Sample records for background triple-negative breast

  1. Common breast cancer susceptibility loci are associated with triple negative breast cancer

    PubMed Central

    Stevens, Kristen N.; Vachon, Celine M.; Lee, Adam M.; Slager, Susan; Lesnick, Timothy; Olswold, Curtis; Fasching, Peter A.; Miron, Penelope; Eccles, Diana; Carpenter, Jane E.; Godwin, Andrew K.; Ambrosone, Christine; Winqvist, Robert; Schmidt, Marjanka K.; Cox, Angela; Cross, Simon S.; Sawyer, Elinor; Hartmann, Arndt; Beckmann, Matthias W.; Schulz-Wendtland, Rüdiger; Ekici, Arif B.; Tapper, William J; Gerty, Susan M; Durcan, Lorraine; Graham, Nikki; Hein, Rebecca; Nickels, Stephan; Flesch-Janys, Dieter; Heinz, Judith; Sinn, Hans-Peter; Konstantopoulou, Irene; Fostira, Florentia; Pectasides, Dimitrios; Dimopoulos, Athanasios M.; Fountzilas, George; Clarke, Christine L.; Balleine, Rosemary; Olson, Janet E.; Fredericksen, Zachary; Diasio, Robert B.; Pathak, Harsh; Ross, Eric; Weaver, JoEllen; Rüdiger, Thomas; Försti, Asta; Dünnebier, Thomas; Ademuyiwa, Foluso; Kulkarni, Swati; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Ko, Yon-Dschun; Van Limbergen, Erik; Janssen, Hilde; Peto, Julian; Fletcher, Olivia; Giles, Graham G.; Baglietto, Laura; Verhoef, Senno; Tomlinson, Ian; Kosma, Veli-Matti; Beesley, Jonathan; Greco, Dario; Blomqvist, Carl; Irwanto, Astrid; Liu, Jianjun; Blows, Fiona M.; Dawson, Sarah-Jane; Margolin, Sara; Mannermaa, Arto; Martin, Nicholas G.; Montgomery, Grant W; Lambrechts, Diether; dos Santos Silva, Isabel; Severi, Gianluca; Hamann, Ute; Pharoah, Paul; Easton, Douglas F.; Chang-Claude, Jenny; Yannoukakos, Drakoulis; Nevanlinna, Heli; Wang, Xianshu; Couch, Fergus J.

    2012-01-01

    Triple negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiological factors which promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome wide association studies (GWAS) display heterogeneity of effect among breast cancer subtypes as defined by estrogen receptor (ER) and progesterone receptor (PR) status. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple negative breast cancer and 4,978 healthy controls. We identified six single nucleotide polymorphisms (SNPs) significantly associated with risk of triple negative breast cancer, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.11) and rs8100241 (19p13.11). Together, our results provide convincing evidence of genetic susceptibility for triple negative breast cancer. PMID:21844186

  2. GDC-0941 and Cisplatin in Treating Patients With Androgen Receptor-Negative Triple Negative Metastatic Breast Cancer

    ClinicalTrials.gov

    2017-05-22

    Estrogen Receptor Negative Breast Cancer; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Triple Negative Breast Cancer; Recurrent Breast Cancer; Stage IV Breast Cancer; Triple-negative Breast Cancer

  3. Evaluate Risk/Benefit of Nab Paclitaxel in Combination With Gemcitabine and Carboplatin Compared to Gemcitabine and Carboplatin in Triple Negative Metastatic Breast Cancer (or Metastatic Triple Negative Breast Cancer)

    ClinicalTrials.gov

    2018-03-07

    Breast Tumor; Breast Cancer; Cancer of the Breast; Estrogen Receptor- Negative Breast Cancer; HER2- Negative Breast Cancer; Progesterone Receptor- Negative Breast Cancer; Recurrent Breast Cancer; Stage IV Breast Cancer; Triple-negative Breast Cancer; Triple-negative Metastatic Breast Cancer; Metastatic Breast Cancer

  4. Targeting the androgen receptor in triple-negative breast cancer.

    PubMed

    Gucalp, Ayca; Traina, Tiffany A

    Triple-negative breast cancer represents approximately 15%-20% of all newly diagnosed breast cancers, but it accounts for a disproportionate number of breast cancer-related deaths each year. Owing to the lack of estrogen, progesterone, and human epidermal growth factor receptor 2 expression, patients with triple-negative breast cancer do not benefit from generally well-tolerated and effective therapies targeting the estrogen and human epidermal growth factor receptor 2 signaling pathways and are faced with an increased risk of disease progression and poorer overall survival. The heterogeneity of triple-negative breast cancer has been increasingly recognized and this may lead to therapeutic opportunities because of newly defined oncogenic drivers and targets. A subset of triple-negative breast tumors expresses the androgen receptor (AR) and this may benefit from treatments that inhibit the AR-signaling pathway. The first proof-of-concept trial established activity of the AR antagonist, bicalutamide, in patients with advanced AR+ triple-negative breast cancer. Since that time, evidence further supports the activity of other next-generation AR-targeted agents such as enzalutamide. Not unlike in estrogen receptor-positive breast cancer, mechanisms of resistance are being investigated and rationale exists for thoughtful, well-designed combination regimens such as AR antagonism with CDK4/6 pathway inhibitors or PI3K inhibitors. Furthermore, novel agents developed for the treatment of prostate cancer, which reduce androgen production such as abiraterone acetate and seviteronel, are being tested as well. This review summarizes the underlying biology of AR signaling in breast cancer development and the available clinical trial data for the use of anti-androgen therapy in the treatment of AR+ triple-negative breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells

    PubMed Central

    Liu, Tongrui; Yacoub, Rami; Taliaferro-Smith, LaTonia D.; Sun, Shi-Yong; Graham, Tisheeka R.; Dolan, Ryan; Lobo, Christine; Tighiouart, Mourad; Yang, Lily; Adams, Amy; O'Regan, Ruth M.

    2016-01-01

    Triple-negative breast cancers, which lack estrogen receptor, progesterone receptor, and HER2/neu overexpression, account for approximately 15% of breast cancers, but occur more commonly in African Americans. The poor survival outcomes seen with triple-negative breast cancers patients are, in part, due to a lack of therapeutic targets. Epidermal growth factor receptor (EGFR) is overexpressed in 50% of triple-negative breast cancers, but EGFR inhibitors have not been effective in patients with metastatic breast cancers. However, mTOR inhibition has been shown to reverse resistance to EGFR inhibitors. We examined the combination effects of mTOR inhibition with EGFR inhibition in triple-negative breast cancer in vitro and in vivo. The combination of EGFR inhibition by using lapatinib and mTOR inhibition with rapamycin resulted in significantly greater cytotoxicity than the single agents alone and these effects were synergistic in vitro. The combination of rapamycin and lapatinib significantly decreased growth of triple-negative breast cancers in vivo compared with either agent alone. EGFR inhibition abrogated the expression of rapamycin-induced activated Akt in triple-negative breast cancer cells in vitro. The combination of EGFR and mTOR inhibition resulted in increased apoptosis in some, but not all, triple-negative cell lines, and these apoptotic effects correlated with a decrease in activated eukaryotic translation initiation factor (eIF4E). These results suggest that mTOR inhibitors could sensitize a subset of triple-negative breast cancers to EGFR inhibitors. Given the paucity of effective targeted agents in triple-negative breast cancers, these results warrant further evaluation. PMID:21690228

  6. Does Lactation Mitigate Triple Negative/Basal Breast Cancer Progression?

    DTIC Science & Technology

    2012-09-01

    201 – 31 August 201 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DOES LACTATION MITIGATE TRIPLE NEGATIVE /BASAL BREAST CANCER PROGRESSION? 5b...25 1 INTRODUCTION Young African American women have an increased risk of developing aggressive forms of breast cancer (i.e... triple negative /basal-like) than young non-Hispanic white women. Recent epidemiological data show increased risk of basal-like breast cancer with

  7. A Study of Neoadjuvant Paclitaxel in Combination With Bavituximab in Early- Stage Triple- Negative Breast Cancer

    ClinicalTrials.gov

    2017-03-08

    Breast Cancer; Triple Negative Breast Neoplasms; Triple-Negative Breast Neoplasm; Triple-Negative Breast Cancer; Triple Negative Breast Cancer; ER-Negative PR-Negative HER2-Negative Breast Neoplasms; ER-Negative PR-Negative HER2-Negative Breast Cancer

  8. Targeting Histone Abnormality in Triple Negative Breast Cancer

    DTIC Science & Technology

    2015-08-01

    Casero RA, Davidson NE. Molecular mechanisms of polyamine analogues in cancer cells. Anti - Cancer Drugs, 16(3): 229-241, 2005. PMID: 15711175 18 3...1 AWARD NUMBER: W81XWH-14-1-0237 TITLE: Targeting Histone Abnormality in Triple-Negative Breast Cancer PRINCIPAL INVESTIGATOR: Yi...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Histone Abnormality in Triple-Negative Breast Cancer 5b. GRANT NUMBER W81XWH-14-1-0237 5c

  9. Defining Genomic Changes in Triple-Negative Breast Cancer in Women of African Descent

    DTIC Science & Technology

    2012-06-01

    African and African - American breast cancer cases. Gene Expression Array Studies The 31 triple negative Kijabe samples were... American Adjacent Normal Breast Tissue PI: Pegram & Baumbach Defining Genomic Changes in Triple Negative Breast Cancer in Women of African ...Tissues from African - American and East African Patients with Triple Negative Breast

  10. 19p13.1 is a triple-negative-specific breast cancer susceptibility locus.

    PubMed

    Stevens, Kristen N; Fredericksen, Zachary; Vachon, Celine M; Wang, Xianshu; Margolin, Sara; Lindblom, Annika; Nevanlinna, Heli; Greco, Dario; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Vrieling, Alina; Flesch-Janys, Dieter; Sinn, Hans-Peter; Wang-Gohrke, Shan; Nickels, Stefan; Brauch, Hiltrud; Ko, Yon-Dschun; Fischer, Hans-Peter; Schmutzler, Rita K; Meindl, Alfons; Bartram, Claus R; Schott, Sarah; Engel, Christoph; Godwin, Andrew K; Weaver, Joellen; Pathak, Harsh B; Sharma, Priyanka; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Miron, Penelope; Yannoukakos, Drakoulis; Stavropoulou, Alexandra; Fountzilas, George; Gogas, Helen J; Swann, Ruth; Dwek, Miriam; Perkins, Annie; Milne, Roger L; Benítez, Javier; Zamora, María Pilar; Pérez, José Ignacio Arias; Bojesen, Stig E; Nielsen, Sune F; Nordestgaard, Børge G; Flyger, Henrik; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Cordina-Duverger, Emilie; Burwinkel, Barbara; Marmé, Frederick; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael J; Peto, Julian; Johnson, Nichola; Fletcher, Olivia; Dos Santos Silva, Isabel; Fasching, Peter A; Beckmann, Matthias W; Hartmann, Arndt; Ekici, Arif B; Lophatananon, Artitaya; Muir, Kenneth; Puttawibul, Puttisak; Wiangnon, Surapon; Schmidt, Marjanka K; Broeks, Annegien; Braaf, Linde M; Rosenberg, Efraim H; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa C; Swerdlow, Anthony J; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk J; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Shen, Chen-Yang; Yu, Jyh-Cherng; Hsu, Huan-Ming; Hsiung, Chia-Ni; Hamann, Ute; Dünnebier, Thomas; Rüdiger, Thomas; Ulmer, Hans Ulrich; Pharoah, Paul P; Dunning, Alison M; Humphreys, Manjeet K; Wang, Qin; Cox, Angela; Cross, Simon S; Reed, Malcom W; Hall, Per; Czene, Kamila; Ambrosone, Christine B; Ademuyiwa, Foluso; Hwang, Helena; Eccles, Diana M; Garcia-Closas, Montserrat; Figueroa, Jonine D; Sherman, Mark E; Lissowska, Jolanta; Devilee, Peter; Seynaeve, Caroline; Tollenaar, Rob A E M; Hooning, Maartje J; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; John, Esther M; Miron, Alexander; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; Giles, Graham G; Baglietto, Laura; McLean, Catriona A; Severi, Gianluca; Kosel, Matthew L; Pankratz, V S; Slager, Susan; Olson, Janet E; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Lambrechts, Diether; Hatse, Sigrid; Dieudonne, Anne-Sophie; Christiaens, Marie-Rose; Chenevix-Trench, Georgia; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Hartikainen, Jaana M; Soini, Ylermi; Easton, Douglas F; Couch, Fergus J

    2012-04-01

    The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with the risk of ovarian cancer. Here, we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 OR, 1.10; 95% confidence interval (CI), 1.05-1.15; P = 3.49 × 10(-5)] and triple-negative (ER-, PR-, and HER2-negative) breast cancer (rs8170: OR, 1.22; 95% CI, 1.13-1.31; P = 2.22 × 10(-7)). However, rs8170 was no longer associated with ER-negative breast cancer risk when triple-negative cases were excluded (OR, 0.98; 95% CI, 0.89-1.07; P = 0.62). In addition, a combined analysis of triple-negative cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC; N = 3,566) identified a genome-wide significant association between rs8170 and triple-negative breast cancer risk (OR, 1.25; 95% CI, 1.18-1.33; P = 3.31 × 10(-13)]. Thus, 19p13.1 is the first triple-negative-specific breast cancer risk locus and the first locus specific to a histologic subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple-negative tumors and other subtypes likely arise through distinct etiologic pathways. ©2012 AACR.

  11. GATA3 expression in triple-negative breast cancers.

    PubMed

    Byrne, David J; Deb, Siddhartha; Takano, Elena A; Fox, Stephen B

    2017-07-01

    GATA-binding protein 3 (GATA3) is a well-studied transcription factor found to be essential in the development of luminal breast epithelium and has been identified in a variety of tumour types, including breast and urothelial carcinomas, making it a useful immunohistochemistry marker in the diagnosis of both primary and metastatic disease. We investigated GATA3 protein expression in a 106 primary triple-negative breast carcinomas (100 basal-like, six non-basal-like) using Cell Marque mouse monoclonal anti-GATA3 (L50-823). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to quantify mRNA expression in 22 triple-negative breast cancers (TNBCs) (20 primary and two cell lines), four luminal (three primary and one cell line) and five human epidermal growth factor receptor 2 (HER2) (four primary and one cell line) amplified tumours. In 98 TNBCs where IHC was assessable, 47 (48%) had a 1+ or greater staining with 20 (21%) having high GATA3 expression when using a weighted scoring. Our study has demonstrated that GATA3 expression is common in primary triple-negative breast carcinomas. It also suggests that although GATA3 is an oestrogen receptor (ER) regulated gene, it still proves useful in differentiating between primary and metastatic tumours in patients with a history of breast cancer regardless of its molecular subtype. © 2017 John Wiley & Sons Ltd.

  12. Pembrolizumab in Treating Patients With Triple-Negative Breast Cancer

    ClinicalTrials.gov

    2018-06-28

    Estrogen Receptor Negative; HER2/Neu Negative; Invasive Breast Carcinoma; Progesterone Receptor Negative; Stage 0 Breast Cancer AJCC v6 and v7; Stage I Breast Cancer AJCC v7; Stage IA Breast Cancer AJCC v7; Stage IB Breast Cancer AJCC v7; Stage II Breast Cancer AJCC v6 and v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIB Breast Cancer AJCC v6 and v7; Stage III Breast Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Triple-Negative Breast Carcinoma

  13. Triple-negative breast cancer: current state of the art.

    PubMed

    Rastelli, Francesca; Biancanelli, Sandra; Falzetta, Amalia; Martignetti, Angelo; Casi, Camilla; Bascioni, Romeo; Giustini, Lucio; Crispino, Sergio

    2010-01-01

    Triple-negative breast cancer, defined by a lack of expression of estrogen, progesterone and HER-2 receptors, accounts for 15% of all types of breast cancer. The subtype mainly includes a molecularly distinct subgroup, the basal-like subtype (accounting for 75% of all cases). We attempt to define triple-negative breast cancer and compare it with basal-like disease, review the molecular, pathologic and clinical features of triple-negative disease, provide an overview of a retrospective subset analysis of clinical trials, and outline ongoing therapeutic trials and possible paths for future research. We collected data regarding classification, molecular and clinical features and treatment, drawn from the existing literature, including abstracts and verbal accounts. By the term "basal-like", we defined all cases where gene expression array or more sophisticated immunophenotypes are used for identification. When the analysis is restricted to clinical assay (immunohistochemistry), we refer to "triple-negative". Basal-like breast cancer expresses genes characteristic of basal epithelial cells, which include high-molecular weight basal cytokeratins (CK5/6, CK14, CK17), vimentin, p-cadherin, alpha B crystalline, caveolins 1 and 2 and EGFR. The expression of basal markers (basal cytokeratins and EGFR) is related to a worse prognosis and identifies a clinically distinct subgroup within the triple-negative breast cancer. BRCA1 mutations are present in 11% of triple-negative tumors and even more rare is BRCA2 deficiency. BR-CA1-associated breast cancers types are typically characterized by a high rate of DNA aberrations and defective DNA repair pathways (the so-called "BRCAness"). The use of regimens based on DNA-damaging agents, such as anthracyclines, platinum derivatives and cyclophosphamide seems a sensible option for this breast cancer subtypes. Clinical data support a strong sensitivity to primary chemotherapy with pathologic response rates ranging from 27-45% (with

  14. Defining Genomic Changes in Triple-Negative Breast Cancer in Women of African Descent

    DTIC Science & Technology

    2012-06-01

    Triple negative breast cancer • Ethnic disparities • Breast cancer amongst African Americans and Africans • Gene expression profiling • Array... negative cases seen in both African and African - American breast cancer cases. Gene Expression Array Studies The 31 triple negative Kijabe... African - American Adjacent Normal Breast Tissue PI: Pegram &

  15. Targeting Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer Metastasis

    DTIC Science & Technology

    2017-04-01

    AWARD NUMBER: W81XWH-15-1-0039 TITLE: Targeting Tryptophan Catabolism: A Novel Method to Block Triple- Negative Breast Cancer Metastasis...Mar 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer...Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer Metastasis,” Submitted by Jennifer K. Richer, PhD, University of Colorado

  16. [Triple-negative breast carcinoma--rewiev of current literature].

    PubMed

    Rubovszky, Gábor; Udvarhelyi, Nóra; Horváth, Zsolt; Láng, István; Kásler, Miklós

    2010-12-01

    Breast cancer is one of the most common malignancies in women. Approximately 15% of cases belong to the triple-negative breast cancer (TNBC) group, in which no estrogen/progesterone receptors, or HER2 expression is detected. The unfavorable prognosis of this group of patients, as well as the lack of effective targeted therapy makes TNBC the subject of intensive research. In the present study, we searched PubMed for publications from January 2007 to June 2009 with the following key-words in addition to "breast cancer" and "triple negative": "epidemiology" or "gene-profile" or "predictive" or "prognostic" or "therapy" or "review". A total of 513 publications were identified. Relevant references were also reviewed. Beyond the well-known facts that TNBC affects younger patients, and is more common among Afro- or Hispano-Americans with lower socioeconomic status, hormonal environment and obesity emerged as potential etiologic factors. TNBC is not a homogenous disease. It can be further sub-classified based on histomorphologic features and immunohistochemistry. Hereditary BRCA1 mutations as well as acquired BRCA1 disfunction are described to be common in TNBC. Previously, many investigators considered TNBC to be identical to a subgroup called basal-like breast cancer defined by gene expression micro-array technology, but in the light of more recent findings, this view is no longer accepted by most investigators. Several large studies provide evidence that triple negativity, per se, is an independent adverse prognostic factor, in spite of the fact that approximately 10% of TNBC patients have a good prognosis. The therapy of choice for TNBC is systemic chemotherapy. Promising novel targeted chemotherapeutic agents include PARP1 inhibitors, a new group of compounds exploiting the defective DNA repair machinery. Rubovszky G, Udvarhelyi N, Horváth Z, Láng I, Kásler M. Triple negative breast carcinoma - rewiev of current literature.

  17. The proteomic landscape of triple-negative breast cancer.

    PubMed

    Lawrence, Robert T; Perez, Elizabeth M; Hernández, Daniel; Miller, Chris P; Haas, Kelsey M; Irie, Hanna Y; Lee, Su-In; Blau, C Anthony; Villén, Judit

    2015-04-28

    Triple-negative breast cancer is a heterogeneous disease characterized by poor clinical outcomes and a shortage of targeted treatment options. To discover molecular features of triple-negative breast cancer, we performed quantitative proteomics analysis of twenty human-derived breast cell lines and four primary breast tumors to a depth of more than 12,000 distinct proteins. We used this data to identify breast cancer subtypes at the protein level and demonstrate the precise quantification of biomarkers, signaling proteins, and biological pathways by mass spectrometry. We integrated proteomics data with exome sequence resources to identify genomic aberrations that affect protein expression. We performed a high-throughput drug screen to identify protein markers of drug sensitivity and understand the mechanisms of drug resistance. The genome and proteome provide complementary information that, when combined, yield a powerful engine for therapeutic discovery. This resource is available to the cancer research community to catalyze further analysis and investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Immunotherapeutic interventions of Triple Negative Breast Cancer.

    PubMed

    Li, Zehuan; Qiu, Yiran; Lu, Weiqi; Jiang, Ying; Wang, Jin

    2018-05-30

    Triple Negative Breast Cancer (TNBC) is a highly heterogeneous subtype of breast cancer that lacks the expression of oestrogen receptors, progesterone receptors and human epidermal growth factor receptor 2. Although TNBC is sensitive to chemotherapy, the overall outcomes of TNBC are worse than for other breast cancers, and TNBC is still one of the most fatal diseases for women. With the discovery of antigens specifically expressed in TNBC cells and the developing technology of monoclonal antibodies, chimeric antigen receptors and cancer vaccines, immunotherapy is emerging as a novel promising option for TNBC. This review is mainly focused on the tumour microenvironment and host immunity, Triple Negative Breast Cancer and the clinical treatment of TNBC, novel therapies for cancer and immunotherapy for TNBC, and the future outlook for the treatment for TNBC and the interplay between the therapies, including immune checkpoint inhibitors, combination of immune checkpoint inhibitors with targeted treatments in TNBC, adoptive cell therapy, cancer vaccines. The review also highlights recent reports on the synergistic effects of immunotherapy and chemotherapy, antibody-drug conjugates, and exosomes, as potential multifunctional therapeutic agents in TNBC.

  19. Defining Genomic Changes in Triple Negative Breast Cancer in Women of African Descent

    DTIC Science & Technology

    2013-07-01

    Triple negative breast cancer , Ethnic disparities, Breast cancer amongst African - Americans and Africans , Gene expression... Americans . Adjacent Normal AA Native African TN BC Tissue Figure 1. Gene Expression Pattern of Native African Triple Negative Breast Cancer ...and African - American Adjacent Normal Breast Tissue Genes PI: Pegram & Baumbach

  20. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer.

    PubMed

    Fusco, Nicola; Geyer, Felipe C; De Filippo, Maria R; Martelotto, Luciano G; Ng, Charlotte K Y; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A; Burke, Kathleen A; Lim, Raymond S; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S; Ichihara, Shu; Ellis, Ian O; Reis-Filho, Jorge S; Weigelt, Britta

    2016-11-01

    Adenoid cystic carcinoma of the breast is a rare histological type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Although the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intratumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by the MYB-NFIB fusion gene and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple-negative

  1. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer

    PubMed Central

    Fusco, Nicola; Geyer, Felipe C; De Filippo, Maria R; Martelotto, Luciano G; Ng, Charlotte K Y; Piscuoglio, Salvatore; Guerini-Rocco, Elena; Schultheis, Anne M; Fuhrmann, Laetitia; Wang, Lu; Jungbluth, Achim A; Burke, Kathleen A; Lim, Raymond S; Vincent-Salomon, Anne; Bamba, Masamichi; Moritani, Suzuko; Badve, Sunil S; Ichihara, Shu; Ellis, Ian O; Reis-Filho, Jorge S; Weigelt, Britta

    2016-01-01

    Adenoid cystic carcinoma of the breast is a rare histologic type of triple-negative breast cancer with an indolent clinical behavior, often driven by the MYB-NFIB fusion gene. Here we sought to define the repertoire of somatic genetic alterations in two adenoid cystic carcinomas associated with high-grade triple-negative breast cancer. The different components of each case were subjected to copy number profiling and massively parallel sequencing targeting all exons and selected regulatory and intronic regions of 488 genes. Reverse transcription PCR and fluorescence in situ hybridization were employed to investigate the presence of the MYB-NFIB translocation. The MYB-NFIB fusion gene was detected in both adenoid cystic carcinomas and their associated high-grade triple-negative breast cancer components. Whilst the distinct components of both cases displayed similar patterns of gene copy number alterations, massively parallel sequencing analysis revealed intra-tumor genetic heterogeneity. In case 1, progression from the trabecular adenoid cystic carcinoma to the high-grade triple-negative breast cancer was found to involve clonal shifts with enrichment of mutations affecting EP300, NOTCH1, ERBB2 and FGFR1 in the high-grade triple-negative breast cancer. In case 2, a clonal KMT2C mutation was present in the cribriform adenoid cystic carcinoma, solid adenoid cystic carcinoma and high-grade triple-negative breast cancer components, whereas a mutation affecting MYB was present only in the solid and high-grade triple-negative breast cancer areas and additional three mutations targeting STAG2, KDM6A and CDK12 were restricted to the high-grade triple-negative breast cancer. In conclusion, adenoid cystic carcinomas of the breast with high-grade transformation are underpinned by MYB-NFIB fusion gene, and, akin to other forms of cancer, may be constituted by a mosaic of cancer cell clones at diagnosis. The progression from adenoid cystic carcinoma to high-grade triple-negative

  2. FPA-FTIR Microspectroscopy for Monitoring Chemotherapy Efficacy in Triple-Negative Breast Cancer

    NASA Astrophysics Data System (ADS)

    Zawlik, Izabela; Kaznowska, Ewa; Cebulski, Jozef; Kolodziej, Magdalena; Depciuch, Joanna; Vongsvivut, Jitraporn; Cholewa, Marian

    2016-11-01

    Triple-negative breast cancer is the most aggressive breast cancer subtype with limited treatment options and a poor prognosis. Approximately 70% of triple-negative breast cancer patients fail to achieve a pathologic complete response (pCR) after chemotherapy due to the lack of targeted therapies for this subtype. We report here the development of a focal-plane-array Fourier transform infrared (FPA-FTIR) microspectroscopic technique combined with principal component analysis (PCA) for monitoring chemotherapy effects in triple-negative breast cancer patients. The PCA results obtained using the FPA-FTIR spectral data collected from the same patients before and after the chemotherapy revealed discriminatory features that were consistent with the pathologic and clinical responses to chemotherapy, indicating the potential of the technique as a monitoring tool for observing chemotherapy efficacy.

  3. 19p13.1 is a triple negative-specific breast cancer susceptibility locus

    PubMed Central

    Stevens, Kristen N.; Fredericksen, Zachary; Vachon, Celine M.; Wang, Xianshu; Margolin, Sara; Lindblom, Annika; Nevanlinna, Heli; Greco, Dario; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Vrieling, Alina; Flesch-Janys, Dieter; Sinn, Hans-Peter; Wang-Gohrke, Shan; Nickels, Stefan; Brauch, Hiltrud; Ko, Yon-Dschun; Fischer, Hans-Peter; Schmutzler, Rita K.; Meindl, Alfons; Bartram, Claus R.; Schott, Sarah; Engel, Christof; Godwin, Andrew K.; Weaver, JoEllen; Pathak, Harsh B.; Sharma, Priyanka; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Miron, Penelope; Yannoukakos, Drakoulis; Stavropoulou, Alexandra; Fountzilas, George; Gogas, Helen J.; Swann, Ruth; Dwek, Miriam; Perkins, Annie; Milne, Roger L.; Benítez, Javier; Zamora, M Pilar; Pérez, José Ignacio Arias; Bojesen, Stig E.; Nielsen, Sune F.; Nordestgaard, Børge G; Flyger, Henrik; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Cordina-Duverger, Emilie; Burwinkel, Barbara; Marmé, Frederick; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael J.; Peto, Julian; Johnson, Nichola; Fletcher, Olivia; Silva, Isabel dos Santos; Fasching, Peter A.; Beckmann, Matthias W.; Hartmann, Arndt; Ekici, Arif B.; Lophatananon, Artitaya; Muir, Kenneth; Puttawibul, Puttisak; Wiangnon, Surapon; Schmidt, Marjanka K; Broeks, Annegien; Braaf, Linde M; Rosenberg, Efraim H; Hopper, John L.; Apicella, Carmel; Park, Daniel J.; Southey, Melissa C.; Swerdlow, Anthony J.; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk J.; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Shen, Chen-Yang; Yu, Jyh-Cherng; Hsu, Huan-Ming; Hsiung, Chia-Ni; Hamann, Ute; Dünnebier, Thomas; Rüdiger, Thomas; Ulmer, Hans Ulrich; Pharoah, Paul P.; Dunning, Alison M; Humphreys, Manjeet K.; Wang, Qin; Cox, Angela; Cross, Simon S.; Reed, Malcom W.; Hall, Per; Czene, Kamila; Ambrosone, Christine B.; Ademuyiwa, Foluso; Hwang, Helena; Eccles, Diana M.; Garcia-Closas, Montserrat; Figueroa, Jonine D.; Sherman, Mark E.; Lissowska, Jolanta; Devilee, Peter; Seynaeve, Caroline; Tollenaar, R.A.E.M.; Hooning, Maartje J.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; John, Esther M.; Miron, Alexander; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; Giles, Graham G.; Baglietto, Laura; McLean, Catriona A; Severi, Gianluca; Kosel, Matthew L.; Pankratz, V.S.; Slager, Susan; Olson, Janet E.; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Lambrechts, Diether; Hatse, Sigrid; Dieudonne, Anne-Sophie; Christiaens, Marie-Rose; Chenevix-Trench, Georgia; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Hartikainen, Jaana M.; Soini, Ylermi; Easton, Douglas F.; Couch, Fergus J.

    2012-01-01

    The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with risk of ovarian cancer. Here we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 Odds Ratio (OR)=1.10, 95% Confidence Interval (CI) 1.05 – 1.15, p=3.49 × 10-5] and triple negative (TN) (ER, PR and HER2 negative) breast cancer [rs8170 OR=1.22, 95% CI 1.13 – 1.31, p=2.22 × 10-7]. However, rs8170 was no longer associated with ER-negative breast cancer risk when TN cases were excluded [OR=0.98, 95% CI 0.89 – 1.07, p=0.62]. In addition, a combined analysis of TN cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC) (n=3,566) identified a genome-wide significant association between rs8170 and TN breast cancer risk [OR=1.25, 95% CI 1.18 – 1.33, p=3.31 × 10-13]. Thus, 19p13.1 is the first triple negative-specific breast cancer risk locus and the first locus specific to a histological subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple negative tumors and other subtypes likely arise through distinct etiologic pathways. PMID:22331459

  4. Pembrolizumab and Ruxolitinib Phosphate in Treating Patients With Metastatic Stage IV Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-03-05

    Breast Carcinoma Metastatic in the Bone; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  5. Pembrolizumab and Enobosarm in Treating Patients With Androgen Receptor Positive Metastatic Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-04-05

    Androgen Receptor Positive; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  6. Therapeutic Implications of the Molecular and Immune Landscape of Triple-Negative Breast Cancer.

    PubMed

    Gregório, Ana C; Lacerda, Manuela; Figueiredo, Paulo; Simões, Sérgio; Dias, Sérgio; Moreira, João Nuno

    2017-09-14

    Treatment and management of breast cancer imposes a heavy burden on public health care, and incidence rates continue to increase. Breast cancer is the most common female neoplasia and primary cause of death among women worldwide. The recognition of breast cancer as a complex and heterogeneous disease, comprising different molecular entities, was a landmark in our understanding of this malignancy. Valuing the impact of the molecular characteristics on tumor behavior enabled a better assessment of a patient's prognosis and increased the predictive power to therapeutic response and clinical outcome. Molecular heterogeneity is also prominent in the triple-negative breast cancer subtype, and is reflected by the distinct prognostic and patient's sensitivity to treatment, being chemotherapy the only systemic treatment currently available. From a therapeutic perspective, gene expression profiling of triple-negative tumors has notably contributed to the exploration of new druggable targets and brought to light the need to align these patients to the various therapies according to their triple-negative subtype. Additionally, the higher amount of tumor infiltrating lymphocytes, and the prevalence of an increased expression of PD-1 receptor and its ligand, PD-L1, in triple-negative tumors, created a new treatment opportunity with immune checkpoint inhibitors. This manuscript addresses the current knowledge on the molecular and immune profiles of breast cancer, and its impact on the development of targeted therapies, with a particular emphasis on the triple-negative subtype.

  7. Acoustic radiation force impulse elastography in evaluation of triple-negative breast cancer: A preliminary experience.

    PubMed

    Wan, Jing; Wu, Rong; Yao, Minghua; Xu, Guang; Liu, Hui; Pu, Huan; Xiang, Lihua; Zhang, Shupin

    2018-05-19

    To assess the elastographic features of triple-negative breast cancers and evaluate the diagnostic value of acoustic radiation force impulse imaging (ARFI) for the characterization of triple-negative breast cancers. This study analyzed data from 234 women with breast cancer. Patients were categorized into three groups; 1) triple-negative breast cancers (n = 48); 2) ER-positive tumors (n = 128) and 3) HER2-positive tumors (n = 58). Mean tumor stiffness was evaluated by virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ) and quantified as both qualitative scores (1-5) and shear wave velocity (SWV) (m/s). The relationship between mean SWV and tumor parameters, including tumor size, tumor type, histologic grade and lymph node status, were investigated using multiple linear regression. Triple-negative tumor were more likely to have a large invasive size (p = 0.002), high histological grade (p < 0.001), lymph node involvement (p = 0.022) and strong ki-67 expression (p < 0.001). The highest mean SWV value were recorded in triple-negative tumors (7.36 m/s±1.83), followed by HER2+ tumors (6.65 m/s±2.26) and ER+ tumors (6.60 m/s±2.35) (p = 0.122). Triple-negative tumors were also associated with increased stiffness than ER+ tumors and HER2+ tumors (p = 0.016), as measured by qualitative VTI scores. Tumor size was independently associated with mean SWV value on adjusted regression (p < 0.001). Triple-negative breast cancer is associated with high stiffness scores and SWV in ARFI. The latter may be considered a useful complementary tool in evaluation of triple-negative breast cancer.

  8. Targeting Histone Abnormality in Triple Negative Breast Cancer

    DTIC Science & Technology

    2016-08-01

    mechanisms of polyamine analogues in cancer cells. Anti - Cancer Drugs, 16(3): 229-241, 2005. PMID: 15711175 3. Huang Y, Nayak S, Jankowitz R, Davidson NE...immunoprecipitated with anti -LSD1 antibody followed by IB with anti -HDAC5 and LSD1 antibodies in indicated breast cancer cell lines. IgG was used as...AWARD NUMBER: W81XWH-14-1-0237 TITLE: Targeting Histone Abnormality in Triple-Negative Breast Cancer PRINCIPAL INVESTIGATOR: Yi Huang

  9. The role of taxanes in triple-negative breast cancer: literature review

    PubMed Central

    Mustacchi, Giorgio; De Laurentiis, Michelino

    2015-01-01

    Breast cancer (BC) is the most frequent tumor worldwide. Triple-negative BCs are characterized by the negative estrogen and progesterone receptors and negative HER2, and represent 15% of all BCs. In this review, data on the use of taxanes in triple-negative BCs are analyzed, concluding they are effective in any clinical setting (neoadjuvant, adjuvant, and metastatic). Further, the role of nab-paclitaxel (formulation of albumin-bound paclitaxel) in these tumors is also evaluated. The available data show the clinical potential of nab-paclitaxel based combinations in terms of long-duration response, increased survival, and better quality of life of patients with triple-negative metastatic BC. The ongoing trials will give further information on the better management of this type of tumor. PMID:26273192

  10. Clinicopathological Features, Patterns of Recurrence, and Survival Among Women With Triple-Negative Breast Cancer in the National Comprehensive Cancer Network

    PubMed Central

    Lin, Nancy U.; Vanderplas, Ann; Hughes, Melissa E.; Theriault, Richard L.; Edge, Stephen B.; Wong, Yu-Ning; Blayney, Douglas W.; Niland, Joyce C.; Winer, Eric P.; Weeks, Jane C.

    2012-01-01

    Background We aimed to describe clinicopathological features, patterns of recurrence, and survival according to breast cancer subtype, with a focus on triple-negative tumors. Methods We evaluated 15,204 women presenting to NCCN centers with stage I-III breast cancer between January 2000 and December 2006. Tumors were classified as hormone receptor positive [HR+]/HER2− (ER+ and/or PR+, and HER2−), HER2+ (HER2+, any ER or PR), or triple-negative (ER−, PR−, and HER2−). Results Subtype distribution was: triple-negative 17% (n=2,569), HER2+ 17% (n=2,602), HR+/HER2− 66% (n=10,033). Triple-negative subtype was more frequent in African-Americans, compared with Caucasians (adjusted odds ratio [OR] 1.98; p<0.0001). Premenopausal, but not postmenopausal, women with high body mass index had an increased likelihood of triple negative subtype (p=0.02). Women with triple-negative cancers were less likely to present on the basis of an abnormal screening mammogram (29% vs. 48%, p<0.0001), more likely to present with higher T stage, but less likely to have nodal involvement. Relative to HR+/HER2− tumors, triple-negative tumors were associated with a higher risk of brain or lung metastases, and had worse breast cancer-specific and overall survival, even after adjusting for age, stage, race, grade, and receipt of adjuvant chemotherapy (adjusted hazard ratio [HR] for overall survival 2.72, 95% CI 2.39–3.10, p<0.0001). The difference in risk of death by subtype was most dramatic within the first two years after diagnosis (HR for OS for 0 to 2 yrs 6.10 [95% CI 4.81, 7.74]). Conclusions Triple-negative tumors are associated with unique risk factors and worse outcomes compared to HR+/HER2− tumors. PMID:22544643

  11. Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    PubMed

    Narayanan, Ramesh; Ahn, Sunjoo; Cheney, Misty D; Yepuru, Muralimohan; Miller, Duane D; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER)-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer. Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action. Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures. 1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  12. Selective Androgen Receptor Modulators (SARMs) Negatively Regulate Triple-Negative Breast Cancer Growth and Epithelial:Mesenchymal Stem Cell Signaling

    PubMed Central

    Narayanan, Ramesh; Ahn, Sunjoo; Cheney, Misty D.; Yepuru, Muralimohan; Miller, Duane D.; Steiner, Mitchell S.; Dalton, James T.

    2014-01-01

    Abstract Introduction The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75–95% of estrogen receptor (ER)-positive and 40–70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer. Materials and Methods Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action. Results Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures. Conclusion 1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer. PMID:25072326

  13. Doxorubicin Hydrochloride and Cyclophosphamide Followed by Paclitaxel With or Without Carboplatin in Treating Patients With Triple-Negative Breast Cancer

    ClinicalTrials.gov

    2016-10-04

    Breast Adenocarcinoma; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIC Breast Cancer; Triple-Negative Breast Carcinoma

  14. Targeting Nuclear FGF Receptor to Improve Chemotherapy Response in Triple-Negative Breast Cancer

    DTIC Science & Technology

    2014-10-01

    5-8 4. Key Research Accomplishments…………………………………… 9 5. Conclusion…………………………………………………………… 10 6. Publications, Abstracts...Sum159’Pathscan’#2’Reanalysis�’ Sum159$ FGFR3 9 KEY RESEARCH ACCOMPLISHMENTS: • Developed an in vitro model of triple-negative breast...other chemotherapy regimens as an effective treatment strategy for triple-negative breast cancer. Study Site/ Key Personnel: All studies will be

  15. 68Ga-Prostate-Specific Membrane Antigen PET/CT in Triple-Negative Breast Cancer.

    PubMed

    Passah, Averilicia; Arora, Saurabh; Damle, Nishikant Avinash; Tripathi, Madhavi; Bal, Chandrasekhar; Subudhi, T Kishan; Arora, Geetanjali

    2018-06-01

    The prostate-specific membrane antigen (PSMA) is a transmembrane protein with elevated expression in prostate cancer cells. Breast cancer also shows PSMA expression. We present the case of a 30-year-old woman with triple-negative bilateral breast carcinoma who underwent bilateral mastectomy, chemotherapy, and radiotherapy. She developed a left chest wall and liver recurrence after primary therapy. Her recurrent disease was also triple-negative. In view of the known poor prognosis and very limited therapeutic options, we performed Ga-PSMA PET/CT scan to explore the possibility of PSMA-based therapy as a future option after exhausting standard-of-care treatments.

  16. Anti-tumorigenic effects of a novel digitoxin derivative on both estrogen receptor-positive and triple-negative breast cancer cells.

    PubMed

    Kulkarni, Yogesh M; Yakisich, Juan S; Azad, Neelam; Venkatadri, Rajkumar; Kaushik, Vivek; O'Doherty, George; Iyer, Anand Krishnan V

    2017-06-01

    While there are targeted treatments for triple positive breast cancers, lack of specific biomarkers for triple-negative breast cancers (TNBC) has hindered the development of therapies for this subset of cancers. In this study, we evaluated the anticancer properties of cardiac glycoside Digitoxin (Dtx) and its synthetic analog MonoD on breast cancer cell lines MCF-7 (estrogen receptor-positive breast cancer) and MDA-MB-468 (triple-negative breast cancer). Both cardiac glycosides, at concentrations within the therapeutic range, increased the fraction of cells in the G 0 /G 1 phase of the cell cycle, decreased viability, and inhibited the migration of MCF-7 and MDA-MB-468 cells. Both cardiac glycosides increased production of superoxide and induced apoptosis in both cell types. Reduced protein levels of nuclear factor kappa B and IkappaB kinase-beta were found in cardiac glycoside-treated cells, indicating that the cellular effects of these compounds are mediated via nuclear factor kappa B pathway. This study demonstrates the cytotoxic potential of digitoxin, and more importantly its synthetic analog MonoD, in the treatment of triple-positive breast cancer and more importantly the aggressive triple-negative breast cancer. Collectively, this study provides a basis for the reevaluation of cardiac glycosides in the treatment of breast cancer and more importantly reveals their potential in the treatment of triple-negative breast cancers.

  17. Glyceollins as novel targeted therapeutic for the treatment of metastatic triple-negative breast cancer

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to investigate the effects of glyceollins on the suppression of tumorigenesis in triple negative breast carcinoma cell lines. We further explored the effects of glyceollins on microRNA and protein expression in MDA MB 231 cells. Triple negative (ER , PgR, and Her2/neu ...

  18. Platinum Based Chemotherapy or Capecitabine in Treating Patients With Residual Triple-Negative Basal-Like Breast Cancer Following Neoadjuvant Chemotherapy

    ClinicalTrials.gov

    2017-12-07

    Estrogen Receptor Negative; HER2/Neu Negative; Invasive Breast Carcinoma; Progesterone Receptor Negative; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-Negative Breast Carcinoma

  19. Triple-negative (ER, PgR, HER-2/neu) breast cancer in Indian women

    PubMed Central

    Patil, Vinayak W; Singhai, Rajeev; Patil, Amit V; Gurav, Prakash D

    2011-01-01

    The aim of our study was to analyze triple-negative (TN) breast cancer, which is defined as being negative for the estrogen receptor (ER), the progesterone receptor (PgR), and the human epidermal growth factor receptor 2 (HER-2/neu) and which represents a subset of breast cancer with different biologic behavior. We investigated the clinicopathological characteristics and prognostic indicators of lymph node-negative TN breast cancer. Medical records were reviewed from patients with node-negative breast cancer who underwent curative surgery at Grant Medical College and Sir JJ Group of Hospitals, Mumbai, India, from May 2007 to October 2010. Clinicopathological variables and clinical outcomes were evaluated. Among 683 patients included, 136 had TN breast cancer and 529 had non-TN breast cancer. TN breast cancer correlated with younger age (<35 years, P = 0.003) and a higher histopathologic and nuclear grade (P < 0.001). It also correlated with a molecular profile associated with biological aggressiveness: negative for Bcl-2 expression (P < 0.001), positive for the epidermal growth factor receptor (P = 0.003), and a high level of p53 (P < 0.001) and Ki-67 expression (P < 0.00). The relapse rates during the follow-up period (median 56.8 months) were 14.7% for TN breast cancer and 6.6% for non-TN breast cancer (P = 0.004). Relapse-free survival (RFS) was significantly shorter among patients with TN breast cancer compared with those with non-TN breast cancer: 3.5-year RFS rate 85.5% versus 94.2%, respectively; P = 0.001. On multivariate analysis, young age, close resection margin, and triple negativity were independent predictors of shorter RFS. TN breast cancer had a higher relapse rate and more aggressive clinicopathological characteristics than non-TN in node-negative breast cancer. Thus, TN breast cancer should be integrated into risk factor analysis for node-negative breast cancer. PMID:24367172

  20. Management Options in Triple-Negative Breast Cancer

    PubMed Central

    Minami, Christina A.; Chung, Debra U.; Chang, Helena R.

    2011-01-01

    Notorious for its poor prognosis and aggressive nature, triple-negative breast cancer (TNBC) is a heterogeneous disease entity. The nature of its biological specificity, which is similar to basal-like cancers, tumors arising in BRCA1 mutation carriers, and claudin-low cancers, is currently being explored in hopes of finding the targets for novel biologics and chemotherapeutic agents. In this review, we aim to give a broad overview of the disease’s nomenclature and epidemiology, as well as the basic mechanisms of emerging targeted therapies and their performance in clinical trials to date. PMID:21863131

  1. Metallothionein-3 Increases Triple-Negative Breast Cancer Cell Invasiveness via Induction of Metalloproteinase Expression

    PubMed Central

    Suchanski, Jaroslaw; Olbromski, Mateusz; Gomulkiewicz, Agnieszka; Owczarek, Tomasz; Kruczak, Anna; Ambicka, Aleksandra; Rys, Janusz; Ugorski, Maciej; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2015-01-01

    It has been recently found that metallothionein-3 (MT3) enhances the invasiveness and tumorigenesis of prostate cancer cells. This finding is in contrast to those of earlier studies, which indicated that overexpression of MT3 in breast cancer and prostate cancer cell lines inhibits their growth in vitro. Therefore, to clarify the role of MT3 in breast cancer progression, we analyzed the effect of MT3-overexpression on proliferation, invasiveness, migration, and tumorigenesis of breast cancer MDA-MB-231/BO2 cells. It was found that MDA-MB-231/BO2 cells overexpressing MT3 were characterized by increased invasiveness in vitro, compared to the control cells. Interestingly, this increased invasiveness correlated with a highly increased concentration of MMP3 in the culture supernatants (p<0.0001). Our data suggest that MT3 may regulate breast cancer cell invasiveness by modulating the expression of MMP3. These experimental results, obtained using triple-negative MDA-MB-231/BO2 cells, were further supported by clinical data. It was found that, in triple-negative breast cancer (TNBC), nuclear MT3 immunoreactivity in cancer cells tended to be associated with patients’ shorter disease-specific survival, suggesting that nuclear MT3 expression may be a potential marker of poor prognosis of triple-negative TNBC cases. PMID:25933064

  2. Integration of Genomic, Biologic, and Chemical Approaches to Target p53 Loss and Gain-of-Function in Triple Negative Breast Cancer

    DTIC Science & Technology

    2015-09-01

    dissertation research is determining the mechanism and “targetability” of a mutant p53-adapted state in triple-negative breast cancer . Tim’s...Negative Breast Cancer PRINCIPAL INVESTIGATOR: Jennifer A. Pietenpol, Ph.D. CONTRACTING ORGANIZATION: The Vanderbilt University Nashville, TN...Loss and Gain-of-Function in Triple Negative Breast Cancer 5a. CONTRACT NUMBER W81XWH-13-1-0287 p53 Loss and Gain-of-Function in Triple Negative

  3. The prevalence of BRCA1 and BRCA2 mutations among young Mexican women with triple-negative breast cancer

    PubMed Central

    Villarreal-Garza, C.; Weitzel, J. N.; Llacuachaqui, M.; Sifuentes, E.; Magallanes-Hoyos, M. C.; Gallardo, L.; Alvarez-Gómez, R. M.; Herzog, J.; Castillo, D.; Royer, R.; Akbari, Mohammad; Lara-Medina, F.; Herrera, L. A.; Mohar, A.

    2015-01-01

    Various guidelines recommend that women with triple-negative breast cancer should be tested for BRCA1 mutations, but the prevalence of mutations may vary with ethnic group and with geographic region, and the optimal cutoff age for testing has not been established. We estimated the frequencies of BRCA1 and BRCA2 (BRCA) mutations among 190 women with triple-negative breast cancer, unselected for family history, diagnosed at age 50 or less at a single hospital in Mexico City. Patients were screened for 115 recurrent BRCA mutations, which have been reported previously in women of Hispanic origin, including a common large rearrangement Mexican founder mutation (BRCA1 ex9-12del). A BRCA mutation was detected in 44 of 190 patients with triple-negative breast cancer (23 %). Forty-three mutations were found in BRCA1 and one mutation was found in BRCA2. Seven different mutations accounted for 39 patients (89 % of the total mutations). The Mexican founder mutation (BRCA1 ex9-12del) was found 18 times and accounted for 41 % of all mutations detected. There is a high prevalence of BRCA1 mutations among young triple-negative breast cancer patients in Mexico. Women with triple-negative breast cancer in Mexico should be screened for mutations in BRCA1. PMID:25716084

  4. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer.

    PubMed

    Shan, Naing Lin; Wahler, Joseph; Lee, Hong Jin; Bak, Min Ji; Gupta, Soumyasri Das; Maehr, Hubert; Suh, Nanjoo

    2017-10-01

    Triple-negative breast cancer is one of the least responsive breast cancer subtypes to available targeted therapies due to the absence of hormonal receptors, aggressive phenotypes, and the high rate of relapse. Early breast cancer prevention may therefore play an important role in delaying the progression of triple-negative breast cancer. Cancer stem cells are a subset of cancer cells that are thought to be responsible for tumor progression, treatment resistance, and metastasis. We have previously shown that vitamin D compounds, including a Gemini vitamin D analog BXL0124, suppress progression of ductal carcinoma in situ in vivo and inhibit cancer stem-like cells in MCF10DCIS mammosphere cultures. In the present study, the effects of vitamin D compounds in regulating breast cancer stem-like cells and differentiation in triple-negative breast cancer were assessed. Mammosphere cultures, which enriches for breast cancer cells with stem-like properties, were used to assess the effects of 1α,25(OH) 2 D 3 and BXL0124 on cancer stem cell markers in the triple-negative breast cancer cell line, SUM159. Vitamin D compounds significantly reduced the mammosphere forming efficiency in primary, secondary and tertiary passages of mammospheres compared to control groups. Key markers of cancer stem-like phenotype and pluripotency were analyzed in mammospheres treated with 1α,25(OH) 2 D 3 and BXL0124. As a result, OCT4, CD44 and LAMA5 levels were decreased. The vitamin D compounds also down-regulated the Notch signaling molecules, Notch1, Notch2, Notch3, JAG1, JAG2, HES1 and NFκB, which are involved in breast cancer stem cell maintenance. In addition, the vitamin D compounds up-regulated myoepithelial differentiating markers, cytokeratin 14 and smooth muscle actin, and down-regulated the luminal marker, cytokeratin 18. Cytokeratin 5, a biomarker associated with basal-like breast cancer, was found to be significantly down-regulated by the vitamin D compounds. These results suggest

  5. Gamma-secretase/Notch Signalling Pathway Inhibitor RO4929097 in Treating Patients With Advanced, Metastatic, or Recurrent Triple Negative Invasive Breast Cancer

    ClinicalTrials.gov

    2017-02-28

    Estrogen Receptor-negative Breast Cancer; HER2-negative Breast Cancer; Male Breast Cancer; Progesterone Receptor-negative Breast Cancer; Recurrent Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-negative Breast Cancer

  6. Effect of young age, positive margins, and triple negative status on disease recurrence after breast conserving therapy

    PubMed Central

    Sakulchairungreung, Bundit; Chirappapha, Prakasit; Suvikapakornkul, Ronnarat; Wasuthit, Yodying; Sukarayothin, Thongchai; Leesombatpaiboon, Montchai; Kongdan, Youwanush

    2016-01-01

    Background To determine the risk factors for disease recurrence after breast conserving therapy (BCT) for breast cancer in a group of South-East Asian women. Methods Medical and pathological records of women who underwent BCT during the 10-year period from 2001 to 2010 were reviewed. Data collected included age ≤35 years defined as the young, type of operation, pathological data, hormonal receptor (HR) status, human epidermal growth factor receptor-2 (HER-2) expression status, and surgical margin status. Data on adjuvant therapy were also collected. Main outcomes were overall breast cancer recurrence, locoregional, and distant recurrence. Risk factors for each type of recurrence were identified using Cox proportional hazards regression models. Results There were 294 BCTs in 290 patients during the study period. The overwhelming majority (91%) had early stage (stages I-II) breast cancers. Young age patients constituted 9% of all patients, and triple negative cancers (HR negative and HER-2 negative) were seen in 19%. Involved margins on initial surgery were found in 9% of cases, and after reoperation, only 2% had involved margins. After a median follow-up of 50 months, and a maximum follow-up of 135 months, there were 30 recurrences and 6 deaths. Of the 30 recurrences, 19 included locoregional, 20 included distant, and 13 had in-breast recurrences. The disease-free survival at 10 years was 82.5% (95% CI: 74.8% to 88.1%), and the cumulative in-breast recurrence was 9.3% (95% CI: 4.9% to 17.2%) at 10 years. Multivariable Cox regression analysis revealed that young age, larger tumor size, involved margins, and no breast irradiation were associated with higher risk of locoregional recurrence. Triple negative status, larger tumor size, more positive nodes, and involved margins were associated with higher risk of distant recurrence. Conclusions We found young age to be a significant prognosticator of locoregional recurrence, and triple negative status of distant

  7. Carboplatin and Paclitaxel Albumin-Stabilized Nanoparticle Formulation Before Surgery in Treating Patients With Locally Advanced or Inflammatory Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-05-04

    Inflammatory Breast Cancer; Stage IIA Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-negative Breast Cancer; Stage IIB Breast Cancer; Estrogen Receptor Negative; Progesterone Receptor Negative; HER2/Neu Negative

  8. Inhibition of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Yang, Yong, E-mail: yyang@houstonmethodist.org

    2014-11-21

    Highlights: • Suppression of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin. • Repression of PKM2 affects the glycolysis and decreases ATP production. • Downregulation of PKM2 increases the intracellular accumulation of doxorubicin. • Inhibition of PKM2 enhances the antitumor efficacy of doxorubicin in vivo. - Abstract: Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy.more » Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.« less

  9. Veliparib and Atezolizumab Either Alone or in Combination in Treating Patients With Stage III-IV Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-03-20

    BRCA1 Gene Mutation; BRCA2 Gene Mutation; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Triple-Negative Breast Carcinoma

  10. Genetics of triple-negative breast cancer: Implications for patient care.

    PubMed

    Afghahi, Anosheh; Telli, Melinda L; Kurian, Allison W

    Patients with triple-negative breast cancer (TNBC), defined as lacking expression of the estrogen and progesterone receptors (ER/PR) and amplification of the HER2 oncogene, often have a more aggressive disease course than do patients with hormone receptor-positive breast cancer, including higher rates of visceral and central nervous system metastases, early cancer recurrences and deaths. Triple-negative breast cancer is associated with a young age at diagnosis and both African and Ashkenazi Jewish ancestry, the latter due to three common founder mutations in the highly penetrant cancer susceptibility genes BRCA1 and BRCA2 (BRCA1/2). In the past decade, there has been a surge both in genetic testing technology and in patient access to such testing. Advances in genetic testing have enabled more rapid and less expensive commercial sequencing than could be imagined only a few years ago. Massively parallel, next-generation sequencing allows the simultaneous analysis of many different genes. Studies of TNBC patients in the current era have revealed associations of TNBC with mutations in several moderate penetrance breast cancer susceptibility genes, including PALB2, BARD1, BRIP1, RAD51C and RAD51D. Interestingly, many of these genes, like BRCA1/2, are involved in homologous recombination DNA double-stranded repair. In this review, we summarize the current understanding of pathogenic germline gene mutations associated with TNBC and the early detection and prevention strategies for women at risk of developing this high-risk breast cancer subtype. Furthermore, we discuss recent the advances in targeted therapies for TNBC patients with a hereditary predisposition, including the role of poly (ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2 mutation-associated breast cancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Feline mammary basal-like adenocarcinomas: a potential model for human triple-negative breast cancer (TNBC) with basal-like subtype.

