an overview on the pathophysiology of TBI and brain edema formation including definitions and classification of TBI, current clinical treatment strategies, as well as current understanding on the underlying cellular processes. A summary of in vivo and in vitro models to study different aspects of TBI is presented. Three mechanisms proposed for stabilization of the BBB, myosin light chain kinases, glucocorticoid receptors and peroxisome proliferator-activated receptors are reviewed for their influence on barrier-integrity and outcome after TBI. In conclusion, the BBB is recommended as a promising target for the treatment of traumatic brain injury, and it is suggested that a combination of BBB stabilization and neuroprotectants may improve therapeutic success. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  15. Mild Traumatic Brain Injury: Facilitating School Success.

    ERIC Educational Resources Information Center

    Hux, Karen; Hacksley, Carolyn

    1996-01-01

    A case study is used to demonstrate the effects of mild traumatic brain injury on educational efforts. Discussion covers factors complicating school reintegration, ways to facilitate school reintegration, identification of cognitive and behavioral consequences, minimization of educators' discomfort, reintegration program design, and family…

  16. Long-term employment outcomes following traumatic brain injury and orthopaedic trauma: A ten-year prospective study.

    PubMed

    Dahm, Jane; Ponsford, Jennie

    2015-11-01

    To investigate the trajectory and predictors of employment over a period of 10 years following traumatic brain injury and traumatic orthopaedic injury. Prospective follow-up at 1, 2, 5 and 10 years post-injury. Seventy-nine individuals with traumatic brain injury and 79 with traumatic orthopaedic injury recruited from Epworth HealthCare in Melbourne, Australia during inpatient rehabilitation. Information was obtained from medical files and self-report questionnaires. Individuals with traumatic brain injury were less likely to be competitively employed during the period up to 10 years post-injury compared with individuals with traumatic orthopaedic injury, although there was evidence of increasing employment participation during that time. More severe traumatic brain injury, older age, pre-injury psychological treatment, and studying or having a blue-collar occupation at time of injury were associated with poorer employment outcomes. Individuals with traumatic brain injury had spent less time with their current employer and were less likely to have increased responsibility since the injury than those with traumatic orthopaedic injury. At least half of each group reported difficulty at work due to fatigue. Given the potential for gains in employment participation over an extended time-frame, there may be benefit in ongoing access to individualized vocational rehabilitation. Particular areas of focus would include managing fatigue and psychiatric disorders, and exploring supported occupational activity for all levels of injury severity.

  17. 78 FR 12334 - Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access...-days of the date of this publication. Proposed Collection: Federal Interagency Traumatic Brain Injury...

  18. Injury-Related Production of Cysteinyl Leukotrienes Contributes to Brain Damage following Experimental Traumatic Brain Injury

    PubMed Central

    Farias, Santiago; Frey, Lauren C.; Murphy, Robert C.

    2009-01-01

    Abstract The leukotrienes belong to a family of biologically active lipids derived from arachidonate that are often involved in inflammatory responses. In the central nervous system, a group of leukotrienes, known as the cysteinyl leukotrienes, is generated in brain tissue in response to a variety of acute brain injuries. Although the exact clinical significance of this excess production remains unclear, the cysteinyl leukotrienes may contribute to injury-related disruption of the brain-blood barrier and exacerbate secondary injury processes. In the present study, the formation and role of cysteinyl leukotrienes was explored in the fluid percussion injury model of traumatic brain injury in rats. The results showed that levels of the cysteinyl leukotrienes were elevated after fluid percussion injury with a maximal formation 1 hour after the injury. Neutrophils contributed to cysteinyl leukotriene formation in the injured brain hemisphere, potentially through a transcellular biosynthetic mechanism. Furthermore, pharmacological reduction of cysteinyl leukotriene formation after the injury, using MK-886, resulted in reduction of brain lesion volumes, suggesting that the cysteinyl leukotrienes play an important role in traumatic brain injury. PMID:19886806

  19. Multicolor Fluorescence Imaging of Traumatic Brain Injury in a Cryolesion Mouse Model

    PubMed Central

    2012-01-01

    Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury. PMID:22860222

  20. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and

  1. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    DTIC Science & Technology

    2010-10-01

    Susceptibility- weighted MR imaging: a review of clinical applications in children . AJNR Am J Neuroradiol. 2008 Jan;29(1):9-17. Hou DJ, Tong KA, Ashwal S ...2005;33:184-194. Holshouser BA, Tong KA, Ashwal S . “Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury...Proton spectroscopy detected myoinositol in children with traumatic brain injury.” Pediatr Res 2004;56:630-638. Ashwal S , Holshouser B, Tong K, Serna T

  2. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy.

    PubMed

    Goldstein, Lee E; McKee, Ann C; Stanton, Patric K

    2014-01-01

    The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms

  3. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy

    PubMed Central

    2014-01-01

    The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms

  4. The military's approach to traumatic brain injury and post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Grimes, Jamie; Ecklund, James M.

    2014-06-01

    Traumatic brain injury (TBI) and Post Traumatic Stress Disorder (PTSD) are common conditions. In Iraq and Afghanistan, explosive blast related TBI became prominent among US service members but the vast majority of TBI was still due to typical causes such as falls and sporting events. PTS has long been a focus of the US military mental health providers. Combat Stress Teams have been integral to forward deployed units since the beginning of the Global War on Terror. Military medical management of disease and injury follows standard of care clinical practice guidelines (CPG) established by civilian counterparts. However, when civilian CPGs do not exist or are not applicable to the military environment, new practice standards are created. Such is the case for mild TBI. In 2009, the VA-DoD CPG for management of mild TBI/concussion was published and a system-wide clinical care program for mild TBI/concussion was introduced. This was the first large scale effort on an entire medical care system to address all severities of TBI in a comprehensive organized way. In 2010, the VA-DoD CPG for management of PTSD was published. Nevertheless, both TBI and PTS are still incompletely understood. Investment in terms of money and effort has been committed by the DoD to their study. The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury are prominent examples of this effort. These are just beginnings, a work in progress ready to leverage advances made scientifically and always striving to provide the very best care to its military beneficiaries.

  5. Inflammation and white matter degeneration persist for years after a single traumatic brain injury.

    PubMed

    Johnson, Victoria E; Stewart, Janice E; Begbie, Finn D; Trojanowski, John Q; Smith, Douglas H; Stewart, William

    2013-01-01

    A single traumatic brain injury is associated with an increased risk of dementia and, in a proportion of patients surviving a year or more from injury, the development of hallmark Alzheimer's disease-like pathologies. However, the pathological processes linking traumatic brain injury and neurodegenerative disease remain poorly understood. Growing evidence supports a role for neuroinflammation in the development of Alzheimer's disease. In contrast, little is known about the neuroinflammatory response to brain injury and, in particular, its temporal dynamics and any potential role in neurodegeneration. Cases of traumatic brain injury with survivals ranging from 10 h to 47 years post injury (n = 52) and age-matched, uninjured control subjects (n = 44) were selected from the Glasgow Traumatic Brain Injury archive. From these, sections of the corpus callosum and adjacent parasaggital cortex were examined for microglial density and morphology, and for indices of white matter pathology and integrity. With survival of ≥3 months from injury, cases with traumatic brain injury frequently displayed extensive, densely packed, reactive microglia (CR3/43- and/or CD68-immunoreactive), a pathology not seen in control subjects or acutely injured cases. Of particular note, these reactive microglia were present in 28% of cases with survival of >1 year and up to 18 years post-trauma. In cases displaying this inflammatory pathology, evidence of ongoing white matter degradation could also be observed. Moreover, there was a 25% reduction in the corpus callosum thickness with survival >1 year post-injury. These data present striking evidence of persistent inflammation and ongoing white matter degeneration for many years after just a single traumatic brain injury in humans. Future studies to determine whether inflammation occurs in response to or, conversely, promotes white matter degeneration will be important. These findings may provide parallels for studying neurodegenerative disease

  6. Treatment of metaphor interpretation deficits subsequent to traumatic brain injury.

    PubMed

    Brownell, Hiram; Lundgren, Kristine; Cayer-Meade, Carol; Milione, Janet; Katz, Douglas I; Kearns, Kevin

    2013-01-01

    To improve oral interpretation of metaphors by patients with traumatic brain injury (TBI). Both single subject experimental design and group analysis. Patients' homes. Eight adult patients with moderate to severe traumatic brain injury sustained 3 to 20 years before testing. The Metaphor Training Program consisted typically of 10 baseline sessions, 3 to 9 1-hour sessions of structured intervention, and 10 posttraining baseline sessions. Training used extensive practice with simple graphic displays to illustrate semantic associations. Quality of orally produced metaphor interpretation and accuracy of line orientation judgments served as dependent measures obtained during baseline, training, posttraining, and at a 3- to 4-month follow-up. Untrained line orientation judgments provided a control measure. Group data showed significant improvement in metaphor interpretation but not in line orientation. Six of 8 patients individually demonstrated significant improvement in metaphor interpretation. Gains persisted for 3 of the 6 patients at the 3- to 4-month follow-up. The Metaphor Training Program can improve cognitive-communication performance for individuals with moderate to severe traumatic brain injury. Results support the potential for treating patients' residual cognitive-linguistic deficits.

  7. Dexmedetomidine attenuates traumatic brain injury: action pathway and mechanisms.

    PubMed

    Wang, Dong; Xu, Xin; Wu, Yin-Gang; Lyu, Li; Zhou, Zi-Wei; Zhang, Jian-Ning

    2018-05-01

    Traumatic brain injury induces potent inflammatory responses that can exacerbate secondary blood-brain barrier (BBB) disruption, neuronal injury, and neurological dysfunction. Dexmedetomidine is a novel α2-adrenergic receptor agonist that exert protective effects in various central nervous system diseases. The present study was designed to investigate the neuroprotective action of dexmedetomidine in a mouse traumatic brain injury model, and to explore the possible mechanisms. Adult male C57BL/6J mice were subjected to controlled cortical impact. After injury, animals received 3 days of consecutive dexmedetomidine therapy (25 µg/kg per day). The modified neurological severity score was used to assess neurological deficits. The rotarod test was used to evaluate accurate motor coordination and balance. Immunofluorescence was used to determine expression of ionized calcium binding adapter molecule-1, myeloperoxidase, and zonula occluden-1 at the injury site. An enzyme linked immunosorbent assay was used to measure the concentration of interleukin-1β (IL-1β), tumor necrosis factor α, and IL-6. The dry-wet weight method was used to measure brain water content. The Evans blue dye extravasation assay was used to measure BBB disruption. Western blot assay was used to measure protein expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1 p20, IL-1β, nuclear factor kappa B (NF-κB) p65, occluding, and zonula occluden-1. Flow cytometry was used to measure cellular apoptosis. Results showed that dexmedetomidine treatment attenuated early neurological dysfunction and brain edema. Further, dexmedetomidine attenuated post-traumatic inflammation, up-regulated tight junction protein expression, and reduced secondary BBB damage and apoptosis. These protective effects were accompanied by down-regulation of the NF-κB and NLRP3 inflammasome pathways. These findings suggest that dexmedetomidine exhibits

  8. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    ERIC Educational Resources Information Center

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  9. Psychiatric disorders and traumatic brain injury

    PubMed Central

    Schwarzbold, Marcelo; Diaz, Alexandre; Martins, Evandro Tostes; Rufino, Armanda; Amante, Lúcia Nazareth; Thais, Maria Emília; Quevedo, João; Hohl, Alexandre; Linhares, Marcelo Neves; Walz, Roger

    2008-01-01

    Psychiatric disorders after traumatic brain injury (TBI) are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed. PMID:19043523

  10. Traumatic Brain Injury and Personality Change

    ERIC Educational Resources Information Center

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  11. Update on the Epidemiology of Concussion/Mild Traumatic Brain Injury.

    PubMed

    Voss, Jameson D; Connolly, Joseph; Schwab, Karen A; Scher, Ann I

    2015-07-01

    Mild traumatic injuries to the brain (e.g., concussion) are common and have been recognized since antiquity, although definitions have varied historically. Nonetheless, studying the epidemiology of concussion helps clarify the overall importance, risk factors, and at-risk populations for this injury. The present review will focus on recent findings related to the epidemiology of concussion including definition controversies, incidence, and patterns in the population overall and in the military and athlete populations specifically. Finally, as this is an area of active research, we will discuss how future epidemiologic observations hold promise for gaining greater clarity about concussion and mild traumatic brain injury.

  12. Association Between Traumatic Brain Injury and Risk of Posttraumatic Stress Disorder in Active-Duty Marines

    DTIC Science & Technology

    2013-01-01

    traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder ( PTSD ) has been difficult to determine because of the prevalence of...Qualification Test; CAPS, Clinician-Administered PTSD Scale; PTSD , posttraumatic stress disorder ; TBI, traumatic brain injury. a For the zeromodel, base...New onset and persistent symptoms of post - traumatic stress disorder self reported after deployment and combat exposures. BMJ.

  13. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin

    2014-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.

  14. Traumatic Brain Injury: A Guidebook for Educators.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Office for Special Education Services.

    This guidebook is designed to help New York school staff better understand the specialized needs of students with traumatic brain injury (TBI) and appropriately apply educational interventions to improve special and general education services for these students. It provides information on the following areas: (1) the causes, incidence, and…

  15. Treatment of Sleep Disorders after Traumatic Brain Injury

    PubMed Central

    Castriotta, Richard J.; Atanasov, Strahil; Wilde, Mark C.; Masel, Brent E.; Lai, Jenny M.; Kuna, Samuel T.

    2009-01-01

    Study Objectives: Determine whether treatment of sleep disorders identified in brain injured adults would result in resolution of those sleep disorders and improvement of symptoms and daytime function. Methods: Prospective evaluation of unselected traumatic brain injury patients with nocturnal polysomnography (NPSG), multiple sleep latency test (MSLT), Epworth Sleepiness Scale (ESS), and neuropsychological testing including Psychomotor Vigilance Test (PVT), Profile of Mood States (POMS), and Functional Outcome of Sleep Questionnaire (FOSQ) before and after treatment with continuous positive airway pressure (CPAP) for obstructive sleep apnea (OSA), modafinil (200 mg) for narcolepsy and posttraumatic hypersomnia (PTH), or pramipexole (0.375 mg) for periodic limb movements in sleep (PLMS). Setting: Three academic medical centers. Participants: Fifty-seven (57) adults ≥ 3 months post traumatic brain injury (TBI). Measurements And Results: Abnormal sleep studies were found in 22 subjects (39%), of whom 13 (23%) had OSA, 2 (3%) had PTH, 3 (5%) had narcolepsy, 4 (7%) had PLMS, and 12 had objective excessive daytime sleepiness with MSLT score < 10 minutes. Apneas, hypopneas, and snoring were eliminated by CPAP in OSA subjects, but there was no significant change in MSLT scores. Periodic limb movements were eliminated with pramipexole. One of 3 narcolepsy subjects and 1 of 2 PTH subjects had resolution of hypersomnia with modafinil. There was no significant change in FOSQ, POMS, or PVT results after treatment. Conclusions: Treatment of sleep disorders after TBI may result in polysomnographic resolution without change in sleepiness or neuropsychological function. Citation: Castriotta RJ; Atanasov S; Wilde MC; Masel BE; Lai JM; Kuna ST. Treatment of sleep disorders after traumatic brain injury. J Clin Sleep Med 2009;5(2):137-144. PMID:19968047

  16. Effect of Coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats

    PubMed Central

    2011-01-01

    Background Head trauma is one of the most important clinical issues that not only can be fatal and disabling, requiring long-term treatment and care, but also can cause heavy financial burden. Formation or distribution of free oxygen radicals should be decreased to enable fixing of poor neurological outcomes and to prevent neuronal damage secondary to ischemia after trauma. Coenzyme Q10 (CoQ10), a component of the mitochondrial electron transport chain, is a strong antioxidant that plays a role in membrane stabilization. In this study, the role of CoQ10 in the treatment of head trauma is researched by analyzing the histopathological and biochemical effects of CoQ10 administered after experimental traumatic brain injury in rats. A traumatic brain-injury model was created in all rats. Trauma was inflicted on rats by the free fall of an object of 450 g weight from a height of 70 cm on the frontoparietal midline onto a metal disc fixed between the coronal and the lambdoid sutures after a midline incision was carried out. Results In the biochemical tests, tissue malondialdehyde (MDA) levels were significantly higher in the traumatic brain-injury group compared to the sham group (p < 0.05). Administration of CoQ10 after trauma was shown to be protective because it significantly lowered the increased MDA levels (p < 0.05). Comparing the superoxide dismutase (SOD) levels of the four groups, trauma + CoQ10 group had SOD levels ranging between those of sham group and traumatic brain-injury group, and no statistically significant increase was detected. Histopathological results showed a statistically significant difference between the CoQ10 and the other trauma-subjected groups with reference to vascular congestion, neuronal loss, nuclear pyknosis, nuclear hyperchromasia, cytoplasmic eosinophilia, and axonal edema (p < 0.05). Conclusion Neuronal degenerative findings and the secondary brain damage and ischemia caused by oxidative stress are decreased by CoQ10 use in rats with

  17. Development of In Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2014-02-01

    multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and psychiatric deterioration 1-9. This syndrome is...personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently...11 Appendices……………………………………………………………………………... 12 4 INTRODUCTION: Athletes in contact sports who have sustained multiple concussive traumatic

  18. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2014-03-01

    military environments, affected in- dividuals (e.g. football players) often sustain additional mild injuries. mTBI symptoms are typically mild and... concussion andmild traumatic brain injury. PM R 3, S354–358; DOI:10.1016/j.pmrj.2011.07.017 (2011). 2. Hendricks, A. M. et al. Screening for mild traumatic...Mendez, M. F. et al. Mild traumatic brain injury from primary blast vs. blunt forces: post- concussion consequences and functional neuroimaging

  19. Predicting Intracranial Pressure and Brain Tissue Oxygen Crises in Patients With Severe Traumatic Brain Injury.

    PubMed

    Myers, Risa B; Lazaridis, Christos; Jermaine, Christopher M; Robertson, Claudia S; Rusin, Craig G

    2016-09-01

    To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. The neurosurgical unit of Ben Taub Hospital (Houston, TX). Our cohort consisted of 817 subjects with severe traumatic brain injury. Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.

  20. Workplace discrimination and traumatic brain injury: the national EEOC ADA research project.

    PubMed

    McMahon, Brian T; West, Steven L; Shaw, Linda R; Waid-Ebbs, Kay; Belongia, Lisa

    2005-01-01

    Using the Integrated Mission System of the Equal Employment Opportunity Commission, the employment discrimination experience of Americans with traumatic brain injury is documented. Researchers compare and contrast the key dimensions of workplace discrimination involving Americans with traumatic brain injury and persons with other physical, sensory, and neurological impairments. Specifically, the researchers examine demographic characteristics of the charging parties; the industry designation, location, and size of employers against whom complaints are filed; the nature of discrimination (i.e., type of adverse action) alleged to occur; and the outcome or resolution of the investigations. Findings indicate that persons with traumatic brain injury were more likely to encounter discrimination after obtaining employment as opposed to during the hiring process. They were also more likely to encounter discrimination when they were younger or Caucasian or when employed in the Midwestern or Western United States. Implications are addressed.

  1. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.

    PubMed

    Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J

    2015-11-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and

  2. Monitoring Neurocognitive Performance and Electrophysiological Activity After Mild Traumatic Brain Injury (mTBI)

    DTIC Science & Technology

    2014-03-01

    return to duty’ decisions. 15. SUBJECT TERMS Traumatic Brain Injury, mTBI, concussion, Magnetoencephalography, MEG , MRI, biomarkers, actigraphy 16...within approximately two years of the writing of this report. 3. KEYWORDS Traumatic Brain Injury, mTBI, concussion, Magnetoencephalography, MEG , MRI...Merrifield, PhD) i. Magnetoencephalography ( MEG ) laboratory is fully operational after two weeks of cool down and testing in February 2014. Pilot testing

  3. New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury

    DTIC Science & Technology

    2012-02-01

    Subdural hemor- rhage (or hematoma ) is a form of traumatic brain injury, in which blood gathers between the du- ra and arachnoid mater (in meningeal...to an hour. Subdural hemorrhage (or hematoma ) is a form of traumatic brain injury, in which blood gathers between the dura and arachnoid mater (in

  4. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  5. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    PubMed

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.

  6. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    PubMed

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  7. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  8. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  9. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  10. Training communication partners of people with severe traumatic brain injury improves everyday conversations: a multicenter single blind clinical trial.

    PubMed

    Togher, Leanne; McDonald, Skye; Tate, Robyn; Power, Emma; Rietdijk, Rachael

    2013-07-01

    To determine effectiveness of communication training for partners of people with severe traumatic brain injury. Three arm non-randomized controlled trial comparing communication partner training (JOINT) with individual treatment (TBI SOLO) and a waitlist control group with 6 month follow-up. Forty-four outpatients with severe chronic traumatic brain injuries were recruited. Ten-week conversational skills treatment program encompassing weekly group and individual sessions for both treatment groups. The JOINT condition focused on both the partner and the person with traumatic brain injury while the TBI SOLO condition focused on the individual with TBI only. Primary outcomes were blind ratings of the person with traumatic brain injury's level of participation during conversation on the Measure of Participation in Communication Adapted Kagan scales. Communication partner training improved conversational performance relative to training the person with traumatic brain injury alone and a waitlist control group on the primary outcome measures. Results were maintained at six months post-training. Training communication partners of people with chronic severe traumatic brain injury was more efficacious than training the person with traumatic brain injury alone. The Adapted Kagan scales proved to be a robust and sensitive outcome measure for a conversational skills training program.

  11. Forensic Pathology of Traumatic Brain Injury.

    PubMed

    Finnie, J W

    2016-09-01

    Traumatic brain injury constitutes a significant proportion of cases requiring forensic examination, and it encompasses (1) blunt, nonmissile head injury, especially involving motor vehicle accidents, and (2) penetrating, missile injury produced by a range of high- and lower-velocity projectiles. This review examines the complex pathophysiology and biomechanics of both types of neurotrauma and assesses the macroscopic and histologic features of component lesions, which may be used to determine the cause and manner of death resulting from an intentional assault or accident. Estimation of the survival time postinjury by pathologic examination is also important where malicious head injury is suspected, in an attempt to ascertain a time at which the traumatic event might have been committed, thereby evaluating the authenticity of statements made by the alleged perpetrator. © The Author(s) 2015.

  12. Perspectives on Creating Clinically Relevant Blast Models for Mild Traumatic Brain Injury and Post Traumatic Stress Disorder Symptoms

    PubMed Central

    Brenner, Lisa A.; Bahraini, Nazanin; Hernández, Theresa D.

    2012-01-01

    Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic), behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI) and/or post traumatic stress disorder (PTSD). Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast) traumatic brain injury can be used to facilitate the development of clinically relevant blast models. PMID:22408635

  13. Development of In Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain...who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to...repetitive concussive TBI in mice has been optimal. Ongoing efforts include development of more sensitive methods to detect tau, and combinations of

  14. Hospitalizations for critically ill children with traumatic brain injuries: a longitudinal analysis.

    PubMed

    Tilford, John M; Aitken, Mary E; Anand, K J S; Green, Jerril W; Goodman, Allen C; Parker, James G; Killingsworth, Jeffrey B; Fiser, Debra H; Adelson, P David

    2005-09-01

    This study examines the incidence, utilization of procedures, and outcomes for critically ill children hospitalized with traumatic brain injury over the period 1988-1999 to describe the benefits of improved treatment. Retrospective analysis of hospital discharges was conducted using data from the Health Care Cost and Utilization Project Nationwide Inpatient Sample that approximates a 20% sample of U.S. acute care hospitals. Hospital inpatient stays from all types of U.S. community hospitals. The study sample included all children aged 0-21 with a primary or secondary ICD-9-CM diagnosis code for traumatic brain injury and a procedure code for either endotracheal intubation or mechanical ventilation. None. Deaths occurring during hospitalization were used to calculate mortality rates. Use of intracranial pressure monitoring and surgical openings of the skull were investigated as markers for the aggressiveness of treatment. Patients were further classified by insurance status, household income, and hospital characteristics. Over the 12-yr study period, mortality rates decreased 8 percentage points whereas utilization of intracranial pressure monitoring increased by 11 percentage points. The trend toward more aggressive management of traumatic brain injury corresponded with improved hospital outcomes over time. Lack of insurance was associated with vastly worse outcomes. An estimated 6,437 children survived their traumatic brain injury hospitalization because of improved treatment, and 1,418 children died because of increased mortality risk associated with being uninsured. Improved treatment was valued at approximately dollar 17 billion, whereas acute care hospitalization costs increased by dollar 1.5 billion (in constant 2000 dollars). Increased mortality in uninsured children was associated with a dollar 3.76 billion loss in economic benefits. More aggressive management of pediatric traumatic brain injury appears to have contributed to reduced mortality rates over

  15. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    PubMed Central

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  16. Using geographical information systems mapping to identify areas presenting high risk for traumatic brain injury

    PubMed Central

    2011-01-01

    Background The aim of this study is to show how geographical information systems (GIS) can be used to track and compare hospitalization rates for traumatic brain injury (TBI) over time and across a large geographical area using population based data. Results & Discussion Data on TBI hospitalizations, and geographic and demographic variables, came from the Ontario Trauma Registry Minimum Data Set for the fiscal years 1993-1994 and 2001-2002. Various visualization techniques, exploratory data analysis and spatial analysis were employed to map and analyze these data. Both the raw and standardized rates by age/gender of the geographical unit were studied. Data analyses revealed persistent high rates of hospitalization for TBI resulting from any injury mechanism between two time periods in specific geographic locations. Conclusions This study shows how geographic information systems can be successfully used to investigate hospitalizaton rates for traumatic brain injury using a range of tools and techniques; findings can be used for local planning of both injury prevention and post discharge services, including rehabilitation. PMID:22054220

  17. Decompressive craniectomy in diffuse traumatic brain injury.

    PubMed

    Cooper, D James; Rosenfeld, Jeffrey V; Murray, Lynnette; Arabi, Yaseen M; Davies, Andrew R; D'Urso, Paul; Kossmann, Thomas; Ponsford, Jennie; Seppelt, Ian; Reilly, Peter; Wolfe, Rory

    2011-04-21

    It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure. From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months. Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%). In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes. (Funded by the National Health and Medical Research Council of Australia and others; DECRA Australian Clinical Trials Registry number, ACTRN012605000009617.).

  18. Sleep Disorders Associated With Mild Traumatic Brain Injury Using Sport Concussion Assessment Tool 3.

    PubMed

    Tkachenko, Nataliya; Singh, Kanwaljit; Hasanaj, Lisena; Serrano, Liliana; Kothare, Sanjeev V

    2016-04-01

    Sleep problems affect 30% to 80% of patients with mild traumatic brain injury. We assessed the prevalence of sleep disorders after mild traumatic brain injury and its correlation with other symptoms. Individuals with mild traumatic brain injury were assessed at the New York University Concussion Center during 2013-2014 with the Sports Concussion Assessment Tool, third edition, data following mild traumatic brain injury. The relationship between sleep problems (drowsiness, difficulty falling asleep, fatigue or low energy), psychiatric symptoms (sadness, nervousness or anxiousness), headache, and dizziness were analyzed by Spearman correlation and logistic regression using moderate to severe versus none to mild categorization. Ninety-three patients were retrospectively considered. The most common injury causes were falls (34.4%) and motor vehicle accidents (21.5%). There was a positive correlation between dizziness, headache, psychiatric problems (sadness, anxiety, irritability), and sleep problems (fatigue, drowsiness, and difficulty falling asleep) (P < 0.001). Logistic regression showed a significant association between moderate to severe psychiatric symptoms and moderate to severe sleep symptoms (P < 0.05). Sleep symptoms became more severe with increased time interval from mild traumatic brain injury to Sport Concussion Assessment Tool 3 administration (odds ratio = 1.005, 1.006, and 1.008, P < 0.05). There was significant correlation between motor vehicle accident and drowsiness and difficulty falling asleep (P < 0.05). Medications given in the emergency department had a positive correlation with drowsiness (P < 0.05). Individuals who report moderate to severe headache, dizziness, and psychiatric symptoms have a higher likelihood of reporting moderate to severe sleep disorders following mild traumatic brain injury and should be counseled and initiated with early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Definition of Traumatic Brain Injury, Neurosurgery, Trauma Orthopedics, Neuroimaging, Psychology, and Psychiatry in Mild Traumatic Brain Injury.

    PubMed

    Pervez, Mubashir; Kitagawa, Ryan S; Chang, Tiffany R

    2018-02-01

    Traumatic brain injury (TBI) disrupts the normal function of the brain. This condition can adversely affect a person's quality of life with cognitive, behavioral, emotional, and physical symptoms that limit interpersonal, social, and occupational functioning. Although many systems exist, the simplest classification includes mild, moderate, and severe TBI depending on the nature of injury and the impact on the patient's clinical status. Patients with TBI require prompt evaluation and multidisciplinary management. Aside from the type and severity of the TBI, recovery is influenced by individual patient characteristics, social and environmental factors, and access to medical and rehabilitation services. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies.

    PubMed

    Loosemore, Mike; Knowles, Charles H; Whyte, Greg P

    2007-10-20

    To evaluate the risk of chronic traumatic brain injury from amateur boxing. Secondary research performed by combination of sport physicians and clinical academics. DESIGN, DATA SOURCES, AND METHODS: Systematic review of observational studies in which chronic traumatic brain injury was defined as any abnormality on clinical neurological examination, psychometric testing, neuroimaging studies, and electroencephalography. Studies were identified through database (1950 to date) and bibliographic searches without language restrictions. Two reviewers extracted study characteristics, quality, and data, with adherence to a protocol developed from a widely recommended method for systematic review of observational studies (MOOSE). 36 papers had relevant extractable data (from a detailed evaluation of 93 studies of 943 identified from the initial search). Quality of evidence was generally poor. The best quality studies were those with a cohort design and those that used psychometric tests. These yielded the most negative results: only four of 17 (24%) better quality studies found any indication of chronic traumatic brain injury in a minority of boxers studied. There is no strong evidence to associate chronic traumatic brain injury with amateur boxing.

  1. Impaired Pituitary Axes Following Traumatic Brain Injury

    PubMed Central

    Scranton, Robert A.; Baskin, David S.

    2015-01-01

    Pituitary dysfunction following traumatic brain injury (TBI) is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed. PMID:26239686

  2. Apathy following traumatic brain injury.

    PubMed

    Starkstein, Sergio E; Pahissa, Jaime

    2014-03-01

    Traumatic brain injury (TBI) may result in significant emotional and behavioral changes, such as depression, impulsivity, anxiety, aggressive behavior, and posttraumatic stress disorder. Apathy has been increasingly recognized as a relevant sequela of TBI, with a negative impact on the patients' quality of life as well as their participation in rehabilitation activities. This article reviews the nosologic and phenomenological aspects of apathy in TBI, diagnostic issues, frequency and prevalence, relevant comorbid conditions, potential mechanisms, and treatment. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  3. Head trauma in the cat: 2. assessment and management of traumatic brain injury.

    PubMed

    Garosi, Laurent; Adamantos, Sophie

    2011-11-01

    Feline trauma patients are commonly seen in general practice and frequently have sustained some degree of brain injury. Cats with traumatic brain injuries may have a variety of clinical signs, ranging from minor neurological deficits to life-threatening neurological impairment. Appropriate management depends on prompt and accurate patient assessment, and an understanding of the pathophysiology of brain injury. The most important consideration in managing these patients is maintenance of cerebral perfusion and oxygenation. For cats with severe head injury requiring decompressive surgery, early intervention is critical. There is a limited clinical evidence base to support the treatment of traumatic brain injury in cats, despite its relative frequency in general practice. Appropriate therapy is, therefore, controversial in veterinary medicine and mostly based on experimental studies or human head trauma studies. This review, which sets out to describe the specific approach to diagnosis and management of traumatic brain injury in cats, draws on the current evidence, as far as it exists, as well as the authors' clinical experience. Copyright © 2011 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  4. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    PubMed Central

    Zhou, Hai-xiao; Liu, Zhi-gang; Liu, Xiao-jiao; Chen, Qian-xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  5. Race/Ethnicity and Retention in Traumatic Brain Injury Outcomes Research: A Traumatic Brain Injury Model Systems National Database Study.

    PubMed

    Sander, Angelle M; Lequerica, Anthony H; Ketchum, Jessica M; Hammond, Flora M; Gary, Kelli Williams; Pappadis, Monique R; Felix, Elizabeth R; Johnson-Greene, Douglas; Bushnik, Tamara

    2018-05-31

    To investigate the contribution of race/ethnicity to retention in traumatic brain injury (TBI) research at 1 to 2 years postinjury. Community. With dates of injury between October 1, 2002, and March 31, 2013, 5548 whites, 1347 blacks, and 790 Hispanics enrolled in the Traumatic Brain Injury Model Systems National Database. Retrospective database analysis. Retention, defined as completion of at least 1 question on the follow-up interview by the person with TBI or a proxy. Retention rates 1 to 2 years post-TBI were significantly lower for Hispanic (85.2%) than for white (91.8%) or black participants (90.5%) and depended significantly on history of problem drug or alcohol use. Other variables associated with low retention included older age, lower education, violent cause of injury, and discharge to an institution versus private residence. The findings emphasize the importance of investigating retention rates separately for blacks and Hispanics rather than combining them or grouping either with other races or ethnicities. The results also suggest the need for implementing procedures to increase retention of Hispanics in longitudinal TBI research.

  6. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and...11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17...To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing efforts include

  7. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2016-02-01

    14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive...pugilistica 3, 11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain...Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing

  8. Dementia resulting from traumatic brain injury

    PubMed Central

    Ramalho, Joana; Castillo, Mauricio

    2015-01-01

    Traumatic brain injury (TBI) represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge. PMID:29213985

  9. Outcome in Women with Traumatic Brain Injury Admitted to a Level 1 Trauma Center

    PubMed Central

    de Guise, Elaine; Tinawi, Simon; Marcoux, Judith; Maleki, Mohammed

    2014-01-01

    Background. The aim of this study was to compare acute outcome between men and women after sustaining a traumatic brain injury (TBI). Methods. A total of 5,642 patients admitted to the Traumatic Brain Injury Program of the McGill University Health Centre-Montreal General Hospital between 2000 and 2011 and diagnosed with a TBI were included in the study. The overall percentage of women with TBI was 30.6% (n = 1728). Outcome measures included the length of stay (LOS), the Extended Glasgow Outcome Scale (GOSE), the functional independence measure instrument (FIM), discharge destination, and mortality rate. Results. LOS, GOSE, the FIM ratings, and discharge destination did not show significant differences between genders once controlling for several confounding variables and running the appropriate diagnostic tests (P < 0.05). However, women had less chance of dying during their acute care hospitalization than men of the same age, with the same TBI severity and following the same mechanism of injury. Although gender was a statistically significant predictor, its contribution in explaining variation in mortality was small. Conclusion. More research is needed to better understand gender differences in mortality; as to date, the research findings remain inconclusive. PMID:27355011

  10. Quantitative magnetic resonance imaging in traumatic brain injury.

    PubMed

    Bigler, E D

    2001-04-01

    Quantitative neuroimaging has now become a well-established method for analyzing magnetic resonance imaging in traumatic brain injury (TBI). A general review of studies that have examined quantitative changes following TBI is presented. The consensus of quantitative neuroimaging studies is that most brain structures demonstrate changes in volume or surface area after injury. The patterns of atrophy are consistent with the generalized nature of brain injury and diffuse axonal injury. Various clinical caveats are provided including how quantitative neuroimaging findings can be used clinically and in predicting rehabilitation outcome. The future of quantitative neuroimaging also is discussed.