    PubMed

    Wiese, David A; Thaiwong, Tuddow; Yuzbasiyan-Gurkan, Vilma; Kiupel, Matti

    2013-09-03

    Breast cancer is one of the leading causes of cancer deaths. Triple-negative breast cancer (TNBC), an immunophenotype defined by the absence of immunolabeling for estrogen receptor (ER), progesterone receptor (PR) and HER2 protein, has a highly aggressive behavior. A subpopulation of TNBCs exhibit a basal-like morphology with immunohistochemical positivity for cytokeratins 5/6 (CK5/6) and/or epidermal growth factor receptor (EGFR), and have a high incidence of BRCA (breast cancer susceptibility) mutations. Feline mammary adenocarcinomas (FMAs) are highly malignant and share a similar basal-like subtype. The purpose of this study was to classify FMAs according to the current human classification of breast cancer that includes evaluation of ER, PR and HER2 status and expression of basal CK 5/6 and EGFR. Furthermore, we selected triple negative, basal-like FMAs to screen for BRCA mutations similar to those described in human TNBC. Twenty four FMAs were classified according to the current human histologic breast cancer classification including immunohistochemistry (IHC) for ER, PR HER2, CK5/6 and EGFR. Genetic alteration and loss of heterozygosity of BRCA1 and BRCA2 genes were analyzed in triple negative, basal-like FMAs. IHC for ER, PR and HER2 identified 14 of the 24 (58%) FMAs as a triple negative. Furthermore, 11 of these 14 (79%) triple negative FMAs had a basal-like subtype. However, no genetic abnormalities were detected in BRCA1 and BRCA2 by direct sequencing and loss of heterozygosity analysis. FMAs are highly aggressive neoplasms that are commonly triple negative and exhibit a basal-like morphology. This is similar to human TNBC that are also commonly classified as a basal-like subtype. While sequencing of a select number of triple negative, basal-like FMAs and testing for loss of heterozygosity of BRCA1 and BRCA2 did not identify mutations similar to those described in human TNBC, further in-depth evaluation is required to elucidate a potential role of BRCA

  12. Pegylated Liposomal Doxorubicin Hydrochloride and Carboplatin Followed by Surgery and Paclitaxel in Treating Patients With Triple Negative Stage II-III Breast Cancer

    ClinicalTrials.gov

    2017-11-15

    Estrogen Receptor-negative Breast Cancer; HER2-negative Breast Cancer; Progesterone Receptor-negative Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-negative Breast Cancer

  13. Pre-menopausal triple-negative breast cancer at HAM hospital medan

    NASA Astrophysics Data System (ADS)

    Betty; Laksmi, L. I.; Siregar, K. B.

    2018-03-01

    Triple-negative breast cancers (TNBC) are a type of breast cancer that does not have any or lack expression of the three receptors of estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER-2). This cross-sectional study was performed on patients TNBC in HAM hospital Medan from 2013 to 2016 by immunohistochemistry stained. A total 60 invasive breast cancer samples with TNBC. The more frequent in TNBC group were 51-60 years (19 cases, 31.66%) and pre-menopause (34 cases, 57%). Tumor size T3 and T4 with staging IIIA and IIIB, histology sub-type IC-NOS and ILC with grade 2 and grade 3 of histologic was more common in TNBC.

  14. Multi-epitope Folate Receptor Alpha Peptide Vaccine, Sargramostim, and Cyclophosphamide in Treating Patients With Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-06-18

    Bilateral Breast Carcinoma; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Stage IB Breast Cancer AJCC v7; Stage II Breast Cancer AJCC v6 and v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIB Breast Cancer AJCC v6 and v7; Stage III Breast Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Triple-Negative Breast Carcinoma; Unilateral Breast Carcinoma

  15. Triple Negative Breast Cancer Team Project — EDRN Public Portal

    Cancer.gov

    Triple negative breast cancers (TNBC), comprise 15-20% of breast cancers, and are associated with later stage at diagnosis, increased mortality, and occur more frequently in younger women where mammographic screening is less reliable. TNBCs are more likely to be diagnosed by physical exam than by mammographic screening. There is an unmet clinical need for biomarkers for the early detection of TNBC. Here, we are proposing the development of a plasma-based biomarker panel for the routine screening of women over the age of 40 for TNBC that can be used to identify women for further imaging.

  16. Heterogeneity of chemokine cell-surface receptor expression in triple-negative breast cancer

    PubMed Central

    Norton, Kerri-Ann; Popel, Aleksander S; Pandey, Niranjan B

    2015-01-01

    Introduction: Tumor heterogeneity is a well-established concept in cancer research. In this paper, we examine an additional type of tumor cell heterogeneity - tumor cell-surface receptor heterogeneity. Methods: We use flow cytometry to measure the frequency and numbers of cell-surface receptors on triple negative breast cancer cell lines. Results: We find two distinct populations of human triple-negative breast cancer cells MDA-MB-231 when they are grown in culture, one with low surface levels of various chemokine receptors and a second with much higher levels. The population with high surface levels of these receptors is increased in the more metastatic MDA-MB-231-luc-d3h2ln cell line. Conclusion: We hypothesize that this high cell-surface receptor population is involved in metastasis. We find that the receptor high populations can be modulated by tumor conditioned media and IL6 treatment indicating that the tumor microenvironment is important for the maintenance and sizes of these populations. PMID:26101698

  17. Strategy for Restoring Drug Sensitivity to Triple-Negative Breast Cancer

    DTIC Science & Technology

    2011-09-01

    tocopherol ether-linked acetic acid analog -TEA), a non-hydrolyzable ether analog of RRR- - tocopherol in p53 mutant TNBC cells, and to understand...cells with a unique analog of vitamin E (alpha- tocopherol ether-linked acetic acid analog; abbreviated α-TEA) in combination with chemotherapeutic...p53-mutant, triple-negative breast cancer (TNBC) cells with a unique analog of vitamin E (alpha- tocopherol ether-linked acetic acid analog

  18. Clinical value of R-spondins in triple-negative and metaplastic breast cancers.

    PubMed

    Coussy, F; Lallemand, F; Vacher, S; Schnitzler, A; Chemlali, W; Caly, M; Nicolas, A; Richon, S; Meseure, D; El Botty, R; De-Plater, L; Fuhrmann, L; Dubois, T; Roman-Roman, S; Dangles-Marie, V; Marangoni, E; Bièche, I

    2017-06-06

    RSPO ligands, activators of the Wnt/β-catenin pathway, are overexpressed in different cancers. The objective of this study was to investigate the role of RSPOs in breast cancer (BC). Expression of RSPO and markers of various cancer pathways were measured in breast tumours and cell lines by qRT-PCR. The effect of RSPO on the Wnt/β-catenin pathway activity was determined by luciferase assay, western blotting, and qRT-PCR. The effect of RSPO2 inhibition on proliferation was determined by using RSPO2 siRNAs. The effect of IWR-1, an inhibitor of the Wnt/β-catenin pathway, was examined on the growth of an RSPO2-positive patient-derived xenograft (PDX) model of metaplastic triple-negative BC. We detected RSPO2 and RSPO4 overexpression levels in BC, particularly in triple-negative BC (TNBC), metaplastic BC, and triple-negative cell lines. Various mechanisms could account for this overexpression: presence of fusion transcripts involving RSPO, and amplification or hypomethylation of RSPO genes. Patients with RSPO2-overexpressing tumours have a poorer metastasis-free survival (P=3.6 × 10 -4 ). RSPO2 and RSPO4 stimulate Wnt/β-catenin pathway activity. Inhibition of RSPO expression in a TN cell line inhibits cell growth, and IWR-1 significantly inhibits the growth of an RSPO2-overexpressing PDX. RSPO overexpression could therefore be a new prognostic biomarker and therapeutic target for TNBC.

  19. Pembrolizumab and Capecitabine in Treating Patients With Locally Advanced or Metastatic Triple Negative or Hormone-Refractory Breast Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-15

    Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  20. Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyen, J.; Trastour, C.; Ettore, F.

    2014-08-15

    Highlights: • Glycolytic markers are highly expressed in triple negative breast cancers. • Lactate/H{sup +} symporter MCT4 demonstrated the strongest deleterious impact on survival. • MCT4 should serve as a new prognostic factor in node-negative breast cancers. - Abstract: Background: {sup 18}Fluor-deoxy-glucose PET-scanning of glycolytic metabolism is being used for staging in many tumors however its impact on prognosis has never been studied in breast cancer. Methods: Glycolytic and hypoxic markers: glucose transporter (GLUT1), carbonic anhydrase IX (CAIX), monocarboxylate transporter 1 and 4 (MCT1, 4), MCT accessory protein basigin and lactate-dehydrogenase A (LDH-A) were assessed by immunohistochemistry in two cohortsmore » of breast cancer comprising 643 node-negative and 127 triple negative breast cancers (TNBC) respectively. Results: In the 643 node-negative breast tumor cohort with a median follow-up of 124 months, TNBC were the most glycolytic (≈70%), followed by Her-2 (≈50%) and RH-positive cancers (≈30%). Tumoral MCT4 staining (without stromal staining) was a strong independent prognostic factor for metastasis-free survival (HR = 0.47, P = 0.02) and overall-survival (HR = 0.38, P = 0.002). These results were confirmed in the independent cohort of 127 cancer patients. Conclusion: Glycolytic markers are expressed in all breast tumors with highest expression occurring in TNBC. MCT4, the hypoxia-inducible lactate/H{sup +} symporter demonstrated the strongest deleterious impact on survival. We propose that MCT4 serves as a new prognostic factor in node-negative breast cancer and can perhaps act soon as a theranostic factor considering the current pharmacological development of MCT4 inhibitors.« less

  1. Targeting the S1P Axis and Development of a Novel Therapy for Obesity-Related Triple-Negative Breast Cancer

    DTIC Science & Technology

    2016-09-01

    1 AWARD NUMBER: W81XWH-14-1-0086 TITLE: Targeting the S1P Axis and Development of a Novel Therapy for Obesity -Related Triple- Negative Breast...Sep 2015 - 31Aug2016 4. TITLE AND SUBTITLE Targeting the S1P Axis and Development of a Novel Therapy for Obesity -Related Triple-Negative Breast...hormonal therapies and have limited treatment options. Epidemiological and clinical studies indicate that obesity , which is now endemic, increases

  2. NHERF1 inhibits proliferation of triple-negative breast cancer cells by suppressing GPER signaling.

    PubMed

    Wang, Yan; Peng, Zhiqiang; Meng, Ran; Tao, Tao; Wang, Qiqi; Zhao, Chunjuan; Liu, Hua; Song, Ran; Zheng, Junfang; Qin, Qiong; He, Junqi

    2017-07-01

    G protein-coupled estrogen receptor (GPER) signaling is activated in triple-negative breast cancer (TNBC); however, the detailed mechanisms of its regulation remain unclear. The present study aimed to elucidate the molecular mechanisms involved in GPER activation in TNBC. In MDA-MB-231 cells, a TNBC cell line, NHERF1 interaction with GPER was verified by co-immunoprecipitation and immunofluorescent staining assays. Overexpression of NHERF1 in MDA-MB-231 cells inhibited GPER-mediated proliferation and phosphorylation of ERK1/2 and Akt. Furthermore, NHERF1 expression levels were negatively correlated with the gene signatures of GPER activation, ERK1/2 and Akt signaling, and cell proliferation in early stage of TNBC tumors from the TCGA data set. Taken together, NHERF1 inhibited the activation of GPER-mediated signaling and suppressed the proliferation of triple-negative breast cancer cells. Loss of NHERF1 expression may play a pivotal role in the early stage of TNBC carcinogenesis.

  3. Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells.

    PubMed

    Maturi, Varun; Enroth, Stefan; Heldin, Carl-Henrik; Moustakas, Aristidis

    2018-05-10

    Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30 bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT. © 2018 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  4. Health Disparities and Triple-Negative Breast Cancer in African American Women: A Review.

    PubMed

    Newman, Lisa A; Kaljee, Linda M

    2017-05-01

    Variation in cancer incidence and outcome has well-documented correlations with racial/ethnic identity. In the United States, the possible genetic and ancestral hereditary explanations for these associations are confounded by socioeconomic, cultural, and lifestyle patterns. Differences in the breast cancer burden of African American compared with European/white American women represent one of the most notable examples of disparities in oncology related to racial/ethnic identity. Elucidating the source of these associations is imperative in achieving the promise of the national Precision Medicine Initiative. Population-based breast cancer mortality rates have been higher for African American compared with white American women since the early 1980s, largely reflecting declines in mortality that have been disproportionately experienced among white American patients and at least partly explained by the advent of endocrine therapy that is less effective in African American women because of the higher prevalence of estrogen receptor-negative disease. The increased risk of triple-negative breast cancer in African American women as well as western, sub-Saharan African women compared with white American, European, and east African women furthermore suggests that selected genetic components of geographically defined African ancestry are associated with hereditary susceptibility for specific patterns of mammary carcinogenesis. Disentangling health care access barriers, as well as reproductive, lifestyle, and dietary factors from genetic contributions to breast cancer disparities remains challenging. Epigenetics and experiences of societal inequality (allostatic load) increase the complexity of studying breast cancer risk related to racial/ethnic identity. Oncologic anthropology represents a transdisciplinary field of research that can combine the expertise of population geneticists, multispecialty oncologists, molecular epidemiologists, and behavioral scientists to eliminate

  5. The iron chelator deferasirox synergizes with chemotherapy to treat triple negative breast cancers.

    PubMed

    Tury, Sandrine; Assayag, Franck; Bonin, Florian; Chateau-Joubert, Sophie; Servely, Jean-Luc; Vacher, Sophie; Becette, Véronique; Caly, Martial; Rapinat, Audrey; Gentien, David; de la Grange, Pierre; Schnitzler, Anne; Lallemand, François; Marangoni, Elisabetta; Bièche, Ivan; Callens, Céline

    2018-06-07

    To ensure their high proliferation rate, tumor cells display an iron metabolic disorder with increased iron needs, making them more susceptible to iron deprivation. This vulnerability could be a therapeutic target. In breast cancers, the development of new therapeutic approaches is urgently needed for patients with triple negative tumors which frequently relapse after chemotherapy and suffer from a lack of targeted therapies. In this work, we demonstrated that deferasirox (DFX) synergizes with standard chemotherapeutic agents such as with doxorubicin, cisplatin and carboplatin to inhibit cell proliferation and induce apoptosis and autophagy in triple-negative breast cancer (TNBC) cell lines. Moreover, the combination of DFX with doxorubicin and cyclophosphamide delayed recurrences in breast cancer patient-derived xenografts without increasing the side-effects of chemotherapies alone or altering global iron storage of mice. Antitumor synergy of DFX and doxorubicin seems to involve down-regulation of the PI3K and NF-κB pathways. Iron deprivation in combination with chemotherapy could thus help to improve the effectiveness of chemotherapy in TNBC patients without increasing toxicities. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. High Expression of CCR7 Predicts Lymph Node Metastasis and Good Prognosis in Triple Negative Breast Cancer.

    PubMed

    Li, Xuelu; Sun, Siwen; Li, Ning; Gao, Jiyue; Yu, Jing; Zhao, Jinbo; Li, Man; Zhao, Zuowei

    2017-01-01

    Previous preclinical and clinical studies have reported a positive correlation between the expression of the C-C chemokine receptor 7 (CCR7) and the incidence of lymph node metastasis in breast cancer. However, the prognostic relevance of CCR7 expression in breast cancer remains contradictory till now. The aim of this study is to assess the correlation of the CCR7 expression with other clinicopathological features and prognosis in breast cancer. The CCR7 gene amplification and mRNA expression levels from approximately 3,000 patients were retrieved from human breast cancer databases and analyzed. Furthermore, a total of 188 primary triple negative breast cancer patients were enrolled in this study (diagnosed since January 2009 to January 2013 from the Second Hospital of Dalian Medical University). The protein levels of CCR7 were examined by immunohistochemistry using paraffin-embedded tumor tissues. The analysis of gene amplification and mRNA levels showed the expression of CCR7 in breast cancer correlated with better prognosis. When we compared the CCR7 expressions in different subtypes, the basal-like group showed the highest expression of CCR7 and exhibited a better prognosis. Consistently, Kaplan-Meier analysis of 188 triple negative breast cancer patients showed that the prognosis of patients with positive CCR7 expression was significantly better than those with negative expression (HR=0.642, p=0.0275). Additionally, we also observed a positive correlation between lymph node metastasis and the CCR7 expression (p=0.0096). Our results indicated that elevated CCR7 expression as a marker for increased lymph node metastasis, in addition to serve as an independent prognostic indicator for better overall survival in triple negative breast cancer patients. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants.

    PubMed

    Pareja, Fresia; Geyer, Felipe C; Marchiò, Caterina; Burke, Kathleen A; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    Triple-negative breast cancers (TNBCs), defined by lack of expression of estrogen receptor, progesterone receptor and HER2, account for 12-17% of breast cancers and are clinically perceived as a discrete breast cancer subgroup. Nonetheless, TNBC has been shown to constitute a vastly heterogeneous disease encompassing a wide spectrum of entities with marked genetic, transcriptional, histological and clinical differences. Although most TNBCs are high-grade tumors, there are well-characterized low-grade TNBCs that have an indolent clinical course, whose natural history, molecular features and optimal therapy vastly differ from those of high-grade TNBCs. Secretory and adenoid cystic carcinomas are two histologic types of TNBCs underpinned by specific fusion genes; these tumors have an indolent clinical behavior and lack all of the cardinal molecular features of high-grade triple-negative disease. Recent studies of rare entities, including lesions once believed to constitute mere benign breast disease (e.g., microglandular adenosis), have resulted in the identification of potential precursors of TNBC and suggested the existence of a family of low-grade triple-negative lesions that, despite having low-grade morphology and indolent clinical behavior, have been shown to harbor the complex genomic landscape of common forms of TNBC, and may progress to high-grade disease. In this review, we describe the heterogeneity of TNBC and focus on the histologic and molecular features of low-grade forms of TNBC. Germane to addressing the challenges posed by the so-called triple-negative disease is the realization that TNBC is merely a descriptive term, and that low-grade types of TNBC may be driven by distinct sets of genetic alterations.

  8. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants

    PubMed Central

    Pareja, Fresia; Geyer, Felipe C; Marchiò, Caterina; Burke, Kathleen A; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    Triple-negative breast cancers (TNBCs), defined by lack of expression of estrogen receptor, progesterone receptor and HER2, account for 12–17% of breast cancers and are clinically perceived as a discrete breast cancer subgroup. Nonetheless, TNBC has been shown to constitute a vastly heterogeneous disease encompassing a wide spectrum of entities with marked genetic, transcriptional, histological and clinical differences. Although most TNBCs are high-grade tumors, there are well-characterized low-grade TNBCs that have an indolent clinical course, whose natural history, molecular features and optimal therapy vastly differ from those of high-grade TNBCs. Secretory and adenoid cystic carcinomas are two histologic types of TNBCs underpinned by specific fusion genes; these tumors have an indolent clinical behavior and lack all of the cardinal molecular features of high-grade triple-negative disease. Recent studies of rare entities, including lesions once believed to constitute mere benign breast disease (e.g., microglandular adenosis), have resulted in the identification of potential precursors of TNBC and suggested the existence of a family of low-grade triple-negative lesions that, despite having low-grade morphology and indolent clinical behavior, have been shown to harbor the complex genomic landscape of common forms of TNBC, and may progress to high-grade disease. In this review, we describe the heterogeneity of TNBC and focus on the histologic and molecular features of low-grade forms of TNBC. Germane to addressing the challenges posed by the so-called triple-negative disease is the realization that TNBC is merely a descriptive term, and that low-grade types of TNBC may be driven by distinct sets of genetic alterations. PMID:28721389

  9. Carboplatin and Paclitaxel With or Without Atezolizumab Before Surgery in Treating Patients With Newly Diagnosed, Stage II-III Triple-Negative Breast Cancer

    ClinicalTrials.gov

    2018-06-08

    Estrogen Receptor Negative; HER2/Neu Negative; Invasive Breast Carcinoma; Progesterone Receptor Negative; Stage II Breast Cancer AJCC v6 and v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIB Breast Cancer AJCC v6 and v7; Stage III Breast Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Triple-Negative Breast Carcinoma

  10. Loss of PTEN expression is associated with aggressive behavior and poor prognosis in Middle Eastern triple-negative breast cancer.

    PubMed

    Beg, Shaham; Siraj, Abdul K; Prabhakaran, Sarita; Jehan, Zeenath; Ajarim, Dahish; Al-Dayel, Fouad; Tulbah, Asma; Al-Kuraya, Khawla S

    2015-06-01

    PTEN is a tumor suppressor that negatively regulates the PI3 K-AKT signaling pathway which is involved in the pathogenesis of many different tumor types and serves as a prognostic marker in breast cancer. However, the significance of the role of PTEN in Middle Eastern ethnic breast cancer has not been explored especially with the fact that breast cancer originating from this ethnic population tend to behave more aggressively than breast cancer in the west. In this study, we analyzed PTEN alteration in a tissue microarray format containing more than 1000 primary breast cancers with clinical follow-up data. Tissue Microarray sections were analyzed for protein expression and copy number change using immunohistochemistry and fluorescence in situ hybridization. Loss of PTEN immunostaining was observed in 77 % of the cases. PTEN loss was significantly associated with large tumor size (p = 0.0030), high grade (p = 0.0281), tumor recurrence (p = 0.0333), and triple-negative breast cancers (p = 0.0086). PTEN loss in triple-negative breast cancers was significantly associated with rapid tumor cell proliferation (p = 0.0396) and poor prognosis (p = 0.0408). PTEN deletion was found only in 60 cases (6.4 %). Loss of PTEN protein expression occurs at high frequency in Middle Eastern breast cancer. PTEN inactivation may potentially lead to an aggressive behavior of tumor cells through stimulation of tumor cell proliferation. Furthermore, PTEN signaling pathway might be used as potential therapeutic target in triple-negative breast cancers since loss of its expression is shown to be significantly associated with this aggressive subtype of breast cancer.

  11. Alternative Polyadenylation in Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO Posttranscriptional Regulation

    PubMed Central

    Miles, Wayne O.; Lembo, Antonio; Volorio, Angela; Brachtel, Elena; Tian, Bin; Sgroi, Dennis; Provero, Paolo; Dyson, Nicholas

    2017-01-01

    Alternative polyadenylation (APA) is a process that changes the posttranscriptional regulation and translation potential of mRNAs via addition or deletion of 3′ untranslated region (3′ UTR) sequences. To identify posttranscriptional-regulatory events affected by APA in breast tumors, tumor datasets were analyzed for recurrent APA events. Motif mapping of the changed 3′ UTR regions found that APA-mediated removal of Pumilio regulatory elements (PRE) was unusually common. Breast tumor subtype–specific APA profiling identified triple-negative breast tumors as having the highest levels of APA. To determine the frequency of these events, an independent cohort of triple-negative breast tumors and normal breast tissue was analyzed for APA. APA-mediated shortening of NRAS and c-JUN was seen frequently, and this correlated with changes in the expression of downstream targets. mRNA stability and luciferase assays demonstrated APA-dependent alterations in RNA and protein levels of affected candidate genes. Examination of clinical parameters of these tumors found those with APA of NRAS and c-JUN to be smaller and less proliferative, but more invasive than non-APA tumors. RT-PCR profiling identified elevated levels of polyadenylation factor CSTF3 in tumors with APA. Overexpression of CSTF3 was common in triple-negative breast cancer cell lines, and elevated CSTF3 levels were sufficient to induce APA of NRAS and c-JUN. Our results support the hypothesis that PRE-containing mRNAs are disproportionately affected by APA, primarily due to high sequence similarity in the motifs utilized by polyadenylation machinery and the PUM complex. PMID:27758885

  12. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer.

    PubMed

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung

    2017-02-14

    Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.

  13. Genetic Analysis of Microglandular Adenosis and Acinic Cell Carcinomas of the Breast Provides Evidence for the Existence of a Low-grade Triple-Negative Breast Neoplasia Family

    PubMed Central

    Geyer, Felipe C; Berman, Samuel H.; Marchiò, Caterina; Burke, Kathleen A; Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte K Y; Pareja, Fresia; Wen, Hannah Y; Hodi, Zoltan; Schnitt, Stuart J; Rakha, Emad A; Ellis, Ian O; Norton, Larry; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    Acinic cell carcinoma is an indolent form of invasive breast cancer, whereas microglandular adenosis has been shown to be a neoplastic proliferation. Both entities display a triple-negative phenotype, and may give rise to and display somatic genomic alterations typical of high-grade triple-negative breast cancers. Here we report on a comparison of previously published data on eight carcinoma-associated microglandular adenosis and eight acinic cell carcinomas subjected to targeted massively parallel sequencing targeting all exons of 236 genes recurrently mutated in breast cancer and/or DNA repair-related. Somatic mutations, insertions/deletions and copy number alterations were detected using state-of-the-art bioinformatic algorithms. All cases were of triple-negative phenotype. A median of 4.5 (1–13) and 4.0 (1–7) non-synonymous somatic mutations per carcinoma-associated microglandular adenosis and acinic cell carcinoma were identified, respectively. TP53 was the sole highly recurrently mutated gene (75% in microglandular adenosis versus 88% in acinic cell carcinomas), and TP53 mutations were consistently coupled with loss of heterozygosity of the wild-type allele. Additional somatic mutations shared by both groups included those in BRCA1, PIK3CA and INPP4B. Recurrent (n=2) somatic mutations restricted to microglandular adenosis or acinic cell carcinomas included those affecting PTEN and MED12, or ERBB4, respectively. No significant differences in the repertoire of somatic mutations were detected between microglandular adenosis and acinic cell carcinomas, and between this group of lesions and 77 triple-negative carcinomas from The Cancer Genome Atlas. Microglandular adenosis and acinic cell carcinomas, however, were genetically distinct from estrogen receptor-positive and/or HER2-positive breast cancers from The Cancer Genome Atlas. Our findings support the contention that microglandular adenosis and acinic cell carcinoma are part of the same spectrum of lesions

  14. Genetic analysis of microglandular adenosis and acinic cell carcinomas of the breast provides evidence for the existence of a low-grade triple-negative breast neoplasia family.

    PubMed

    Geyer, Felipe C; Berman, Samuel H; Marchiò, Caterina; Burke, Kathleen A; Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte Ky; Pareja, Fresia; Wen, Hannah Y; Hodi, Zoltan; Schnitt, Stuart J; Rakha, Emad A; Ellis, Ian O; Norton, Larry; Weigelt, Britta; Reis-Filho, Jorge S

    2017-01-01

    Acinic cell carcinoma is an indolent form of invasive breast cancer, whereas microglandular adenosis has been shown to be a neoplastic proliferation. Both entities display a triple-negative phenotype, and may give rise to and display somatic genomic alterations typical of high-grade triple-negative breast cancers. Here we report on a comparison of previously published data on eight carcinoma-associated microglandular adenosis and eight acinic cell carcinomas subjected to targeted massively parallel sequencing targeting all exons of 236 genes recurrently mutated in breast cancer and/or DNA repair-related. Somatic mutations, insertions/ deletions, and copy number alterations were detected using state-of-the-art bioinformatic algorithms. All cases were of triple-negative phenotype. A median of 4.5 (1-13) and 4.0 (1-7) non-synonymous somatic mutations per carcinoma-associated microglandular adenosis and acinic cell carcinoma were identified, respectively. TP53 was the sole highly recurrently mutated gene (75% in microglandular adenosis versus 88% in acinic cell carcinomas), and TP53 mutations were consistently coupled with loss of heterozygosity of the wild-type allele. Additional somatic mutations shared by both groups included those in BRCA1, PIK3CA, and INPP4B. Recurrent (n=2) somatic mutations restricted to microglandular adenosis or acinic cell carcinomas included those affecting PTEN and MED12 or ERBB4, respectively. No significant differences in the repertoire of somatic mutations were detected between microglandular adenosis and acinic cell carcinomas, and between this group of lesions and 77 triple-negative carcinomas from The Cancer Genome Atlas. Microglandular adenosis and acinic cell carcinomas, however, were genetically distinct from estrogen receptor-positive and/or HER2-positive breast cancers from The Cancer Genome Atlas. Our findings support the contention that microglandular adenosis and acinic cell carcinoma are part of the same spectrum of lesions

  15. Targeting Metabolic Remodeling in Triple Negative Breast Cancer in a Murine Model

    PubMed Central

    García-Castillo, Verónica; López-Urrutia, Eduardo; Villanueva-Sánchez, Octavio; Ávila-Rodríguez, Miguel Á.; Zentella-Dehesa, Alejandro; Cortés-González, Carlo; López-Camarillo, César; Jacobo-Herrera, Nadia J; Pérez-Plasencia, Carlos

    2017-01-01

    Background: Chemotherapy is the backbone of systemic treatment for triple negative breast cancer (TNBC), which is one of the most relevant breast cancers molecular types due to the ability of tumor cells to develop drug resistance, highlighting the urgent need to design newer and safer drug combinations for treatment. In this context, to overcome tumor cell drug resistance, we employed a novel combinatorial treatment including Doxorubicin, Metformin, and Sodium Oxamate (DoxMetOx). Such pharmacological combination targets indispensable hallmarks of cancer-related to aerobic glycolysis and DNA synthesis. Materials and Methods: Thirty-five female nude mice were transplanted subcutaneously with MDA-MB-231 triple negative human cancer cell line. Once tumors were visible, mice were treated with doxorubicin, metformin, oxamate or all possible pharmacologic combinations. Treatments were administered daily for 15 days and tumors were measured by calipers every day. MicroPET images were taken in three different occasions, basal state, in the middle of the treatment, and at the end of treatment. Western blot analyses, qRT-PCR, flow cytometry, and cytotoxicity assays were performed to elucidate the mechanism of cell death promoted by the drugs in vitro. Results: In this work we assessed the proof of concept of metabolic correction in solid tumors as an effective drug treatment; hence, mice bearing tumors treated with the DoxMetOx therapy showed a complete inhibition of the tumor mass growing in 15 days of treatment depicted by the micro PET images. In vitro studies displayed that the three drugs together act by inhibiting both, mTOR-phosphorylation and expression of LDH-A gene, promoting apoptosis via dependent on the caspase-3 pathway, accompanied by cleavage of PARP. Moreover, induction of autophagy process was observed by the accumulation of LC3-II, a primordial protein implicated in the conformation and elongation of the autophagolysosome. Conclusions: The lack of

  16. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature.

    PubMed

    Norton, Kerri-Ann; Jin, Kideok; Popel, Aleksander S

    2018-05-08

    A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates. Copyright © 2018. Published by Elsevier Ltd.

  17. A Synthetic Triterpenoid CDDO-Im Inhibits Tumorsphere Formation by Regulating Stem Cell Signaling Pathways in Triple-Negative Breast Cancer

    PubMed Central

    Wahler, Joseph; Liby, Karen T.; Sporn, Michael B.; Suh, Nanjoo

    2014-01-01

    Triple-negative breast cancer is associated with poor prognosis because of a high rate of tumor recurrence and metastasis. Previous studies demonstrated that the synthetic triterpenoid, CDDO-Imidazolide (CDDO-Im) induced cell cycle arrest and apoptosis in triple-negative breast cancer. Since a small subpopulation of cancer stem cells has been suggested to be responsible for drug resistance and metastasis of tumors, our present study determined whether the effects of CDDO-Im in triple-negative breast cancer are due to the inhibition of a cancer stem cell subpopulation. CDDO-Im treatment markedly induced cell cycle arrest at G2/M-phase and apoptosis in the triple-negative breast cancer cell lines, SUM159 and MDA-MB-231. Because SUM159 cells were more sensitive to CDDO-Im than MDA-MB-231 cells, the effects of CDDO-Im on the cancer stem cell subpopulation were further investigated in SUM159 cells. SUM159 cells formed tumorspheres in culture, and the cancer stem cell subpopulation, CD24−/EpCAM+ cells, was markedly enriched in SUM159 tumorspheres. The CD24−/EpCAM+ cells in SUM159 tumorspheres were significantly inhibited by CDDO-Im treatment. CDDO-Im also significantly decreased sphere forming efficiency and tumorsphere size in both primary and secondary sphere cultures. PCR array of stem cell signaling genes showed that expression levels of many key molecules in the stem cell signaling pathways, such as Notch, TGF-β/Smad, Hedgehog and Wnt, were significantly down-regulated by CDDO-Im in SUM159 tumorspheres. Protein levels of Notch receptors (c-Notch1, Notch1 and Notch3), TGF-β/Smad (pSmad2/3) and Hedgehog downstream effectors (GLI1) also were markedly reduced by CDDO-Im. In conclusion, the present study demonstrates that the synthetic triterpenoid, CDDO-Im, is a potent anti-cancer agent against triple-negative breast cancer cells by targeting the cancer stem cell subpopulation. PMID:25229616

  18. Triple-negative breast cancer--current status and future directions.

    PubMed

    Gluz, O; Liedtke, C; Gottschalk, N; Pusztai, L; Nitz, U; Harbeck, N

    2009-12-01

    Triple-negative breast cancer (TNBC) is defined by a lack of expression of both estrogen and progesterone receptor as well as human epidermal growth factor receptor 2. It is characterized by distinct molecular, histological and clinical features including a particularly unfavorable prognosis despite increased sensitivity to standard cytotoxic chemotherapy regimens. TNBC is highly though not completely concordant with various definitions of basal-like breast cancer (BLBC) defined by high-throughput gene expression analyses. The lack in complete concordance may in part be explained by both BLBC and TNBC comprising entities that in themselves are heterogeneous. Numerous efforts are currently being undertaken to improve prognosis for patients with TNBC. They comprise both optimization of choice and scheduling of common cytotoxic agents (i.e. addition of platinum salts or dose intensification strategies) and introduction of novel agents (i.e. poly-ADP-ribose-polymerase-1 inhibitors, agents targeting the epidermal growth factor receptor, multityrosine kinase inhibitors or antiangiogenic agents).

  19. Mirvetuximab Soravtansine and Gemcitabine Hydrochloride in Treating Patients With FRa-Positive Recurrent Ovarian, Primary Peritoneal, Fallopian Tube, Endometrial, or Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-02-21

    Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Recurrent Uterine Corpus Carcinoma; Triple-Negative Breast Carcinoma; Folate Receptor Alpha Positive

  20. Cadmium promotes the proliferation of triple-negative breast cancer cells through EGFR-mediated cell cycle regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhengxi, E-mail: weizhengxi@gmail.com; Song, Xiulong; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    Cadmium (Cd) is a carcinogenic metal which is implicated in breast cancer by epidemiological studies. It is reported to promote breast cancer cell growth in vitro through membrane receptors. The study described here examined Cd-mediated growth of non-metastatic human breast cancer derived cells that lack receptors for estrogen, progesterone, and HER2. Treatment of triple-negative HCC 1937 cells with 0.1–0.5 μM Cd increased cell growth by activation of AKT and ERK. Accelerated cell cycle progression was achieved by increasing the levels of cyclins A, B, and E, as well as those of CDKs 1 and 2. Although triple negative cells lackmore » estrogen receptor, they express high levels of EGFR. Therefore, further studies on HCC 1937 and another triple-negative cell line, HCC 38, were conducted using specific siRNA and an inhibitor of EGFR to determine whether EGFR was responsible for mediating the effect of Cd. The results revealed that in both cell types EGFR was not only activated upon Cd treatment, but was also essential for the downstream activation of AKT and ERK. Based on these observations, it is concluded that, in breast cancer cells lacking estrogen receptor, sub-micromolar concentration of Cd can promote cell proliferation. Furthermore, that EGFR plays a critical role in this process. - Highlights: • Sub-micromolar concentrations of Cd promote cell growth in breast cancer cells that lack ER, PR, and HER2. • The increase in cell number is not due to reduction in apoptosis. • Growth promotion involves AKT and ERK signaling and downstream stimulation of cell cycle progression. • Initiation of cell growth by Cd occurs at the cell membrane and requires the activation of EGFR.« less

  1. Adenosine Stimulate Proliferation and Migration in Triple Negative Breast Cancer Cells

    PubMed Central

    Fernandez-Gallardo, Miriam; González-Ramírez, Ricardo; Sandoval, Alejandro; Monjaraz, Eduardo

    2016-01-01

    Emerging evidence suggests that the adenosine (Ado) receptors may play crucial roles in tumor progression. Here, we show that Ado increases proliferation and migration in a triple negative breast cancer model, the MDA-MB 231 cell line. The use of specific agonists and antagonists evidenced that these effects depend on the activation of the A2B receptor, which then triggers an intracellular response mediated by the adenylate cyclase/PKA/cAMP signaling pathway. Ado also increases the expression of NaV1.5 channels, a potential biomarker in breast cancer. Together, these data suggest important roles of the A2B receptors and NaV1.5 channels in the Ado-induced increase in proliferation and migration of the MDA-MB 231 cells. PMID:27911956

  2. Triple-negative breast cancer in African-American women: disparities versus biology

    PubMed Central

    Dietze, Eric C.; Sistrunk, Christopher; Miranda-Carboni, Gustavo; O’Regan, Ruth; Seewaldt, Victoria L.

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects BRCA1 mutation carriers and young women of African origin. There is evidence that African-American women with TNBC have worse clinical outcomes than women of European descent. However, it is unclear whether survival differences persist after adjusting for disparities in access to health-care treatment, co-morbid disease and income. It remains controversial whether TNBC in African-American women is a molecularly distinct disease or whether African-American women have a higher incidence of aggressive biology driven by disparities: there is evidence in support of both. Understanding the relative contributions of biology and disparities is essential for improving the poor survival rate of African-American women with TNBC. PMID:25673085

  3. Triple-negative breast cancer in African-American women: disparities versus biology.

    PubMed

    Dietze, Eric C; Sistrunk, Christopher; Miranda-Carboni, Gustavo; O'Regan, Ruth; Seewaldt, Victoria L

    2015-04-01

    Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects BRCA1 mutation carriers and young women of African origin. There is evidence that African-American women with TNBC have worse clinical outcomes than women of European descent. However, it is unclear whether survival differences persist after adjusting for disparities in access to health-care treatment, co-morbid disease and income. It remains controversial whether TNBC in African-American women is a molecularly distinct disease or whether African-American women have a higher incidence of aggressive biology driven by disparities: there is evidence in support of both. Understanding the relative contributions of biology and disparities is essential for improving the poor survival rate of African-American women with TNBC.

  4. MENA confers resistance to paclitaxel in triple-negative breast cancer

    PubMed Central

    Oudin, Madeleine J.; Barbier, Lucie; Schäfer, Claudia; Kosciuk, Tatsiana; Miller, Miles A.; Han, Sangyoon; Jonas, Oliver; Lauffenburger, Douglas A.; Gertler, Frank B.

    2017-01-01

    Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA, particularly its invasive isoform, MENAINV, are established drivers of metastasis. MENAINV expression is significantly correlated with metastasis and poor outcome in human breast cancer patients. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENAINV confer resistance to the taxane paclitaxel, but not to the widely used DNA damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENAINV-driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by co-treatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance. PMID:27811011

  5. Targeted exome sequencing of Korean triple-negative breast cancer reveals homozygous deletions associated with poor prognosis of adjuvant chemotherapy-treated patients

    PubMed Central

    Jeong, Hae Min; Kim, Ryong Nam; Kwon, Mi Jeong; Oh, Ensel; Han, Jinil; Lee, Se Kyung; Choi, Jong-Sun; Park, Sara; Nam, Seok Jin; Gong, Gyung Yup; Nam, Jin Wu; Choi, Doo Ho; Lee, Hannah; Nam, Byung-Ho; Choi, Yoon-La; Shin, Young Kee

    2017-01-01

    Triple-negative breast cancer is characterized by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is associated with a poorer outcome than other subtypes of breast cancer. Moreover, there are no accurate prognostic genes or effective therapeutic targets, thereby necessitating continued intensive investigation. This study analyzed the genetic mutation landscape in 70 patients with triple-negative breast cancer by targeted exome sequencing of tumor and matched normal samples. Sequencing showed that more than 50% of these patients had deleterious mutations and homozygous deletions of DNA repair genes, such as ATM, BRCA1, BRCA2, WRN, and CHEK2. These findings suggested that a large number of patients with triple-negative breast cancer have impaired DNA repair function and that therefore a poly ADP-ribose polymerase inhibitor may be an effective drug in the treatment of this disease. Notably, homozygous deletion of three genes, EPHA5, MITF, and ACSL3, was significantly associated with an increased risk of recurrence or distant metastasis in adjuvant chemotherapy-treated patients. PMID:28977883

  6. Multicenter phase II study of apatinib in non-triple-negative metastatic breast cancer.

    PubMed

    Hu, Xichun; Cao, Jun; Hu, Wenwei; Wu, Changping; Pan, Yueyin; Cai, Li; Tong, Zhongsheng; Wang, Shusen; Li, Jin; Wang, Zhonghua; Wang, Biyun; Chen, Xiaoyu; Yu, Hao

    2014-11-07

    Apatinib is a tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor 2(VEGFR-2). This study was conducted to assess the efficacy and safety of apatinib in patients with non-triple-negative metastatic breast cancer who had received prior chemotherapy for their metastatic disease. This multicenter, open-label, single arm study enrolled patients with non-triple-negative breast cancer, pretreated with anthracycline, taxanes and capecitabine, and who failed in the metastatic setting at least 1 and at most 4 prior chemotherapy regimens and at least one endocrine drug for hormone receptor-positive patients as well as at least one anti-Her2 drug for Her2-positive patients. The primary end point of this study was progression free survival (PFS). Secondary end points included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and toxicity. Apatinib was administered as 500 mg daily on days 1 through 28 of each 4-week cycle. 38 patients were enrolled with a median age of 49 years (range, 35 to 62 years) and received apatinib for a median of 4 cycles (range from 0 to 10 cycles). 18 (47.4%) patients experienced dose reduction during treatment. The median relative dose intensity (relative to assigned dose for each cycle) was 82% (range, 45.0% to 100.0%). Median follow-up time was 10.1 months. Median PFS of all 38 patients was 4.0 months (95% confidence interval (CI), 2.8 m - 5.2 m). 36 patients were eligible for efficacy analysis. ORR was 16.7% (6/36). DCR was 66.7% (24/36). Median OS was 10.3 months (95% CI, 9.1 m - 11.6 m). The most common grade 3/4 treatment-related AEs were hypertension (20.5%), hand-foot syndrome (10.3%), and proteinuria (5.1%). Of three possibly drug-related SAEs recorded in the study, 2 (3.4%) deaths occurred within 28 days of last treatment and were both considered to be the result of disease progression. The other one was grade 2 diarrhea needing hospitalization. Apatinib exhibited objective

  7. (Updated) Targeted T-Cell Therapy Shows Promise Against Triple-Negative Breast Cancer | Poster

    Cancer.gov

    (Updated May 8) A study led by the Baylor College of Medicine and supported by NCI’s Center for Cancer Research (CCR) has demonstrated that chimeric antigen receptor (CAR) T-cell therapy can be used to treat solid triple-negative breast cancer (TNBC) tumors. The investigation is the first work using CAR T-cell therapy against TEM8, a cell surface protein that is frequently

  8. Association between obesity with disease-free survival and overall survival in triple-negative breast cancer: A meta-analysis.

    PubMed

    Mei, Lin; He, Lin; Song, Yuhua; Lv, Yang; Zhang, Lijiu; Hao, Fengxi; Xu, Mengmeng

    2018-05-01

    To investigate the relationship between obesity and disease-free survival (DFS) and overall survival (OS) of triple-negative breast cancer. Citations were searched in PubMed, Cochrane Library, and Web of Science. Random effect model meta-analysis was conducted by using Revman software version 5.0, and publication bias was evaluated by creating Egger regression with STATA software version 12. Nine studies (4412 patients) were included for DFS meta-analysis, 8 studies (4392 patients) include for OS meta-analysis. There were no statistical significances between obesity with DFS (P = .60) and OS (P = .71) in triple-negative breast cancer (TNBC) patients. Obesity has no impact on DFS and OS in patients with TNBC.

  9. Is androgen receptor targeting an emerging treatment strategy for triple negative breast cancer?

    PubMed

    Anestis, Aristomenis; Karamouzis, Michalis V; Dalagiorgou, Georgia; Papavassiliou, Athanasios G

    2015-06-01

    Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. The absence of expression and/or amplification of estrogen and progesterone receptor as well as ERBB-2 prevent the use of currently available endocrine options and/or ERBB-2-directed drugs and indicates chemotherapy as the main current therapy. TNBC represents approximately 15% of breast cancer cases with high index of heterogeneity. Here, we review the role of androgen receptor in breast carcinogenesis and its association with alterations in the expression pattern and functional roles of regulatory molecules and signal transduction pathways in TNBC. Additionally, based on the so far preclinical and clinical published data, we evaluate the perspectives for using and/or developing androgen receptor targeting strategies for specific TNBC subtypes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cisplatin With or Without Veliparib in Treating Patients With Recurrent or Metastatic Triple-Negative and/or BRCA Mutation-Associated Breast Cancer With or Without Brain Metastases

    ClinicalTrials.gov

    2018-06-26

    Breast Carcinoma Metastatic in the Brain; Deleterious BRCA1 Gene Mutation; Deleterious BRCA2 Gene Mutation; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage IV Breast Cancer AJCC v6 and v7; Triple-Negative Breast Carcinoma

  11. Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment.

    PubMed

    Barbieri, Antonio; Quagliariello, Vincenzo; Del Vecchio, Vitale; Falco, Michela; Luciano, Antonio; Amruthraj, Nagoth Joseph; Nasti, Guglielmo; Ottaiano, Alessandro; Berretta, Massimiliano; Iaffaioli, Rosario Vincenzo; Arra, Claudio

    2017-02-28

    Among the most important traditional medicinal fungi, Ganoderma lucidum has been used as a therapeutic agent for the treatment of numerous diseases, including cancer, in Oriental countries. The aim of this study is to investigate the anti-inflammatory, anticancer and anti-metastatic activities of Ganoderma lucidum extracts in melanoma and triple-negative breast cancer cells. Ganoderma lucidum extracts were prepared by using common organic solvents; MDA-MB 231 and B16-F10 cell lines were adopted as cellular models for triple-negative breast cancer and melanoma and characterized for cell viability, wound-healing assay and measurement of cytokines secreted by cancer cells under pro-inflammatory conditions (incubation with lipopolysaccharide, LPS) and pretreatment with Ganoderma lucidum extract at different concentrations. Our study demonstrates, for the first time, how Ganoderma lucidum extracts can significantly inhibit the release of IL-8, IL-6, MMP-2 and MMP-9 in cancer cells under pro-inflammatory condition. Interestingly, Ganoderma lucidum extracts significantly also decrease the viability of both cancer cells in a time- and concentration-dependent manner, with abilities to reduce cell migration over time, which is correlated with a lower release of matrix metalloproteases. Taken together, these results indicate the possible use of Ganoderma lucidum extract for the therapeutic management of melanoma and human triple-negative breast cancer.

  12. Combined calcitriol and menadione reduces experimental murine triple negative breast tumor.

    PubMed

    Bohl, Luciana; Guizzardi, Solange; Rodríguez, Valeria; Hinrichsen, Lucila; Rozados, Viviana; Cremonezzi, David; Tolosa de Talamoni, Nori; Picotto, Gabriela

    2017-10-01

    Calcitriol (D) or 1,25(OH) 2 D 3 inhibits the growth of several tumor cells including breast cancer cells, by activating cell death pathways. Menadione (MEN), a glutathione-depleting compound, may be used to potentiate the antiproliferative actions of D on cancer cells. We have previously shown in vitro that MEN improved D-induced growth arrest on breast cancer cell lines, inducing oxidative stress and DNA damage via ROS generation. Treatment with MEN+D resulted more effective than D or MEN alone. To study the in vivo effect of calcitriol, MEN or their combination on the development of murine transplantable triple negative breast tumor M-406 in its syngeneic host. Tumor M-406 was inoculated s.c., and when tumors reached the desired size, animals were randomly assigned to one of four groups receiving daily i.p. injections of either sterile saline solution (controls, C), MEN, D, or both (MEN+D). Body weight and tumor volume were recorded three times a week. Serum calcium was determined before and at the end of the treatment, at which time tumor samples were obtained for histological examination. None of the drugs, alone or in combination, affected mice body weight in the period studied. The combined treatment reduced tumor growth rate (C vs. MEN+D, P<0.05) and the corresponding histological sections exhibited small remaining areas of viable tumor only in the periphery. A concomitant DNA fragmentation was observed in all treated groups and MEN potentiated the calcitriol effect on tumor growth. As previously observed in vitro, treatment with MEN and D delayed tumor growth in vivo more efficiently than the individual drugs, with evident signals of apoptosis induction. Our results propose an alternative protocol to treat triple negative breast cancer, using GSH depleting drugs together with calcitriol, which would allow lower doses of the steroid to maintain the antitumor effect while diminishing its adverse pharmacological effects. Copyright © 2017. Published by

  13. Targeting the androgen receptor in triple-negative breast cancer: current perspectives.

    PubMed

    Mina, Alain; Yoder, Rachel; Sharma, Priyanka

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive subtype associated with frequent recurrence and metastasis. Unlike hormone receptor-positive subtypes, treatment of TNBC is currently limited by the lack of clinically available targeted therapies. Androgen signaling is necessary for normal breast development, and its dysregulation has been implicated in breast tumorigenesis. In recent years, gene expression studies have identified a subset of TNBC that is enriched for androgen receptor (AR) signaling. Interference with androgen signaling in TNBC is promising, and AR-inhibiting drugs have shown antitumorigenic activity in preclinical and proof of concept clinical studies. Recent advances in our understanding of androgenic signaling in TNBC, along with the identification of interacting pathways, are allowing development of the next generation of clinical trials with AR inhibitors. As novel AR-targeting agents are developed and evaluated in clinical trials, it is equally important to establish a robust set of biomarkers for identification of TNBC tumors that are most likely to respond to AR inhibition.

  14. Alarming Burden of Triple-Negative Breast Cancer in India.

    PubMed

    Thakur, Krishan K; Bordoloi, Devivasha; Kunnumakkara, Ajaikumar B

    2018-06-01

    Breast cancer is the most prevalent cancer among women worldwide. Among the different breast cancer subtypes, triple-negative breast cancer (TNBC), which is more prevalent among younger age women, is the most aggressive form. Numerous clinicopathologic studies performed throughout the world strongly support the utterly poor prognoses and high recurrence rate of TNBC. The present report details a thorough data survey from Google and PubMed on the burden of TNBC worldwide and other associated factors, with special emphasis on its ever increasing incidence among Indian women. Our analysis revealed that the proportion of TNBC ranges from 6.7% to 27.9% in different countries, with the highest reported percentage in India among all, followed by Indonesia, Algeria, and Pakistan. Most of the other countries (Netherlands, Italy, London, Germany) had a TNBC incidence less than the mean level (ie, 15%). The high incidence of TNBC in the Indian population is associated with vivid risk factors, which primarily include lifestyle, deprivation status, obesity, family history, high mitotic indexes, and BRCA1 mutations. The treatment of TNBC is greatly hampered due to the lack of targeted therapies. Hence, it requires earnest attention towards extensive research for the prevention and development of treatment modalities with high efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Pathway-Enriched Gene Signature Associated with 53BP1 Response to PARP Inhibition in Triple-Negative Breast Cancer.

    PubMed

    Hassan, Saima; Esch, Amanda; Liby, Tiera; Gray, Joe W; Heiser, Laura M

    2017-12-01

    Effective treatment of patients with triple-negative (ER-negative, PR-negative, HER2-negative) breast cancer remains a challenge. Although PARP inhibitors are being evaluated in clinical trials, biomarkers are needed to identify patients who will most benefit from anti-PARP therapy. We determined the responses of three PARP inhibitors (veliparib, olaparib, and talazoparib) in a panel of eight triple-negative breast cancer cell lines. Therapeutic responses and cellular phenotypes were elucidated using high-content imaging and quantitative immunofluorescence to assess markers of DNA damage (53BP1) and apoptosis (cleaved PARP). We determined the pharmacodynamic changes as percentage of cells positive for 53BP1, mean number of 53BP1 foci per cell, and percentage of cells positive for cleaved PARP. Inspired by traditional dose-response measures of cell viability, an EC 50 value was calculated for each cellular phenotype and each PARP inhibitor. The EC 50 values for both 53BP1 metrics strongly correlated with IC 50 values for each PARP inhibitor. Pathway enrichment analysis identified a set of DNA repair and cell cycle-associated genes that were associated with 53BP1 response following PARP inhibition. The overall accuracy of our 63 gene set in predicting response to olaparib in seven breast cancer patient-derived xenograft tumors was 86%. In triple-negative breast cancer patients who had not received anti-PARP therapy, the predicted response rate of our gene signature was 45%. These results indicate that 53BP1 is a biomarker of response to anti-PARP therapy in the laboratory, and our DNA damage response gene signature may be used to identify patients who are most likely to respond to PARP inhibition. Mol Cancer Ther; 16(12); 2892-901. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. TNF-α Gene Knockout in Triple Negative Breast Cancer Cell Line Induces Apoptosis

    PubMed Central

    Pileczki, Valentina; Braicu, Cornelia; Gherman, Claudia D.; Berindan-Neagoe, Ioana

    2013-01-01

    Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine involved in the promotion and progression of cancer, including triple negative breast cancer cells. Thus, there is significant interest in understanding the molecular signaling pathways that connect TNF-α with the survival of tumor cells. In our experiments, we used as an in vitro model for triple negative breast cancer the cell line Hs578T. The purpose of this study is to determine the gene expression profiling of apoptotic signaling networks after blocking TNF-α formation by using specially designed siRNA molecules to target TNF-α messenger RNA. Knockdown of TNF-α gene was associated with cell proliferation inhibition and apoptosis, as observed by monitoring the cell index using the xCELLigence RTCA System and flow cytometry. PCR array technology was used to examine the transcript levels of 84 genes involved in apoptosis. 15 genes were found to be relevant after comparing the treated group with the untreated one of which 3 were down-regulated and 12 up-regulated. The down-regulated genes are all involved in cell survival, whereas the up-regulated ones are involved in and interact with pro-apoptotic pathways. The results described here indicate that the direct target of TNF-α in the Hs578T breast cancer cell line increases the level of certain pro-apoptotic factors that modulate different cellular networks that direct the cells towards death. PMID:23263670

  17. Racial differences in outcomes of triple-negative breast cancer

    PubMed Central

    Pacheco, Jose M.; Gao, Feng; Bumb, Caroline; Ellis, Matthew J.; Ma, Cynthia X.

    2015-01-01

    African American (AA) women have a higher incidence of triple-negative breast cancer (TNBC: negative for the expression of estrogen receptor, progesterone receptor, and HER2 gene amplification) than Caucasian (CA) women, explaining in part their higher breast cancer mortality. However, there have been inconsistent data in the literature regarding survival outcomes of TNBC in AA versus CA women. We performed a retrospective chart review on 493 patients with TNBC first seen at the Washington University Breast Oncology Clinic (WUBOC) between January 2006 and December 2010. Analysis was done on 490 women (30 % AA) for whom follow-up data was available. The median age at diagnosis was 53 (23–98) years and follow-up time was 27.2 months. There was no significant difference between AA and CA women in the age of diagnosis, median time from abnormal imaging to breast biopsy and from biopsy diagnosis to surgery, duration of follow-up, tumor stage, grade, and frequency of receiving neoadjuvant or adjuvant chemotherapy and pathologic complete response rate to neoadjuvant chemotherapy. There was no difference in disease free survival (DFS) and overall survival (OS) between AA and CA groups by either univariate or multivariate analysis that included age, race, and stage. The hazard ratio for AA women was 1.19 (CI 0.80–1.78, p = 0.39) and 0.91 (CI 0.62–1.35, p = 0.64) for OS and DFS, respectively. Among the 158 patients who developed recurrence or presented with stage IV disease (AA: n = 36, CA: n = 122), no racial differences in OS were observed. We conclude that race did not significantly affect the clinical presentation and outcome of TNBC in this single center study where patients received similar therapy and follow-up. PMID:23400579

  18. MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer.

    PubMed

    Oudin, Madeleine J; Barbier, Lucie; Schäfer, Claudia; Kosciuk, Tatsiana; Miller, Miles A; Han, Sangyoon; Jonas, Oliver; Lauffenburger, Douglas A; Gertler, Frank B

    2017-01-01

    Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA and particularly its invasive isoform, MENA INV , are established drivers of metastasis. MENA INV expression is significantly correlated with metastasis and poor outcome in human patients with breast cancer. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENA INV confer resistance to the taxane paclitaxel, but not to the widely used DNA-damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENA INV -driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by co-treatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance. Mol Cancer Ther; 16(1); 143-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Outcome for Patients with Triple-Negative Breast Cancer Is Not Dependent on Race/Ethnicity

    PubMed Central

    Chu, Quyen D.; Henderson, Amanda E.; Ampil, Fred; Li, Benjamin D. L.

    2012-01-01

    Introduction. Triple negative breast cancer (TNBC) is biologically aggressive and is associated with a worse prognosis. To understand the impact of race/ethnicity on outcome for patients with TNBC, confounding factors such as socioeconomic status (SES) need to be controlled. We examined the impact of race/ethnicity on a cohort of patients of low SES who have TNBC. Methods. 786 patients with Stage 0–III breast cancer were evaluated. Of these, 202 patients had TNBC (26%). Primary endpoints were cancer recurrence and death. ZIP code-based income tract and institutional financial data were used to assess SES. Data were analyzed using Kaplan-Meier survival analysis, log-rank tests, Cox Proportional hazard regression, chi square test, and t-tests. A P value ≤0.05 was considered statistically significant. Results. Of the 468 African-Americans (60%) in the database, 138 had TNBC; 64 of 318 Caucasians had TNBC. 80% of patients had an annual income of ≤$20,000. The 5-year overall survival was 77% for African-American women versus 72% for Caucasian women (P = 0.95). On multivariate analysis, race/ethnicity had an impact on disease-free survival (P = 0.027) but not on overall survival (P = 0.98). Conclusion. In a predominantly indigent population, race/ethnicity had no impact on overall survival for patients with triple negative breast cancer. PMID:22645687

  20. Orlistat and antisense-miRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy

    PubMed Central

    Bhargava-Shah, Aarohi; Foygel, Kira; Devulapally, Rammohan; Paulmurugan, Ramasamy

    2016-01-01

    Background: This study explores the use of hydrophilic poly(ethylene glycol)-conjugated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NPs) as delivery system to improve the antitumor effect of antiobesity drug orlistat for triple-negative breast cancer (TNBC) therapy by improving its bioavailability. Materials & methods: PLGA-PEG-NPs were synthesized by emulsion-diffusion-evaporation method, and the experiments were conducted in vitro in MDA-MB-231 and SKBr3 TNBC and normal breast fibroblast cells. Results: Delivery of orlistat via PLGA-PEG-NPs reduced its IC50 compared with free orlistat. Combined treatment of orlistat-loaded NPs and doxorubicin or antisense-miR-21-loaded NPs significantly enhanced apoptotic effect compared with independent doxorubicin, anti-miR-21-loaded NPs, orlistat-loaded NPs or free orlistat treatments. Conclusion: We demonstrate that orlistat in combination with antisense-miR-21 or current chemotherapy holds great promise as a novel and versatile treatment agent for TNBC. PMID:26787319

  1. Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment

    PubMed Central

    Barbieri, Antonio; Quagliariello, Vincenzo; Del Vecchio, Vitale; Falco, Michela; Luciano, Antonio; Amruthraj, Nagoth Joseph; Nasti, Guglielmo; Ottaiano, Alessandro; Berretta, Massimiliano; Iaffaioli, Rosario Vincenzo; Arra, Claudio

    2017-01-01

    Among the most important traditional medicinal fungi, Ganoderma lucidum has been used as a therapeutic agent for the treatment of numerous diseases, including cancer, in Oriental countries. The aim of this study is to investigate the anti-inflammatory, anticancer and anti-metastatic activities of Ganoderma lucidum extracts in melanoma and triple-negative breast cancer cells. Ganoderma lucidum extracts were prepared by using common organic solvents; MDA-MB 231 and B16-F10 cell lines were adopted as cellular models for triple-negative breast cancer and melanoma and characterized for cell viability, wound-healing assay and measurement of cytokines secreted by cancer cells under pro-inflammatory conditions (incubation with lipopolysaccharide, LPS) and pretreatment with Ganoderma lucidum extract at different concentrations. Our study demonstrates, for the first time, how Ganoderma lucidum extracts can significantly inhibit the release of IL-8, IL-6, MMP-2 and MMP-9 in cancer cells under pro-inflammatory condition. Interestingly, Ganoderma lucidum extracts significantly also decrease the viability of both cancer cells in a time- and concentration-dependent manner, with abilities to reduce cell migration over time, which is correlated with a lower release of matrix metalloproteases. Taken together, these results indicate the possible use of Ganoderma lucidum extract for the therapeutic management of melanoma and human triple-negative breast cancer. PMID:28264501

  2. Circulating tumor DNA for triple-negative breast cancer diagnosis and treatment decisions.

    PubMed

    Saliou, Adrien; Bidard, François-Clément; Lantz, Olivier; Stern, Marc-Henri; Vincent-Salomon, Anne; Proudhon, Charlotte; Pierga, Jean-Yves

    2016-01-01

    Triple-negative breast cancer (TNBC) is a highly aggressive disease characterized by a high number of relapses and poor overall survival. The heterogeneity of the disease and the limited treatment options compared to other breast cancer subtypes mainly explain these clinical outcomes. New biomarkers are urgently needed to improve the management of TNBC. Circulating tumor DNA, identified by tumor-related molecular alterations, could be used in the context of non-invasive "liquid biopsy" and help in TNBC diagnosis and treatment decisions. In this review, we discuss the key issues related to the potential of circulating tumor DNA to improve the management of this disease and the future steps to overcome before its implementation into clinical routine within the next 5 years.

  3. Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer.

    PubMed

    Yamamoto, Mizuki; Sakane, Kota; Tominaga, Kana; Gotoh, Noriko; Niwa, Takayoshi; Kikuchi, Yasuko; Tada, Keiichiro; Goshima, Naoki; Semba, Kentaro; Inoue, Jun-Ichiro

    2017-06-01

    Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition MET, are crucial in several stages of cancer metastasis. Epithelial-mesenchymal transition allows cancer cells to move to proximal blood vessels for intravasation. However, because EMT and MET processes are dynamic, mesenchymal cancer cells are likely to undergo MET transiently and subsequently re-undergo EMT to restart the metastatic process. Therefore, spatiotemporally coordinated mutual regulation between EMT and MET could occur during metastasis. To elucidate such regulation, we chose HCC38, a human triple-negative breast cancer cell line, because HCC38 is composed of epithelial and mesenchymal populations at a fixed ratio even though mesenchymal cells proliferate significantly more slowly than epithelial cells. We purified epithelial and mesenchymal cells from Venus-labeled and unlabeled HCC38 cells and mixed them at various ratios to follow EMT and MET. Using this system, we found that the efficiency of EMT is approximately an order of magnitude higher than that of MET and that the two populations significantly enhance the transition of cells from the other population to their own. In addition, knockdown of Zinc finger E-box-binding homeobox 1 (ZEB1) or Zinc finger protein SNAI2 (SLUG) significantly suppressed EMT but promoted partial MET, indicating that ZEB1 and SLUG are crucial to EMT and MET. We also show that primary breast cancer cells underwent EMT that correlated with changes in expression profiles of genes determining EMT status and breast cancer subtype. These changes were very similar to those observed in EMT in HCC38 cells. Consequently, we propose HCC38 as a suitable model to analyze EMT-MET dynamics that could affect the development of triple-negative breast cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Histologic heterogeneity of triple negative breast cancer: A National Cancer Centre Database analysis.

    PubMed

    Mills, Matthew N; Yang, George Q; Oliver, Daniel E; Liveringhouse, Casey L; Ahmed, Kamran A; Orman, Amber G; Laronga, Christine; Hoover, Susan J; Khakpour, Nazanin; Costa, Ricardo L B; Diaz, Roberto

    2018-06-02

    Triple negative breast cancer (TNBC) is an aggressive disease, but recent studies have identified heterogeneity in patient outcomes. However, the utility of histologic subtyping in TNBC has not yet been well-characterised. This study utilises data from the National Cancer Center Database (NCDB) to complete the largest series to date investigating the prognostic importance of histology within TNBC. A total of 729,920 patients (pts) with invasive ductal carcinoma (IDC), metaplastic breast carcinoma (MBC), medullary breast carcinoma (MedBC), adenoid cystic carcinoma (ACC), invasive lobular carcinoma (ILC) or apocrine breast carcinoma (ABC) treated between 2004 and 2012 were identified in the NCDB. Of these, 89,222 pts with TNBC that received surgery were analysed. Kaplan-Meier analysis, log-rank testing and multivariate Cox proportional hazards regression were utilised with overall survival (OS) as the primary outcome. MBC (74.1%), MedBC (60.6%), ACC (75.7%), ABC (50.1%) and ILC (1.8%) had significantly different proportions of triple negativity when compared to IDC (14.0%, p < 0.001). TNBC predicted an inferior OS in IDC (p < 0.001) and ILC (p < 0.001). Lumpectomy and radiation (RT) were more common in MedBC (51.7%) and ACC (51.5%) and less common in MBC (33.1%) and ILC (25.4%), when compared to IDC (42.5%, p < 0.001). TNBC patients with MBC (HR 1.39, p < 0.001), MedBC (HR 0.42, p < 0.001) and ACC (HR 0.32, p = 0.003) differed significantly in OS when compared to IDC. Our results indicate that histologic heterogeneity in TNBC significantly informs patient outcomes and thus, has the potential to aid in the development of optimum personalised treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Triple-negative breast cancer: treatment challenges and solutions

    PubMed Central

    Collignon, Joëlle; Lousberg, Laurence; Schroeder, Hélène; Jerusalem, Guy

    2016-01-01

    Triple-negative breast cancers (TNBCs) are defined by the absence of estrogen and progesterone receptors and the absence of HER2 overexpression. These cancers represent a heterogeneous breast cancer subtype with a poor prognosis. Few systemic treatment options exist besides the use of chemotherapy (CT). The heterogeneity of the disease has limited the successful development of targeted therapy in unselected patient populations. Currently, there are no approved targeted therapies for TNBC. However, intense research is ongoing to identify specific targets and develop additional and better systemic treatment options. Standard adjuvant and neoadjuvant regimens include anthracyclines, cyclophosphamide, and taxanes. Platinum-based CT has been proposed as another CT option of interest in TNBC. We review the role of this therapy in general, and particularly in patients carrying BRCA germ-line mutations. Available data concerning the role of platinum-based CT in TNBC were acquired primarily in the neoadjuvant setting. The routine use of platinum-based CT is not yet recommended by available guidelines. Many studies have reported the molecular characterization of TNBCs. Several actionable targets have been identified. Novel therapeutic strategies are currently being tested in clinical trials based on promising results observed in preclinical studies. These targets include androgen receptor, EGFR, PARP, FGFR, and the angiogenic pathway. We review the recent data on experimental drugs in this field. We also discuss the recent data concerning immunologic checkpoint inhibitors. PMID:27284266

  6. (Updated) Targeted T-Cell Therapy Shows Promise Against Triple-Negative Breast Cancer | Poster

    Cancer.gov

    (Updated May 8) A study led by the Baylor College of Medicine and supported by NCI’s Center for Cancer Research (CCR) has demonstrated that chimeric antigen receptor (CAR) T-cell therapy can be used to treat solid triple-negative breast cancer (TNBC) tumors. The investigation is the first work using CAR T-cell therapy against TEM8, a cell surface protein that is frequently overexpressed both in TNBC cells and cells lining the blood vessels that sustain TNBC tumors.

  7. miR-429 mediates δ-tocotrienol-induced apoptosis in triple-negative breast cancer cells by targeting XIAP

    PubMed Central

    Wang, Chen; Ju, Hong; Shen, Chunyan; Tong, Zhongsheng

    2015-01-01

    Vitamin E δ-tocotrienol has been reported to possess anticancer activity both in vitro and in vivo. However, the underlying molecular mechanisms of δ-tocotrienol induced apoptosis in triple-negative breast cancer are not fully understood. Here, we reported that microRNA-429 (miR-429) is up-regulated in two TNBC cell lines (MDA-MB-231 and MDA-MB-468), treated with δ-tocotrienol. Inhibition of miR-429 may partially rescue the apoptosis induced by δ-tocotrienol in MDA-MB-231 cells. We also showed that the forced expression of miR-429 was sufficient to lead to apoptosis in MDA-MB-231 cells. Furthermore, we identified X-linked inhibitor of apoptosis protein (XIAP) as one of miR-429’s target genes. These results suggest that the activation of miR-429 by δ-tocotrienol may be an effective approach for the prevention and treatment of triple-negative breast cancer. PMID:26629059

  8. Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy.

    PubMed

    Wang, Yuyuan; Wang, Yidan; Chen, Guojun; Li, Yitong; Xu, Wei; Gong, Shaoqin

    2017-09-13

    A quantum-dot (QD)-based micelle conjugated with an anti-epidermal growth factor receptor (EGFR) nanobody (Nb) and loaded with an anticancer drug, aminoflavone (AF), has been engineered for EGFR-overexpressing cancer theranostics. The near-infrared (NIR) fluorescence of the indium phosphate core/zinc sulfide shell QDs (InP/ZnS QDs) allowed for in vivo nanoparticle biodistribution studies. The anti-EGFR nanobody 7D12 conjugation improved the cellular uptake and cytotoxicity of the QD-based micelles in EGFR-overexpressing MDA-MB-468 triple-negative breast cancer (TNBC) cells. In comparison with the AF-encapsulated nontargeted (i.e., without Nb conjugation) micelles, the AF-encapsulated Nb-conjugated (i.e., targeted) micelles accumulated in tumors at higher concentrations, leading to more effective tumor regression in an orthotopic triple-negative breast cancer xenograft mouse model. Furthermore, there was no systemic toxicity observed with the treatments. Thus, this QD-based Nb-conjugated micelle may serve as an effective theranostic nanoplatform for EGFR-overexpressing cancers such as TNBCs.

  9. Del-1 Expression as a Potential Biomarker in Triple-Negative Early Breast Cancer.

    PubMed

    Lee, Soo Jung; Lee, Jeeyeon; Kim, Wan Wook; Jung, Jin Hyang; Park, Ho Yong; Park, Ji-Young; Chae, Yee Soo

    2018-01-01

    A differential diagnostic role for plasma Del-1 was proposed for early breast cancer (EBC) in our previous study. We examined tumoral Del-1 expression and analyzed its prognostic impact among patients with EBC. Del-1 mRNA expression was assessed in breast epithelial and cancer cells. Meanwhile, the tumoral expression of Del-1 was determined based on tissue microarrays and immunohistochemistry results from 440 patients. While a high Del-1 mRNA expression was found in all the breast cancer cell lines, the expression was significantly higher in MDA-MB-231. Tumoral expression of Del-1 was also significantly associated with a negative expression of estrogen receptor or progesterone receptor, and low expression of Ki-67, particularly in the case of triple-negative breast cancer (TNBC) (p < 0.036). Furthermore, a correlation was found between Del-1 expression and an aggressive histological grade, nuclear mitosis, and polymorphism, suggesting a possible role in tumor progression. In the survival analysis, a worse distant disease-free survival trend was noted for the group overexpressing Del-1. While all the investigated breast cancer cell lines exhibited Del-1 expression, the expression rate and intensity were specifically prominent in TNBC. In addition, based on its relationship to an unfavorable histology and worse survival trend, Del-1 could act as a molecular target in TNBC patients. © 2018 S. Karger AG, Basel.

  10. Update on the Treatment of Early-Stage Triple-Negative Breast Cancer.

    PubMed

    Sharma, Priyanka

    2018-04-14

    Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is associated with poor long-term outcomes compared to other breast cancer subtypes. Currently, chemotherapy remains the main modality of treatment for early-stage TNBC, as there is no approved targeted therapy for this subtype. The biologic heterogeneity of TNBC has hindered the development and evaluation of novel agents, but recent advancements in subclassifying TNBC have paved the way for further investigation of more effective systemic therapies, including cytotoxic and targeted agents. TNBC is enriched for germline BRCA mutation and for somatic deficiencies in homologous recombination DNA repair, the so-called "BRCAness" phenotype. Together, germline BRCA mutations and BRCAness are promising biomarkers of susceptibility to DNA-damaging therapy. Various investigational approaches are consequently being investigated in early-stage TNBC, including immune checkpoint inhibitors, platinum compounds, PI3K pathway inhibitors, and androgen receptor inhibitors. Due to the biological diversity found within TNBC, patient selection based on molecular biomarkers could aid the design of early-phase clinical trials, ultimately accelerating the clinical application of effective new agents. TNBC is an aggressive breast cancer subtype, for which multiple targeted approaches will likely be required for patient outcomes to be substantially improved.

  11. Lapatinib-induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors.

    PubMed

    Chen, Yun-Ju; Yeh, Ming-Hsin; Yu, Meng-Chieh; Wei, Ya-Ling; Chen, Wen-Shu; Chen, Jhen-Yu; Shih, Chih-Yu; Tu, Chih-Yen; Chen, Chia-Hung; Hsia, Te-Chun; Chien, Pei-Hsuan; Liu, Shu-Hui; Yu, Yung-Luen; Huang, Wei-Chien

    2013-11-12

    Triple-negative breast cancer (TNBC), a subtype of breast cancer with negative expressions of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is frequently diagnosed in younger women and has poor prognosis for disease-free and overall survival. Due to the lack of known oncogenic drivers for TNBC proliferation, clinical benefit from currently available targeted therapies is limited, and new therapeutic strategies are urgently needed. Triple-negative breast cancer cell lines were treated with proteasome inhibitors in combination with lapatinib (a dual epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor). Their in vitro and in vivo viability was examined by MTT assay, clonogenic analysis, and orthotopic xenograft mice model. Luciferase reporter gene, immunoblot, and RT-qPCR, immunoprecipitation assays were used to investigate the molecular mechanisms of action. Our data showed that nuclear factor (NF)-κB activation was elicited by lapatinib, independent of EGFR/HER2 inhibition, in TNBCs. Lapatinib-induced constitutive activation of NF-κB involved Src family kinase (SFK)-dependent p65 and IκBα phosphorylations, and rendered these cells more vulnerable to NF-κB inhibition by p65 small hairpin RNA. Lapatinib but not other EGFR inhibitors synergized the anti-tumor activity of proteasome inhibitors both in vitro and in vivo. Our results suggest that treatment of TNBCs with lapatinib may enhance their oncogene addiction to NF-κB, and thus augment the anti-tumor activity of proteasome inhibitors. These findings suggest that combination therapy of a proteasome inhibitor with lapatinib may benefit TNBC patients.

  12. CPTAC Identifies Novel Resistant Mechanism to PI3K Inhibitor in Triple Negative Breast Cancers | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Breast cancer is the second most common cancer in women living in the United States, with triple-negative breast cancer (TNBC) accounting for approximately 15% of diagnoses. While chemotherapy is the standard-of-care in TNBC, resistance is common and associated with poor prognosis.

  13. Differences in Multi-Modal Ultrasound Imaging between Triple Negative and Non-Triple Negative Breast Cancer.

    PubMed

    Li, Ziyao; Tian, Jiawei; Wang, Xiaowei; Wang, Ying; Wang, Zhenzhen; Zhang, Lei; Jing, Hui; Wu, Tong

    2016-04-01

    The objective of this study was to identify multi-modal ultrasound imaging parameters that could potentially help to differentiate between triple negative breast cancer (TNBC) and non-TNBC. Conventional ultrasonography, ultrasound strain elastography and 3-D ultrasound (3-D-US) findings from 50 TNBC and 179 non-TNBC patients were retrospectively reviewed. Immunohistochemical examination was used as the reference gold standard for cancer subtyping. Different ultrasound modalities were initially analyzed to define TNBC-related features. Subsequently, logistic regression analysis was applied to TNBC-related features to establish models for predicting TNBC. TNBCs often presented as micro-lobulated, markedly hypo-echoic masses with an abrupt interface (p = 0.015, 0.0015 and 0.004, compared with non-TNBCs, respectively) on conventional ultrasound, and showed a diminished retraction pattern phenomenon in the coronal plane (p = 0.035) on 3-D-US. Our findings suggest that B-mode ultrasound and 3-D-US in multi-modality ultrasonography could be a useful non-invasive technique for differentiating TNBCs from non-TNBCs. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. The fate of chemoresistance in triple negative breast cancer (TNBC)

    PubMed Central

    O’Reilly, Elma A.; Gubbins, Luke; Sharma, Shiva; Tully, Riona; Guang, Matthew Ho Zhing; Weiner-Gorzel, Karolina; McCaffrey, John; Harrison, Michele; Furlong, Fiona; Kell, Malcolm; McCann, Amanda

    2015-01-01

    Background Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. Scope of Review How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. Major conclusions Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. General Significance Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy. PMID:26676166

  15. Activation of mammalian target of rapamycin (mTOR) in triple negative feline mammary carcinomas

    PubMed Central

    2013-01-01

    Background Triple negative breast cancer (TNBC) in humans is defined by the absence of oestrogen receptor (ER), progesterone receptor (PR) and HER2 overexpression. Mammalian target of rapamycin (mTOR) is overexpressed in TNBC and it represents a potential target for the treatment of this aggressive tumour. Feline mammary carcinoma (FMC) is considered to be a model for hormone-independent human breast cancer. This study investigated mTOR and p-mTOR expression in FMC in relation to triple negative (TN) phenotype. Results The expression of mTOR, p-mTOR, ERα, PR and HER2 was evaluated in 58 FMCs by immunohistochemistry and in six FMC cell lines by Western blot analysis. 53.5% of FMC analyzed were ER, PR, HER2 negative (TN-FMC) while 56.9% and 55.2% of cases expressed mTOR and p-mTOR respectively. In this study we found that m-TOR and p-mTOR were more frequently detected in TN-FMC and in HER2 negative samples. Conclusions In this study, we demonstrate that there is also a FMC subset defined as TN FMC, which is characterised by a statistically significant association with m-TOR and p-mTOR expression as demonstrated in human breast cancer. PMID:23587222

  16. The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makvandi, Mehran; Tilahun, Estifanos D.; Lieberman, Brian P.

    Background: Triple-negative breast cancer (TNBC) is associated with high relapse rates and increased mortality when compared with other breast cancer subtypes. In contrast to receptor positive breast cancers, there are no approved targeted therapies for TNBC. Identifying biomarkers for TNBC is of high importance for the advancement of patient care. The sigma-2 receptor has been shown to be overexpressed in triple negative breast cancer in vivo and has been characterized as a marker of proliferation. The aim of the present study was to define the sigma-2 receptor as a target for therapeutic drug delivery and biomarker in TNBC. Methods: Three TNBCmore » cell lines were evaluated: MDA-MB-231, HCC1937 and HCC1806. Sigma-2 compounds were tested for pharmacological properties specific to the sigma-2 receptor through competitive inhibition assays. Sigma-2 receptor expression was measured through radioligand receptor saturation studies. Drug sensitivity for taxol was compared to a sigma-2 targeting compound conjugated to a cytotoxic payload, SW IV-134. Cell viability was assessed after treatments for 2 or 48 h. Sigma-2 blockade was assessed to define sigma-2 mediated cytotoxicity of SW IV-134. Caspase 3/7 activation induced by SW IV-134 was measured at corresponding treatment time points. Results: SW IV-134 was the most potent compound tested in two of the three cell lines and was similarly effective in all three. MDA-MB-231 displayed a statistically significant higher sigma-2 receptor expression and also was the most sensitive cell line evaluated to SW IV-134. Conclusion: Targeting the sigma-2 receptor with a cytotoxic payload was effective in all the three cell lines evaluated and provides the proof of concept for future development of a therapeutic platform for the treatment of TNBC. - Highlights: • TNBC cells are sensitive to sigma-2 receptor targeted drug conjugate SW IV-134. • MDA-MB-231 displayed the highest amount of sigma-2 receptors and corresponded well

  17. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression.

    PubMed

    Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A; Marsh, Lindsey A; Anderton, Brittany N; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V; Yaswen, Paul; McManus, Michael T; Rugo, Hope S; Werb, Zena; Goga, Andrei

    2016-11-01

    Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.

  18. PIM kinase inhibition presents a novel targeted therapy against triple-negative breast tumors with elevated MYC expression

    PubMed Central

    Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y.; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N.; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A.; Marsh, Lindsey A.; Anderton, Brittany N.; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V.; Yaswen, Paul; McManus, Michael T.; Rugo, Hope S.; Werb, Zena; Goga, Andrei

    2017-01-01

    Triple-negative breast cancer (TNBC), which lacks the expression of the estrogen, progesterone, and HER2 receptors, represents the breast cancer subtype with the poorest outcome1. No targeted therapy is available against this subtype due to lack of validated molecular targets. We previously reported that MYC signaling is disproportionally elevated in triple-negative (TN) tumors compared to receptor-positive (RP) tumors2. MYC is an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes3. Direct inhibition of oncogenic MYC transcriptional activity has remained challenging4,5. The present study conducted an shRNA screen against all kinases to uncover novel MYC-dependent synthetic lethal combinations, and identified PIM1, a non-essential kinase. Here we demonstrate that PIM1 expression was elevated in TN tumors and was associated with poor prognosis in patients with hormone and HER2 receptor-negative tumors. Small molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic breast cancer models by inhibiting oncogenic transcriptional activity of MYC while simultaneously restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that exhibit elevated MYC expression. PMID:27775705

  19. Lapatinib–induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors

    PubMed Central

    2013-01-01

    Introduction Triple-negative breast cancer (TNBC), a subtype of breast cancer with negative expressions of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is frequently diagnosed in younger women and has poor prognosis for disease-free and overall survival. Due to the lack of known oncogenic drivers for TNBC proliferation, clinical benefit from currently available targeted therapies is limited, and new therapeutic strategies are urgently needed. Methods Triple-negative breast cancer cell lines were treated with proteasome inhibitors in combination with lapatinib (a dual epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor). Their in vitro and in vivo viability was examined by MTT assay, clonogenic analysis, and orthotopic xenograft mice model. Luciferase reporter gene, immunoblot, and RT-qPCR, immunoprecipitation assays were used to investigate the molecular mechanisms of action. Results Our data showed that nuclear factor (NF)-κB activation was elicited by lapatinib, independent of EGFR/HER2 inhibition, in TNBCs. Lapatinib-induced constitutive activation of NF-κB involved Src family kinase (SFK)-dependent p65 and IκBα phosphorylations, and rendered these cells more vulnerable to NF-κB inhibition by p65 small hairpin RNA. Lapatinib but not other EGFR inhibitors synergized the anti-tumor activity of proteasome inhibitors both in vitro and in vivo. Our results suggest that treatment of TNBCs with lapatinib may enhance their oncogene addiction to NF-κB, and thus augment the anti-tumor activity of proteasome inhibitors. Conclusions These findings suggest that combination therapy of a proteasome inhibitor with lapatinib may benefit TNBC patients. PMID:24216290

  20. Talazoparib and HSP90 Inhibitor AT13387 in Treating Patients With Metastatic Advanced Solid Tumor or Recurrent Ovarian, Fallopian Tube, Primary Peritoneal, or Triple Negative Breast Cancer

    ClinicalTrials.gov

    2016-07-22

    Adult Solid Neoplasm; Estrogen Receptor Negative; Fallopian Tube Serous Neoplasm; HER2/Neu Negative; Ovarian Serous Adenocarcinoma; Ovarian Serous Tumor; Primary Peritoneal Serous Adenocarcinoma; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Triple-Negative Breast Carcinoma

  1. Distinct microbiological signatures associated with triple negative breast cancer.

    PubMed

    Banerjee, Sagarika; Wei, Zhi; Tan, Fei; Peck, Kristen N; Shih, Natalie; Feldman, Michael; Rebbeck, Timothy R; Alwine, James C; Robertson, Erle S

    2015-10-15

    Infectious agents are the third highest human cancer risk factor and may have a greater role in the origin and/or progression of cancers, and related pathogenesis. Thus, knowing the specific viruses and microbial agents associated with a cancer type may provide insights into cause, diagnosis and treatment. We utilized a pan-pathogen array technology to identify the microbial signatures associated with triple negative breast cancer (TNBC). This technology detects low copy number and fragmented genomes extracted from formalin-fixed paraffin embedded archival tissues. The results, validated by PCR and sequencing, define a microbial signature present in TNBC tissue which was underrepresented in normal tissue. Hierarchical clustering analysis displayed two broad microbial signatures, one prevalent in bacteria and parasites and one prevalent in viruses. These signatures demonstrate a new paradigm in our understanding of the link between microorganisms and cancer, as causative or commensal in the tumor microenvironment and provide new diagnostic potential.

  2. Apatinib + CPT-11 + S-1 for treatment of refractory brain metastases in patient with triple-negative breast cancer

    PubMed Central

    Hu, Ting; Liu, Cuiwei; Li, Qiuhui; Xiong, Jie; Ma, Yuxi; Wu, Gang; Zhao, Yanxia

    2018-01-01

    Abstract Rationale: Brain metastasis (BM) is a rising challenge in forward-looking oncology, as its treatment choices are very limited, especially, after the failure of local treatment schemes. Patient concerns: We report on a 39-year-old Chinese woman who was diagnosed with stage IV triple-negative breast cancer(TNBC) with multiple brain, lung, and bone metastases. She had previously, undergone whole-brain radiation therapy. Paclitaxel, platinum, UTD1, capecitabine, gemcitabine, vinorelbine, and single-agent apatinib were then administered as first- to fifth-line therapies. She exhibited progression each time after a short period of disease stabilization. Diagnoses: Triple-negative breast cancer. Interventions: The patient chose treatment with apatinib+CPT-11+S-1 as the sixth-line therapy. Outcomes: A remarkable response of the brain, and lung metastases, and alleviation of the brain edema were achieved, and these effects persisted for 7 months. Lessons: We describe the significant anti-tumor effect of apatinib + CPT-11 + S-1 against BMs from breast cancer. This report is the first to suggest potential approaches to BM treatment using this scheme and describes the effects of an apatinib-containing regimen on BMs. PMID:29642175

  3. The Tri-State Experience. Outcome Analysis of Patients with Triple Negative Breast Cancer Treated at Marshall University.

    PubMed

    Matt, Laurie; Mozayen, Mohammad; Gress, Todd; Tirona, Maria Tria

    2015-01-01

    Breast cancer is the most frequently diagnosed malignancy in women in the United States. It is the second most common malignancy to cause death, with approximately 39,000 women dying of breast cancer in the United States in 2013. Triple negative breast cancer is defined as the absence of estrogen, progesterone and human epidermal growth factor receptor 2 receptors. It has been associated with a higher incidence in African American women, a younger age and a more advanced stage at diagnosis, and an inferior overall survival. To recognize the differences of our West Virginia community population when compared to the national average, we conducted a retrospective review of all patients diagnosed with breast cancer from 2000-2012.

  4. A comparative study of the adhesion of biosynthesized gold and conjugated gold/prodigiosin nanoparticles to triple negative breast cancer cells.

    PubMed

    Dozie-Nwachukwu, S O; Obayemi, J D; Danyuo, Y; Anuku, N; Odusanya, O S; Malatesta, K; Soboyejo, W O

    2017-08-17

    This paper explores the adhesion of biosynthesized gold nanoparticles (AuNPs) and gold (Au) nanoparticle/prodigiosin (PG) drug nanoparticles to breast cancer cells (MDA-MB-231 cells). The AuNPs were synthesized in a record time (less than 30 s) from Nauclea latifolia leaf extracts, while the PG was produced via bacterial synthesis with Serratia marcescens sp. The size distributions and shapes of the resulting AuNPs were characterized using transmission electron microscopy (TEM), while the resulting hydrodynamic diameters and polydispersity indices were studied using dynamic light scattering (DLS). Atomic Force Microscopy (AFM) was used to study the adhesion between the synthesized gold nanoparticles (AuNPs)/LHRH-conjugated AuNPs and triple negative breast cancer cells (MDA-MB-231 cells), as well as the adhesion between LHRH-conjugated AuNP/PG drug and MDA-MB-231 breast cancer cells. The adhesion forces between LHRH-conjugated AuNPs and breast cancer cells are shown to be five times greater than those between AuNPs and normal breast cells. The increase in adhesion is shown to be due to the over-expression of LHRH receptors on the surfaces of MDA-MB-231 breast cancer cells, which was revealed by confocal immuno-fluorescence microscopy. The implications of the results are then discussed for the selective and specific targeting and treatment of triple negative breast cancer.

  5. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer

    PubMed Central

    2010-01-01

    Introduction Various multigene predictors of breast cancer clinical outcome have been commercialized, but proved to be prognostic only for hormone receptor (HR) subsets overexpressing estrogen or progesterone receptors. Hormone receptor negative (HRneg) breast cancers, particularly those lacking HER2/ErbB2 overexpression and known as triple-negative (Tneg) cases, are heterogeneous and generally aggressive breast cancer subsets in need of prognostic subclassification, since most early stage HRneg and Tneg breast cancer patients are cured with conservative treatment yet invariably receive aggressive adjuvant chemotherapy. Methods An unbiased search for genes predictive of distant metastatic relapse was undertaken using a training cohort of 199 node-negative, adjuvant treatment naïve HRneg (including 154 Tneg) breast cancer cases curated from three public microarray datasets. Prognostic gene candidates were subsequently validated using a different cohort of 75 node-negative, adjuvant naïve HRneg cases curated from three additional datasets. The HRneg/Tneg gene signature was prognostically compared with eight other previously reported gene signatures, and evaluated for cancer network associations by two commercial pathway analysis programs. Results A novel set of 14 prognostic gene candidates was identified as outcome predictors: CXCL13, CLIC5, RGS4, RPS28, RFX7, EXOC7, HAPLN1, ZNF3, SSX3, HRBL, PRRG3, ABO, PRTN3, MATN1. A composite HRneg/Tneg gene signature index proved more accurate than any individual candidate gene or other reported multigene predictors in identifying cases likely to remain free of metastatic relapse. Significant positive correlations between the HRneg/Tneg index and three independent immune-related signatures (STAT1, IFN, and IR) were observed, as were consistent negative associations between the three immune-related signatures and five other proliferation module-containing signatures (MS-14, ONCO-RS, GGI, CSR/wound and NKI-70). Network analysis

  6. Targeting oncogenic vulnerabilities in triple negative breast cancer: biological bases and ongoing clinical studies

    PubMed Central

    Ocana, Alberto; Pandiella, Atanasio

    2017-01-01

    Triple negative breast cancer (TNBC) is still an incurable disease despite the great scientific effort performed during the last years. The huge heterogeneity of this disease has motivated the evaluation of a great number of therapies against different molecular alterations. In this article, we review the biological bases of this entity and how the known molecular evidence supports the current preclinical and clinical development of new therapies. Special attention will be given to ongoing clinical studies and potential options for future drug combinations. PMID:28108739

  7. Punctuated Copy Number Evolution and Clonal Stasis in Triple-Negative Breast Cancer

    PubMed Central

    Gao, Ruli; Davis, Alexander; McDonald, Thomas O.; Sei, Emi; Shi, Xiuqing; Wang, Yong; Tsai, Pei-Ching; Casasent, Anna; Waters, Jill; Zhang, Hong; Meric-Bernstam, Funda; Michor, Franziska; Navin, Nicholas E.

    2016-01-01

    Aneuploidy is a hallmark of breast cancer; however, our knowledge of how these complex genomic rearrangements evolve during tumorigenesis is limited. In this study we developed a highly multiplexed single-nucleus-sequencing method to investigate copy number evolution in triple-negative breast cancer patients. We sequenced 1000 single cells from 12 patients and identified 1–3 major clonal subpopulations in each tumor that shared a common evolutionary lineage. We also identified a minor subpopulation of non-clonal cells that were classified as: 1) metastable, 2) pseudo-diploid, or 3) chromazemic. Phylogenetic analysis and mathematical modeling suggest that these data are unlikely to be explained by the gradual accumulation of copy number events over time. In contrast, our data challenge the paradigm of gradual evolution, showing that the majority of copy number aberrations are acquired at the earliest stages of tumor evolution, in short punctuated bursts, followed by stable clonal expansions that form the tumor mass. PMID:27526321

  8. Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects.

    PubMed

    Stagg, John; Allard, Bertrand

    2013-05-01

    Triple-negative breast cancer (TNBC), as defined by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression, is a challenging disease with the poorest prognosis of all breast cancer subtypes. Importantly, there are currently no known molecular targets for this subgroup of patients. Recent advances in genomics and gene expression profiling have shed new light on the molecule heterogeneity of TNBC. We present an overview of the scientific evidence suggesting that clinical outcome in TNBC is affected by tumor-infiltrating immune cells. We also describe tumor-associated antigens recently identified in TNBC. Finally, we review the current literature on promising immunotherapies for TNBC, including tumor vaccine approaches, immune-checkpoint inhibitors, antagonists of immunosuppressive molecules and adoptive cell therapies. It is our contention that selected patients with TNBC with lymphocytic tumor infiltrates at diagnosis may benefit from immune-based therapies and that these immunotherapies will be most beneficial in combination with cytotoxic drugs that potentiate adaptive anti-tumor immunity.

  9. Fluorescence-guided surgery of a highly-metastatic variant of human triple-negative breast cancer targeted with a cancer-specific GFP adenovirus prevents recurrence

    PubMed Central

    Yano, Shuya; Takehara, Kiyoto; Miwa, Shinji; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Urata, Yasuo; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2016-01-01

    We have previously developed a genetically-engineered GFP-expressing telomerase-dependent adenovirus, OBP-401, which can selectively illuminate cancer cells. In the present report, we demonstrate that targeting a triple-negative high-invasive human breast cancer, orthotopically-growing in nude mice, with OBP-401 enables curative fluorescence-guided surgery (FGS). OBP-401 enabled complete resection and prevented local recurrence and greatly inhibited lymph-node metastasis due to the ability of the virus to selectively label and subsequently kill cancer cells. In contrast, residual breast cancer cells become more aggressive after bright (white)-light surgery (BLS). OBP-401-based FGS also improved the overall survival compared with conventional BLS. Thus, metastasis from a highly-aggressive triple-negative breast cancer can be prevented by FGS in a clinically-relevant mouse model. PMID:27689331

  10. Triple-Negative or HER2-Positive Status Predicts Higher Rates of Locoregional Recurrence in Node-Positive Breast Cancer Patients After Mastectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shulian; Li Yexiong, E-mail: yexiong@yahoo.com; Song Yongwen

    2011-07-15

    Purpose: To evaluate the prognostic value of determining estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression in node-positive breast cancer patients treated with mastectomy. Methods and Materials: The records of 835 node-positive breast cancer patients who had undergone mastectomy between January 2000 and December 2004 were analyzed retrospectively. Of these, 764 patients (91.5%) received chemotherapy; 68 of 398 patients (20.9%) with T1-2N1 disease and 352 of 437 patients (80.5%) with T3-4 or N2-3 disease received postoperative radiotherapy. Patients were classified into four subgroups according to hormone receptor (Rec+ or Rec-) and HER2 expression profiles:more » Rec-/HER2- (triple negative; n = 141), Rec-/HER2+ (n = 99), Rec+/HER2+ (n = 157), and Rec+/HER2- (n = 438). The endpoints were the duration of locoregional recurrence-free survival, distant metastasis-free survival, disease-free survival, and overall survival. Results: Patients with triple-negative, Rec-/HER2+, and Rec+/HER2+ expression profiles had a significantly lower 5-year locoregional recurrence-free survival than those with Rec+/HER2- profiles (86.5% vs. 93.6%, p = 0.002). Compared with those with Rec+/HER2+ and Rec+/HER2- profiles, patients with Rec-/HER2- and Rec-/HER2+ profiles had significantly lower 5-year distant metastasis-free survival (69.1% vs. 78.5%, p = 0.000), lower disease-free survival (66.6% vs. 75.6%, p = 0.000), and lower overall survival (71.4% vs. 84.2%, p = 0.000). Triple-negative or Rec-/HER2+ breast cancers had an increased likelihood of relapse and death within the first 3 years after treatment. Conclusions: Triple-negative and HER2-positive profiles are useful markers of prognosis for locoregional recurrence and survival in node-positive breast cancer patients treated with mastectomy.« less

  11. Effects of human arylamine N-acetyltransferase I knockdown in triple-negative breast cancer cell lines

    PubMed Central

    Tiang, Jacky M; Butcher, Neville J; Minchin, Rodney F

    2015-01-01

    Expression of human arylamine N-acetyltransferase I (NAT1) has been associated with various cancer subtypes and inhibition of this enzyme with small molecule inhibitors or siRNA affects cell growth and survival. Here, we have investigated the role of NAT1 in the invasiveness of breast cancer cells both in vitro and in vivo. We knocked down NAT1 using a lentivirus-based shRNA approach and observed marked changes in cell morphology in the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-436, and BT-549. Most notable was a reduction in the number and size of the filopodia protrusions on the surface of the cells. The loss of filopodia could be rescued by the reintroduction of NAT1 into the knockdown cells. NAT1 expression was localized to the lamellipodia and extended into the filopodia protrusions. In vitro invasion through Geltrex was significantly inhibited in both the MDA cell lines but not in the BT-549 cells. The expression of Snail increased when NAT1 was knocked down, while other genes associated with mesenchymal to epithelial transition (vimentin, cytokeratin-18, and Twist) did not show any changes. By contrast, both N-cadherin and β-catenin were significantly reduced. When MDA-MB-231 cells expressing shRNA were injected in vivo into BALB/c nu/nu nude mice, a significant reduction in the number of colonies that formed in the lungs was observed. Taken together, the results show that NAT1 can alter the invasion and metastatic properties of some triple-negative breast cancer cells but not all. The study suggests that NAT1 may be a novel therapeutic target in a subset of breast cancers. PMID:25627111

  12. Effects of human arylamine N-acetyltransferase I knockdown in triple-negative breast cancer cell lines.

    PubMed

    Tiang, Jacky M; Butcher, Neville J; Minchin, Rodney F

    2015-04-01

    Expression of human arylamine N-acetyltransferase I (NAT1) has been associated with various cancer subtypes and inhibition of this enzyme with small molecule inhibitors or siRNA affects cell growth and survival. Here, we have investigated the role of NAT1 in the invasiveness of breast cancer cells both in vitro and in vivo. We knocked down NAT1 using a lentivirus-based shRNA approach and observed marked changes in cell morphology in the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-436, and BT-549. Most notable was a reduction in the number and size of the filopodia protrusions on the surface of the cells. The loss of filopodia could be rescued by the reintroduction of NAT1 into the knockdown cells. NAT1 expression was localized to the lamellipodia and extended into the filopodia protrusions. In vitro invasion through Geltrex was significantly inhibited in both the MDA cell lines but not in the BT-549 cells. The expression of Snail increased when NAT1 was knocked down, while other genes associated with mesenchymal to epithelial transition (vimentin, cytokeratin-18, and Twist) did not show any changes. By contrast, both N-cadherin and β-catenin were significantly reduced. When MDA-MB-231 cells expressing shRNA were injected in vivo into BALB/c nu/nu nude mice, a significant reduction in the number of colonies that formed in the lungs was observed. Taken together, the results show that NAT1 can alter the invasion and metastatic properties of some triple-negative breast cancer cells but not all. The study suggests that NAT1 may be a novel therapeutic target in a subset of breast cancers. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.

    PubMed

    Xiang, Jingyu; Hurchla, Michelle A; Fontana, Francesca; Su, Xinming; Amend, Sarah R; Esser, Alison K; Douglas, Garry J; Mudalagiriyappa, Chidananda; Luker, Kathryn E; Pluard, Timothy; Ademuyiwa, Foluso O; Romagnoli, Barbara; Tuffin, Gérald; Chevalier, Eric; Luker, Gary D; Bauer, Michael; Zimmermann, Johann; Aft, Rebecca L; Dembowsky, Klaus; Weilbaecher, Katherine N

    2015-11-01

    The SDF-1 receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple-negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow-disseminated tumor cells (DTC)-negative patients at high risk for metastasis and death. The protein epitope mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple-negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth, but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared with single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we used a "chemotherapy framing" dosing strategy. When administered shortly before and after eribulin treatment, three doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases. ©2015 American Association for Cancer Research.

  14. Biopsychosocial Challenges and Needs of Young African American Women with Triple-Negative Breast Cancer.

    PubMed

    Bollinger, Sarah

    2018-05-01

    Triple-negative breast cancer (TNBC) is a subtype of breast cancer known to have poorer prognoses and lower survival rates compared with other types of breast cancer. In addition, TNBC is overrepresented in premenopausal African American women. Using grounded theory as the qualitative methodological approach, the present article elucidates unique biopsychosocial challenges and needs of young African American women with TNBC. A study group of six women with TNBC and a comparison group of six women with estrogen receptor-positive breast cancer were interviewed longitudinally over three time points throughout the cancer treatment trajectory. Major themes that were unique to the study group of women with TNBC include (a) longer, more aggressive treatment trajectories; (b) more difficult struggles with feminine identity; (c) the presence of fertility and parenting issues; (d) higher burdens of care; (e) barriers to separation and individuation as a maturation milestone; and (f) feeling out of place compared with peers. These themes provide a foundation to inform how social workers care for this underserved group of women.

  15. miRNAs and Other Epigenetic Changes as Biomarkers in Triple Negative Breast Cancer

    PubMed Central

    Mathe, Andrea; Scott, Rodney J.; Avery-Kiejda, Kelly A.

    2015-01-01

    Triple negative breast cancer (TNBC) is characterised by the lack of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2). Since it cannot be treated by current endocrine therapies which target these receptors and due to its aggressive nature, it has one of the worst prognoses of all breast cancer subtypes. The only treatments remain chemo- and/or radio-therapy and surgery and because of this, novel biomarkers or treatment targets are urgently required to improve disease outcomes. MicroRNAs represent an attractive candidate for targeted therapies against TNBC, due to their natural ability to act as antisense interactors and regulators of entire gene sets involved in malignancy and their superiority over mRNA profiling to accurately classify disease. Here we review the current knowledge regarding miRNAs as biomarkers in TNBC and their potential use as therapeutic targets in this disease. Further, we review other epigenetic changes and interactions of these changes with microRNAs in this breast cancer subtype, which may lead to the discovery of new treatment targets for TNBC. PMID:26633365

  16. PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis.

    PubMed

    Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S

    2014-09-01

    Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a

  17. PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis

    PubMed Central

    Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S

    2014-01-01

    Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a

  18. Tumor-initiating CD49f cells are a hallmark of chemoresistant triple negative breast cancer.

    PubMed

    Gomez-Miragaya, Jorge; González-Suárez, Eva

    2017-01-01

    Taxanes are mainstay treatment of triple negative breast cancer (TNBC) patients but resistance often develops. Using TNBC patient-derived orthoxenografts (PDX) we have recently discovered that a CD49f+ chemoresistant population with tumor-initiating ability is present in sensitive tumors and expands in tumors that have acquired resistance. Importantly, sensitivity to taxanes is recovered after long-term drug interruption. The characterization of this chemoresistant CD49f+ cells provides a unique opportunity to identify novel targets for the treatment of chemoresistant TNBC.

  19. Cisplatin plus gemcitabine for treatment of breast cancer patients with brain metastases; a preferential option for triple negative patients?