  11. [The incidence and risk factors of ventilator-associated pneumonia in patients with severe traumatic brain injury].

    PubMed

    Marjanović, Vesna; Novak, Vesna; Velicković, Ljubinka; Marjanović, Goran

    2011-01-01

    Patients with severe traumatic brain injury are at a risk of developing ventilator-associated pneumonia. The aim of this study was to describe the incidence, etiology, risk factors for development of ventilator-associated pneumonia and outcome in patients with severe traumatic brain injury. A retrospective study was done in 72 patients with severe traumatic brain injury, who required mechanical ventilation for more than 48 hours. Ventilator-associated pneumonia was found in 31 of 72 (43.06%) patients with severe traumatic brain injury. The risk factors for ventilator-associated pneumonia were: prolonged mechanical ventilation (12.42 vs 4.34 days, p < 0.001), longer stay at intensive care unit (17 vs 5 days, p < 0.001) and chest injury (51.61 vs 19.51%, p < 0.009) compared to patients without ventilator-associated pneumonia. The mortality rate in the patients with ventilator-associated pneumonia was higher (38.71 vs 21.95%, p = 0.12). The development of ventilator-associated pneumonia in patients with severe traumatic brain injury led to the increased morbidity due to the prolonged mechanical ventilation, longer stay at intensive care unit and chest injury, but had no effect on mortality.

  12. Diabetes Insipidus after Traumatic Brain Injury

    PubMed Central

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  13. A Wireless Intracranial Brain Deformation Sensing System for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Song, S.; Race, N. S.; Kim, A.; Zhang, T.; Shi, R.; Ziaie, B.

    2015-01-01

    Blast-induced traumatic brain injury (bTBI) has been linked to a multitude of delayed-onset neurodegenerative and neuropsychiatric disorders, but complete understanding of their pathogenesis remains elusive. To develop mechanistic relationships between bTBI and post-blast neurological sequelae, it is imperative to characterize the initiating traumatic mechanical events leading to eventual alterations of cell, tissue, and organ structure and function. This paper presents a wireless sensing system capable of monitoring the intracranial brain deformation in real-time during the event of a bTBI. The system consists of an implantable soft magnet and an external head-mounted magnetic sensor that is able to measure the field in three dimensions. The change in the relative position of the soft magnet WITH respect to the external sensor as the result of the blast wave induces changes in the magnetic field. The magnetic field data in turn is used to extract the temporal and spatial motion of the brain under the blast wave in real-time. The system has temporal and spatial resolutions of 5 μs and 10 μm. Following the characterization and validation of the sensor system, we measured brain deformations in a live rodent during a bTBI. PMID:26586273

  14. Post-traumatic stress symptoms and psychological functioning in children of parents with acquired brain injury.

    PubMed

    Kieffer-Kristensen, Rikke; Teasdale, Thomas W; Bilenberg, Niels

    2011-01-01

    The effect of parental brain injury on children has been relatively little investigated. This study examines post-traumatic stress symptoms (PSS) and psychological functioning in children with a parent with an acquired brain injury. The participants were 35 patients with acquired brain injury, their spouses and children aged 7-14 years recruited from out-patient brain injury rehabilitation units across Denmark. Children self-reported psychological functioning using the Becks Youth Inventory (BYI) and Child Impact of Events revised (CRIES) measuring PSS symptoms. Emotional and behavioural problems among the children were also identified by the parents using the Achenbach's Child Behaviour Checklist (CBCL). A matched control group, consisting of 20 children of parents suffering from diabetes, was recruited from the National Danish Diabetes Register. Post-traumatic stress symptoms above cut-off score (<30) were found (CRIES) in 46% of the children in the brain injury group compared to 10% in the diabetes group. The parents in the brain injury group reported more emotional and behavioural problems in their children when compared to published norms (CBCL). When parents have acquired brain injury, their children appear to be at a substantial risk for developing post-traumatic stress symptoms. These results indicate the need for a child-centred family support service to reduce the risk of children being traumatized by parental brain injury, with a special focus on the relational changes within the family.

  15. 78 FR 37834 - Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics... Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request. 0925-NEW...

  16. Hypopituitarism after traumatic brain injury.

    PubMed

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The neuropathology and neurobiology of traumatic brain injury.

    PubMed

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Cocaine Abuse, Traumatic Brain Injury, and Preexisting Brain Lesions as Risk Factors for Bupropion-Associated Psychosis.

    PubMed

    Barman, Rajdip; Kumar, Sanjeev; Pagadala, Bhuvaneshwar; Detweiler, Mark B

    2017-08-01

    Bupropion is generally considered safe and is widely used both as a monotherapy and as an augmentation agent for the treatment of major depression. Concerns have been raised about bupropion's propensity to precipitate new psychosis and worsen existing psychotic symptoms, although the mechanism is poorly understood. Three cases are reported in which bupropion use was associated with psychosis. The aim of the study was to explore the risk factors and possible mechanisms of psychosis in each case. Case 1 describes the interaction of cocaine abuse sensitization in a patient who developed psychosis with a lower dosage of bupropion. Cases 2 and 3 discuss the role of traumatic brain injury and structural brain lesions in increasing the risk of psychosis when using bupropion. Cocaine abuse, traumatic brain injury, and preexisting brain lesions appear to be risk factors for developing psychosis in persons taking bupropion. In such cases, clinicians should carefully assess the risks and benefits and closely monitor patients for symptoms of psychosis.

  19. The experience of traumatic brain injury in Botswana.

    PubMed

    Mbakile-Mahlanza, Lingani; Manderson, Lenore; Ponsford, Jennie

    2015-01-01

    Whilst the consequences of traumatic brain injury (TBI) are understood in Western countries, it is not known how cultural background and beliefs affect response and outcome following TBI in low and middle income countries. This study aimed to explore the experiences of TBI in Botswana. Participants included 21 individuals with moderate to severe TBI (68% males, mean age 35.2 years), 18 caregivers and 25 healthcare workers. Qualitative semi-structured interviews were transcribed, translated and thematically coded. Thematic analysis indicated several themes: Injury-related changes, attributions and beliefs about the cause of the injury, family reactions, attitudes, and resources. Participants described the common injury-related effects of TBI. Many participants attributed their injury to supernatural causes. Immediate family members of participants with TBI expressed a sense of love and devotion towards the injured person. Communication was characterised by inadequate information given to those injured and their caregivers. Provision of care was impeded by insufficient staff, limited supplies and lack of training of nurses. The current healthcare system would therefore appear to be ill-equipped to meet the needs of TBI survivors in Botswana. This study will improve understanding of cultural responses and approaches to brain injuries in Botswana which may, in turn, inform improved practice.

  20. [Guidelines for the diagnosis and treatment of severe traumatic brain injury. Part 2. Intensive care and neuromonitoring].

    PubMed

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Oshorov, A V; Sychev, A A; Alexandrova, E V; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the major causes of death and disability in young and middle-aged people. The most problematic group is comprised of patients with severe TBI who are in a coma. The adequate diagnosis of primary brain injuries and timely prevention and treatment of the secondary injury mechanisms largely define the possibility of reducing mortality and severe disabling consequences. When developing these guidelines, we used our experience in the development of international and national recommendations for the diagnosis and treatment of mild traumatic brain injury, penetrating gunshot wounds to the skull and brain, severe traumatic brain injury, and severe consequences of brain injuries, including a vegetative state. In addition, we used international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe traumatic brain injury, which had been published in recent years. The proposed guidelines concern intensive care of severe TBI in adults and are particularly intended for neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in the treatment of these patients.

  1. Educational Directions for Students with Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Center for Innovations in Special Education, Columbia, MO.

    This manual, developed to assist Missouri school personnel in the provision of educational opportunities for students with traumatic brain injury (TBI), answers commonly asked questions about the educational needs of these students, and gives practical applications of educational practices and programming. Three case studies are introduced to help…

  2. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies

    PubMed Central

    Knowles, Charles H; Whyte, Greg P

    2007-01-01

    Objective To evaluate the risk of chronic traumatic brain injury from amateur boxing. Setting Secondary research performed by combination of sport physicians and clinical academics. Design, data sources, and methods Systematic review of observational studies in which chronic traumatic brain injury was defined as any abnormality on clinical neurological examination, psychometric testing, neuroimaging studies, and electroencephalography. Studies were identified through database (1950 to date) and bibliographic searches without language restrictions. Two reviewers extracted study characteristics, quality, and data, with adherence to a protocol developed from a widely recommended method for systematic review of observational studies (MOOSE). Results 36 papers had relevant extractable data (from a detailed evaluation of 93 studies of 943 identified from the initial search). Quality of evidence was generally poor. The best quality studies were those with a cohort design and those that used psychometric tests. These yielded the most negative results: only four of 17 (24%) better quality studies found any indication of chronic traumatic brain injury in a minority of boxers studied. Conclusion There is no strong evidence to associate chronic traumatic brain injury with amateur boxing. PMID:17916811

  3. The history and evolution of traumatic brain injury rehabilitation in military service members and veterans.

    PubMed

    Cifu, David X; Cohen, Sara I; Lew, Henry L; Jaffee, Michael; Sigford, Barbara

    2010-08-01

    The field of traumatic brain injury has evolved since the time of the Civil War in response to the needs of patients with injuries and disabilities resulting from war. The Department of Veterans Affairs and the Defense and Veterans Brain Injury Center have been in the forefront of the development of the interdisciplinary approach to the rehabilitation of soldiers with traumatic brain injury, particularly those injured from the recent conflicts in Iraq and Afghanistan. The objectives of this literature review are to examine how the casualties resulting from major wars in the past led to the establishment of the current model of evaluation and treatment of traumatic brain injury and to review how the field has expanded in response to the growing cohort of military service members and veterans with TBI.

  4. BDNF Polymorphism Predicts General Intelligence after Penetrating Traumatic Brain Injury

    PubMed Central

    Rostami, Elham; Krueger, Frank; Zoubak, Serguei; Dal Monte, Olga; Raymont, Vanessa; Pardini, Matteo; Hodgkinson, Colin A.; Goldman, David; Risling, Mårten; Grafman, Jordan

    2011-01-01

    Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery. PMID:22087305

  5. The pattern of traumatic brain injuries: a country undergoing rapid development.

    PubMed

    Bener, Abdulbari; Omar, Azhar O Kh; Ahmad, Amal E; Al-Mulla, Fatma H; Abdul Rahman, Yassir S

    2010-02-01

    Traumatic brain injuries (TBIs) remain an important public health problem in most industrial developed and especially in developing countries. This may also result in temporary or permanent disability. The aim of this study was to examine the trends in the distribution of traumatic brain injuries by gender, age, severity of injury and outcome and describe the incidence in the injury patterns. This is a retrospective, descriptive, hospital-based study that included all cases of TBI during the period from January 2003 to December 2007. This study is a retrospective analysis of 1919 patients with traumatic brain injury attended and treated at the Accident and Emergency Department of the Hamad General Hospital and other Trauma Centers of the Hamad Medical Corporation. Details of all TBI cases were extracted from the database of the Emergency Medical Services (EMS). Severity of TBI was assessed by Glasgow Coma Scale (GCS). This study was based on 1919 patients suffering from traumatic brain injury, where 154 died and 97 (5.1%) of them died in the intensive care unit. The number of TBI cases increased remarkably in 2007 by 69.7%. However, the incidence rate was nearly stable across the years (4.2-4.9/10 000 population). Of the total TBI cases, the majority of them were non-Qataris (72.7%) and men (88.6%). There was a significant increase in number of TBI cases between 2003 and 2007 in terms of age group (p = 0.003), nationality (p = 0.004) and severity of injuries (p = 0.05). The highest peak rate of TBI cases was observed among the population over 65 years old, followed by 15-24 year olds. Falls caused most TBIs in the 1-14 years age group, road traffic accidents in the age group 15-24 years and sports and recreation in the age group 25-34 years. The present study findings revealed that traumatic brain injury is a major public health problem, especially among young adults and older people. Although there was a sharp increase found in the number of TBI cases, the

  6. Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans.

    PubMed

    Spielberg, Jeffrey M; McGlinchey, Regina E; Milberg, William P; Salat, David H

    2015-08-01

    Understanding the neural causes and consequences of posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) is a high research priority, given the high rates of associated disability and suicide. Despite remarkable progress in elucidating the brain mechanisms of PTSD and mTBI, a comprehensive understanding of these conditions at the level of brain networks has yet to be achieved. The present study sought to identify functional brain networks and topological properties (measures of network organization and function) related to current PTSD severity and mTBI. Graph theoretic tools were used to analyze resting-state functional magnetic resonance imaging data from 208 veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn, all of whom had experienced a traumatic event qualifying for PTSD criterion A. Analyses identified brain networks and topological network properties linked to current PTSD symptom severity, mTBI, and the interaction between PTSD and mTBI. Two brain networks were identified in which weaker connectivity was linked to higher PTSD re-experiencing symptoms, one of which was present only in veterans with comorbid mTBI. Re-experiencing was also linked to worse functional segregation (necessary for specialized processing) and diminished influence of key regions on the network, including the hippocampus. Findings of this study demonstrate that PTSD re-experiencing symptoms are linked to weakened connectivity in a network involved in providing contextual information. A similar relationship was found in a separate network typically engaged in the gating of working memory, but only in veterans with mTBI. Published by Elsevier Inc.

  7. Virtual Reality for Traumatic Brain Injury.

    PubMed

    Zanier, Elisa R; Zoerle, Tommaso; Di Lernia, Daniele; Riva, Giuseppe

    2018-01-01

    In this perspective, we discuss the potential of virtual reality (VR) in the assessment and rehabilitation of traumatic brain injury, a silent epidemic of extremely high burden and no pharmacological therapy available. VR, endorsed by the mobile and gaming industries, is now available in more usable and cheaper tools allowing its therapeutic engagement both at the bedside and during the daily life at chronic stages after injury with terrific potential for a longitudinal disease modifying effect.

  8. In vivo leukocyte-mediated brain microcirculatory inflammation: a comparison of osmotherapies and progesterone in severe traumatic brain injury

    PubMed Central

    Kumasaka, Kenichiro; Marks, Joshua A.; Eisenstadt, Rachel; Murcy, Mohammad A.; Samadi, Davoud; Li, Shengjie; Johnson, Victoria; Browne, Kevin D.; Smith, Douglas H.; Schwab, C. William; Pascual, Jose L.

    2017-01-01

    BACKGROUND Mannitol, hypertonic saline, and progesterone may blunt leukocyte recruitment after traumatic brain injury (TBI). We hypothesized that progesterone reduces pericontusional recruitment of leukocytes to a greater extent than either osmotherapy a day after TBI. METHODS CD1 mice underwent controlled cortical impact and were treated with osmotherapy (mannitol and hypertonic saline) or progesterone. Thirty-two hours after TBI, live pial microscopy was used to evaluate leukocyte–endothelial interactions and immunohistochemistry was used for the detection of pericontusional tissue polymorphonuclear neutrophils. Neurologic recovery was assessed before sacrifice. RESULTS Mannitol resulted in the lowest in vivo leukocyte recruitment compared with progesterone (795 ± 282 vs 1,636 ± 434 LEU/100 μm/minutes, P < .05). Mannitol also displayed lower tissue accumulation of leukocytes as compared with progesterone (5.7 ± 1.7 vs 15.2 ± .1 LEU/mm2, P = .03). However, progesterone resulted in better neurologic recovery than either osmotherapy. CONCLUSIONS Leukocyte recruitment to injured brain is lowest with mannitol administration. How different agents alter progression of secondary brain injury will require further evaluation in humans. PMID:25305798

  9. Found in translation: understanding the biology and behavior of experimental traumatic brain injury

    PubMed Central

    Bondi, Corina O.; Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Osier, Nicole D.; Carlson, Shaun W.; Dixon, C. Edward; Giza, Christopher C.; Kline, Anthony E.

    2014-01-01

    BONDI, C.O., B.D. Semple, L.J. Noble-Haeusslein, N.D. Osier, S.W. Carlson, C.E. Dixon, C.C. Giza and A.E. Kline. Found in translation: understanding the biology and behavior of experimental traumatic brain injury. NEUROSCI BIOBEHAV REV. The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled “Traumatic brain injury: laboratory and clinical perspectives,” presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. PMID:25496906

  10. Pediatric Traumatic Brain Injury. Special Topic Report #3.

    ERIC Educational Resources Information Center

    Waaland, Pamela K.; Cockrell, Janice L.

    This brief report summarizes what is known about pediatric traumatic brain injury, including the following: risk factors (e.g., males especially those ages 5 to 25, youth with preexisting problems including previous head injury victims, and children receiving inadequate supervision); life after injury; physical and neurological consequences (e.g.,…

  11. Awareness of deficits and error processing after traumatic brain injury.

    PubMed

    Larson, Michael J; Perlstein, William M

    2009-10-28

    Severe traumatic brain injury is frequently associated with alterations in performance monitoring, including reduced awareness of physical and cognitive deficits. We examined the relationship between awareness of deficits and electrophysiological indices of performance monitoring, including the error-related negativity and posterror positivity (Pe) components of the scalp-recorded event-related potential, in 16 traumatic brain injury survivors who completed a Stroop color-naming task while event-related potential measurements were recorded. Awareness of deficits was measured as the discrepancy between patient and significant-other ratings on the Frontal Systems Behavior Scale. The amplitude of the Pe, but not error-related negativity, was reliably associated with decreased awareness of deficits. Results indicate that Pe amplitude may serve as an electrophysiological indicator of awareness of abilities and deficits.

  12. Prevalence of traumatic brain injury in juvenile offenders: a meta-analysis.

    PubMed

    Farrer, Thomas J; Frost, R Brock; Hedges, Dawson W

    2013-01-01

    Studies of traumatic brain injury (TBI) among adult populations demonstrate that such injuries can lead to aggressive behaviors. Related findings suggest that incarcerated individuals have high rates of brain injuries. Such studies suggest that traumatic brain injury may be related to the etiology and recidivism of criminal behavior. Relatively few studies have examined the prevalence of TBI using a delinquent juvenile sample. In order to assess the relationship between TBI and juvenile offender status, the current study used meta-analytic techniques to examine the odds of having a TBI among juvenile offenders. Across 9 studies, we found that approximately 30% of juvenile offenders have sustained a previous brain injury. Across 5 studies that used a control group, a calculated summary odds ratio of 3.37 suggests that juvenile offenders are significantly more likely to have a TBI compared to controls. Results suggest that the rate of TBIs within the juvenile offender population is significant and that there may be a relationship between TBIs and juvenile criminal behavior.

  13. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2015-02-15

    Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.

  14. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  15. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    PubMed Central

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  16. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. [Mild traumatic brain injury and postconcussive syndrome: a re-emergent questioning].

    PubMed

    Auxéméry, Y

    2012-09-01

    Blast injuries are psychologically and physically devastating. Notably, primary blast injury occurs as a direct effect of changes in atmospheric pressure caused by a blast wave. The combat-related traumatic brain injuries (TBI) resulting from exposure to explosions is highly prevalent among military personnel who have served in current wars. Traumatic brain injury is a common cause of neurological damage and disability among civilians and servicemen. Most patients with TBI suffer a mild traumatic brain injury with transient loss of consciousness. A controversial issue in the field of head injury is the outcome of concussion. Most individuals with such injuries are not admitted to emergency units and receive a variable degree of medical attention. Nevertheless, cranial traumas vary in their mechanisms (blast, fall, road accident, bullet-induced craniocerebral injury) and in their gravity (from minor to severe). The majority of subjects suffering concussion have been exposed to explosion or blast injuries, which have caused minor cranial trauma. Although some authors refuse to accept the reality of post-concussion syndrome (PCS) and confuse it with masked depression, somatic illnesses or post-traumatic stress, we have raised the question again of its existence, without denying the intricate links with other psychiatric or neurological disorders. Although the mortality rate is negligible, the traumatic sequel after mild traumatic brain injury is clear. A difference in initial somatic severity is noted between the serious somatic consequences of a severe cranial trauma compared with the apparently benign consequences of a minor cranial trauma. However, the long-term consequences of the two types of impacts are far from negligible: PCS is a source of morbidity. The prognosis for minor cranial traumas is benign at vital level but a number of patients will develop long-term complaints, which contrast with the negativity of the clinical examination and complementary

  18. Low pressure hyperbaric oxygen therapy and SPECT brain imaging in the treatment of blast-induced chronic traumatic brain injury (post-concussion syndrome) and post traumatic stress disorder: a case report

    PubMed Central

    2009-01-01

    A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder. PMID:19829822

  19. Effect of Obesity on Motor Functional Outcome of Rehabilitating Traumatic Brain Injury Patients.

    PubMed

    Le, David; Shafi, Shahid; Gwirtz, Patricia; Bennett, Monica; Reeves, Rustin; Callender, Librada; Dunklin, Cynthia; Cleveland, Samantha

    2015-08-01

    The aim of this study was to determine the association between obesity and functional motor outcome of patients undergoing inpatient rehabilitation after traumatic brain injury. This retrospective study at an urban acute inpatient rehabilitation center screened data from 761 subjects in the Traumatic Brain Injury Model System who were admitted from January 2010 to September 2013. Inclusion criteria consisted of age of 18 years or older and an abnormal Functional Independence Measure motor score. Body mass index was used to determine obesity in the study population. Patients with a body mass index of 30.0 kg/m or greater were considered obese. A total of 372 subjects met the criteria for inclusion in the study. Of these, 54 (13.2%) were obese. Both obese and nonobese patients showed similar improvement in Functional Independence Measure motor score (mean [SD], 30.4 [12.8] for the obese patients, P = 0.115, and 27.3 [13.1] for the nonobese patients). The mean (SD) Functional Independence Measure motor scores at discharge for the obese and nonobese patients were 63.0 (12.6) and 62.3 (10.1) (P = 0.6548), respectively. Obesity had no adverse impact on motor functional outcomes of the traumatic brain injury patients who underwent inpatient rehabilitation. Therefore, obesity should not be considered an obstacle in inpatient rehabilitation after traumatic brain injury, if patients are able to participate in necessary therapy.

  20. A comparison of participation outcome measures and the International Classification of Functioning, Disability and Health Core Sets for traumatic brain injury.

    PubMed

    Chung, Pearl; Yun, Sarah Jin; Khan, Fary

    2014-02-01

    To compare the contents of participation outcome measures in traumatic brain injury with the International Classification of Functioning, Disability and Health (ICF) Core Sets for traumatic brain injury. A systematic search with an independent review process selected relevant articles to identify outcome measures in participation in traumatic brain injury. Instruments used in two or more studies were linked to the ICF categories, which identified categories in participation for comparison with the ICF Core Sets for traumatic brain injury. Selected articles (n = 101) identified participation instruments used in two or more studies (n = 9): Community Integration Questionnaire, Craig Handicap Assessment and Reporting Technique, Mayo-Portland Adaptability Inventory-4 Participation Index, Sydney Psychosocial Reintegration Scale Version-2, Participation Assessment with Recombined Tool-Objective, Community Integration Measure, Participation Objective Participation Subjective, Community Integration Questionnaire-2, and Quality of Community Integration Questionnaire. Each instrument was linked to 4-35 unique second-level ICF categories, of which 39-100% related to participation. Instruments addressed 86-100% and 50-100% of the participation categories in the Comprehensive and Brief ICF Core Sets for traumatic brain injury, respectively. Participation measures in traumatic brain injury were compared with the ICF Core Sets for traumatic brain injury. The ICF Core Sets for traumatic brain injury could contribute to the development and selection of participation measures.

  1. Surviving Traumatic Brain Injury: A Study of Post Acute Rehabilitation Services.

    ERIC Educational Resources Information Center

    Schuyler, Suellen

    The problems facing a rehabilitation counselor in successfully working with survivors of brain trauma are myriad. This review examined evaluation techniques, rehabilitation therapies, and existing services that have proven effective with traumatic brain injury (TBI) clients. There is a gap in rehabilitation services that results in the TBI…

  2. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI.

    PubMed

    Prasad, Kedar N; Bondy, Stephen C

    2015-03-02

    Post-traumatic stress disorder (PTSD) is a complex mental disorder with psychological and emotional components, caused by exposure to single or repeated extreme traumatic events found in war, terrorist attacks, natural or man-caused disasters, and by violent personal assaults and accidents. Mild traumatic brain injury (TBI) occurs when the brain is violently rocked back and forth within the skull following a blow to the head or neck as in contact sports, or when in close proximity to a blast pressure wave following detonation of explosives in the battlefield. Penetrating TBI occurs when an object penetrates the skull and damages the brain, and is caused by vehicle crashes, gunshot wound to the head, and exposure to solid fragments in the proximity of explosions, and other combat-related head injuries. Despite clinical studies and improved understanding of the mechanisms of cellular damage, prevention and treatment strategies for patients with PTSD and TBI remain unsatisfactory. To develop an improved plan for treating and impeding progression of PTSD and TBI, it is important to identify underlying biochemical changes that may play key role in the initiation and progression of these disorders. This review identifies three common biochemical events, namely oxidative stress, chronic inflammation and excitotoxicity that participate in the initiation and progression of these conditions. While these features are separately discussed, in many instances, they overlap. This review also addresses the goal of developing novel treatments and drug regimens, aimed at combating this triad of events common to, and underlying, injury to the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Prevalence of Cerebral Microhemorrhage following Chronic Blast-Related Mild Traumatic Brain Injury in Military Service Members Using Susceptibility-Weighted MRI.

    PubMed

    Lotan, E; Morley, C; Newman, J; Qian, M; Abu-Amara, D; Marmar, C; Lui, Y W

    2018-05-24

    Cerebral microhemorrhages are a known marker of mild traumatic brain injury. Blast-related mild traumatic brain injury relates to a propagating pressure wave, and there is evidence that the mechanism of injury in blast-related mild traumatic brain injury may be different from that in blunt head trauma. Two recent reports in mixed cohorts of blunt and blast-related traumatic brain injury in military personnel suggest that the prevalence of cerebral microhemorrhages is lower than in civilian head injury. In this study, we aimed to characterize the prevalence of cerebral microhemorrhages in military service members specifically with chronic blast-related mild traumatic brain injury. Participants were prospectively recruited and underwent 3T MR imaging. Susceptibility-weighted images were assessed by 2 neuroradiologists independently for the presence of cerebral microhemorrhages. Our cohort included 146 veterans (132 men) who experienced remote blast-related mild traumatic brain injury (mean, 9.4 years; median, 9 years after injury). Twenty-one (14.4%) reported loss of consciousness for <30 minutes. Seventy-seven subjects (52.7%) had 1 episode of blast-related mild traumatic brain injury; 41 (28.1%) had 2 episodes; and 28 (19.2%) had >2 episodes. No cerebral microhemorrhages were identified in any subject, as opposed to the frequency of SWI-detectable cerebral microhemorrhages following blunt-related mild traumatic brain injury in the civilian population, which has been reported to be as high as 28% in the acute and subacute stages. Our results may reflect differences in pathophysiology and the mechanism of injury between blast- and blunt-related mild traumatic brain injury. Additionally, the chronicity of injury may play a role in the detection of cerebral microhemorrhages. © 2018 by American Journal of Neuroradiology.

  4. Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Keshavamurthy, Krishna N.; Leary, Owen P.; Merck, Lisa H.; Kimia, Benjamin; Collins, Scott; Wright, David W.; Allen, Jason W.; Brock, Jeffrey F.; Merck, Derek

    2017-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability in the United States. Time to treatment is often related to patient outcome. Access to cerebral imaging data in a timely manner is a vital component of patient care. Current methods of detecting and quantifying intracranial pathology can be time-consuming and require careful review of 2D/3D patient images by a radiologist. Additional time is needed for image protocoling, acquisition, and processing. These steps often occur in series, adding more time to the process and potentially delaying time-dependent management decisions for patients with traumatic brain injury. Our team adapted machine learning and computer vision methods to develop a technique that rapidly and automatically detects CT-identifiable lesions. Specifically, we use scale invariant feature transform (SIFT)1 and deep convolutional neural networks (CNN)2 to identify important image features that can distinguish TBI lesions from background data. Our learning algorithm is a linear support vector machine (SVM)3. Further, we also employ tools from topological data analysis (TDA) for gleaning insights into the correlation patterns between healthy and pathological data. The technique was validated using 409 CT scans of the brain, acquired via the Progesterone for the Treatment of Traumatic Brain Injury phase III clinical trial (ProTECT_III) which studied patients with moderate to severe TBI4. CT data were annotated by a central radiologist and included patients with positive and negative scans. Additionally, the largest lesion on each positive scan was manually segmented. We reserved 80% of the data for training the SVM and used the remaining 20% for testing. Preliminary results are promising with 92.55% prediction accuracy (sensitivity = 91.15%, specificity = 93.45%), indicating the potential usefulness of this technique in clinical scenarios.

  5. Traumatic Brain Injury: An Overview of School Re-Entry.

    ERIC Educational Resources Information Center

    Tucker, Bonnie Foster; Colson, Steven E.

    1992-01-01

    This article presents a definition of traumatic brain injury (TBI); describes problem behavioral characteristics of students post-TBI and some possible solutions; examines academic, social, emotional, and cognitive factors; and outlines interventions to assist teachers in working constructively with TBI students. (JDD)

  6. Characterizing on-road driving performance in individuals with traumatic brain injury who pass or fail an on-road driving assessment.

    PubMed

    Stolwyk, Renerus J; Charlton, Judith L; Ross, Pamela E; Bédard, Michel; Marshall, Shawn; Gagnon, Sylvain; Gooden, James R; Ponsford, Jennie L

    2018-01-15

    To characterise on-road driving performance in individuals with traumatic brain injury who fail on-road driving assessment, compared with both those who pass assessment and healthy controls, and the injury and cognitive factors associated with driving performance. Cross-sectional. Forty eight participants with traumatic brain injury (Age M = 40.50 SD = 14.62, 77% male, post-traumatic amnesia days M = 28.74 SD =27.68) and 48 healthy matched controls completed a standardised on-road driving assessment in addition to cognitive measures. Individuals with traumatic brain injury who passed on-road driving assessment performed no differently from controls while individuals with traumatic brain injury who failed the assessment demonstrated significantly worse driving performance relative to controls across a range of driving manoeuvres and error types including observation of on-road environment, speed control, gap selection, lane position, following distance and basic car control. Longer time post-injury and reduced visual perception were both significantly correlated with reduced driving skills. This exploratory study indicated that drivers with traumatic brain injury who failed on-road assessment demonstrated a heterogeneous pattern of impaired driving manoeuvres, characterised by skill deficits across both operational (e.g., basic car control and lane position) and tactical domains (e.g., following distance, gap selection, and observation) of driving. These preliminary findings can be used for implementation of future driving assessments and rehabilitation programs. Implications for rehabilitation Clinicians should be aware that the majority of individuals with traumatic brain injury were deemed fit to resume driving following formal on-road assessment, despite having moderate to very severe traumatic brain injuries. Drivers with traumatic brain injury who failed an on-road assessment demonstrated a heterogeneous pattern of impaired skills including errors

  7. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain

    PubMed Central

    O'Brien, Terence J.; Gimlin, Kayleen; Wright, David K.; Kim, Shi Eun; Casillas-Espinosa, Pablo M.; Webster, Kyria M.; Petrou, Steven; Noble-Haeusslein, Linda J.

    2017-01-01

    Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1β and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility. SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments

  8. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.

    PubMed

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert

    2018-04-15

    The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.

  9. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model

    PubMed Central

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J.; Franks, Nicholas P.; Mahoney, Peter F.

    2018-01-01

    Abstract The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury. PMID:29285980

  10. Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish.

    PubMed

    Cacialli, Pietro; Palladino, Antonio; Lucini, Carla

    2018-06-01

    Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.

  11. Developing a Family-Centered Care Model for Critical Care After Pediatric Traumatic Brain Injury.

    PubMed

    Moore, Megan; Robinson, Gabrielle; Mink, Richard; Hudson, Kimberly; Dotolo, Danae; Gooding, Tracy; Ramirez, Alma; Zatzick, Douglas; Giordano, Jessica; Crawley, Deborah; Vavilala, Monica S

    2015-10-01

    This study examined the family experience of critical care after pediatric traumatic brain injury in order to develop a model of specific factors associated with family-centered care. Qualitative methods with semi-structured interviews were used. Two level 1 trauma centers. Fifteen mothers of children who had an acute hospital stay after traumatic brain injury within the last 5 years were interviewed about their experience of critical care and discharge planning. Participants who were primarily English, Spanish, or Cantonese speaking were included. None. Content analysis was used to code the transcribed interviews and develop the family-centered care model. Three major themes emerged: 1) thorough, timely, compassionate communication, 2) capacity building for families, providers, and facilities, and 3) coordination of care transitions. Participants reported valuing detailed, frequent communication that set realistic expectations and prepared them for decision making and outcomes. Areas for capacity building included strategies to increase provider cultural humility, parent participation in care, and institutional flexibility. Coordinated care transitions, including continuity of information and maintenance of partnerships with families and care teams, were highlighted. Participants who were not primarily English speaking reported particular difficulty with communication, cultural understanding, and coordinated transitions. This study presents a family-centered traumatic brain injury care model based on family perspectives. In addition to communication and coordination strategies, the model offers methods to address cultural and structural barriers to meeting the needs of non-English-speaking families. Given the stress experienced by families of children with traumatic brain injury, careful consideration of the model themes identified here may assist in improving overall quality of care to families of hospitalized children with traumatic brain injury.