    PubMed

    Erten, Cigdem; Demir, Lutfiye; Somali, Isil; Alacacioglu, Ahmet; Kucukzeybek, Yuksel; Akyol, Murat; Can, Alper; Dirican, Ahmet; Bayoglu, Vedat; Tarhan, Mustafa Oktay

    2013-01-01

    To assess the efficacy and tolerability of Cisplatin plus Gemcitabine combination in patients with brain metastases (BM) from breast cancer (BC). Eighteen BC patients with BM who were treated with Cisplatin plus Gemcitabine regimen between 2003-2011 were evaluated. A median of 6 cycles of this regimen were received, in fifteen patients (83.3%) as first-line chemotherapy, in 2 as second- line and in 1 as third-line after diagnosis of BM. Dose reduction was performed in 11 (61.1%) patients; major reasons were neutropenia and leukopenia. Grade III neutropenia and Grade II trombocytopenia rates were 33.3% and 16.7% respectively. Overall response rate (ORR; complete+partial response rate) was 33.4% (n=6) for the entire study population; triple negative patients achieved an 66.6% ORR while hormone receptor (HR) positive patients had 25% and HER2 positive patients 12.5%. Median progression-free survival was 5.6 months (2.4-8.8 months, 95%CI) and longer in patients with triple negative breast cancer (TNBC) (median 7.4 months, 95%CI, 2.4-12.3 months) than the patients with other subtypes (median 5 months for HER2 positive and 3.6 months for HR positive patients). Median PFS of the patients with TNBC who received this regimen as first-line was 9.2 months (5.2-13.2 months, 95%CI). Cisplatin plus Gemcitabine may be a treatment option for patients with BM from breast cancer. Longer PFS and higher response rates are results that support the usage of this regimen especially for the triple negative subtype. However, further prospective and randomized trials are clearly required to provide more exact information.

  20. Outcomes of breast cancer patients with triple negative receptor status treated with accelerated partial breast irradiation.

    PubMed

    Wilkinson, J Ben; Reid, Robert E; Shaitelman, Simona F; Chen, Peter Y; Mitchell, Christine K; Wallace, Michelle F; Marvin, Kimberly S; Grills, Inga S; Margolis, Jeffrey M; Vicini, Frank A

    2011-11-01

    Triple negative receptor status (TNRS) of patients undergoing breast-conserving therapy treated with whole-breast irradiation has been associated with increased distant metastasis and decreased disease-free and overall survival. This paper reports the outcomes of TNRS patients treated with accelerated partial breast irradiation (APBI). We studied 455 patients who received APBI at our institution, using interstitial, intracavitary, and three-dimensional conformal radiation therapy. TNRS was assigned if a patient tested negative for all three (ER [estrogen receptor], PR [progesterone receptor], and HER2/neu) receptors. Of 202 patients with all receptor results available, 20 patients were designated TNRS, and 182 patients had at least one receptor positive (RP). We analyzed ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), distant metastasis (DM), and overall survival (OS). Mean follow-up was 4.1 years for the TNRS group and 5.1 years for the RP cohort (p = 0.11). TNRS patients had a higher histologic grade (59% TNRS vs. 13% RP; p < 0.001). Mean tumor size, stage N1 disease, and margin status were similar. Based on a 5-year actuarial analysis, the TNRS cohort experienced no IBTR, RNF, or DM, with an OS of 100% versus rates of 1.4% IBTR, 1.5% RNF, and 2.8% DM in the RP cohort (p > 0.52). OS for the RP cohort was 93% at 5 years (p > 0.28). In our patient population, TNRS conferred a clinical outcome similar to that of patients with RP disease treated with APBI. Further investigation with larger patient populations and longer follow-up periods is warranted to confirm that APBI is a safe and effective treatment for patients with localized TNRS breast cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Outcomes of Breast Cancer Patients With Triple Negative Receptor Status Treated With Accelerated Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J. Ben; Reid, Robert E.; Shaitelman, Simona F.

    2011-11-01

    Purpose: Triple negative receptor status (TNRS) of patients undergoing breast-conserving therapy treated with whole-breast irradiation has been associated with increased distant metastasis and decreased disease-free and overall survival. This paper reports the outcomes of TNRS patients treated with accelerated partial breast irradiation (APBI). Methods and Materials: We studied 455 patients who received APBI at our institution, using interstitial, intracavitary, and three-dimensional conformal radiation therapy. TNRS was assigned if a patient tested negative for all three (ER [estrogen receptor], PR [progesterone receptor], and HER2/neu) receptors. Of 202 patients with all receptor results available, 20 patients were designated TNRS, and 182 patientsmore » had at least one receptor positive (RP). We analyzed ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), distant metastasis (DM), and overall survival (OS). Results: Mean follow-up was 4.1 years for the TNRS group and 5.1 years for the RP cohort (p = 0.11). TNRS patients had a higher histologic grade (59% TNRS vs. 13% RP; p < 0.001). Mean tumor size, stage N1 disease, and margin status were similar. Based on a 5-year actuarial analysis, the TNRS cohort experienced no IBTR, RNF, or DM, with an OS of 100% versus rates of 1.4% IBTR, 1.5% RNF, and 2.8% DM in the RP cohort (p > 0.52). OS for the RP cohort was 93% at 5 years (p > 0.28). Conclusions: In our patient population, TNRS conferred a clinical outcome similar to that of patients with RP disease treated with APBI. Further investigation with larger patient populations and longer follow-up periods is warranted to confirm that APBI is a safe and effective treatment for patients with localized TNRS breast cancer.« less

  2. Triple Test in Carcinoma Breast

    PubMed Central

    Sameer; Mukherjee, Arindam

    2014-01-01

    Introduction: The commonest clinical presentation in majority of breast pathology is a lump. A definite diagnosis of breast lump is very important for the surgeon to decide on the final course of treatment and also saves the patient from unnecessary physical, emotional and psychological trauma if there is a definite preoperative diagnosis of benign lesion. The present study was done to evaluate the effectiveness and relevance of “TRIPLE TEST”in diagnosis of carcinoma breast in rural labour class population. Materials and Methods: The present study was a prospective study conducted on patients over 35 years of age having palpable breast lumps presenting in the out patient department of general surgery, ESI Hospital Basaidarapur New Delhi, India. The duration of study was from May 2007 to June 2009 and a total of 100 cases were studied. Each patient was subjected to a detailed history, clinical breast examination ,diagnostic mammography and FNAC. In this study, the results of each modality was divided in three groups: benign, suspicious and malignant. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of each test was calculated individually and as combined. Result: Out of 100 patients enrolled in this study, 60 cases were benign and 40 cases were of malignant breast disease. The age of patients with carcinoma breast in the series varied from 35 years to 70 years. The highest incidence of malignancy noted was 30% in 41-50 years age group (4th decade) followed by 27.5% in 51-60 years age group (5th decade). The sensitivity of clinical examination was found to be 75%, specificity was 83.3%, positive predictive value (PPV) of 75% and diagnostic accuracy of 80%. The sensitivity, specificity, positive predictive value and diagnostic accuracy of mammography was calculated and was found to be 94.9% , 90% , 86% and 92% respectively. The sensitivity, specificity, positive predictive value and diagnostic accuracy of

  3. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.

    PubMed

    Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J

    2017-02-01

    Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Immunoexpression of P63 and SOX2 in triple-negative breast cancers, Indonesia

    PubMed Central

    Kamarlis, Reno K; Lubis, Muhammad ND; Hernowo, Bethy S; Kar, Azmi S

    2018-01-01

    Background: Using immunohistochemical stains to target specific breast cancer markers has become indispensable for evaluation of small diagnostic tissue specimens, and therefore novel marker cocktails for specific breast cancers are required. This study was conducted to assess the immunoexpression of P63 and SOX2 in triple negative breast cancer (TNBC), and to evaluate the predictive diagnostic value of these markers for specific types of TNBC. Methods: Histological slides and paraffin blocks of TNBC cases were collected from Dr. Hasan Sadikin Hospital, Bandung, Indonesia from 5-years period (2011-2015). Each histological slide was subjected to immunohistochemical staining for P63 (nucleus and cytoplasm) and SOX2 (nucleus), with specific primer antibodies. Immunoexpression of P63 and SOX2 was evaluated using immunoreactivity scoring. Associations between P63 and SOX2 immunoexpression and TNBC types were assessed using Mann Whitney tests. In addition, the predictive diagnostic values of these markers were assessed. Results: Forty TNBC histological slides were included, and 23 (57.5%) were Basal-like type TNBC and 17 (42.5%) were Non basal-like type TNBC. Immunoexpression of P63 nucleus and SOX2 was not different between types of TNBC. However, immunoexpression of P63 in the cytoplasm in Basal-like type TNBC was significantly higher than in Non basal-like type TNBC ( p=0.021). Predictor diagnostic value analysis suggested that immunoexpression of P63 in cytoplasm had 56.5% sensitivity and 70.6% specificity for diagnosing Basal-like type TNBC, with area under curve of 0.64.    Conclusions: Immunoexpression of P63 in the cytoplasm has a relatively weak diagnostic value to discriminate Basal-like and Non basal-like types of TNBC. PMID:29527291

  5. The exploration of contrasting pathways in Triple Negative Breast Cancer (TNBC).

    PubMed

    Narrandes, Shavira; Huang, Shujun; Murphy, Leigh; Xu, Wayne

    2018-01-04

    Triple Negative Breast Cancers (TNBCs) lack the appropriate targets for currently used breast cancer therapies, conferring an aggressive phenotype, more frequent relapse and poorer survival rates. The biological heterogeneity of TNBC complicates the clinical treatment further. We have explored and compared the biological pathways in TNBC and other subtypes of breast cancers, using an in silico approach and the hypothesis that two opposing effects (Yin and Yang) pathways in cancer cells determine the fate of cancer cells. Identifying breast subgroup specific components of these opposing pathways may aid in selecting potential therapeutic targets as well as further classifying the heterogeneous TNBC subtype. Gene expression and patient clinical data from The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used for this study. Gene Set Enrichment Analysis (GSEA) was used to identify the more active pathways in cancer (Yin) than in normal and the more active pathways in normal (Yang) than in cancer. The clustering analysis was performed to compare pathways of TNBC with other types of breast cancers. The association of pathway classified TNBC sub-groups to clinical outcomes was tested using Cox regression model. Among 4729 curated canonical pathways in GSEA database, 133 Yin pathways (FDR < 0.05) and 71 Yang pathways (p-value <0.05) were discovered in TNBC. The FOXM1 is the top Yin pathway while PPARα is the top Yang pathway in TNBC. The TNBC and other types of breast cancers showed different pathways enrichment significance profiles. Using top Yin and Yang pathways as classifier, the TNBC can be further subtyped into six sub-groups each having different clinical outcomes. We first reported that the FOMX1 pathway is the most upregulated and the PPARα pathway is the most downregulated pathway in TNBC. These two pathways could be simultaneously targeted in further studies. Also the pathway classifier we

  6. Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here.

    PubMed

    Kwa, Maryann J; Adams, Sylvia

    2018-05-15

    Advances in cancer immunotherapy and a growing body of research have focused on the role of the antitumor response in breast cancer. Triple-negative breast cancer (TNBC) is the most immunogenic breast cancer subtype, and there is strong evidence that tumor-infiltrating lymphocytes in TNBC have prognostic value and are associated with clinical outcome and improved survival. Evading antitumor immunity is a hallmark for the development and progression of cancer. Immunotherapy studies have focused on the role of the programmed cell death-1 (PD-1) receptor/programmed death-ligand 1 (PD-L1) pathway in maintaining immunosuppression in the tumor microenvironment. Blockade of the PD-1/PD-L1 axis has emerged as a promising therapeutic option to enhance antitumor immunity and is actively being investigated in TNBC, with encouraging results. In this article, the authors review the current literature on checkpoint inhibitors in TNBC with a focus on PD-1/PD-L1 antibodies and discuss combination strategies and novel approaches for improving antitumor immunity and clinical outcome. Cancer 2018;124:2086-103. © 2018 American Cancer Society. © 2018 American Cancer Society.

  7. PKD1 is a potential biomarker and therapeutic target in triple-negative breast cancer.

    PubMed

    Spasojevic, Caroline; Marangoni, Elisabetta; Vacher, Sophie; Assayag, Franck; Meseure, Didier; Château-Joubert, Sophie; Humbert, Martine; Karam, Manale; Ricort, Jean Marc; Auclair, Christian; Regairaz, Marie; Bièche, Ivan

    2018-05-01

    Protein Kinase D1 (PKD1) is a serine/threonine kinase encoded by the PRKD1 gene. PKD1 has been previously shown to be a prognostic factor in ERα+ tamoxifen-resistant breast tumors and PKD1 overexpression confers estrogen independence to ERα+ MCF7 cells. In the present study, our goal was to determine whether PKD1 is a prognostic factor and/or a relevant therapeutic target in breast cancer. We analyzed PRKD1 mRNA levels in 527 primary breast tumors. We found that high PRKD1 mRNA levels were significantly and independently associated with a low metastasis-free survival in the whole breast cancer population and in the triple-negative breast cancer (TNBC) subtype specifically. High PRKD1 mRNA levels were also associated with a low overall survival in TNBC. We identified novel PKD1 inhibitors and assessed their antitumor activity in vitro in TNBC cell lines and in vivo in a TNBC patient-derived xenograft (PDX) model. Pharmacological inhibition and siRNA-mediated depletion of PKD1 reduced colony formation in MDA-MB-436 TNBC cells. PKD1 inhibition also reduced tumor growth in vivo in a TNBC PDX model. Together, these results establish PKD1 as a poor prognostic factor and a potential therapeutic target in TNBC.

  8. Outcome disparities in African American women with triple negative breast cancer: a comparison of epidemiological and molecular factors between African American and Caucasian women with triple negative breast cancer

    PubMed Central

    2014-01-01

    Background Although diagnosed less often, breast cancer in African American women (AAW) displays different characteristics compared to breast cancer in Caucasian women (CW), including earlier onset, less favorable clinical outcome, and an aggressive tumor phenotype. These disparities may be attributed to differences in socioeconomic factors such as access to health care, lifestyle, including increased frequency of obesity in AAW, and tumor biology, especially the higher frequency of triple negative breast cancer (TNBC) in young AAW. Improved understanding of the etiology and molecular characteristics of TNBC in AAW is critical to determining whether and how TNBC contributes to survival disparities in AAW. Methods Demographic, pathological and survival data from AAW (n = 62) and CW (n = 98) with TNBC were analyzed using chi-square analysis, Student’s t-tests, and log-rank tests. Frozen tumor specimens were available from 57 of the TNBC patients (n = 23 AAW; n = 34 CW); RNA was isolated after laser microdissection of tumor cells and was hybridized to HG U133A 2.0 microarrays. Data were analyzed using ANOVA with FDR <0.05, >2-fold difference defining significance. Results The frequency of TNBC compared to all BC was significantly higher in AAW (28%) compared to CW (12%), however, significant survival and pathological differences were not detected between populations. Gene expression analysis revealed the tumors were more similar than different at the molecular level, with only CRYBB2P1, a pseudogene, differentially expressed between populations. Among demographic characteristics, AAW consumed significantly lower amounts of caffeine and alcohol, were less likely to breastfeed and more likely to be obese. Conclusions These data suggest that TNBC in AAW is not a unique disease compared to TNBC in CW. Rather, higher frequency of TNBC in AAW may, in part, be attributable to the effects of lifestyle choices. Because these risk factors are modifiable, they

  9. The Role of Novel Substituted Diindolyl Methane Analogues in the Treatment of Triple-Negative and ErbB2-Positive Breast Cancer

    DTIC Science & Technology

    2016-05-01

    patients are diagnosed with TNBC, which do not express estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2...and EPBC are high risk breast cancers and the choice of orally available chemotherapeutic agents is limited. Hormonal therapy (ER modulators) and HER...antibody based therapy are far safer than cytotoxic drug based regimens. But triple negative breast cancers are not responsive to hormonal or HER

  10. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles.

    PubMed

    Liu, Yang; Zhu, Yan-Hua; Mao, Cheng-Qiong; Dou, Shuang; Shen, Song; Tan, Zi-Bin; Wang, Jun

    2014-10-28

    There is no effective clinical therapy yet for triple-negative breast cancer (TNBC) without particular human epidermal growth factor receptor-2, estrogen and progesterone receptor expression. In this study, we report a molecularly targeted and synthetic lethality-based siRNA therapy for TNBC treatment, using cationic lipid assisted poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) nanoparticles as the siRNA carrier. It is demonstrated that only in c-Myc overexpressed TNBC cells, while not in normal mammary epithelial cells, delivery of siRNA targeting cyclin-dependent kinase 1 (CDK1) with the nanoparticle carrier (NPsiCDK1) induces cell viability decreasing and cell apoptosis through RNAi-mediated CDK1 expression inhibition, indicating the synthetic lethality between c-Myc with CDK1 in TNBC cells. Moreover, systemic delivery of NPsiCDK1 is able to suppress tumor growth in mice bearing SUM149 and BT549 xenograft and cause no systemic toxicity or activate the innate immune response, suggesting the therapeutic promise with such nanoparticles carrying siCDK1 for c-Myc overexpressed triple negative breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Reproductive history, breast-feeding and risk of triple negative breast cancer: The Breast Cancer Etiology in Minorities (BEM) study.

    PubMed

    John, Esther M; Hines, Lisa M; Phipps, Amanda I; Koo, Jocelyn; Longacre, Teri A; Ingles, Sue A; Baumgartner, Kathy B; Slattery, Martha L; Wu, Anna H

    2018-06-01

    Few risk factors have been identified for triple negative breast cancer (TNBC) which lacks expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). This more aggressive subtype disproportionately affects some racial/ethnic minorities and is associated with lower survival. We pooled data from three population-based studies (558 TNBC and 5,111 controls) and examined associations of TNBC risk with reproductive history and breast-feeding. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) using multivariable logistic regression. For younger women, aged <50 years, TNBC risk was increased two-fold for parous women who never breast-fed compared to nulliparous women (OR = 2.02, 95% CI = 1.12-3.63). For younger parous women, longer duration of lifetime breast-feeding was associated with a borderline reduced risk (≥24 vs. 0 months: OR = 0.52, 95% CI = 0.26-1.04, P trend  = 0.06). Considering the joint effect of parity and breast-feeding, risk was increased two-fold for women with ≥3 full-term pregnancies (FTPs) and no or short-term (<12 months) breast-feeding compared to women with 1-2 FTPs and breast-feeding ≥12 months (OR = 2.56, 95% CI = 1.22-5.35). None of these associations were observed among older women (≥50 years). Differences in reproductive patterns possibly contribute to the ethnic differences in TNBC incidence. Among controls aged <50 years, the prevalence of no or short-term breast-feeding and ≥3 FTPs was highest for Hispanics (22%), followed by African Americans (18%), Asian Americans (15%) and non-Hispanic whites (6%). Breast-feeding is a modifiable behavioral factor that may lower TNBC risk and mitigate the effect of FTPs in women under age 50 years. © 2018 UICC.

  12. The Gαh-PLCδ1 signaling axis drives metastatic progression in triple-negative breast cancer.

    PubMed

    Huang, Shang-Pen; Liu, Pei-Yao; Kuo, Chih-Jung; Chen, Chi-Long; Lee, Wei-Jiunn; Tsai, Yu-Hui; Lin, Yuan-Feng

    2017-06-02

    Distant metastasis of triple-negative breast cancer (TNBC) to other organs, e.g., the lungs, has been correlated with poor survival rates among breast cancer patients. Therefore, the identification of useful therapeutic targets to prevent metastasis or even inhibit tumor growth of TNBC is urgently needed. Gαh is a novel GTP-binding protein and known as an inactive form of calcium-dependent tissue transglutaminase. However, the functional consequences of transamidating and G-protein activities of tissue transglutaminase in promoting cancer metastasis are still controversial. Kaplan-Meier analyses were performed to estimate the prognostic values of Gαh and PLCδ1 by utilizing public databases and performing immunohistochemical staining experiments. Cell-based invasion assays and in vivo lung colony-forming and orthotropic lung metastasis models were established to evaluate the effectiveness of interrupting the protein-protein interaction (PPI) between Gαh and PLCδ1 in inhibiting the invasive ability and metastatic potential of TNBC cells. Here, we showed that the increased level of cytosolic, not extracellular, Gαh is a poor prognostic marker in breast cancer patients and correlates with the metastatic evolution of TNBC cells. Moreover, clinicopathological analyses revealed that the combined signature of high Gαh/PLCδ1 levels indicates worse prognosis in patients with breast cancer and correlates with lymph node metastasis of ER-negative breast cancer. Blocking the PPI of the Gαh/PLCδ1 complex by synthetically myristoylated PLCδ1 peptide corresponding to the Gαh-binding interface appeared to significantly suppress cellular invasiveness in vitro and inhibit lung metastatic colonies of TNBC cells in vivo. This study establishes Gαh/PLCδ1 as a poor prognostic factor for patients with estrogen receptor-negative breast cancers, including TNBCs, and provides therapeutic value by targeting the PPI of the Gαh/PLCδ1 complex to combat the metastatic progression

  13. Microglandular adenosis: a prime suspect in triple-negative breast cancer development.

    PubMed

    Tsang, Julia Ys; Tse, Gary Mk

    2016-06-01

    Microglandular adenosis (MGA) and atypical MGA (AMGA) are unusual lesions of the breast. They were once regarded as benign proliferative lesions and innocent bystanders. Several lines of evidence suggested that they could be neoplastic, clonal lesions and a non-obligate precursor for triple-negative breast cancers (TNBC). Recent work published in The Journal of Pathology by Guerini-Rocco and colleagues provided further evidence regarding the precursor-product relationship between MGA/AMGA and TNBC. Using a massively parallel sequencing approach, they demonstrated that MGA/AMGA, particularly those associated with TNBC, could be clonal neoplastic lesions showing clonal non-synonymous mutations, but none in pure MGA. Importantly, those alterations were observed in the associated TNBC. They were also able to identify recurrent alterations in TP53 in those MGA/AMGA cases as well as their associated TNBC. The findings, in conjunction with others, underscore the significance for MGA in clinical diagnosis. The potential of a benign lesion to progress into an aggressive malignant tumour implies that modification of the current management approach may be necessary. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Imaging and histologic prognostic factors in triple-negative breast cancer and carcinoma in situ as a prognostic factor.

    PubMed

    Sebastián Sebastián, C; García Mur, C; Cruz Ciria, S; Rosero Cuesta, D S; Gros Bañeres, B

    2016-01-01

    To analyze what factors in magnetic resonance imaging (MRI) and histological study of triple-negative breast cancers are related to tumor recurrence and to shorter disease-free survival. To analyze survival and recurrence in function of the presence of an in situ component. This was a retrospective study of MRI staging examinations in 122 women with triple-negative breast cancer done from 2007 through 2014. In the MRI, we evaluated morphological variables (size, margins, morphology, internal signal in T2-weighted sequences) and dynamic variables (perfusion and diffusion). In the histological study, we evaluated Ki67, p53, CK5/6, nuclear grade, and Scarff-Bloom grade, as well as the presence of an in situ component and tumor grade (high grade or not high grade). We compared the variables between patients with tumor recurrence and those without, and we conducted a survival analysis. Non-nodular enhancement was more common in patients with tumor recurrence (p=0.038) and was associated with shorter disease-free survival (p=0.023). Neither diffusion restriction (p=0.079) nor ki67 (p=0.052) was associated with a worse prognosis. An in situ component was detected in 44% of triple-negative tumors, and a greater proportion of patients in the group with tumor recurrence had an in situ component; however, the presence of an in situ component was not associated with shorter survival (p = 0.185). Non-nodular enhancement was associated with a worse prognosis. Diffusion restriction, ki67, and the presence of an in situ component were not associated with shorter disease-free survival. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Cyclooxygenase-2 expression in non-metastatic triple-negative breast cancer patients.

    PubMed

    Mosalpuria, Kailash; Hall, Carolyn; Krishnamurthy, Savitri; Lodhi, Ashutosh; Hallman, D Michael; Baraniuk, Mary S; Bhattacharyya, Anirban; Lucci, Anthony

    2014-09-01

    Triple-negative breast cancer (TNBC) is characterised by lack of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER)2/neu gene amplification. TNBC patients typically present at a younger age, with a larger average tumor size, higher grade and higher rates of lymph node positivity compared to patients with ER/PR-positive tumors. Cyclooxygenase (COX)-2 regulates the production of prostaglandins and is overexpressed in a variety of solid tumors. In breast cancer, the overexpression of COX-2 is associated with indicators of poor prognosis, such as lymph node metastasis, poor differentiation and large tumor size. Since both TNBC status and COX-2 overexpression are known poor prognostic markers in primary breast cancer, we hypothesized that the COX-2 protein is overexpressed in the primary tumors of TNBC patients. The purpose of this study was to determine whether there exists an association between TNBC status and COX-2 protein overexpression in primary breast cancer. We prospectively evaluated COX-2 expression levels in primary tumor samples obtained from 125 patients with stage I-III breast cancer treated between February, 2005 and October, 2007. Information on clinicopathological factors was obtained from a prospective database. Baseline tumor characteristics and patient demographics were compared between TNBC and non-TNBC patients using the Chi-square and Fisher's exact tests. In total, 60.8% of the patients were classified as having ER-positive tumors, 51.2% were PR-positive, 14.4% had HER-2/neu amplification and 28.0% were classified as TNBC. COX-2 overexpression was found in 33.0% of the patients. TNBC was associated with COX-2 overexpression (P=0.009), PR expression (P=0.048) and high tumor grade (P=0.001). After adjusting for age, menopausal status, body mass index (BMI), lymph node status and neoadjuvant chemotherapy (NACT), TNBC was an independent predictor of COX-2 overexpression (P=0.01). In conclusion, the

  16. Olaparib and Onalespib in Treating Patients With Solid Tumors That Are Metastatic or Cannot Be Removed by Surgery or Recurrent Ovarian, Fallopian Tube, Primary Peritoneal, or Triple-Negative Breast Cancer

    ClinicalTrials.gov

    2018-05-18

    Estrogen Receptor Negative; HER2/Neu Negative; High Grade Fallopian Tube Serous Adenocarcinoma; High Grade Ovarian Serous Adenocarcinoma; Metastatic Malignant Solid Neoplasm; Primary Peritoneal High Grade Serous Adenocarcinoma; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Triple-Negative Breast Carcinoma; Unresectable Solid Neoplasm

  17. Veliparib and Carboplatin in Treating Patients With HER2-Negative Metastatic Breast Cancer

    ClinicalTrials.gov

    2018-04-20

    BRCA1 Gene Mutation; BRCA2 Gene Mutation; Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; Progesterone Receptor Negative; Progesterone Receptor Positive; Recurrent Breast Carcinoma; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Triple-Negative Breast Carcinoma

  18. Clinicopathology Figures and Long-term Effects of Tamoxifen Plus Radiation on Survival of Women with Invasive Ductal Carcinoma and Triple Negative Breast Cancer.

    PubMed

    Payandeh, Mehrdad; Sadeghi, Masoud; Sadeghi, Edris; Aeinfar, Mehrnoush

    2015-01-01

    Triple negative breast cancer (TNBC), characterized as estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 Her2 negative and accounting for 10-17% of all breast carcinomas, is only partially responsive to chemotherapy and suffers from a lack of clinically established targeted therapies. The aim of the current study was to evaluate the patterns of treatment and clinicopathology figures in Kurdish patients with triple-negative breast cancer, and to compare these to other reports. Between 2001 and 2014, 950 breast cancer patients were referred to our clinic. There were 74 female patients with TNBC, including 70 patients was invasive ductal carcinoma entered into our study. ER and PR positivity was defined as positive immunohistochemical staining in more than 10% of tumor cells. Immunohistochemistry assay with anti-HER2 antibodies was used to identify HER negative (0 and 1+) or positive (2+ and 3+). HER2 gene amplification was determined by fluorescent in situ hybridization (FISH). Overall survival (OS) was plotted with GraphPad Prism 5 Software using Kaplan-Meier and log-rank tests for comparison of results. The mean age in the first diagnosis for 70 patients with triple TNBC and invasive ductal carcinoma was 49.6 years that range of age was 27-82 years. All of the patients were female. Of 70 patients, 23 patients had metastasis. Thirty-two patients (45.7%) were treated with tamoxifen and 39 (55.7%) with radiotherapy. Three-year, 5-year and 10-year OS rates for all patients were 82%, 72% and 64%, respectively. The OS in our West Iran TNBC patients is less than reported elsewhere. However, treatment with combination of tamoxifen plus radiation increases the OS and reduces the mortality rate.

  19. Ultra-microsecond pulsed curcumin for effective treatment of triple negative breast cancers.

    PubMed

    Mittal, Lakshya; Raman, Vishak; Camarillo, Ignacio G; Sundararajan, Raji

    2017-09-30

    Triple negative breast cancer (TNBC) is difficult to treat due to lack of the three receptors, commonly used for treating breast cancers. Current standard of cure is either ineffective or refractive to many patients. Thus, there is a critical need for alternate, affordable therapies for TNBC cancers. Towards this, electrical pulse-mediated chemotherapy, known as electrochemotherapy is a viable option, because it uses the synergy of electrical pulses and the anticancer properties of chemo drug. Considering the cost and the harsh side effects of various commonly administered chemo drugs, in this study, low cost, yet effective, natural phytochemical curcumin is studied for its anticancer effect on MDA-MB-231, TNBC cells. We applied eight 10 μs, 2500 V/cm or 5000 V/cm pulses with 10 μM concentration of curcumin, and measured cell viability and cytotoxicity. Results indicate that cell survival, as low as 4% was induced by 5000 V/cm pulses, after 72 h, while it was 15% after 24 h. This demonstrates the potential of this treatment for TNBC and the transfer to clinical practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer

    PubMed Central

    Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293

  1. Intratumor heterogeneity predicts metastasis of triple-negative breast cancer.

    PubMed

    Yang, Fang; Wang, Yucai; Li, Quan; Cao, Lulu; Sun, Zijia; Jin, Juan; Fang, Hehui; Zhu, Aiyu; Li, Yan; Zhang, Wenwen; Wang, Yanru; Xie, Hui; Gustafsson, Jan-Åke; Wang, Shui; Guan, Xiaoxiang

    2017-09-01

    Even with the identical clinicopathological features, the ability for metastasis is vastly different among triple-negative breast cancer (TNBC) patients. Intratumor heterogeneity (ITH), which is common in breast cancer, may be a key mechanism leading to the tumor progression. In this study, we studied whether a quantitative genetic definition of ITH can predict clinical outcomes in patients with TNBC. We quantified ITH by calculating Shannon index, a measure of diversity in a population, based on Myc, epidermal growth factor receptor/centromeric probe 7 (EGFR/CEP7) and cyclin D1/centromeric probe 11 (CCND1/CEP11) copy number variations (CNVs) in 300 cells at three different locations of a tumor. Among 75 TNBC patients, those who developed metastasis had significantly higher ITH, that is Shannon indices of EGFR/CEP7 and CCND1/CEP11 CNVs. Higher Shannon indices of EGFR/CEP7 and CCND1/CEP11 CNVs were significantly associated with the development of metastasis and were predictive of significantly worse metastasis-free survival (MFS). Regional heterogeneity, defined as the difference in copy numbers of Myc, EGFR or CCND1 at different locations, was found in 52 patients. However, the presence of regional heterogeneity did not correlate with metastasis or MFS. Our findings demonstrate that higher ITH of EGFR/CEP7 and CCND1/CEP11 CNVs is predictive of metastasis and is associated with significantly worse MFS in TNBC patients, suggesting that ITH is a very promising novel prognostic factor in TNBC. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Metronomic chemotherapy for non-metastatic triple negative breast cancer: Selection is the key

    PubMed Central

    Rabanal, Connie; Ruiz, Rossana; Neciosup, Silvia; Gomez, Henry

    2017-01-01

    Triple negative breast cancer (TNBC) accounts for 15%-20% of all breast cancer, and is still defined as what it is not. Currently, TNBC is the only type of breast cancer for which there are no approved targeted therapies and maximum tolerated dose chemotherapy with taxanes and anthracycline-containing regimens is still the standard of care in both the neoadjuvant and adjuvant settings. In the last years, metronomic chemotherapy (MC) is being explored as an alternative to improve outcomes in TNBC. In the neoadjuvant setting, purely metronomic and hybrid approaches have been developed with the objective of increasing complete pathologic response (pCR) and prolonging disease free survival. These regimens proved to be very effective achieving pCR rates between 47%-60%, but at the cost of great toxicity. In the adjuvant setting, MC is used to intensify adjuvant chemotherapy and, more promisingly, as maintenance therapy for high-risk patients, especially those with no pCR after neoadjuvant chemotherapy. Considering the dismal prognosis of TNBC, any strategy that potentially improves outcomes, specially being the oral agents broadly available and inexpensive, should be considered and certainly warrants further exploration. Finally, the benefit of MC needs to be validated in properly designed clinical trials were the selection of the population is the key. PMID:29291168

  3. Effectiveness of Platinum-Based Treatment for Triple Negative Metastatic Breast Cancer: a Meta-Analysis

    PubMed

    Kaya, Vildan; Yildirim, Mustafa; Yazici, Gozde; Gunduz, Seyda; Bozcuk, Hakan; Paydas, Semra

    2018-05-26

    Background: Triple-negative breast cancer (TNBC) is a sub-group of breast cancers with a particularly poor prognosis. The results of studies investigating the role of platinum-based chemotherapy (PBC) in metastatic TNBC (mTNBC) have been conflicting. In this meta-analysis, our aim was to assess the effectiveness of PBCs for mTNBCs. Methods: The PubMed, Cochrane Controlled Trials Register Databases, and EBSCOhost databases were accessed. The English language was used as the search language and only human studies were included. The Newcastle–Ottawa Quality Assessment Scale and the Jadad scoring system were used to evaluate the quality of the included randomized controlled studies. Results: Seven studies and 1,571 patients were included in this meta-analysis. The pooled hazard ratio (HR) for overall survival (OS), evaluated on the basis of six studies, showed the use of PBC regimes to be related to OS in mTNBCs (HR 0.620; 95% CI 0.513-0.749; p:<0.001). Four studies containing HR and abstract statistics used for HR calculation were included in the meta-analysis for progression-free survival (PFS). The pooled HR again indicated a significant relation (HR, 0.628; 95% CI, 0.501-0.786; p:<0.001). Conclusions: In this meta-analysis, we confirmed that PBC regimes provide OS and PFS advantages compared to non-PBC regimes. The use of PBC regimes could be a good choice in mTNBC patients for better quality of life and survival. Creative Commons Attribution License

  4. Sub-100 nm Gold Nanomatryoshkas Improve Photo-thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors

    PubMed Central

    Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit

    2014-01-01

    There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or nectrotic regions. We report the performance advantages obtained by sub 100 nm gold nanomatryushkas, comprising of concentric gold-silica-gold layers compared to conventional ~150 nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5X accumulation within large tumors results in superior therapy efficacy. PMID:25051221

  5. Gene expression in triple-negative breast cancer in relation to survival.

    PubMed

    Wang, Shuyang; Beeghly-Fadiel, Alicia; Cai, Qiuyin; Cai, Hui; Guo, Xingyi; Shi, Liang; Wu, Jie; Ye, Fei; Qiu, Qingchao; Zheng, Ying; Zheng, Wei; Bao, Ping-Ping; Shu, Xiao-Ou

    2018-05-10

    The identification of biomarkers related to the prognosis of triple-negative breast cancer (TNBC) is critically important for improved understanding of the biology that drives TNBC progression. We evaluated gene expression in total RNA isolated from formalin-fixed paraffin-embedded tumor samples using the NanoString nCounter assay for 469 TNBC cases from the Shanghai Breast Cancer Survival Study. We used Cox regression to quantify Hazard Ratios (HR) and corresponding confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS) in models that included adjustment for breast cancer intrinsic subtype. Of 302 genes in our discovery analysis, 22 were further evaluated in relation to OS among 134 TNBC cases from the Nashville Breast Health Study and the Southern Community Cohort Study; 16 genes were further evaluated in relation to DFS in 335 TNBC cases from four gene expression omnibus datasets. Fixed-effect meta-analysis was used to combine results across data sources. Twofold higher expression of EOMES (HR 0.90, 95% CI 0.83-0.97), RASGRP1 (HR 0.89, 95% CI 0.82-0.97), and SOD2 (HR 0.80, 95% CI 0.66-0.96) was associated with better OS. Twofold higher expression of EOMES (HR 0.89, 95% CI 0.81-0.97) and RASGRP1 (HR 0.87, 95% CI 0.81-0.95) was also associated with better DFS. On the contrary, a doubling of FA2H (HR 1.14, 95% CI 1.06-1.22) and GSPT1 (HR 1.33, 95% CI 1.14-1.55) expression was associated with shorter DFS. We identified five genes (EOMES, FA2H, GSPT1, RASGRP1, and SOD2) that may serve as potential prognostic biomarkers and/or therapeutic targets for TNBC.

  6. Identification of a rhodium(iii) complex as a Wee1 inhibitor against TP53-mutated triple-negative breast cancer cells.

    PubMed

    Yang, Guan-Jun; Zhong, Hai-Jing; Ko, Chung-Nga; Wong, Suk-Yu; Vellaisamy, Kasipandi; Ye, Min; Ma, Dik-Lung; Leung, Chung-Hang

    2018-03-06

    The rhodium(iii) complex 1 was identified as a potent Wee1 inhibitor in vitro and in cellulo. It decreased Wee1 activity and unscheduled mitotic entry, and induced cell damage and death in TP53-mutated triple-negative breast cancer cells. 1 represents a promising scaffold for further development of more potent metal-based Wee1 antagonists.

  7. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    PubMed

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Metformin sensitizes triple-negative breast cancer to proapoptotic TRAIL receptor agonists by suppressing XIAP expression.

    PubMed

    Strekalova, Elena; Malin, Dmitry; Rajanala, Harisha; Cryns, Vincent L

    2017-06-01

    Despite robust antitumor activity in diverse preclinical models, TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists have not demonstrated efficacy in clinical trials, underscoring the need to identify agents that enhance their activity. We postulated that the metabolic stress induced by the diabetes drug metformin would sensitize breast cancer cells to TRAIL receptor agonists. Human triple (estrogen receptor, progesterone receptor, and HER2)-negative breast cancer (TNBC) cell lines were treated with TRAIL receptor agonists (monoclonal antibodies or TRAIL peptide), metformin, or the combination. The effects on cell survival, caspase activation, and expression of TRAIL receptors and the antiapoptotic protein XIAP were determined. In addition, XIAP was silenced by RNAi in TNBC cells and the effects on sensitivity to TRAIL were determined. The antitumor effects of metformin, TRAIL, or the combination were evaluated in an orthotopic model of metastatic TNBC. Metformin sensitized diverse TNBC cells to TRAIL receptor agonists. Metformin selectively enhanced the sensitivity of transformed breast epithelial cells to TRAIL receptor agonist-induced caspase activation and apoptosis with little effect on untransformed breast epithelial cells. These effects of metformin were accompanied by robust reductions in the protein levels of XIAP, a negative regulator of TRAIL-induced apoptosis. Silencing XIAP in TNBC cells mimicked the TRAIL-sensitizing effects of metformin. Metformin also enhanced the antitumor effects of TRAIL in a metastatic murine TNBC model. Our findings indicate that metformin enhances the activity of TRAIL receptor agonists, thereby supporting the rationale for additional translational studies combining these agents.

  9. Apatinib + CPT-11 + S-1 for treatment of refractory brain metastases in patient with triple-negative breast cancer: Case report and literature review.

    PubMed

    Hu, Ting; Liu, Cuiwei; Li, Qiuhui; Xiong, Jie; Ma, Yuxi; Wu, Gang; Zhao, Yanxia

    2018-04-01

    Brain metastasis (BM) is a rising challenge in forward-looking oncology, as its treatment choices are very limited, especially, after the failure of local treatment schemes. We report on a 39-year-old Chinese woman who was diagnosed with stage IV triple-negative breast cancer(TNBC) with multiple brain, lung, and bone metastases. She had previously, undergone whole-brain radiation therapy. Paclitaxel, platinum, UTD1, capecitabine, gemcitabine, vinorelbine, and single-agent apatinib were then administered as first- to fifth-line therapies. She exhibited progression each time after a short period of disease stabilization. Triple-negative breast cancer. The patient chose treatment with apatinib+CPT-11+S-1 as the sixth-line therapy. A remarkable response of the brain, and lung metastases, and alleviation of the brain edema were achieved, and these effects persisted for 7 months. We describe the significant anti-tumor effect of apatinib + CPT-11 + S-1 against BMs from breast cancer. This report is the first to suggest potential approaches to BM treatment using this scheme and describes the effects of an apatinib-containing regimen on BMs.

  10. Targeted Vaccination against Human α-Lactalbumin for Immunotherapy and Primary Immunoprevention of Triple Negative Breast Cancer

    PubMed Central

    Tuohy, Vincent K.; Jaini, Ritika; Johnson, Justin M.; Loya, Matthew G.; Wilk, Dennis; Downs-Kelly, Erinn; Mazumder, Suparna

    2016-01-01

    We have proposed that safe and effective protection against the development of adult onset cancers may be achieved by vaccination against tissue-specific self-proteins that are “retired” from expression at immunogenic levels in normal tissues as we age, but are overexpressed in emerging tumors. α-Lactalbumin is an example of a “retired” self-protein because its expression in normal tissues is confined exclusively to the breast during late pregnancy and lactation, but is also expressed in the vast majority of human triple negative breast cancers (TNBC)—the most aggressive and lethal form of breast cancer and the predominant form that occurs in women at high genetic risk including those with mutated BRCA1 genes. In anticipation of upcoming clinical trials, here we provide preclinical data indicating that α-lactalbumin has the potential as a vaccine target for inducing safe and effective primary immunoprevention as well as immunotherapy against TNBC. PMID:27322324

  11. Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling.

    PubMed

    Tang, X; Ding, C-K; Wu, J; Sjol, J; Wardell, S; Spasojevic, I; George, D; McDonnell, D P; Hsu, D S; Chang, J T; Chi, J-T

    2017-07-27

    Despite the advances in the diagnosis and treatment of breast cancer, breast cancers still cause significant mortality. For some patients, especially those with triple-negative breast cancer, current treatments continue to be limited and ineffective. Therefore, there remains an unmet need for a novel therapeutic approach. One potential strategy is to target the altered metabolic state that is rewired by oncogenic transformation. Specifically, this rewiring may render certain outside nutrients indispensable. To identify such a nutrient, we performed a nutrigenetic screen by removing individual amino acids to identify possible addictions across a panel of breast cancer cells. This screen revealed that cystine deprivation triggered rapid programmed necrosis, but not apoptosis, in the basal-type breast cancer cells mostly seen in TNBC tumors. In contrast, luminal-type breast cancer cells are cystine-independent and exhibit little death during cystine deprivation. The cystine addiction phenotype is associated with a higher level of cystine-deprivation signatures noted in the basal type breast cancer cells and tumors. We found that the cystine-addicted breast cancer cells and tumors have strong activation of TNFα and MEKK4-p38-Noxa pathways that render them susceptible to cystine deprivation-induced necrosis. Consistent with this model, silencing of TNFα and MEKK4 dramatically reduces cystine-deprived death. In addition, the cystine addiction phenotype can be abrogated in the cystine-addictive cells by miR-200c, which converts the mesenchymal-like cells to adopt epithelial features. Conversely, the introduction of inducers of epithelial-mesenchymal transition (EMT) in cystine-independent breast cancer cells conferred the cystine-addiction phenotype by modulating the signaling components of cystine addiction. Together, our data reveal that cystine-addiction is associated with EMT in breast cancer during tumor progression. These findings provide the genetic and

  12. A New Gene Expression Signature for Triple-Negative Breast Cancer Using Frozen Fresh Tissue before Neoadjuvant Chemotherapy

    PubMed Central

    Santuario-Facio, Sandra K; Cardona-Huerta, Servando; Perez-Paramo, Yadira X; Trevino, Victor; Hernandez-Cabrera, Francisco; Rojas-Martinez, Augusto; Uscanga-Perales, Grecia; Martinez-Rodriguez, Jorge L; Martinez-Jacobo, Lizeth; Padilla-Rivas, Gerardo; Muñoz-Maldonado, Gerardo; Gonzalez-Guerrero, Juan Francisco; Valero-Gomez, Javier; Vazquez-Guerrero, Ana L; Martinez-Rodriguez, Herminia G; Barboza-Quintana, Alvaro; Barboza-Quintana, Oralia; Garza-Guajardo, Raquel; Ortiz-Lopez, Rocio

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer tumors. Comparisons between TNBC and non–triple-negative breast cancer (nTNBC) may help to differentiate key components involved in TNBC neoplasms. The purpose of the study was to analyze the expression profile of TNBC versus nTNBC tumors in a homogeneous population from northeastern Mexico. A prospective study of 50 patients (25 TNBC and 25 nTNBC) was conducted. Clinic parameters were equally distributed for TNBC and nTNBC: age at diagnosis (51 versus 47 years, p = 0.1), glucose level (107 mg/dl versus 104 mg/dl, p = 0.64), and body mass index (28 versus 29, p = 0.14). Core biopsies were collected for histopathological diagnosis and gene expression analysis. Total RNA was isolated and expression profiling was performed. Forty genes showed differential expression pattern in TNBC tumors. Among these, nine overexpressed genes (PRKX/PRKY, UGT8, HMGA1, LPIN1, HAPLN3, FAM171A1, BCL141A, FOXC1, and ANKRD11), and one underexpressed gene (ANX9) are involved in general metabolism. Based on this biochemical peculiarity and the overexpression of BCL11A and FOXC1 (involved in tumor growth and metastasis, respectively), we validated by quantitative polymerase chain reaction the expression profiles of seven genes out of the signature. In this report, a new gene signature for TNBC is proposed. To our knowledge, this is the first TNBC signature that describes genes involved in general metabolism. The findings may be pertinent for Mexican patients and require evaluation in other ethnic groups and populations. PMID:28474731

  13. MEK-dependent IL-8 induction regulates the invasiveness of triple-negative breast cancer cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Interleukin-8 (IL-8) serves as a prognostic marker for breast cancer, and its expression level correlates with metastatic breast cancer and poor prognosis. Here, we investigated the levels of IL-8 expression in a variety of breast cancer cells and the regulatory mechanism of IL-8 in triple-negative breast cancer (TNBC) cells. Our results showed that IL-8 expression correlated positively with overall survival in basal-type breast cancer patients. The levels of IL-8 mRNA expression and protein secretion were significantly increased in TNBC cells compared with non-TNBC cells. In addition, the invasiveness of the TNBC cells was dramatically increased by IL-8 treatment and then augmented invasion-related proteins such as matrix metalloproteinase (MMP)-2 or MMP-9. We observed that elevated IL-8 mRNA expression and protein secretion were suppressed by a specific MEK1/2 inhibitor, UO126. In contrast, the overexpression of constitutively active MEK significantly increased the level of IL-8 mRNA expression in BT474 non-TNBC cells. Finally, we investigated the effect of UO126 on the tumorigenecity of TNBC cells. Our results showed that anchorage-independent growth, cell invasion, and cell migration were also decreased by UO126 in TNBC cells. As such, we demonstrated that IL-8 expression is regulated through MEK/ERK-dependent pathways in TNBC cells. A diversity of MEK blockers, including UO126, may be promising for treating TNBC patients.

  14. ONC201 Demonstrates Antitumor Effects in Both Triple-Negative and Non-Triple-Negative Breast Cancers through TRAIL-Dependent and TRAIL-Independent Mechanisms.

    PubMed

    Ralff, Marie D; Kline, Christina L B; Küçükkase, Ozan C; Wagner, Jessica; Lim, Bora; Dicker, David T; Prabhu, Varun V; Oster, Wolfgang; El-Deiry, Wafik S

    2017-07-01

    Breast cancer is a major cause of cancer-related death. TNF-related apoptosis-inducing ligand (TRAIL) has been of interest as a cancer therapeutic, but only a subset of triple-negative breast cancers (TNBC) is sensitive to TRAIL. The small-molecule ONC201 induces expression of TRAIL and its receptor DR5. ONC201 has entered clinical trials in advanced cancers. Here, we show that ONC201 is efficacious against both TNBC and non-TNBC cells ( n = 13). A subset of TNBC and non-TNBC cells succumbs to ONC201-induced cell death. In 2 of 8 TNBC cell lines, ONC201 treatment induces caspase-8 cleavage and cell death that is blocked by TRAIL-neutralizing antibody RIK2. The proapoptotic effect of ONC201 translates to in vivo efficacy in the MDA-MB-468 xenograft model. In most TNBC lines tested (6/8), ONC201 has an antiproliferative effect but does not induce apoptosis. ONC201 decreases cyclin D1 expression and causes an accumulation of cells in the G 1 phase of the cell cycle. pRb expression is associated with sensitivity to the antiproliferative effects of ONC201, and the compound synergizes with taxanes in less sensitive cells. All non-TNBC cells ( n = 5) are growth inhibited following ONC201 treatment, and unlike what has been observed with TRAIL, a subset ( n = 2) shows PARP cleavage. In these cells, cell death induced by ONC201 is TRAIL independent. Our data demonstrate that ONC201 has potent antiproliferative and proapoptotic effects in a broad range of breast cancer subtypes, through TRAIL-dependent and TRAIL-independent mechanisms. These findings develop a preclinical rationale for developing ONC201 as a single agent and/or in combination with approved therapies in breast cancer. Mol Cancer Ther; 16(7); 1290-8. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Down’s Syndrome and Triple Negative Breast Cancer: A Rare Occurrence of Distinctive Clinical Relationship

    PubMed Central

    Dey, Nandini; Krie, Amy; Klein, Jessica; Williams, Kirstin; McMillan, Amanda; Elsey, Rachel; Sun, Yuliang; Williams, Casey; De, Pradip; Leyland-Jones, Brian

    2017-01-01

    Down’s syndrome (DS), the most common genetic cause of significant intellectual disability in children and adults is caused by the trisomy of either all or a part of human chromosome 21 (HSA21). Patients with DS mostly suffer from characteristic tumor types. Although individual patients of DS are at a higher risk for acute leukemia and testicular cancers, other types of solid tumors including breast cancers are mostly uncommon and have significantly lower-than-expected age-adjusted incidence rates. Except for an increased risk of retinoblastomas, and lymphomas, the risk of developing solid tumors has been found to be lower in both children and adults, and breast cancer was found to be almost absent (Hasle H., The Lancet Oncology, 2001). A study conducted in the United States found only one death when 11.65 were expected (Scholl T et al., Dev Med Child Neurol. 1982). A recent study examined mammogram reports of women with DS treated in the largest medical facility specifically serving adults with DS in the United States. It was found that only 0.7% women with DS had been diagnosed with breast cancers (Chicoine B et al., Intellect Dev Disabil. 2015). Here we describe a case of breast cancer in a 25-year-old patient with DS. The disease was presented as lymph node positive carcinoma with alterations of tumor suppressor genes characteristic to the triple negative breast cancer subtype. Comprehensive Genomic Profiling (CGP) revealed a wild-type status for BRCA1. The CGP report showed a frameshift mutation, A359fs*10 of the tumor suppressor gene INPP4B and another frameshift mutation, R282fs*63 of tumor suppressor gene TP53 in the tumor biopsy as characteristically found in triple-negative breast cancers. The VUS (Variance of Unknown Significance) alteration(s) were identified in ASXL1 (L1395V), NTRK1 (G18E), DDR2 (I159T), RUNX1 (amplification), ERG (amplification), SOX2 (T26A), FAM123B (G1031D), and HNF1A (A301T). Bonafide cancer-related genes of chromosome 21

  16. Impact of triple-negative phenotype on prognosis of patients with breast cancer brain metastases.

    PubMed

    Xu, Zhiyuan; Schlesinger, David; Toulmin, Sushila; Rich, Tyvin; Sheehan, Jason

    2012-11-01

    To elucidate survival times and identify potential prognostic factors in patients with triple-negative (TN) phenotype who harbored brain metastases arising from breast cancer and who underwent stereotactic radiosurgery (SRS). A total of 103 breast cancer patients with brain metastases were treated with SRS and then studied retrospectively. Twenty-four patients (23.3%) were TN. Survival times were estimated using the Kaplan-Meier method, with a log-rank test computing the survival time difference between groups. Univariate and multivariate analyses to predict potential prognostic factors were performed using a Cox proportional hazard regression model. The presence of TN phenotype was associated with worse survival times, including overall survival after the diagnosis of primary breast cancer (43 months vs. 82 months), neurologic survival after the diagnosis of intracranial metastases, and radiosurgical survival after SRS, with median survival times being 13 months vs. 25 months and 6 months vs. 16 months, respectively (p < 0.002 in all three comparisons). On multivariate analysis, radiosurgical survival benefit was associated with non-TN status and lower recursive partitioning analysis class at the initial SRS. The TN phenotype represents a significant adverse prognostic factor with respect to overall survival, neurologic survival, and radiosurgical survival in breast cancer patients with intracranial metastasis. Recursive partitioning analysis class also served as an important and independent prognostic factor. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A novel patient-derived xenograft model for claudin-low triple-negative breast cancer.

    PubMed

    Matossian, Margarite D; Burks, Hope E; Bowles, Annie C; Elliott, Steven; Hoang, Van T; Sabol, Rachel A; Pashos, Nicholas C; O'Donnell, Benjamen; Miller, Kristin S; Wahba, Bahia M; Bunnell, Bruce A; Moroz, Krzysztof; Zea, Arnold H; Jones, Steven D; Ochoa, Augusto C; Al-Khami, Amir A; Hossain, Fokhrul; Riker, Adam I; Rhodes, Lyndsay V; Martin, Elizabeth C; Miele, Lucio; Burow, Matthew E; Collins-Burow, Bridgette M

    2018-06-01

    Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods. We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0. Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix. Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.

  18. Exercise and dietary advice intervention for survivors of triple-negative breast cancer: effects on body fat, physical function, quality of life, and adipokine profile

    PubMed Central

    Swisher, Anne K.; Abraham, Jame; Bonner, Daniel; Gilleland, Diana; Hobbs, Gerald; Kurian, Sobha; Yanosik, Mary Anne; Vona-Davis, Linda

    2015-01-01

    Purpose Regular exercise and healthy eating are routinely recommended for breast cancer survivors, and past studies show benefits in quality of life and decreased inflammation. However, this has not been testing specifically in triple-negative breast cancer survivors. Increasing physical activity and losing body fat are thought to positively affect inflammatory biomarkers that have been associated with breast cancer. Therefore, the primary purpose of this study was to determine if participation in an exercise and dietary counseling program can improve body fat, physical function, and quality of life in survivors of this aggressive breast cancer. Secondarily, we sought to determine if participation in the program had beneficial effects on obesity-related markers of the adipokine profile. Methods Sixty-six survivors of triple-negative breast cancer with BMI >25 were invited to participate. Twenty-eight enrolled and 23 completed the randomized, controlled trial (13 intervention, 10 control). Moderate-intensity aerobic exercise (150 min per week, for 12 weeks) and diet counseling were compared to usual care, education only. The primary outcome of interest was weight loss (body mass, BMI, % fat), and secondary outcomes included physical function (exercise capacity), quality of life (Function After Cancer Therapy—Breast (FACT-B)), cytokines (C-reactive protein (CRP), TNF-α, IL-6), and adipokine profile (leptin, adiponectin, insulin). Results Participants in the program lost more body fat (2.4 % loss vs. 0.4 % gain, p<0.05) than the control group. The intervention group also improved quality of life (FACT-B total score +14 pts) and decreased sedentary time but did not improve peak exercise capacity. The intervention had no effect on serum cytokines and adipokines after 12 weeks in the program. However, serum leptin and adiponectin and their ratio were significantly correlated with BMI in the intervention group (p<0.05). Conclusions Exercise and dietary counseling led

  19. Exercise and dietary advice intervention for survivors of triple-negative breast cancer: effects on body fat, physical function, quality of life, and adipokine profile.

    PubMed

    Swisher, Anne K; Abraham, Jame; Bonner, Daniel; Gilleland, Diana; Hobbs, Gerald; Kurian, Sobha; Yanosik, Mary Anne; Vona-Davis, Linda

    2015-10-01

    Regular exercise and healthy eating are routinely recommended for breast cancer survivors, and past studies show benefits in quality of life and decreased inflammation. However, this has not been tested specifically in triple-negative breast cancer survivors. Increasing physical activity and losing body fat are thought to positively affect inflammatory biomarkers that have been associated with breast cancer. Therefore, the primary purpose of this study was to determine if participation in an exercise and dietary counseling program can improve body fat, physical function, and quality of life in survivors of this aggressive breast cancer. Secondarily, we sought to determine if participation in the program had beneficial effects on obesity-related markers of the adipokine profile. Sixty-six survivors of triple-negative breast cancer with BMI >25 were invited to participate. Twenty-eight enrolled and 23 completed the randomized, controlled trial (13 intervention, 10 control). Moderate-intensity aerobic exercise (150 min per week, for 12 weeks) and diet counseling were compared to usual care, education only. The primary outcome of interest was weight loss (body mass, BMI, % fat), and secondary outcomes included physical function (exercise capacity), quality of life (Function After Cancer Therapy-Breast (FACT-B)), cytokines (C-reactive protein (CRP), TNF-α, IL-6), and adipokine profile (leptin, adiponectin, insulin). Participants in the program lost more body fat (2.4 % loss vs. 0.4 % gain, p < 0.05) than the control group. The intervention group also improved quality of life (FACT-B total score +14 pts) and decreased sedentary time but did not improve peak exercise capacity. The intervention had no effect on serum cytokines and adipokines after 12 weeks in the program. However, serum leptin and adiponectin and their ratio were significantly correlated with BMI in the intervention group (p < 0.05). Exercise and dietary counseling led to loss of body fat and improved

  20. The PIKfyve–ArPIKfyve–Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikonomov, Ognian C., E-mail: oikonomo@med.wayne.edu; Filios, Catherine, E-mail: cfilios@med.wayne.edu; Sbrissa, Diego, E-mail: dsbrissa@med.wayne.edu

    2013-10-18

    Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P{sub 2} synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer,more » the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P{sub 2} conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P{sub 2} in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting

  1. miR-205 and miR-200c: Predictive Micro RNAs for Lymph Node Metastasis in Triple Negative Breast Cancer

    PubMed Central

    Yilmaz, Ismail; Narli, Gizem; Haholu, Aptullah; Kucukodaci, Zafer; Demirel, Dilaver

    2014-01-01

    Purpose We examined expression profiles of 16 micro RNAs (miRNAs) in triple negative breast cancers to identify their potential as biomarkers for lymph node metastasis. Methods The expression profiles of miR-9, miR-21, miR-30a, miR-30d, miR-31, miR-34a, miR-34c, miR-100, miR-122, miR-125b, miR-146a, miR-146b, miR-155, miR-181a, miR-200c, and miR-205 were examined by using real-time quantitative reverse transcription polymerase chain reaction in tumor samples and corresponding benign breast tissues. Their associations with histopathological features and prognostic parameters were assessed. Results When compared with the expression in benign breast tissues, seven of the miRNAs (miR-31, miR-205, miR-34a, miR-146a, miR-125b, miR-34c, and miR-181a) were downregulated more than 1.5-fold in tumor tissues, whereas, only miR-21 was found to be upregulated more than 1.5-fold in tumor tissues. Although miR-200c levels were decreased only 1.12-fold in tumor tissues, the reduced expressions of miR-200c and miR-205 were significantly associated with lymph node metastasis (p=0.021 and p=0.016, respectively). Conclusion Our results demonstrate that miR-205 and miR-200c expression levels may be useful in predicting lymph node metastasis in triple negative breast cancer patients. PMID:25013435

  2. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer.

    PubMed

    Mekala, Janaki Ramaiah; Naushad, Shaik Mohammad; Ponnusamy, Lavanya; Arivazhagan, Gayatri; Sakthiprasad, Vaishnave; Pal-Bhadra, Manika

    2018-01-30

    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are involved in the regulation of gene expression at the post-transcriptional level. MicroRNAs play an important role in cancer cell proliferation, survival and apoptosis. Epigenetic modifiers regulate the microRNA expression. Among the epigenetic players, histone deacetylases (HDACs) function as the key regulators of microRNA expression. Epigenetic machineries such as DNA and histone modifying enzymes and various microRNAs have been identified as the important contributors in cancer initiation and progression. Recent studies have shown that developing innovative microRNA-targeting therapies might improve the human health, specifically against the disease areas of high unmet medical need. Thus microRNA based therapeutics are gaining importance for anti-cancer therapy. Studies on Triple negative breast cancer (TNBC) have revealed the early relapse and poor overall survival of patients which needs immediate therapeutic attention. In this report, we focus the effect of HDAC inhibitors on TNBC cell proliferation, regulation of microRNA gene expression by a series of HDAC genes, chromatin epigenetics, epigenetic remodelling at miR-200 promoter and its modulation by various HDACs. We also discuss the need for identifying novel HDAC inhibitors for modulation of miR-200 in triple negative breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. All-trans-retinoic acid activates the pro-invasive Src-YAP-Interleukin 6 axis in triple-negative MDA-MB-231 breast cancer cells while cerivastatin reverses this action.

    PubMed

    Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Gasa, Laura; Navarro, Lourdes; Samitier, Mireia; Pons, Miquel; Mezquita, Cristóbal

    2018-05-04

    All-trans-retinoic acid (RA), the active metabolite of vitamin A, can reduce the malignant phenotype in some types of cancer and paradoxically also can promote cancer growth and invasion in others. For instance, it has been reported that RA induces tumor suppression in tumor xenografts of MDA-MB-468 breast cancer cells while increasing tumor growth and metastases in xenografts of MDA-MB-231 breast cancer cells. The signaling pathways involved in the pro-invasive action of retinoic acid remain mostly unknown. We show here that RA activates the pro-invasive axis Src-YAP-Interleukin 6 (Src-YAP-IL6) in triple negative MDA-MB-231 breast cancer cells, yielding to increased invasion of these cells. On the contrary, RA inhibits the Src-YAP-IL6 axis of triple-negative MDA-MB-468 cells, which results in decreased invasion phenotype. In both types of cells, inhibition of the Src-YAP-IL6 axis by the Src inhibitor PP2 drastically reduces migration and invasion. Src inhibition also downregulates the expression of a pro-invasive isoform of VEGFR1 in MDA-MB-231 breast cancer cells. Furthermore, interference of YAP nuclear translocation using the statin cerivastatin reverses the upregulation of Interleukin 6 (IL-6) and the pro-invasive effect of RA on MDA-MB-231 breast cancer cells and also decreases invasion and viability of MDA-MB-468 breast cancer cells. These results altogether suggest that RA induces pro-invasive or anti-invasive actions in two triple-negative breast cancer cell lines due to its ability to activate or inhibit the Src-YAP-IL6 axis in different cancer cells. The pro-invasive effect of RA can be reversed by the statin cerivastatin.

  4. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy

    PubMed Central

    Shen, Wanxiang; Zhang, Liang; Gu, Xinsheng; Guo, Yang; Tsai, Hsiang-i; Liu, Xuewen; Li, Jian; Zhang, Jingxuan; Li, Shan; Wu, Fuyun; Liu, Ying

    2017-01-01

    Triple-negative breast cancers (TNBCs) are the most aggressive and hard-to-treat breast tumors with poor prognosis, and exploration for novel therapeutic drugs is impending. Arctigenin (Atn), a bioactive lignan isolated from seeds of Arctium lappa L, has been reported to inhibit many cancer types; however, the effect of Atn on TNBC remains unclear. In this study, we demonstrated that Atn decreased proliferation, and induced apoptosis in TNBC cells. Furthermore, we explored the underlying mechanism of Atn inhibition on TNBC cells. Computational docking and affinity assay showed that Atn bound to the SH2 domain of STAT3. Atn inhibited STAT3 binding to genomic DNA by disrupting hydrogen bond linking between DNA and STAT3. In addition, Atn augmented Taxotere®-induced TNBC cell cytotoxicity. TNBC xenograft tests also confirmed the antitumor effect of Atn in vivo. These characteristics render Atn as a promising candidate drug for further development and for designing new effective STAT3 inhibitors. PMID:27861147

  5. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy.

    PubMed

    Feng, Tingting; Cao, Wei; Shen, Wanxiang; Zhang, Liang; Gu, Xinsheng; Guo, Yang; Tsai, Hsiang-I; Liu, Xuewen; Li, Jian; Zhang, Jingxuan; Li, Shan; Wu, Fuyun; Liu, Ying

    2017-01-03

    Triple-negative breast cancers (TNBCs) are the most aggressive and hard-to-treat breast tumors with poor prognosis, and exploration for novel therapeutic drugs is impending. Arctigenin (Atn), a bioactive lignan isolated from seeds of Arctium lappa L, has been reported to inhibit many cancer types; however, the effect of Atn on TNBC remains unclear. In this study, we demonstrated that Atn decreased proliferation, and induced apoptosis in TNBC cells. Furthermore, we explored the underlying mechanism of Atn inhibition on TNBC cells. Computational docking and affinity assay showed that Atn bound to the SH2 domain of STAT3. Atn inhibited STAT3 binding to genomic DNA by disrupting hydrogen bond linking between DNA and STAT3. In addition, Atn augmented Taxotere®-induced TNBC cell cytotoxicity. TNBC xenograft tests also confirmed the antitumor effect of Atn in vivo. These characteristics render Atn as a promising candidate drug for further development and for designing new effective STAT3 inhibitors.

  6. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry

    PubMed Central

    Brewster, Abenaa M; Chavez-MacGregor, Mariana; Brown, Powel

    2015-01-01

    Breast cancer incidence is increasing worldwide, and breast cancer-related mortality is highest in women of African ancestry, who are more likely to have basal-like or triple-negative breast cancer (TNBC) than are women of European ancestry. Identification of cultural, epidemiological, and genetic risk factors that predispose women of African ancestry to TNBC is an active area of research. Despite the aggressive behaviour of TNBC, achievement of a pathological complete response with chemotherapy is associated with good long-term survival outcomes, and sensitivity to chemotherapy does not seem to differ according to ethnic origin. Discovery of the molecular signalling molecules that define TNBC heterogeneity has led to the development of targeted agents such as inhibitors of poly (ADP-ribose) polymerase-1 and mTOR and immunomodulatory drugs that are in the early stages of clinical testing. First, we summarise the existing published work on the differences reported on the epidemiology, biology, and response to systemic treatment of TNBC between women of African ancestry and white women, and identify some gaps in knowledge. Second, we review the opportunities for development of new therapeutic agents in view of the potential high clinical relevance for patients with TNBC irrespective of race or ethnic origin. PMID:25456381

  7. GROα overexpression drives cell migration and invasion in triple negative breast cancer cells.

    PubMed

    Bhat, Kruttika; Sarkissyan, Marianna; Wu, Yanyuan; Vadgama, Jaydutt V

    2017-07-01

    Triple negative breast cancer (TNBC) is a subtype of highly aggressive breast cancer with poor prognosis. The main characteristic feature of TNBC is its lack of expression of ER, PR and HER2 receptors that are targets for treatments. Hence, it is imperative to identify novel therapeutic strategies to target TNBC. Our aim was to examine whether GROα is a specific marker for TNBC metastasis. For this we performed qPCR, ELISA, migration/invasion assays, western blotting, and siRNA transfections. Evaluation of baseline GROα expression in different breast cancer (BC) subtypes showed that it is significantly upregulated in breast tumor cells, specifically in TNBC cell line. On further evaluation in additional 17 TNBC cell lines we found that baseline GROα expression was significantly elevated in >50% of the cell lines validating GROα overexpression specifically in TNBC cells. Moreover, GROα-stimulation in MCF7 and SKBR3 cells and GROα‑knockdown in MDA-MB‑231 and HCC1937 cells elicited dramatic changes in migration and invasion abilities in vitro. Corresponding changes in EMT markers were also observed in phenotypically modified BC cells. Furthermore, mechanistic studies identified GROα regulating EMT markers and migration/invasion via MAPK pathway and specific inhibition using PD98059 resulted in the reversal of effects induced by GROα on BC cells. In conclusion, our study provides strong evidence to suggest that GROα is a critical modulator of TNBC migration/invasion and proposes GROα as a potential therapeutic target for treatment of TNBC metastasis.

  8. STAT3/NF-κB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer

    PubMed Central

    Kuo, Wei-Ying; Hwu, Luen; Wu, Chun-Yi; Lee, Jhih-Shian; Chang, Chi-Wei; Liu, Ren-Shyan

    2017-01-01

    Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by 3H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher 3H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [18F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV

  9. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    PubMed

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Expression of ARs in triple negative breast cancer tumors: a potential prognostic factor?

    PubMed

    Giannos, Aris; Filipits, Martin; Zagouri, Flora; Brandstetter, Anita; Tsigginou, Alexandra; Sotiropoulou, Maria; Papaspyrou, Irene; Sergentanis, Theodoros N; Psaltopoulou, Theodora; Rodolakis, Alexandros; Antsaklis, Aris; Dimopoulos, Meletios-Athanasios; Dimitrakakis, Constantine

    2015-01-01

    In light of the controversial published literature, this study aims to examine the potential prognostic role of AR immunohistochemical expression in triple negative breast cancer (TNBC). Ninety patients with TNBC were included in this study; the associations between AR expression (Allred score), clinicopathological variables (stage, grade, histological subtype, tumor size, nodal status, age at diagnosis, Ki67 expression, and p53 expression), and overall survival were evaluated. AR expression was not associated with stage, grade, histological subtype, tumor size, nodal status, age at diagnosis, Ki67 expression, and p53 expression. AR immunopositivity was not associated with overall survival either at the univariate or at the multivariate Cox regression analysis (multivariate hazard ratio =0.66, 95% confidence interval: 0.26-1.70, P=0.393). AR expression does not seem to play a prognostic role in TNBC.

  11. Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing.

    PubMed

    Kim, Charissa; Gao, Ruli; Sei, Emi; Brandt, Rachel; Hartman, Johan; Hatschek, Thomas; Crosetto, Nicola; Foukakis, Theodoros; Navin, Nicholas E

    2018-05-03

    Triple-negative breast cancer (TNBC) is an aggressive subtype that frequently develops resistance to chemotherapy. An unresolved question is whether resistance is caused by the selection of rare pre-existing clones or alternatively through the acquisition of new genomic aberrations. To investigate this question, we applied single-cell DNA and RNA sequencing in addition to bulk exome sequencing to profile longitudinal samples from 20 TNBC patients during neoadjuvant chemotherapy (NAC). Deep-exome sequencing identified 10 patients in which NAC led to clonal extinction and 10 patients in which clones persisted after treatment. In 8 patients, we performed a more detailed study using single-cell DNA sequencing to analyze 900 cells and single-cell RNA sequencing to analyze 6,862 cells. Our data showed that resistant genotypes were pre-existing and adaptively selected by NAC, while transcriptional profiles were acquired by reprogramming in response to chemotherapy in TNBC patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    NASA Astrophysics Data System (ADS)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  13. Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer

    PubMed Central

    Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M.; Shapiro, Charles L.; Huebner, Kay

    2013-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways. Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis. PMID:23405235

  14. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer.

    PubMed

    Cascione, Luciano; Gasparini, Pierluigi; Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay

    2013-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways.Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis.

  15. Trends of triple negative breast cancer research (2007-2015): A bibliometric study.

    PubMed

    Wang, Yiran; Zhai, Xiao; Liu, Chuan; Wang, Ning; Wang, Yajie

    2016-11-01

    Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. However, there have been limited data to evaluate the trend of TNBC research. This study aims to investigate the trend of TNBC research and compare the contribution of research from different regions, organizations, and authors. TNBC-related publications from 2007 to 2015 were retrieved from the Web of Science database. Excel 2013 (Redmond, Washington, USA), GraphPad Prism 5 (GraphPad Prism Software Inc., San Diego, CA), and VOSviewer (Leiden University, Leiden, Netherlands) software were used to analyze the trend of TNBC research. This article does not contain any studies with human participants or animals performed by any of the authors. A total of 1695 papers were identified and were cited 34,078 times with a time limit of May 27, 2016. The United States accounted for 43.10% of the articles, 57.59% of the citations, and the highest H-index (64). China ranked second in total number of articles, but seventh in citation frequency (1998) and ninth in H-index (21). The journal Breast Cancer Research and Treatment had the highest number of publications. The author, Narod SA, has published the most papers in this field (30). The keyword "receptor" was mentioned the most, 1489 times, and the word "myeloid cell leukemia-1 (MCL-1)" was the latest hot spot by 2015. Literature growth related to TNBC is expanding rapidly in recent years. The quality of the articles from China still requires improvement. Newest progress of the TNBC research may be released by the journal Breast Cancer Research and Treatment first. Narod SA, Gonzalez-Angulo AM, and Hortobagyi GN may be good candidates for collaborative research in this field. MCL-1 is an emerging topic that should be closely observed.

  16. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy.

    PubMed

    Chen, Yu-Hsiang; Hancock, Bradley A; Solzak, Jeffrey P; Brinza, Dumitru; Scafe, Charles; Miller, Kathy D; Radovich, Milan

    2017-01-01

    Next-generation sequencing to detect circulating tumor DNA is a minimally invasive method for tumor genotyping and monitoring therapeutic response. The majority of studies have focused on detecting circulating tumor DNA from patients with metastatic disease. Herein, we tested whether circulating tumor DNA could be used as a biomarker to predict relapse in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. In this study, we analyzed samples from 38 early-stage triple-negative breast cancer patients with matched tumor, blood, and plasma. Extracted DNA underwent library preparation and amplification using the Oncomine Research Panel consisting of 134 cancer genes, followed by high-coverage sequencing and bioinformatics. We detected high-quality somatic mutations from primary tumors in 33 of 38 patients. TP53 mutations were the most prevalent (82%) followed by PIK3CA (16%). Of the 33 patients who had a mutation identified in their primary tumor, we were able to detect circulating tumor DNA mutations in the plasma of four patients (three TP53 mutations, one AKT1 mutation, one CDKN2A mutation). All four patients had recurrence of their disease (100% specificity), but sensitivity was limited to detecting only 4 of 13 patients who clinically relapsed (31% sensitivity). Notably, all four patients had a rapid recurrence (0.3, 4.0, 5.3, and 8.9 months). Patients with detectable circulating tumor DNA had an inferior disease free survival ( p  < 0.0001; median disease-free survival: 4.6 mos. vs. not reached; hazard ratio = 12.6, 95% confidence interval: 3.06-52.2). Our study shows that next-generation circulating tumor DNA sequencing of triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy can predict recurrence with high specificity, but moderate sensitivity. For those patients where circulating tumor DNA is detected, recurrence is rapid.

  17. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A.

    PubMed

    Szarc Vel Szic, Katarzyna; Declerck, Ken; Crans, René A J; Diddens, Jolien; Scherf, David B; Gerhäuser, Clarissa; Vanden Berghe, Wim

    2017-06-20

    Triple negative breast cancer (TNBC) is characterized by poor prognosis and a DNA hypomethylation profile. Withaferin A (WA) is a plant derived steroidal lactone which holds promise as a therapeutic agent for treatment of breast cancer (BC). We determined genome-wide DNA methylation changes in weakly-metastatic and aggressive, metastatic BC cell lines, following 72h treatment to a sub-cytotoxic concentration of WA. In contrast to the DNA demethylating agent 5-aza-2'-deoxycytidine (DAC), WA treatment of MDA-MB-231 cells rather tackles an epigenetic cancer network through gene-specific DNA hypermethylation of tumor promoting genes including ADAM metallopeptidase domain 8 (ADAM8), urokinase-type plasminogen activator (PLAU), tumor necrosis factor (ligand) superfamily, member 12 (TNFSF12), and genes related to detoxification (glutathione S-transferase mu 1, GSTM1), or mitochondrial metabolism (malic enzyme 3, ME3). Gene expression and pathway enrichment analysis further reveals epigenetic suppression of multiple cancer hallmarks associated with cell cycle regulation, cell death, cancer cell metabolism, cell motility and metastasis. Remarkably, DNA hypermethylation of corresponding CpG sites in PLAU, ADAM8, TNSF12, GSTM1 and ME3 genes correlates with receptor tyrosine-protein kinase erbB-2 amplification (HER2)/estrogen receptor (ESR)/progesterone receptor (PR) status in primary BC tumors. Moreover, upon comparing differentially methylated WA responsive target genes with DNA methylation changes in different clinical subtypes of breast cancer patients in the cancer genome atlas (TCGA), we found that WA silences HER2/PR/ESR-dependent gene expression programs to suppress aggressive TNBC characteristics in favor of luminal BC hallmarks, with an improved therapeutic sensitivity. In this respect, WA may represent a novel and attractive phyto-pharmaceutical for TNBC treatment.

  18. ONC201 demonstrates anti-tumor effects in both triple negative and non-triple negative breast cancers through TRAIL-dependent and TRAIL-independent mechanisms

    PubMed Central

    Ralff, Marie D.; Kline, Christina L.B.; Küçükkase, Ozan C; Wagner, Jessica; Lim, Bora; Dicker, David T.; Prabhu, Varun V.; Oster, Wolfgang; El-Deiry, Wafik S.

    2017-01-01

    Breast cancer is a major cause of cancer-related death. TRAIL has been of interest as a cancer therapeutic, but only a subset of triple negative breast cancers (TNBC) is sensitive to TRAIL. The small molecule ONC201 induces expression of TRAIL and its receptor DR5. ONC201 has entered clinical trials in advanced cancers. Here we show that ONC201 is efficacious against both TNBC and non-TNBC cells (n=13). A subset of TNBC and non-TNBC cells succumb to ONC201-induced cell death. In 2/8 TNBC cell lines, ONC201 treatment induces caspase-8 cleavage and cell death that is blocked by TRAIL-neutralizing antibody RIK2. The pro-apoptotic effect of ONC201 translates to in vivo efficacy in the MDA-MB-468 xenograft model. In most TNBC lines tested (6/8) ONC201 has an anti-proliferative effect but does not induce apoptosis. ONC201 decreases cyclin D1 expression and causes an accumulation of cells in the G1 phase of the cell cycle. pRb expression is associated with sensitivity to the anti-proliferative effects of ONC201, and the compound synergizes with taxanes in less sensitive cells. All non-TNBC cells (n=5) are growth inhibited following ONC201 treatment, and unlike what has been observed with TRAIL, a subset (n=2) show PARP cleavage. In these cells, cell death induced by ONC201 is TRAIL-independent. Our data demonstrate that ONC201 has potent anti-proliferative and pro-apoptotic effects in a broad range of breast cancer subtypes, through TRAIL-dependent and TRAIL-independent mechanisms. These findings develop a pre-clinical rationale for developing ONC201 as a single agent and/or in combination with approved therapies in breast cancer. PMID:28424227

  19. Effect of grape seed proanthocyanidins on tumor vasculogenic mimicry in human triple-negative breast cancer cells.

    PubMed

    Luan, Yun-Yan; Liu, Zi-Min; Zhong, Jin-Yi; Yao, Ru-Yong; Yu, Hong-Sheng

    2015-01-01

    Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenesis, which was associated with invasion and metastasis. The grape seed proanthocyanidins (GSPs) had attracted much attention as a potential bioactive anti-carcinogenic agent. However, GSPs regulation of VM and its possible mechanisms in a triple-negative breast cancer cells (TNBCs) remain not clear. Therefore, we examined the effect of GSPs on VM information in HCC1937 cell model. In this study, we identified the VM structure via the three-dimensional (3D) matrix in vitro. Cell viability was measured using the CCK8 assay. The effects of GSPs on human triple-negative breast cancer cells (TNBCs) HCC1937 in terms of related proteins of VM information were determined using western blot analysis. In vitro, the tubular networks were found in highly invasive HCC1937 cells but not in the non-invasive MCF-7 cells when plated on matrigel. The number of vascular channels was significantly reduced when cells were exposed in GSPs (100 μg/ml) and GSPs (200 μg/ml) groups (all p<0.001). Furthermore, we found that treatment with GSPs promoted transition of the mesenchymal state to the epithelial state in HCC1937 cells as well as reducing the expression of Twist1 protein, a master EMT regulator.GSPs has the ability to inhibit VM information by the suppression of Twist1 protein that could be related to the reversal of epithelial-to-mesenchymal (EMT) process. It is firstly concluded that GSPs may be an potential anti-VM botanical agent for human TNBCs.

  20. TET1-mediated hypomethylation activates oncogenic signaling in triple-negative breast cancer.

    PubMed

    Good, Charly Ryan; Panjarian, Shoghag; Kelly, Andrew D; Madzo, Jozef; Patel, Bela; Jelinek, Jaroslav; Issa, Jean-Pierre J

    2018-06-11

    Both gains and losses of DNA methylation are common in cancer, but the factors controlling this balance of methylation remain unclear. Triple-negative breast cancer (TNBC), a subtype that does not overexpress hormone receptors or HER2/NEU, is one of the most hypomethylated cancers observed. Here we discovered that the TET1 DNA demethylase is specifically overexpressed in about 40% of patients with TNBC, where it is associated with hypomethylation of up to 10% of queried CpG sites and a worse overall survival. Through bioinformatic analyses in both breast and ovarian cancer cell line panels, we uncovered an intricate network connecting TET1 to hypomethylation and activation of cancer-specific oncogenic pathways including PI3K, EGFR, and PDGF. TET1 expression correlated with sensitivity to drugs targeting the PI3K-mTOR pathway, and CRISPR-mediated deletion of TET1 in two independent TNBC cell lines resulted in reduced expression of PI3K pathway genes, upregulation of immune response genes, and substantially reduced cellular proliferation, suggesting dependence of oncogenic pathways on TET1 overexpression. Our work establishes TET1 as a potential oncogene that contributes to aberrant hypomethylation in cancer and suggests that TET1 could serve as a druggable target for therapeutic intervention. Copyright ©2018, American Association for Cancer Research.

  1. Polydopamine-coated nanocomposites of Angelica gigas Nakai extract and their therapeutic potential for triple-negative breast cancer cells.

    PubMed

    Nam, Suyeong; Lee, Song Yi; Kim, Jung-Jin; Kang, Wie-Soo; Yoon, In-Soo; Cho, Hyun-Jong

    2018-05-01

    Polydopamine (PD)-coated nanocomposites (NCs) based on the ethanol extract of Angelica gigas Nakai (AGN EtOH ext) were fabricated and evaluated for breast cancer therapy. AGN NCs were prepared using a modified emulsification-solvent evaporation method and were further incubated in dopamine solution (at pH 8.6) to be covered with the PD layer. PD-AGN NCs with a 213-nm mean diameter, narrow size distribution, and negative zeta potential values were fabricated in this study. Less negative (close to zero) zeta potential value of PD-AGN NCs than that of AGN NCs implied the existence of the PD layer in the outer surface of NCs. The PD layer in PD-AGN NCs was also identified by X-ray photoelectron spectroscopy (XPS) and ultraviolet (UV)/visible absorption analyses. The sustained release of decursin (D) and decursinol angelate (DA), as major active pharmacological components of AGN, was observed in both AGN NCs and PD-AGN NCs. Enhanced cellular binding property of PD-AGN NCs, compared to AGN NCs, in MDA-MB-231 (human breast adenocarcinoma; triple-negative breast cancer) cells was observed. Improved anticancer activities of PD-AGN NCs compared with those of AGN EtOH ext and AGN NCs were also shown in MDA-MB-231 cells. The developed PD-AGN NCs may be used as remarkable platform nanocarriers for efficient breast cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Nano interfaced biosensor for detection of choline in triple negative breast cancer cells.

    PubMed

    Thiagarajan, Vignesh; Madhurantakam, Sasya; Sethuraman, Swaminathan; Balaguru Rayappan, John Bosco; Maheswari Krishnan, Uma

    2016-01-15

    Choline, a type of Vitamin B, is an important nutrient in the human body and is involved in key metabolic pathways. Abnormal levels of choline leads to diseased conditions. The levels of choline and its associated compounds are found to be elevated in triple negative breast cancer (TNBC) patients. The choline level ranges from 0.4 to 4.9mmol/kg in TNBC. Thus the detection of choline levels in cells can aid in diagnosing breast cancer. The present work aims to develop a nano-interfaced electrochemical biosensor for the rapid detection of choline in cancer cells. For electrochemical detection, glassy carbon electrode coated with a zinc oxide nano-interface was used as the working electrode. Zinc oxide synthesized by hydrothermal method was characterized using SEM and XRD. The choline oxidase (ChOx) enzyme was immobilized on the nano-interface by drop-casting. Choline oxidase (ChOx) converts choline to betaine and H2O2 in the presence of oxygen. The H2O2 produced was determined amperometrically. The amount of H2O2 produced is directly proportional to concentration of choline present. The sensitivity, selectivity, stability and concentration studies were carried out and quantification of choline in TNBC was also carried out. The results demonstrate that this biosensor has the potential to be developed as a clinical tool for breast cancer detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A Phenotypic Cell-Binding Screen Identifies a Novel Compound Targeting Triple-Negative Breast Cancer.

    PubMed

    Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong

    2018-06-11

    We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.

  4. A Targeted RNAi Screen of the Breast Cancer Genome Identifies KIF14 and TLN1 as Genes That Modulate Docetaxel Chemosensitivity in Triple-Negative Breast Cancer

    PubMed Central

    Singel, Stina Mui; Cornelius, Crystal; Batten, Kimberly; Fasciani, Gail; Wright, Woodring E.; Lum, Lawrence; Shay, Jerry W.

    2015-01-01

    Purpose To identify biomarkers within the breast cancer genome that may predict chemosensitivity in breast cancer. Experimental Design We conducted an RNA interference (RNAi) screen within the breast cancer genome for genes whose loss-of-function enhanced docetaxel chemosensitivity in an estrogen receptor–negative, progesterone receptor–negative, and Her2-negative (ER−, PR−, and Her2−, respectively) breast cancer cell line, MDA-MB-231. Top candidates were tested for their ability to modulate chemosensitivity in 8 breast cancer cell lines and to show in vivo chemosensitivity in a mouse xenograft model. Results From ranking chemosensitivity of 328 short hairpin RNA (shRNA) MDA-MB-231 cell lines (targeting 133 genes with known somatic mutations in breast cancer), we focused on the top two genes, kinesin family member 14 (KIF14) and talin 1 (TLN1). KIF14 and TLN1 loss-of-function significantly enhanced chemosensitivity in four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, HCC38, HCC1937, and Hs478T) but not in three hormone receptor–positive cell lines (MCF7, T47D, and HCC1428) or normal human mammary epithelial cells (HMEC). Decreased expression of KIF14, but not TLN1, also enhanced docetaxel sensitivity in a Her2-amplified breast cancer cell line, SUM190PT. Higher KIF14 and TLN1 expressions are found in TNBCs compared with the other clinical subtypes. Mammary fat pad xenografts of KIF14- and TLN1-deficient MDA-MB-231 cells revealed reduced tumor mass compared with control MDA-MB-231 cells after chemotherapy. KIF14 expression is also prognostic of relapse-free and overall survival in representative breast cancer expression arrays. Conclusion KIF14 and TLN1 are modulators of response to docetaxel and potential therapeutic targets in TNBC. PMID:23479679

  5. Indocyanine green loaded liposome nanocarriers for photodynamic therapy using human triple negative breast cancer cells.

    PubMed

    Shemesh, Colby S; Hardy, Claire W; Yu, David S; Fernandez, Brian; Zhang, Hailing

    2014-06-01

    The goal of the current research is to evaluate the potential of photodynamic therapy (PDT) in the treatment of triple negative breast cancer (TNBC) with the development of a theranostic thermosensitive liposome platform to deliver indocyanine green (ICG) as the near-infrared (NIR) photosensitizer excited by an 808 nm diode laser. In the PDT protocol, an optimized thermosensitive liposome formulation is investigated to formulate ICG as the photosensitizer, which is exited by laser light at the wavelength of 808 nm delivered by a fiber-coupled laser system. ICG in both free solution and thermosensitive liposomal formulation were evaluated as the NIR photosensitizer and compared in the PDT treatment on a panel of triple negative breast cancer cell lines along with the nontumorigenic mammary epithelial cell line MCF-10A. In addition to cytotoxicity, and clonogenic survival assessment, the role of DNA double strand break damage was evaluated. Both MTT and clonogenic assays revealed that PDT using ICG inhibited the growth of several TNBC cell lines as well as the non-tumorigenic human breast epithelial cell line MCF-10A; and the liposomal formulation of ICG did not compromise the in vitro treatment potency, though free ICG performed slightly more effective in certain cell lines, but was not statistically significant. Cell viability was dose dependent in regards to ICG concentration and irradiation energy. Interestingly, PDT using the described protocol was more potent to inhibit the growth of MDA-MB-468 and HCC-1806 cells, coinciding with the observation that these cells are more sensitive toward DNA damaging agents. In comparison, cell lines HCC-70, BT-549, and MCF-10A were found to have less of an inhibitory effect. Furthermore, substantial DNA double strand breaks (DSBs) were observed 30 min after the PDT treatment via a γ-H2AX staining assay. PDT induced DNA damage has the potential to lead to mutagenicity, which may have various responses depending on the repair

  6. [10]-gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo.

    PubMed

    Martin, Ana Carolina B M; Fuzer, Angelina M; Becceneri, Amanda B; da Silva, James Almada; Tomasin, Rebeka; Denoyer, Delphine; Kim, Soo-Hyun; McIntyre, Katherine A; Pearson, Helen B; Yeo, Belinda; Nagpal, Aadya; Ling, Xiawei; Selistre-de-Araújo, Heloisa S; Vieira, Paulo Cézar; Cominetti, Marcia R; Pouliot, Normand

    2017-09-22

    There is increasing interest in the use of non-toxic natural products for the treatment of various pathologies, including cancer. In particular, biologically active constituents of the ginger oleoresin ( Zingiber officinale Roscoe) have been shown to mediate anti-tumour activity and to contribute to the anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties of ginger. Here we report on the inhibitory properties of [10]-gingerol against metastatic triple negative breast cancer (TNBC) in vitro and in vivo . We show that [10]-gingerol concentration-dependently induces apoptotic death in mouse and human TNBC cell lines in vitro . In addition, [10]-gingerol is well tolerated in vivo , induces a marked increase in caspase-3 activation and inhibits orthotopic tumour growth in a syngeneic mouse model of spontaneous breast cancer metastasis. Importantly, using both spontaneous and experimental metastasis assays, we show for the first time that [10]-gingerol significantly inhibits metastasis to multiple organs including lung, bone and brain. Remarkably, inhibition of brain metastasis was observed even when treatment was initiated after surgical removal of the primary tumour. Taken together, these results indicate that [10]-gingerol may be a safe and useful complementary therapy for the treatment of metastatic breast cancer and warrant further investigation of its efficacy, either alone or in combination with standard systemic therapies, in pre-clinical models of metastatic breast cancer and in patients.

  7. [10]-gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo

    PubMed Central

    Becceneri, Amanda B.; da Silva, James Almada; Tomasin, Rebeka; Denoyer, Delphine; Kim, Soo-Hyun; McIntyre, Katherine A.; Pearson, Helen B.; Yeo, Belinda; Nagpal, Aadya; Ling, Xiawei; Selistre-de-Araújo, Heloisa S.; Vieira, Paulo Cézar

    2017-01-01

    There is increasing interest in the use of non-toxic natural products for the treatment of various pathologies, including cancer. In particular, biologically active constituents of the ginger oleoresin (Zingiber officinale Roscoe) have been shown to mediate anti-tumour activity and to contribute to the anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties of ginger. Here we report on the inhibitory properties of [10]-gingerol against metastatic triple negative breast cancer (TNBC) in vitro and in vivo. We show that [10]-gingerol concentration-dependently induces apoptotic death in mouse and human TNBC cell lines in vitro. In addition, [10]-gingerol is well tolerated in vivo, induces a marked increase in caspase-3 activation and inhibits orthotopic tumour growth in a syngeneic mouse model of spontaneous breast cancer metastasis. Importantly, using both spontaneous and experimental metastasis assays, we show for the first time that [10]-gingerol significantly inhibits metastasis to multiple organs including lung, bone and brain. Remarkably, inhibition of brain metastasis was observed even when treatment was initiated after surgical removal of the primary tumour. Taken together, these results indicate that [10]-gingerol may be a safe and useful complementary therapy for the treatment of metastatic breast cancer and warrant further investigation of its efficacy, either alone or in combination with standard systemic therapies, in pre-clinical models of metastatic breast cancer and in patients. PMID:29069785

  8. Curcumin and Resveratrol as Promising Natural Remedies with Nanomedicine Approach for the Effective Treatment of Triple Negative Breast Cancer

    PubMed Central

    Shindikar, Amol; Singh, Akshita; Nobre, Malcolm; Kirolikar, Saurabh

    2016-01-01

    Researchers have made considerable progress in last few decades in understanding mechanisms underlying pathogenesis of breast cancer, its phenotypes, its molecular and genetic changes, its physiology, and its prognosis. This has allowed us to identify specific targets and design appropriate chemical entities for effective treatment of most breast cancer phenotypes, resulting in increased patient survivability. Unfortunately, these strategies have been largely ineffective in the treatment of triple negative breast cancer (TNBC). Hormonal receptors lacking render the conventional breast cancer drugs redundant, forcing scientists to identify novel targets for treatment of TNBC. Two natural compounds, curcumin and resveratrol, have been widely reported to have anticancer properties. In vitro and in vivo studies show promising results, though their effectiveness in clinical settings has been less than satisfactory, owing to their feeble pharmacokinetics. Here we discuss these naturally occurring compounds, their mechanism as anticancer agents, their shortcomings in translational research, and possible methodology to improve their pharmacokinetics/pharmacodynamics with advanced drug delivery systems. PMID:27242900

  9. Prognostic value of androgen receptor in triple negative breast cancer: A meta-analysis.

    PubMed

    Wang, Changjun; Pan, Bo; Zhu, Hanjiang; Zhou, Yidong; Mao, Feng; Lin, Yan; Xu, Qianqian; Sun, Qiang

    2016-07-19

    Androgen receptor (AR) is a promising therapeutic target for breast cancer. However, its prognostic value remains controversial in triple negative breast cancer (TNBC). Here we present a meta-analysis to investigate the correlation between AR expression and TNBC prognosis. Thirteen relevant studies with 2826 TNBC patients were included. AR positive rate was 24.4%. AR+ patients tended to have lower tumor grade (p< 0.001), but more lymph node metastases (p < 0.01). AR positivity was associated with prolonged disease free survival (HR 0.809, 95% CI = 0.659-0.995, p < 0.05), but had no significant impact on overall survival (HR 1.270, 95% CI=0.904-1.782, p = 0.168). No difference in survival existed between subgroups using different AR or estrogen receptor cutoff values. Literature search was performed in Pubmed, Embase and Cochrane Central Register of Controlled Trials databases to identify relevant articles on AR and TNBC prognosis. Fixed- and random-effect meta-analyses were conducted based on the heterogeneity of included studies. Heterogeneity and impacts of covariates were further evaluated by subgroup analyses and meta-regression. AR positivity is associated with lower risk of disease recurrence in TNBC. Further clinical studies are warranted to clarify its prognostic role on TNBC recurrence and survival.

  10. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells.

    PubMed

    Burnett, Joseph P; Lim, Gi; Li, Yanyan; Shah, Ronak B; Lim, Rebekah; Paholak, Hayley J; McDermott, Sean P; Sun, Lichao; Tsume, Yasuhiro; Bai, Shuhua; Wicha, Max S; Sun, Duxin; Zhang, Tao

    2017-05-28

    Triple negative breast cancer (TNBC) typically exhibits rapid progression, high mortality and faster relapse rates relative to other breast cancer subtypes. In this report we examine the combination of taxanes (paclitaxel or docetaxel) with a breast cancer stem cell (CSC)-targeting agent sulforaphane for use against TNBC. We demonstrate that paclitaxel or docetaxel treatment induces IL-6 secretion and results in expansion of CSCs in TNBC cell lines. Conversely, sulforaphane is capable of preferentially eliminating CSCs, by inhibiting NF-κB p65 subunit translocation, downregulating p52 and consequent downstream transcriptional activity. Sulforaphane also reverses taxane-induced aldehyde dehydrogenase-positive (ALDH+) cell enrichment, and dramatically reduces the size and number of primary and secondary mammospheres formed. In vivo in an advanced treatment orthotopic mouse xenograft model together with extreme limiting dilution analysis (ELDA), the combination of docetaxel and sulforaphane exhibits a greater reduction in primary tumor volume and significantly reduces secondary tumor formation relative to either treatment alone. These results suggest that treatment of TNBCs with cytotoxic chemotherapy would be greatly benefited by the addition of sulforaphane to prevent expansion of and eliminate breast CSCs. Published by Elsevier B.V.

  11. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease.

    PubMed

    Bianchini, Giampaolo; Balko, Justin M; Mayer, Ingrid A; Sanders, Melinda E; Gianni, Luca

    2016-11-01

    Chemotherapy is the primary established systemic treatment for patients with triple-negative breast cancer (TNBC) in both the early and advanced-stages of the disease. The lack of targeted therapies and the poor prognosis of patients with TNBC have fostered a major effort to discover actionable molecular targets to treat patients with these tumours. Massively parallel sequencing and other 'omics' technologies have revealed an unexpected level of heterogeneity of TNBCs and have led to the identification of potentially actionable molecular features in some TNBCs, such as germline BRCA1/2 mutations or 'BRCAness', the presence of the androgen receptor, and several rare genomic alterations. Whether these alterations are molecular 'drivers', however, has not been clearly established. A subgroup of TNBCs shows a high degree of tumour-infiltrating lymphocytes that also correlates with a lower risk of disease relapse and a higher likelihood of benefit from chemotherapy. Proof-of-principle studies with immune-checkpoint inhibitors in advanced-stage TNBC have yielded promising results, indicating the potential benefit of immunotherapy for patients with TNBC. In this Review, we discuss the most relevant molecular findings in TNBC from the past decade and the most promising therapeutic opportunities derived from these data.

  12. Role of TP53 mutations in triple negative and HER2-positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy

    PubMed Central

    Darb-Esfahani, Silvia; Denkert, Carsten; Stenzinger, Albrecht; Salat, Christoph; Sinn, Bruno; Schem, Christian; Endris, Volker; Klare, Peter; Schmitt, Wolfgang; Blohmer, Jens-Uwe; Weichert, Wilko; Möbs, Markus; Tesch, Hans; Kümmel, Sherko; Sinn, Peter; Jackisch, Christian; Dietel, Manfred; Reimer, Toralf; Loi, Sherene; Untch, Michael; von Minckwitz, Gunter; Nekljudova, Valentina; Loibl, Sibylle

    2016-01-01

    Background TP53 mutations are frequent in breast cancer, however their clinical relevance in terms of response to chemotherapy is controversial. Methods 450 pre-therapeutic, formalin-fixed, paraffin-embedded core biopsies from the phase II neoadjuvant GeparSixto trial that included HER2-positive and triple negative breast cancer (TNBC) were subjected to Sanger sequencing of exons 5-8 of the TP53 gene. TP53 status was correlated to response to neoadjuvant anthracycline/taxane-based chemotherapy with or without carboplatin and trastuzumab/lapatinib in HER2-positive and bevacizumab in TNBC. p53 protein expression was evaluated by immunohistochemistry in the TNBC subgroup. Results Of 450 breast cancer samples 297 (66.0%) were TP53 mutant. Mutations were significantly more frequent in TNBC (74.8%) compared to HER2-positive cancers (55.4%, P < 0.0001). Neither mutations nor different mutation types and effects were associated with pCR neither in the whole study group nor in molecular subtypes (P > 0.05 each). Missense mutations tended to be associated with a better survival compared to all other types of mutations in TNBC (P = 0.093) and in HER2-positive cancers (P = 0.071). In TNBC, missense mutations were also linked to higher numbers of tumor-infiltrating lymphocytes (TILs, P = 0.028). p53 protein overexpression was also linked with imporved survival (P = 0.019). Conclusions Our study confirms high TP53 mutation rates in TNBC and HER2-positive breast cancer. Mutations did not predict the response to an intense neoadjuvant chemotherapy in these two molecular breast cancer subtypes. PMID:27611952

  13. Limited fibrosis accompanies triple-negative breast cancer metastasis in multiple model systems and is not a preventive target.

    PubMed

    Brooks, Danielle; Zimmer, Alexandra; Wakefield, Lalage; Lyle, L Tiffany; Difilippantonio, Simone; Tucci, Fabio C; Illiano, Stephane; Annunziata, Christina M; Steeg, Patricia S

    2018-05-04

    The lysophosphatidic acid receptor 1 (LPAR1) is mechanistically implicated in both tumor metastasis and tissue fibrosis. Previously, metastasis was increased when fulminant fibrosis was first induced in mice, suggesting a direct connection between these processes. The current report examined the extent of metastasis-induced fibrosis in breast cancer model systems, and tested the metastasis preventive efficacy and fibrosis attenuation of antagonists for LPAR1 and Idiopathic Pulmonary Fibrosis (IPF) in breast and ovarian cancer models. Staining analysis demonstrated only focal, low-moderate levels of fibrosis in lungs from eleven metastasis model systems. Two orally available LPAR1 antagonists, SAR100842 and EPGN9878, significantly inhibited breast cancer motility to LPA in vitro . Both compounds were negative for metastasis prevention and failed to reduce fibrosis in the experimental MDA-MB-231T and spontaneous murine 4T1 in vivo breast cancer metastasis models. SAR100842 demonstrated only occasional reductions in invasive metastases in the SKOV3 and OVCAR5 ovarian cancer experimental metastasis models. Two approved drugs for IPF, nintedanib and pirfenidone, were investigated. Both were ineffective at preventing MDA-MB-231T metastasis, with no attenuation of fibrosis. In summary, metastasis-induced fibrosis is only a minor component of metastasis in untreated progressive breast cancer. LPAR1 antagonists, despite in vitro evidence of specificity and efficacy, were ineffective in vivo as oral agents, as were approved IPF drugs. The data argue against LPAR1 and fibrosis as monotherapy targets for metastasis prevention in triple-negative breast cancer and ovarian cancer.

  14. Ultrastable Nontoxic RNA Nanoparticles for Targeting Triple-Negative Breast Cancer Stem Cells

    DTIC Science & Technology

    2016-04-01

    delivery system to meet the urgent need of efficient strategies for the treatment of breast cancer. 15. SUBJECT TERMS RNA nanotechnology ; three-way...construct a new generation of drugs composed purely of RNA (Nature Nanotechnology , 2011, 6: 658; Nano Today, 2012, 7: 245). Our goal is to apply our...anti-proliferative, anti-invasive and anti- metastasis properties. 2. KEYWORDS: RNA nanotechnology ; three-way junction; RNA aptamer; miRNA; triple

  15. Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers.

    PubMed

    Song, W; Hwang, Y; Youngblood, V M; Cook, R S; Balko, J M; Chen, J; Brantley-Sieders, D M

    2017-10-05

    Basal-like/triple-negative breast cancers (TNBCs) are among the most aggressive forms of breast cancer, and disproportionally affects young premenopausal women and women of African descent. Patients with TNBC suffer a poor prognosis due in part to a lack of molecularly targeted therapies, which represents a critical barrier for effective treatment. Here, we identify EphA2 receptor tyrosine kinase as a clinically relevant target for TNBC. EphA2 expression is enriched in the basal-like molecular subtype in human breast cancers. Loss of EphA2 function in both human and genetically engineered mouse models of TNBC reduced tumor growth in culture and in vivo. Mechanistically, targeting EphA2 impaired cell cycle progression through S-phase via downregulation of c-Myc and stabilization of the cyclin-dependent kinase inhibitor p27/KIP1. A small molecule kinase inhibitor of EphA2 effectively suppressed tumor cell growth in vivo, including TNBC patient-derived xenografts. Thus, our data identify EphA2 as a novel molecular target for TNBC.

  16. Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers

    PubMed Central

    Song, W; Hwang, Y; Youngblood, V M; Cook, R S; Balko, J M; Chen, J; Brantley-Sieders, D M

    2017-01-01

    Basal-like/triple-negative breast cancers (TNBCs) are among the most aggressive forms of breast cancer, and disproportionally affects young premenopausal women and women of African descent. Patients with TNBC suffer a poor prognosis due in part to a lack of molecularly targeted therapies, which represents a critical barrier for effective treatment. Here, we identify EphA2 receptor tyrosine kinase as a clinically relevant target for TNBC. EphA2 expression is enriched in the basal-like molecular subtype in human breast cancers. Loss of EphA2 function in both human and genetically engineered mouse models of TNBC reduced tumor growth in culture and in vivo. Mechanistically, targeting EphA2 impaired cell cycle progression through S-phase via downregulation of c-Myc and stabilization of the cyclin-dependent kinase inhibitor p27/KIP1. A small molecule kinase inhibitor of EphA2 effectively suppressed tumor cell growth in vivo, including TNBC patient-derived xenografts. Thus, our data identify EphA2 as a novel molecular target for TNBC. PMID:28581527

  17. Integration of Genomic, Biologic, and Chemical Approaches to Target p53 Loss and Gain-of-Function in Triple Negative Breast Cancer

    DTIC Science & Technology

    2014-09-01

    in this renewal: p53 triple negative breast cancer subtypes gene expression somatic cell genetics CRISPR /Cas 3. OVERALL PROJECT SUMMARY...to the efficacy of the synthetic lethality screen. In addition, we have optimized the use of CRISPR /Cas, a novel somatic cell recombination...completing this stage of the research within the upcoming Year 2 of the award period. Figure 1. CRISPR /Cas-mediated in vitro somatic cell

  18. Integration of Genomic, Biologic, and Chemical Approaches to Target p53 Loss and Gain-of-Function in Triple Negative Breast Cancer

    DTIC Science & Technology

    2016-09-01

    in this progress report: p53 triple-negative breast cancer subtypes gene expression somatic cell genetics CRISPR /Cas 3. ACCOMPLISHMENTS Major...report, we described the creation of an isogenic p53 mutant TNBC cell line panel using CRISPR /Cas-mediated genome editing8 and the resultant...LOF null state. To validate that mutant p53 is directly responsible for this altered transcription, we will use the same CRISPR -mediated genome

  19. An integrated bioinformatics analysis to dissect kinase dependency in triple negative breast cancer.

    PubMed

    Ryall, Karen A; Kim, Jihye; Klauck, Peter J; Shin, Jimin; Yoo, Minjae; Ionkina, Anastasia; Pitts, Todd M; Tentler, John J; Diamond, Jennifer R; Eckhardt, S Gail; Heasley, Lynn E; Kang, Jaewoo; Tan, Aik Choon

    2015-01-01

    Triple-Negative Breast Cancer (TNBC) is an aggressive disease with a poor prognosis. Clinically, TNBC patients have limited treatment options besides chemotherapy. The goal of this study was to determine the kinase dependency in TNBC cell lines and to predict compounds that could inhibit these kinases using integrative bioinformatics analysis. We integrated publicly available gene expression data, high-throughput pharmacological profiling data, and quantitative in vitro kinase binding data to determine the kinase dependency in 12 TNBC cell lines. We employed Kinase Addiction Ranker (KAR), a novel bioinformatics approach, which integrated these data sources to dissect kinase dependency in TNBC cell lines. We then used the kinase dependency predicted by KAR for each TNBC cell line to query K-Map for compounds targeting these kinases. We validated our predictions using published and new experimental data. In summary, we implemented an integrative bioinformatics analysis that determines kinase dependency in TNBC. Our analysis revealed candidate kinases as potential targets in TNBC for further pharmacological and biological studies.