  12. Antiepileptic prophylaxis following severe traumatic brain injury within a military cohort.

    PubMed

    Cranley, Mark R; Craner, M; McGilloway, E

    2016-04-01

    Traumatic brain injury increases the risk of both early and late seizures. Antiepileptic prophylaxis reduces early seizures, but their use beyond 1 week does not prevent the development of post-traumatic epilepsy. Furthermore, prolonged prophylaxis exposes patients to side effects of the drugs and has occupational implications. The American Academy of Neurology recommends that antiepileptic prophylaxis should be started for patients with severe traumatic brain injury and discontinued after 1 week. An audit is presented here that investigates the use of prophylaxis in a cohort of military patients admitted to the UK Defence Medical Rehabilitation Centre (DMRC). Data were collected and analysed retrospectively from electronic and paper records between February 2009 and August 2012. The timing and duration of antiepileptic drug use and the incidence of seizures were recorded. During the study period, 52 patients with severe traumatic brain injury were admitted to the rehabilitation centre: 25 patients (48%) were commenced on prophylaxis during the first week following injury while 27 (52%) did not receive prophylaxis. Only one patient (2%) received prophylaxis for the recommended period of 1 week, 22 patients (42%) received prophylaxis for longer than 1 week with a mean duration of 6.2 months. Two patients (4%) had post-traumatic epilepsy and started on treatment at DMRC. The use of antiepileptic prophylaxis varies widely and is generally inconsistent with evidence-based guidance. This exposes some patients to a higher risk of early seizures and others to unnecessary use of antiepileptics. Better implementation of prophylaxis is required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Epidemiology of mild traumatic brain injury and neurodegenerative disease

    PubMed Central

    Gardner, Raquel C.; Yaffe, Kristine

    2015-01-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma has been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. PMID:25748121

  14. Effects of penetrating traumatic brain injury on event segmentation and memory.

    PubMed

    Zacks, Jeffrey M; Kurby, Christopher A; Landazabal, Claudia S; Krueger, Frank; Grafman, Jordan

    2016-01-01

    Penetrating traumatic brain injury (pTBI) is associated with deficits in cognitive tasks including comprehension and memory, and also with impairments in tasks of daily living. In naturalistic settings, one important component of cognitive task performance is event segmentation, the ability to parse the ongoing stream of behavior into meaningful units. Event segmentation ability is associated with memory performance and with action control, but is not well assessed by standard neuropsychological assessments or laboratory tasks. Here, we measured event segmentation and memory in a sample of 123 male military veterans aged 59-81 who had suffered a traumatic brain injury as young men, and 34 demographically similar controls. Participants watched movies of everyday activities and segmented them to identify fine-grained or coarse-grained events, and then completed tests of recognition memory for pictures from the movies and of memory for the temporal order of actions in the movies. Lesion location and volume were assessed with computed tomography (CT) imaging. Patients with traumatic brain injury were impaired on event segmentation. Those with larger lesions had larger impairments for fine segmentation and also impairments for both memory measures. Further, the degree of memory impairment was statistically mediated by the degree of event segmentation impairment. There was some evidence that lesions to the ventromedial prefrontal cortex (vmPFC) selectively impaired coarse segmentation; however, lesions outside of a priori regions of interest also were associated with impaired segmentation. One possibility is that the effect of vmPFC damage reflects the role of prefrontal event knowledge representations in ongoing comprehension. These results suggest that assessment of naturalistic event comprehension can be a valuable component of cognitive assessment in cases of traumatic brain injury, and that interventions aimed at event segmentation could be clinically helpful

  15. Therapeutic hypothermia in patients following traumatic brain injury: a systematic review.

    PubMed

    Dunkley, Steven; McLeod, Anne

    2017-05-01

    The efficacy of therapeutic hypothermia in adult patients with traumatic brain injury is not fully understood. The historical use of therapeutic hypothermia at extreme temperatures was associated with severe complications and led to it being discredited. Positive results from animal studies using milder temperatures led to renewed interest. However, recent studies have not convincingly demonstrated the beneficial effects of therapeutic hypothermia in practice. This review aims to answer the question: in adults with a severe traumatic brain injury (TBI), does the use of therapeutic hypothermia compared with normothermia affect neurological outcome? Systematic review. Four major electronic databases were searched, and a hand search was undertaken using selected key search terms. Inclusion and exclusion criteria were applied. The studies were appraised using a systematic approach, and four themes addressing the research question were identified and critically evaluated. A total of eight peer-reviewed studies were found, and the results show there is some evidence that therapeutic hypothermia may be effective in improving neurological outcome in adult patients with traumatic brain injury. However, the majority of the trials report conflicting results. Therapeutic hypothermia is reported to be effective at lowering intracranial pressure; however, its efficacy in improving neurological outcome is not fully demonstrated. This review suggests that therapeutic hypothermia had increased benefits in patients with haematoma-type injuries as opposed to those with diffuse injury and contusions. It also suggests that cooling should recommence if rebound intracranial hypertension is observed. Although the data indicates a trend towards better neurological outcome and reduced mortality rates, higher quality multi-centred randomized controlled trials are required before therapeutic hypothermia is implemented as a standard adjuvant therapy for treating traumatic brain injury

  16. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma.

    PubMed

    Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B

    2018-01-01

    Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of

  17. Superoxide and Nitric Oxide Mechanisms in Traumatic Brain Injury and Hemorrhagic Hypotension.

    DTIC Science & Technology

    1999-12-01

    DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) Traumatic brain injury (TBI) renders the brain vulnerable to secondary ischemia and poor outcome...cerebral blood flow (CBF) and renders the brain vulnerable to secondary ischemia. There is clinical evidence that hypotension contributes to poor...without TBI. These data indicate that even moderate TBI renders the brain sensitive to ischemic injury during relative mild levels of hypotension that

  18. First in vivo traumatic brain injury imaging via magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Orendorff, Ryan; Peck, Austin J.; Zheng, Bo; Shirazi, Shawn N.; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Goodwill, Patrick; Krishnan, Kannan M.; Brooks, George A.; Kaufer, Daniela; Conolly, Steven

    2017-05-01

    Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.

  19. Managing traumatic brain injury secondary to explosions.

    PubMed

    Burgess, Paula; E Sullivent, Ernest; M Sasser, Scott; M Wald, Marlena; Ossmann, Eric; Kapil, Vikas

    2010-04-01

    Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI) caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  20. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    PubMed

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury.

    PubMed

    Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H

    2018-06-16

    Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.

  2. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury.

    PubMed

    Millet, A; Cuisinier, A; Bouzat, P; Batandier, C; Lemasson, B; Stupar, V; Pernet-Gallay, K; Crespy, T; Barbier, E L; Payen, J F

    2018-06-01

    The mechanisms by which hypertonic sodium lactate (HSL) solution act in injured brain are unclear. We investigated the effects of HSL on brain metabolism, oxygenation, and perfusion in a rodent model of diffuse traumatic brain injury (TBI). Thirty minutes after trauma, anaesthetised adult rats were randomly assigned to receive a 3 h infusion of either a saline solution (TBI-saline group) or HSL (TBI-HSL group). The sham-saline and sham-HSL groups received no insult. Three series of experiments were conducted up to 4 h after TBI (or equivalent) to investigate: 1) brain oedema using diffusion-weighted magnetic resonance imaging and brain metabolism using localized 1 H-magnetic resonance spectroscopy (n = 10 rats per group). The respiratory control ratio was then determined using oxygraphic analysis of extracted mitochondria, 2) brain oxygenation and perfusion using quantitative blood-oxygenation-level-dependent magnetic resonance approach (n = 10 rats per group), and 3) mitochondrial ultrastructural changes (n = 1 rat per group). Compared with the TBI-saline group, the TBI-HSL and the sham-operated groups had reduced brain oedema. Concomitantly, the TBI-HSL group had lower intracellular lactate/creatine ratio [0.049 (0.047-0.098) vs 0.097 (0.079-0.157); P < 0.05], higher mitochondrial respiratory control ratio, higher tissue oxygen saturation [77% (71-79) vs 66% (55-73); P < 0.05], and reduced mitochondrial cristae thickness in astrocytes [27.5 (22.5-38.4) nm vs 38.4 (31.0-47.5) nm; P < 0.01] compared with the TBI-saline group. Serum sodium and lactate concentrations and serum osmolality were higher in the TBI-HSL than in the TBI-saline group. These findings indicate that the hypertonic sodium lactate solution can reverse brain oxygenation and metabolism dysfunction after traumatic brain injury through vasodilatory, mitochondrial, and anti-oedema effects. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  3. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    PubMed

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  4. Medicolegal Issues in Traumatic Brain Injury.

    PubMed

    Zasler, Nathan D; Bigler, Erin

    2017-05-01

    The role of the physiatrist in provision of medicolegal expert testimony in cases involving traumatic brain injury is challenging and complex. This article provides an overview of how such work should be conducted from a practical perspective including discussion of ethical, legal, medical, and business aspects of such activities. Additionally, pointers are provided with regards to how information including preinjury, injury, and postinjury (including neuroimaging and neuropsychological data) should be considered and integrated into medicolegal opinions and testimony. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. School-Based Traumatic Brain Injury and Concussion Management Program

    ERIC Educational Resources Information Center

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  6. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2013-11-01

    COVERED 4 October 201 - 3 October 201 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT...injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids Table of Contents Introduction...promote neuroinflammation and potentially lead to neurodegeneration. We have previously demonstrated that treatments to the endocannabinoid system 2

  7. [What happens after the accident? Psychosocial needs of people with traumatic brain injury and their families].

    PubMed

    Gifre, Mariona; Gil, Ángel; Pla, Laura; Roig, Teresa; Monreal-Bosch, Pilar

    2015-09-01

    To identify factors that people with a traumatic brain injury and their families perceived as helping to improve their quality of life. Three focus groups and five interviews were conducted with a total of 37 participants: 14 persons with traumatic brain injury and 23 caregivers. A content analysis was conducted. The constant comparative method was applied. We detected five factors that improved the quality of life of persons with a traumatic brain and their families: 1) Informal support (family and friends); 2) formal support (counseling, employment, built and bureaucratic environment); 3) type of clinical characteristics; 4) social participation, and 5) social visibility. The needs expressed by our participants primarily focused on social and emotional factors. For persons with severe traumatic brain injury attempting to achieve the best possible community integration, a new semiology is required, not limited to medical care, but also involving social and psychological care tailored to the needs of each individual and family and their environment. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  8. Consequences of Traumatic Brain Injury for Human Vergence Dynamics

    PubMed Central

    Tyler, Christopher W.; Likova, Lora T.; Mineff, Kristyo N.; Elsaid, Anas M.; Nicholas, Spero C.

    2015-01-01

    Purpose: Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters. Methods: Disparity vergence eye movements were measured for a population of 123 normally sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI) in the past, while the remainder served as controls. Vergence tracking responses were measured to sinusoidal disparity modulation of a random-dot field. Disparity vergence step responses were characterized in terms of their dynamic parameters separately for the convergence and divergence directions. Results: The control group showed notable differences between convergence and divergence dynamics. The dTBI group showed significantly abnormal vergence behavior on many of the dynamic parameters. Conclusion: The results support the hypothesis that occult injury to the oculomotor control system is a common residual outcome of dTBI. PMID:25691880

  9. Functional Medicine Approach to Traumatic Brain Injury.

    PubMed

    Richer, Alice C

    2017-08-01

    Background: The U.S. military has seen dramatic increases in traumatic brain injuries (TBIs) among military personnel due to the nature of modern-day conflicts. Conventional TBI treatment for secondary brain injuries has suboptimal success rates, and patients, families, and healthcare professionals are increasingly turning to alternative medicine treatments. Objective: Effective treatments for the secondary injury cascades that occur after an initial brain trauma are unclear at this time. The goal of successful treatment options for secondary TBI injuries is to reduce oxidative stress, excitotoxicity, and inflammation while supporting mitochondrial functions and repair of membranes, synapses, and axons. Intervention: A new paradigm of medical care, known as functional medicine, is increasing in popularity and acceptance. Functional medicine combines conventional treatment methods with complementary, genetic, holistic, and nutritional therapies. The approach is to assess the patient as a whole person, taking into account the interconnectedness of the body and its unique reaction to disease, injury, and illness while working to restore balance and optimal health. Functional medicine treatment recommendations often include the use of acupuncture, Ayurveda, chiropractic manipulation, detoxification programs, herbal and homeopathic supplements, specialized diets, massage, meditation and mindfulness practices, neurobiofeedback, nutritional supplements, t'ai chi , and yoga. At present, some of these alternative treatments appear to be beneficial, but more research is needed to validate reported outcomes. Conclusions: Few clinical studies validate the effectiveness of alternative therapies for TBIs. However, further clinical trials and empirical studies warrant further investigation based on some reported positive results from research studies, case histories, anecdotal evidence, and widespread popularity of some approaches. To date, only nutritional therapies and

  10. Functional Medicine Approach to Traumatic Brain Injury

    PubMed Central

    2017-01-01

    Abstract Background: The U.S. military has seen dramatic increases in traumatic brain injuries (TBIs) among military personnel due to the nature of modern-day conflicts. Conventional TBI treatment for secondary brain injuries has suboptimal success rates, and patients, families, and healthcare professionals are increasingly turning to alternative medicine treatments. Objective: Effective treatments for the secondary injury cascades that occur after an initial brain trauma are unclear at this time. The goal of successful treatment options for secondary TBI injuries is to reduce oxidative stress, excitotoxicity, and inflammation while supporting mitochondrial functions and repair of membranes, synapses, and axons. Intervention: A new paradigm of medical care, known as functional medicine, is increasing in popularity and acceptance. Functional medicine combines conventional treatment methods with complementary, genetic, holistic, and nutritional therapies. The approach is to assess the patient as a whole person, taking into account the interconnectedness of the body and its unique reaction to disease, injury, and illness while working to restore balance and optimal health. Functional medicine treatment recommendations often include the use of acupuncture, Ayurveda, chiropractic manipulation, detoxification programs, herbal and homeopathic supplements, specialized diets, massage, meditation and mindfulness practices, neurobiofeedback, nutritional supplements, t'ai chi, and yoga. At present, some of these alternative treatments appear to be beneficial, but more research is needed to validate reported outcomes. Conclusions: Few clinical studies validate the effectiveness of alternative therapies for TBIs. However, further clinical trials and empirical studies warrant further investigation based on some reported positive results from research studies, case histories, anecdotal evidence, and widespread popularity of some approaches. To date, only nutritional therapies and

  11. Cooling the injured brain: how does moderate hypothermia influence the pathophysiology of traumatic brain injury.

    PubMed

    Sahuquillo, Juan; Vilalta, Anna

    2007-01-01

    Neither any neuroprotective drug has been shown to be beneficial in improving the outcome of severe traumatic brain injury (TBI) nor has any prophylactically-induced moderate hypothermia shown any beneficial effect on outcome in severe TBI, despite the optimism generated by preclinical studies. This contrasts with the paradox that hypothermia still is the most powerful neuroprotective method in experimental models because of its ability to influence the multiple biochemical cascades that are set in motion after TBI. The aim of this short review is to highlight the most recent developments concerning the pathophysiology of severe TBI, to review new data on thermoregulation and induced hypothermia, the regulation of core and brain temperature in mammals and the multiplicity of effects of hypothermia in the pathophysiology of TBI. Many experimental studies in the last decade have again confirmed that moderate hypothermia confers protection against ischemic and non-ischemic brain hypoxia, traumatic brain injury, anoxic injury following resuscitation after cardiac arrest and other neurological insults. Many posttraumatic adverse events that occur in the injured brain at a cellular and molecular level are highly temperature-sensitive and are thus a good target for induced hypothermia. The basic mechanisms through which hypothermia protects the brain are clearly multifactorial and include at least the following: reduction in brain metabolic rate, effects on cerebral blood flow, reduction of the critical threshold for oxygen delivery, blockade of excitotoxic mechanisms, calcium antagonism, preservation of protein synthesis, reduction of brain thermopooling, a decrease in edema formation, modulation of the inflammatory response, neuroprotection of the white matter and modulation of apoptotic cell death. The new developments discussed in this review indicate that, by targeting many of the abnormal neurochemical cascades initiated after TBI, induced hypothermia may modulate

  12. EEGgui: a program used to detect electroencephalogram anomalies after traumatic brain injury.

    PubMed

    Sick, Justin; Bray, Eric; Bregy, Amade; Dietrich, W Dalton; Bramlett, Helen M; Sick, Thomas

    2013-05-21

    Identifying and quantifying pathological changes in brain electrical activity is important for investigations of brain injury and neurological disease. An example is the development of epilepsy, a secondary consequence of traumatic brain injury. While certain epileptiform events can be identified visually from electroencephalographic (EEG) or electrocorticographic (ECoG) records, quantification of these pathological events has proved to be more difficult. In this study we developed MATLAB-based software that would assist detection of pathological brain electrical activity following traumatic brain injury (TBI) and present our MATLAB code used for the analysis of the ECoG. Software was developed using MATLAB(™) and features of the open access EEGLAB. EEGgui is a graphical user interface in the MATLAB programming platform that allows scientists who are not proficient in computer programming to perform a number of elaborate analyses on ECoG signals. The different analyses include Power Spectral Density (PSD), Short Time Fourier analysis and Spectral Entropy (SE). ECoG records used for demonstration of this software were derived from rats that had undergone traumatic brain injury one year earlier. The software provided in this report provides a graphical user interface for displaying ECoG activity and calculating normalized power density using fast fourier transform of the major brain wave frequencies (Delta, Theta, Alpha, Beta1, Beta2 and Gamma). The software further detects events in which power density for these frequency bands exceeds normal ECoG by more than 4 standard deviations. We found that epileptic events could be identified and distinguished from a variety of ECoG phenomena associated with normal changes in behavior. We further found that analysis of spectral entropy was less effective in distinguishing epileptic from normal changes in ECoG activity. The software presented here was a successful modification of EEGLAB in the Matlab environment that allows

  13. Hypothermia for Traumatic Brain Injury in Children-A Phase II Randomized Controlled Trial.

    PubMed

    Beca, John; McSharry, Brent; Erickson, Simon; Yung, Michael; Schibler, Andreas; Slater, Anthony; Wilkins, Barry; Singhal, Ash; Williams, Gary; Sherring, Claire; Butt, Warwick

    2015-07-01

    To perform a pilot study to assess the feasibility of performing a phase III trial of therapeutic hypothermia started early and continued for at least 72 hours in children with severe traumatic brain injury. Multicenter prospective randomized controlled phase II trial. All eight of the PICUs in Australia and New Zealand and one in Canada. Children 1-15 years old with severe traumatic brain injury and who could be randomized within 6 hours of injury. The control group had strict normothermia to a temperature of 36-37°C for 72 hours. The intervention group had therapeutic hypothermia to a temperature of 32-33°C for 72 hours followed by slow rewarming at a rate compatible with maintaining intracranial pressure and cerebral perfusion pressure. Of 764 children admitted to PICU with traumatic brain injury, 92 (12%) were eligible and 55 (7.2%) were recruited. There were five major protocol violations (9%): three related to recruitment and consent processes and two to incorrect temperature management. Rewarming took a median of 21.5 hours (16-35 hr) and was performed without compromise in the cerebral perfusion pressure. There was no increase in any complications, including infections, bleeding, and arrhythmias. There was no difference in outcomes 12 months after injury; in the therapeutic hypothermia group, four (17%) had a bad outcome (pediatric cerebral performance category, 4-6) and three (13%) died, whereas in the normothermia group, three (12%) had a bad outcome and one (4%) died. Early therapeutic hypothermia in children with severe traumatic brain injury does not improve outcome and should not be used outside a clinical trial. Recruitment rates were lower and outcomes were better than expected. Conventional randomized controlled trials in children with severe traumatic brain injury are unlikely to be feasible. A large international trials group and alternative approaches to trial design will be required to further inform practice.

  14. Sleep-wake disturbances after traumatic brain injury.

    PubMed

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Combat veterans, mental health issues, and the death penalty: addressing the impact of post-traumatic stress disorder and traumatic brain injury.

    PubMed

    Giardino, Anthony E

    2009-05-01

    More than 1.5 million Americans have participated in combat operations in Iraq and Afghanistan over the past seven years. Some of these veterans have subsequently committed capital crimes and found themselves in our nation's criminal justice system. This Essay argues that combat veterans suffering from post-traumatic stress disorder or traumatic brain injury at the time of their offenses should not be subject to the death penalty.Offering mitigating evidence regarding military training, post-traumatic stress disorder, and traumatic brain injury presents one means that combat veterans may use to argue for their lives during the sentencing phase of their trials. Alternatively, Atkins v. Virginia and Roper v. Simmons offer a framework for establishing a legislatively or judicially created categorical exclusion for these offenders, exempting them from the death penalty as a matter of law. By understanding how combat service and service-related injuries affect the personal culpability of these offenders, the legal system can avoid the consequences of sentencing to death America's mentally wounded warriors, ensuring that only the worst offenders are subject to the ultimate punishment.

  16. Managing traumatic brain injury secondary to explosions

    PubMed Central

    Burgess, Paula; E Sullivent, Ernest; M Sasser, Scott; M Wald, Marlena; Ossmann, Eric; Kapil, Vikas

    2010-01-01

    Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI) caused by explosions and bombings. The history, physics, and treatment of TBI are outlined. PMID:20606794

  17. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    USDA-ARS?s Scientific Manuscript database

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  18. The role of physical exercise in cognitive recovery after traumatic brain injury: A systematic review.

    PubMed

    Morris, Timothy; Gomes Osman, Joyce; Tormos Muñoz, Jose Maria; Costa Miserachs, David; Pascual Leone, Alvaro

    2016-11-22

    There is a growing body of evidence revealing exercise-induced effects on brain structure and cognitive function across the lifespan. Animal models of traumatic brain injury also suggest exercise is capable of modulating not only the pathophysiological changes following trauma but also the associated cognitive deficits. To evaluate the effect of physical exercise on cognitive impairment following traumatic brain injury in humans. A systematic search of the PubMed database was performed using the search terms "cognition" and "executive function, memory or attention", "traumatic brain injury" and "physical exercise". Adult human traumatic brain injury studies that assessed cognitive function as an outcome measure (primary or secondary) and used physical exercise as a treatment (single or combined) were assessed by two independent reviewers. Data was extracted under the guidance of the population intervention comparison outcome framework wherein, characteristics of included studies (exercise duration, intensity, combined or single intervention, control groups and cognitive measures) were collected, after which, methodological quality (Cochrane criteria) was assessed. A total of 240 citations were identified, but only 6 met our inclusion criteria (3 from search records, 3 from reference lists. Only a small number of studies have evaluated the effect of exercise on cognition following traumatic brain injury in humans, and of those, assessment of efficacy is difficult due to low methodological strength and a high risk of different types of bias. Evidence of an effect of physical exercise on cognitive recovery suggests further studies should explore this treatment option with greater methodological approaches. Recommendations to reduce risk of bias and methodological shortfalls are discussed and include stricter inclusion criteria to create homogenous groups and larger patient pools, more rigorous cognitive assessments and the study and reporting of additional and

  19. Traumatic Brain Injury and Its Effect on Students

    ERIC Educational Resources Information Center

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  20. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0389 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury...2015 4. TITLE AND SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  1. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0388 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast- Induced Traumatic Brain Injury...SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  2. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  3. Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis

    PubMed Central

    Nielson, Jessica L.; Cooper, Shelly R.; Sorani, Marco D.; Inoue, Tomoo; Yuh, Esther L.; Mukherjee, Pratik; Petrossian, Tanya C.; Lum, Pek Y.; Lingsma, Hester F.; Gordon, Wayne A.; Okonkwo, David O.; Manley, Geoffrey T.

    2017-01-01

    Background Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. Methods and findings The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). Conclusions TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust

  4. Longitudinal relationship between traumatic brain injury and the risk of incident optic neuropathy: A 10-year follow-up nationally representative Taiwan survey.

    PubMed

    Chen, Ying-Jen; Liang, Chang-Min; Tai, Ming-Cheng; Chang, Yun-Hsiang; Lin, Tzu-Yu; Chung, Chi-Hsiang; Lin, Fu-Huang; Tsao, Chang-Huei; Chien, Wu-Chien

    2017-10-17

    Accumulating evidences had shown that traumatic brain injury was associated with visual impairment or vision loss. However, there were a limited number of empirical studies regarding the longitudinal relationship between traumatic brain injury and incident optic neuropathy. We studied a cohort from the Taiwanese National Health Insurance data comprising 553918 participants with traumatic brain injury and optic neuropathy-free in the case group and 1107836 individuals without traumatic brain injury in the control group from 1st January 2000. After the index date until the end of 2010, Cox proportional hazards analysis was used to compare the risk of incident optic neuropathy. During the follow-up period, case group was more likely to develop incident optic neuropathy (0.24%) than the control group (0.11%). Multivariate Cox regression analysis demonstrated that the case group had a 3-fold increased risk of optic neuropathy (HR = 3.017, 95% CI = 2.767-3.289, p < 0.001). After stratification by demographic information, traumatic brain injury remained a significant factor for incident optic neuropathy. Our study provided evidence of the increased risk of incident optic neuropathy after traumatic brain injury during a 10-year follow-up period. Patients with traumatic brain injury required periodic and thorough eye examinations for incident optic neuropathy to prevent potentially irreversible vision loss.

  5. A systematic review of peer mentoring interventions for people with traumatic brain injury.

    PubMed

    Morris, Richard Pg; Fletcher-Smith, Joanna C; Radford, Kathryn A

    2017-08-01

    This systematic review sought evidence concerning the effectiveness of peer mentoring for people with traumatic brain injury. Fourteen electronic databases were searched, including PsycINFO, MEDLINE, CINAHL, EMBASE and the Cochrane Library, from inception to September 21 2016. Ten grey literature databases, PROSPERO, two trials registers, reference lists and author citations were also searched. Studies which employed a model of one-to-one peer mentoring between traumatic brain injury survivors were included. Two reviewers independently screened all titles and abstracts before screening full texts of shortlisted studies. A third reviewer resolved disagreements. Two reviewers independently extracted data and assessed studies for quality and risk of bias. The search returned 753 records, including one identified through hand searching. 495 records remained after removal of duplicates and 459 were excluded after screening. Full texts were assessed for the remaining 36 studies and six met the inclusion criteria. All were conducted in the United States between 1996 and 2012 and employed a variety of designs including two randomised controlled trials. A total of 288 people with traumatic brain injury participated in the studies. No significant improvements in social activity level or social network size were found, but significant improvements were shown in areas including behavioural control, mood, coping and quality of life. There is limited evidence for the effectiveness of peer mentoring after traumatic brain injury. The available evidence comes from small-scale studies, of variable quality, without detailed information on the content of sessions or the 'active ingredient' of the interventions.

  6. A brief history of behavioral assessment following experimental traumatic brain injury in juveniles.

    PubMed

    Hartman, Richard E

    2011-12-01

    This review focuses on assessment of behavioral outcomes following traumatic brain injury in juvenile animal models. In the 15 years since the first publication in this field, the majority of studies have used rats roughly equivalent to human toddlers in terms of brain development. Few studies have tested ages closer to human neonates, and fewer have assessed ages closer to human adolescents. Closed head impact has been the most commonly used model, causing relatively consistent motor and cognitive deficits. Additionally, closed head impacts of a more severe nature have generally led to behavioral deficits of a more severe nature. Impact models (both closed and open skull) have produced more severe deficits in younger animals than in older animals, similar to patterns observed in juvenile humans with traumatic brain injury. In contrast, the fluid percussion model has produced relatively subtle deficits that did not get worse with a more severe injury and were worse for older animals than younger animals. Most of the studies have looked at relatively short postinjury time points, and none so far have assessed behavior in old adult animals injured as juveniles. The review ends with a discussion of possible directions for future animal research into juvenile traumatic brain injury.

  7. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    PubMed

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    DTIC Science & Technology

    2013-07-01

    collegiate football 7 players: the NCAA Concussion Study. JAMA, 2003. 290(19): p. 2556-2563. 8 50. Naunheim RS, Matero D, Fucetola R, Assessment of...traumatic brain injury (mTBI) or concussion . In the civilian sector, the prolonged neuro-cognitive and functional symptoms following mTBI affects over 1.2...University Brain Concussion Workshop, Oct. 2012. Grants, Honors and Awards A major award (Seed Grant Award) was received by Dr. Zhifeng Kou from the

  9. A functional magnetic resonance imaging investigation of episodic memory after traumatic brain injury.

    PubMed

    Russell, Kathryn C; Arenth, Patricia M; Scanlon, Joelle M; Kessler, Lauren J; Ricker, Joseph H

    2011-06-01

    Traumatic brain injury often negatively impacts episodic memory; however, studies of the neural substrates of this impairment have been limited. In this study, both encoding and recognition of visually presented stimuli were examined with functional magnetic resonance imaging. Twelve adults with chronic complicated mild, moderate, and severe injuries were compared with a matched group of 12 controls. Behavioral task performance did not differentiate the groups. During neuroimaging, however, the group of individuals with traumatic brain injury exhibited increased activation, as well as increased bilaterality and dispersion as compared to controls. Findings are discussed in terms of increased resource recruitment.

  10. Characterizing the type and location of intracranial abnormalities in mild traumatic brain injury.

    PubMed

    Isokuortti, Harri; Iverson, Grant L; Silverberg, Noah D; Kataja, Anneli; Brander, Antti; Öhman, Juha; Luoto, Teemu M

    2018-01-12

    OBJECTIVE The incidence of intracranial abnormalities after mild traumatic brain injury (TBI) varies widely across studies. This study describes the characteristics of intracranial abnormalities (acute/preexisting) in a large representative sample of head-injured patients who underwent CT imaging in an emergency department. METHODS CT scans were systematically analyzed/coded in the TBI Common Data Elements framework. Logistic regression modeling was used to quantify risk factors for traumatic intracranial abnormalities in patients with mild TBIs. This cohort included all patients who were treated at the emergency department of the Tampere University Hospital (between 2010 and 2012) and who had undergone head CT imaging after suffering a suspected TBI (n = 3023), including 2766 with mild TBI and a reference group with moderate to severe TBI. RESULTS The most common traumatic lesions seen on CT scans obtained in patients with mild TBIs and those with moderate to severe TBIs were subdural hematomas, subarachnoid hemorrhages, and contusions. Every sixth patient (16.1%) with mild TBI had an intracranial lesion compared with 5 of 6 patients (85.6%) in the group with moderate to severe TBI. The distribution of different types of acute traumatic lesions was similar among mild and moderate/severe TBI groups. Preexisting brain lesions were a more common CT finding among patients with mild TBIs than those with moderate to severe TBIs. Having a past traumatic lesion was associated with increased risk for an acute traumatic lesion but neurodegenerative and ischemic lesions were not. A lower Glasgow Coma Scale score, male sex, older age, falls, and chronic alcohol abuse were associated with higher risk of acute intracranial lesion in patients with mild TBI. CONCLUSIONS These findings underscore the heterogeneity of neuropathology associated with the mild TBI classification. Preexisting brain lesions are common in patients with mild TBI, and the incidence of preexisting lesions

  11. Neurobehavioral, neuropathological and biochemical profiles in a novel mouse model of co-morbid post-traumatic stress disorder and mild traumatic brain injury

    PubMed Central

    Ojo, Joseph O.; Greenberg, M. Banks; Leary, Paige; Mouzon, Benoit; Bachmeier, Corbin; Mullan, Michael; Diamond, David M.; Crawford, Fiona

    2014-01-01

    Co-morbid mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) has become the signature disorder for returning combat veterans. The clinical heterogeneity and overlapping symptomatology of mTBI and PTSD underscore the need to develop a preclinical model that will enable the characterization of unique and overlapping features and allow discrimination between both disorders. This study details the development and implementation of a novel experimental paradigm for PTSD and combined PTSD-mTBI. The PTSD paradigm involved exposure to a danger-related predator odor under repeated restraint over a 21 day period and a physical trauma (inescapable footshock). We administered this paradigm alone, or in combination with a previously established mTBI model. We report outcomes of behavioral, pathological and biochemical profiles at an acute timepoint. PTSD animals demonstrated recall of traumatic memories, anxiety and an impaired social behavior. In both mTBI and combination groups there was a pattern of disinhibitory like behavior. mTBI abrogated both contextual fear and impairments in social behavior seen in PTSD animals. No major impairment in spatial memory was observed in any group. Examination of neuroendocrine and neuroimmune responses in plasma revealed a trend toward increase in corticosterone in PTSD and combination groups, and an apparent increase in Th1 and Th17 proinflammatory cytokine(s) in the PTSD only and mTBI only groups respectively. In the brain there were no gross neuropathological changes in any groups. We observed that mTBI on a background of repeated trauma exposure resulted in an augmentation of axonal injury and inflammatory markers, neurofilament L and ICAM-1 respectively. Our observations thus far suggest that this novel stress-trauma-related paradigm may be a useful model for investigating further the overlapping and distinct spatio-temporal and behavioral/biochemical relationship between mTBI and PTSD experienced by combat

  12. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  13. Investigation of blast-induced traumatic brain injury.

    PubMed

    Taylor, Paul A; Ludwigsen, John S; Ford, Corey C

    2014-01-01

    Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear.

  14. Investigation of blast-induced traumatic brain injury

    PubMed Central

    Ludwigsen, John S.; Ford, Corey C.

    2014-01-01

    Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. Methods This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. Results The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. Conclusions The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear. PMID:24766453

  15. Using external lumbar CSF drainage to treat communicating external hydrocephalus in adult patients after acute traumatic or non-traumatic brain injury.

    PubMed

    Manet, Romain; Payen, Jean-François; Guerin, Romain; Martinez, Orianne; Hautefeuille, Serge; Francony, Gilles; Gergelé, Laurent

    2017-10-01

    Despite various treatments to control intracranial pressure (ICP) after brain injury, patients may present a late onset of high ICP or a poor response to medications. External lumbar drainage (ELD) can be considered a therapeutic option if high ICP is due to communicating external hydrocephalus. We aimed at describing the efficacy and safety of ELD used in a cohort of traumatic or non-traumatic brain-injured patients. In this multicentre retrospective analysis, patients had a delayed onset of high ICP after the initial injury and/or a poor response to ICP treatments. ELD was considered in the presence of radiological signs of communicating external hydrocephalus. Changes in ICP values and side effects following the ELD procedure were reported. Thirty-three patients with a median age of 51 years (25-75th percentile: 34-61 years) were admitted after traumatic (n = 22) or non-traumatic (n = 11) brain injuries. Their initial Glasgow Coma Scale score was 8 (4-11). Eight patients underwent external ventricular drainage prior to ELD. Median time to ELD insertion was 5 days (4-8) after brain insult. In all patients, ELD was dramatically effective in lowering ICP: 25 mmHg (20-31) before versus 7 mmHg (3-10) after (p < 0.001). None of the patients showed adverse effects such as pupil changes or intracranial bleeding after the procedure. One patient developed an ELD-related infection. These findings indicate that ELD may be considered potentially effective in controlling ICP, remaining safe if a firm diagnosis of communicating external hydrocephalus has been made.

  16. In-Vitro Approaches for Studying Blast-Induced Traumatic Brain Injury

    PubMed Central

    Chen, Yung Chia; Smith, Douglas H.

    2009-01-01

    Abstract Traumatic brain injury caused by explosive or blast events is currently divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct, and can be modeled in both in-vivo and in-vitro systems. The purpose of this review is to consider the mechanical phases of bTBI, how these phases are reproduced with in-vitro models, and to review findings from these models to assess how each phase of bTBI can be examined in more detail. Highlighted are some important gaps in the literature that may be addressed in the future to better identify the exact contributing mechanisms for bTBI. These in-vitro models, viewed in combination with in-vivo models and clinical studies, can be used to assess both the mechanisms and possible treatments for this type of trauma. PMID:19397424

  17. High risk of hypogonadism after traumatic brain injury: clinical implications.

    PubMed

    Agha, Amar; Thompson, Christopher J

    2005-01-01

    Several recent studies have convincingly documented a close association between traumatic brain injury (TBI) and pituitary dysfunction. Post-traumatic hypogonadism is very common in the acute post-TBI phase, though most cases recover within six to twelve months following trauma. The functional significance of early hypogonadism, which may reflect adaptation to acute illness, is not known. Hypogonadism persists, however, in 10-17% of long-term survivors. Sex steroid deficiency has implications beyond psychosexual function and fertility for survivors of TBI. Muscle weakness may impair functional recovery from trauma and osteoporosis may be exacerbated by immobility secondary to trauma. Identification and appropriate and timely management of post-traumatic hypogonadism is important in order to optimise patient recovery from head trauma, improve quality of life and avoid the long-term adverse consequences of untreated sex steroid deficiency.

  18. Traumatic Brain Injury: Unmet Support Needs of Caregivers and Families in Florida

    PubMed Central

    Dillahunt-Aspillaga, Christina; Jorgensen-Smith, Tammy; Ehlke, Sarah; Sosinski, Melanie; Monroe, Douglas; Thor, Jennifer

    2013-01-01

    Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented. PMID:24358236

  19. Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study.