  20. Engineering Remotely Triggered Liposomes to Target Triple Negative Breast Cancer

    PubMed Central

    Sneider, Alexandra; Jadia, Rahul; Piel, Brandon; VanDyke, Derek; Tsiros, Christopher; Rai, Prakash

    2017-01-01

    Triple Negative Breast Cancer (TNBC) continues to present a challenge in the clinic, as there is still no approved targeted therapy. TNBC is the worst sub-type of breast cancer in terms of prognosis and exhibits a deficiency in estrogen, progesterone, and human epidermal growth factor 2 (HER2) receptors. One possible option for the treatment of TNBC is chemotherapy. The issue with many chemotherapy drugs is that their effectiveness is diminished due to poor water solubility, and the method of administration directly or with a co-solvent intravenously can lead to an increase in toxicity. The issues of drug solubility can be avoided by using liposomes as a drug delivery carrier. Liposomes are engineered, biological nanoconstructs that possess the ability to encapsulate both hydrophobic and hydrophilic drugs and have been clinically approved to treat cancer. Specific targeting of cancer cell receptors through the use of ligands conjugated to the surface of drug-loaded liposomes could lessen damage to normal, healthy tissue. This study focuses on polyethylene glycol (PEG)-coated, folate conjugated, benzoporphyrin derivative (BPD)-loaded liposomes for treatment via photodynamic therapy (PDT). The folate receptor is over expressed on TNBC cells so these liposomes are targeted for greater uptake into cancer cells. PDT involves remotely irradiating light at 690 nm to trigger BPD, a hydrophobic photosensitive drug, to form reactive oxygen species that cause tumor cell death. BPD also displays a fluorescence signal when excited by light making it possible to image the fluorescence prior to PDT and for theranostics. In this study, free BPD, non-targeted and folate-targeted PEGylated BPD-loaded liposomes were introduced to a metastatic breast cancer cell line (MDA-MB-231) in vitro. The liposomes were reproducibly synthesized and characterized for size, polydispersity index (PDI), zeta potential, stability, and BPD release kinetics. Folate competition tests, fluorescence

  1. Current advances in biomarkers for targeted therapy in triple-negative breast cancer

    PubMed Central

    Fleisher, Brett; Clarke, Charlotte; Ait-Oudhia, Sihem

    2016-01-01

    Triple-negative breast cancer (TNBC) is a complex heterogeneous disease characterized by the absence of three hallmark receptors: human epidermal growth factor receptor 2, estrogen receptor, and progesterone receptor. Compared to other breast cancer subtypes, TNBC is more aggressive, has a higher prevalence in African-Americans, and more frequently affects younger patients. Currently, TNBC lacks clinically accepted targets for tailored therapy, warranting the need for candidate biomarkers. BiomarkerBase, an online platform used to find biomarkers reported in clinical trials, was utilized to screen all potential biomarkers for TNBC and select only the ones registered in completed TNBC trials through clinicaltrials.gov. The selected candidate biomarkers were classified as surrogate, prognostic, predictive, or pharmacodynamic (PD) and organized by location in the blood, on the cell surface, in the cytoplasm, or in the nucleus. Blood biomarkers include vascular endothelial growth factor/vascular endothelial growth factor receptor and interleukin-8 (IL-8); cell surface biomarkers include EGFR, insulin-like growth factor binding protein, c-Kit, c-Met, and PD-L1; cytoplasm biomarkers include PIK3CA, pAKT/S6/p4E-BP1, PTEN, ALDH1, and the PIK3CA/AKT/mTOR-related metabolites; and nucleus biomarkers include BRCA1, the gluco-corticoid receptor, TP53, and Ki67. Candidate biomarkers were further organized into a “cellular protein network” that demonstrates potential connectivity. This review provides an inventory and reference point for promising biomarkers for breakthrough targeted therapies in TNBC. PMID:27785100

  2. The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

    PubMed

    Shah, Sohrab P; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon K; Griffith, Malachi; Moradian, Annie; Cheng, S-W Grace; Morin, Gregg B; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar M; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2012-04-04

    Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.

  3. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer.

    PubMed

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation.

  4. Treatment of triple-negative breast cancer with Chinese herbal medicine

    PubMed Central

    Meng, Hui; Peng, Nan; Yu, Mingwei; Sun, Xu; Ma, Yunfei; Yang, Guowang; Wang, Xiaomin

    2017-01-01

    Abstract Introduction: Triple-negative breast cancer (TNBC) is featured with the biological properties of strong aggressive behaviors, rapid disease progression, high risk of recurrence and metastasis, and low disease free survival. Patients with this tumor are insensitive to the endocrine therapy and target treatment for HER-2; therefore, chemotherapy is often used as routine treatment in clinical. Because of the fact that a considerable number of patients seek for Chinese herbal medicine (CHM) treatment after operation and chemotherapy and (or) radiotherapy, it is thus need to evaluate the correlation between Chinese herbal medicine treatment and prognosis. Methods and analysis: This is a multicenter, prospective cohort study started in March 2016 in Beijing. A simple of 220 participants diagnosed with TNBC were recruited from nine hospitals and are followed up every 3 to 6 months till March 2020. Detailed information of participants includes personal information, history of cancer, quality of life, symptoms of traditional Chinese medicine and fatigue status is taken face-to-face at baseline. Ethics and dissemination: The study has received ethical approval from the Research Ethical Committee of Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University (No.2016BL-014-01). Articles summarizing the primary results and ancillary analyses will be published in peer-reviewed journals. Trial registration: Chinese Clinical Trial Registry: ChiCTR-OOC-16008246. PMID:29095272

  5. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    PubMed

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  6. Lifeguard inhibition of Fas-mediated apoptosis: A possible mechanism for explaining the cisplatin resistance of triple-negative breast cancer cells.

    PubMed

    Radin, Daniel; Lippa, Arnold; Patel, Parth; Leonardi, Donna

    2016-02-01

    Triple-negative breast cancer does not express estrogen receptor-α, progesterone or the HER2 receptor making hormone or antibody therapy ineffective. Cisplatin may initiate p73-dependent apoptosis in p53 mutant cell lines through Fas trimerization and Caspase-8 activation and Bax up regulation and subsequent Caspase-9 activation. The triple-negative breast cancer, MDA-MB-231, overexpresses the protein Lifeguard, which inhibits Fas-mediated apoptosis by inhibiting Caspase-8 activation after Fas trimerization. The relationship between Fas, Lifeguard and cisplatin is investigated by down regulating Lifeguard via shRNA. Results demonstrate that cisplatin's efficacy increases when Lifeguard is down regulated. Lifeguard Knockdown MDA-MB-231 continue to decrease in cell viability from 24 to 48h after cisplatin treatment while no additional decrease in viability is observed in the Wild-Type MDA over the same period. Higher Caspase-8 activity in the Lifeguard knockdown MDA after cisplatin administration could explain the significant decrease in cell viability from 24 to 48h. This cell type is also more sensitive to Fas ligand-mediated reductions in cell viability, confirming Lifeguard's anti-apoptotic function through the Fas receptor. This research suggests that the efficacy of chemotherapy acting through the Fas pathway would increase if Lifeguard were not overexpressed to inhibit Fas-mediated apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway.

    PubMed

    Chen, Xi; Iliopoulos, Dimitrios; Zhang, Qing; Tang, Qianzi; Greenblatt, Matthew B; Hatziapostolou, Maria; Lim, Elgene; Tam, Wai Leong; Ni, Min; Chen, Yiwen; Mai, Junhua; Shen, Haifa; Hu, Dorothy Z; Adoro, Stanley; Hu, Bella; Song, Minkyung; Tan, Chen; Landis, Melissa D; Ferrari, Mauro; Shin, Sandra J; Brown, Myles; Chang, Jenny C; Liu, X Shirley; Glimcher, Laurie H

    2014-04-03

    Cancer cells induce a set of adaptive response pathways to survive in the face of stressors due to inadequate vascularization. One such adaptive pathway is the unfolded protein (UPR) or endoplasmic reticulum (ER) stress response mediated in part by the ER-localized transmembrane sensor IRE1 (ref. 2) and its substrate XBP1 (ref. 3). Previous studies report UPR activation in various human tumours, but the role of XBP1 in cancer progression in mammary epithelial cells is largely unknown. Triple-negative breast cancer (TNBC)--a form of breast cancer in which tumour cells do not express the genes for oestrogen receptor, progesterone receptor and HER2 (also called ERBB2 or NEU)--is a highly aggressive malignancy with limited treatment options. Here we report that XBP1 is activated in TNBC and has a pivotal role in the tumorigenicity and progression of this human breast cancer subtype. In breast cancer cell line models, depletion of XBP1 inhibited tumour growth and tumour relapse and reduced the CD44(high)CD24(low) population. Hypoxia-inducing factor 1α (HIF1α) is known to be hyperactivated in TNBCs. Genome-wide mapping of the XBP1 transcriptional regulatory network revealed that XBP1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that regulates the expression of HIF1α targets via the recruitment of RNA polymerase II. Analysis of independent cohorts of patients with TNBC revealed a specific XBP1 gene expression signature that was highly correlated with HIF1α and hypoxia-driven signatures and that strongly associated with poor prognosis. Our findings reveal a key function for the XBP1 branch of the UPR in TNBC and indicate that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.

  8. Efficiency and prognosis of whole brain irradiation combined with precise radiotherapy on triple-negative breast cancer.

    PubMed

    Wu, Xinhong; Luo, Bo; Wei, Shaozhong; Luo, Yan; Feng, Yaojun; Xu, Juan; Wei, Wei

    2013-11-01

    To investigate the treatment efficiency of whole brain irradiation combined with precise radiotherapy on triple-negative (TN) phenotype breast cancer patients with brain metastases and their survival times. A total of 112 metastatic breast cancer patients treated with whole brain irradiation and intensity modulated radiotherapy (IMRT) or 3D conformal radiotherapy (3DCRT) were analyzed. Thirty-seven patients were of TN phenotype. Objective response rates were compared. Survival times were estimated by using the Kaplan-Meier method. Log-rank test was used to compare the survival time difference between the TN and non-TN groups. Potential prognostic factors were determined by using a Cox proportional hazard regression model. The efficiency of radiotherapy treatment on TN and non-TN phenotypes was 96.2% and 97%, respectively. TN phenotype was associated with worse survival times than non-TN phenotype after radiotherapy (6.9 months vs. 17 months) (P < 0.01). On multivariate analysis, good prognosis was associated with non-TN status, lower graded prognosis assessment class, and nonexistence of active extracranial metastases. After whole brain irradiation followed by IMRT or 3DCRT treatment, TN phenotype breast cancer patients with intracranial metastasis had high objective response rates but shorter survival time. With respect to survival in breast cancer patients with intracranial metastasis, the TN phenotype represents a significant adverse prognostic factor.

  9. 7-Hydroxystaurosporine and Irinotecan Hydrochloride in Treating Patients With Metastatic or Unresectable Solid Tumors or Triple Negative Breast Cancer (Currently Accruing Only Triple-negative Breast Cancer Patients Since 6/8/2007)

    ClinicalTrials.gov

    2013-09-27

    Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Borderline Ovarian Surface Epithelial-stromal Tumor; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Triple-negative Breast Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Unspecified Adult Solid Tumor, Protocol Specific; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  10. Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Su, Yu-Cheng; Burnouf, Pierre-Alain; Chuang, Kuo-Hsiang; Chen, Bing-Mae; Cheng, Tian-Lu; Roffler, Steve R.

    2017-06-01

    Triple-negative breast cancer (TNBC) lacks effective treatment options due to the absence of traditional therapeutic targets. The epidermal growth factor receptor (EGFR) has emerged as a promising target for TNBC therapy because it is overexpressed in about 50% of TNBC patients. Here we describe a PEG engager that simultaneously binds polyethylene glycol and EGFR to deliver PEGylated nanomedicines to EGFR+ TNBC. The PEG engager displays conditional internalization by remaining on the surface of TNBC cells until contact with PEGylated nanocarriers triggers rapid engulfment of nanocargos. PEG engager enhances the anti-proliferative activity of PEG-liposomal doxorubicin to EGFR+ TNBC cells by up to 100-fold with potency dependent on EGFR expression levels. The PEG engager significantly increases retention of fluorescent PEG probes and enhances the antitumour activity of PEGylated liposomal doxorubicin in human TNBC xenografts. PEG engagers with specificity for EGFR are promising for improved treatment of EGFR+ TNBC patients.

  11. Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials.

    PubMed

    Juul, Nicolai; Szallasi, Zoltan; Eklund, Aron C; Li, Qiyuan; Burrell, Rebecca A; Gerlinger, Marco; Valero, Vicente; Andreopoulou, Eleni; Esteva, Francisco J; Symmans, W Fraser; Desmedt, Christine; Haibe-Kains, Benjamin; Sotiriou, Christos; Pusztai, Lajos; Swanton, Charles

    2010-04-01

    Addition of taxanes to preoperative chemotherapy in breast cancer increases the proportion of patients who have a pathological complete response (pCR). However, a substantial proportion of patients do not respond, and the prognosis is particularly poor for patients with oestrogen-receptor (ER)/progesterone-receptor (PR)/human epidermal growth factor receptor 2 (HER2; ERBB2)-negative (triple-negative) disease who do not achieve a pCR. Reliable identification of such patients is the first step in determining who might benefit from alternative treatment regimens in clinical trials. We previously identified genes involved in mitosis or ceramide metabolism that influenced sensitivity to paclitaxel, with an RNA interference (RNAi) screen in three cancer cell lines, including a triple-negative breast-cancer cell line. Here, we assess these genes as a predictor of pCR to paclitaxel combination chemotherapy in triple-negative breast cancer. We derived a paclitaxel response metagene based on mitotic and ceramide genes identified by functional genomics studies. We used area under the curve (AUC) analysis and multivariate logistic regression to retrospectively assess the metagene in six cohorts of patients with triple-negative breast cancer treated with neoadjuvant chemotherapy; two cohorts treated with paclitaxel (n=27, 30) and four treated without paclitaxel (n=88, 28, 48, 39). The metagene was associated with pCR in paclitaxel-treated cohorts (AUC 0.79 [95% CI 0.53-0.93], 0.72 [0.48-0.90]) but not in non-paclitaxel treated cohorts (0.53 [0.31-0.77], 0.59 [0.22-0.82], 0.53 [0.36-0.71], 0.64 [0.43-0.81]). In multivariate logistic regression, the metagene was associated with pCR (OR 19.92, 2.62-151.57; p=0.0039) with paclitaxel-containing chemotherapy. The paclitaxel response metagene shows promise as a paclitaxel-specific predictor of pCR in patients with triple-negative breast cancer. The metagene is suitable for development into a reverse transcription-PCR assay, for which

  12. Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells.

    PubMed

    Hu, J; Obayemi, J D; Malatesta, K; Košmrlj, A; Soboyejo, W O

    2018-07-01

    Targeted therapy is an emerging technique in cancer detection and treatment. This paper presents the results of a combined experimental and theoretical study of the specific targeting and entry of luteinizing hormone releasing hormone (LHRH)-conjugated PEG-coated magnetite nanoparticles into triple negative breast cancer (TNBC) cells and normal breast cells. The conjugated nanoparticles structures, cellular uptake of PEG-coated magnetite nanoparticles (MNPs) and LHRH-conjugated PEG-coated magnetite nanoparticles (LHRH-MNPs) into breast cancer cells and normal breast cells were investigated using a combination of transmission electron microscope, optical and confocal fluorescence microscopy techniques. The results show that the presence of LHRH enhances the uptake of LHRH-MNPs into TNBC cells. Nanoparticle entry into breast cancer cells is also studied using a combination of thermodynamics and kinetics models. The trends in the predicted nanoparticle entry times (into TNBC cells) and the size ranges of the engulfed nanoparticles (within the TNBC cells) are shown to be consistent with experimental observations. The implications of the results are then discussed for the specific targeting of TNBCs with LHRH-conjugated PEG-coated magnetite nanoparticles for the early detection and treatment of TNBC. Copyright © 2018. Published by Elsevier B.V.

  13. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease

    PubMed Central

    Bianchini, Giampaolo; Balko, Justin M.; Mayer, Ingrid A.; Sanders, Melinda E.; Gianni, Luca

    2017-01-01

    Chemotherapy is the primary established systemic treatment for patients with triple-negative breast cancer (TNBC) in both the early and advanced-stages of the disease. The lack of targeted therapies and the poor prognosis of patients with TNBC have fostered a major effort to discover actionable molecular targets to treat patients with these tumours. Massively parallel sequencing and other ‘omics’ technologies have revealed an unexpected level of heterogeneity of TNBCs and have led to the identification of potentially actionable molecular features in some TNBCs, such as germline BRCA1/2 mutations or ‘BRCAness’, the presence of the androgen receptor, and several rare genomic alterations. Whether these alterations are molecular ‘drivers’, however, has not been clearly established. A subgroup of TNBCs shows a high degree of tumour-infiltrating lymphocytes that also correlates with a lower risk of disease relapse and a higher likelihood of benefit from chemotherapy. Proof-of-principle studies with immune-checkpoint inhibitors in advanced-stage TNBC have yielded promising results, indicating the potential benefit of immunotherapy for patients with TNBC. In this Review, we discuss the most relevant molecular findings in TNBC from the past decade and the most promising therapeutic opportunities derived from these data. PMID:27184417

  14. GATA3 Inhibits Lysyl Oxidase Mediated Metastases of Human Basal Triple-Negative Breast Cancer Cells

    PubMed Central

    Chu, Isabel M.; Michalowski, Aleksandra M.; Hoenerhoff, Mark; Szauter, Kornelia M.; Luger, Dror; Sato, Misako; Flanders, Kathy; Oshima, Akira; Csiszar, Katalin; Green, Jeffrey E.

    2011-01-01

    Discovery of mechanisms that impede the aggressive and metastatic phenotype of human basal triple-negative type breast cancers (BTNBC) could provide novel targets for therapy for this form of breast cancer that has a relatively poor prognosis. Previous studies have demonstrated that the expression of GATA3, the master transcriptional regulator of mammary luminal differentiation, can reduce the tumorigenicity and metastatic propensity of the human BTNBC MDA-MB-231 cell line (MB231), although the mechanism for reduced metastases was not elucidated. We demonstrate through gene expression profiling that GATA3 expression in 231 cells resulted in the dramatic reduction in the expression of Lysyl oxidase (LOX), a metastasis-promoting matrix remodeling protein, in part, through methylation of the LOX promoter. Suppression of LOX expression by GATA3 was further confirmed in the BTNBC Hs578T cell line. Conversely, reduction of GATA3 expression by siRNA in luminal BT474 cells increased LOX expression. Reconstitution of LOX expression in 231-GATA3 cells restored metastatic propensity. A strong inverse association between high LOX and low GATA3 expression was confirmed in a panel of 51 human breast cancer cell lines. Similarly, human breast cancer microarray data demonstrated that high LOX/low GATA3 expression is associated with the BTNBC subtype of breast cancer and poor patient prognosis. Expression of GATA3 reprograms BTNBC to a less aggressive phenotype and inhibits a major mechanism of metastasis through inhibition of LOX. Induction of GATA3 in BTNBC cells or novel approaches that inhibit LOX expression or activity could be important strategies for treating BTNBC. PMID:21892208

  15. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer

    PubMed Central

    Simone, Brittany A.; Dan, Tu; Palagani, Ajay; Jin, Lianjin; Han, Sunny Y.; Wright, Christopher; Savage, Jason E.; Gitman, Robert; Lim, Meng Kieng; Palazzo, Juan; Mehta, Minesh P.; Simone, Nicole L.

    2016-01-01

    ABSTRACT Purpose: Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. Methods: An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. Results: CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. Conclusions: CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer. PMID:27027731

  16. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer.

    PubMed

    Simone, Brittany A; Dan, Tu; Palagani, Ajay; Jin, Lianjin; Han, Sunny Y; Wright, Christopher; Savage, Jason E; Gitman, Robert; Lim, Meng Kieng; Palazzo, Juan; Mehta, Minesh P; Simone, Nicole L

    2016-09-01

    Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer.

  17. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells

    PubMed Central

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-01-01

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies. PMID:28423492

  18. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells.

    PubMed

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-03-28

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies.

  19. Research Resource: Global Identification of Estrogen Receptor β Target Genes in Triple Negative Breast Cancer Cells

    PubMed Central

    Shanle, Erin K.; Zhao, Zibo; Hawse, John; Wisinski, Kari; Keles, Sunduz; Yuan, Ming

    2013-01-01

    Breast cancers that are negative for estrogen receptor α (ERα), progesterone receptor, and human epidermal growth factor receptor 2 are known as triple-negative breast cancers (TNBC). TNBCs are associated with an overall poor prognosis because they lack expression of therapeutic targets like ERα and are biologically more aggressive. A second estrogen receptor, ERβ, has been found to be expressed in 50% to 90% of ERα-negative breast cancers, and ERβ expression in TNBCs has been shown to correlate with improved disease-free survival and good prognosis. To elucidate the role of ERβ in regulating gene expression and cell proliferation in TNBC cells, the TNBC cell line MDA-MB-468 was engineered with inducible expression of full-length ERβ. In culture, ERβ expression inhibited cell growth by inducing a G1 cell cycle arrest, which was further enhanced by 17β-estradiol treatment. In xenografts, ERβ expression also inhibited tumor formation and growth, and 17β-estradiol treatment resulted in rapid tumor regression. Furthermore, genomic RNA sequencing identified both ligand-dependent and -independent ERβ target genes, some of which were also regulated by ERβ in other TNBC cell lines and correlated with ERβ expression in a cohort of TNBCs from the Cancer Genome Atlas Network. ERβ target genes were enriched in genes that regulate cell death and survival, cell movement, cell development, and growth and proliferation, as well as genes involved in the Wnt/β-catenin and the G1/S cell cycle phase checkpoint pathways. In addition to confirming the anti-proliferative effects of ERβ in TNBC cells, these data provide a comprehensive resource of ERβ target genes and suggest that ERβ may be targeted with ligands that can stimulate its growth inhibitory effects. PMID:23979844

  20. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer

    PubMed Central

    Hollmén, Maija; Karaman, Sinem; Schwager, Simon; Lisibach, Angela; Christiansen, Ailsa J.; Maksimow, Mikael; Varga, Zsuzsanna; Jalkanen, Sirpa; Detmar, Michael

    2016-01-01

    ABSTRACT Tumor-associated macrophages (TAMs) have been implicated in the promotion of breast cancer growth and metastasis, and a strong infiltration by TAMs has been associated with estrogen receptor (ER)-negative tumors and poor prognosis. However, the molecular mechanisms behind these observations are unclear. We investigated macrophage activation in response to co-culture with several breast cancer cell lines (T47D, MCF-7, BT-474, SKBR-3, Cal-51 and MDA-MB-231) and found that high granulocyte colony-stimulating factor (G-CSF) secretion by the triple-negative breast cancer (TNBC) cell line MDA-MB-231 gave rise to immunosuppressive HLA-DRlo macrophages that promoted migration of breast cancer cells via secretion of TGF-α. In human breast cancer samples (n = 548), G-CSF was highly expressed in TNBC (p < 0.001) and associated with CD163+ macrophages (p < 0.0001), poorer overall survival (OS) (p = 0.021) and significantly increased numbers of TGF-α+ cells. While G-CSF blockade in the 4T1 mammary tumor model promoted maturation of MHCIIhi blood monocytes and TAMs and significantly reduced lung metastasis, anti-CSF-1R treatment promoted MHCIIloF4/80hiMRhi anti-inflammatory TAMs and enhanced lung metastasis in the presence of high G-CSF levels. Combined anti-G-CSF and anti-CSF-1R therapy significantly increased lymph node metastases, possibly via depletion of the so-called “gate-keeper” subcapsular sinus macrophages. These results indicate that G-CSF promotes the anti-inflammatory phenotype of tumor-induced macrophages when CSF-1R is inhibited and therefore caution against the use of M-CSF/CSF-1R targeting agents in tumors with high G-CSF expression. PMID:27141367

  1. An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer.

    PubMed

    Yang, Fang; Shen, Yan; Zhang, Wenwen; Jin, Juan; Huang, Doudou; Fang, Hehui; Ji, Wenfei; Shi, Yaqin; Tang, Lin; Chen, Weiwei; Zhou, Guohua; Guan, Xiaoxiang

    2018-05-29

    Androgen receptor (AR) is emerging as a novel prognostic biomarker in triple-negative breast cancer (TNBC), but the underlying mechanisms remain unknown. As accumulating evidence has shown that long non-coding RNAs (lncRNAs) regulate important cancer hallmarks, we hypothesised that AR-regulated lncRNAs might play roles in TNBC progression. Here, we performed experiments with or without DHT treatment in three TNBC cell lines, and we identified an AR negatively induced lncRNA (ARNILA), which correlated with poor progression-free survival (PFS) in TNBC patients and promoted epithelial-mesenchymal transition (EMT), invasion and metastasis in vitro and in vivo. Subsequently, we demonstrated that ARNILA functioned as a competing endogenous RNA (ceRNA) for miR-204 to facilitate expression of its target gene Sox4, which is known to induce EMT and contribute to breast cancer progression, thereby promoting EMT, invasion and metastasis of TNBC. Our findings not only provide new insights into the mechanisms of lncRNA in regulating AR but also suggest ARNILA as an alternative therapeutic target to suppress metastasis of TNBC patients.

  2. Noninvasive in vivo multispectral optoacoustic imaging of apoptosis in triple negative breast cancer using indocyanine green conjugated phosphatidylserine monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Kannadorai, Ravi Kumar; Udumala, Sunil Kumar; Sidney, Yu Wing Kwong

    2016-12-01

    Noninvasive and nonradioactive imaging modality to track and image apoptosis during chemotherapy of triple negative breast cancer is much needed for an effective treatment plan. Phosphatidylserine (PS) is a biomarker transiently exposed on the outer surface of the cells during apoptosis. Its externalization occurs within a few hours of an apoptotic stimulus by a chemotherapy drug and leads to presentation of millions of phospholipid molecules per apoptotic cell on the cell surface. This makes PS an abundant and accessible target for apoptosis imaging. In the current work, we show that PS monoclonal antibody tagged with indocyanine green (ICG) can help to track and image apoptosis using multispectral optoacoustic tomography in vivo. When compared to saline control, the doxorubicin treated group showed a significant increase in uptake of ICG-PS monoclonal antibody in triple negative breast tumor xenografted in NCr nude female mice. Day 5 posttreatment had the highest optoacoustic signal in the tumor region, indicating maximum apoptosis and the tumor subsequently shrank. Since multispectral optoacoustic imaging does not involve the use of radioactivity, the longer the circulatory time of the PS antibody can be exploited to monitor apoptosis over a period of time without multiple injections of commonly used imaging probes such as Tc-99m Annexin V or F-18 ML10. The proposed apoptosis imaging technique involving multispectral optoacoustic tomography, monoclonal antibody, and near-infrared absorbing fluorescent marker can be an effective tool for imaging apoptosis and treatment planning.

  3. Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises.

    PubMed

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Kalampokas, Emmanouil; Kalampokas, Theodoros; Spartalis, Eleftherios; Daskalopoulou, Afrodite; Valsami, Serena; Kontos, Michael; Nonni, Afroditi; Kontzoglou, Konstantinos; Perrea, Despina; Nikiteas, Nikolaos; Dimitroulis, Dimitrios

    2017-01-01

    Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 gene. It comprises approximately 15-20% of breast cancers (BCs). Unfortunately, TNBC's treatment continues to be a clinical problem because of its relatively poor prognosis, its aggressiveness and the lack of targeted therapies, leaving chemotherapy as the mainstay of treatment. It is essential to find new therapies against TNBC, in order to surpass the resistance and the invasiveness of already existing therapies. Given the fact that epigenetic processes control both the initiation and progression of TNBC, there is an increasing interest in the mechanisms, molecules and signaling pathways that participate at the epigenetic modulation of genes expressed in carcinogenesis. The acetylation of histone proteins provokes the transcription of genes involved in cell growth, and the expression of histone deacetylases (HDACs) is frequently up-regulated in many malignancies. Unfortunately, in the field of BC, HDAC inhibitors have shown limited effect as single agents. Nevertheless, their use in combination with kinase inhibitors, autophagy inhibitors, ionizing radiation, or two HDAC inhibitors together is currently being evaluated. HDAC inhibitors such as suberoylanilidehydroxamic acid (SAHA), sodium butyrate, mocetinostat, panobinostat, entinostat, YCW1 and N-(2-hydroxyphenyl)-2-propylpentanamide have shown promising therapeutic outcomes against TNBC, especially when they are used in combination with other anticancer agents. More studies concerning HDAC inhibitors in breast carcinomas along with a more accurate understanding of the TNBC's pathobiology are required for the possible identification of new therapeutic strategies. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Synthesis, Crystal Study, and Anti-Proliferative Activity of Some 2-Benzimidazolylthioacetophenones towards Triple-Negative Breast Cancer MDA-MB-468 Cells as Apoptosis-Inducing Agents.

    PubMed

    Abdel-Aziz, Hatem A; Eldehna, Wagdy M; Ghabbour, Hazem; Al-Ansary, Ghada H; Assaf, Areej M; Al-Dhfyan, Abdullah

    2016-07-29

    On account of its poor prognosis and deficiency of therapeutic stratifications, triple negative breast cancer continues to form the causative platform of an incommensurate number of breast cancer deaths. Aiming at the development of potent anticancer agents as a continuum of our previous efforts, a novel series of 2-((benzimidazol-2-yl)thio)-1-arylethan-1-ones 5a-w was synthesized and evaluated for its anti-proliferative activity towards triple negative breast cancer (TNBC) MDA-MB-468 cells. Compound 5k was the most active analog against MDA-MB-468 (IC50 = 19.90 ± 1.37 µM), with 2.1-fold increased activity compared to 5-fluorouracil (IC50 = 41.26 ± 3.77 µM). Compound 5k was able to induce apoptosis in MDA-MB-468, as evidenced by the marked boosting in the percentage of florecsein isothiocyanate annexin V (Annexin V-FITC)-positive apoptotic cells (upper right (UR) + lower right (LR)) by 2.8-fold in comparison to control accompanied by significant increase in the proportion of cells at pre-G1 (the first gap phase) by 8.13-fold in the cell-cycle analysis. Moreover, a quantitative structure activity relationship (QSAR) model was established to investigate the structural requirements orchestrating the anti-proliferative activity. Finally, we established a theoretical kinetic study.

  5. Sensitizing Triple-Negative Breast Cancer to PI3K Inhibition by Cotargeting IGF1R.

    PubMed

    de Lint, Klaas; Poell, Jos B; Soueidan, Hayssam; Jastrzebski, Katarzyna; Vidal Rodriguez, Jordi; Lieftink, Cor; Wessels, Lodewyk F A; Beijersbergen, Roderick L

    2016-07-01

    Targeted therapies have proven invaluable in the treatment of breast cancer, as exemplified by tamoxifen treatment for hormone receptor-positive tumors and trastuzumab treatment for HER2-positive tumors. In contrast, a subset of breast cancer negative for these markers, triple-negative breast cancer (TNBC), has met limited success with pathway-targeted therapies. A large fraction of TNBCs depend on the PI3K pathway for proliferation and survival, but inhibition of PI3K alone generally has limited clinical benefit. We performed an RNAi-based genetic screen in a human TNBC cell line to identify kinases whose knockdown synergizes with the PI3K inhibitor GDC-0941 (pictilisib). We discovered that knockdown of insulin-like growth factor-1 receptor (IGF1R) expression potently increased sensitivity of these cells to GDC-0941. Pharmacologic inhibition of IGF1R using OSI-906 (linsitinib) showed a strong synergy with PI3K inhibition. Furthermore, we found that the combination of GDC-0941 and OSI-906 is synergistic in 8 lines from a panel of 18 TNBC cell lines. In these cell lines, inhibition of IGF1R further decreases the activity of downstream PI3K pathway components when PI3K is inhibited. Expression analysis of the panel of TNBC cell lines indicates that the expression levels of IGF2BP3 can be used as a potential predictor for sensitivity to the PI3K/IGF1R inhibitor combination. Our data show that combination therapy consisting of PI3K and IGF1R inhibitors could be beneficial in a subset of TNBCs. Mol Cancer Ther; 15(7); 1545-56. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    PubMed

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  7. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease

    PubMed Central

    2012-01-01

    Background Triple-negative breast cancer (TNBC) exhibit characteristics quite distinct from other kinds of breast cancer, presenting as an aggressive disease--recurring and metastasizing more often than other kinds of breast cancer, without tumor-specific treatment options and accounts for 15% of all types of breast cancer with higher percentages in premenopausal African-American and Hispanic women. The reason for this aggressive phenotype is currently the focus of intensive research. However, progress is hampered by the lack of suitable TNBC cell model systems. Methods To understand the mechanistic basis for the aggressiveness of TNBC, we produced a stable TNBC cell line by sorting for 4T1 cells that do not express the estrogen receptor (ER), progesterone receptor (PgR) or the gene for human epidermal growth factor receptor 2 (HER2). As a control, we produced a stable triple-positive breast cancer (TPBC) cell line by transfecting 4T1 cells with rat HER2, ER and PgR genes and sorted for cells with high expression of ER and PgR by flow cytometry and high expression of the HER2 gene by Western blot analysis. Results We isolated tumor-initiating cells (TICs) by sorting for CD24+/CD44high/ALDH1+ cells from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) stable cell lines. Limiting dilution transplantation experiments revealed that CD24+/CD44high/ALDH1+ cells derived from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) were significantly more effective at repopulating the mammary glands of naïve female BALB/c mice than CD24-/CD44-/ALDH1- cells. Implantation of the TNBC-TICs resulted in significantly larger tumors, which metastasized to the lungs to a significantly greater extent than TNBC, TPBC-TICs, TPBC or parental 4T1 cells. We further demonstrated that the increased aggressiveness of TNBC-TICs correlates with the presence of high levels of mouse twenty-five kDa heat shock protein (Hsp25/mouse HspB1) and seventy-two kDa heat shock protein (Hsp72/HspA1A). Conclusions Taken together, we

  8. Wnt modulates MCL1 to control cell survival in triple negative breast cancer

    PubMed Central

    2014-01-01

    Background Triple negative breast cancer (TNBC) has higher rates of recurrence and distant metastasis, and poorer outcome as compared to non-TNBC. Aberrant activation of WNT signaling has been detected in TNBC, which might be important for triggering oncogenic conversion of breast epithelial cell. Therefore, we directed our focus on identifying the WNT ligand and its underlying mechanism in TNBC cells. Methods We performed large-scale analysis of public microarray data to screen the WNT ligands and the clinical significance of the responsible ligand in TNBC. WNT5B was identified and its overexpression in TNBC was confirmed by immunohistochemistry staining, Western blot and ELISA. ShRNA was used to knockdown WNT5B expression (shWNT5B). Cellular functional alteration with shWNT5B treatment was determined by using wound healing assay, mammosphere assay; while cell cycle and apoptosis were examined by flowcytometry. Mitochondrial morphology was photographed by electron microscope. Biological change of mitochondria was detected by RT-PCR and oxygen consumption assay. Activation of WNT pathway and its downstream targets were evaluated by liciferase assay, immunohistochemistry staining and immunoblot analysis. Statistical methods used in the experiments besides microarray analysis was two-tailed t-test. Results WNT5B was elevated both in the tumor and the patients’ serum. Suppression of WNT5B remarkably impaired cell growth, migration and mammosphere formation. Additionally, G0/G1 cell cycle arrest and caspase-independent apoptosis was observed. Study of the possible mechanism indicated that these effects occurred through suppression of mitochondrial biogenesis, as evidenced by reduced mitochondrial DNA (MtDNA) and compromised oxidative phosphorylation (OXPHOS). In Vivo and in vitro data uncovered that WNT5B modulated mitochondrial physiology was mediated by MCL1, which was regulated by WNT/β-catenin responsive gene, Myc. Clinic data analysis revealed that both WNT5B

  9. Correlates of Triple Negative Breast Cancer and Chemotherapy Patterns in Black and White Women With Breast Cancer.

    PubMed

    Sheppard, Vanessa B; Cavalli, Luciane R; Dash, Chiranjeev; Kanaan, Yasmine M; Dilawari, Asma A; Horton, Sara; Makambi, Kepher H

    2017-06-01

    Triple negative breast cancer (TNBC) tumors are estrogen receptor-negative, progesterone receptor-negative, and human epidermal growth factor-negative. TNBC is responsive to chemotherapy, but chemotherapy might be underused in some patient subgroups. The goal of the present study was to characterize the patterns of chemotherapy use (uptake and completion) in TNBC patients. Women with primary invasive, nonmetastatic breast cancer were recruited in Washington, DC, and Detroit. Data were collected using a standardized telephone survey that captured sociocultural and health care process factors. Clinical data were abstracted from the medical records. We used χ 2 tests to access the association between the receipt of chemotherapy use (initiation and completion) and categorical variables, and t tests were used for continuous variables. Logistic regression models were used to evaluate the factors associated with chemotherapy uptake. Women with TNBC (16% of sample) were more likely to be black than white (68% vs. 32%; P < .05). Among women with TNBC, 60% underwent chemotherapy. Chemotherapy uptake was greater for black than for white women (48.3% vs. 11.7%; P = .01) and in women without (vs. with) healthcare discrimination (35% vs. 25%; P = .04). In multivariable models, only race was associated with the receipt of chemotherapy. Black women were more likely to receive chemotherapy than were white women. The odds ratio of receiving chemotherapy by race was 4.1 (95% confidence interval, 1.3-13.1). Each 1-year increase in age was associated with a lower likelihood of chemotherapy completion (odds ratio, 0.9; 95% confidence interval, 0.826-0.981; P = .02). Women with at least some college were less likely to complete chemotherapy than were those with other education levels (P = .02). A substantial number of TNBC patients failed to receive and/or complete chemotherapy. Differences in chemotherapy uptake by race and sociocultural factors diminished in multivariable models

  10. Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer.

    PubMed

    Quintero, Melissa; Adamoski, Douglas; Reis, Larissa Menezes Dos; Ascenção, Carolline Fernanda Rodrigues; Oliveira, Krishina Ratna Sousa de; Gonçalves, Kaliandra de Almeida; Dias, Marília Meira; Carazzolle, Marcelo Falsarella; Dias, Sandra Martha Gomes

    2017-11-07

    Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen and progesterone receptor expression (ESR and PGR, respectively) and an absence of human epithelial growth factor receptor (ERBB2) amplification. Approximately 15-20% of breast malignancies are TNBC. Patients with TNBC often have an unfavorable prognosis. In addition, TNBC represents an important clinical challenge since it does not respond to hormone therapy. In this work, we integrated high-throughput mRNA sequencing (RNA-Seq) data from normal and tumor tissues (obtained from The Cancer Genome Atlas, TCGA) and cell lines obtained through in-house sequencing or available from the Gene Expression Omnibus (GEO) to generate a unified list of differentially expressed (DE) genes. Methylome and proteomic data were integrated to our analysis to give further support to our findings. Genes that were overexpressed in TNBC were then curated to retain new potentially druggable targets based on in silico analysis. Knocking-down was used to assess gene importance for TNBC cell proliferation. Our pipeline analysis generated a list of 243 potential new targets for treating TNBC. We finally demonstrated that knock-down of Guanylate-Binding Protein 1 (GBP1 ), one of the candidate genes, selectively affected the growth of TNBC cell lines. Moreover, we showed that GBP1 expression was controlled by epidermal growth factor receptor (EGFR) in breast cancer cell lines. We propose that GBP1 is a new potential druggable therapeutic target for treating TNBC with enhanced EGFR expression.

  11. Phenotypic characterization of circulating tumor cells in triple negative breast cancer patients.

    PubMed

    Agelaki, Sofia; Dragolia, Melina; Markonanolaki, Harris; Alkahtani, Saad; Stournaras, Christos; Georgoulias, Vassilis; Kallergi, Galatea

    2017-01-17

    Patients with triple negative breast cancer (TNBC), are considered as a poor prognosis group for whom no targeted therapies are currently available. The aim of the present study was to phenotypically characterize their CTCs in order to explore potential therapeutic targets. PBMC's cytospins were prepared from 45 early (before and after adjuvant chemotherapy), 10 metastatic TNBC and 21 hormone receptor (HR) -positive patients. The expression of Cytokeratins (CK), ER, PR, EGFR and HER2 on CTCs was assessed using immunofluoresence staining and ARIOL analysis. In early stage TNBC, ER, PR, HER2 and EGFR expressing-CTCs were detected in 24.4%, 24.4%, 20% and 40% of patients before the initiation of adjuvant chemotherapy, and in 17.8%, 13.3% 6.7% and 51.1% respectively after the completion of adjuvant treatment. Triple staining experiments revealed distinct subpopulations of CTC expressed HR, and ErbB family receptors. In patients with metastatic disease, the frequency of HER2+ CTCs was significantly increased compared to adjuvant setting (60% vs 20%, p=0.014). The presence of CK+PR- CTCs, before adjuvant treatment was associated with reduced OS (p=0.032) and DFI (p=0.04). Furthermore, the frequency of ER-, PR- and HER2+ CTCs was higher in HR(+) than in TNBC tumors (57.1%, p=0.006; 52.4%, p=0.021 and 52.38%, p=0.009, respectively). The CTCs in patients with early TNBC are phenotypically heterogeneous based on the expression of HR, EGFR and HER2 both before and after the completion of adjuvant chemotherapy whereas the presence of HER2+ CTCs prevails during disease evolution. These findings could be of clinical relevance in terms of CTC targeting.

  12. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences.

    PubMed

    Tayyari, Fariba; Gowda, G A Nagana; Olopade, Olufunmilayo F; Berg, Richard; Yang, Howard H; Lee, Maxwell P; Ngwa, Wilfred F; Mittal, Suresh K; Raftery, Daniel; Mohammed, Sulma I

    2018-02-20

    Breast cancer, a heterogeneous disease with variable pathophysiology and biology, is classified into four major subtypes. While hormonal- and antibody-targeted therapies are effective in the patients with luminal and HER-2 subtypes, the patients with triple-negative breast cancer (TNBC) subtype do not benefit from these therapies. The incidence rates of TNBC subtype are higher in African-American women, and the evidence indicates that these women have worse prognosis compared to women of European descent. The reasons for this disparity remain unclear but are often attributed to TNBC biology. In this study, we performed metabolic analysis of breast tissues to identify how TNBC differs from luminal A breast cancer (LABC) subtypes within the African-American and Caucasian breast cancer patients, respectively. We used High-Resolution Magic Angle Spinning (HR-MAS) 1H Nuclear magnetic resonance (NMR) to perform the metabolomic analysis of breast cancer and adjacent normal tissues (total n=82 samples). TNBC and LABC subtypes in African American women exhibited different metabolic profiles. Metabolic profiles of these subtypes were also distinct from those revealed in Caucasian women. TNBC in African-American women expressed higher levels of glutathione, choline, and glutamine as well as profound metabolic alterations characterized by decreased mitochondrial respiration and increased glycolysis concomitant with decreased levels of ATP. TNBC in Caucasian women was associated with increased pyrimidine synthesis. These metabolic alterations could potentially be exploited as novel treatment targets for TNBC.

  13. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences

    PubMed Central

    Tayyari, Fariba; Gowda, G.A. Nagana; Olopade, Olufunmilayo F.; Berg, Richard; Yang, Howard H.; Lee, Maxwell P.; Ngwa, Wilfred F.; Mittal, Suresh K.; Raftery, Daniel; Mohammed, Sulma I.

    2018-01-01

    Breast cancer, a heterogeneous disease with variable pathophysiology and biology, is classified into four major subtypes. While hormonal- and antibody-targeted therapies are effective in the patients with luminal and HER-2 subtypes, the patients with triple-negative breast cancer (TNBC) subtype do not benefit from these therapies. The incidence rates of TNBC subtype are higher in African-American women, and the evidence indicates that these women have worse prognosis compared to women of European descent. The reasons for this disparity remain unclear but are often attributed to TNBC biology. In this study, we performed metabolic analysis of breast tissues to identify how TNBC differs from luminal A breast cancer (LABC) subtypes within the African-American and Caucasian breast cancer patients, respectively. We used High-Resolution Magic Angle Spinning (HR-MAS) 1H Nuclear magnetic resonance (NMR) to perform the metabolomic analysis of breast cancer and adjacent normal tissues (total n=82 samples). TNBC and LABC subtypes in African American women exhibited different metabolic profiles. Metabolic profiles of these subtypes were also distinct from those revealed in Caucasian women. TNBC in African-American women expressed higher levels of glutathione, choline, and glutamine as well as profound metabolic alterations characterized by decreased mitochondrial respiration and increased glycolysis concomitant with decreased levels of ATP. TNBC in Caucasian women was associated with increased pyrimidine synthesis. These metabolic alterations could potentially be exploited as novel treatment targets for TNBC. PMID:29545929

  14. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles.

    PubMed

    Parvani, Jenny G; Jackson, Mark W

    2017-04-01

    Over the past decade, RNA interference (RNAi) has been ubiquitously utilized to study biological function in vitro ; however, limitations were associated with its utility in vivo More recently, small interfering RNA (siRNA) nanoparticles with improved biocompatibility have gained prevalence as a potential therapeutic option for the treatment of various diseases. The adaptability of siRNA nanoparticles enables the delivery of virtually any siRNA, which is especially advantageous for therapeutic applications in heterogeneous diseases that lack unifying molecular features, such as triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast cancer that is stratified by the lack of estrogen receptor/progesterone receptor expression and HER2 amplification. There are currently no FDA-approved targeted therapies for the treatment of TNBCs, making cytotoxic chemotherapy the only treatment option available to these patients. In this review, we outline the current status of siRNA nanoparticles in clinical trials for cancer treatment and discuss the promising preclinical approaches that have utilized siRNA nanoparticles for TNBC treatment. Next, we address TNBC subtype-specific therapeutic interventions and highlight where and how siRNA nanoparticles fit into these strategies. Lastly, we point out ongoing challenges in the field of siRNA nanoparticle research that, if addressed, would significantly improve the efficacy of siRNA nanoparticles as a therapeutic option for cancer treatment. © 2017 Society for Endocrinology.

  15. Autophagic cell death and premature senescence: New mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line.

    PubMed

    Milczarek, Małgorzata; Wiktorska, Katarzyna; Mielczarek, Lidia; Koronkiewicz, Mirosława; Dąbrowska, Aleksandra; Lubelska, Katarzyna; Matosiuk, Dariusz; Chilmonczyk, Zdzisław

    2018-01-01

    In view of the need for new, more effective therapies for the triple negative breast cancer treatment, the aim of the study was to evaluate the anticancer activity and mechanism of action of the sulforaphane and 5-fluorouracil combination in the triple negative breast cancer cell line MDA-MB-231. Changes in the number of live cells after alone and sequential treatment were determined by the MTT test. The Chou and Talaly method was used to identify the type of interaction. Confocal microscopy, flow cytometry, western blot and spectrophotometry were used to examine apoptosis, autophagy and premature senescence. The western blot method was applied to measure the level of enzymes that are crucial for the 5-fluorouracil activity. Sulforaphane and 5-fluorouracil have been shown to interact synergistically in the breast cancerMDA-MB-231 cell line, resulting in a significant reduction of the number of live cells compared to alone treatments. Sulforaphane has decreased the level of thymidylate synthetase, which was also observed in the case of the sequential sulforaphane and 5-fluorouracil treatment. Studies of the interaction mechanism have revealed that sulforaphane and 5-fluorouracil act synergistically in the MDA-MB-231 cells by inducing autophagic cell death and premature senescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis.

    PubMed

    Martinez, Luis; Thames, Easter; Kim, Jinna; Chaudhuri, Gautam; Singh, Rajan; Pervin, Shehla

    2016-07-29

    Breast cancer is a complex heterogeneous disease where many distinct subtypes are found. Younger African American (AA) women often present themselves with aggressive form of breast cancer with unique biology which is very difficult to treat. Better understanding the biology of AA breast tumors could lead to development of effective treatment strategies. Our previous studies indicate that AA but not Caucasian (CA) triple negative (TN) breast cancer cells were sensitive to nitrosative stress-induced cell death. In this study, we elucidate possible mechanisms that contribute to nitric oxide (NO)-induced apoptosis in AA TN breast cancer cells. Breast cancer cells were treated with various concentrations of long-acting NO donor, DETA-NONOate and cell viability was determined by trypan blue exclusion assay. Apoptosis was determined by TUNEL and caspase 3 activity as well as changes in mitochondrial membrane potential. Caspase 3 and Bax cleavage, levels of Cu/Zn superoxide dismutase (SOD) and Mn SOD was assessed by immunoblot analysis. Inhibition of Bax cleavage by Calpain inhibitor, and levels of reactive oxygen species (ROS) as well as SOD activity was measured in NO-induced apoptosis. In vitro and in vivo effect of NO treatment on mammary cancer stem cells (MCSCs) was assessed. NO induced mitocondria-mediated apoptosis in all AA but not in CA TN breast cancer cells. We found significant TUNEL-positive cells, cleavage of Bax and caspase-3 activation as well as depolarization mitochondrial membrane potential only in AA TN breast cancer cells exposed to NO. Inhibition of Bax cleavage and quenching of ROS partially inhibited NO-induced apoptosis in AA TN cells. Increase in ROS coincided with reduction in SOD activity in AA TN breast cancer cells. Furthermore, NO treatment of AA TN breast cancer cells dramatically reduced aldehyde dehydrogenase1 (ALDH1) expressing MCSCs and xenograft formation but not in breast cancer cells from CA origin. Ethnic differences in breast

  17. MiR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer.

    PubMed

    Xu, Xin; Zhang, Yun; Jasper, Jeff; Lykken, Erik; Alexander, Peter B; Markowitz, Geoffrey J; McDonnell, Donald P; Li, Qi-Jing; Wang, Xiao-Fan

    2016-04-12

    Triple-negative breast cancer (TNBC) presents a major challenge in the clinic due to its lack of reliable prognostic markers and targeted therapies. Accumulating evidence strongly supports the notion that microRNAs (miRNAs) are involved in tumorigenesis and could serve as biomarkers for diagnostic purposes. To identify miRNAs that functionally suppress metastasis of TNBC, we employed a concerted approach with selecting miRNAs that display differential expression profiles from bioinformatic analyses of breast cancer patient databases and validating top candidates with functional assays using breast cancer cell lines and mouse models. We have found that miR-148a exhibits properties as a tumor suppressor as its expression is inversely correlated with the ability of both human and mouse breast cancer cells to colonize the lung in mouse xenograft tumor models. Mechanistically, miR-148a appears to suppress the extravasation process of cancer cells, likely by targeting two genes WNT1 and NRP1 in a cell non-autonomous manner. Importantly, lower expression of miR-148a is detected in higher-grade tumor samples and correlated with increased likelihood to develop metastases and poor prognosis in subsets of breast cancer patients, particularly those with TNBC. Thus, miR-148a is functionally defined as a suppressor of breast cancer metastasis and may serve as a prognostic biomarker for this disease.

  18. Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer

    NASA Astrophysics Data System (ADS)

    Park, Dongjin; Ahn, Kyung-Ohk; Jeong, Kyung-Chae; Choi, Yongdoo

    2016-05-01

    Here, we fabricated polypyrrole nanoparticles (PPys) (termed HA10-PPy, HA20-PPy, and HA40-PPy) doped with different average molecular weight hyaluronic acids (HAs) (10, 20, and 40 kDa, respectively), and evaluated the effect of molecular weight of doped HA on photothermal induction, fluorescence quenching, and drug loading efficiencies. Doxorubicin-loaded HA-doped PPys (DOX@HA-PPys) could be used for imaging and therapy of triple-negative breast cancer (TNBC). Fluorescence turn-on, stimuli-responsive drug release, and photo-induced heating of DOX@HA-PPys enabled not only activatable fluorescence imaging but also subsequent chemo/photothermal dual therapy for TNBC. In particular, we illustrated the potential usefulness of the photothermal effect of the nanoparticles for overcoming chemoresistance in TNBC.

  19. Outcome disparities in African American women with triple negative breast cancer: a comparison of epidemiological and molecular factors between African American and Caucasian women with triple negative breast cancer.