    PubMed

    Sykora, Marek; Czosnyka, Marek; Liu, Xiuyun; Donnelly, Joseph; Nasr, Nathalie; Diedler, Jennifer; Okoroafor, Francois; Hutchinson, Peter; Menon, David; Smielewski, Peter

    2016-06-01

    Autonomic impairment after acute traumatic brain injury has been associated independently with both increased morbidity and mortality. Links between autonomic impairment and increased intracranial pressure or impaired cerebral autoregulation have been described as well. However, relationships between autonomic impairment, intracranial pressure, impaired cerebral autoregulation, and outcome remain poorly explored. Using continuous measurements of heart rate variability and baroreflex sensitivity we aimed to test whether autonomic markers are associated with functional outcome and mortality independently of intracranial variables. Further, we aimed to evaluate the relationships between autonomic functions, intracranial pressure, and cerebral autoregulation. Retrospective analysis of a prospective database. Neurocritical care unit in a university hospital. Sedated patients with severe traumatic brain injury. Waveforms of intracranial pressure and arterial blood pressure, baseline Glasgow Coma Scale and 6 months Glasgow Outcome Scale were recorded. Baroreflex sensitivity was assessed every 10 seconds using a modified cross-correlational method. Frequency domain analyses of heart rate variability were performed automatically every 10 seconds from a moving 300 seconds of the monitoring time window. Mean values of baroreflex sensitivity, heart rate variability, intracranial pressure, arterial blood pressure, cerebral perfusion pressure, and impaired cerebral autoregulation over the entire monitoring period were calculated for each patient. Two hundred and sixty-two patients with a median age of 36 years entered the analysis. The median admission Glasgow Coma Scale was 6, the median Glasgow Outcome Scale was 3, and the mortality at 6 months was 23%. Baroreflex sensitivity (adjusted odds ratio, 0.9; p = 0.02) and relative power of a high frequency band of heart rate variability (adjusted odds ratio, 1.05; p < 0.001) were individually associated with mortality, independently

  20. Coping and emotional adjustment following traumatic brain injury.

    PubMed

    Anson, Katie; Ponsford, Jennie

    2006-01-01

    To examine the association between coping style and emotional adjustment following traumatic brain injury. Thirty three individuals who had sustained a traumatic brain injury (mean duration of posttraumatic amnesia = 32 days) between 1(1/2) months and almost 7 years previously. Coping Scale for Adults, Hospital Anxiety and Depression Scale, Rosenberg Self-Esteem Scale, State-Trait Anger Expression Inventory, and the Sickness Impact Profile. Approximately 50% of the sample reported clinically significant levels of anxiety and depression. Coping characterized by avoidance, worry, wishful thinking, self-blame, and using drugs and alcohol was associated with higher levels of anxiety, depression, and psychosocial dysfunction and lower levels of self-esteem. Coping characterized by actively working on the problem and using humor and enjoyable activities to manage stress was associated with higher self-esteem. Lower premorbid intelligence (measured via the National Adult Reading Test) and greater self-awareness (measured via the Self-Awareness of Deficits Interview) were associated with an increased rate of maladaptive coping. The strong association between the style of coping used to manage stress and emotional adjustment suggests the possibility that emotional adjustment might be improved by the facilitation of more adaptive coping styles. It is also possible that improving emotional adjustment may increase adaptive coping. The development and evaluation of interventions aimed at facilitating adaptive coping and decreasing emotional distress represent important and potentially fruitful contributions to enhancing long-term outcome following brain injury.

  1. Functional brain imaging and the induction of traumatic recall: a cross-correlational review between neuroimaging and hypnosis.

    PubMed

    Vermetten, Eric; Douglas Bremner, J

    2004-07-01

    The behavioral and psychophysiological alterations during recall in patients with trauma disorders often resemble phenomena that are seen in hypnosis. In studies of emotional recall as well as in neuroimaging studies of hypnotic processes similar brain structures are involved: thalamus, hippocampus, amygdala, medial prefrontal cortex, anterior cingulate cortex. This paper focuses on cross-correlations in traumatic recall and hypnotic responses and reviews correlations between the involvement of brain structures in traumatic recall and processes that are involved in hypnotic responsiveness. To further improve uniformity of results of brain imaging specifically for traumatic recall studies, attention is needed for standardization of hypnotic variables, isolation of the emotional process of interest (state),and assessment of trait-related differences.

  2. Deficient pain modulatory systems in patients with mild traumatic brain and chronic post-traumatic headache: implications for its mechanism.

    PubMed

    Defrin, Ruth; Riabinin, Miri; Feingold, Yelena; Schreiber, Shaul; Pick, Chaim G

    2015-01-01

    Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed.

  3. Deficient Pain Modulatory Systems in Patients with Mild Traumatic Brain and Chronic Post-Traumatic Headache: Implications for its Mechanism

    PubMed Central

    Riabinin, Miri; Feingold, Yelena; Schreiber, Shaul; Pick, Chaim G.

    2015-01-01

    Abstract Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed. PMID:25068510

  4. Utility of the Croatian translation of the community integration questionnaire-revised in a sample of adults with moderate to severe traumatic brain injury.

    PubMed

    Tršinski, Dubravko; Tadinac, Meri; Bakran, Žarko; Klepo, Ivana

    2018-02-23

    To examine the utility of the Community Integration Questionnaire-Revised, translated into Croatian, in a sample of adults with moderate to severe traumatic brain injury. The Community Integration Questionnaire-Revised was administered to a sample of 88 adults with traumatic brain injury and to a control sample matched by gender, age and education. Participants with traumatic brain injury were divided into four subgroups according to injury severity. The internal consistency of the Community Integration Questionnaire-Revised was satisfactory. The differences between the group with traumatic brain injury and the control group were statistically significant for the overall Community Integration Questionnaire-Revised score, as well as for all the subscales apart from the Home Integration subscale. The community Integration Questionnaire-Revised score varied significantly for subgroups with different severity of traumatic brain injury. The results show that the Croatian translation of the Community Integration Questionnaire-Revised is useful in assessing participation in adults with traumatic brain injury and confirm previous findings that severity of injury predicts community integration. Results of the new Electronic Social Networking scale indicate that persons who are more active on electronic social networks report better results for other domains of community integration, especially social activities. Implications for rehabilitation The Croatian translation of the Community Integration Questionnaire-Revised is a valid tool for long-term assessment of participation in various domains in persons with moderate to severe traumatic brain injury Persons with traumatic brain injury who are more active in the use of electronic social networking are also more integrated into social and productivity domains. Targeted training in the use of new technologies could enhance participation after traumatic brain injury.

  5. Brain network dysregulation, emotion, and complaints after mild traumatic brain injury.

    PubMed

    van der Horn, Harm J; Liemburg, Edith J; Scheenen, Myrthe E; de Koning, Myrthe E; Marsman, Jan-Bernard C; Spikman, Jacoba M; van der Naalt, Joukje

    2016-04-01

    To assess the role of brain networks in emotion regulation and post-traumatic complaints in the sub-acute phase after non-complicated mild traumatic brain injury (mTBI). Fifty-four patients with mTBI (34 with and 20 without complaints) and 20 healthy controls (group-matched for age, sex, education, and handedness) were included. Resting-state fMRI was performed at four weeks post-injury. Static and dynamic functional connectivity were studied within and between the default mode, executive (frontoparietal and bilateral frontal network), and salience network. The hospital anxiety and depression scale (HADS) was used to measure anxiety (HADS-A) and depression (HADS-D). Regarding within-network functional connectivity, none of the selected brain networks were different between groups. Regarding between-network interactions, patients with complaints exhibited lower functional connectivity between the bilateral frontal and salience network compared to patients without complaints. In the total patient group, higher HADS-D scores were related to lower functional connectivity between the bilateral frontal network and both the right frontoparietal and salience network, and to higher connectivity between the right frontoparietal and salience network. Furthermore, whereas higher HADS-D scores were associated with lower connectivity within the parietal midline areas of the bilateral frontal network, higher HADS-A scores were related to lower connectivity within medial prefrontal areas of the bilateral frontal network. Functional interactions of the executive and salience networks were related to emotion regulation and complaints after mTBI, with a key role for the bilateral frontal network. These findings may have implications for future studies on the effect of psychological interventions. © 2016 Wiley Periodicals, Inc.

  6. The emergence of artistic ability following traumatic brain injury

    PubMed Central

    Midorikawa, Akira; Kawamura, Mitsuru

    2015-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal and expressionistic over the following 6 months. PMID:24417345

  7. The emergence of artistic ability following traumatic brain injury.

    PubMed

    Midorikawa, Akira; Kawamura, Mitsuru

    2015-02-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal and expressionistic over the following 6 months.

  8. Predictors of Hypopituitarism in Patients with Traumatic Brain Injury.

    PubMed

    Silva, Paula P B; Bhatnagar, Saurabha; Herman, Seth D; Zafonte, Ross; Klibanski, Anne; Miller, Karen K; Tritos, Nicholas A

    2015-11-15

    Hypopituitarism may often occur in association with traumatic brain injury (TBI). Identification of reliable predictors of pituitary dysfunction is of importance in order to establish a rational testing approach. We searched the records of patients with TBI, who underwent neuroendocrine evaluation in our institution between 2007 and 2013. One hundred sixty-six adults (70% men) with TBI (median age: 41.6 years; range: 18-76) were evaluated at a median interval of 40.4 months (0.2-430.4).Of these, 31% had ≥1 pituitary deficiency, including 29% of patients with mild TBI and 35% with moderate/severe TBI. Growth hormone deficiency was the most common deficiency (21%); when body mass index (BMI)-dependent cutpoints were used, this was reduced to 15%. Central hypoadrenalism occurred in10%, who were more likely to have suffered a motor vehicle accident (MVA, p = 0.04), experienced post-traumatic seizures (p = 0.04), demonstrated any intracranial hemorrhage (p = 0.05), petechial brain hemorrhages (p = 0.017), or focal cortical parenchymal contusions (p = 0.02). Central hypothyroidism occurred in 8% and central hypogonadism in 12%; the latter subgroup had higher BMI (p = 0.03), were less likely to be working after TBI (p = 0.002), and had lower Global Assessment of Functioning (GAF) scores (p = 0.03). Central diabetes insipidus (DI) occurred in 6%, who were more likely to have experienced MVA (p < 0.001) or sustained moderate/severe TBI (p < 0.001). Patients with MVA and those with post-traumatic seizures, intracranial hemorrhage, petechial brain hemorrhages, and/or focal cortical contusions are at particular risk for serious pituitary dysfunction, including adrenal insufficiency and DI, and should be referred for neuroendocrine testing. However, a substantial proportion of patients without these risk factors also developed hypopituitarism.

  9. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  10. Groupings of Persons With Traumatic Brain Injury: A New Approach to Classifying Traumatic Brain Injury in the Post-Acute Period.

    PubMed

    Sherer, Mark; Nick, Todd G; Sander, Angelle M; Melguizo, Maria; Hanks, Robin; Novack, Thomas A; Tulsky, David; Kisala, Pamela; Luo, Chunqiao; Tang, Xinyu

    To (1) identify groups of persons with traumatic brain injury (TBI) who differ on 12 dimensions of cognitive function: cognitive, emotional, and physical symptoms; personal strengths; physical functioning; environmental supports; and performance validity; and (2) describe patterns of differences among the groups on these dimensions and on participation outcome. Three centers for rehabilitation of persons with TBI. A total of 504 persons with TBI living in the community who were an average (standard deviation) of 6.3 (6.8) years postinjury and who had capacity to give consent, could be interviewed and tested in English, and were able to participate in an assessment lasting up to 4 hours. Observational study of a convenience sample of persons with TBI. Selected scales from the Traumatic Brain Injury Quality of Life measures, Neurobehavioral Symptom Inventory, Economic Quality of Life Scale, Family Assessment Device General Functioning Scale, measures of cognitive function, Word Memory Test, and Participation Assessment with Recombined Tools-Objective (PART-O) scale. Cluster analysis identified 5 groups of persons with TBI who differed in clinically meaningful ways on the 12 dimension scores and the PART-O scale. Cluster groupings identified in this study could assist clinicians with case conceptualization and treatment planning.

  11. Digital Gaming for Improving the Functioning of People With Traumatic Brain Injury: Protocol of a Feasibility Study

    PubMed Central

    Korkeila, Jyrki; Kauppi, Kaisa; Kaakinen, Johanna K; Holm, Suvi; Vahlo, Jukka; Tenovuo, Olli; Hämäläinen, Heikki; Sarajuuri, Jaana; Rantanen, Pekka; Orenius, Tage; Koponen, Aki

    2016-01-01

    Background Traumatic brain injury (TBI) is a critical public health problem. The recovery process for people with TBI is typically slow and dependent on complex and intensive assisted rehabilitation programs. Objective To evaluate the effects and feasibility of digital games for cognitive functioning and general well-being among people with traumatic brain injury. Methods This is a single-site feasibility study conducted in Finland, which uses a pragmatic, randomized controlled trial with three arms, and will recruit patients from the Turku University Hospital, Division of Clinical Neurosciences in Finland. Participants must meet the following inclusion criteria: (1) a Finnish speaking adult, aged 18-65 years; (2) diagnosed with a traumatic brain injury (diagnostic criteria ICD-10, S06.X, T90.5) in the University Hospital; (3) access to a TV, a computer, and the Internet at home; (4) not an active digital gamer (5 hours or less a week); (5) willing to participate in the study. Participants must have been discharged from the neurologic treatment period for traumatic brain injury for over 12 months before the commencement of the trial, and they may not have actively participated in cognitive rehabilitation during the 3 months prior to the trial. Written informed consent will be mandatory for acceptance into the trial. Exclusion criteria are as follows: (1) sensory, cognitive, or physical impairment (eg, severe cognitive impairment); (2) a deficiency restricting the use of computers or computer game control system unaided (eg, impairment in vision, severe astigmatism, hemiplegia, disorder in visuospatial perception, dysfunction of the central vestibular system); (3) apathy identified in previous neuropsychological evaluations; (4) diagnosed severe mental disorders (eg, schizophrenia or severe depressive disorders to be identified in medical records as the secondary diagnosis). Results The preparatory phase for the study is fulfilled. Recruitment started in June 2015

  12. Longitudinal relationship between traumatic brain injury and the risk of incident optic neuropathy: A 10-year follow-up nationally representative Taiwan survey

    PubMed Central

    Chen, Ying-Jen; Liang, Chang-Min; Tai, Ming-Cheng; Chang, Yun-Hsiang; Lin, Tzu-Yu; Chung, Chi-Hsiang; Lin, Fu-Huang; Tsao, Chang-Huei; Chien, Wu-Chien

    2017-01-01

    Accumulating evidences had shown that traumatic brain injury was associated with visual impairment or vision loss. However, there were a limited number of empirical studies regarding the longitudinal relationship between traumatic brain injury and incident optic neuropathy. We studied a cohort from the Taiwanese National Health Insurance data comprising 553918 participants with traumatic brain injury and optic neuropathy-free in the case group and 1107836 individuals without traumatic brain injury in the control group from 1st January 2000. After the index date until the end of 2010, Cox proportional hazards analysis was used to compare the risk of incident optic neuropathy. During the follow-up period, case group was more likely to develop incident optic neuropathy (0.24%) than the control group (0.11%). Multivariate Cox regression analysis demonstrated that the case group had a 3-fold increased risk of optic neuropathy (HR = 3.017, 95% CI = 2.767–3.289, p < 0.001). After stratification by demographic information, traumatic brain injury remained a significant factor for incident optic neuropathy. Our study provided evidence of the increased risk of incident optic neuropathy after traumatic brain injury during a 10-year follow-up period. Patients with traumatic brain injury required periodic and thorough eye examinations for incident optic neuropathy to prevent potentially irreversible vision loss. PMID:29156847

  13. Severe Traumatic Brain Injury, Frontal Lesions, and Social Aspects of Language Use: A Study of French-Speaking Adults

    ERIC Educational Resources Information Center

    Dardier, Virginie; Bernicot, Josie; Delanoe, Anaig; Vanberten, Melanie; Fayada, Catherine; Chevignard, Mathilde; Delaye, Corinne; Laurent-Vannier, Anne; Dubois, Bruno

    2011-01-01

    The purpose of this study was to gain insight into the social (pragmatic) aspects of language use by French-speaking individuals with frontal lesions following a severe traumatic brain injury. Eleven participants with traumatic brain injury performed tasks in three areas of communication: production (interview situation), comprehension (direct…

  14. 78 FR 76196 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ...The Department of Veterans Affairs (VA) amends its adjudication regulations concerning service connection. This final rule acts upon a report of the National Academy of Sciences, Institute of Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. This amendment establishes that if a veteran who has a service-connected TBI also has one of these diagnosable illnesses, then that illness will be considered service connected as secondary to the TBI.

  15. Endocannabinoids and traumatic brain injury.

    PubMed

    Shohami, Esther; Cohen-Yeshurun, Ayelet; Magid, Lital; Algali, Merav; Mechoulam, Raphael

    2011-08-01

    Traumatic brain injury (TBI) represents the leading cause of death in young individuals. It triggers the accumulation of harmful mediators, leading to secondary damage, yet protective mechanisms are also set in motion. The endocannabinoid (eCB) system consists of ligands, such as anandamide and 2-arachidonoyl-glycerol (2-AG), receptors (e.g. CB1, CB2), transporters and enzymes, which are responsible for the 'on-demand' synthesis and degradation of these lipid mediators. There is a large body of evidence showing that eCB are markedly increased in response to pathogenic events. This fact, as well as numerous studies on experimental models of brain toxicity, neuroinflammation and trauma supports the notion that the eCB are part of the brain's compensatory or repair mechanisms. These are mediated via CB receptors signalling pathways that are linked to neuronal survival and repair. The levels of 2-AG, the most highly abundant eCB, are significantly elevated after TBI and when administered to TBI mice, 2-AG decreases brain oedema, inflammation and infarct volume and improves clinical recovery. The role of CB1 in mediating these effects was demonstrated using selective antagonists or CB1 knockout mice. CB2 were shown in other models of brain insults to reduce white blood cell rolling and adhesion, to reduce infarct size and to improve motor function. This review is focused on the role the eCB system plays as a self-neuroprotective mechanism and its potential as a basis for the development of novel therapeutic modality for the treatment of CNS pathologies with special emphasis on TBI. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  16. Cognitive Rehabilitation After Traumatic Brain Injury: A Reference for Occupational Therapists.

    PubMed

    Stephens, Jaclyn A; Williamson, Karen-Nicole C; Berryhill, Marian E

    2015-01-01

    Nearly 1.7 million Americans sustain a traumatic brain injury (TBI) each year. These injuries can result in physical, emotional, and cognitive consequences. While many individuals receive cognitive rehabilitation from occupational therapists (OTs), the interdisciplinary nature of TBI research makes it difficult to remain up-to-date on relevant findings. We conducted a literature review to identify and summarize interdisciplinary evidence-based practice targeting cognitive rehabilitation for civilian adults with TBI. Our review summarizes TBI background, and our cognitive remediation section focuses on the findings from 37 recent (since 2006) empirical articles directly related to cognitive rehabilitation for individuals (i.e., excluding special populations such as veterans or athletes). This manuscript is offered as a tool for OTs engaged in cognitive rehabilitation and as a means to highlight arenas where more empirical, interdisciplinary research is needed.

  17. The efficacy and safety of extended-release methylphenidate following traumatic brain injury: a randomised controlled pilot study.

    PubMed

    Dymowski, Alicia R; Ponsford, Jennie L; Owens, Jacqueline A; Olver, John H; Ponsford, Michael; Willmott, Catherine

    2017-06-01

    To investigate the feasibility, safety and efficacy of extended-release methylphenidate in enhancing processing speed, complex attentional functioning and everyday attentional behaviour after traumatic brain injury. Seven week randomised, placebo-controlled, double-blind, parallel pilot study. Inpatient and outpatient Acquired Brain Injury Rehabilitation Program. Eleven individuals with reduced processing speed and/or attention deficits following complicated mild to severe traumatic brain injury. Participants were allocated using a blocked randomisation schedule to receive daily extended-release methylphenidate (Ritalin ® LA at a dose of 0.6 mg/kg) or placebo (lactose) in identical capsules. Tests of processing speed and complex attention, and ratings of everyday attentional behaviour were completed at baseline, week 7 (on-drug), week 8 (off-drug) and 9 months follow-up. Vital signs and side effects were monitored from baseline to week 8. Three percent ( n = 11) of individuals screened participated (mean post-traumatic amnesia duration = 63.80 days, SD = 45.15). Results were analysed for six and four individuals on methylphenidate and placebo, respectively. Groups did not differ on attentional test performance or relative/therapist ratings of everyday attentional behaviour. One methylphenidate participant withdrew due to difficulty sleeping. Methylphenidate was associated with trends towards increased blood pressure and reported anxiety. Methylphenidate was not associated with enhanced processing speed, attentional functioning or everyday attentional behaviour after traumatic brain injury. Alternative treatments for attention deficits after traumatic brain injury should be explored given the limited feasibility of methylphenidate in this population.

  18. Blast induced mild traumatic brain injury/concussion: A physical analysis

    NASA Astrophysics Data System (ADS)

    Kucherov, Yan; Hubler, Graham K.; DePalma, Ralph G.

    2012-11-01

    Currently, a consensus exists that low intensity non-impact blast wave exposure leads to mild traumatic brain injury (mTBI). Considerable interest in this "invisible injury" has developed in the past few years but a disconnect remains between the biomedical outcomes and possible physical mechanisms causing mTBI. Here, we show that a shock wave travelling through the brain excites a phonon continuum that decays into specific acoustic waves with intensity exceeding brain tissue strength. Damage may occur within the period of the phonon wave, measured in tens to hundreds of nanometers, which makes the damage difficult to detect using conventional modalities.

  19. The Cost of Treating Post Traumatic Stress Disorder and Mild Traumatic Brain Injuries

    DTIC Science & Technology

    2010-03-01

    and may increase the risk for Alzheimer‟ s disease and Parkinson ‟ s disease as the person ages (Traumatic Brain Injury: Hope Through Research, 2002...not injured and can be sent back into battle , when there could be an undetected internal injury. Due to the overlap in symptoms, many soldiers are...the constant support and advice from Major Shay Capehart was fundamental in moving this research along. Lt Col Eric Unger‟ s guidance and wisdom was

  20. Advances in neuroimaging of traumatic brain injury and posttraumatic stress disorder

    PubMed Central

    Van Boven, Robert W.; Harrington, Greg S.; Hackney, David B.; Ebel, Andreas; Gauger, Grant; Bremner, J. Douglas; D’Esposito, Mark; Detre, John A.; Haacke, E. Mark; Jack, Clifford R.; Jagust, William J.; Le Bihan, Denis; Mathis, Chester A.; Mueller, Susanne; Mukherjee, Pratik; Schuff, Norbert; Chen, Anthony; Weiner, Michael W.

    2011-01-01

    Improved diagnosis and treatment of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are needed for our military and veterans, their families, and society at large. Advances in brain imaging offer important biomarkers of structural, functional, and metabolic information concerning the brain. This article reviews the application of various imaging techniques to the clinical problems of TBI and PTSD. For TBI, we focus on findings and advances in neuroimaging that hold promise for better detection, characterization, and monitoring of objective brain changes in symptomatic patients with combat-related, closed-head brain injuries not readily apparent by standard computed tomography or conventional magnetic resonance imaging techniques. PMID:20104401

  1. Ketamine Alters Hippocampal Cell Proliferation and Improves Learning in Mice after Traumatic Brain Injury.

    PubMed

    Peters, Austin J; Villasana, Laura E; Schnell, Eric

    2018-04-30

    Traumatic brain injury induces cellular proliferation in the hippocampus, which generates new neurons and glial cells during recovery. This process is regulated by N-methyl-D-aspartate-type glutamate receptors, which are inhibited by ketamine. The authors hypothesized that ketamine treatment after traumatic brain injury would reduce hippocampal cell proliferation, leading to worse behavioral outcomes in mice. Traumatic brain injury was induced in mice using a controlled cortical impact injury, after which mice (N = 118) received either ketamine or vehicle systemically for 1 week. The authors utilized immunohistochemical assays to evaluate neuronal, astroglial, and microglial cell proliferation and survival 3 days, 2 weeks, and 6 weeks postintervention. The Morris water maze reversal task was used to assess cognitive recovery. Ketamine dramatically increased microglial proliferation in the granule cell layer of the hippocampus 3 days after injury (injury + vehicle, 2,800 ± 2,700 cells/mm, n = 4; injury + ketamine, 11,200 ± 6,600 cells/mm, n = 6; P = 0.012). Ketamine treatment also prevented the production of astrocytes 2 weeks after injury (sham + vehicle, 2,400 ± 3,200 cells/mm, n = 13; injury + vehicle, 10,500 ± 11,300 cells/mm, n = 12; P = 0.013 vs. sham + vehicle; sham + ketamine, 3,500 ± 4,900 cells/mm, n = 14; injury + ketamine, 4,800 ± 3,000 cells/mm, n = 13; P = 0.955 vs. sham + ketamine). Independent of injury, ketamine temporarily reduced neurogenesis (vehicle-exposed, 105,100 ± 66,700, cells/mm, n = 25; ketamine-exposed, 74,300 ± 29,200 cells/mm, n = 27; P = 0.031). Ketamine administration improved performance in the Morris water maze reversal test after injury, but had no effect on performance in sham-treated mice. Ketamine alters hippocampal cell proliferation after traumatic brain injury. Surprisingly, these changes were associated with improvement in a neurogenesis-related behavioral recall task, suggesting a possible benefit from ketamine

  2. American Indians/Native Alaskans with Traumatic Brain Injury: Examining the Impairments of Traumatic Brain Injury, Disparities in Service Provision, and Employment Outcomes

    ERIC Educational Resources Information Center

    Whitfield, Harold Wayne; Lloyd, Rosalind

    2008-01-01

    The researchers analyzed data from fiscal year 2006 and found that American Indians/Native Alaskans (AI/NA) with traumatic brain injury experienced similar functional limitations at application as did non-AI/NA. Fewer funds were expended on purchased services for AI/NA than for non-AI/NA. The wages of AI/NA were equitable to those of non-AI/NA at…

  3. Predictors of outcome after treatment of mild traumatic brain injury: a pilot study.

    PubMed

    Leininger, Shelley; Strong, Carrie-Ann H; Donders, Jacobus

    2014-01-01

    To determine factors affecting outcome of comprehensive outpatient rehabilitation of individuals who sustained a mild traumatic brain injury. From a 4-year series of referrals, 49 nonconsecutive participants met criteria for mild traumatic brain injury (ie, loss of consciousness <30 minutes, Glasgow Coma Scale score >12). Outpatient, community-based postconcussion clinic at a rehabilitation hospital. Participants and therapy staff completed the Mayo-Portland Adaptability Inventory-Fourth Edition (MPAI-4) at the initiation and conclusion of treatment. Participants were also administered the Trail Making Test at the start of treatment. Participants generally gave poorer adaptability ratings than staff at the beginning and discharge of treatment. Regression analyses revealed that after controlling for baseline ratings, psychiatric history was associated with worse participant-rated MPAI-4 Adjustment scores at treatment discharge, whereas better Trail Making Test Part B performance at initiation of treatment predicted better participant-rated MPAI-4 Ability at treatment discharge. Premorbid demographic and baseline neurocognitive factors should be taken into account prior to comprehensive treatment of mild traumatic brain injury, as they can influence long-term outcomes. Adaptability ratings from both staff and participants can be useful in gaining different perspectives and assessing factors affecting recovery.

  4. Traumatic Brain Injury in Early Childhood: Developmental Effects and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara; Lowenthal, Barbara

    1998-01-01

    Describes the unique effects of traumatic brain injury (TBI) on development in early childhood and offers suggestions for interventions in the cognitive, language, social-emotional, motor, and adaptive domains. Urges more intensive, long-term studies on the immediate and long-term effects of TBI. (Author/DB)

  5. Traumatic Brain Injury and Special Education: An Information Resource Guide.

    ERIC Educational Resources Information Center

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  6. Behavioral treatment of the traumatically brain-injured: a case study.

    PubMed

    Horton, A M; Howe, N R

    1981-10-01

    The present case illustrates the application of behavioral modification methodology with a traumatically brain-injured adult. Such a treatment regime utilizing a report-card system and a response-cost procedure was implemented to decrease behaviors of using foul language and biting staff members. Dramatic improvement was demonstrated.

  7. Predictors of Neuropsychological Test Performance After Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Donders, Jacobus; Nesbit-Greene, Kelly

    2004-01-01

    The influence of neurological and demographic variables on neuropsychological test performance was examined in 100 9- to 16-year-old children with traumatic brain injury (TBI). Regression analyses were conducted to determine the relative contributions of coma, neuroimaging findings, ethnicity, socioeconomic status, and gender to variance in…

  8. Evaluation of a Health Education Programme about Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  9. Evidence for impaired plasticity after traumatic brain injury in the developing brain.

    PubMed

    Li, Nan; Yang, Ya; Glover, David P; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney; Pelled, Galit

    2014-02-15

    The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2-3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks.

  10. Does intracranial pressure management hurt more than it helps in traumatic brain injury?

    PubMed Central

    Adams, Charles A; Stein, Deborah M; Scalea, Thomas M

    2018-01-01

    Traumatic brain injury (TBI) is the leading cause of death after traumatic injury. Raised intracranial pressure (ICP) is particularly associated with poor TBI outcomes, prompting clinicians to monitor this parameter, using it to guide therapies aimed at reducing pressures. Despite this approach being recommended by several bodies such as the Brain Trauma Foundation and the American College of Surgeons, the evidence demonstrating that ICP-guided therapy improves outcome is limited. The topic was debated at the 36th Annual Point/Counterpoint Acute Care Surgery Conference and the following article summarizes the discussants points of view along with a summary of the evidence. Level of evidence Level III. PMID:29766131

  11. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital

  12. Baclofen in the Therapeutic of Sequele of Traumatic Brain Injury: Spasticity

    PubMed Central

    Pérez-Arredondo, Adán; Cázares-Ramírez, Eduardo; Carrillo-Mora, Paul; Martínez-Vargas, Marina; Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Alemón-Medina, Radamés; Sampieri, Aristides; Navarro, Luz; Carmona-Aparicio, Liliana

    2016-01-01

    Abstract Traumatic brain injury (TBI) is an alteration in brain function, caused by an external force, which may be a hit on the skull, rapid acceleration or deceleration, penetration of an object, or shock waves from an explosion. Traumatic brain injury is a major cause of morbidity and mortality worldwide, with a high prevalence rate in pediatric patients, in which treatment options are still limited, not available at present neuroprotective drugs. Although the therapeutic management of these patients is varied and dependent on the severity of the injury, general techniques of drug types are handled, as well as physical and surgical. Baclofen is a muscle relaxant used to treat spasticity and improve mobility in patients with spinal cord injuries, relieving pain and muscle stiffness. Pharmacological support with baclofen is contradictory, because disruption of its oral administration may cause increased muscle tone syndrome and muscle spasm, prolonged seizures, hyperthermia, dysesthesia, hallucinations, or even multisystem organ failure. Combined treatments must consider the pathophysiology of broader alterations than only excitation/inhibition context, allowing the patient's reintegration with the greatest functionality. PMID:27563745

  13. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2009-10-01

    SUBJECT TERMS Traumatic Brain Injury, Alcohol Use , Mood , Mood Stabilization 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18...1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive episodes during long...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL

  14. Traumatic brain injuries in children: A hospital-based study in Nigeria.

    PubMed

    Udoh, David O; Adeyemo, Adebolajo A

    2013-01-01

    Traumatic Brain Injury (TBI) is a significant cause of morbidity and mortality worldwide. Our previous studies showed a high frequency of motor vehicle accidents among neurosurgical patients. However, there is a dearth of data on head injuries in children in Nigeria. To determine the epidemiology of paediatric traumatic brain injuries. This is a prospective analysis of paediatric head trauma at the University of Benin Teaching Hospital, a major referral centre for all traumatic brain injuries in Nigeria between October 2006 and September 2011. We studied the demographic, clinical and radiological data and treatment outcomes. Data was analysed using statistical package for the social sciences (SPSS) 16.0. We managed 127 cases of paediatric head injuries, 65 boys and 62 girls representing 13% of all head injuries managed over the 5-year period. They were aged 3 months to 17 years. The mean age was 7.4 years (median 7 years) with peak incidence occurring at 6-8 years i.e. 31 (24.4%) cases. Motor vehicle accidents resulted in 67.7%, falls 14% and violence 7%. The most frequent computed tomography finding was intracerebral haemorrhage. Mean duration of hospitalization was 18 days (median 11 days). Eleven patients died, mortality correlating well with severity and the presence of intracerebral haematoma. Head injuries in children are due to motor vehicle and motor vehicle-related accidents. Hence, rational priorities for prevention of head injuries in children should include prevention of vehicular, especially pedestrian, accidents in developing countries.

  15. Educational professionals' understanding of childhood traumatic brain injury.

    PubMed

    Linden, Mark A; Braiden, Hannah-Jane; Miller, Sarah

    2013-01-01

    To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI). Cross-sectional postal survey. The CM-TBI was posted to all educational establishments in one region of the UK. One representative from each school was asked to complete and return the questionnaire (n = 388). Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire. In the first European study to explore this issue, it is highlighted that teachers are ill-prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalization, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.

  16. The Changed Brain: Teacher Awareness of Traumatic Brain Injury and Instruction Methods to Enhance Cognitive Processing in Mathematics

    ERIC Educational Resources Information Center

    Stahl, Judith M.

    2008-01-01

    Traumatic brain injury (TBI) has come to subjugate and exert its authority on education as some survivors re-enter the academic arena. A key component of a TBI student's academic success is dependent upon a teacher's awareness of the TBI learner and a willingness to modify curriculum to promote the uniqueness of the changed brain and therefore,…

  17. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury.

    PubMed

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid; Morgensen, Jesper

    2013-09-01

    To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. The majority of patients progressed to a post-confusional level of consciousness during the first year post-trauma. At follow-up 33-58% of patients had achieved functional independence within the cognitive domains on the Cog-FIM. Socio-economic status, duration of acute care and post-traumatic amnesia were significant predictors of outcome. Substantial recovery was documented among patients with severe traumatic brain injury during the first year post-trauma. The results of the current study suggest that absence of consciousness at discharge from acute care should not preclude patients from being referred to specialized sub-acute rehabilitation.

  18. Survivors of a Silent Epidemic: The Learning Experience of College Students with a History of Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Schlessman, Heather A.

    2010-01-01

    A significant proportion of young adults experience a traumatic brain injury (TBI) every year, and students with this history are becoming a growing presence on college campuses. A review of the literature revealed very little research exploring the learning experiences of college students with a history of traumatic brain injury. The purpose of…

  19. Blood-based diagnostics of traumatic brain injuries

    PubMed Central

    Mondello, Stefania; Muller, Uwe; Jeromin, Andreas; Streeter, Jackson; Hayes, Ronald L; Wang, Kevin KW

    2011-01-01

    Traumatic brain injury is a major health and socioeconomic problem that affects all societies. However, traditional approaches to the classification of clinical severity are the subject of debate and are being supplemented with structural and functional neuroimaging, as the need for biomarkers that reflect elements of the pathogenetic process is widely recognized. Basic science research and developments in the field of proteomics have greatly advanced our knowledge of the mechanisms involved in damage and have led to the discovery and rapid detection of new biomarkers that were not available previously. However, translating this research for patients' benefits remains a challenge. In this article, we summarize new developments, current knowledge and controversies, focusing on the potential role of these biomarkers as diagnostic, prognostic and monitoring tools of brain-injured patients. PMID:21171922

  20. Assisting Students with a Traumatic Brain Injury in School Interventions

    ERIC Educational Resources Information Center

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  1. Assessing Children with Traumatic Brain Injuries: Integrating Educational and Medical Issues.

    ERIC Educational Resources Information Center

    Shaw, Steven R.; Yingst, Christine A.

    1992-01-01

    This overview of traumatic brain injuries discusses (1) incidence and prevalence; (2) characteristics; (3) the recovery process; and (4) educational/medical assessment, including premorbid functioning, current functioning, educationally relevant medical issues, and amount and type of family support. (JDD)

  2. Acute care alternate-level-of-care days due to delayed discharge for traumatic and non-traumatic brain injuries.

    PubMed

    Amy, Chen; Zagorski, Brandon; Chan, Vincy; Parsons, Daria; Vander Laan, Rika; Colantonio, Angela

    2012-05-01

    Alternate-level-of-care (ALC) days represent hospital beds that are taken up by patients who would more appropriately be cared for in other settings. ALC days have been found to be costly and may result in worse functional outcomes, reduced motor skills and longer lengths of stay in rehabilitation. This study examines the factors that are associated with acute care ALC days among patients with acquired brain injury (ABI). We used the Discharge Abstract Database to identify patients with ABI using International Classification of Disease-10 codes. From fiscal years 2007/08 to 2009/10, 17.5% of patients with traumatic and 14% of patients with non-traumatic brain injury had at least one ALC day. Significant predictors include having a psychiatric co-morbidity, increasing age and length of stay in acute care. These findings can inform planning for care of people with ABI in a publicly funded healthcare system.

  3. Cognitive and behavioural post-traumatic impairments: what is the specificity of a brain injury ? A study within the ESPARR cohort.

    PubMed

    Nash, S; Luauté, J; Bar, J Y; Sancho, P O; Hours, M; Chossegros, L; Tournier, C; Charnay, P; Mazaux, J M; Boisson, D

    2014-12-01

    The variety and extent of impairments occurring after traumatic brain injury vary according to the nature and severity of the lesions. In order to better understand their interactions and long-term outcome, we have studied and compared the cognitive and neurobehavioral profile one year post onset of patients with and without traumatic brain injury in a cohort of motor vehicle accident victims. The study population is composed of 207 seriously injured persons from the ESPARR cohort. This cohort, which has been followed up in time, consists in 1168 motor vehicle accident victims (aged 16 years or more) with injuries with all degrees of severity. Inclusion criteria were: living in Rhone county, victim of a traffic accident having involved at least one wheel-conducted vehicle and having occurred in Rhone county, alive at the time of arrival in hospital and having presented in one of the different ER facilities of the county. The cohort's representativeness regarding social and geographic criteria and the specificities of the accidents were ensured by the specific targeting of recruitment. Deficits and impairments were assessed one year after the accident using the Neurobehavioral Rating Scale - Revised and the Trail-Making Test. Within our seriously injured group, based on the Glasgow Score, the presence of neurological deficits, aggravation of neurological condition in the first 72hours and/or abnormal cerebral imaging, we identified three categories: (i) moderate/severe traumatic brain injury (n=48), (ii) mild traumatic brain injury (n=89), and (iii) severely injured but without traumatic brain injury (n=70). The most frequently observed symptoms were anxiety, irritability, memory and attention impairments, depressive mood and emotional lability. While depressive mood and irritability were observed with similar frequency in all three groups, memory and attention impairments, anxiety and reduced initiative were more specific to traumatic brain injury whereas executive

  4. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System

    PubMed Central

    Plog, Benjamin A.; Dashnaw, Matthew L.; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid

    2015-01-01

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  5. Update in mild traumatic brain injury.

    PubMed

    Freire-Aragón, María Dolores; Rodríguez-Rodríguez, Ana; Egea-Guerrero, Juan José

    2017-08-10

    There has been concern for many years regarding the identification of patients with mild traumatic brain injury (TBI) at high risk of developing an intracranial lesion (IL) that would require neurosurgical intervention. The small percentage of patients with these characteristics and the exceptional mortality associated with mild TBI with IL have led to the high use of resources such as computerised tomography (CT) being reconsidered. The various protocols developed for the management of mild TBI are based on the identification of risk factors for IL, which ultimately allows more selective indication or discarding both the CT application and the hospital stay for neurological monitoring. Finally, progress in the study of brain injury biomarkers with prognostic utility in different clinical categories of TBI has recently been incorporated by several clinical practice guidelines, which has allowed, together with clinical assessment, a more accurate prognostic approach for these patients to be established. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  6. Traumatic brain injury: preferred methods and targets for resuscitation.

    PubMed

    Scaife, Eric R; Statler, Kimberly D

    2010-06-01

    Severe traumatic brain injury (TBI) is the most common cause of death and disability in pediatric trauma. This review looks at the strategies to treat TBI in a temporal fashion. We examine the targets for resuscitation from field triage to definitive care in the pediatric ICU. Guidelines for the management of pediatric TBI exist. The themes of contemporary clinical research have been compliance with these guidelines and refinement of treatment recommendations developing a more sophisticated understanding of the pathophysiology of the injured brain. In the field, the aim has been to achieve routine compliance with the resuscitation goals. In the hospital, efforts have been directed at improving our ability to monitor the injured brain, developing techniques that limit brain swelling, and customizing brain perfusion. As our understanding of pediatric TBI evolves, the ambition is that age-specific and perhaps individual brain injury strategies based upon feedback from continuous monitors will be defined. In addition, vogue methods such as hypothermia, hypertonic saline, and aggressive surgical decompression may prove to impact brain swelling and outcomes.

  7. Found in translation: Understanding the biology and behavior of experimental traumatic brain injury.

    PubMed

    Bondi, Corina O; Semple, Bridgette D; Noble-Haeusslein, Linda J; Osier, Nicole D; Carlson, Shaun W; Dixon, C Edward; Giza, Christopher C; Kline, Anthony E

    2015-11-01

    The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled "Traumatic brain injury: laboratory and clinical perspectives," presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein, we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Wearable nanosensor system for monitoring mild traumatic brain injuries in football players

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  9. Former combatants in Liberia: the burden of possible traumatic brain injury among demobilized combatants.

    PubMed

    Johnson, Kirsten; Asher, Jana; Kisielewski, Michael; Lawry, Lynn

    2012-05-01

    To provide a better understanding of any associations between Disarmament, Demobilization, and Reintegration, previous head injury, and mental health symptoms among former combatants in Liberia. A cluster-sampled national survey of the adult household-based Liberian population. Former combatants with reported head injury were more likely to experience major depressive disorder symptoms, suicidal ideation and attempts, and current substance abuse. Former combatants with head injury are 2.83 times more likely to have major depressive disorder symptoms, and those with suspected traumatic brain injury are five times more likely to have post-traumatic stress disorder. The poor mental health of former combatants in Liberia, both child and adult, might be mitigated if Disarmament, Demobilization, and Reintegration programming assessed participants for head trauma and traumatic brain injury using simple screening methods. The specific health and mental health needs of ex-combatants--a highly vulnerable group--will need to be addressed by Liberia. If left untreated, ex-combatants with high rates of suicidal ideation and post-traumatic stress disorder might be susceptible to re-recruitment into new conflicts in the region.

  10. Recent neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  11. Does gender matter? Differences in social-emotional behavior among infants and toddlers before and after mild traumatic brain injury: a preliminary study.

    PubMed

    Kaldoja, Mari-Liis; Kolk, Anneli

    2015-06-01

    Traumatic brain injury is a common cause of acquired disability in childhood. While much is known about cognitive sequelae of brain trauma, gender-specific social-emotional problems in children with mild traumatic brain injury is far less understood. The aims of the study were to investigate gender differences in social-emotional behavior before and after mild traumatic brain injury. Thirty-five 3- to 65-month-old children with mild traumatic brain injury and 70 controls were assessed with Ages and Stages Questionnaires: Social-Emotional. Nine months later, 27 of 35 patients and 54 of 70 controls were reassessed. We found that before injury, boys had more self-regulation and autonomy difficulties and girls had problems with adaptive functioning. Nine months after injury, boys continued to struggle with self-regulation and autonomy and new difficulties with interaction had emerged, whereas in girls, problems in interaction had evolved. Even mild traumatic brain injury in early childhood disrupts normal social-emotional development having especially devastating influence on interaction skills. © The Author(s) 2014.

  12. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  13. Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease: A Population Based Medical Record Review Analysis

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0573 TITLE: Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease: A Population-Based...Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease...TERMS Population; epidemiology; dementia; neurocognitive disorders; brain injuries; Parkinsonian disorders 16. SECURITY CLASSIFICATION OF: U 17

  14. Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury

    DTIC Science & Technology

    2011-04-01

    produces a decrease in the number of adjustments of the impaired forelimb and unimpaired limb and an increase in abnormal behaviors during pasta eating...eat uncooked vermicelli pasta . In unilateral stroke and Parkinson’s models, animals show deficits in the way they use their paws to manipulate the... pasta as it is eaten. This test has never been used to examine forelimb function in animal models of traumatic brain injury (TBI). The current study

  15. Incidence and impact of withdrawal of life-sustaining therapies in clinical trials of severe traumatic brain injury: A systematic review.

    PubMed

    Leblanc, Guillaume; Boutin, Amélie; Shemilt, Michèle; Lauzier, François; Moore, Lynne; Potvin, Véronique; Zarychanski, Ryan; Archambault, Patrick; Lamontagne, François; Léger, Caroline; Turgeon, Alexis F

    2018-06-01

    Background Most deaths following severe traumatic brain injury follow decisions to withdraw life-sustaining therapies. However, the incidence of the withdrawal of life-sustaining therapies and its potential impact on research data interpretation have been poorly characterized. The aim of this systematic review was to assess the reporting and the impact of withdrawal of life-sustaining therapies in randomized clinical trials of patients with severe traumatic brain injury. Methods We searched Medline, Embase, Cochrane Central, BIOSIS, and CINAHL databases and references of included trials. All randomized controlled trials published between January 2002 and August 2015 in the six highest impact journals in general medicine, critical care medicine, and neurocritical care (total of 18 journals) were considered for eligibility. Randomized controlled trials were included if they enrolled adult patients with severe traumatic brain injury (Glasgow Coma Scale ≤ 8) and reported data on mortality. Our primary objective was to assess the proportion of trials reporting the withdrawal of life-sustaining therapies in a publication. Our secondary objectives were to describe the overall mortality rate, the proportion of deaths following the withdrawal of life-sustaining therapies, and to assess the impact of the withdrawal of life-sustaining therapies on trial results. Results From 5987 citations retrieved, we included 41 randomized trials (n = 16,364, ranging from 11 to 10,008 patients). Overall mortality was 23% (range = 3%-57%). Withdrawal of life-sustaining therapies was reported in 20% of trials (8/41, 932 patients in trials) and the crude number of deaths due to the withdrawal of life-sustaining therapies was reported in 17% of trials (7/41, 884 patients in trials). In these trials, 63% of deaths were associated with the withdrawal of life-sustaining therapies (105/168). An analysis carried out by imputing a 4% differential rate in instances of withdrawal of life

  16. Endocannabinoids and traumatic brain injury

    PubMed Central

    Shohami, Esther; Cohen-Yeshurun, Ayelet; Magid, Lital; Algali, Merav; Mechoulam, Raphael

    2011-01-01

    Traumatic brain injury (TBI) represents the leading cause of death in young individuals. It triggers the accumulation of harmful mediators, leading to secondary damage, yet protective mechanisms are also set in motion. The endocannabinoid (eCB) system consists of ligands, such as anandamide and 2-arachidonoyl-glycerol (2-AG), receptors (e.g. CB1, CB2), transporters and enzymes, which are responsible for the ‘on-demand’ synthesis and degradation of these lipid mediators. There is a large body of evidence showing that eCB are markedly increased in response to pathogenic events. This fact, as well as numerous studies on experimental models of brain toxicity, neuroinflammation and trauma supports the notion that the eCB are part of the brain's compensatory or repair mechanisms. These are mediated via CB receptors signalling pathways that are linked to neuronal survival and repair. The levels of 2-AG, the most highly abundant eCB, are significantly elevated after TBI and when administered to TBI mice, 2-AG decreases brain oedema, inflammation and infarct volume and improves clinical recovery. The role of CB1 in mediating these effects was demonstrated using selective antagonists or CB1 knockout mice. CB2 were shown in other models of brain insults to reduce white blood cell rolling and adhesion, to reduce infarct size and to improve motor function. This review is focused on the role the eCB system plays as a self-neuroprotective mechanism and its potential as a basis for the development of novel therapeutic modality for the treatment of CNS pathologies with special emphasis on TBI. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21418185

  17. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive...TITLE: A Double Blind Trial of Divalproex Sodium for Affective L ability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL...NUMBER Liability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  18. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update

    PubMed Central

    Wu, Xin; Kirov, Ivan I.; Gonen, Oded; Ge, Yulin; Grossman, Robert I.

    2016-01-01

    Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level–dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. © RSNA, 2016 PMID:27183405

  19. Interventions for Students with Traumatic Brain Injury: Managing Behavioral Disturbances.

    ERIC Educational Resources Information Center

    Kehle, Thomas J.; And Others

    1996-01-01

    This article discusses behavioral sequelae common in children and adolescents following a traumatic brain injury (TBI) and the design of intervention strategies. Emphasis is on the unique needs of these students and the cognitive sequelae of TBI (such as impaired attention, reasoning, learning, and memory) that can cause further behavioral…

  20. Hemispheric Visual Attentional Imbalance in Patients with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pavlovskaya, Marina; Groswasser, Zeev; Keren, Ofer; Mordvinov, Eugene; Hochstein, Shaul

    2007-01-01

    We find a spatially asymmetric allocation of attention in patients with traumatic brain injury (TBI) despite the lack of obvious asymmetry in neurological indicators. Identification performance was measured for simple spatial patterns presented briefly to a locus 5 degrees into the left or right hemifield, after precuing attention to the same…

  1. Coagulopathy and transfusion requirements in war related penetrating traumatic brain injury. A single centre study in a French role 3 medical treatment facility in Afghanistan.

    PubMed

    Bordes, J; Joubert, C; Esnault, P; Montcriol, A; Nguyen, C; Meaudre, E; Dulou, R; Dagain, A

    2017-05-01

    Traumatic brain injury associated coagulopathy is frequent, either in isolated traumatic brain injury in civilian practice and in combat traumatic brain injury. In war zone, it is a matter of concern because head and neck are the second most frequent site of wartime casualty burden. Data focusing on transfusion requirements in patients with war related TBI coagulopathy are limited. A descriptive analysis was conducted of 77 penetrating traumatic brain injuries referred to a French role 3 medical treatment facility in Kabul, Afghanistan, deployed on the Kabul International Airport (KaIA), over a 30 months period. On 77 patients, 23 died during the prehospital phase and were not included in the study. Severe traumatic brain injury represented 50% of patients. Explosions were the most common injury mechanism. Extracranial injuries were present in 72% of patients. Traumatic brain injury coagulopathy was diagnosed in 67% of patients at role 3 admission. Red blood cell units (RBCu) were transfused in 39 (72%) patients, French lyophilized plasma (FLYP) in 41 (76%), and fresh whole blood (FWB) in 17 (31%). The results of this study support previous observations of coagulopathy as a frequent complication of traumatic brain injury. The majority of patients with war related penetrating traumatic brain injury presented with extracranial lesions. Most of them required a high level of transfusion capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Philosophy of mind: coming to terms with traumatic brain injury.

    PubMed

    Buzan, Randall D; Kupfer, Jeff; Eastridge, Dixie; Lema-Hincapie, Andres

    2014-01-01

    Patients and their families struggle with accepting changes in personality after traumatic brain injury (TBI). A neuroanatomic understanding may assist with this process. We briefly review the history of the Western conceptualization of the Self, and discuss how neuroscience and changes in personality wrought by brain injuries modify and enrich our understanding of our selves and our patients. The sense of self, while conflated with the concept of a "soul" in Western thinking, is more rationally considered a construct derived from neurophysiologic structures. The self or personality therefore often changes when the brain changes. A neuroanatomic perspective can help patients, families, and clinicians accept and cope with the sequellae of TBI.

  3. Delayed Traumatic Intracranial Haemorrhage and Progressive Traumatic Brain Injury in a Major Referral Centre Based in a Developing Country

    PubMed Central

    Jeng, Toh Charng; Haspani, Mohd Saffari Mohd; Adnan, Johari Siregar; Naing, Nyi Nyi

    2008-01-01

    A repeat Computer Tomographic (CT) brain after 24–48 hours from the 1st scanning is usually practiced in most hospitals in South East Asia where intracranial pressure monitoring (ICP) is routinely not done. This interval for repeat CT would be shortened if there was a deterioration in Glasgow Coma Scale (GCS). Most of the time the prognosis of any intervention may be too late especially in hospitals with high patient-to-doctor ratio causing high mortality and morbidity. The purpose of this study was to determine the important predictors for early detection of Delayed Traumatic Intracranial Haemorrhage (DTICH) and Progressive Traumatic Brain Injury (PTBI) before deterioration of GCS occurred, as well as the most ideal timing of repeated CT brain for patients admitted in Malaysian hospitals. A total of 81 patients were included in this study over a period of six months. The CT scan brain was studied by comparing the first and second CT brain to diagnose the presence of DTICH/PTBI. The predictors tested were categorised into patient factors, CT brain findings and laboratory investigations. The mean age was 33.1 ± 15.7 years with a male preponderance of 6.36:1. Among them, 81.5% were patients from road traffic accidents with Glasgow Coma Scale ranging from 4 – 15 (median of 12) upon admission. The mean time interval delay between trauma and first CT brain was 179.8 ± 121.3 minutes for the PTBI group. The DTICH group, 9.9% of the patients were found to have new intracranial clots. Significant predictors detected were different referral hospitals (p=0.02), total GCS status (p=0.026), motor component of GCS (p=0.043), haemoglobin level (p<0.001), platelet count (p=0.011) and time interval between trauma and first CT brain (p=0.022). In the PTBI group, 42.0% of the patients were found to have new changes (new clot occurrence, old clot expansion and oedema) in the repeat CT brain. Univariate statistical analysis revealed that age (p=0.03), race (p=0.035), types of

  4. Mortality associated with withdrawal of life-sustaining therapy for patients with severe traumatic brain injury: a Canadian multicentre cohort study

    PubMed Central

    Turgeon, Alexis F.; Lauzier, François; Simard, Jean-François; Scales, Damon C.; Burns, Karen E.A.; Moore, Lynne; Zygun, David A.; Bernard, Francis; Meade, Maureen O.; Dung, Tran Cong; Ratnapalan, Mohana; Todd, Stephanie; Harlock, John; Fergusson, Dean A.

    2011-01-01

    Background: Severe traumatic brain injury often leads to death from withdrawal of life-sustaining therapy, although prognosis is difficult to determine. Methods: To evaluate variation in mortality following the withdrawal of life-sustaining therapy and hospital mortality in patients with critical illness and severe traumatic brain injury, we conducted a two-year multicentre retrospective cohort study in six Canadian level-one trauma centres. The effect of centre on hospital mortality and withdrawal of life-sustaining therapy was evaluated using multivariable logistic regression adjusted for baseline patient-level covariates (sex, age, pupillary reactivity and score on the Glasgow coma scale). Results: We randomly selected 720 patients with traumatic brain injury for our study. The overall hospital mortality among these patients was 228/720 (31.7%, 95% confidence interval [CI] 28.4%–35.2%) and ranged from 10.8% to 44.2% across centres (χ2 test for overall difference, p < 0.001). Most deaths (70.2% [160/228], 95% CI 63.9%–75.7%) were associated with withdrawal of life-sustaining therapy, ranging from 45.0% (18/40) to 86.8% (46/53) (χ2 test for overall difference, p < 0.001) across centres. Adjusted odd ratios (ORs) for the effect of centre on hospital mortality ranged from 0.61 to 1.55 (p < 0.001). The incidence of withdrawal of life-sustaining therapy varied by centre, with ORs ranging from 0.42 to 2.40 (p = 0.001). About one half of deaths that occurred following the withdrawal of life-sustaining therapies happened within the first three days of care. Interpretation: We observed significant variation in mortality across centres. This may be explained in part by regional variations in physician, family or community approaches to the withdrawal of life-sustaining therapy. Considering the high proportion of early deaths associated with the withdrawal of life-sustaining therapy and the limited accuracy of current prognostic indicators, caution should be used

  5. Imaging Evaluation of Acute Traumatic Brain Injury

    PubMed Central

    Mutch, Christopher A.; Talbott, Jason F.; Gean, Alisa

    2016-01-01

    SYNOPSIS Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it will also help predict patient outcomes. TBI consists of multiple pathoanatomical entities. Here we review the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each these pathoanatomic entities. We also briefly survey advanced imaging techniques, which include a number of promising areas of TBI research. PMID:27637393

  6. Anti-high mobility group box-1 antibody therapy for traumatic brain injury.

    PubMed

    Okuma, Yu; Liu, Keyue; Wake, Hidenori; Zhang, Jiyong; Maruo, Tomoko; Date, Isao; Yoshino, Tadashi; Ohtsuka, Aiji; Otani, Naoki; Tomura, Satoshi; Shima, Katsuji; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Takahashi, Hideo K; Mori, Shuji; Nishibori, Masahiro

    2012-09-01

    High mobility group box-1 (HMGB1) plays an important role in triggering inflammatory responses in many types of diseases. In this study, we examined the involvement of HMGB1 in traumatic brain injury (TBI) and evaluated the ability of intravenously administered neutralizing anti-HMGB1 monoclonal antibody (mAb) to attenuate brain injury. Traumatic brain injury was induced in rats or mice by fluid percussion. Anti-HMGB1 mAb or control mAb was administered intravenously after TBI. Anti-HMGB1 mAb remarkably inhibited fluid percussion-induced brain edema in rats, as detected by T2-weighted magnetic resonance imaging; this was associated with inhibition of HMGB1 translocation, protection of blood-brain barrier (BBB) integrity, suppression of inflammatory molecule expression, and improvement of motor function. In contrast, intravenous injection of recombinant HMGB1 dose-dependently produced the opposite effects. Experiments using receptor for advanced glycation end product (RAGE)(-/-) , toll-like receptor-4 (TLR4)(-/-) , and TLR2(-/-) mice suggested the involvement of RAGE as the predominant receptor for HMGB1. Anti-HMGB1 mAb may provide a novel and effective therapy for TBI by protecting against BBB disruption and reducing the inflammatory responses induced by HMGB1. Copyright © 2012 American Neurological Association.

  7. Intracranial Pressure Monitoring in Infants and Young Children With Traumatic Brain Injury.

    PubMed

    Dixon, Rebecca R; Nocera, Maryalice; Zolotor, Adam J; Keenan, Heather T

    2016-11-01

    To examine the use of intracranial pressure monitors and treatment for elevated intracranial pressure in children 24 months old or younger with traumatic brain injury in North Carolina between April 2009 and March 2012 and compare this with a similar cohort recruited 2000-2001. Prospective, observational cohort study. Twelve PICUs in North Carolina. All children 24 months old or younger with traumatic brain injury, admitted to an included PICU. None. The use of intracranial pressure monitors and treatments for elevated intracranial pressure were evaluated in 238 children with traumatic brain injury. Intracranial pressure monitoring (risk ratio, 3.7; 95% CI, 1.5-9.3) and intracranial pressure therapies were more common in children with Glasgow Coma Scale less than or equal to 8 compared with Glasgow Coma Scale greater than 8. However, only 17% of children with Glasgow Coma Scale less than or equal to 8 received a monitoring device. Treatments for elevated intracranial pressure were more common in children with monitors; yet, some children without monitors received therapies traditionally used to lower intracranial pressure. Unadjusted predictors of monitoring were Glasgow Coma Scale less than or equal to 8, receipt of cardiopulmonary resuscitation, nonwhite race. Logistic regression showed no strong predictors of intracranial pressure monitor use. Compared with the 2000 cohort, children in the 2010 cohort with Glasgow Coma Scale less than or equal to 8 were less likely to receive monitoring (risk ratio, 0.5; 95% CI, 0.3-1.0), although the estimate was not precise, or intracranial pressure management therapies. Children in the 2010 cohort with a Glasgow Coma Scale less than or equal to 8 were less likely to receive an intracranial pressure monitor or hyperosmolar therapy than children in the 2000 cohort; however, about 10% of children without monitors received therapies to decrease intracranial pressure. This suggests treatment heterogeneity in children 24 months old

  8. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    PubMed

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  9. Neuroimaging in Pediatric Traumatic Brain Injury: Current and Future Predictors of Functional Outcome

    ERIC Educational Resources Information Center

    Suskauer, Stacy J.; Huisman, Thierry A. G. M.

    2009-01-01

    Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…

  10. Late-onset social anxiety disorder following traumatic brain injury.

    PubMed

    Chaves, Cristiano; Trzesniak, Clarissa; Derenusson, Guilherme Nogueira; Araújo, David; Wichert-Ana, Lauro; Machado-de-Sousa, João Paulo; Carlotti, Carlos Gilberto; Nardi, Antonio E; Zuardi, Antônio W; de S Crippa, José Alexandre; Hallak, Jaime E C

    2012-01-01

    Neuropsychiatric sequelae are the predominant long-term disability after traumatic brain injury (TBI). This study reports a case of late-onset social anxiety disorder (SAD) following TBI. A patient that was spontaneous and extroverted up to 18-years-old started to exhibit significant social anxiety symptoms. These symptoms became progressively worse and he sought treatment at age 21. He had a previous history of traumatic brain injury (TBI) at age 17. Neuroimaging investigations (CT, SPECT and MRI) showed a bony protuberance on the left frontal bone, with mass effect on the left frontal lobe. He had no neurological signs or symptoms. The patient underwent neurosurgery with gross total resection of the lesion and the pathological examination was compatible with intradiploic haematoma. Psychiatric symptoms may be the only findings in the initial manifestation of slowly growing extra-axial space-occupying lesions that compress the frontal lobe from the outside. Focal neurological symptoms may occur only when the lesion becomes large. This case report underscores the need for careful exclusion of general medical conditions and TBI history in cases of late-onset SAD and may also contribute to the elucidation of the neurobiology of this disorder.

  11. Racial differences in employment outcomes after traumatic brain injury.

    PubMed

    Arango-Lasprilla, Juan Carlos; Ketchum, Jessica M; Williams, Kelli; Kreutzer, Jeffrey S; Marquez de la Plata, Carlos D; O'Neil-Pirozzi, Therese M; Wehman, Paul

    2008-05-01

    To examine racial differences in employment status and occupational status 1 year after a traumatic brain injury (TBI). Retrospective study. Longitudinal dataset of the Traumatic Brain Injury Model Systems national database. Subjects with primarily moderate to severe TBI (3468 whites vs 1791 minorities) hospitalized between 1989 and 2005. Not applicable. Employment status (competitively employed or unemployed) and occupational status (professional/managerial, skilled, or manual labor) at 1 year postinjury. Race and/or ethnicity has a significant effect on employment status at 1 year postinjury (chi(1)(2)=58.23, P<.001), after adjusting for preinjury employment status, sex, Disability Rating Scale at discharge, marital status, cause of injury, age, and education. The adjusted odds of being unemployed versus competitively employed are 2.17 times (95% confidence interval, 1.78-2.65) greater for minorities than for whites. Race and ethnicity does not have a significant effect on occupational status at 1 year postinjury. With this empirical evidence supporting racial differences in employment outcomes between minorities and whites at 1 year postinjury, priority should be given to tailoring interventions to maximize minority survivors' work-related productivity.

  12. 78 FR 28546 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Part 3 RIN 2900-AN89 Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury Correction In proposed rule document 2012-29709...: The factors considered are: Structural imaging of the brain. LOC--Loss of consciousness. AOC...

  13. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2010-10-01

    comparable to lithium in treating acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with...A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Lability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  14. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy.

    PubMed

    Stern, Robert A; Riley, David O; Daneshvar, Daniel H; Nowinski, Christopher J; Cantu, Robert C; McKee, Ann C

    2011-10-01

    Chronic traumatic encephalopathy (CTE) has been linked to participation in contact sports such as boxing and American football. CTE results in a progressive decline of memory and cognition, as well as depression, suicidal behavior, poor impulse control, aggressiveness, parkinsonism, and, eventually, dementia. In some individuals, it is associated with motor neuron disease, referred to as chronic traumatic encephalomyelopathy, which appears clinically similar to amyotrophic lateral sclerosis. Results of neuropathologic research has shown that CTE may be more common in former contact sports athletes than previously believed. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, is responsible for neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and TDP-43 proteins. Given the millions of youth, high school, collegiate, and professional athletes participating in contact sports that involve repetitive brain trauma, as well as military personnel exposed to repeated brain trauma from blast and other injuries in the military, CTE represents an important public health issue. Focused and intensive study of the risk factors and in vivo diagnosis of CTE will potentially allow for methods to prevent and treat these diseases. Research also will provide policy makers with the scientific knowledge to make appropriate guidelines regarding the prevention and treatment of brain trauma in all levels of athletic involvement as well as the military theater. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    PubMed

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. Copyright © 2015 the authors 0270-6474/15/350518-09$15.00/0.

  16. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    PubMed

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Concussion and Mild Traumatic Brain Injury: An Annotated Bibliography

    DTIC Science & Technology

    2013-08-01

    GCS – Glasgow Coma Scale IED- improvised explosive device LOC - loss of consciousness mTBI- mild traumatic brain injury PCS- post-concussion...Journal of Sport Medicine, 9, 193-198. Hospital patients who experienced LOC following a concussion were compared to concussed individuals who did...not experience LOC . The neuropsychological test measures used by the hospital, found no significant differences between the two groups, suggesting

  18. Getting My Bearings, Returning to School: Issues Facing Adolescents with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Schilling, Ethan J.; Getch, Yvette Q.

    2012-01-01

    Traumatic brain injury (TBI) is characterized by a blow to the head or other penetrating head injury resulting in impairment of the brain's functioning. Despite the high incidence of TBI in adolescents, many educators still consider TBI to be a low-incidence disability. In addition, school personnel often report receiving little to no pre-service…

  19. Impact of helmet use on traumatic brain injury from road traffic accidents in Cambodia.

    PubMed

    Gupta, Saksham; Klaric, Katherine; Sam, Nang; Din, Vuthy; Juschkewitz, Tina; Iv, Vycheth; Shrime, Mark G; Park, Kee B

    2018-01-02

    Rapid urbanization and motorization without corresponding increases in helmet usage have made traumatic brain injury due to road traffic accidents a major public health crisis in Cambodia. This analysis was conducted to quantify the impact of helmets on severity of injury, neurosurgical indication, and functional outcomes at discharge for motorcycle operators who required hospitalization for a traumatic brain injury following a road traffic accident in Cambodia. The medical records of 491 motorcycle operators who presented to a major tertiary care center in Cambodia with traumatic brain injury were retrospectively analyzed using multivariate logistic regression. The most common injuries at presentation were contusions (47.0%), epidural hematomas (30.1%), subdural hematomas (27.9%), subarachnoid hemorrhages (12.4%), skull fractures (21.4%), and facial fractures (18.5%). Moderate-to-severe loss of consciousness was present in 36.3% of patients. Not wearing a helmet was associated with an odds ratio of 2.20 (95% confidence interval [CI], 1.15-4.22) for presenting with moderate to severe loss of consciousness compared to helmeted patients. Craniotomy or craniectomy was indicated for evacuation of hematoma in 20.0% of cases, and nonhelmeted patients had 3.21-fold higher odds of requiring neurosurgical intervention (95% CI, 1.25-8.27). Furthermore, lack of helmet usage was associated with 2.72-fold higher odds of discharge with functional deficits (95% CI, 1.14-6.49). In total, 30.1% of patients were discharged with severe functional deficits. Helmets demonstrate a protective effect and may be an effective public health intervention to significantly reduce the burden of traumatic brain injury in Cambodia and other developing countries with increasing rates of motorization across the world.

  20. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    PubMed

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  1. TBI-ROC Part One: Understanding Traumatic Brain Injury--An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2011-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  2. Traumatic brain injury: next steps, research needed, and priority focus areas.

    PubMed

    Helmick, Kathy; Baugh, Laura; Lattimore, Tracie; Goldman, Sarah

    2012-08-01

    Traumatic brain injury (TBI) has been not only a major focus of concern during the recent conflicts in Afghanistan and Iraq, but also among our garrison service members. The prevalence of these injuries has compelled the nation and Congress to invest in the development of policies and programs that support evidence-based care for the full continuum of TBI, from mild (otherwise known as concussion) to severe and penetrating brain injuries. Although, the Department of Defense has made great strides in the areas of TBI clinical care, education, and research, there remains a great need to leverage scientific, policy, and clinical advancement to maximize care of the service member. The purpose of this article is to outline the 7 major areas of work currently being undertaken to help advance the field of TBI. The 7 areas include: (1) eliminating undetected mild traumatic brain injury through prompt early diagnosis, (2) ensuring force readiness and addressing cultural barriers, (3) improving collaborations with the Department of Veterans Affairs, other federal agencies, and academic and civilian organizations, (4) improving deployment-related assessments, (5) deploying effective treatments, (6) conducting military-relevant and targeted research, and (7) enhancing information technology systems.

  3. Acupuncture for central pain affecting the ribcage following traumatic brain injury and rib fractures--a case report.

    PubMed

    Donnellan, Clare P

    2006-09-01

    This case report describes the use of acupuncture in the management of chronic central pain in a 51 year old man following severe traumatic brain injury and multiple injuries including rib fractures. The patient reported rapid and significant improvements in pain and mood during a course of acupuncture treatment. Chronic pain following traumatic brain injury is a significant problem. Chronic pain after rib fractures is also commonly reported. Acupuncture is widely used in the management of pain but its use has been reported rarely in the traumatic brain injury literature. This case report suggests that acupuncture may be a useful option to consider in these patients. Outcome was assessed formally using a 0-10 verbal numerical rating scale for pain, and the Hospital Anxiety and Depression Scale (HADS) for psychological status before and after the course of treatment. These scales are widely used in clinical practice as well as in research involving patients with traumatic brain injury, although they have not been validated in this population. The changes in this patient's outcome scores were not consistent with the benefits he reported. Treatment of this patient highlighted the difficulties of using standardised self rating scales for patients with cognitive impairment. The report also discusses the effects of acupuncture on this patient's mood.

  4. Influence of Post-Traumatic Stress Disorder on Neuroinflammation and Cell Proliferation in a Rat Model of Traumatic Brain Injury

    PubMed Central

    Diamond, David M.; Shinozuka, Kazutaka; Ishikawa, Hiroto; Hernandez, Diana G.; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesar V.

    2013-01-01

    Long-term consequences of traumatic brain injury (TBI) are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD), yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long-term inflammation and suppressed

  5. Stakeholder opinion of functional communication activities following traumatic brain injury.

    PubMed

    Larkins, B M; Worrall, L E; Hickson, L M

    2004-07-01

    To establish a process whereby assessment of functional communication reflects the authentic communication of the target population. The major functional communication assessments available from the USA may not be as relevant to those who reside elsewhere, nor assessments developed primarily for persons who have had a stroke as relevant for traumatic brain injury rehabilitation. The investigation used the Nominal Group Technique to elicit free opinion and support individuals who have compromised communication ability. A survey mailed out sampled a larger number of stakeholders to test out differences among groups. Five stakeholder groups generated items and the survey determined relative 'importance'. The stakeholder groups in both studies comprised individuals with traumatic brain injury and their families, health professionals, third-party payers, employers, and Maori, the indigenous population of New Zealand. There was no statistically significant difference found between groups for 19 of the 31 items. Only half of the items explicitly appear on a well-known USA functional communication assessment. The present study has implications for whether functional communication assessments are valid across cultures and the type of impairment.

  6. Osthole Enhances the Therapeutic Efficiency of Stem Cell Transplantation in Neuroendoscopy Caused Traumatic Brain Injury.

    PubMed

    Tao, Zhen-Yu; Gao, Peng; Yan, Yu-Hui; Li, Hong-Yan; Song, Jie; Yang, Jing-Xian

    2017-01-01

    Neuroendoscopy processes can cause severe traumatic brain injury. Existing therapeutic methods, such as neural stem cell transplantation and osthole have not been proven effective. Therefore, there is an emerging need on the development of new techniques for the treatment of brain injuries. In this study we propose to combine the above stem cell based methods and then evaluate the efficiency and accuracy of the new method. Mice were randomly divided into four groups: group 1 (brain injury alone); group 2 (osthole); group 3 (stem cell transplantation); and group 4 (osthole combined with stem cell transplantation). We carried out water maze task to exam spatial memory. Immunocytochemistry was used to test the inflammatory condition of each group, and the differentiation of stem cells. To evaluate the condition of the damaged blood brain barrier restore, we detect the Evans blue (EB) extravasation across the blood brain barrier. The result shows that osthole and stem cell transplantation combined therapeutic method has a potent effect on improving the spatial memory. This combined method was more effective on inhibiting inflammation and preventing neuronal degeneration than the single treated ones. In addition, there was a distinct decline of EB extravasation in the combined treatment groups, which was not observed in single treatment groups. Most importantly, the combined usage of osthole and stem cell transplantation provide a better treatment for the traumatic brain injury caused by neuroendoscopy. The collective evidence indicates osthole combined with neural stem cell transplantation is superior than either method alone for the treatment of traumatic brain injury caused by neuroendoscopy.