    PubMed

    Sturtz, Lori A; Melley, Jen; Mamula, Kim; Shriver, Craig D; Ellsworth, Rachel E

    2014-02-04

    Although diagnosed less often, breast cancer in African American women (AAW) displays different characteristics compared to breast cancer in Caucasian women (CW), including earlier onset, less favorable clinical outcome, and an aggressive tumor phenotype. These disparities may be attributed to differences in socioeconomic factors such as access to health care, lifestyle, including increased frequency of obesity in AAW, and tumor biology, especially the higher frequency of triple negative breast cancer (TNBC) in young AAW. Improved understanding of the etiology and molecular characteristics of TNBC in AAW is critical to determining whether and how TNBC contributes to survival disparities in AAW. Demographic, pathological and survival data from AAW (n = 62) and CW (n = 98) with TNBC were analyzed using chi-square analysis, Student's t-tests, and log-rank tests. Frozen tumor specimens were available from 57 of the TNBC patients (n = 23 AAW; n = 34 CW); RNA was isolated after laser microdissection of tumor cells and was hybridized to HG U133A 2.0 microarrays. Data were analyzed using ANOVA with FDR <0.05, >2-fold difference defining significance. The frequency of TNBC compared to all BC was significantly higher in AAW (28%) compared to CW (12%), however, significant survival and pathological differences were not detected between populations. Gene expression analysis revealed the tumors were more similar than different at the molecular level, with only CRYBB2P1, a pseudogene, differentially expressed between populations. Among demographic characteristics, AAW consumed significantly lower amounts of caffeine and alcohol, were less likely to breastfeed and more likely to be obese. These data suggest that TNBC in AAW is not a unique disease compared to TNBC in CW. Rather, higher frequency of TNBC in AAW may, in part, be attributable to the effects of lifestyle choices. Because these risk factors are modifiable, they provide new opportunities for the development of risk

  20. Preliminary characterization of IL32 in basal-like/triple negative compared to other types of breast cell lines and tissues

    PubMed Central

    2014-01-01

    Background Triple negative breast cancer (TNBC) and often basal-like cancers are defined as negative for estrogen receptor, progesterone receptor and Her2 gene expression. Over the past few years an incredible amount of data has been generated defining the molecular characteristics of both cancers. The aim of these studies is to better understand the cancers and identify genes and molecular pathways that might be useful as targeted therapies. In an attempt to contribute to the understanding of basal-like/TNBC, we examined the Gene Expression Omnibus (GEO) public datasets in search of genes that might define basal-like/TNBC. The Il32 gene was identified as a candidate. Findings Analysis of several GEO datasets showed differential expression of IL32 in patient samples previously designated as basal and/or TNBC compared to normal and luminal breast samples. As validation of the GEO results, RNA and protein expression levels were examined using MCF7 and MDA MB231 cell lines and tissue microarrays (TMAs). IL32 gene expression levels were higher in MDA MB231 compared to MCF7. Analysis of TMAs showed 42% of TNBC tissues and 25% of the non-TNBC were positive for IL32, while non-malignant patient samples and all but one hyperplastic tissue sample demonstrated lower levels of IL32 protein expression. Conclusion Data obtained from several publically available GEO datasets showed overexpression of IL32 gene in basal-like/TNBC samples compared to normal and luminal samples. In support of these data, analysis of TMA clinical samples demonstrated a particular pattern of IL32 differential expression. Considered together, these data suggest IL32 is a candidate suitable for further study. PMID:25100201

  1. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain.

    PubMed

    Avraham, Hava Karsenty; Jiang, Shuxian; Fu, Yigong; Nakshatri, Harikrishna; Ovadia, Haim; Avraham, Shalom

    2014-02-01

    Although the incidence of breast cancer metastasis (BCM) in brain has increased significantly in triple-negative breast cancer (TNBC), the mechanisms remain elusive. Using in vivo mouse models for BCM in brain, we observed that TNBC cells crossed the blood-brain barrier (BBB), lodged in the brain microvasculature and remained adjacent to brain microvascular endothelial cells (BMECs). Breaching of the BBB in vivo by TNBCs resulted in increased BBB permeability and changes in ZO-1 and claudin-5 tight junction (TJ) protein structures. Angiopoietin-2 expression was elevated in BMECs and was correlated with BBB disruption. Secreted Ang-2 impaired TJ structures and increased BBB permeability. Treatment of mice with the neutralizing Ang-2 peptibody trebananib prevented changes in the BBB integrity and BMEC destabilization, resulting in inhibition of TNBC colonization in brain. Thus, Ang-2 is involved in initial steps of brain metastasis cascade, and inhibitors for Ang-2 may serve as potential therapeutics for brain metastasis. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Substance P Receptor Signaling Mediates Doxorubicin-Induced Cardiomyocyte Apoptosis and Triple-Negative Breast Cancer Chemoresistance

    PubMed Central

    Robinson, Prema; Kasembeli, Moses; Bharadwaj, Uddalak; Engineer, Nikita; Eckols, Kris T.; Tweardy, David J.

    2016-01-01

    Doxorubicin (DOX), an anthracycline, is broadly considered the most active single agent available for treating breast cancer but has been known to induce cardiotoxicity. Although DOX is highly effective in treating triple-negative breast cancer (TNBC), DOX can have poor outcomes owing to induction of chemoresistance. There is an urgent need to develop new therapies for TNBC aimed at improving DOX outcome and DOX-induced cardiotoxicity. Substance P (SP), a neuropeptide involved in pain transmission is known to stimulate production of reactive oxygen species (ROS). Elevated cardiac ROS is linked with heart injury and failure. We investigated the role of SP in chemotherapy-associated death of cardiomyocytes and chemoresistance. We showed that pretreating a cardiomyocyte cell line (H9C2) and a TNBC cell line (MDA-MB 231) with aprepitant, a SP receptor antagonist that is routinely used to treat chemotherapy-associated associated nausea, decreased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in cardiomyocytes and increased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in TNBC cells compared with cells treated with DOX alone. Our findings demonstrate the ability of aprepitant to decrease DOX-induced killing of cardiomyocytes and to increase cancer cell sensitivity to DOX, which has tremendous clinical significance. PMID:26981525

  3. Upregulation of Poly (ADP-Ribose) Polymerase-1 (PARP1) in Triple-Negative Breast Cancer and Other Primary Human Tumor Types

    PubMed Central

    Ossovskaya, Valeria; Koo, Ingrid Chou; Kaldjian, Eric P.; Alvares, Christopher; Sherman, Barry M.

    2010-01-01

    Poly (ADP-ribose) polymerase-1 (PARP1) is a key facilitator of DNA repair and is implicated in pathways of tumorigenesis. PARP inhibitors have gained recent attention as rationally designed therapeutics for the treatment of several malignancies, particularly those associated with dysfunctional DNA repair pathways, including triple-negative breast cancer (TNBC). We investigated the PARP1 gene expression profile in surgical samples from more than 8,000 primary malignant and normal human tissues. PARP1 expression was found to be significantly increased in several malignant tissues, including those isolated from patients with breast, uterine, lung, ovarian, and skin cancers, and non-Hodgkin’s lymphoma. Within breast infiltrating ductal carcinoma (IDC) samples tested, mean PARP1 expression was significantly higher relative to normal breast tissue, with over 30% of IDC samples demonstrating upregulation of PARP1, compared with 2.9% of normal tissues. Because of known DNA repair defects, including BRCA1 dysfunction, associated with TNBC, exploration of PARP1 expression in breast cancers related to expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) led to the observation that negative expression of any of the 3 receptors was associated with upregulation of PARP1 expression, compared with receptor-positive tissues. To validate these observations, an independent set of breast adenocarcinomas was evaluated and demonstrated >2-fold upregulation of PARP1 in approximately 70% of primary breast adenocarcinomas, including TNBC, compared with syngeneic nonmalignant breast tissues. Immunohistochemistry (IHC) showed that upregulation of the PARP1 gene was consistent with increased protein expression in TNBC. These analyses suggest a potential biological role for PARP1 in several distinct malignancies, including TNBC. Further investigation of PARP1 as a biomarker for the therapeutic activity of PARP inhibitor

  4. Cytokeratin 5/6 and cytokeratin 8/18 expression in triple negative breast cancers: clinicopathologic significance in South-Asian population.

    PubMed

    Hashmi, Atif Ali; Naz, Samreen; Hashmi, Shumaila Kanwal; Hussain, Zubaida Fida; Irfan, Muhammad; Bakar, Syed Muhammad Abu; Faridi, Naveen; Khan, Amir; Edhi, Muhammad Muzzammil

    2018-06-08

    Cytokeratin 5/6 and Cytokeratin 8/18 are basal and luminal markers of breast cancer and they have pathological and prognostic significance in breast cancer. We performed Cytokeratin 5/6 and CK8/18 immunohistochemistry on 150 cases of triple negative breast cancers and association with various clinicopathological features was evaluated. Positive CK5/6 expression was noted in 8% (12 cases) of TNBC while 2.4% (4 cases) showed focal positive (< 10%) and 89.3% (134) were negative with CK5/6. Complete loss of CK8/18 expression was seen in 4.7% (7 cases) while 32.7% (49 cases) revealed focal loss of CK8/18 and 62.7% (94 cases) showed intact normal expression of CK8/18. No significant association of CK5/6 and CK8/18 with various clinicopathological parameters was observed. We found a low expression of basal cytokeratin (CK5/6) in TNBC our studied population, while loss/altered expression of CK8/18 in approximately 38% of TNBC. Although no prognostic relevance of these finding was noted in our study, however these findings are different from those reported in literature in other parts of the world. Therefore we suggest a more through immunohistochemical and genomic profiling of TNBC in our population for better understanding of this disease in this part of the world.

  5. Simvastatin prevents triple-negative breast cancer metastasis in pre-clinical models through regulation of FOXO3a.

    PubMed

    Wolfe, Adam R; Debeb, Bisrat G; Lacerda, Lara; Larson, Richard; Bambhroliya, Arvind; Huang, Xuelin; Bertucci, Francois; Finetti, Pascal; Birnbaum, Daniel; Van Laere, Steven; Diagaradjan, Parmeswaran; Ruffell, Brian; Trenton, Nicholaus J; Chu, Khoi; Hittelman, Walter; Diehl, Michael; Levental, Ilya; Ueno, Naoto T; Woodward, Wendy A

    2015-12-01

    We previously reported using statins was correlated with improved metastasis-free survival in aggressive breast cancer. The purpose of this study was to examine the effect of statins on metastatic colonization by triple-negative breast cancer (TNBC) cells. TNBC cell lines were treated with simvastatin and then studied for cell cycle progression and proliferation in vitro, and metastasis formation in vivo, following injection of statin-treated cells. Reverse-phase protein assay (RPPA) analysis was performed on statin-treated and control breast cancer cells. RNA interference targeting FOXO3a was used to measure the impact of simvastatin on FOXO3a-expressing cells. The prognostic value of FOXO3a mRNA expression was examined in eight public breast cancer gene expression datasets including 1479 patients. Simvastatin increased G1/S-phase arrest of the cell cycle and inhibited both proliferation and migration of TNBC cells in vitro. In vitro pre-treatment and in vivo treatment with simvastatin reduced metastases. Phosphorylated FOXO3a was downregulated after simvastatin treatment in (RPPA) analysis. Ectopic expression of FOXO3a enhanced mammosphere formation and migratory capacity in vitro. Knockdown of FOXO3a attenuated the effect of simvastatin on mammosphere formation and migration. Analysis of public gene expression data demonstrates FOXO3a mRNA downregulation was independently associated with shorter metastasis-free survival in all breast cancers, as well as in TNBC breast cancers. Simvastatin inhibits in vitro endpoints associated with metastasis through a FOXO3a mechanism and reduced metastasis formation in vivo. FOXO3a expression is prognostic for metastasis formation in patient data. Further investigation of simvastatin as a cancer therapy is warranted.

  6. Meta-analysis on the association between pathologic complete response and triple-negative breast cancer after neoadjuvant chemotherapy.

    PubMed

    Wu, Kunpeng; Yang, Qiaozhu; Liu, Yi; Wu, Aibing; Yang, Zhixiong

    2014-04-15

    Triple-negative breast cancer (TNBC) is a special subtype of breast cancer that is characterized by poor prognosis, strong tumor invasion and a high pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC). The pCR rate is a prognostic factor for TNBC. We aimed to evaluate the relationship between pCR and TNBC after NAC and originally tried to identify factors related to achieving pCR for TNBC using a meta-analysis. We systematically searched the literature for pCR and breast cancer after NAC and carefully identified eligibility criteria. The association between pCR and breast cancer subtypes was estimated using Review Manager, while pCR rates for TNBC and non-TNBC were determined using Meta-Analyst. This analysis included a total of 9,460 cases from 27 studies. The summary odds ratio estimating the relationship between pCR and breast cancer subtypes (TNBC vs non-TNBC) was 3.02 (95% confidence interval (CI), 2.66 to 3.42). The TNBC pCR rate was 28.9% (95% CI, 27.0 to 30.8%) and the non-TNBC was 12.5% (95% CI, 11.7 to 13.4%). From subgroup analyses, we identified the factors associated with the highest pCR rates for TNBC. TNBC has a higher pCR rate than non-TNBC. In the NAC setting, these factors of platinum-containing, more than six cycles, four kinds of drugs, 16 weeks' treatment duration and sequential chemotherapy may contribute to increasing the pCR rate.

  7. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing

    PubMed Central

    Radovich, Milan; Clare, Susan E.; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A.; Solzak, Jeffrey P.; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V.; Rufenbarger, Connie; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, Mi Ran; Sauder, Candice A.; Doxey, Diane; Henry, Jill E.; Hilligoss, Eric E.; Sakarya, Onur; Hyland, Fiona C.; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W.; Schneider, Bryan P.

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER−,PR−,HER2−). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90% of TNBCs revealing an over-expressed central network. In conclusion, Use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos. PMID:24292813

  8. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing.

    PubMed

    Radovich, Milan; Clare, Susan E; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A; Solzak, Jeffrey P; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V; Rufenbarger, Connie; Lillemoe, Heather A; Blosser, Rachel J; Choi, Mi Ran; Sauder, Candice A; Doxey, Diane; Henry, Jill E; Hilligoss, Eric E; Sakarya, Onur; Hyland, Fiona C; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W; Schneider, Bryan P

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.

  9. Therapeutic Activity of Anti-AXL Antibody against Triple-Negative Breast Cancer Patient-Derived Xenografts and Metastasis.

    PubMed

    Leconet, Wilhem; Chentouf, Myriam; du Manoir, Stanislas; Chevalier, Clément; Sirvent, Audrey; Aït-Arsa, Imade; Busson, Muriel; Jarlier, Marta; Radosevic-Robin, Nina; Theillet, Charles; Chalbos, Dany; Pasquet, Jean-Max; Pèlegrin, André; Larbouret, Christel; Robert, Bruno

    2017-06-01

    Purpose: AXL receptor tyrosine kinase has been described as a relevant molecular marker and a key player in invasiveness, especially in triple-negative breast cancer (TNBC). Experimental Design: We evaluate the antitumor efficacy of the anti-AXL monoclonal antibody 20G7-D9 in several TNBC cell xenografts or patient-derived xenograft (PDX) models and decipher the underlying mechanisms. In a dataset of 254 basal-like breast cancer samples, genes correlated with AXL expression are enriched in EMT, migration, and invasion signaling pathways. Results: Treatment with 20G7-D9 inhibited tumor growth and bone metastasis formation in AXL-positive TNBC cell xenografts or PDX, but not in AXL-negative PDX, highlighting AXL role in cancer growth and invasion. In vitro stimulation of AXL-positive cancer cells by its ligand GAS6 induced the expression of several EMT-associated genes ( SNAIL, SLUG , and VIM ) through an intracellular signaling implicating the transcription factor FRA-1, important in cell invasion and plasticity, and increased their migration/invasion capacity. 20G7-D9 induced AXL degradation and inhibited all AXL/GAS6-dependent cell signaling implicated in EMT and in cell migration/invasion. Conclusions: The anti-AXL antibody 20G7-D9 represents a promising therapeutic strategy in TNBC with mesenchymal features by inhibiting AXL-dependent EMT, tumor growth, and metastasis formation. Clin Cancer Res; 23(11); 2806-16. ©2016 AACR . ©2016 American Association for Cancer Research.

  10. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.

    PubMed

    Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P

    2018-05-07

    Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.

  11. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells.

    PubMed

    Hu, Jingjie; Zhou, Yuxiao; Obayemi, John D; Du, Jing; Soboyejo, Winston O

    2018-05-30

    An improved understanding of the evolution of cell structure and viscoelasticity with cancer malignancy could enable the development of a new generation of biomarkers and methods for cancer diagnosis. Hence, in this study, we present the viscoelastic properties (moduli and viscosities) and the actin cytoskeletal structures of triple negative breast cancer (TNBC) cells with different metastatic potential. These include: MCF-10A normal breast cells (studied as a control); MDA-MB-468 cells (less metastatic TNBC cells), and MDA-MB-231 cells (highly metastatic TNBC cells). A combination of shear assay and digital imaging correlation (DIC) techniques is used to measure the local viscoelastic properties of live breast cells subjected to constant shear stress. The local moduli and viscosities of the nuclei and cytoplasm are characterized using a generalized Maxwell model, which is used to determine the time-dependent creep responses of cells. The nuclei are shown to be stiffer and more viscous than the cytoplasms of the normal breast cells and TNBC cells. The MCF-10A normal breast cells are found to be twice as stiff as the less metastatic MDA-MB-468 breast cancer cells and over ten times stiffer than the highly metastatic MDA-MB-231 breast cancer cells. Similar trends are also observed in the viscosities of the nuclei and the cytoplasms. The measured differences in cell viscoelastic properties are also associated with significant changes in the cell cytoskeletal structure, which is studied using confocal fluorescence microscopy. This reveals significant differences in the levels of actin expression and organization in TNBC cells as they become highly metastatic. Our results suggest that the shear assay measurements of cell viscoelastic properties may be used as effective biomarkers for TNBC diagnosis and screening. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Tumour Necrosis Factor-α Gene Polymorphism Is Associated with Metastasis in Patients with Triple Negative Breast Cancer.

    PubMed

    Li, Hui-Hui; Zhu, Hui; Liu, Li-Sheng; Huang, Yong; Guo, Jun; Li, Jie; Sun, Xin-Ping; Chang, Chun-Xiao; Wang, Zhe-Hai; Zhai, Kan

    2015-07-13

    Tumour necrosis factor-α (TNF-α) is critical in the regulation of inflammation and tumour progression. TNF-α-308G > A is associated with constitutively elevated TNF-α expression. The purpose of this study was to assess the association between TNF-α-308G > A and breast cancer (BC) risk by subtype and the connection between genotypes and clinical features of BC. A total of 768 patients and 565 controls were enrolled in this study, and genotypes were detected using the TaqMan assay. No effect on susceptibility for any BC subtype was found for the TNF-α-308 polymorphism in our study or in the pooled meta-analysis. This polymorphism was shown to be associated with age at menarche in all BC and in progesterone receptor-negative BC. Interestingly, triple negative breast cancer (TNBC) patients with TNF-α-308A had an increased risk of distant tumour metastasis (OR = 3.80, 95% CI: 1.31-11.02, P = 0.009). Multi-regression analysis showed that TNF-α-308A was also a risk factor for distant tumour metastasis after adjustment for tumour size and lymph node metastasis status (OR = 6.26, 95% CI: 1.88-20.87, P = 0.003). These findings indicate that TNF-α might play a distinct role in the progression of TNBC, especially in distant tumour metastasis of TNBC.

  13. Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane progesterone receptor α.

    PubMed

    Zhou, Li; Zhou, Wei; Zhang, Hongwei; Hu, Yan; Yu, Lei; Zhang, Yufei; Zhang, Yanli; Wang, Shuang; Wang, Peng; Xia, Wei

    2017-09-01

    Progesterone plays an important role in mammary epithelial cell proliferation and differentiation. Evidence from experimental and clinical studies indicates that progesterone is a risk factor for breast cancer under certain conditions through binding nuclear progesterone receptor (PR). These mechanisms, however, are not applicable to triple-negative breast cancer (TNBC) due to the lack of PR in these cancers. In this study, we demonstrate that membrane progesterone receptor α (mPRα) is expressed in TNBC tissues and the expression level of mPRα is negatively associated with the TNM stage. We found that progesterone suppressed the growth, migration and invasion of mPRα+ human TNBC cells in vitro, which was neither mediated by PR nor by PR membrane component 1 (PGRMCl). Notably, these effects exerted by progesterone were significantly blocked by shRNA specific to mPRα. Moreover, the knockdown of mPRα expression impaired the inhibitory effects of progesterone on mPRα+ tumor growth and metastasis in vivo. These data collectively indicate that progesterone suppresses TNCB growth and metastasis via mPRα, which provides evidence of the anti-neoplastic effects of progesterone-mPRα pathway in the treatment of human TNBC.

  14. In vivo magnetic resonance imaging investigating the development of experimental brain metastases due to triple negative breast cancer.

    PubMed

    Hamilton, Amanda M; Foster, Paula J

    2017-02-01

    Triple negative breast cancer (TNBC), when associated with poor outcome, is aggressive in nature with a high incidence of brain metastasis and the shortest median overall patient survival after brain metastasis development compared to all other breast cancer subtypes. As therapies that control primary cancer and extracranial metastatic sites improve, the incidence of brain metastases is increasing and the management of patients with breast cancer brain metastases continues to be a significant clinical challenge. Mouse models have been developed to permit in depth evaluation of breast cancer metastasis to the brain. In this study, we compare the efficiency and metastatic potential of two experimental mouse models of TNBC. Longitudinal MRI analysis and end point histology were used to quantify initial cell arrest as well as the number and volume of metastases that developed in mouse brain over time. We showed significant differences in MRI appearance, tumor progression and model efficiency between the syngeneic 4T1-BR5 model and the xenogeneic 231-BR model. Since TNBC does not respond to many standard breast cancer treatments and TNBC brain metastases lack effective targeted therapies, these preclinical TNBC models represent invaluable tools for the assessment of novel systemic therapeutic approaches. Further pursuits of therapeutics designed to bypass the blood tumor barrier and permit access to the brain parenchyma and metastatic cells within the brain will be paramount in the fight to control and treat lethal metastatic cancer.

  15. Phase II Study of Gemcitabine, Carboplatin, and Iniparib As Neoadjuvant Therapy for Triple-Negative and BRCA1/2 Mutation–Associated Breast Cancer With Assessment of a Tumor-Based Measure of Genomic Instability: PrECOG 0105

    PubMed Central

    Telli, Melinda L.; Jensen, Kristin C.; Vinayak, Shaveta; Kurian, Allison W.; Lipson, Jafi A.; Flaherty, Patrick J.; Timms, Kirsten; Abkevich, Victor; Schackmann, Elizabeth A.; Wapnir, Irene L.; Carlson, Robert W.; Chang, Pei-Jen; Sparano, Joseph A.; Head, Bobbie; Goldstein, Lori J.; Haley, Barbara; Dakhil, Shaker R.; Reid, Julia E.; Hartman, Anne-Renee; Manola, Judith; Ford, James M.

    2015-01-01

    Purpose This study was designed to assess efficacy, safety, and predictors of response to iniparib in combination with gemcitabine and carboplatin in early-stage triple-negative and BRCA1/2 mutation–associated breast cancer. Patients and Methods This single-arm phase II study enrolled patients with stage I to IIIA (T ≥ 1 cm) estrogen receptor–negative (≤ 5%), progesterone receptor–negative (≤ 5%), and human epidermal growth factor receptor 2–negative or BRCA1/2 mutation–associated breast cancer. Neoadjuvant gemcitabine (1,000 mg/m2 intravenously [IV] on days 1 and 8), carboplatin (area under curve of 2 IV on days 1 and 8), and iniparib (5.6 mg/kg IV on days 1, 4, 8, and 11) were administered every 21 days for four cycles, until the protocol was amended to six cycles. The primary end point was pathologic complete response (no invasive carcinoma in breast or axilla). All patients underwent comprehensive BRCA1/2 genotyping, and homologous recombination deficiency was assessed by loss of heterozygosity (HRD-LOH) in pretreatment core breast biopsies. Results Among 80 patients, median age was 48 years; 19 patients (24%) had germline BRCA1 or BRCA2 mutations; clinical stage was I (13%), IIA (36%), IIB (36%), and IIIA (15%). Overall pathologic complete response rate in the intent-to-treat population (n = 80) was 36% (90% CI, 27 to 46). Mean HRD-LOH scores were higher in responders compared with nonresponders (P = .02) and remained significant when BRCA1/2 germline mutations carriers were excluded (P = .021). Conclusion Preoperative combination of gemcitabine, carboplatin, and iniparib is active in the treatment of early-stage triple-negative and BRCA1/2 mutation–associated breast cancer. The HRD-LOH assay was able to identify patients with sporadic triple-negative breast cancer lacking a BRCA1/2 mutation, but with an elevated HRD-LOH score, who achieved a favorable pathologic response. Confirmatory controlled trials are warranted. PMID:25847929

  16. Lactate dehydrogenase downregulation mediates the inhibitory effect of diallyl trisulfide on proliferation, metastasis, and invasion in triple-negative breast cancer.

    PubMed

    Cheng, Shi-Yann; Yang, Yao-Chih; Ting, Kuan-Lun; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang; Kuo, Wei-Wen

    2017-04-01

    The Warburg effect plays a critical role in tumorigenesis, suggesting that specific agents targeting Warburg effect key proteins may be a promising strategy for cancer therapy. Previous studies have shown that diallyl trisulfide (DATS) inhibits proliferation of breast cancer cells by inducing apoptosis in vitro and in vivo. However, whether the Warburg effect is involved with the apoptosis-promoting action of DATS is unclear. Here, we show that the action of DATS is associated with downregulation of lactate dehydrogenase A (LDHA), an essential protein of the Warburg effect whose upregulation is closely related to tumorigenesis. Interestingly, inhibition of the Warburg effect by DATS in breast cancer cells did not greatly affect normal cells. Furthermore, DATS inhibited growth of breast cancer cells, particularly in MDA-MB-231, a triple-negative breast cancer (TNBC) cell, and reduced proliferation and migration; invasion was reversed by over-expression of LDHA. These data suggest that DATS inhibits breast cancer growth and aggressiveness through a novel pathway targeting the key enzyme of the Warburg effect. Our study shows that LDHA downregulation is involved in the apoptotic effect of DATS on TNBC. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1390-1398, 2017. © 2016 Wiley Periodicals, Inc.

  17. Body mass index and risk of luminal, HER2-overexpressing, and triple negative breast cancer.

    PubMed

    Chen, Lu; Cook, Linda S; Tang, Mei-Tzu C; Porter, Peggy L; Hill, Deirdre A; Wiggins, Charles L; Li, Christopher I

    2016-06-01

    Triple negative (TN, tumors that do not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER2)) and HER2-overexpressing (H2E, ER-/HER2+) tumors are two particularly aggressive subtypes of breast cancer. There is a lack of knowledge regarding the etiologies of these cancers and in particular how anthropometric factors are related to risk. We conducted a population-based case-case study consisting of 2659 women aged 20-69 years diagnosed with invasive breast cancer from 2004 to 2012. Four case groups defined based on joint ER/PR/HER2 status were included: TN, H2E, luminal A (ER+/HER2-), and luminal B (ER+/HER2+). Polytomous logistic regression was used to estimate odds ratios (ORs) and associated 95 % confidence intervals (CIs) where luminal A patients served as the reference group. Obese premenopausal women [body mass index (BMI) ≥30 kg/m(2)] had an 82 % (95 % CI 1.32-2.51) increased risk of TN breast cancer compared to women whose BMI <25 kg/m(2), and those in the highest weight quartile (quartiles were categorized based on the distribution among luminal A patients) had a 79 % (95 % CI 1.23-2.64) increased risk of TN disease compared to those in the lowest quartile. Among postmenopausal women obesity was associated with reduced risks of both TN (OR = 0.74, 95 % CI 0.54-1.00) and H2E (OR = 0.47, 95 % CI 0.32-0.69) cancers. Our results suggest obesity has divergent impacts on risk of aggressive subtypes of breast cancer in premenopausal versus postmenopausal women, which may contribute to the higher incidence rates of TN cancers observed among younger African American and Hispanic women.

  18. Monitoring the development of xenograft triple-negative breast cancer models using diffusion-weighted magnetic resonance imaging.

    PubMed

    Stephen, Renu M; Pagel, Mark D; Brown, Kathy; Baker, Amanda F; Meuillet, Emmanuelle J; Gillies, Robert J

    2012-11-01

    Evaluations of tumor growth rates and molecular biomarkers are traditionally used to assess new mouse models of human breast cancers. This study investigated the utility of diffusion weighted (DW)-magnetic resonance imaging (MRI) for evaluating cellular proliferation of new tumor models of triple-negative breast cancer, which may augment traditional analysis methods. Eleven human breast cancer cell lines were used to develop xenograft tumors in severe combined immunodeficient mice, with two of these cell lines exhibiting sufficient growth to be serially passaged. DW-MRI was performed to measure the distributions of the apparent diffusion coefficient (ADC) in these two tumor xenograft models, which showed a correlation with tumor growth rates and doubling times during each passage. The distributions of the ADC values were also correlated with expression of Ki67, a biomarker of cell proliferation, and hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor receptor-2 (VEGFR2), which are essential proteins involved in regulating aerobic glycolysis and angiogenesis that support tumor cell proliferation. Although phosphatase and tensin homolog (PTEN) levels were different between the two xenograft models, AKT levels did not differ nor did they correlate with tumor growth. This last result demonstrates the complexity of signaling protein pathways and the difficulty in interpreting the effects of protein expression on tumor cell proliferation. In contrast, DW-MRI may be a more direct assessment of tumor growth and cancer cell proliferation.

  19. Functional proteomics outlines the complexity of breast cancer molecular subtypes.

    PubMed

    Gámez-Pozo, Angelo; Trilla-Fuertes, Lucía; Berges-Soria, Julia; Selevsek, Nathalie; López-Vacas, Rocío; Díaz-Almirón, Mariana; Nanni, Paolo; Arevalillo, Jorge M; Navarro, Hilario; Grossmann, Jonas; Gayá Moreno, Francisco; Gómez Rioja, Rubén; Prado-Vázquez, Guillermo; Zapater-Moros, Andrea; Main, Paloma; Feliú, Jaime; Martínez Del Prado, Purificación; Zamora, Pilar; Ciruelos, Eva; Espinosa, Enrique; Fresno Vara, Juan Ángel

    2017-08-30

    Breast cancer is a heterogeneous disease comprising a variety of entities with various genetic backgrounds. Estrogen receptor-positive, human epidermal growth factor receptor 2-negative tumors typically have a favorable outcome; however, some patients eventually relapse, which suggests some heterogeneity within this category. In the present study, we used proteomics and miRNA profiling techniques to characterize a set of 102 either estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+) or triple-negative formalin-fixed, paraffin-embedded breast tumors. Protein expression-based probabilistic graphical models and flux balance analyses revealed that some ER+/PR+ samples had a protein expression profile similar to that of triple-negative samples and had a clinical outcome similar to those with triple-negative disease. This probabilistic graphical model-based classification had prognostic value in patients with luminal A breast cancer. This prognostic information was independent of that provided by standard genomic tests for breast cancer, such as MammaPrint, OncoType Dx and the 8-gene Score.

  20. TTK/hMPS1 Is an Attractive Therapeutic Target for Triple-Negative Breast Cancer

    PubMed Central

    Maire, Virginie; Baldeyron, Céline; Richardson, Marion; Tesson, Bruno; Vincent-Salomon, Anne; Gravier, Eléonore; Marty-Prouvost, Bérengère; De Koning, Leanne; Rigaill, Guillem; Dumont, Aurélie; Gentien, David; Barillot, Emmanuel; Roman-Roman, Sergio; Depil, Stéphane; Cruzalegui, Francisco; Pierré, Alain; Tucker, Gordon C.; Dubois, Thierry

    2013-01-01

    Triple-negative breast cancer (TNBC) represents a subgroup of breast cancers (BC) associated with the most aggressive clinical behavior. No targeted therapy is currently available for the treatment of patients with TNBC. In order to discover potential therapeutic targets, we searched for protein kinases that are overexpressed in human TNBC biopsies and whose silencing in TNBC cell lines causes cell death. A cohort including human BC biopsies obtained at Institut Curie as well as normal tissues has been analyzed at a gene-expression level. The data revealed that the human protein kinase monopolar spindle 1 (hMPS1), also known as TTK and involved in mitotic checkpoint, is specifically overexpressed in TNBC, compared to the other BC subgroups and healthy tissues. We confirmed by immunohistochemistry and reverse phase protein array that TNBC expressed higher levels of TTK protein compared to the other BC subgroups. We then determined the biological effects of TTK depletion by RNA interference, through analyses of tumorigenic capacity and cell viability in different human TNBC cell lines. We found that RNAi-mediated depletion of TTK in various TNBC cell lines severely compromised their viability and their ability to form colonies in an anchorage-independent manner. Moreover, we observed that TTK silencing led to an increase in H2AX phosphorylation, activation of caspases 3/7, sub-G1 cell population accumulation and high annexin V staining, as well as to a decrease in G1 phase cell population and an increased aneuploidy. Altogether, these data indicate that TTK depletion in TNBC cells induces apoptosis. These results point out TTK as a protein kinase overexpressed in TNBC that may represent an attractive therapeutic target specifically for this poor prognosis associated subgroup of breast cancer. PMID:23700430

  1. Clinicopathological characteristics of triple negative breast cancer at a tertiary care hospital in India.

    PubMed

    Dogra, Atika; Doval, Dinesh Chandra; Sardana, Manjula; Chedi, Subhash Kumar; Mehta, Anurag

    2014-01-01

    Triple-negative breast cancer (TNBC), characterized by the lack of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, is typically associated with a poor prognosis. The majority of TNBCs show the expression of basal markers on gene expression profiling and most authors accept TNBC as basal-like (BL) breast cancer. However, a smaller fraction lacks a BL phenotype despite being TNBC. The literature is silent on non-basal-like (NBL) type of TNBC. The present study was aimed at defining behavioral differences between BL and NBL phenotypes. i) Identify the TNBCs and categorize them into BL and NBL breast cancer. ii) Examine the behavioral differences between two subtypes. iii) Observe the pattern of treatment failure among TNBCs. All TNBC cases during January 2009-December 2010 were retrieved. The subjects fitting the inclusion criteria of study were differentiated into BL and NBL phenotypes using surrogate immunohistochemistry with three basal markers 34βE12, c-Kit and EGFR as per the algorithm defined by Nielsen et al. The detailed data of subjects were collated from clinical records. The comparison of clinicopathological features between two subgroups was done using statistical analyses. The pattern of treatment failure along with its association with prognostic factors was assessed. TNBC constituted 18% of breast cancer cases considered in the study. The BL and NBL subtypes accounted for 81% and 19% respectively of the TNBC group. No statistically significant association was seen between prognostic parameters and two phenotypes. Among patients with treatment failure, 19% were with BL and 15% were with NBL phenotype. The mean disease free survival (DFS) in groups BL and NBL was 30.0 and 37.9 months respectively, while mean overall survival (OS) was 31.93 and 38.5 months respectively. Treatment failure was significantly associated with stage (p=.023) among prognostic factors. Disease stage at presentation is an

  2. Microarray-based SNP genotyping to identify genetic risk factors of triple-negative breast cancer (TNBC) in South Indian population.

    PubMed

    Aravind Kumar, M; Singh, Vineeta; Naushad, Shaik Mohammad; Shanker, Uday; Lakshmi Narasu, M

    2018-05-01

    In the view of aggressive nature of Triple-Negative Breast cancer (TNBC) due to the lack of receptors (ER, PR, HER2) and high incidence of drug resistance associated with it, a case-control association study was conducted to identify the contributing genetic risk factors for Triple-negative breast cancer (TNBC). A total of 30 TNBC patients and 50 age and gender-matched controls of Indian origin were screened for 9,00,000 SNP markers using microarray-based SNP genotyping approach. The initial PLINK association analysis (p < 0.01, MAF 0.14-0.44, OR 10-24) identified 28 non-synonymous SNPs and one stop gain mutation in the exonic region as possible determinants of TNBC risk. All the 29 SNPs were annotated using ANNOVAR. The interactions between these markers were evaluated using Multifactor dimensionality reduction (MDR) analysis. The interactions were in the following order: exm408776 > exm1278309 > rs316389 > rs1651654 > rs635538 > exm1292477. Recursive partitioning analysis (RPA) was performed to construct decision tree useful in predicting TNBC risk. As shown in this analysis, rs1651654 and exm585172 SNPs are found to be determinants of TNBC risk. Artificial neural network model was used to generate the Receiver operating characteristic curves (ROC), which showed high sensitivity and specificity (AUC-0.94) of these markers. To conclude, among the 9,00,000 SNPs tested, CCDC42 exm1292477, ANXA3 exm408776, SASH1 exm585172 are found to be the most significant genetic predicting factors for TNBC. The interactions among exm408776, exm1278309, rs316389, rs1651654, rs635538, exm1292477 SNPs inflate the risk for TNBC further. Targeted analysis of these SNPs and genes alone also will have similar clinical utility in predicting TNBC.

  3. Simvastatin prevents triple-negative breast cancer metastasis in pre-clinical models through regulation of FOXO3a

    PubMed Central

    Wolfe, Adam R.; Debeb, Bisrat G.; Lacerda, Lara; Larson, Richard; Bambhroliya, Arvind; Huang, Xuelin; Bertucci, Francois; Finetti, Pascal; Birnbaum, Daniel; Van Laere, Steven; Diagaradjan, Parmeswaran; Ruffell, Brian; Trenton, Nicholaus J.; Chu, Khoi; Hittelman, Walter; Diehl, Michael; Levental, Ilya; Ueno, Naoto T.; Woodward, Wendy A.

    2016-01-01

    Purpose We previously reported using statins was correlated with improved metastasis free survival in aggressive breast cancer. The purpose of this study was to examine the effect of statins on metastatic colonization by triple negative breast cancer (TNBC) cells. Experimental Design TNBC cell lines were treated with simvastatin and then studied for cell cycle progression and proliferation in vitro, and metastasis formation in vivo, following injection of statin-treated cells. Reverse-phase protein assay (RPPA) analysis was performed on statin-treated and control breast cancer cells. RNA interference targeting FOXO3a was used to measure the impact of simvastatin on FOXO3a-expressing cells. The prognostic value of FOXO3a mRNA expression was examined in 8 public breast cancer gene expression data sets including 1,479 patients. Results Simvastatin increased G1/S phase arrest of the cell cycle and inhibited both proliferation and migration of TNBC cells in vitro. In vitro pretreatment and in vivo treatment with simvastatin reduced metastases. Phosphorylated FOXO3a was downregulated after simvastatin treatment in (RPPA) analysis. Ectopic expression of FOXO3a enhanced mammosphere formation and migratory capacity in vitro. Knockdown of FOXO3a attenuated the effect of simvastatin on mammosphere formation and migration. Analysis of public gene expression data demonstrates FOXO3a mRNA downregulation was independently associated with shorter metastasis-free survival in all breast cancers, as well as in TNBC breast cancers. Conclusions Simvastatin inhibits in vitro endpoints associated with metastasis through a FOXO3a mechanism and reduced metastasis formation in vivo. FOXO3a expression is prognostic for metastasis formation in patient data. Further investigation of simvastatin as a cancer therapy is warranted. PMID:26590814

  4. Mitotic Vulnerability in Triple-Negative Breast Cancer Associated with LIN9 Is Targetable with BET Inhibitors.

    PubMed

    Sahni, Jennifer M; Gayle, Sylvia S; Webb, Bryan M; Weber-Bonk, Kristen L; Seachrist, Darcie D; Singh, Salendra; Sizemore, Steven T; Restrepo, Nicole A; Bebek, Gurkan; Scacheri, Peter C; Varadan, Vinay; Summers, Matthew K; Keri, Ruth A

    2017-10-01

    Triple-negative breast cancers (TNBC) are highly aggressive, lack FDA-approved targeted therapies, and frequently recur, making the discovery of novel therapeutic targets for this disease imperative. Our previous analysis of the molecular mechanisms of action of bromodomain and extraterminal protein inhibitors (BETi) in TNBC revealed these drugs cause multinucleation, indicating BET proteins are essential for efficient mitosis and cytokinesis. Here, using live cell imaging, we show that BET inhibition prolonged mitotic progression and induced mitotic cell death, both of which are indicative of mitotic catastrophe. Mechanistically, the mitosis regulator LIN9 was a direct target of BET proteins that mediated the effects of BET proteins on mitosis in TNBC. Although BETi have been proposed to function by dismantling super-enhancers (SE), the LIN9 gene lacks an SE but was amplified or overexpressed in the majority of TNBCs. In addition, its mRNA expression predicted poor outcome across breast cancer subtypes. Together, these results provide a mechanism for cancer selectivity of BETi that extends beyond modulation of SE-associated genes and suggest that cancers dependent upon LIN9 overexpression may be particularly vulnerable to BETi. Cancer Res; 77(19); 5395-408. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer.

    PubMed

    Couch, Fergus J; Hart, Steven N; Sharma, Priyanka; Toland, Amanda Ewart; Wang, Xianshu; Miron, Penelope; Olson, Janet E; Godwin, Andrew K; Pankratz, V Shane; Olswold, Curtis; Slettedahl, Seth; Hallberg, Emily; Guidugli, Lucia; Davila, Jaime I; Beckmann, Matthias W; Janni, Wolfgang; Rack, Brigitte; Ekici, Arif B; Slamon, Dennis J; Konstantopoulou, Irene; Fostira, Florentia; Vratimos, Athanassios; Fountzilas, George; Pelttari, Liisa M; Tapper, William J; Durcan, Lorraine; Cross, Simon S; Pilarski, Robert; Shapiro, Charles L; Klemp, Jennifer; Yao, Song; Garber, Judy; Cox, Angela; Brauch, Hiltrud; Ambrosone, Christine; Nevanlinna, Heli; Yannoukakos, Drakoulis; Slager, Susan L; Vachon, Celine M; Eccles, Diana M; Fasching, Peter A

    2015-02-01

    Recent advances in DNA sequencing have led to the development of breast cancer susceptibility gene panels for germline genetic testing of patients. We assessed the frequency of mutations in 17 predisposition genes, including BRCA1 and BRCA2, in a large cohort of patients with triple-negative breast cancer (TNBC) unselected for family history of breast or ovarian cancer to determine the utility of germline genetic testing for those with TNBC. Patients with TNBC (N = 1,824) unselected for family history of breast or ovarian cancer were recruited through 12 studies, and germline DNA was sequenced to identify mutations. Deleterious mutations were identified in 14.6% of all patients. Of these, 11.2% had mutations in the BRCA1 (8.5%) and BRCA2 (2.7%) genes. Deleterious mutations in 15 other predisposition genes were detected in 3.7% of patients, with the majority observed in genes involved in homologous recombination, including PALB2 (1.2%) and BARD1, RAD51D, RAD51C, and BRIP1 (0.3% to 0.5%). Patients with TNBC with mutations were diagnosed at an earlier age (P < .001) and had higher-grade tumors (P = .01) than those without mutations. Deleterious mutations in predisposition genes are present at high frequency in patients with TNBC unselected for family history of cancer. Mutation prevalence estimates suggest that patients with TNBC, regardless of age at diagnosis or family history of cancer, should be considered for germline genetic testing of BRCA1 and BRCA2. Although mutations in other predisposition genes are observed among patients with TNBC, better cancer risk estimates are needed before these mutations are used for clinical risk assessment in relatives. © 2014 by American Society of Clinical Oncology.

  6. Inherited Mutations in 17 Breast Cancer Susceptibility Genes Among a Large Triple-Negative Breast Cancer Cohort Unselected for Family History of Breast Cancer

    PubMed Central

    Couch, Fergus J.; Hart, Steven N.; Sharma, Priyanka; Toland, Amanda Ewart; Wang, Xianshu; Miron, Penelope; Olson, Janet E.; Godwin, Andrew K.; Pankratz, V. Shane; Olswold, Curtis; Slettedahl, Seth; Hallberg, Emily; Guidugli, Lucia; Davila, Jaime I.; Beckmann, Matthias W.; Janni, Wolfgang; Rack, Brigitte; Ekici, Arif B.; Slamon, Dennis J.; Konstantopoulou, Irene; Fostira, Florentia; Vratimos, Athanassios; Fountzilas, George; Pelttari, Liisa M.; Tapper, William J.; Durcan, Lorraine; Cross, Simon S.; Pilarski, Robert; Shapiro, Charles L.; Klemp, Jennifer; Yao, Song; Garber, Judy; Cox, Angela; Brauch, Hiltrud; Ambrosone, Christine; Nevanlinna, Heli; Yannoukakos, Drakoulis; Slager, Susan L.; Vachon, Celine M.; Eccles, Diana M.; Fasching, Peter A.

    2015-01-01

    Purpose Recent advances in DNA sequencing have led to the development of breast cancer susceptibility gene panels for germline genetic testing of patients. We assessed the frequency of mutations in 17 predisposition genes, including BRCA1 and BRCA2, in a large cohort of patients with triple-negative breast cancer (TNBC) unselected for family history of breast or ovarian cancer to determine the utility of germline genetic testing for those with TNBC. Patients and Methods Patients with TNBC (N = 1,824) unselected for family history of breast or ovarian cancer were recruited through 12 studies, and germline DNA was sequenced to identify mutations. Results Deleterious mutations were identified in 14.6% of all patients. Of these, 11.2% had mutations in the BRCA1 (8.5%) and BRCA2 (2.7%) genes. Deleterious mutations in 15 other predisposition genes were detected in 3.7% of patients, with the majority observed in genes involved in homologous recombination, including PALB2 (1.2%) and BARD1, RAD51D, RAD51C, and BRIP1 (0.3% to 0.5%). Patients with TNBC with mutations were diagnosed at an earlier age (P < .001) and had higher-grade tumors (P = .01) than those without mutations. Conclusion Deleterious mutations in predisposition genes are present at high frequency in patients with TNBC unselected for family history of cancer. Mutation prevalence estimates suggest that patients with TNBC, regardless of age at diagnosis or family history of cancer, should be considered for germline genetic testing of BRCA1 and BRCA2. Although mutations in other predisposition genes are observed among patients with TNBC, better cancer risk estimates are needed before these mutations are used for clinical risk assessment in relatives. PMID:25452441

  7. The role of PARP inhibition in triple-negative breast cancer: Unraveling the wide spectrum of synthetic lethality.

    PubMed

    Papadimitriou, Marios; Mountzios, Giannis; Papadimitriou, Christos A

    2018-05-02

    Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancers and is characterized by a lack of immunohistochemical expression of estrogen receptors (ER), progesterone receptors (PR) and HER2. TNBC is associated with poor long-term outcomes compared with other breast cancer subtypes. Many of these tumors are also basal-like cancers which are characterized by an aggressive biological behavior with a distant recurrence peak observed early at 3 years following diagnosis. Furthermore, metastatic TNBC bears a dismal prognosis with an average survival of 12 months. Although the prevalence of genetic alterations among women with TNBC differs significantly by ethnicity, race and age, BRCA mutations (including both germline mutations and somatic genetic aberrations) are found in up to 20-25% of unselected patients and especially in those of the basal-like immunophenotype. Therefore, defects in the DNA repair pathway could represent a promising therapeutic target for this subgroup of TNBC patients. Poly(ADP-ribose) polymerase (PARP) inhibitors exploit this deficiency through synthetic lethality and have emerged as promising anticancer therapies, especially in BRCA1 or BRCA2 mutation carriers. Several PARP inhibitors are currently being evaluated in the adjuvant, neo-adjuvant, and metastatic setting for the treatment of breast cancer patients with a deficient homologous recombination pathway. In this article, we review the major molecular characteristics of TNBC, the mechanisms of homologous recombination, and the role of PARP inhibition as an emerging therapeutic strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences.

    PubMed

    Stewart, Delisha A; Winnike, Jason H; McRitchie, Susan L; Clark, Robert F; Pathmasiri, Wimal W; Sumner, Susan J

    2016-09-02

    To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.

  9. ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy.

    PubMed

    Palasuberniam, Pratheeba; Yang, Xue; Kraus, Daniel; Jones, Patrick; Myers, Kenneth A; Chen, Bin

    2015-08-18

    Photosensitizer protoporphyrin IX (PpIX) fluorescence, intracellular localization and cell response to photodynamic therapy (PDT) were analyzed in MCF10A normal breast epithelial cells and a panel of human breast cancer cells including estrogen receptor (ER) positive, human epidermal growth factor receptor 2 (HER2) positive and triple negative breast cancer (TNBC) cells after treatment with PpIX precursor aminolevulinic acid (ALA). Although PpIX fluorescence was heterogeneous in different cells, TNBC cells showed significantly lower PpIX level than MCF10A and ER- or HER2-positive cells. PpIX fluorescence in TNBC cells also had much less mitochondrial localization than other cells. There was an inverse correlation between PpIX fluorescence and cell viability after PDT. Breast cancer cells with the highest PpIX fluorescence were the most sensitive to ALA-PDT and TNBC cells with the lowest PpIX level were resistant to PDT. Treatment of TNBC cells with ABCG2 transporter inhibitor Ko143 significantly increased ALA-PpIX fluorescence, enhanced PpIX mitochondrial accumulation and sensitized cancer cells to ALA-PDT. Ko143 treatment had little effect on PpIX production and ALA-PDT in normal and ER- or HER2-positive cells. These results demonstrate that enhanced ABCG2 activity renders TNBC cell resistance to ALA-PDT and inhibiting ABCG2 transporter is a promising approach for targeting TNBC with ALA-based modality.

  10. A Prognostic Gene Signature for Metastasis-Free Survival of Triple Negative Breast Cancer Patients

    PubMed Central

    Yun, Jieun; Bevilacqua, Elena; Caldas, Carlos; Chin, Suet-Feung; Rueda, Oscar M.; Reinitz, John; Rosner, Marsha Rich

    2013-01-01

    Although triple negative breast cancers (TNBC) are the most aggressive subtype of breast cancer, they currently lack targeted therapies. Because this classification still includes a heterogeneous collection of tumors, new tools to classify TNBCs are urgently required in order to improve our prognostic capability for high risk patients and predict response to therapy. We previously defined a gene expression signature, RKIP Pathway Metastasis Signature (RPMS), based upon a metastasis-suppressive signaling pathway initiated by Raf Kinase Inhibitory Protein (RKIP). We have now generated a new BACH1 Pathway Metastasis gene signature (BPMS) that utilizes targets of the metastasis regulator BACH1. Specifically, we substituted experimentally validated target genes to generate a new BACH1 metagene, developed an approach to optimize patient tumor stratification, and reduced the number of signature genes to 30. The BPMS significantly and selectively stratified metastasis-free survival in basal-like and, in particular, TNBC patients. In addition, the BPMS further stratified patients identified as having a good or poor prognosis by other signatures including the Mammaprint® and Oncotype® clinical tests. The BPMS is thus complementary to existing signatures and is a prognostic tool for high risk ER-HER2- patients. We also demonstrate the potential clinical applicability of the BPMS as a single sample predictor. Together, these results reveal the potential of this pathway-based BPMS gene signature to identify high risk TNBC patients that can respond effectively to targeted therapy, and highlight BPMS genes as novel drug targets for therapeutic development. PMID:24349199

  11. A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients.

    PubMed

    Lee, Unjin; Frankenberger, Casey; Yun, Jieun; Bevilacqua, Elena; Caldas, Carlos; Chin, Suet-Feung; Rueda, Oscar M; Reinitz, John; Rosner, Marsha Rich

    2013-01-01

    Although triple negative breast cancers (TNBC) are the most aggressive subtype of breast cancer, they currently lack targeted therapies. Because this classification still includes a heterogeneous collection of tumors, new tools to classify TNBCs are urgently required in order to improve our prognostic capability for high risk patients and predict response to therapy. We previously defined a gene expression signature, RKIP Pathway Metastasis Signature (RPMS), based upon a metastasis-suppressive signaling pathway initiated by Raf Kinase Inhibitory Protein (RKIP). We have now generated a new BACH1 Pathway Metastasis gene signature (BPMS) that utilizes targets of the metastasis regulator BACH1. Specifically, we substituted experimentally validated target genes to generate a new BACH1 metagene, developed an approach to optimize patient tumor stratification, and reduced the number of signature genes to 30. The BPMS significantly and selectively stratified metastasis-free survival in basal-like and, in particular, TNBC patients. In addition, the BPMS further stratified patients identified as having a good or poor prognosis by other signatures including the Mammaprint® and Oncotype® clinical tests. The BPMS is thus complementary to existing signatures and is a prognostic tool for high risk ER-HER2- patients. We also demonstrate the potential clinical applicability of the BPMS as a single sample predictor. Together, these results reveal the potential of this pathway-based BPMS gene signature to identify high risk TNBC patients that can respond effectively to targeted therapy, and highlight BPMS genes as novel drug targets for therapeutic development.

  12. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers

    PubMed Central

    Essenburg, Curt J.; Turner, Lisa; Madaj, Zachary; Winn, Mary E.; Melnik, Marianne K.; Korkaya, Hasan; Maroun, Christiane R.; Christensen, James G.; Steensma, Matthew R.; Boerner, Julie L.; Graveel, Carrie R.