  7. Citicoline for traumatic brain injury: a systematic review & meta-analysis

    PubMed Central

    Meshkini, Ali; Meshkini, Mohammad; Sadeghi-Bazargani, Homayoun

    2017-01-01

    Abstract: Background: Traumatic Brain Injury (TBI) is the leading cause of mortality and morbidity especially in young ages. Despite over 30 years of using Neuroprotective agents for TBI management, there is no absolute recommended agent for the condition yet. Methods: This study is a part of a scoping review thesis on "Neuroprotective agents using for Traumatic Brain Injury: a systematic review & meta-analyses", which had a wide proposal keywords and ran in "Cochrane CENTRAL", "MedLine/PubMed", "SCOPUS", "Thomson Reuters Web of Science", "SID.ir", "Barket Foundation", and "clinicaltrials.gov" databases up to September 06, 2015. This study limits the retrieved search results only to those which used \\citicoline for TBI management. The included Randomized Clinical Trials’ (RCTs) were assessed for their quality of reporting by adapting CONSORT-checklist prior to extracting their data into meta-analysis. Meta-analyses of this review were conducted by Glasgow Outcome Scale (GOS) in acute TBI patients and total neuropsychological assessments in both acute and chronic TBI management, mortalities and adverse-effects. Results: Four RCTs were retrieved and included in this review with 1196 participants (10 were chronic TBI impaired patients); the analysis of 1128 patients for their favorable GOS outcomes in two studies showed no significant difference between the study groups; however, neuropsychological outcomes were significantly better in placebo/control group of 971 patients of three studies. Mortality rates and adverse-effects analysis based on two studies with 1429 patients showed no significant difference between the study groups. However, two other studies have neither mortality nor adverse effects reports due to their protocol. Conclusions: Citicoline use for acute TBI seems to have no field of support anymore, whereas it may have some benefits in improving the neuro-cognitive state in chronic TBI patients. It’s also recommended to keep in mind acute

  8. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury...and Alcohol Use Following Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  9. The effects of performing the YMCA Bike protocol on general brain function in athletes with and without mild traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Gay, Michael

    Research into concussion or mild traumatic brain injury (mTBI) has increased significantly within the past decade. In the literature some researchers are reporting 1.6 to 3.8 million concussions occurring in sports (Langlois, 2006), mTBI accounts for 80% of all reported traumatic brain injuries (Ruff, 2011). With these alarming statistics and an increasing number of athletes suffering a concussion there has been an increased emphasis for sports medicine practitioners to properly diagnose and treat those recovering from brain injury so that they may return safely to school, sports or work. Current clinical tools available to practitioners give them the ability to assess functional recovery in clinical measures of personality change; patient self reported symptom scales; functional cognitive domains (computer based neuropsychological batteries) and clinical balance measures. These current methods of clinical measurement, diagnosis and return to play protocols have remained largely unchanged for the past 20 years. In addition, there is some controversy into the application of these clinical measures within repeated measure testing as improvement does not necessarily reflect post-traumatic recovery but may instead reflect practice or "ceiling effects" of measurement. Therefore, diagnostic platforms that measure structural physiologic recovery must be implemented to assist the clinician in the 'Return to Play' process for athletic participation. In this study quantitative EEG (qEEG) analysis using a 128-lead dense array system during the first aerobic challenge in a 'Return to Play' protocol was performed. Subjects recovering from concussion and normal volunteers with no history of concussion were included and their neuroelectric activity recorded before, during, after and 24 hours post light aerobic exercise on a stationary bike. Subjects recovering from concussion demonstrated altered spectral absolute power across relevant regions of interest in the frontal, central

  10. The Role of Multimodal Invasive Monitoring in Acute Traumatic Brain Injury.

    PubMed

    Lazaridis, Christos; Robertson, Claudia S

    2016-10-01

    This article reviews the role of modalities that directly monitor brain parenchyma in patients with severe traumatic brain injury. The physiology monitored involves compartmental and perfusion pressures, tissue oxygenation and metabolism, quantitative blood flow, pressure autoregulation, and electrophysiology. There are several proposed roles for this multimodality monitoring, such as to track, prevent, and treat the cascade of secondary brain injury; monitor the neurologically injured patient; integrate various data into a composite, patient-specific, and dynamic picture; apply protocolized, pathophysiology-driven intensive care; use as a prognostic marker; and understand pathophysiologic mechanisms involved in secondary brain injury to develop preventive and abortive therapies, and to inform future clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Blood-Brain Barrier Breakdown Following Traumatic Brain Injury: A Possible Role in Posttraumatic Epilepsy

    PubMed Central

    Tomkins, Oren; Feintuch, Akiva; Benifla, Moni; Cohen, Avi; Friedman, Alon; Shelef, Ilan

    2011-01-01

    Recent animal experiments indicate a critical role for opening of the blood-brain barrier (BBB) in the pathogenesis of post-traumatic epilepsy (PTE). This study aimed to investigate the frequency, extent, and functional correlates of BBB disruption in epileptic patients following mild traumatic brain injury (TBI). Thirty-seven TBI patients were included in this study, 19 of whom suffered from PTE. All underwent electroencephalographic (EEG) recordings and brain magnetic resonance imaging (bMRI). bMRIs were evaluated for BBB disruption using novel quantitative techniques. Cortical dysfunction was localized using standardized low-resolution brain electromagnetic tomography (sLORETA). TBI patients displayed significant EEG slowing compared to controls with no significant differences between PTE and nonepileptic patients. BBB disruption was found in 82.4% of PTE compared to 25% of non-epileptic patients (P = .001) and could be observed even years following the trauma. The volume of cerebral cortex with BBB disruption was significantly larger in PTE patients (P = .001). Slow wave EEG activity was localized to the same region of BBB disruption in 70% of patients and correlated to the volume of BBB disrupted cortex. We finally present a patient suffering from early cortical dysfunction and BBB breakdown with a gradual and parallel resolution of both pathologies. Our findings demonstrate that BBB pathology is frequently found following mild TBI. Lasting BBB breakdown is found with increased frequency and extent in PTE patients. Based on recent animal studies and the colocalization found between the region of disrupted BBB and abnormal EEG activity, we suggest a role for a vascular lesion in the pathogenesis of PTE. PMID:21436875

  12. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    PubMed Central

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  13. The profile of head injuries and traumatic brain injury deaths in Kashmir.

    PubMed

    Yattoo, Gh; Tabish, Amin

    2008-06-21

    This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI) deaths were also studied retrospectively for a period of eight years (1996 to 2003).The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21-30 years (18.8%), followed by 11-20 years age group (17.8%) and 31-40 years (14.3%). The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas.To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres) need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients.

  14. Memory Strategies to Use With Students Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pershelli, Andi

    2007-01-01

    Following a traumatic brain injury, including a mild concussion, most students will have some degree of memory impairment. It can take 1-3 years for a child's memory to improve to its maximum capability following injury. Children cannot wait that long before returning to school. Teachers need to know how to diversify their instruction in order to…

  15. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    ERIC Educational Resources Information Center

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  16. Spatial Neglect Hinders Success of Inpatient Rehabilitation in Individuals With Traumatic Brain Injury: A Retrospective Study.

    PubMed

    Chen, Peii; Ward, Irene; Khan, Ummais; Liu, Yan; Hreha, Kimberly

    2016-06-01

    Background Current knowledge about spatial neglect and its impact on rehabilitation mostly originates from stroke studies. Objective To examine the impact of spatial neglect on rehabilitation outcome in individuals with traumatic brain injury (TBI). Methods The retrospective study included 156 consecutive patients with TBI (73 women; median age = 69.5 years; interquartile range = 50-81 years) at an inpatient rehabilitation facility (IRF). We examined whether the presence of spatial neglect affected the Functional Independence Measure (FIM) scores, length of stay, or discharge disposition. Based on the available medical records, we also explored whether spatial neglect was associated with tactile sensation or muscle strength asymmetry in the extremities and whether specific brain injuries or lesions predicted spatial neglect. Results In all, 30.1% (47 of 156) of the sample had spatial neglect. Sex, age, severity of TBI, or time postinjury did not differ between patients with and without spatial neglect. In comparison to patients without spatial neglect, patients with the disorder stayed in IRF 5 days longer, had lower FIM scores at discharge, improved slower in both Cognitive and Motor FIM scores, and might have less likelihood of return home. In addition, left-sided neglect was associated with asymmetric strength in the lower extremities, specifically left weaker than the right. Finally, brain injury-induced mass effect predicted left-sided neglect. Conclusions Spatial neglect is common following TBI, impedes rehabilitation progress in both motor and cognitive domains, and prolongs length of stay. Future research is needed for linking specific traumatic injuries and lesioned networks to spatial neglect and related impairment. © The Author(s) 2015.

  17. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  18. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  19. [Hyperbaric oxygen therapy and inert gases in cerebral ischemia and traumatic brain injury].

    PubMed

    Chhor, V; Canini, F; De Rudnicki, S; Dahmani, S; Gressens, P; Constantin, P

    2013-12-01

    Cerebral ischemia is a common thread of acute cerebral lesions, whether vascular or traumatic origin. Hyperbaric oxygen (HBO) improves tissue oxygenation and may prevent impairment of reversible lesions. In experimental models of cerebral ischemia or traumatic brain injury, HBO has neuroprotective effects which are related to various mechanisms such as modulation of oxidative stress, neuro-inflammation or cerebral and mitochondrial metabolism. However, results of clinical trials failed to prove any neuroprotective effects for cerebral ischemia and remained to be confirmed for traumatic brain injury despite preliminary encouraging results. The addition of inert gases to HBO sessions, especially argon or xenon which show neuroprotective experimental effects, may provide an additional improvement of cerebral lesions. Further multicentric studies with a strict methodology and a better targeted definition are required before drawing definitive conclusions about the efficiency of combined therapy with HBO and inert gases in acute cerebral lesions. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  20. Osteoporosis Self-Assessment Tool for Asians Can Predict Neurologic Prognosis in Patients with Isolated Moderate Traumatic Brain Injury

    PubMed Central

    Chan, Hon-Man; Huang, Shiuh-Lin; Lin, Chih-Lung; Kwan, Aij-Lie; Lou, Yun-Ting; Chen, Chao-Wen

    2015-01-01

    Objectives Osteoporosis Self-Assessment Tool for Asians (OSTA) has been proved to be a simple and effective tool for recognizing osteoporosis risk. Our previous study has demonstrated that the preoperative OSTA index was a good prognostic predictor for stage II and III colon cancer patients after surgery. We aim to evaluate the value of OSTA index in prognostication of isolated traumatic brain injury with moderate severity (GCS 9-13). Methods We retrospectively reviewed all patients visiting Kaohsiung Medical University Hospital emergency department due to isolated moderate traumatic brain injury from Jan. 2010 to Dec. 2012. Background data (including the OSTA index), clinical presentations, management and outcomes (ICU admission days, total admission days, complications, Glasgow outcome score (GOS) at discharge, mortality) of the patients were recorded for further analysis. Our major outcome was good neurologic recovery defined as GOS of 5. Pearson chi-square test and the Mann-Whitney U test were used to compare demographic features. Multiple logistic regression was used to identify independent risk factors. Results 107 isolated moderate TBI patients were studied. 40 patients (37.4%) showed good recovery and 10 (9.3%) died at discharge. The univariate analysis revealed that younger age, higher OSTA index, lower ISS, lower AIS-H, and avoidance to neurosurgery were associated with better neurologic outcome for all moderate TBI patients. Multivariate analysis revealed that lower ISS, higher OSTA, and the avoidance of neurosurgery were independent risk factors predicting good neurologic recovery. Conclusion Higher ISS, lower OSTA index and exposure to neurosurgery were the independent risk factors for poorer recovery from isolated moderate TBI. In addition to labeling the cohort harboring osteoporotic risk, OSTA index could predict neurologic prognosis in patients with isolated moderate traumatic brain injury. PMID:26186582

  1. Methylphenidate on Cognitive Improvement in Patients with Traumatic Brain Injury: A Meta-Analysis

    PubMed Central

    Huang, Chi-Hsien; Huang, Chia-Chen; Sun, Cheuk-Kwan; Lin, Gong-Hong; Hou, Wen-Hsuan

    2016-01-01

    Although methylphenidate has been used as a neurostimulant to treat patients with attention deficit hyperactivity disorder, its therapeutic role in the psychomotor or cognitive recovery of patients with traumatic brain injuries (TBIs) in both intensive care and rehabilitation settings has not been adequately explored. To address this issue, this meta-analysis searched the available electronic databases using the key words “methylphenidate”, “brain injuries”, “head injuries”, and “traumatic brain injury”. Analysis of the ten double-blind RCTs demonstrated significant benefit in using methylphenidate for enhancing vigilance-associated attention (i.e., selective, sustained, and divided attention) in patients with TBIs (standardized mean difference: 0.45, 95% CI: 0.10 to 0.79), especially in sustained attention (standardized mean difference: 0.66, 95% CI: 0.22 to 1.10). However, no significant positive impact was noted on the facilitation of memory or processing speed. More studies on the efficacy and safety of methylphenidate for the cognitive improvement of patients with TBIs are warranted. PMID:26951094

  2. Depression Anxiety Stress Scales (DASS-21): Factor Structure in Traumatic Brain Injury Rehabilitation.

    PubMed

    Randall, Diane; Thomas, Matt; Whiting, Diane; McGrath, Andrew

    To confirm the construct validity of the Depression Anxiety Stress Scales-21 (DASS-21) by investigating the fit of published factor structures in a sample of adults with moderate to severe traumatic brain injury (posttraumatic amnesia > 24 hours). Archival data from 504 patient records at the Brain Injury Rehabilitation Unit at Liverpool Hospital, Australia. Participants were aged between 16 and 71 years and were engaged in a specialist rehabilitation program. The DASS-21. Two of the 6 models had adequate fit using structural equation modeling. The data best fit Henry and Crawford's quadripartite model, which comprised a Depression, Anxiety and Stress factor, as well as a General Distress factor. The data also adequately fit Lovibond and Lovibond's original 3-factor model, and the internal consistencies of each factor were very good (α = 0.82-0.90). This study confirms the structure and construct validity of the DASS-21 and provides support for its use as a screening tool in traumatic brain injury rehabilitation.

  3. Traumatic brain injury in children and adolescents: Surveillance for Pituitary Dysfunction

    PubMed Central

    Norwood, Kenneth W.; DeBoer, Mark D.; Gurka, Matthew J.; Kuperminc, Michelle N.; Rogol, Alan D.; Blackman, James A.; Wamstad, Julia B.; Buck, Marcia L.; Patrick, Peter D.

    2017-01-01

    Background Children who sustain traumatic brain injury (TBI) are at risk for developing hypopituitarism, of which growth hormone deficiency (GHD) is the most common manifestation. Objective Determine the prevalence of GHD and associated features following TBI among children and adolescents. Study design 32 children and adolescents were recruited from a pediatric TBI clinic. Subjects were diagnosed with GHD based on insufficient growth hormone release during both spontaneous overnight testing and following arginine/glucagon administration. Results GHD was diagnosed in 5/32 subjects(16%). Subjects with GHD exhibited more rapid weight gain following injury than non-GHD subjects, and had lower levels of free thyroxine and FSH. Males with GHD had lower testosterone levels. Conclusions GHD following TBI is common in children and adolescents, underscoring the importance of assessing for GHD, including evaluating height and weight velocities after TBI. Children and adolescents with GHD may further exhibit absence or intermediate function for other pituitary hormones. PMID:20724335

  4. The Association between Mild Traumatic Brain Injury History and Cognitive Control

    ERIC Educational Resources Information Center

    Pontifex, Matthew B.; O'Connor, Phillip M.; Broglio, Steven P.; Hillman, Charles H.

    2009-01-01

    The influence of multiple mild traumatic brain injuries (mTBIs) on neuroelectric and task performance indices of the cognitive control of action monitoring was assessed in individuals with and without a history of concussion. Participants completed a standard clinical neurocognitive assessment and the error-related negativity of the…

  5. Educator Guidelines for Serving Students with Traumatic Brain Injuries. Revised Edition.

    ERIC Educational Resources Information Center

    Utah State Univ., Logan. Mountain Plains Regional Resource Center.

    These guidelines were developed for serving students with traumatic brain injury (TBI) in school settings. An introduction reviews the frequency of TBI, range of severity, and legal responsibility for special education services. Guidelines are offered for creating prevention and awareness programs and for implementing staff development. A section…

  6. Predicting Story Goodness Performance from Cognitive Measures Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Le, Karen; Coelho, Carl; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Purpose: This study examined the prediction of performance on measures of the Story Goodness Index (SGI; Le, Coelho, Mozeiko, & Grafman, 2011) from executive function (EF) and memory measures following traumatic brain injury (TBI). It was hypothesized that EF and memory measures would significantly predict SGI outcomes. Method: One hundred…

  7. Topic Repetitiveness after Traumatic Brain Injury: An Emergent, Jointly Managed Behaviour

    ERIC Educational Resources Information Center

    Body, Richard; Parker, Mark

    2005-01-01

    Topic repetitiveness is a common component of pragmatic impairment and a powerful contributor to social exclusion. Despite this, description, characterization and intervention remain underdeveloped. This article explores the nature of repetitiveness in traumatic brain injury (TBI). A case study of one individual after TBI provides the basis for a…

  8. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy.

    PubMed

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. Copyright © 2015 Elsevier B.V. All rights

  9. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy

    PubMed Central

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K.; Bernick, Charles; Ghosh, Chaitali; Bazarian, Jeffrey J.; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six post mortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. PMID:26556772

  10. Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury

    PubMed Central

    Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia

    2017-01-01

    Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295

  11. Mild traumatic brain injury: a Midwest survey of discharge teaching practices of emergency department nurses.

    PubMed

    Bay, Esther; Strong, Carrie

    2011-01-01

    Research indicates that the assessment and discharge teaching practices for persons with traumatic brain injury are more focused on ruling out severe brain injury and informing the person about "red flags" warranting a return visit to the medical provider. Our primary purpose was to determine the extent to which discharge practices were aligned with the Centers for Disease Control and Prevention guidelines contained within the Acute Concussion Evaluation care plan. Responses from 87 nurses (25.0% response rate) to a tailored survey were analyzed to determine emergency department nurses' discharge teaching practices for adults who experienced a mild traumatic brain injury (MTBI). Results indicated that nurses in general were focused on injury-specific information and less often provided information about MTBI, symptom management, or strategies for preventing future brain damage. System improvements are justified to provide injured persons with a clearly defined diagnosis and instructions for follow-up and symptom management.

  12. Neurotransmitter Systems in a Mild Blast Traumatic Brain Injury Model: Catecholamines and Serotonin.

    PubMed

    Kawa, Lizan; Arborelius, Ulf P; Yoshitake, Takashi; Kehr, Jan; Hökfelt, Tomas; Risling, Mårten; Agoston, Denes

    2015-08-15

    Exposure to improvised explosive devices can result in a unique form of traumatic brain injury--blast-induced traumatic brain injury (bTBI). At the mild end of the spectrum (mild bTBI [mbTBI]), there are cognitive and mood disturbances. Similar symptoms have been observed in post-traumatic stress disorder caused by exposure to extreme psychological stress without physical injury. A role of the monoaminergic system in mood regulation and stress is well established but its involvement in mbTBI is not well understood. To address this gap, we used a rodent model of mbTBI and detected a decrease in immobility behavior in the forced swim test at 1 d post-exposure, coupled with an increase in climbing behavior, but not after 14 d or later, possibly indicating a transient increase in anxiety-like behavior. Using in situ hybridization, we found elevated messenger ribonucleic acid levels of both tyrosine hydroxylase and tryptophan hydroxylase 2 in the locus coeruleus and the dorsal raphe nucleus, respectively, as early as 2 h post-exposure. High-performance liquid chromatography analysis 1 d post-exposure primarily showed elevated noradrenaline levels in several forebrain regions. Taken together, we report that exposure to mild blast results in transient changes in both anxiety-like behavior and brain region-specific molecular changes, implicating the monoaminergic system in the pathobiology of mbTBI.

  13. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆

    PubMed Central

    Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058

  14. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: A... Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-10-2-0171 5c. PROGRAM...combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function when dosed one hour following closed cortical

  15. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration

    PubMed Central

    Cullen, D. Kacy; Harris, James P.; Browne, Kevin D.; Wolf, John A; Duda, John E.; Meaney, David F.; Margulies, Susan S.; Smith, Douglas H.

    2017-01-01

    Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive nonimpact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725

  16. Diminished neural network dynamics after moderate and severe traumatic brain injury.

    PubMed

    Gilbert, Nicholas; Bernier, Rachel A; Calhoun, Vincent D; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M; Hillary, Frank G

    2018-01-01

    Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain's subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network "states" that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics.

  17. Caspase 7: increased expression and activation after traumatic brain injury in rats.

    PubMed

    Larner, Stephen F; McKinsey, Deborah M; Hayes, Ronald L; W Wang, Kevin K

    2005-07-01

    Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.

  18. Association Between Traumatic Brain Injury-Related Brain Lesions and Long-term Caregiver Burden.

    PubMed

    Guevara, Andrea Brioschi; Demonet, Jean-Francois; Polejaeva, Elena; Knutson, Kristine M; Wassermann, Eric M; Grafman, Jordan; Krueger, Frank

    2016-01-01

    To investigate the association between traumatic brain injury (TBI)-related brain lesions and long-term caregiver burden in relation to dysexecutive syndrome. National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland. A total of 256 participants: 105 combat veterans with TBI, 23 healthy control combat veterans (HCv), and 128 caregivers. Caregiver burden assessed by the Zarit Burden Interview at 40 years postinjury. Participants with penetrating TBI were compared with HCv on perceived caregiver burden and neuropsychological assessment measures. Data of computed tomographic scans (overlay lesion maps of participants with a penetrating TBI whose caregivers have a significantly high burden) and behavioral statistical analyses were combined to identify brain lesions associated with caregiver burden. Burden was greater in caregivers of veterans with TBI than in caregivers of HCv. Caregivers of participants with lesions affecting cognitive and behavioral indicators of dysexecutive syndrome (ie, left dorsolateral prefrontal cortex and dorsal anterior cingulate cortex) showed greater long-term burden than caregivers of participants with lesions elsewhere in the brain. The TBI-related brain lesions have a lasting effect on long-term caregiver burden due to cognitive and behavioral factors associated with dysexecutive syndrome.

  19. Lactate and the Lactate-to-Pyruvate Molar Ratio Cannot Be Used as Independent Biomarkers for Monitoring Brain Energetic Metabolism: A Microdialysis Study in Patients with Traumatic Brain Injuries

    PubMed Central

    Sahuquillo, Juan; Merino, Maria-Angels; Sánchez-Guerrero, Angela; Arikan, Fuat; Vidal-Jorge, Marian; Martínez-Valverde, Tamara; Rey, Anna; Riveiro, Marilyn; Poca, Maria-Antonia

    2014-01-01

    Background For decades, lactate has been considered an excellent biomarker for oxygen limitation and therefore of organ ischemia. The aim of the present study was to evaluate the frequency of increased brain lactate levels and the LP ratio (LPR) in a cohort of patients with severe or moderate traumatic brain injury (TBI) subjected to brain microdialysis monitoring to analyze the agreement between these two biomarkers and to indicate brain energy metabolism dysfunction. Methods Forty-six patients with an admission Glasgow coma scale score of ≤13 after resuscitation admitted to a dedicated 10-bed Neurotraumatology Intensive Care Unit were included, and 5305 verified samples of good microdialysis data were analyzed. Results Lactate levels were above 2.5 mmol/L in 56.9% of the samples. The relationships between lactate and the LPR could not be adequately modeled by any linear or non-linear model. Neither Cohen’s kappa nor Gwet’s statistic showed an acceptable agreement between both biomarkers to classify the samples in regard to normal or abnormal metabolism. The dataset was divided into four patterns defined by the lactate concentrations and the LPR. A potential interpretation for these patterns is suggested and discussed. Pattern 4 (low pyruvate levels) was found in 10.7% of the samples and was characterized by a significantly low concentration of brain glucose compared with the other groups. Conclusions Our study shows that metabolic abnormalities are frequent in the macroscopically normal brain in patients with traumatic brain injuries and a very poor agreement between lactate and the LPR when classifying metabolism. The concentration of lactate in the dialysates must be interpreted while taking into consideration the LPR to distinguish between anaerobic metabolism and aerobic hyperglycolysis. PMID:25025772

  20. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury

    PubMed Central

    Popescu, C; Anghelescu, A; Daia, C; Onose, G

    2015-01-01

    Background: Knowledge of the epidemiology of traumatic brain injury (TBI) is required both to prevent this disorder and to develop effective care and rehabilitation approaches for patients. Objective: The aim of this article is to find solutions to decrease the incidence of TBI and offer recommendations for their prevention. Material and methods: We analyzed epidemiological studies on TBI by performing a systematic review of literature, using information reported by different centers, collecting data on demographics, showing characteristics of TBI including incidence, identification of risk groups on differences in age, gender, geographical variation, severity and mortality. Results: Studies suggest that the incidence of TBI is between 18 and 250 per 100,000 persons per year. Men and people living in social and economical deprived areas, usually young adults and the elderly are high-risk groups for TBI. Discussion: Prevention remains the “key point” in medicine and especially for TBI, saving the patient from unnecessary often-harsh sufferance. Conclusions: Most public epidemiological data showed that TBI is a major cause of mortality and disability. The effort to understand TBI and the available strategies to treat this lesion, in order to improve clinical outcomes after TBI, may be based on an increase in research on the epidemiology of TBI. A coordinated strategy to evaluate this public health problem in Romania would first of all rely on a related advanced monitoring system, to provide precise information about the epidemiology, clinical and paraclinical data, but concerning the social and economic connected consequences, too. Abbreviations: CNS = central nervous system, ED = emergency department, EU = European Union, FTE = Full Time Employees, GCS = Glasgow Coma Scale, TBI = traumatic brain injury, US = United States, WHO = World Health Organization. PMID:26351526

  1. Altruistic decisions following penetrating traumatic brain injury.

    PubMed

    Moll, Jorge; de Oliveira-Souza, Ricardo; Basilio, Rodrigo; Bramati, Ivanei Edson; Gordon, Barry; Rodríguez-Nieto, Geraldine; Zahn, Roland; Krueger, Frank; Grafman, Jordan

    2018-05-01

    The cerebral correlates of altruistic decisions have increasingly attracted the interest of neuroscientists. To date, investigations on the neural underpinnings of altruistic decisions have primarily been conducted in healthy adults undergoing functional neuroimaging as they engaged in decisions to punish third parties. The chief purpose of the present study was to investigate altruistic decisions following focal brain damage with a novel altruistic decision task. In contrast to studies that have focused either on altruistic punishment or donation, the Altruistic Decision Task allows players to anonymously punish or donate to 30 charitable organizations involved with salient societal issues such as abortion, nuclear energy and civil rights. Ninety-four Vietnam War veterans with variable patterns of penetrating traumatic brain injury and 28 healthy veterans who also served in combat participated in the study as normal controls. Participants were asked to invest $1 to punish or reward real societal organizations, or keep the money for themselves. Associations between lesion distribution and performance on the task were analysed with multivariate support vector regression, which enables the assessment of the joint contribution of multiple regions in the determination of a given behaviour of interest. Our main findings were: (i) bilateral dorsomedial prefrontal lesions increased altruistic punishment, whereas lesions of the right perisylvian region and left temporo-insular cortex decreased punishment; (ii) altruistic donations were increased by bilateral lesions of the dorsomedial parietal cortex, whereas lesions of the right posterior superior temporal sulcus and middle temporal gyri decreased donations; (iii) altruistic punishment and donation were only weakly correlated, emphasizing their dissociable neuroanatomical associations; and (iv) altruistic decisions were not related to post-traumatic personality changes. These findings indicate that altruistic punishment

  2. Exploring Vocational Evaluation Practices following Traumatic Brain Injury

    PubMed Central

    Dillahunt-Aspillaga, Christina; Jorgensen Smith, Tammy; Hanson, Ardis; Ehlke, Sarah; Stergiou-Kita, Mary; Dixon, Charlotte G.; Quichocho, Davina

    2015-01-01

    Background. Individuals with traumatic brain injury (TBI) face many challenges when attempting to return to work (RTW). Vocational evaluation (VE) is a systematic process that involves assessment and appraisal of an individual's current work-related characteristics and abilities. Objective. The aims of this study are to (1) examine demographic and employment characteristics of vocational rehabilitation providers (VRPs), (2) identify the specific evaluation methods that are used in the VE of individuals with TBI, and (3) examine the differences in assessment method practices based upon evaluator assessment preferences. Methods. This exploratory case study used a forty-six-item online survey which was distributed to VRPs. Results. One hundred and nine VRPs accessed the survey. Of these, 74 completed the survey. A majority of respondents were female (79.7%), Caucasian (71.6%), and holding a master's degree (74.3%), and more than half (56.8%) were employed as state vocational rehabilitation counselors (VRCs). In addition, over two-thirds (67.6%) were certified rehabilitation counselors (CRCs). Respondents reported using several specific tools and assessments during the VE process. Conclusions. Study findings reveal differences in use of and rationales for specific assessments amongst VRPs. Understanding VRP assessment practices and use of an evidence-based framework for VE following TBI may inform and improve VE practice. PMID:26494945

  3. Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury

    DTIC Science & Technology

    2012-11-01

    testing and advanced MRI techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of... DTI fiber tracking) and neurobehavioral testing (computerized assessment and standard neuropsychological testing) on 60 chronic trauma patients: 15...data analysis. 15. SUBJECT TERMS Blast-related traumatic brain injury (TBI), fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  4. Early lung retrieval from traumatic brain-dead donors does not compromise outcomes following lung transplantation.

    PubMed

    Moreno, Paula; Alvarez, Antonio; Illana, Jennifer; Espinosa, Dionisio; Baamonde, Carlos; Cerezo, Francisco; Algar, Francisco Javier; Salvatierra, Angel

    2013-06-01

    To determine whether lung retrieval from traumatic donors performed within 24 h of brain death has a negative impact on early graft function and survival after lung transplantation (LT), when compared with those retrieved after 24 h. Review of lung transplants performed from traumatic donors over a 17-year period. Recipients were distributed into two groups: transplants from traumatic donor lungs retrieved within 24 h of brain death (Group A), and transplants from traumatic donor lungs retrieved after 24 h of brain death (Group B). Demographic data of donors and recipients, early graft function, perioperative complications and mortality were compared between both groups. Among 356 lung transplants performed at our institution, 132 were from traumatic donors (70% male, 30% female). Group A: 73 (55%); Group B: 59 (45%). There were 53 single, 77 double, and 2 combined LT. Indications were emphysema in 41 (31%), pulmonary fibrosis in 31 (23%), cystic fibrosis in 38 (29%), bronchiectasis in 9 (7%) and other indications in 13 patients (10%). Donor and recipient demographic data, need or cardiopulmonary bypass, postoperative complications and Intensive Care Unit and hospital stay did not differ between groups. Primary graft dysfunction (A vs B): 9 (16%) vs 13 (26%) P = 0.17. PaO2/FiO2 24 h post-transplant (A vs B): 303 mmHg vs 288 mmHg (P = 0.57). Number of acute rejection episodes (A vs B): 0.93 vs 1.49 (P = 0.01). Postoperative intubation time (A vs B): 99 vs 100 h (P = 0.99). 30-day mortality (A vs B): 7 (10%) vs 2 (3.5%) (P = 0.13). Freedom from bronchiolitis obliterans syndrome (A vs B): 82, 72, 37, 22 vs 78, 68, 42, 15%, at 3, 5, 10 and 15 years, respectively (P = 0.889). Survival (A vs B): 65, 54, 46, 42 and 27 vs 60, 50, 45, 43 and 29% at 3, 5, 7, 10 and 15 years, respectively (P = 0.937). In our experience, early lung retrieval after brain death from traumatic donors does not adversely affect early and long-term outcomes after LT.

  5. Traumatic brain injury impairs small-world topology

    PubMed Central

    Pandit, Anand S.; Expert, Paul; Lambiotte, Renaud; Bonnelle, Valerie; Leech, Robert; Turkheimer, Federico E.

    2013-01-01

    Objective: We test the hypothesis that brain networks associated with cognitive function shift away from a “small-world” organization following traumatic brain injury (TBI). Methods: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. Results: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. Conclusions: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI. PMID:23596068

  6. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    PubMed

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  7. Traumatic Brain Injury. An Overview Look at Effects and Strategies for Remediation.

    ERIC Educational Resources Information Center

    Brongiel, Andrea

    This paper provides an overview of traumatic brain injury (TBI), including incidence, definition, characteristics, assessment and identification, remediation, teacher responsibility, and parent involvement. It discusses the eligibility of students with TBI to receive appropriate and related services in school under the Individuals with…

  8. Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury

    DTIC Science & Technology

    2009-01-14

    31.5%) associated with TBI. In a subsequent study, Rao, et al. (2001) found that treatment with the non-competitive NMDA blocker, memantine ...Dogan A, Todd KG, Bowen KK, Dempsey RJ. Neuroprotection by memantine , a non-competitive NMDA receptor antagonist after traumatic brain injury in...R, Stöffler A, Schmitt F, Ferris S, Möbius HJ; Memantine Study Group. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003 Apr

  9. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    PubMed

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Neuroprotective effects of collagen matrix in rats after traumatic brain injury.

    PubMed

    Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward

    2015-01-01

    In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.

  11. Motor rehabilitation in stroke and traumatic brain injury: stimulating and intense.

    PubMed

    Breceda, Erika Y; Dromerick, Alexander W

    2013-12-01

    The purpose of this review is to provide an update on the latest neurorehabilitation literature for motor recovery in stroke and traumatic brain injury to assist clinical decision making and assessing future research directions. The emerging approach to motor restoration is now multimodal. It engages the traditional multidisciplinary rehabilitation team, but incorporates highly structured activity-based therapies, pharmacology, brain stimulation and robotics. Clinical trial data support selective serotonin reuptake inhibitors and amantadine to assist motor recovery poststroke and traumatic brain injury, respectively. Similarly, there is continued support for intensity as a key factor in activity-based therapies, across skilled and nonskilled interventions. Aerobic training appears to have multiple benefits; increasing the capacity to meet the demands of hemiparetic gait improves endurance for activities of daily living while promoting cognition and mood. At this time, the primary benefit of robotic therapy lies in the delivery of highly intense and repetitive motor practice. Both transcranial direct current and magnetic stimulation therapies are in early stages, but have promise in motor and language restoration. Advancements in neurorehabilitation have shifted treatment away from nonspecific activity regimens and amphetamines. As the body of knowledge grows, evidence-based practice using interventions targeted at specific subgroups becomes progressively more feasible.

  12. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: an exploratory study.

    PubMed

    Straudi, Sofia; Severini, Giacomo; Sabbagh Charabati, Amira; Pavarelli, Claudia; Gamberini, Giulia; Scotti, Anna; Basaglia, Nino

    2017-05-10

    Patients with traumatic brain injury often have balance and attentive disorders. Video game therapy (VGT) has been proposed as a new intervention to improve mobility and attention through a reward-learning approach. In this pilot randomized, controlled trial, we tested the effects of VGT, compared with a balance platform therapy (BPT), on balance, mobility and selective attention in chronic traumatic brain injury patients. We enrolled chronic traumatic brain injury patients (n = 21) that randomly received VGT or BPT for 3 sessions per week for 6 weeks. The clinical outcome measures included: i) the Community Balance & Mobility Scale (CB&M); ii) the Unified Balance Scale (UBS); iii) the Timed Up and Go test (TUG); iv) static balance and v) selective visual attention evaluation (Go/Nogo task). Both groups improved in CB&M scores, but only the VGT group increased on the UBS and TUG with a between-group significance (p < 0.05). Selective attention improved significantly in the VGT group (p < 0.01). Video game therapy is an option for the management of chronic traumatic brain injury patients to ameliorate balance and attention deficits. NCT01883830 , April 5 2013.

  13. Acute Neuroimmune Modulation Attenuates the Development of Anxiety-Like Freezing Behavior in an Animal Model of Traumatic Brain Injury

    PubMed Central

    Rodgers, Krista M.; Bercum, Florencia M.; McCallum, Danielle L.; Rudy, Jerry W.; Frey, Lauren C.; Johnson, Kirk W.; Watkins, Linda R.

    2012-01-01

    Abstract Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brain's immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans. PMID:22435644

  14. Diagnosing pseudobulbar affect in traumatic brain injury.

    PubMed

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%-48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA.

  15. Diagnosing pseudobulbar affect in traumatic brain injury

    PubMed Central

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%–48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA. PMID:25336956

  16. Risk of Violent Crime in Individuals with Epilepsy and Traumatic Brain Injury: A 35-Year Swedish Population Study

    PubMed Central

    Fazel, Seena; Lichtenstein, Paul; Grann, Martin; Långström, Niklas

    2011-01-01

    Background Epilepsy and traumatic brain injury are common neurological conditions, with general population prevalence estimates around 0.5% and 0.3%, respectively. Although both illnesses are associated with various adverse outcomes, and expert opinion has suggested increased criminality, links with violent behaviour remain uncertain. Methods and Findings We combined Swedish population registers from 1973 to 2009, and examined associations of epilepsy (n = 22,947) and traumatic brain injury (n = 22,914) with subsequent violent crime (defined as convictions for homicide, assault, robbery, arson, any sexual offense, or illegal threats or intimidation). Each case was age and gender matched with ten general population controls, and analysed using conditional logistic regression with adjustment for socio-demographic factors. In addition, we compared cases with unaffected siblings. Among the traumatic brain injury cases, 2,011 individuals (8.8%) committed violent crime after diagnosis, which, compared with population controls (n = 229,118), corresponded to a substantially increased risk (adjusted odds ratio [aOR] = 3.3, 95% CI: 3.1–3.5); this risk was attenuated when cases were compared with unaffected siblings (aOR = 2.0, 1.8–2.3). Among individuals with epilepsy, 973 (4.2%) committed a violent offense after diagnosis, corresponding to a significantly increased odds of violent crime compared with 224,006 population controls (aOR = 1.5, 1.4–1.7). However, this association disappeared when individuals with epilepsy were compared with their unaffected siblings (aOR = 1.1, 0.9–1.2). We found heterogeneity in violence risk by age of disease onset, severity, comorbidity with substance abuse, and clinical subgroups. Case ascertainment was restricted to patient registers. Conclusions In this longitudinal population-based study, we found that, after adjustment for familial confounding, epilepsy was not associated with increased risk of violent

  17. Liberal Bias Mediates Emotion Recognition Deficits in Frontal Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Callahan, Brandy L.; Ueda, Keita; Sakata, Daisuke; Plamondon, Andre; Murai, Toshiya

    2011-01-01

    It is well-known that patients having sustained frontal-lobe traumatic brain injury (TBI) are severely impaired on tests of emotion recognition. Indeed, these patients have significant difficulty recognizing facial expressions of emotion, and such deficits are often associated with decreased social functioning and poor quality of life. As of yet,…

  18. Barriers to Meeting the Needs of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Canto, Angela I.; Chesire, David J.; Buckley, Valerie A.; Andrews, Terrie W.; Roehrig, Alysia D.

    2014-01-01

    Many students with traumatic brain injury (TBI) are identified by the medical community each year and many more experience head injuries that are not examined by medical personnel. School psychologists and allied consultants have important liaison roles to identify and assist these students post-injury. In this study, 75 school psychologists (the…

  19. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  20. Sentence Processing in Traumatic Brain Injury: Evidence from the P600

    ERIC Educational Resources Information Center

    Key-DeLyria, Sarah E.

    2016-01-01

    Purpose: Sentence processing can be affected following a traumatic brain injury (TBI) due to linguistic or cognitive deficits. Language-related event-related potentials (ERPs), particularly the P600, have not been described in individuals with TBI history. Method: Four young adults with a history of closed head injury participated. Two had severe…

  1. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    PubMed Central

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  2. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis.

    PubMed

    Vespa, Paul M; Miller, Chad; McArthur, David; Eliseo, Mathew; Etchepare, Maria; Hirt, Daniel; Glenn, Thomas C; Martin, Neil; Hovda, David

    2007-12-01

    To determine whether nonconvulsive electrographic post-traumatic seizures result in increases in intracranial pressure and microdialysis lactate/pyruvate ratio. Prospective monitoring with retrospective data analysis. Single center academic neurologic intensive care unit. Twenty moderate to severe traumatic brain injury patients (Glasgow Coma Score 3-13). Continuous electroencephalography and cerebral microdialysis were performed for 7 days after injury. Ten patients had seizures and were compared with a matched cohort of traumatic brain injury patients without seizures. The seizures were repetitive and constituted status epilepticus in seven of ten patients. Using a within-subject design, post-traumatic seizures resulted in episodic increases in intracranial pressure (22.4 +/- 7 vs. 12.8 +/- 4.3 mm Hg; p < .001) and an episodic increase in lactate/pyruvate ratio (49.4 +/- 16 vs. 23.8 +/- 7.6; p < .001) in the seizure group. Using a between-subjects comparison, the seizure group demonstrated a higher mean intracranial pressure (17.6 +/- 6.5 vs. 12.2 +/- 4.2 mm Hg; p < .001), a higher mean lactate/pyruvate ratio (38.6 +/- 18 vs. 27 +/- 9; p < .001) compared with nonseizure patients. The intracranial pressure and lactate/pyruvate ratio remained elevated beyond postinjury hour 100 in the seizure group but not the nonseizure group (p < .02). Post-traumatic seizures result in episodic as well as long-lasting increases in intracranial pressure and microdialysis lactate/pyruvate ratio. These data suggest that post-traumatic seizures represent a therapeutic target for patients with traumatic brain injury.

  3. Clinical Phase IIB Trial of Oxycyte Perflurocarbon in Severe Human Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    TERMS Penetrating ballistic brain injury, ischemia, hypoxia, perfluorocarbon , cell death, perfusion. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...SUBTITLE The Role of Perfluorocarbons in Mitigating Traumatic Brain Injury 5a. CONTRACT NUMBER W81XWH-08-1-0419 5b. GRANT NUMBER 5c. PROGRAM...damage seems to be mediated by mechanisms that follow the initial injury (secondary mechanisms). Perfluorocarbons (PFCs) are one of the methods by which

  4. An overview of attention deficits after paediatric traumatic brain injury.

    PubMed

    Ginstfeldt, Tim; Emanuelson, Ingrid

    2010-01-01

    Attention could be categorized into sustained, selective, shifting, divided and attention span. The primary objective was to evaluate the type of attention deficits that occurs after paediatric traumatic brain injury. Keywords were used such as 'attention', 'child', 'traumatic', 'brain' and 'injury' on MEDLINE articles published in 1991-2009. Articles found through MEDLINE were manually cross-referenced. Out of the examined categorizes, divided and sustained attention seem to be the most vulnerably, frequently displaying deficits in the children with TBI. Attention span seemed to be the most resistant and the shifting and selective categories falling somewhere in between. Most of the recovery is expected within the first year post-injury, even if some individuals continue to improve for years, and deficits often persist into adulthood. The attention domains are not affected to the same extent by TBI and this should be taken into consideration when evaluating a child. The commonly used tests also seem to differ in how sensitive they are in detecting deficits. The definition of attention domains and TBI would benefit to be stricter and agreed upon, to further facilitate research and rehabilitation programmes.

  5. Correlates of Depression in Adult Siblings of Persons with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Lynch, Ruth Torkelson

    2006-01-01

    Using Pearlin's stress process model, this study examined correlates of depression in 170 adult siblings of persons with traumatic brain injury (TBI). Approximately 39% of adult sibling participants evinced "Center for Epidemiologic Studies-Depression" (CES-D; Radloff, 1977) scores indicating clinically significant depressive symptoms. Background…

  6. Risk factors for postconcussion symptom reporting after traumatic brain injury in U.S. military service members.

    PubMed

    Lange, Rael T; Brickell, Tracey; French, Louis M; Ivins, Brian; Bhagwat, Aditya; Pancholi, Sonal; Iverson, Grant L

    2013-02-15

    The purpose of this study was to identify factors that are predictive of, or associated with, postconcussion symptom reporting after traumatic brain injury (TBI) in the U.S. military. Participants were 125 U.S. military service members (age: M=29.6 years, standard deviation [SD]=8.9, range=18-56 years) who sustained a TBI, divided into two groups based on symptom criteria for postconcussional disorder (PCD): PCD-Present (n=65) and PCD-Absent (n=60). Participants completed a neuropsychological evaluation at Walter Reed Army Medical Center (M=9.4 months after injury, SD=9.9; range: 1.1 to 44.8). Factors examined included demographic characteristics, injury-related variables, psychological testing, and effort testing. There were no significant group differences for age, sex, education, race, estimated premorbid intelligence, number of deployments, combat versus non-combat related injury, or mechanism of injury (p>0.098 for all). There were significant main effects for severity of body injury, duration of loss of consciousness, duration of post-traumatic amnesia, intracranial abnormality, time tested post-injury, possible symptom exaggeration, poor effort, depression, and traumatic stress (p<0.044 for all). PCD symptom reporting was most strongly associated with possible symptom exaggeration, poor effort, depression, and traumatic stress. PCD rarely occurred in the absence of depression, traumatic stress, possible symptom exaggeration, or poor effort (n=7, 5.6%). Many factors unrelated to brain injury were influential in self-reported postconcussion symptoms in this sample. Clinicians cannot assume uncritically that endorsement of items on a postconcussion symptom checklist is indicative of residual effects from a brain injury.

  7. Comparative Analysis of Cervical Spine Management in a Subset of Severe Traumatic Brain Injury Cases Using Computer Simulation

    PubMed Central

    Carter, Kimbroe J.; Dunham, C. Michael; Castro, Frank; Erickson, Barbara

    2011-01-01

    Background No randomized control trial to date has studied the use of cervical spine management strategies in cases of severe traumatic brain injury (TBI) at risk for cervical spine instability solely due to damaged ligaments. A computer algorithm is used to decide between four cervical spine management strategies. A model assumption is that the emergency room evaluation shows no spinal deficit and a computerized tomogram of the cervical spine excludes the possibility of fracture of cervical vertebrae. The study's goal is to determine cervical spine management strategies that maximize brain injury functional survival while minimizing quadriplegia. Methods/Findings The severity of TBI is categorized as unstable, high risk and stable based on intracranial hypertension, hypoxemia, hypotension, early ventilator associated pneumonia, admission Glasgow Coma Scale (GCS) and age. Complications resulting from cervical spine management are simulated using three decision trees. Each case starts with an amount of primary and secondary brain injury and ends as a functional survivor, severely brain injured, quadriplegic or dead. Cervical spine instability is studied with one-way and two-way sensitivity analyses providing rankings of cervical spine management strategies for probabilities of management complications based on QALYs. Early collar removal received more QALYs than the alternative strategies in most arrangements of these comparisons. A limitation of the model is the absence of testing against an independent data set. Conclusions When clinical logic and components of cervical spine management are systematically altered, changes that improve health outcomes are identified. In the absence of controlled clinical studies, the results of this comparative computer assessment show that early collar removal is preferred over a wide range of realistic inputs for this subset of traumatic brain injury. Future research is needed on identifying factors in projecting awakening from

  8. Hypopituitarism after traumatic brain injury.

    PubMed

    Bondanelli, Marta; Ambrosio, Maria Rosaria; Zatelli, Maria Chiara; De Marinis, Laura; degli Uberti, Ettore C

    2005-05-01

    Traumatic brain injury (TBI) is one of the main causes of death and disability in young adults, with consequences ranging from physical disabilities to long-term cognitive, behavioural, psychological and social defects. Post-traumatic hypopituitarism (PTHP) was recognized more than 80 years ago, but it was thought to be a rare occurrence. Recently, clinical evidence has demonstrated that TBI may frequently cause hypothalamic-pituitary dysfunction, probably contributing to a delayed or hampered recovery from TBI. Changes in pituitary hormone secretion may be observed during the acute phase post-TBI, representing part of the acute adaptive response to the injury. Moreover, diminished pituitary hormone secretion, caused by damage to the pituitary and/or hypothalamus, may occur at any time after TBI. PTHP is observed in about 40% of patients with a history of TBI, presenting as an isolated deficiency in most cases, and more rarely as complete pituitary failure. The most common alterations appear to be gonadotropin and somatotropin deficiency, followed by corticotropin and thyrotropin deficiency. Hyper- or hypoprolactinemia may also be present. Diabetes insipidus may be frequent in the early, acute phase post-TBI, but it is rarely permanent. Severity of TBI seems to be an important risk factor for developing PTHP; however, PTHP can also manifest after mild TBI. Accurate evaluation and long-term follow-up of all TBI patients are necessary in order to detect the occurrence of PTHP, regardless of clinical evidence for pituitary dysfunction. In order to improve outcome and quality of life of TBI patients, an adequate replacement therapy is of paramount importance.

  9. Life care planning after traumatic brain injury.

    PubMed

    Zasler, Nathan D; Ameis, Arthur; Riddick-Grisham, Susan N

    2013-08-01

    A life care plan is a detailed and comprehensive analysis of impairments, realistic needs, and associated costs relevant to providing a lifetime of care to patients. Physicians have a central role in advising life care planners. Within an expertly prepared life care plan, issues must correspond directly with proposed goods and services. A life care plan must clearly cite all relevant caregiver sources and rely on scientific evidence. The central tenets of a life care plan and the ethical and professional roles that physicians may play in the context of traumatic brain injury and a life care plan are reviewed in this article. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    NASA Astrophysics Data System (ADS)

    Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G.

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μs') and BWC. By recording μs' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  11. Addressing neuropsychiatric disturbances during rehabilitation after traumatic brain injury: current and future methods

    PubMed Central

    Arciniegas, David B.

    2011-01-01

    Cognitive, emotional, behavioral, and sensorimotor disturbances are the principal clinical manifestations of traumatic brain injury (TBI) throughout the early postinjury period. These post-traumatic neuropsychiatric disturbances present substantial challenges to patients, their families, and clinicians providing their rehabilitative care, the optimal approaches to which remain incompletely developed. In this article, a neuropsychiairically informed, neurobiologically anchored approach to understanding and meeting challenges is described. The foundation for thai approach is laid, with a review of clinical case definitions of TBI and clarification of their intended referents. The differential diagnosis of event-related neuropsychiatric disturbances is considered next, after which the clinical and neurobiological heterogeneity within the diagnostic category of TBI are discussed. The clinical manifestations of biomechanical force-induced brain dysfunction are described as a state of post-traumatic encephalopathy (PTE) comprising several phenomenologically distinct stages, PTE is then used as a framework for understanding and clinically evaluating the neuropsychiatric sequelae of TBI encountered commonly during the early post-injury rehabilitation period, and for considering the types and timings of neurorehabilitative interventions. Finally, directions for future research that may address productively the challenges to TBI rehabilitation presented by neuropsychiatric disturbances are considered. PMID:22034400

  12. A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder.

    PubMed

    Bremner, James Douglas; Mishra, Sanskriti; Campanella, Carolina; Shah, Majid; Kasher, Nicole; Evans, Sarah; Fani, Negar; Shah, Amit Jasvant; Reiff, Collin; Davis, Lori L; Vaccarino, Viola; Carmody, James

    2017-01-01

    Brain imaging studies in patients with post-traumatic stress disorder (PTSD) have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR) is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET) in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD. Twenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT). PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS), mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ) and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures. Post-traumatic stress disorder patients treated with MBSR (but not PCGT) had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group. This study shows that MBSR is a safe and effective treatment for PTSD. Furthermore, MBSR treatment is associated with

  13. The Spectrum of Disease in Chronic Traumatic Encephalopathy

    ERIC Educational Resources Information Center

    McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.

    2013-01-01

    Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging…

  14. Traumatic brain injury shows better functional recovery than brain tumor: a rehabilitative perspective.

    PubMed

    Bilgin, S; Kose, N; Karakaya, J; Mut, M

    2014-02-01

    The similar symptoms seen in the brain tumor (BT) and traumatic brain injury (TBI) population. However, functional comparisons between these two diagnostic groups have been limited. To compare functional outcomes in patients with supratentorial BT and TBI after early rehabilitation. This was a retrospective database analysis. Setting. Patients admitted to an Acute Care Unit as inpatient (Hacettepe Hospital, Ankara-Turkey). Population. The population included patients with BT and TBI. Thirty-four patients with BT and TBI were matched one-to-one by lesion side and sex. The Barthel Index was used to assess functional status at the pre- and postrehabilitation. The change rate and efficiency in BI were also calculated. The time between injury onset and admission to rehabilitation (the onset to admission interval, OAI) and length of stay in rehabilitation (LOS rehab) were recorded. In addition, the influence of lesion side (left and right) and age on functional outcome were analyzed. The functional level was significantly lower in TBI patients than in patients BT before rehabilitation (P<0.05). The post-rehabilitation BI score was similar in patients with BT and TBI (P>0.05). Patients with TBI had greater the change rate and efficiency in BI (P<0.05). The OAI and LOS rehab was longer in patients with TBI (P<0.05). In terms of lesion side comparisons, no differences were found (P>0.05). The age had no effect on functional outcome in patients with TBI and BT (P>0.05), expect the age group 45-59 (P<0.05). The early rehabilitation program improved functional ability of patients with brain tumors, as well as patients with traumatic brain injury. Despite the lower functional status, patients with TBI displayed better functional recovery than patients with BT. Lesion side had no effect on functional outcome in patients with TBI and BT. Differences in functional status begin to appear even in patients with TBI between 45 and 59 years. Further investigations with more detailed

  15. Diminished neural network dynamics after moderate and severe traumatic brain injury

    PubMed Central

    Gilbert, Nicholas; Bernier, Rachel A.; Calhoun, Vincent D.; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M.

    2018-01-01

    Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain’s subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network “states” that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics

  16. Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice.

    PubMed

    Broussard, John I; Acion, Laura; De Jesús-Cortés, Héctor; Yin, Terry; Britt, Jeremiah K; Salas, Ramiro; Costa-Mattioli, Mauro; Robertson, Claudia; Pieper, Andrew A; Arciniegas, David B; Jorge, Ricardo

    2018-01-01

    Repeated traumatic brain injuries (rmTBI) are frequently associated with debilitating neuropsychiatric conditions such as cognitive impairment, mood disorders, and post-traumatic stress disorder. We tested the hypothesis that repeated mild traumatic brain injury impairs spatial memory and enhances anxiety-like behaviour. We used a between groups design using single (smTBI) or repeated (rmTBI) controlled cranial closed skull impacts to mice, compared to a control group. We assessed the effects of smTBI and rmTBI using measures of motor performance (Rotarod Test [RT]), anxiety-like behaviour (Elevated Plus Maze [EPM] and Open Field [OF] tests), and spatial memory (Morris Water Maze [MWM]) within 12 days of the final injury. In separate groups of mice, astrocytosis and microglial activation were assessed 24 hours after the final injury using GFAP and IBA-1 immunohistochemistry. RmTBI impaired spatial memory in the MWM and increased anxiety-like behaviour in the EPM and OFT. In addition, rmTBI elevated GFAP and IBA-1 immunohistochemistry throughout the mouse brain. RmTBI produced astrocytosis and microglial activation, and elicited impaired spatial memory and anxiety-like behaviour. rmTBI produces acute cognitive and anxiety-like disturbances associated with inflammatory changes in brain regions involved in spatial memory and anxiety.

  17. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    PubMed

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to

  18. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury

    PubMed Central

    Outtrim, Joanne G.; Chatfield, Doris A.; Manktelow, Anne; Hutchinson, Peter J.; Coles, Jonathan P.; Williams, Guy B.; Sahakian, Barbara J.; Menon, David K.

    2011-01-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to

  19. Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury.

    PubMed

    Magnoni, Sandra; Esparza, Thomas J; Conte, Valeria; Carbonara, Marco; Carrabba, Giorgio; Holtzman, David M; Zipfel, Greg J; Stocchetti, Nino; Brody, David L

    2012-04-01

    Axonal injury is believed to be a major determinant of adverse outcomes following traumatic brain injury. However, it has been difficult to assess acutely the severity of axonal injury in human traumatic brain injury patients. We hypothesized that microdialysis-based measurements of the brain extracellular fluid levels of tau and neurofilament light chain, two low molecular weight axonal proteins, could be helpful in this regard. To test this hypothesis, 100 kDa cut-off microdialysis catheters were placed in 16 patients with severe traumatic brain injury at two neurological/neurosurgical intensive care units. Tau levels in the microdialysis samples were highest early and fell over time in all patients. Initial tau levels were >3-fold higher in patients with microdialysis catheters placed in pericontusional regions than in patients in whom catheters were placed in normal-appearing right frontal lobe tissue (P = 0.005). Tau levels and neurofilament light-chain levels were positively correlated (r = 0.6, P = 0.013). Neurofilament light-chain levels were also higher in patients with pericontusional catheters (P = 0.04). Interestingly, initial tau levels were inversely correlated with initial amyloid-β levels measured in the same samples (r = -0.87, P = 0.000023). This could be due to reduced synaptic activity in areas with substantial axonal injury, as amyloid-β release is closely coupled with synaptic activity. Importantly, high initial tau levels correlated with worse clinical outcomes, as assessed using the Glasgow Outcome Scale 6 months after injury (r = -0.6, P = 0.018). Taken together, our data add support for the hypothesis that axonal injury may be related to long-term impairments following traumatic brain injury. Microdialysis-based measurement of tau levels in the brain extracellular space may be a useful way to assess the severity of axonal injury acutely in the intensive care unit. Further studies with larger numbers of

  20. Development of in vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2014-02-01

    release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic...who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to...11 Appendices……………………………………………………………………………... 12 4 INTRODUCTION: Athletes in contact sports who have sustained multiple concussive

  1. Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation.

    PubMed

    Scheibel, Randall S; Newsome, Mary R; Troyanskaya, Maya; Steinberg, Joel L; Goldstein, Felicia C; Mao, Hui; Levin, Harvey S

    2009-09-01

    Functional magnetic resonance imaging (fMRI) has revealed more extensive cognitive-control related brain activation following traumatic brain injury (TBI), but little is known about how activation varies with TBI severity. Thirty patients with moderate to severe TBI and 10 with orthopedic injury (OI) underwent fMRI at 3 months post-injury using a stimulus response compatibility task. Regression analyses indicated that lower total Glasgow Coma Scale (GCS) and GCS verbal component scores were associated with higher levels of brain activation. Brain-injured patients were also divided into three groups based upon their total GCS score (3-4, 5-8, or 9-15), and patients with a total GCS score of 8 or less produced increased, diffuse activation that included structures thought to mediate visual attention and cognitive control. The cingulate gyrus and thalamus were among the areas showing greatest increases, and this is consistent with vulnerability of these midline structures in severe, diffuse TBI. Better task performance was associated with higher activation, and there were differences in the over-activation pattern that varied with TBI severity, including greater reliance upon left-lateralized brain structures in patients with the most severe injuries. These findings suggest that over-activation is at least partially effective for improving performance and may be compensatory.

  2. Traumatic brain injury in mice and pentadecapeptide BPC 157 effect.

    PubMed

    Tudor, Mario; Jandric, Ivan; Marovic, Anton; Gjurasin, Miroslav; Perovic, Darko; Radic, Bozo; Blagaic, Alenka Boban; Kolenc, Danijela; Brcic, Luka; Zarkovic, Kamelija; Seiwerth, Sven; Sikiric, Predrag

    2010-02-25

    Gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, an anti-ulcer peptide, efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported, improved muscle crush injury. After an induced traumatic brain injury (TBI) in mice by a falling weight, BPC 157 regimens (10.0microg, 10.0ng/kgi.p.) demonstrated a marked attenuation of damage with an improved early outcome and a minimal postponed mortality throughout a 24h post-injury period. Ultimately, the traumatic lesions (subarachnoidal and intraventricular haemorrhage, brain laceration, haemorrhagic laceration) were less intense and consecutive brain edema had considerably improved. Given prophylactically (30 min before TBI) the improved conscious/unconscious/death ratio in TBI-mice was after force impulses of 0.068 Ns, 0.093 Ns, 0.113 Ns, 0.130 Ns, 0.145 Ns, and 0.159 Ns. Counteraction (with a reduction of unconsciousness, lower mortality) with both microg- and ng-regimens included the force impulses of 0.068-0.145 Ns. A higher regimen presented effectiveness also against the maximal force impulse (0.159 Ns). Furthermore, BPC 157 application immediately prior to injury was beneficial in mice subjected to force impulses of 0.093 Ns-TBI. For a more severe force impulse (0.130 Ns, 0.145 Ns, or 0159 Ns), the time-relation to improve the conscious/unconscious/death ratio was: 5 min (0.130 Ns-TBI), 20 min (0.145 Ns-TBI) or 30 min (0.159 Ns-TBI). Copyright 2009 Elsevier B.V. All rights reserved.

  3. Early plasma transfusion is associated with improved survival after isolated traumatic brain injury in patients with multifocal intracranial hemorrhage.

    PubMed

    Chang, Ronald; Folkerson, Lindley E; Sloan, Duncan; Tomasek, Jeffrey S; Kitagawa, Ryan S; Choi, H Alex; Wade, Charles E; Holcomb, John B

    2017-02-01

    Plasma-based resuscitation improves outcomes in trauma patients with hemorrhagic shock, while large-animal and limited clinical data suggest that it also improves outcomes and is neuroprotective in the setting of combined hemorrhage and traumatic brain injury. However, the choice of initial resuscitation fluid, including the role of plasma, is unclear for patients after isolated traumatic brain injury. We reviewed adult trauma patients admitted from January 2011 to July 2015 with isolated traumatic brain injury. "Early plasma" was defined as transfusion of plasma within 4 hours. Purposeful multiple logistic regression modeling was performed to analyze the relationship of early plasma and inhospital survival. After testing for interaction, subgroup analysis was performed based on the pattern of brain injury on initial head computed tomography: epidural hematoma, intraparenchymal contusion, subarachnoid hemorrhage, subdural hematoma, or multifocal intracranial hemorrhage. Of the 633 isolated traumatic brain injury patients included, 178 (28%) who received early plasma were injured more severely coagulopathic, hypoperfused, and hypotensive on admission. Survival was similar in the early plasma versus no early plasma groups (78% vs 84%, P = .08). After adjustment for covariates, early plasma was not associated with improved survival (odds ratio 1.18, 95% confidence interval 0.71-1.96). On subgroup analysis, multifocal intracranial hemorrhage was the largest subgroup with 242 patients. Of these, 61 (25%) received plasma within 4 hours. Within-group logistic regression analysis with adjustment for covariates found that early plasma was associated with improved survival (odds ratio 3.34, 95% confidence interval 1.20-9.35). Although early plasma transfusion was not associated with improved in-hospital survival for all isolated traumatic brain injury patients, early plasma was associated with increased in-hospital survival in those with multifocal intracranial

  4. Accelerated death rate in population-based cohort of persons with traumatic brain injury.

    PubMed

    Selassie, Anbesaw W; Cao, Yue; Church, Elizabeth C; Saunders, Lee L; Krause, James

    2014-01-01

    To determine the influence of preexisting heart, liver, kidney, cancer, stroke, and mental health problems and examine the influence of low socioeconomic status on mortality after discharge from acute care facilities for individuals with traumatic brain injury. Population-based retrospective cohort study of 33695 persons discharged from acute care hospital with traumatic brain injury in South Carolina, 1999-2010. Days elapsing from the dates of injury to death established the survival time (T). Data were censored at the 145th month. Multivariable Cox regression was used to examine the independent effect of the variables on death. Age-adjusted cumulative probability of death for each chronic disease of interest was plotted. By the 70th month of follow-up, rate of death was accelerated from 10-fold for heart diseases to 2.5-fold for mental health problems. Adjusted hazard ratios for diseases of the heart (2.13), liver-renal (3.25), cancer (2.64), neurological diseases and stroke (2.07), diabetes (1.89), hypertension (1.43), and mental health problems (1.59) were highly significant (each with P < .001). Compared with persons with private insurance, the hazard ratio was significantly elevated with Medicaid (1.67), Medicare (1.54), and uninsured (1.27) (each with P < .001). Specific chronic diseases strongly influenced postdischarge mortality after traumatic brain injury. Low socioeconomic status as measured by the type of insurance elevated the risk of death.

  5. Hypopituitarism Following Traumatic Brain Injury: Determining Factors for Diagnosis

    PubMed Central

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana Isabel; Kelestimur, Fahrettin; Casanueva, Felipe F.

    2011-01-01

    Neuroendocrine dysfunction, long recognized as a consequence of traumatic brain injury (TBI), is a major cause of disability that includes physical and psychological involvement with long-term cognitive, behavioral, and social changes. There is no standard procedure regarding at what time after trauma the diagnosis should be made. Also there is uncertainty on defining the best methods for diagnosis and testing and what types of patients should be selected for screening. Common criteria for evaluating these patients are required on account of the high prevalence of TBI worldwide and the potential new cases of hypopituitarism. The aim of this review is to clarify, based on the evidence, when endocrine assessment should be performed after TBI and which patients should be evaluated. Additional studies are still needed to know the impact of post-traumatic hypopituitarism and to assess the impact of hormone replacement in the prognosis. PMID:22649368

  6. Hypopituitarism following traumatic brain injury: determining factors for diagnosis.

    PubMed

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana Isabel; Kelestimur, Fahrettin; Casanueva, Felipe F

    2011-01-01

    Neuroendocrine dysfunction, long recognized as a consequence of traumatic brain injury (TBI), is a major cause of disability that includes physical and psychological involvement with long-term cognitive, behavioral, and social changes. There is no standard procedure regarding at what time after trauma the diagnosis should be made. Also there is uncertainty on defining the best methods for diagnosis and testing and what types of patients should be selected for screening. Common criteria for evaluating these patients are required on account of the high prevalence of TBI worldwide and the potential new cases of hypopituitarism. The aim of this review is to clarify, based on the evidence, when endocrine assessment should be performed after TBI and which patients should be evaluated. Additional studies are still needed to know the impact of post-traumatic hypopituitarism and to assess the impact of hormone replacement in the prognosis.

  7. Traumatic brain injury: a risk factor for neurodegenerative diseases.

    PubMed

    Gupta, Rajaneesh; Sen, Nilkantha

    2016-01-01

    Traumatic brain injury (TBI), a major global health and socioeconomic problem, is now established as a chronic disease process with a broad spectrum of pathophysiological symptoms followed by long-term disabilities. It triggers multiple and multidirectional biochemical events that lead to neurodegeneration and cognitive impairment. Recent studies have presented strong evidence that patients with TBI history have a tendency to develop proteinopathy, which is the pathophysiological feature of neurodegenerative disorders such as Alzheimer disease (AD), chronic traumatic encephalopathy (CTE), and amyotrophic lateral sclerosis (ALS). This review mainly focuses on mechanisms related to AD, CTE, and ALS that are induced after TBI and their relevance to the advancement of these neurodegenerative diseases. This review encompasses acute effects and chronic neurodegenerative consequences after TBI for a better understanding of TBI-induced neuronal death and to design therapies that will effectively treat patients in the primary or secondary progressive stages.

  8. Postnatal Neural Stem Cells in Treating Traumatic Brain Injury.

    PubMed

    Gazalah, Hussein; Mantash, Sarah; Ramadan, Naify; Al Lafi, Sawsan; El Sitt, Sally; Darwish, Hala; Azari, Hassan; Fawaz, Lama; Ghanem, Noël; Zibara, Kazem; Boustany, Rose-Mary; Kobeissy, Firas; Soueid, Jihane

    2016-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention.

  9. Protection against Blast-Induced Traumatic Brain Injury by Increase in Brain Volume.

    PubMed

    Gu, Ming; Kawoos, Usmah; McCarron, Richard; Chavko, Mikulas

    2017-01-01

    Blast-induced traumatic brain injury (bTBI) is a leading cause of injuries in recent military conflicts and it is responsible for an increased number of civilian casualties by terrorist attacks. bTBI includes a variety of neuropathological changes depending on the intensity of blast overpressure (BOP) such as brain edema, neuronal degeneration, diffuse axonal damage, and vascular dysfunction with neurological manifestations of psychological and cognitive abnormalities. Internal jugular vein (IJV) compression is known to reduce intracranial compliance by causing an increase in brain volume and was shown to reduce brain damage during closed impact-induced TBI. We investigated whether IJV compression can attenuate signs of TBI in rats after exposure to BOP. Animals were exposed to three 110 ± 5 kPa BOPs separated by 30 min intervals. Exposure to BOP resulted in a significant decrease of neuronal nuclei (NeuN) together with upregulation of aquaporin-4 (AQP-4), 3-nitrotyrosine (3-NT), and endothelin 1 receptor A (ETRA) expression in frontal cortex and hippocampus one day following exposures. IJV compression attenuated this BOP-induced increase in 3-NT in cortex and ameliorated the upregulation of AQP-4 in hippocampus. These results suggest that elevated intracranial pressure and intracerebral volume have neuroprotective potential in blast-induced TBI.

  10. Self-awareness rehabilitation after Traumatic Brain Injury: A pilot study to compare two group therapies

    PubMed Central

    Rigon, Jessica; Burro, Roberto; Guariglia, Cecilia; Maini, Manuela; Marin, Dario; Ciurli, Paola; Bivona, Umberto; Formisano, Rita

    2017-01-01

    Background and Purpose: Deficits of self-awareness (SA) are very common after severe acquired brain injury (sABI), especially in traumatic brain injury (TBI), playing an important role in the efficacy of the rehabilitation process. This pilot study provides information regarding two structured group therapies for disorders of SA. Methods: Nine patients with severe TBI were consecutively recruited and randomly assigned to one SA group therapy programme, according either to the model proposed by Ben-Yishay & Lakin (1989) (B&L Group), or by Sohlberg & Mateer (1989) (S&M Group). Neuropsychological tests and self-awareness questionnaires were administered before and after a 10 weeks group therapy. Results: Results showed that both SA and neuropsychological functioning significantly improved in both groups. Conclusion: It is important to investigate and treat self-awareness, also to improve the outcome of neuropsychological disorders. The two group therapies proposed seem to be specific for impulsivity and emotional dyscontrol and for cognitive disorders. PMID:28059799

  11. Persistent Sleep Disturbances Independently Predict Poorer Functional and Social Outcomes 1 Year After Mild Traumatic Brain Injury.

    PubMed

    Chan, Lai Gwen; Feinstein, Anthony

    2015-01-01

    To investigate the effect of sleep disturbances on functional and social outcomes after mild traumatic brain injury. Outpatient traumatic brain injury clinic in a tertiary trauma center. A total of 374 mild traumatic brain injury patients were assessed within 3 months of injury and followed up every 3 months for 1 year. Analysis of a historical cohort in a naturalistic clinical setting. At each visit, symptoms of concussion and psychological distress and indices of functional and social outcomes were measured with the Rivermead Postconcussion Questionnaire, 28-item General Health Questionnaire, and Rivermead Head Injury Follow-up Questionnaire, respectively. Changes in outcome scores over time were explored using repeated measures analysis of variance and compared between subjects with persistent (SD) and recovered (SR) sleep disturbances. Predictors of functional/social outcome were determined using linear regression. The percentages of subjects reporting sleep disturbances at each time point were 71.9%, 57.2%, 55.1%, and 53.7%, respectively. For functional and social outcomes, significant effects of time (F3,315 = 9.54; P < .001), group (SD vs SR) F1,317 = 5.32; P = .022, and time X group interaction F3,315 = 4.14; P = .007 were found. Persistent sleep disturbance (P = 0.011) and higher symptom burden at 6 months postinjury (P < .0001) were independent predictors of poorer outcome. Sleep disturbance, independent of psychological distress, is an important prognostic factor of functional and social outcomes after mild traumatic brain injury.

  12. A Comparison of Oxidative Lactate Metabolism in Traumatically Injured Brain and Control Brain.

    PubMed

    Jalloh, Ibrahim; Helmy, Adel; Howe, Duncan J; Shannon, Richard J; Grice, Peter; Mason, Andrew; Gallagher, Clare N; Murphy, Michael P; Pickard, John D; Menon, David K; Carpenter, T Adrian; Hutchinson, Peter J; Carpenter, Keri L H

    2018-05-18

    Metabolic abnormalities occur after traumatic brain injury (TBI). Glucose is conventionally regarded as the major energy substrate, although lactate can also be an energy source. We compared 3- 13 C lactate metabolism in TBI with "normal" control brain and muscle, measuring 13 C-glutamine enrichment to assess tricarboxylic acid (TCA) cycle metabolism. Microdialysis catheters in brains of nine patients with severe TBI, five non-TBI brain surgical patients, and five resting muscle (non-TBI) patients were perfused (24 h in brain, 8 h in muscle) with 8 mmol/L sodium 3- 13 C lactate. Microdialysate analysis employed ISCUS and nuclear magnetic resonance. In TBI, with 3- 13 C lactate perfusion, microdialysate glucose concentration increased nonsignificantly (mean +11.9%, p = 0.463), with significant increases (p = 0.028) for lactate (+174%), pyruvate (+35.8%), and lactate/pyruvate ratio (+101.8%). Microdialysate 13 C-glutamine fractional enrichments (median, interquartile range) were: for C4 5.1 (0-11.1) % in TBI and 5.7 (4.6-6.8) % in control brain, for C3 0 (0-5.0) % in TBI and 0 (0-0) % in control brain, and for C2 2.9 (0-5.7) % in TBI and 1.8 (0-3.4) % in control brain. 13 C-enrichments were not statistically different between TBI and control brain, showing both metabolize 3- 13 C lactate via TCA cycle, in contrast to muscle. Several patients with TBI exhibited 13 C-glutamine enrichment above the non-TBI control range, suggesting lactate oxidative metabolism as a TBI "emergency option."

  13. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2017-11-01

    Psychological medicine 1973;3:270-303. 3. Jordan BD. Chronic traumatic brain injury associated with boxing. Seminars in neurology 2000;20:179- 185...astrogliosis in sham or injured animals. In summary, we show that repetitive brain injury produces persistent behavioral abnormalities as late as one...sections, we used power coherence as a measure of white matter integrity as previously described.32 Briefly, each ROI was subdivided into square

  14. Screening for Post-Traumatic Stress Disorder in a Civilian Emergency Department Population with Traumatic Brain Injury.

    PubMed

    Haarbauer-Krupa, Juliet; Taylor, Christopher A; Yue, John K; Winkler, Ethan A; Pirracchio, Romain; Cooper, Shelly R; Burke, John F; Stein, Murray B; Manley, Geoffrey T

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a condition associated with traumatic brain injury (TBI). While the importance of PTSD and TBI among military personnel is widely recognized, there is less awareness of PTSD associated with civilian TBI. We examined the incidence and factors associated with PTSD 6 months post-injury in a civilian emergency department population using measures from the National Institute of Neurological Disorders and Stroke TBI Common Data Elements Outcome Battery. Participants with mild TBI (mTBI) from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with complete 6-month outcome batteries (n = 280) were analyzed. Screening for PTSD symptoms was conducted using the PTSD Checklist-Civilian Version. Descriptive measures are summarized and predictors for PTSD were examined using logistic regression. Incidence of screening positive for PTSD was 26.8% at 6 months following mTBI. Screening positive for PTSD was significantly associated with concurrent functional disability, post-concussive and psychiatric symptomatology, decreased satisfaction with life, and decreased performance in visual processing and mental flexibility. Multi-variable regression showed injury mechanism of assault (odds ratio [OR] 3.59; 95% confidence interval [CI] 1.69-7.63; p = 0.001) and prior psychiatric history (OR 2.56; 95% CI 1.42-4.61; p = 0.002) remained significant predictors of screening positive for PTSD, while education (per year OR 0.88; 95% CI 0.79-0.98; p = 0.021) was associated with decreased odds of PTSD. Standardized data collection and review of pre-injury education, psychiatric history, and injury mechanism during initial hospital presentation can aid in identifying patients with mTBI at risk for developing PTSD symptoms who may benefit from closer follow-up after initial injury care.

  15. Screening for Post-Traumatic Stress Disorder in a Civilian Emergency Department Population with Traumatic Brain Injury

    PubMed Central

    Haarbauer-Krupa, Juliet; Taylor, Christopher A.; Yue, John K.; Winkler, Ethan A.; Pirracchio, Romain; Cooper, Shelly R.; Burke, John F.; Stein, Murray B.

    2017-01-01

    Abstract Post-traumatic stress disorder (PTSD) is a condition associated with traumatic brain injury (TBI). While the importance of PTSD and TBI among military personnel is widely recognized, there is less awareness of PTSD associated with civilian TBI. We examined the incidence and factors associated with PTSD 6 months post-injury in a civilian emergency department population using measures from the National Institute of Neurological Disorders and Stroke TBI Common Data Elements Outcome Battery. Participants with mild TBI (mTBI) from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with complete 6-month outcome batteries (n = 280) were analyzed. Screening for PTSD symptoms was conducted using the PTSD Checklist-Civilian Version. Descriptive measures are summarized and predictors for PTSD were examined using logistic regression. Incidence of screening positive for PTSD was 26.8% at 6 months following mTBI. Screening positive for PTSD was significantly associated with concurrent functional disability, post-concussive and psychiatric symptomatology, decreased satisfaction with life, and decreased performance in visual processing and mental flexibility. Multi-variable regression showed injury mechanism of assault (odds ratio [OR] 3.59; 95% confidence interval [CI] 1.69–7.63; p = 0.001) and prior psychiatric history (OR 2.56; 95% CI 1.42–4.61; p = 0.002) remained significant predictors of screening positive for PTSD, while education (per year OR 0.88; 95% CI 0.79–0.98; p = 0.021) was associated with decreased odds of PTSD. Standardized data collection and review of pre-injury education, psychiatric history, and injury mechanism during initial hospital presentation can aid in identifying patients with mTBI at risk for developing PTSD symptoms who may benefit from closer follow-up after initial injury care. PMID:26936513

  16. [Description of functional outcome in pediatric traumatic brain injury after a comprehensive rehabilitation programme].

    PubMed

    Laxe, Sara; León, Daniel; Salgado, Dalila; Zabaleta, Mikel

    2015-01-01

    Traumatic brain injury is the leading cause of mortality and disability in children in the developed countries. Despite the plasticity of an infant's brain, injury at this early stage can lead to important sequelae that will affect functioning later in life. The understanding of the functional profile after a traumatic brain injury is important for planning interventions and treatment resources once the preventive phase has failed. This was a retrospective study of the patients admitted in a neurorehabilitation unit with the aim of describing their functioning after an intensive rehabilitation programme. A total of 65 records of children with a mean age of 10.38 years that had been admitted to a rehabilitation programme were reviewed. Of the traumatic brain injuries, 89.2% were severe and 78.4% were secondary to traffic accidents. The mean length of stay was 79.35 days. At discharge, 72% were able to walk, but 76.9% showed some cognitive impairment. Despite good physical recovery, only 29.2% of the children were able to return to school. Permanence of deficits made 21.5% of the children unable to return to any type of education. The population under study was characterised by a good clinical outcome as well as good physical improvement. Nevertheless, cognitive problems were notable and were the main factor responsible for the changes in school attendance and return to normal life. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  17. Predictive value of neuron-specific enolase for prognosis in patients with moderate or severe traumatic brain injury: a systematic review and meta-analysis

    PubMed Central

    Mercier, Eric; Boutin, Amélie; Shemilt, Michèle; Lauzier, François; Zarychanski, Ryan; Fergusson, Dean A.; Moore, Lynne; McIntyre, Lauralyn A.; Archambault, Patrick; Légaré, France; Rousseau, François; Lamontagne, François; Nadeau, Linda; Turgeon, Alexis F.

    2016-01-01

    Background: Prognosis is difficult to establish early after moderate or severe traumatic brain injury despite representing an important concern for patients, families and medical teams. Biomarkers, such as neuron-specific enolase, have been proposed as potential early prognostic indicators. Our objective was to determine the association between neuron-specific enolase and clinical outcomes, and the prognostic value of neuron-specific enolase after a moderate or severe traumatic brain injury. Methods: We searched MEDLINE, Embase, The Cochrane Library and Biosis Previews, and reviewed reference lists of eligible articles to identify studies. We included cohort studies and randomized controlled trials that evaluated the prognostic value of neuron-specific enolase to predict mortality or Glasgow Outcome Scale score in patients with moderate or severe traumatic brain injury. Two reviewers independently collected data. The pooled mean differences were analyzed using random-effects models. We assessed risk of bias using a customized Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Subgroup and sensitivity analyses were performed based on a priori hypotheses. Results: We screened 5026 citations from which 30 studies (involving 1321 participants) met our eligibility criteria. We found a significant positive association between neuron-specific enolase serum levels and mortality (10 studies, n = 474; mean difference [MD] 18.46 µg/L, 95% confidence interval [CI] 10.81 to 26.11 µg/L; I2 = 83%) and a Glasgow Outcome Scale ≤ 3 (14 studies, n = 603; MD 17.25 µg/L, 95% CI 11.42 to 23.07 µg/L; I2 = 82%). We were unable to determine a clinical threshold value using the available patient data. Interpretation: In patients with moderate or severe traumatic brain injury, increased neuron-specific enolase serum levels are associated with unfavourable outcomes. The optimal neuron-specific enolase threshold value to predict unfavourable prognosis remains unknown and

  18. Physicians' Initial Forensic Impressions of Hypothetical Cases of Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Laskey, Antoinette L.; Sheridan, Michael J.; Hymel, Kent P.

    2007-01-01

    Objective: To describe physicians' initial forensic impressions of hypothetical cases of pediatric traumatic brain injury (TBI) and to compare the responses of pathologists and pediatricians. Method: A survey was administered to physicians who attended workshops on pediatric TBI; were members of two national internet list serves; and were members…

  19. Annexin A7 Levels Increase in Rats With Traumatic Brain Injury and Promote Secondary Brain Injury.

    PubMed

    Gao, Fan; Li, Di; Rui, Qin; Ni, Haibo; Liu, Huixiang; Jiang, Feng; Tao, Li; Gao, Rong; Dang, Baoqi

    2018-01-01

    The incidence of traumatic brain injury (TBI) has been increasing annually. Annexin A7 is a calcium-dependent phospholipid binding protein. It can promote melting of the cell membrane. Recent studies have shown that it plays an important role in atherosclerosis, other cardiovascular diseases, and a variety of tumors. However, few studies of ANXA7 in TBI have been performed. We here observed how ANXA7 changes after TBI and discuss whether brain injury is associated with the use of ANXA7 antagonist intervention. Experimental Results: 1. After TBI, ANXA7 levels were higher than in the sham group, peaking 24 h after TBI. 2. The use of siA7 was found to reduce the expression of A7 in the injured brain tissue, and also brain edema, BBB damage, cell death, and apoptosis relative to the sham group. Conclusion: ANXA7 promotes the development of secondary brain injury (SBI) after TBI.

  20. Nutritional status, assessment, requirements and adequacy of traumatic brain injury patients.

    PubMed

    Daradkeh, Ghazi; Essa, Musthafa Mohamed; Al-Adawi, S Samir; Subash, Selvaraju; Mahmood, Lubna; Kumar, Parvathy R

    2014-10-01

    Traumatic Brain Injury (TBI) has been considered as a serious public health problem. Each year, traumatic brain injuries are contributing to a substantial number of cases of permanent disability and deaths and it can be classified according to the severity into penetrating and closed head injury. Symptoms, beside to be unconscious can be defined as vomiting, nausea, headache, dizziness, lack of motor coordination, difficulty in balancing, blurred vision and lightheadedness, bad taste in the mouth, ringing in the ears, fatigue and lethargy as well as changes in sleep patterns. The brain is known to be the functional regulator for all the metabolic activities inside the body and TBI patients mostly have a complex metabolic alterations including aberrant cellular metabolism, abnormal metabolic processes, changes in hormones functions and inflammatory cascade. The TBI patient's status needed to be assessed medically and nutritionally since the medical status of the patients can affect the nutrition part. Data from the four assessment tools are needed to be correctly used and interpreted in order to make a proper nutritional diagnosis, clinical assessment, biochemistry as well as anthropometric measurements. Regardless the methods used for assessing TBI patients, having adequate intake and medical care can lead to a reduction in hospital costs, numbers of day hospitalized, numbers of hours of mechanical ventilation and in the overall infection rates.

  1. PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic Brain Injury

    DTIC Science & Technology

    2015-04-01

    Award Number: W81XWH-11-2-0129 TITLE: PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic Brain Injury...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-2-0129 PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic...health problems. PHIT for Duty integrates self-report and physiological sensor instruments to assess health status via brief weekly screening

  2. Post-traumatic neurodegeneration and chronic traumatic encephalopathy.

    PubMed

    Daneshvar, Daniel H; Goldstein, Lee E; Kiernan, Patrick T; Stein, Thor D; McKee, Ann C

    2015-05-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity around the world. Concussive and subconcussive forms of closed-head injury due to impact or blast neurotrauma represent the most common types of TBI in civilian and military settings. It is becoming increasingly evident that TBI can lead to persistent, long-term debilitating effects, and in some cases, progressive neurodegeneration and chronic traumatic encephalopathy (CTE). The epidemiological literature suggests that a single moderate-to-severe TBI may be associated with accelerated neurodegeneration and increased risk of Alzheimer's disease, Parkinson's disease, or motor neuron disease. However, the pathologic phenotype of these post-traumatic neurodegenerations is largely unknown and there may be pathobiological differences between post-traumatic disease and the corresponding sporadic disorder. By contrast, the pathology of CTE is increasingly well known and is characterized by a distinctive pattern of progressive brain atrophy and accumulation of hyperphosphorylated tau neurofibrillary and glial tangles, dystrophic neurites, 43 kDa TAR DNA-binding protein (TDP-43) neuronal and glial aggregates, microvasculopathy, myelinated axonopathy, neuroinflammation, and white matter degeneration. Clinically, CTE is associated with behavioral changes, executive dysfunction, memory deficits, and cognitive impairments that begin insidiously and most often progress slowly over decades. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. Critical knowledge gaps include elucidation of pathogenic mechanisms, identification of genetic risk factors, and clarification of relevant variables-including age at exposure to trauma, history of prior and subsequent head trauma, substance use, gender, stress, and comorbidities-all of which may contribute to risk profiles and the development of post-traumatic

  3. Implementation of Neurocritical Care Is Associated With Improved Outcomes in Traumatic Brain Injury.

    PubMed

    Sekhon, Mypinder S; Gooderham, Peter; Toyota, Brian; Kherzi, Navid; Hu, Vivien; Dhingra, Vinay K; Hameed, Morad S; Chittock, Dean R; Griesdale, Donald E

    2017-07-01

    Background Traditionally, the delivery of dedicated neurocritical care (NCC) occurs in distinct NCC units and is associated with improved outcomes. Institution-specific logistical challenges pose barriers to the development of distinct NCC units; therefore, we developed a consultancy NCC service coupled with the implementation of invasive multimodal neuromonitoring, within a medical-surgical intensive care unit. Our objective was to evaluate the effect of a consultancy NCC program on neurologic outcomes in severe traumatic brain injury patients. We conducted a single-center quasi-experimental uncontrolled pre- and post-NCC study in severe traumatic brain injury patients (Glasgow Coma Scale ≤8). The NCC program includes consultation with a neurointensivist and neurosurgeon and multimodal neuromonitoring. Demographic, injury severity metrics, neurophysiologic data, and therapeutic interventions were collected. Glasgow Outcome Scale (GOS) at 6 months was the primary outcome. Multivariable ordinal logistic regression was used to model the association between NCC implementation and GOS at 6 months. A total of 113 patients were identified: 76 pre-NCC and 37 post-NCC. Mean age was 39 years (standard deviation [SD], 2) and 87 of 113 (77%) patients were male. Median admission motor score was 3 (interquartile ratio, 1-4). Daily mean arterial pressure was higher (95 mmHg [SD, 10]) versus (88 mmHg [SD, 10], p<0.001) and daily mean core body temperature was lower (36.6°C [SD, 0.90]) versus (37.2°C [SD, 1.0], p=0.001) post-NCC compared with pre-NCC, respectively. Multivariable regression modelling revealed the NCC program was associated with a 2.5 increased odds (odds ratios, 2.5; 95% confidence interval, 1.1-5.3; p=0.022) of improved 6-month GOS. Implementation of a NCC program is associated with improved 6 month GOS in severe TBI patients.

  4. Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review.

    PubMed

    Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel

    2014-08-01

    This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.

  5. Persistent anosmia in a traumatic brain injury patient: role of orbitofrontal cortex.

    PubMed

    Caminiti, Fabrizia; Ciurleo, Rosella; Bramanti, Placido; Marino, Silvia

    2013-01-01

    The olfactory loss due to traumatic brain injury is a common clinical condition. The understanding of the cortical areas involved in ability to detect, discriminate and identify the odours is still limited. However, it has been shown that the orbitofrontal cortex (OFC) is involved in the discrimination and recognition of odours and in particular the right OFC has a dominant role in the central processing of smell. This study used the Sniffin' Sticks Test to evaluate olfactory function of a 40-year-old female with persistent post-traumatic anosmia and to have a objective measure method for the follow-up. A marked decrease in the ability to identify and discriminate odours was found. On the other hand the ability to perceive the odours was little compromised. A cerebral Magnetic Resonance Imaging, performed 10 months after the trauma, showed the presence of a post-traumatic scarring in the right frontal lobe involving the OFC. In this case of post-traumatic anosmia, the ability to perceive and recognize odours does not seem to be compromised in the same measure. It is postulated that the post-traumatic outcomes, involving areas of multisensory integration such as the OFC, have an important pathogenetic role in the loss of ability to recognize and discriminate odours.

  6. Methylphenidate reduces mental fatigue and improves processing speed in persons suffered a traumatic brain injury.

    PubMed

    Johansson, B; Wentzel, A-P; Andréll, P; Mannheimer, C; Rönnbäck, L

    2015-01-01

    Post-traumatic brain injury symptoms, such as mental fatigue, have considerable negative impacts on quality-of-life. In the present study the effects of methylphenidate in two different dosages were assessed with regard to mental fatigue, pain and cognitive functions in persons who had suffered a traumatic brain injury. Fifty-one subjects were included and 44 completed the study. The treatment continued for 12 weeks, including three treatment periods with no medication for 4 weeks, administration of low dose methylphenidate (up to 5 mg × 3) for 4 weeks and normal dose methylphenidate (up to 20 mg × 3) for a further 4 weeks. The patients were randomized into three groups where all groups were given all treatments. Significantly reduced mental fatigue, assessed with the Mental Fatigue Scale (MFS) and increased information processing speed (coding, WAIS-III), were detected. The SF-36 vitality and social functioning scales were also improved significantly. Pain was not reduced by methylphenidate. The positive effects of treatment were dose-dependent, with the most prominent effects being at 60 mg methylphenidate/day spread over three doses. Observed side-effects were increased blood pressure and increased heart rate. Methylphenidate was generally well-tolerated and it improved long-lasting mental fatigue and processing speed after traumatic brain injury.

  7. Impact of mild traumatic brain injury on auditory brain stem dysfunction in mouse model.

    PubMed

    Amanipour, Reza M; Frisina, Robert D; Cresoe, Samantha A; Parsons, Teresa J; Xiaoxia Zhu; Borlongan, Cesario V; Walton, Joseph P

    2016-08-01

    The auditory brainstem response (ABR) is an electrophysiological test that examines the functionality of the auditory nerve and brainstem. Traumatic brain injury (TBI) can be detected if prolonged peak latency is observed in ABR measurements, since latency measures the neural conduction time in the brainstem, and an increase in latency can be a sign of pathological lesion at the auditory brainstem level. The ABR is elicited by brief sounds that can be used to measure hearing sensitivity as well as temporal processing. Reduction in peak amplitudes and increases in latency are indicative of dysfunction in the auditory nerve and/or central auditory pathways. In this study we used sixteen young adult mice that were divided into two groups: sham and mild traumatic brain injury (mTBI), with ABR measurements obtained prior to, and at 2, 6, and 14 weeks after injury. Abnormal ABRs were observed for the nine TBI cases as early as two weeks after injury and the deficits lasted for fourteen weeks after injury. Results indicated a significant reduction in the Peak 1 (P1) and Peak 4 (P4) amplitudes to the first noise burst, as well as an increase in latency response for P1 and P4 following mTBI. These results are the first to demonstrate auditory sound processing deficits in a rodent model of mild TBI.

  8. Housekeeping while brain's storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury

    PubMed Central

    Rhinn, Hervé; Marchand-Leroux, Catherine; Croci, Nicole; Plotkine, Michel; Scherman, Daniel; Escriou, Virginie

    2008-01-01

    Background Traumatic brain injury models are widely studied, especially through gene expression, either to further understand implied biological mechanisms or to assess the efficiency of potential therapies. A large number of biological pathways are affected in brain trauma models, whose elucidation might greatly benefit from transcriptomic studies. However the suitability of reference genes needed for quantitative RT-PCR experiments is missing for these models. Results We have compared five potential reference genes as well as total cDNA level monitored using Oligreen reagent in order to determine the best normalizing factors for quantitative RT-PCR expression studies in the early phase (0–48 h post-trauma (PT)) of a murine model of diffuse brain injury. The levels of 18S rRNA, and of transcripts of β-actin, glyceraldehyde-3P-dehydrogenase (GAPDH), β-microtubulin and S100β were determined in the injured brain region of traumatized mice sacrificed at 30 min, 3 h, 6 h, 12 h, 24 h and 48 h post-trauma. The stability of the reference genes candidates and of total cDNA was evaluated by three different methods, leading to the following rankings as normalization factors, from the most suitable to the less: by using geNorm VBA applet, we obtained the following sequence: cDNA(Oligreen); GAPDH > 18S rRNA > S100β > β-microtubulin > β-actin; by using NormFinder Excel Spreadsheet, we obtained the following sequence: GAPDH > cDNA(Oligreen) > S100β > 18S rRNA > β-actin > β-microtubulin; by using a Confidence-Interval calculation, we obtained the following sequence: cDNA(Oligreen) > 18S rRNA; GAPDH > S100β > β-microtubulin > β-actin. Conclusion This work suggests that Oligreen cDNA measurements, 18S rRNA and GAPDH or a combination of them may be used to efficiently normalize qRT-PCR gene expression in mouse brain trauma injury, and that β-actin and β-microtubulin should be avoided. The potential of total cDNA as measured by Oligreen as a first

  9. Defining traumatic brain injury in children and youth using international classification of diseases version 10 codes: a systematic review protocol.

    PubMed

    Chan, Vincy; Thurairajah, Pravheen; Colantonio, Angela

    2013-11-13

    Although healthcare administrative data are commonly used for traumatic brain injury research, there is currently no consensus or consistency on using the International Classification of Diseases version 10 codes to define traumatic brain injury among children and youth. This protocol is for a systematic review of the literature to explore the range of International Classification of Diseases version 10 codes that are used to define traumatic brain injury in this population. The databases MEDLINE, MEDLINE In-Process, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Database of Systematic Reviews will be systematically searched. Grey literature will be searched using Grey Matters and Google. Reference lists of included articles will also be searched. Articles will be screened using predefined inclusion and exclusion criteria and all full-text articles that meet the predefined inclusion criteria will be included for analysis. The study selection process and reasons for exclusion at the full-text level will be presented using a PRISMA study flow diagram. Information on the data source of included studies, year and location of study, age of study population, range of incidence, and study purpose will be abstracted into a separate table and synthesized for analysis. All International Classification of Diseases version 10 codes will be listed in tables and the codes that are used to define concussion, acquired traumatic brain injury, head injury, or head trauma will be identified. The identification of the optimal International Classification of Diseases version 10 codes to define this population in administrative data is crucial, as it has implications for policy, resource allocation, planning of healthcare services, and prevention strategies. It also allows for comparisons across countries and studies. This protocol is for a review that identifies the range and most common diagnoses used to conduct surveillance for traumatic brain injury in children and youth. This

  10. Concordance of common data elements for assessment of subjective cognitive complaints after mild-traumatic brain injury: a TRACK-TBI Pilot Study.

    PubMed

    Ngwenya, Laura B; Gardner, Raquel C; Yue, John K; Burke, John F; Ferguson, Adam R; Huang, Michael C; Winkler, Ethan A; Pirracchio, Romain; Satris, Gabriela G; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Okonkwo, David O; Manley, Geoffrey T

    2018-06-04

    To determine characteristics and concordance of subjective cognitive complaints (SCCs) 6 months following mild-traumatic brain injury (mTBI) as assessed by two different TBI common data elements (CDEs). The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot Study was a prospective observational study that utilized the NIH TBI CDEs, Version 1.0. We examined variables associated with SCC, performance on objective cognitive tests (Wechsler Adult Intelligence Scale, California Verbal Learning Test, and Trail Making Tests A and B), and agreement on self-report of SCCs as assessed by the acute concussion evaluation (ACE) versus the Rivermead Post Concussion Symptoms Questionnaire (RPQ). In total, 68% of 227 participants endorsed SCCs at 6 months. Factors associated with SCC included less education, psychiatric history, and being assaulted. Compared to participants without SCC, those with SCC defined by RPQ performed significantly worse on all cognitive tests. There was moderate agreement between the two measures of SCCs (kappa = 0.567 to 0.680). We show that the symptom questionnaires ACE and RPQ show good, but not excellent, agreement for SCCs in an mTBI study population. Our results support the retention of RPQ as a basic CDE for mTBI research. BSI-18: Brief Symptom Inventory; 18CDEs: common data elements; CT: computed tomography; CVLT: California Verbal Learning Test; ED: emergency department; GCS: Glasgow coma scale; LOC: loss of consciousnessm; TBI: mild-traumatic brain injury; PTA: post-traumatic amnesia; SCC: subjective cognitive complaints; TBI: traumatic brain injury; TRACK-TBI: Transforming Research and Clinical Knowledge in Traumatic Brain Injury; TMT: Trail Making Test; WAIS-PSI: Wechsler Adult Intelligence Scale, Fourth Edition, Processing Speed Index.

  11. D-Cycloserine improves functional outcome after traumatic brain injury with wide therapeutic window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeleye, A.; Biegon, A.; Adeleye, A.

    It has been long thought that hyperactivation of N-methyl-D-aspartate (NMDA) receptors underlies neurological decline after traumatic brain injury. However, all clinical trials with NMDA receptor antagonists failed. Since NMDA receptors are down-regulated from 4 h to 2 weeks after brain injury, activation at 24 h, rather than inhibition, of these receptors, was previously shown to be beneficial in mice. Here, we tested the therapeutic window, dose regimen and mechanism of action of the NMDA receptor partial agonist d-cycloserine (DCS) in traumatic brain injury. Male mice were subjected to trauma using a weight-drop model, and administered 10 mg/kg (i.p.) DCS ormore » vehicle once (8, 16, 24, or 72 h) twice (24 and 48 h) or three times (24, 48 and 72 h). Functional recovery was assessed for up to 60 days, using a Neurological Severity Score that measures neurobehavioral parameters. In all groups in which treatment was begun at 24 or 72 h neurobehavioral function was significantly better than in the vehicle-treated groups. Additional doses, on days 2 and 3 did not further improve recovery. Mice treated at 8 h or 16 h post injury did not differ from the vehicle-treated controls. Co-administration of the NMDA receptor antagonist MK-801 completely blocked the protective effect of DCS given at 24 h. Infarct volume measured by 2,3,5-triphenyltetrazolium chloride staining at 48 h or by cresyl violet at 28 days was not affected by DCS treatment. Since DCS is used clinically for other indications, the present study offers a novel approach for treating human traumatic brain injury with a therapeutic window of at least 24 h.« less

  12. Association between the rapid shallow breathing index and extubation success in patients with traumatic brain injury

    PubMed Central

    dos Reis, Helena França Correia; Almeida, Mônica Lajana Oliveira; da Silva, Mário Ferreira; Moreira, Julião Oliveira; Rocha, Mário de Seixas

    2013-01-01

    Objective To investigate the association between the rapid shallow breathing index and successful extubation in patients with traumatic brain injury. Methods This study was a prospective study conducted in patients with traumatic brain injury of both genders who underwent mechanical ventilation for at least two days and who passed a spontaneous breathing trial. The minute volume and respiratory rate were measured using a ventilometer, and the data were used to calculate the rapid shallow breathing index (respiratory rate/tidal volume). The dependent variable was the extubation outcome: reintubation after up to 48 hours (extubation failure) or not (extubation success). The independent variable was the rapid shallow breathing index measured after a successful spontaneous breathing trial. Results The sample comprised 119 individuals, including 111 (93.3%) males. The average age of the sample was 35.0±12.9 years old. The average duration of mechanical ventilation was 8.1±3.6 days. A total of 104 (87.4%) participants achieved successful extubation. No association was found between the rapid shallow breathing index and extubation success. Conclusion The rapid shallow breathing index was not associated with successful extubation in patients with traumatic brain injury. PMID:24213084

  13. Motor Deficits Following Pediatric Mild Traumatic Brain Injury: Implications for School Psychologists

    ERIC Educational Resources Information Center

    Davis, Andrew S.; Moore, Brittney; Rice, Valerie; Decker, Scott

    2015-01-01

    Mild traumatic brain injury (mTBI), sometimes referred to as concussion, is one of the most common acquired neurological problems of childhood. When children return to school following mTBI, school psychologists should be actively involved in the determination of neurocognitive and functional deficits for the purpose of designing strength-based…

  14. Relation of Executive Functioning to Pragmatic Outcome following Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Douglas, Jacinta M.

    2010-01-01

    Purpose: This study was designed to explore the behavioral nature of pragmatic impairment following severe traumatic brain injury (TBI) and to evaluate the contribution of executive skills to the experience of pragmatic difficulties after TBI. Method: Participants were grouped into 43 TBI dyads (TBI adults and close relatives) and 43 control…

  15. Traumatic Brain Injury and Grief: Considerations and Practical Strategies for School Psychologists

    ERIC Educational Resources Information Center

    Jantz, Paul B.; Comerchero, Victoria A.; Canto, Angela I.; Pierson, Eric

    2015-01-01

    Traumatic brain injury (TBI) can result in a range of social, emotional, neurological, cognitive, and behavioral outcomes. If these outcomes are significant, family members and the individual who has sustained the TBI may struggle with accepting the effects of these deficits. They may grieve over disrupted family relationships, roles, and routines…

  16. Traumatic Brain Injury: Exploring the Role of Cooperative Extension in Kansas Communities

    ERIC Educational Resources Information Center

    Sellers, Debra M.; Garcia, Jane Mertz

    2012-01-01

    TBI"options" helps survivors of traumatic brain injury and their families identify, locate, and contact helpful organizations in their local communities to promote successful living. This article discusses the role of county agents in the program and the support offered by community partners. Results of pre- and post-surveys for both…

  17. Return to Work and Social Communication Ability Following Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Douglas, Jacinta M.; Bracy, Christine A.; Snow, Pamela C.

    2016-01-01

    Purpose: Return to competitive employment presents a major challenge to adults who survive traumatic brain injury (TBI). This study was undertaken to better understand factors that shape employment outcome by comparing the communication profiles and self-awareness of communication deficits of adults who return to and maintain employment with those…

  18. Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    PubMed

    Helmy, Adel; Antoniades, Chrystalina A; Guilfoyle, Mathew R; Carpenter, Keri L H; Hutchinson, Peter J

    2012-01-01

    There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI). This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR) of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study.

  19. The Adam Williams initiative: collaborating with community resources to improve care for traumatic brain injury.

    PubMed

    Bader, Mary Kay; Stutzman, Sonja E; Palmer, Sylvain; Nwagwu, Chiedozie I; Goodman, Gary; Whittaker, Margie; Olson, Daiwai M

    2014-12-01

    The Brain Trauma Foundation has developed treatment guidelines for the care of patients with acute traumatic brain injury. However, a method to provide broad acceptance and application of these guidelines has not been published. To describe methods for the development, funding, and continued educational efforts of the Adam Williams Initiative; the experiences from the first 10 years may serve as a template for hospitals and nurses that seek to engage in long-term quality improvement collaborations with foundations and/or industry. In 2004, the nonprofit Adam Williams Initiative was established with the goal of providing education and resources that would encourage hospitals across the United States to incorporate the Brain Trauma Foundation's guidelines into practice. Between 2004 and 2014, 37 hospitals have been funded by the Adam Williams Initiative and have had staff members participate in an immersion experience at Mission Hospital (Mission Viejo, California) during which team members received both didactic and hands-on education in the care of traumatic brain injury. Carefully cultivated relationships and relentless teamwork have contributed to successful implementation of the Brain Trauma Foundation's guidelines in US hospitals. ©2014 American Association of Critical-Care Nurses.

  20. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development.

    PubMed

    Lucke-Wold, Brandon Peter; Turner, Ryan Coddington; Logsdon, Aric Flint; Bailes, Julian Edwin; Huber, Jason Delwyn; Rosen, Charles Lee

    2014-07-01

    Significant attention has recently been drawn to the potential link between head trauma and the development of neurodegenerative disease, namely chronic traumatic encephalopathy (CTE). The acute neurotrauma associated with sports-related concussions in athletes and blast-induced traumatic brain injury in soldiers elevates the risk for future development of chronic neurodegenerative diseases such as CTE. CTE is a progressive disease distinguished by characteristic tau neurofibrillary tangles (NFTs) and, occasionally, transactive response DNA binding protein 43 (TDP43) oligomers, both of which have a predilection for perivascular and subcortical areas near reactive astrocytes and microglia. The disease is currently only diagnosed postmortem by neuropathological identification of NFTs. A recent workshop sponsored by National Institute of Neurological Disorders and Stroke emphasized the need for premortem diagnosis, to better understand disease pathophysiology and to develop targeted treatments. In order to accomplish this objective, it is necessary to discover the mechanistic link between acute neurotrauma and the development of chronic neurodegenerative and neuropsychiatric disorders such as CTE. In this review, we briefly summarize what is currently known about CTE development and pathophysiology, and subsequently discuss injury-induced pathways that warrant further investigation. Understanding the mechanistic link between acute brain injury and chronic neurodegeneration will facilitate the development of appropriate diagnostic and therapeutic options for CTE and other related disorders.