    2016-01-01

    There is a vital need for improved therapeutic strategies that are effective in both primary and metastatic triple-negative breast cancer (TNBC). Current treatment options for TNBC patients are restricted to chemotherapy; however tyrosine kinases are promising druggable targets due to their high expression in multiple TNBC subtypes. Since coexpression of receptor tyrosine kinases (RTKs) can promote signaling crosstalk and cell survival in the presence of kinase inhibitors, it is likely that multiple RTKs will need to be inhibited to enhance therapeutic benefit and prevent resistance. The MET and EGFR receptors are actionable targets due to their high expression in TNBC; however crosstalk between MET and EGFR has been implicated in therapeutic resistance to single agent use of MET or EGFR inhibitors in several cancer types. Therefore it is likely that dual inhibition of MET and EGFR is required to prevent crosstalk signaling and acquired resistance. In this study, we evaluated the heterogeneity of MET and EGFR expression and activation in primary and metastatic TNBC tumorgrafts and determined the efficacy of MET (MGCD265 or crizotinib) and/or EGFR (erlotinib) inhibition against TNBC progression. Here we demonstrate that combined MET and EGFR inhibition with either MGCD265 and erlotinib treatment or crizotinib and erlotinib treatment were highly effective at abrogating tumor growth and significantly decreased the variability in treatment response compared to monotherapy. These results advance our understanding of the RTK signaling architecture in TNBC and demonstrate that combined MET and EGFR inhibition may be a promising therapeutic strategy for TNBC patients. PMID:27655711

  13. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer

    PubMed Central

    Zhu, Wei; Zhang, Hongwei; Shi, Yi; Song, Mangen; Zhu, Bijun; Wei, Lai

    2013-01-01

    Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising cancer therapeutic target due to its selective apoptosis-inducing effect in cancer cells. To efficiently deliver TRAIL to the tumor cells, an oncolytic adenovirus (p55-hTERT-HRE-TRAIL) carrying the TRAIL coding sequence was constructed. In the present study, we aimed to investigate the effect of p55-hTERT-HRE-TRAIL on the growth and metastasis of triple-negative breast cancer (TNBC). We observed that infection of the recombinant adenovirus resulted in expression of TRAIL and massive cell death in a TNBC cell line MDA-MB-231. This effect is much weaker in MCF-10A, which is a normal breast cell line. Administration of P55-HTERT-HRE-TRAIL significantly reduced orthotopic breast tumor growth and extended survival in a metastatic model. Our results suggest the oncolytic adenovirus armed with P55-HTERT-HRE-TRAIL, which exhibited enhanced anti-tumor activity and improved survival, is a promising candidate for virotherapy of TNBC. PMID:24025362

  14. Apoptosis induction by 7-chloroquinoline-1,2,3-triazoyl carboxamides in triple negative breast cancer cells.

    PubMed

    Begnini, Karine Rech; Duarte, Wladimir R; da Silva, Liziane Pereira; Buss, Julieti H; Goldani, Bruna S; Fronza, Mariana; Segatto, Natália Vieira; Alves, Diego; Savegnago, Lucielli; Seixas, Fabiana Kömmling; Collares, Tiago

    2017-07-01

    Breast cancer is a major public health burden in both developed and developing countries and there is still a need to screen new molecules with different modes of actions. The aims of this study were to evaluate the selectivity profile, apoptotic cell death and cell cycle arrest induced by 7-chloroquinoline-1,2,3-triazoyl carboxamides derivatives in hormonal-dependent and hormonal-independent breast cancer cells. Results showed significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner after treatment with 7-chloroquinoline derivatives QTCA-1, QTCA-2 and QTCA-3. QTCA-1 displayed the highest cytotoxic activity from all the tested compounds in MDA-MB-231 with IC50 values of 20.60, 20.42 and 19.91μM in 24, 48 and 72h of treatment respectively. Apoptosis induction was also significantly higher in the hormonal-independent breast cancer cells, with 80.4% of dead cells in MDA-MB-231 and only 16.8% of dead in MCF-7 cells. As a result, G0/G1 cycle arrest was observed in MCF-7 cells and no cell cycle arrest at all was observed in MDA-MB-231 cells. Molecular docking showed a high affinity of QTCA-1 to PARP-1, Scr and PI3K/mTOR targets. These results suggest a strong activity of the 7-chloroquinoline derivative QTCA-1 in independent-hormonal cells and suggest selectivity for triple negative cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Cyr61 as mediator of Src signaling in triple negative breast cancer cells

    PubMed Central

    Molinari, Agnese; Wagner, Kay-Uwe; Losada, Jesús Pérez; Ciordia, Sergio; Albar, Juan Pablo; Martín-Pérez, Jorge

    2015-01-01

    SFKs are involved in tumorigenesis and metastasis. Here we analyzed c-Src contribution to initial steps of metastasis by tetracycline-dependent expression of a specific shRNA-c-Src, which suppressed c-Src mRNA and protein levels in metastatic MDA-MB-231 cells. c-Src suppression did not alter cell proliferation or survival, but it significantly reduced anchorage-independent growth. Concomitantly with diminished tyrosine-phosphorylation/activation of Fak, caveolin-1, paxillin and p130CAS, c-Src depletion also inhibited cellular migration, invasion and transendothelial migration. Quantitative proteomic analyses of the secretome showed that Cyr61 levels, which were detected in the exosomal fraction, were diminished upon shRNA-c-Src expression. In contrast, Cyr61 expression was unaltered inside cells. Cyr61 partially colocalized with cis-Golgi gp74 marker and with exosomal marker CD63, but c-Src depletion did not alter their cellular distribution. In SUM159PT cells, transient c-Src suppression also reduced secreted exosomal Cyr61 levels. Furthermore, conditional expression of a c-Src dominant negative mutant (SrcDN, c-Src-K295M/Y527F) in MDA-MB-231 and in SUM159PT diminished secreted Cyr61 as well. Cyr61 transient suppression in MDA-MB-231 inhibited invasion and transendothelial migration. Finally, in both MDA-MB-231 and SUM159PT, a neutralizing Cyr61 antibody restrained migration. Collectively, these results suggest that c-Src regulates secreted proteins, including the exosomal Cyr61, which are involved in modulating the metastatic potential of triple negative breast cancer cells. PMID:25980494

  16. Transforming growth factor β-activated kinase 1 inhibitor suppresses the proliferation in triple-negative breast cancer through TGF-β/TGFR pathway.

    PubMed

    Zhang, Liangyu; Fu, Zelong; Li, Xia; Tang, Haitao; Luo, Jiesi; Zhang, Dehui; Zhuang, Yongzhi; Han, Zhiyang; Yin, Mingzhu

    2017-09-01

    Breast cancer is one of the most invasive cancer types in female population. The functional activity of Transforming growth factor β-activated kinase 1 (TAK1) in breast cancer progression increasingly attracts attention as it provides a potential target for antibreast cancer drug development. However, the fundamental role of TAK1 for triple-negative breast cancer (TNBC) progression and the effect of potential anti-TAK1 drug candidate needs to be further evaluated. Herein, we focused on the role of TAK1 in human breast cancer cells, and we hypothesized that the inhibition of TAK1 activation can repress the growth of human TNBC cells. We found that the TAK1 is robustly activated within cancer cell population of clinic-derived TNBC samples and the human breast cancer cell lines in culture. Furthermore, we determined the effect of 5Z-7-oxozeaenol (5Z-O), a TAK1-specific small molecule inhibitor, on proliferation of human TNBC cell line. 5Z-O treatment significantly suppressed the proliferation of human TNBC cells. Collectively, these demonstrate the role of TAK1 in human breast cancer and the antiproliferate effect of TAK1 inhibitor. Our study sets the stage for further research on TAK1 as a promising target for development of anti-TNBC drugs and therapeutic strategies. © 2017 John Wiley & Sons A/S.

  17. Mortality risk from comorbidities independent of triple-negative breast cancer status: NCI-SEER-based cohort analysis.

    PubMed

    Swede, Helen; Sarwar, Amna; Magge, Anil; Braithwaite, Dejana; Cook, Linda S; Gregorio, David I; Jones, Beth A; R Hoag, Jessica; Gonsalves, Lou; L Salner, Andrew; Zarfos, Kristen; Andemariam, Biree; Stevens, Richard G; G Dugan, Alicia; Pensa, Mellisa; A Brockmeyer, Jessica

    2016-05-01

    A comparatively high prevalence of comorbidities among African-American/Blacks (AA/B) has been implicated in disparate survival in breast cancer. There is a scarcity of data, however, if this effect persists when accounting for the adverse triple-negative breast cancer (TNBC) subtype which occurs at threefold the rate in AA/B compared to white breast cancer patients. We reviewed charts of 214 white and 202 AA/B breast cancer patients in the NCI-SEER Connecticut Tumor Registry who were diagnosed in 2000-2007. We employed the Charlson Co-Morbidity Index (CCI), a weighted 17-item tool to predict risk of death in cancer populations. Cox survival analyses estimated hazard ratios (HRs) for all-cause mortality in relation to TNBC and CCI adjusting for clinicopathological factors. Among patients with SEER local stage, TNBC increased the risk of death (HR 2.18, 95 % CI 1.14-4.16), which was attenuated when the CCI score was added to the model (Adj. HR 1.50, 95 % CI 0.74-3.01). Conversely, the adverse impact of the CCI score persisted when controlling for TNBC (Adj. HR 1.49, 95 % CI 1.29-1.71; per one point increase). Similar patterns were observed in SEER regional stage, but estimated HRs were lower. AA/B patients with a CCI score of ≥3 had a significantly higher risk of death compared to AA/B patients without comorbidities (Adj. HR 5.65, 95 % CI 2.90-11.02). A lower and nonsignificant effect was observed for whites with a CCI of ≥3 (Adj. HR 1.90, 95 % CI 0.68-5.29). comorbidities at diagnosis increase risk of death independent of TNBC, and AA/B patients may be disproportionately at risk.

  18. YD277 Suppresses Triple-Negative Breast Cancer Partially Through Activating the Endoplasmic Reticulum Stress Pathway

    PubMed Central

    Chen, Zekun; Wu, Qiuju; Ding, Ye; Zhou, Wenhui; Liu, Rong; Chen, Haiying; Zhou, Jia; Feng, Jing; Chen, Ceshi

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive malignancy with poor clinical outcomes. YD277 is a novel small molecule derived from ML264, a KLF5 inhibitor that elicits cytotoxic effects in colon cancer cell lines. Our previous studies suggest that Krüpple-like factor 5 (KLF5) is a promising therapeutic target for TNBC. In this study, we demonstrated that YD277 significantly induced G1 cell cycle arrest and apoptosis in MDA-MB-231 and MDA-MB-468 TNBC cells, independent of KLF5 inhibition. YD277 also reduced the protein expression levels of Cyclin D1, Bcl2 and Bclxl and promoted the expression of p21 and p27. Moreover, the pro-apoptotic activity of YD277 in TNBC was mediated by the transcription of IRE1α, a key molecule in the endoplasmic reticulum (ER) stress pathway. Finally, YD277 (15 mg/kg) significantly suppressed the growth of MDA-MB-231 tumor xenografts in nude mice. These findings indicate that YD277 is a promising chemotherapeutic candidate for TNBC. PMID:28740556

  19. Recurrent triple-negative breast cancer (TNBC) tissues contain a higher amount of phosphatidylcholine (32:1) than non-recurrent TNBC tissues

    PubMed Central

    Masaki, Noritaka; Takei, Shiro; Horikawa, Makoto; Matsushita, Shoko; Sugiyama, Eiji; Ogura, Hiroyuki; Shiiya, Norihiko; Setou, Mitsutoshi

    2017-01-01

    Triple-negative breast cancer (TNBC) is one of the breast cancer subtype that displays a high risk of early recurrence and short overall survival. Improvement of the prognosis of patients with TNBC requires identifying a predictive factor of recurrence, which would make it possible to provide beneficial personalized treatment. However, no clinically reliable predictive factor is currently known. In this study, we investigated the predictive factor of recurrence in TNBC using matrix-assisted laser desorption/ionization-imaging mass spectrometry for lipid profiling of breast cancer specimens obtained from three and six patients with recurrent and non-recurrent TNBC, respectively. The signal for phosphatidylcholine (PC) (32:1) at m/z 732.5 was significantly higher in the recurrence group compared to the non-recurrence group (P = 0.024). PC (32:1) was more abundant in the cancer epithelial area than it was in the surrounding stroma, suggesting that abnormal lipid metabolism was associated with malignant transformation. Our results indicate PC (32:1) as a candidate predictive factor of TNBC recurrence. A future prospective study investigating whether personalized therapy based on PC (32:1) intensity improves the prognosis of patients with TNBC is recommended. PMID:28832678

  20. Immunotherapy, an evolving approach for the management of triple negative breast cancer: Converting non-responders to responders.

    PubMed

    Tolba, Mai F; Omar, Hany A

    2018-02-01

    Immunotherapy comprises a promising new era in cancer therapy. Immune checkpoint inhibitors targeting either the programmed death (PD)-1 receptor or its ligand PD-L1 were first approved by the Food and Drug Administration (FDA) for the management of metastatic melanoma in 2011. The approval of this class is being extended to include other types of immunogenic tumors. Although breast cancer (BC) was first categorized as non-immunogenic tumor type, there are certain subsets of BC that showed a high level of tumor infiltrating lymphocytes (TILs). Those subsets include the triple negative breast cancer (TNBC) and HER-2 positive breast tumors. Preliminary data from clinical trials presented promising outcomes for patients with advanced stage/metastatic TNBC. While the objective response rate (ORR) was relatively low, it is still promising because of the observation that the patients who respond to the treatment with immune checkpoint blockade have favorable prognosis and often show a significant increase in the overall survival. Therefore, the main challenge is to find ways to enhance the tumor response to such therapy and to convert the non-responders to responders. This will consequently bring new hopes for patients with advanced stage metastatic TNBC and help to decrease death tolls from this devastating disease. In the current review, we are highlighting and discussing the up-to-date strategies adopted at either the preclinical or the clinical settings to enhance tumor responsiveness to immunotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. MUC1-C Induces PD-L1 and Immune Evasion in Triple-Negative Breast Cancer.

    PubMed

    Maeda, Takahiro; Hiraki, Masayuki; Jin, Caining; Rajabi, Hasan; Tagde, Ashujit; Alam, Maroof; Bouillez, Audrey; Hu, Xiufeng; Suzuki, Yozo; Miyo, Masaaki; Hata, Tsuyoshi; Hinohara, Kunihiko; Kufe, Donald

    2018-01-01

    The immune checkpoint ligand PD-L1 and the transmembrane mucin MUC1 are upregulated in triple-negative breast cancer (TNBC), where they contribute to its aggressive pathogenesis. Here, we report that genetic or pharmacological targeting of the oncogenic MUC1 subunit MUC1-C is sufficient to suppress PD-L1 expression in TNBC cells. Mechanistic investigations showed that MUC1-C acted to elevate PD-L1 transcription by recruitment of MYC and NF-κB p65 to the PD-L1 promoter. In an immunocompetent model of TNBC in which Eo771/MUC1-C cells were engrafted into MUC1 transgenic mice, we showed that targeting MUC1-C associated with PD-L1 suppression, increases in tumor-infiltrating CD8 + T cells and tumor cell killing. MUC1 expression in TNBCs also correlated inversely with CD8, CD69, and GZMB, and downregulation of these markers associated with decreased survival. Taken together, our findings show how MUC1 contributes to immune escape in TNBC, and they offer a rationale to target MUC1-C as a novel immunotherapeutic approach for TNBC treatment. Significance: These findings show how upregulation of the transmembrane mucin MUC1 contributes to immune escape in an aggressive form of breast cancer, with potential implications for a novel immunotherapeutic approach. Cancer Res; 78(1); 205-15. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells.

    PubMed

    Mukhopadhyay, Partha; Lakshmanan, Imayavaramban; Ponnusamy, Moorthy P; Chakraborty, Subhankar; Jain, Maneesh; Pai, Priya; Smith, Lynette M; Lele, Subodh M; Batra, Surinder K

    2013-01-01

    Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs. In the present study, we investigated the functional and mechanistic roles of MUC4 in potentiating pathogenic signals including EGFR family proteins to promote TNBC aggressiveness using in vitro and in vivo studies. Further, we studied the expression of MUC4 in invasive TNBC tissue and normal breast tissue by immunostaining. MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-γ, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue. MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling.

  3. Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis

    PubMed Central

    Teles, Ramon Handerson Gomes; Moralles, Herick Fernando; Cominetti, Márcia Regina

    2018-01-01

    Nanotechnology has emerged as a promising tool in the clinic to combat several difficult-to-manage diseases, such as cancer, which is the second leading cause of death worldwide. Chemotherapeutic drugs present several limitations such as undesired side effects, low specificity, resistance, and high relapse rates. Triple negative breast cancer (TNBC) is caused by cells that lack specific receptors in their membrane, such as estrogen (ER+) and progesterone (PR+) receptors, or by cells that do not express the amplification of human epidermal growth factor receptor-2 (HER-2+). This cancer type has poor prognosis, high relapse rates, and no targeted therapies. Thus, this study aimed to investigate the trends of nanotechnology research in TNBC and compare the contribution of research from different regions, institutions, and authors. A search of the studies published between 2012 and 2017, related to nanotechnology and TNBC, with different keyword combinations, was performed in the Scopus database. The keywords found in this search were grouped into four clusters, in which “breast cancer” was the most mentioned (1,133 times) and the word “MCF-7 cell line” is one of the latest hotspots that appeared in the year 2016. A total of 1,932 articles, which were cited 26,450 times, were identified. The USA accounted for 28.36% of the articles and 27.61% of the citations; however, none of its centers appeared in the list of 10 most productive ones in terms of publications. The journals Biomaterials and International Journal of Nanomedicine had the highest number of publications. The USA and China had the highest number of articles produced and cited; however, the highest average citation per article was from Singapore. The studies focused on the research of antineoplastic agents in animal models and cell culture, and these were the most used topics in research with nanotechnology and TNBC. PMID:29713164

  4. Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis.

    PubMed

    Teles, Ramon Handerson Gomes; Moralles, Herick Fernando; Cominetti, Márcia Regina

    2018-01-01

    Nanotechnology has emerged as a promising tool in the clinic to combat several difficult-to-manage diseases, such as cancer, which is the second leading cause of death worldwide. Chemotherapeutic drugs present several limitations such as undesired side effects, low specificity, resistance, and high relapse rates. Triple negative breast cancer (TNBC) is caused by cells that lack specific receptors in their membrane, such as estrogen (ER+) and progesterone (PR+) receptors, or by cells that do not express the amplification of human epidermal growth factor receptor-2 (HER-2+). This cancer type has poor prognosis, high relapse rates, and no targeted therapies. Thus, this study aimed to investigate the trends of nanotechnology research in TNBC and compare the contribution of research from different regions, institutions, and authors. A search of the studies published between 2012 and 2017, related to nanotechnology and TNBC, with different keyword combinations, was performed in the Scopus database. The keywords found in this search were grouped into four clusters, in which "breast cancer" was the most mentioned (1,133 times) and the word "MCF-7 cell line" is one of the latest hotspots that appeared in the year 2016. A total of 1,932 articles, which were cited 26,450 times, were identified. The USA accounted for 28.36% of the articles and 27.61% of the citations; however, none of its centers appeared in the list of 10 most productive ones in terms of publications. The journals Biomaterials and International Journal of Nanomedicine had the highest number of publications. The USA and China had the highest number of articles produced and cited; however, the highest average citation per article was from Singapore. The studies focused on the research of antineoplastic agents in animal models and cell culture, and these were the most used topics in research with nanotechnology and TNBC.

  5. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities.

    PubMed

    Lanning, Nathan J; Castle, Joshua P; Singh, Simar J; Leon, Andre N; Tovar, Elizabeth A; Sanghera, Amandeep; MacKeigan, Jeffrey P; Filipp, Fabian V; Graveel, Carrie R

    2017-01-01

    Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy. Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their response to tyrosine kinase inhibitors may identify therapeutic sensitivities. We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates. Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA screen in combination with MET or EGFR inhibitors to validate synergistic effects. TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor tyrosine kinases

  6. Mutant p53 dictates the oncogenic activity of c-Abl in triple-negative breast cancers

    PubMed Central

    Morrison, Chevaun D; Chang, Jenny C; Keri, Ruth A; Schiemann, William P

    2017-01-01

    We recently established c-Abl as a potent suppressor of triple-negative breast cancer (TNBC) progression through its reactivation of a p53:p21 signaling axis coupled to senescence. Moreover, we observed co-expression of p53 and c-Abl to be essential for normal mammary epithelial cell physiology, as this relationship is lost upon breast cancer progression. Cytoplasmic c-Abl activity is markedly increased in some TNBCs and contributes to disease progression; however, the mechanisms underlying these events remain largely unknown. In addressing this question, we show here that c-Abl is predominantly restricted to the cytoplasm of human MDA-MB-231 TNBC cells, and to the nucleus of human MCF-7 luminal A cells. TTK is a mitotic protein kinase that phosphorylates c-Abl on Thr735, thereby creating a recognition binding motif for 14-3-3 adaptor proteins in response to oxidative stress. By interrogating the METABRIC database, we observed a significant correlation between p53 expression and that of c-Abl and TTK in basal-like breast cancers. Moreover, heterologous expression of TTK in MCF-7 cells significantly stimulated their growth in part via a c-Abl-dependent mechanism. Conversely, depleting TTK expression in MDA-MB-231 cells not only inhibited their organoid growth in 3D-cultures, but also sensitized them to the tumor suppressing activities of c-Abl independent of its subcellular localization. Moreover, we show that mutant p53 forms cytoplasmic complexes with c-Abl, thereby dictating the subcellular localization of c-Abl and the sensitivity of MDA-MB-231 cells to Imatinib. In response to nutrient deprivation, c-Abl:p53 complexes readily accumulate in the nucleus, resulting in the hyperactivation of c-Abl and initiation of its anti-tumor activities. Collectively, we identified a novel mutant p53:c-Abl cytoplasmic signaling complex that promotes MDA-MB-231 cell growth and highlights the contextual cues that confer oncogenic activity to c-Abl in breast cancer. PMID:28661474

  7. MicroSPECT imaging of triple negative breast cancer cell tumor xenografted in athymic mice with radioiodinated anti-ICAM-1 monoclonal antibody.

    PubMed

    You, Linyi; Wang, Xiangyu; Guo, Zhide; Zhang, Deliang; Zhang, Pu; Li, Jindian; Su, Xinhui; Pan, Weimin; Zhang, Xianzhong

    2018-04-04

    Intercellular adhesion molecule-1(ICAM-1) is a potential molecular target and biomarker for triple negative breast cancer (TNBC) therapy and diagnosis. In this study, aICAM-1 was radioiodinated with 125 I/ 131 I in high radiochemical yield and the probes for TNBC tumor targeting and radioimmunotherapy were evaluated in tumor-bearing mice. High and specific accumulation of 125 I-aICAM1 in TNBC MDA-MB-231 tumor was observed in SPECT imaging and the tumor grew was inhibited obviously by 131 I-aICAM1. Thus, the radioiodinated aICAM1 could serve as potential agents for TNBC theranostics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Risks and protective factors for triple negative breast cancer with a focus on micronutrients and infections.

    PubMed

    Horakova, Dagmar; Bouchalova, Katerina; Cwiertka, Karel; Stepanek, Ladislav; Vlckova, Jana; Kollarova, Helena

    2018-05-15

    Triple negative breast cancer (TNBC) is an aggressive form of breast cancer (BC) with a poor prognosis. Second, patients cannot benefit from targeted therapy, except for those with BRCA1/2 mutations, for whom poly (ADP-ribose) polymerase (PARP) inhibition therapy using olaparib has recently been approved. As global priorities continue to be epidemiological analysis of BC risk factors and early diagnosis, this review focuses on the risks and protective factors associated with TNBC. A PubMed keyword search for new knowledge on the risks and protective factors for TNBC was carried out. We also found statistical information from current online databases concerning the estimated incidence, prevalence and mortality worldwide of this cancer. Traditional risk factors for BC and TNBC are those related to reproduction such as the age of menarche, age of first birth, parity, breastfeeding and age at menopause. Attention needs to be paid to familial BC, weight control, alcohol consumption and regular physical activity. Epidemiological studies on TNBC provide evidence for protective factors such as regular consumption of soya, seafood, green tea, folic acid and vitamin D. Potential risk factors may include night work and viral infectious agents like human papillomavirus (HPV) and Epstein-Barr virus (EBV). Droplet digital methylation-specific PCR (ddMSP) is a possible new screening method for detection of BC including TNBC. Further research is necessary to validate these new factors.

  9. MELK as a potential target to control cell proliferation in triple-negative breast cancer MDA-MB-231 cells

    PubMed Central

    Li, Gang; Yang, Mei; Zuo, Li; Wang, Mei-Xing

    2018-01-01

    Maternal embryonic leucine zipper kinase (MELK) is an important regulator in tumorigenesis of human breast cancer, and if silenced leads to programmed cell death in specific breast cancer cell lines, including MDA-MB-231 cells. In the present study, RNA interference, proliferation assay and semi-quantification of cell cycle relative proteins were performed to determine the effects of MELK in human breast cancer cells. Data demonstrated that the highest level of MELK protein in the MDA-MB-231 cell line among eight breast cancer cell lines. The sensitivity of MELK small interfering-RNA varied in different breast cancer cell lines, but MELK silencing resulted in marked suppression of proliferation of triple-negative breast cancer (TNBC) and non-TNBC cells. Specific silencing of MELK caused G2 arrest in TNBC MDA-MB-231 and HCC1143 cells, and G1 arrest in non-TNBC T47D and MCF7 cells. Notably, the knockdown of MELK did not induce apoptosis in HCC1143 cells, indicated by the lack of caspase-3 expression. In addition, in response to MELK silencing, cyclin B and cyclin D1 were downregulated in four breast cancer cell lines. Furthermore, the silencing of MELK resulted in the upregulation of p21, p27 and phosphorylated (p)-c-Jun N-terminal kinase (JNK) in HCC1143 TNBC cells, and downregulation of p21 and p-JNK in T47D non-TNBC cells. Additionally, MELK protein was markedly suppressed in non-TNBC cells in response to estrogen deprivation. The findings from the present study suggested that MELK may be a potential target in MDA-MB-231 cells, although genetic knockdown of MELK resulted in inhibitory effects on proliferation of TNBC and non-TNBC cells. MELK exert its effect on different breast cancer cells via arrest of different cell cycle phases and therefore mediated by different mediators, which may be involved in the crosstalk with MELK signaling and with the estrogen receptor signaling pathway. PMID:29805690

  10. Mechanisms of Transendothelial Migration of Primary Human Invasive Ductal Carcinoma Cells from ER+, Her2+, and Triple-Negative Disease

    DTIC Science & Technology

    2016-09-01

    cell dissem- ination and, ultimately, patient death (1). The outcome of breast cancer patients with metastatic disease has not improved in the past 30...breast cancer is a heterogeneous disease consisting of several distinct subtypes with substantially different responses to therapy and clinical...and Triple-Negative Disease PRINCIPAL INVESTIGATOR: Jeanine Pignatelli CONTRACTING ORGANIZATION: Albert Einstein College of Medicine Bronx, NY 10461

  11. Triple-negative breast cancer risk in women is defined by the defect of estrogen signaling: preventive and therapeutic implications

    PubMed Central

    Suba, Zsuzsanna

    2014-01-01

    Epidemiologic studies strongly support that triple-negative breast cancers (TNBCs) may be distinct entities as compared with estrogen receptor (ER)+ tumors, suggesting that the etiologic factors, clinical characteristics, and therapeutic possibilities may vary by molecular subtypes. Many investigations propose that reproductive factors and exogenous hormone use differently or even quite inversely affect the risk of TNBCs and ER+ cancers. Controversies concerning the exact role of even the same risk factor in TNBC development justify that the biological mechanisms behind the initiation of both TNBCs and non-TNBCs are completely obscure. To arrive at a comprehensive understanding of the etiology of different breast cancer subtypes, we should also reconsider our traditional concepts and beliefs regarding cancer risk factors. Malignancies are multicausal, but the disturbance of proper estrogen signaling seems to be a crucial risk factor for the development of mammary cancers. The grade of defect in metabolic and hormonal equilibrium is directly associated with TNBC risk for women during their whole life. Inverse impact of menopausal status or parity on the development of ER+ and ER− breast cancers may not be possible; these controversial results derive from the misinterpretation of percentage-based statistical evaluations. Exogenous or parity-associated excessive estrogen supply is suppressive against breast cancer, though the lower the ER expression of tumors, the weaker the anticancer capacity. In women, the most important preventive strategy against breast cancers – included TNBCs – is the strict control and maintenance of hormonal equilibrium from early adolescence through the whole lifetime, particularly during the periods of great hormonal changes. PMID:24482576

  12. Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis.

    PubMed

    Weichhaus, Michael; Segaran, Prabu; Renaud, Ashleigh; Geerts, Dirk; Connelly, Linda

    2014-10-01

    Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade.

    PubMed

    Choy, Cecilia; Raytis, John L; Smith, David D; Duenas, Matthew; Neman, Josh; Jandial, Rahul; Lew, Michael W

    2016-06-01

    In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23-0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases.

  14. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade

    PubMed Central

    CHOY, CECILIA; RAYTIS, JOHN L.; SMITH, DAVID D.; DUENAS, MATTHEW; NEMAN, JOSH; JANDIAL, RAHUL; LEW, MICHAEL W.

    2016-01-01

    In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23–0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases. PMID:27035124

  15. Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species.

    PubMed

    Roy, Anirban; Ahir, Manisha; Bhattacharya, Saurav; Parida, Pravat Kumar; Adhikary, Arghya; Jana, Kuladip; Ray, Manju

    2017-09-01

    Triple negative breast cancer (TNBC) tends to form aggressive tumors associated with high mortality and morbidity which urge the need for development of new therapeutic strategies. Recently, the normal metabolite Methylglyoxal (MG) has been documented for its anti-proliferative activity against human breast cancer. However, the mode of action of MG against TNBC remains open to question. In our study, we investigated the anticancer activity of MG in MDA MB 231 and 4T1 TNBC cell lines and elucidated the underlying mechanisms. MG dose-dependently caused cell death, induced apoptosis, and generated ROS in both the TNBC cell lines. Furthermore, such effects were attenuated in presence of ROS scavenger N-Acetyl cysteine. MG triggered mitochondrial cytochrome c release in the cytosol and up-regulated Bax while down-regulated anti-apoptotic protein Bcl-2. Additionally, MG treatment down-regulated phospho-akt and inhibited the nuclear translocation of the p65 subunit of NF-κB. MG exhibited a tumor suppressive effect in BALB/c mouse 4T1 breast tumor model as well. The cytotoxic effect was studied using MTT assay. Apoptosis, ROS generation, and mitochondrial dysfunction was evaluated by flow cytometry as well as fluorescence microscopy. Western blot assay was performed to analyze proteins responsible for apoptosis. This study demonstrated MG as a potent anticancer agent against TNBC both in vitro and in vivo. The findings will furnish fresh insights into the treatment of this subgroup of breast cancer. © 2017 Wiley Periodicals, Inc.

  16. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities.

    PubMed

    Craig, David W; O'Shaughnessy, Joyce A; Kiefer, Jeffrey A; Aldrich, Jessica; Sinari, Shripad; Moses, Tracy M; Wong, Shukmei; Dinh, Jennifer; Christoforides, Alexis; Blum, Joanne L; Aitelli, Cristi L; Osborne, Cynthia R; Izatt, Tyler; Kurdoglu, Ahmet; Baker, Angela; Koeman, Julie; Barbacioru, Catalin; Sakarya, Onur; De La Vega, Francisco M; Siddiqui, Asim; Hoang, Linh; Billings, Paul R; Salhia, Bodour; Tolcher, Anthony W; Trent, Jeffrey M; Mousses, Spyro; Von Hoff, Daniel; Carpten, John D

    2013-01-01

    Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer.

  17. Impact of Statin Use on Outcomes in Triple Negative Breast Cancer

    PubMed Central

    Shaitelman, Simona F.; Stauder, Michael C.; Allen, Pamela; Reddy, Sangeetha; Lakoski, Susan; Atkinson, Bradley; Reddy, Jay; Amaya, Diana; Guerra, William; Ueno, Naoto; Caudle, Abigail; Tereffe, Welela; Woodward, Wendy A.

    2017-01-01

    Purpose: We sought to investigate if the use of HMG Co-A reductase inhibitors (statins) has an impact on outcomes among patients with triple negative breast cancer (TNBC). Methods: We reviewed the cases of women with invasive, non-metastatic TNBC, diagnosed 1997-2012. Clinical outcomes were compared based on statin use (defined as ever use during treatment vs. never use). We identified a subset of women for whom a 5-value lipid panel (5VLP) was available, including total cholesterol, low density lipoprotein, high density lipoprotein, very low density lipoprotein, and triglycerides. The Kaplan-Meier method was used to estimate median overall survival (OS), distant metastases-free survival (DMFS), and local-regional recurrence-free survival (LRRFS). A Cox proportional hazards regression model was used to test the statistical significance of prognostic factors. Results: 869 women were identified who met inclusion criteria, with a median follow-up time of 75.1 months (range 2.4-228.9 months). 293 (33.7%) patients used statins and 368 (42.3%) had a 5VLP. OS, DMFS, and LRRFS were not significant based on statin use or type. Controlling for the 5VLP values, on multivariable analysis, statin use was significantly associated with OS (HR 0.10, 95% CI 0.01-0.76), but not with DMFS (HR 0.14, 95% CI 0.01-1.40) nor LRRFS (HR 0.10 95% CI 0.00-3.51). Conclusions: Statin use among patients with TNBC is not associated with improved OS, although it may have a benefit for a subset of patients. Prospective assessment would be valuable to better assess the potential complex correlation between clinical outcome, lipid levels, and statin use. PMID:28819403

  18. Integrated in vivo genetic and pharmacologic screening identifies co-inhibition of EGRF and ROCK as a potential treatment regimen for triple-negative breast cancer.

    PubMed

    Iskit, Sedef; Lieftink, Cor; Halonen, Pasi; Shahrabi, Aida; Possik, Patricia A; Beijersbergen, Roderick L; Peeper, Daniel S

    2016-07-12

    Breast cancer is the second most common cause of cancer-related deaths worldwide among women. Despite several therapeutic options, 15% of breast cancer patients succumb to the disease owing to tumor relapse and acquired therapy resistance. Particularly in triple-negative breast cancer (TNBC), developing effective treatments remains challenging owing to the lack of a common vulnerability that can be exploited by targeted approaches. We have previously shown that tumor cells have different requirements for growth in vivo than in vitro. Therefore, to discover novel drug targets for TNBC, we performed parallel in vivo and in vitro genetic shRNA dropout screens. We identified several potential drug targets that were required for tumor growth in vivo to a greater extent than in vitro. By combining pharmacologic inhibitors acting on a subset of these candidates, we identified a synergistic interaction between EGFR and ROCK inhibitors. This combination effectively reduced TNBC cell growth by inducing cell cycle arrest. These results illustrate the power of in vivo genetic screens and warrant further validation of EGFR and ROCK as combined pharmacologic targets for breast cancer.

  19. Mortality Risk from Co-Morbidities independent of Triple-Negative Breast Cancer Status: NCI SEER-based Cohort Analysis

    PubMed Central

    Swede, Helen; Sarwar, Amna; Magge, Anil; Braithwaite, Dejana; Cook, Linda S.; Gregorio, David I.; Jones, Beth A; Hoag, Jessica; Gonsalves, Lou; Salner, Andrew; Zarfos, Kristen; Andemariam, Biree; Stevens, Richard G; Dugan, Alicia; Pensa, Mellisa; Brockmeyer, Jessica

    2017-01-01

    Purpose A comparatively high prevalence of co-morbidities among African-American/Blacks (AA/B) has been implicated in disparate survival in breast cancer. There is a scarcity of data, however, if this effect persists when accounting for the adverse triple-negative breast cancer (TNBC) subtype which occurs at three-fold the rate in AA/B compared to white breast cancer patients. Methods We reviewed charts of 214 white and 202 AA/B breast cancer patients in the NCI-SEER Connecticut Tumor Registry who were diagnosed in 2000-07. We employed the Charlson Co-Morbidity Index (CCI), a weighted 17-item tool to predict risk of death in cancer populations. Cox Survival Analyses estimated hazard ratios (HR) for all-cause mortality in relation to TNBC and CCI adjusting for clinicopathological factors. Results Among patients with SEER-Local Stage, TNBC increased the risk of death (HR=2.18, 95% CI 1.14-4.16), which was attenuated when the CCI score was added to the model (Adj. HR=1.50, 95% CI 0.74-3.01). Conversely, the adverse impact of the CCI score persisted when controlling for TNBC (Adj. HR=1.49, 95% CI 1.29-1.71; per one point increase). Similar patterns were observed in SEER-Regional Stage but estimated HRs were lower. AA/B patients with a CCI score of ≥3 had a significantly higher risk of death compared to AA/B patients without comorbidities (Adj. HR=5.65, 95% CI 2.90-11.02). A lower and non-significant effect was observed for whites with a CCI of ≥3 (Adj. HR=1.90, 95% CI 0.68-5.29). Conclusions Co-morbidities at diagnosis increase risk of death independent of TNBC, and AA/B patients may be disproportionately at risk. PMID:27000206

  20. Synergistic effect of eribulin and CDK inhibition for the treatment of triple negative breast cancer.

    PubMed

    Rao, Shreyas S; Stoehr, Jenna; Dokic, Danijela; Wan, Lei; Decker, Joseph T; Konopka, Kristine; Thomas, Alexandra L; Wu, Jia; Kaklamani, Virginia G; Shea, Lonnie D; Jeruss, Jacqueline S

    2017-10-13

    Activation of CDK2 in triple negative breast cancer (TNBC) can contribute to non-canonical phosphorylation of a TGFβ signaling component, Smad3, promoting cell proliferation and migration. Inhibition of CDK2 was shown to decrease breast cancer oncogenesis. Eribulin chemotherapy was used effectively in the treatment of TNBC. To this end, we tested therapeutic efficacy of a novel CDK2/9 inhibitor, CYC065, eribulin, and the combination of CYC065 and eribulin in 3 different TNBC cell lines, and an in vivo xenograft model. Specifically, we characterized cell proliferation, apoptosis, migration, cell cycle associated protein expression, treatment-related transcription factor activity, and tumor growth in TNBC. Treatment with CYC065 and eribulin in combination had a superior effect on decreasing cell proliferation, inducing apoptosis, and inhibiting migration in TNBC cell lines in vitro . Combination therapy inhibited non-canonical Smad3 phosphorylation at the T179 site in the protein linker region, and resulted in increased p15 and decreased c-myc expression. In a transcription factor array, combination treatment significantly increased activity of AP1 and decreased activity of factors including NFκB, SP1, E2F, and SMAD3. In an in vivo xenograft model of TNBC, individual and combination treatments resulted in a decrease in both tumor volume and mitotic indices. Taken together, these studies highlight the potential of this novel drug combination, CYC065 and eribulin, to suppress the growth of TNBC cells in vitro and in vivo, warranting further clinical investigation.

  1. EGFR conjunct FSCN1 as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer.

    PubMed

    Wang, Chao-Qun; Li, Yang; Huang, Bi-Fei; Zhao, Yong-Ming; Yuan, Hui; Guo, Dongfang; Su, Chen-Ming; Hu, Gui-Nv; Wang, Qian; Long, Tengyun; Wang, Yan; Tang, Chih-Hsin; Li, Xiaoni

    2017-11-15

    Emerging evidence indicates that Fascin-1 (FSCN1) may possess a causal role in the development of several types of cancers and serves as a novel biomarker of aggressiveness in certain carcinomas. However, the regulatory mechanism of FSCN1 in triple-negative breast cancer (TNBC) cell invasion and migration is still largely unknown. In our study, we observed that the FSCN1 expression rates were significantly higher in invasive ductal carcinoma, compared with both usual ductal hyperplasia and ductal carcinoma in situ. FSCN1 expression was significantly higher in cases of TNBC compared with the non-TNBC subtype. Overexpression of FSCN1 promoted TNBC cell migration and invasion. Epidermal growth factor induced the expression of FSCN1 through activation of MAPK, which subsequently promoted cell migration and invasion. A significant decrease in FSCN1 expression following the co-treatment of FSCN1 siRNA and Gefitinib, compared with the separate treatment of FSCN1 siRNA or Gefitinib. Furthermore, we found that there was a significant association between FSCN1 expression and poor relapse-free survival and overall survival. Therefore, we suggest that co-targeting epidermal growth factor receptor and FSCN1 dual biomarker may be used as a novel therapeutic strategy for TNBC.

  2. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene.

    PubMed

    Tsouko, Efrosini; Wang, Jun; Frigo, Daniel E; Aydoğdu, Eylem; Williams, Cecilia

    2015-09-01

    Triple-negative breast cancer (TNBC) is characterized by aggressiveness and affects 10-20% of breast cancer patients. Since TNBC lacks expression of ERα, PR and HER2, existing targeted treatments are not effective and the survival is poor. In this study, we demonstrate that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration. We show that EPHA2 expression is correlated with poor survival specifically in basal-like breast cancer and that its expression is repressed by miR-200a through direct interaction with the 3'UTR of EPHA2. This regulation subsequently affects the downstream activation of AMP-activated protein kinase (AMPK) and results in decreased cell migration of TNBC. We establish that miR-200a directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway. The miR-200a-EPHA2 axis is a novel mechanism highlighting the possibility of utilizing miR-200a delivery to target TNBC metastases. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Highly Adaptable Triple-Negative Breast Cancer Cells as a Functional Model for Testing Anticancer Agents

    PubMed Central

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R.; Milligan, Ryan D.; Cady, Amanda M.; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance. PMID:25279830

  4. LIPG signaling promotes tumor initiation and metastasis of human basal-like triple-negative breast cancer

    PubMed Central

    Lo, Pang-Kuo; Yao, Yuan; Lee, Ji Shin; Zhang, Yongshu; Huang, Weiliang; Kane, Maureen A

    2018-01-01

    Current understanding of aggressive human basal-like triple-negative breast cancer (TNBC) remains incomplete. In this study, we show endothelial lipase (LIPG) is aberrantly overexpressed in basal-like TNBCs. We demonstrate that LIPG is required for in vivo tumorigenicity and metastasis of TNBC cells. LIPG possesses a lipase-dependent function that supports cancer cell proliferation and a lipase-independent function that promotes invasiveness, stemness and basal/epithelial-mesenchymal transition features of TNBC. Mechanistically, LIPG executes its oncogenic function through its involvement in interferon-related DTX3L-ISG15 signaling, which regulates protein function and stability by ISGylation. We show that DTX3L, an E3-ubiquitin ligase, is required for maintaining LIPG protein levels in TNBC cells by inhibiting proteasome-mediated LIPG degradation. Inactivation of LIPG impairs DTX3L-ISG15 signaling, indicating the existence of DTX3L-LIPG-ISG15 signaling. We further reveal LIPG-ISG15 signaling is lipase-independent. We demonstrate that DTX3L-LIPG-ISG15 signaling is essential for malignancies of TNBC cells. Targeting this pathway provides a novel strategy for basal-like TNBC therapy. PMID:29350614

  5. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    PubMed

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R; Milligan, Ryan D; Cady, Amanda M; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  6. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies

    PubMed Central

    Lehmann, Brian D.; Bauer, Joshua A.; Chen, Xi; Sanders, Melinda E.; Chakravarthy, A. Bapsi; Shyr, Yu; Pietenpol, Jennifer A.

    2011-01-01

    Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies. PMID:21633166

  7. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation.

    PubMed

    Jones, Robert A; Robinson, Tyler J; Liu, Jeff C; Shrestha, Mariusz; Voisin, Veronique; Ju, YoungJun; Chung, Philip E D; Pellecchia, Giovanna; Fell, Victoria L; Bae, SooIn; Muthuswamy, Lakshmi; Datti, Alessandro; Egan, Sean E; Jiang, Zhe; Leone, Gustavo; Bader, Gary D; Schimmer, Aaron; Zacksenhaus, Eldad

    2016-10-03

    Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low-like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration-approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC.

  8. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation

    PubMed Central

    Jones, Robert A.; Robinson, Tyler J.; Liu, Jeff C.; Shrestha, Mariusz; Voisin, Veronique; Ju, YoungJun; Chung, Philip E.D.; Pellecchia, Giovanna; Fell, Victoria L.; Bae, SooIn; Muthuswamy, Lakshmi; Egan, Sean E.; Jiang, Zhe; Leone, Gustavo; Bader, Gary D.; Schimmer, Aaron

    2016-01-01

    Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low–like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration–approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC. PMID:27571409

  9. The minimal carcinoma triple stain is superior to commercially available multiplex immunohistochemical stains: breast triple stain and LC/DC breast cocktail.

    PubMed

    Ginter, Paula S; Varma, Sonal; Liu, Yi-Fang; Shin, Sandra J

    2015-12-01

    The Minimal Carcinoma (MC) Triple Stain is a tri-chromogen multiplex immunostain (CK7, p63, and E-cadherin) helpful in classifying morphologically ambiguous and/or small carcinomas as either ductal or lobular and/or in situ or invasive. We compared the utility of this stain with two commercially available duplex/multiplex immunostains: Breast Triple Stain (BTS) (Clarient, Aliso Viejo, CA; CK5, p63, and CK8/18) and LC/DC Breast Cocktail (LCDC) (Biocare, Concord, CA; E-cadherin and p120). Ninety-seven mammary carcinomas stained with the MC Triple Stain, BTS, and LCDC were compared. The MC Triple Stain, LCDC, and BTS were diagnostic in 90 (93%) of 97, 82 (85%) of 97, and 85 (88%) of 97 of cases, respectively. All stains showed decreased diagnostic utility due to variability in tissue integrity, quality of the staining, and/or ease of interpretation. In cases where all immunostains were interpretable, the MC Triple Stain yielded the most information. When technically sufficient, all three immunostains demonstrated relative strengths and weaknesses in their ability to provide diagnostic information with the highest consistency and ease of use. Many cases stained with LCDC were technically insufficient due to a suboptimal staining protocol provided by the company. Overall, the MC Triple Stain outperformed BTS and LCDC by more consistently providing more diagnostic information. The MC Triple Stain is a viable alternative to other multiplex immunostains in evaluating small foci of carcinoma, particularly when both the histologic type and extent of disease (in situ vs invasive) require clarification. Copyright© by the American Society for Clinical Pathology.

  10. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor.

    PubMed

    Wang, Kai; Zhang, Qin; Li, Danan; Ching, Keith; Zhang, Cathy; Zheng, Xianxian; Ozeck, Mark; Shi, Stephanie; Li, Xiaorong; Wang, Hui; Rejto, Paul; Christensen, James; Olson, Peter

    2015-03-15

    To identify and characterize novel, activating mutations in Notch receptors in breast cancer and to determine response to the gamma secretase inhibitor (GSI) PF-03084014. We used several computational approaches, including novel algorithms, to analyze next-generation sequencing data and related omic datasets from The Cancer Genome Atlas (TCGA) breast cancer cohort. Patient-derived xenograft (PDX) models were sequenced, and Notch-mutant models were treated with PF-03084014. Gene-expression and functional analyses were performed to study the mechanism of activation through mutation and inhibition by PF-03084014. We identified mutations within and upstream of the PEST domains of NOTCH1, NOTCH2, and NOTCH3 in the TCGA dataset. Mutations occurred via several genetic mechanisms and compromised the function of the PEST domain, a negative regulatory domain commonly mutated in other cancers. Focal amplifications of NOTCH2 and NOTCH3 were also observed, as were heterodimerization or extracellular domain mutations at lower incidence. Mutations and amplifications often activated the Notch pathway as evidenced by increased expression of canonical Notch target genes, and functional mutations were significantly enriched in the triple-negative breast cancer subtype (TNBC). PDX models were also identified that harbored PEST domain mutations, and these models were highly sensitive to PF-03084014. This work suggests that Notch-altered breast cancer constitutes a bona fide oncogenic driver segment with the most common alteration being PEST domain mutations present in multiple Notch receptors. Importantly, functional studies suggest that this newly identified class can be targeted with Notch inhibitors, including GSIs. ©2015 American Association for Cancer Research.

  11. Berberine Suppresses Cell Motility Through Downregulation of TGF-β1 in Triple Negative Breast Cancer Cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; You, Daeun; Jeong, Yisun; Jeon, Myeongjin; Yu, Jonghan; Kim, Seok Won; Nam, Seok Jin; Lee, Jeong Eon

    2018-01-01

    Transforming growth factor-beta proteins (TGF-βs) are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT) in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR) on tumor growth and metastasis of triple negative breast cancer (TNBC) cells via suppression of TGF-β1 expression. The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF-β1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. In a clinical data set, aberrant TGF-β1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 and the capacity for cell migration were increased by TGF-β1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF-β1-induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF-β1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF-β1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Differential Expression and Pathway Analysis in Drug-Resistant Triple-Negative Breast Cancer Cell Lines Using RNASeq Analysis.

    PubMed

    Shaheen, Safa; Fawaz, Febin; Shah, Shaheen; Büsselberg, Dietrich

    2018-06-19

    Triple-negative breast cancer (TNBC) is among the most notorious types of breast cancer, the treatment of which does not give consistent results due to the absence of the three receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) as well as high amount of molecular variability. Drug resistance also contributes to treatment unresponsiveness. We studied differentially expressed genes, their biological roles, as well as pathways from RNA-Seq datasets of two different TNBC drug-resistant cell lines of Basal B subtype SUM159 and MDA-MB-231 treated with drugs JQ1 and Dexamethasone, respectively, to elucidate the mechanism of drug resistance. RNA sequencing(RNA-Seq) data analysis was done using edgeR which is an efficient program for determining the most significant Differentially Expressed Genes (DEGs), Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. iPathway analysis was further used to obtain validated results using analysis that takes into consideration type, function, and interactions of genes in the pathway. The significant similarities and differences throw light into the molecular heterogeneity of TNBC, giving clues into the aspects that can be focused to overcome drug resistance. From this study, cytokine-cytokine receptor interaction pathway appeared to be a key factor in TNBC drug resistance.

  13. Current data of targeted therapies for the treatment of triple-negative advanced breast cancer: empiricism or evidence-based?

    PubMed

    Petrelli, Fausto; Cabiddu, Mary; Ghilardi, Mara; Barni, Sandro

    2009-10-01

    Approximately 10 - 15% of breast carcinomas (BCs) are known to be 'triple-negative (TN) receptor' (i.e., not expressing ER or PR and not exhibiting overexpression and/or gene amplification of HER2-neu). Triple-negative BCs comprise approximately 85% of all basal-type tumours. Classically, basal-like BCs have been characterised by low expression of ER, PR, and HER2 neu and high expression of CK5, CK14, caveolin-1, CAIX, p63, and EGFR (HER1), which reflects the mammary gland basal/myoepithelial cell component. Although there is no standard first-line chemotherapy regimen for metastatic TN BCs, anthracycline- and taxane-containing regimens are acceptable treatments. A large number of agents, including DNA-damaging agents, EGFR inhibitors, antiangiogenic agents and novel taxane formulations are currently being tested in clinical trials for first-line and pretreated patients. Limited experiences with platinum salts, poly(ADP-ribose) polymerase (PARP) inhibitors, cetuximab, bevacizumab and ixabepilone have been published in recent years and will be reported. Novel immunohistochemistry analysis for identification of basal like/TN phenotype are awaited to correctly select this population. The clinical trials investigating new agents have to be designed for a specific (and possibly large) subset of patients with BC. In the future, a gene array platform with greater sensitivity for distinguishing the various BC subtypes, as well as having the power to predict the molecular biology of the disease, will be an indispensible tool for treatment selection. Currently, treatment of TN BC is more empirical than evidence-based. The cornerstone of treatment is chemotherapy, but in the near future, novel target agents will emerge as possible partners.

  14. RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer

    PubMed Central

    Knudsen, Erik S; McClendon, A Kathleen; Franco, Jorge; Ertel, Adam; Fortina, Paolo; Witkiewicz, Agnieszka K

    2015-01-01

    Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNBC. PMID:25602521

  15. Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF-β2 expression.

    PubMed

    Kim, Sangmin; Han, Jeonghun; Jeon, Myeongjin; You, Daeun; Lee, Jeongmin; Kim, Hee Jung; Bae, Sarang; Nam, Seok Jin; Lee, Jeong Eon

    2016-08-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that regulates many biological events including cell motility and angiogenesis. Here, we investigated the role of elevated TGF-β2 level in triple negative breast cancer (TNBC) cells and the inhibitory effect of silibinin on TGF-β2 action in TNBC cells. Breast cancer patients with high TGF-β2 expression have a poor prognosis. The levels of TGF-β2 expression increased significantly in TNBC cells compared with those in non-TNBC cells. In addition, cell motility-related genes such as fibronectin (FN) and matrix metalloproteinase-2 (MMP-2) expression also increased in TNBC cells. Basal FN, MMP-2, and MMP-9 expression levels decreased in response to LY2109761, a dual TGF-β receptor I/II inhibitor, in TNBC cells. TNBC cell migration also decreased in response to LY2109761. Furthermore, we observed that TGF-β2 augmented the FN, MMP-2, and MMP-9 expression levels in a time- and dose-dependent manner. In contrast, TGF-β2-induced FN, MMP-2, and MMP-9 expression levels decreased significantly in response to LY2109761. Interestingly, we found that silibinin decreased TGF-β2 mRNA expression level but not that of TGF-β1 in TNBC cells. Cell migration as well as basal FN and MMP-2 expression levels decreased in response to silibinin. Furthermore, silibinin significantly decreased TGF-β2-induced FN, MMP-2, and MMP-9 expression levels and suppressed the lung metastasis of TNBC cells. Taken together, these results suggest that silibinin suppresses metastatic potential of TNBC cells by inhibiting TGF-β2 expression in TNBC cells. Thus, silibinin may be a promising therapeutic drug to treat TNBC.

  16. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial.

    PubMed

    Tutt, Andrew; Tovey, Holly; Cheang, Maggie Chon U; Kernaghan, Sarah; Kilburn, Lucy; Gazinska, Patrycja; Owen, Julie; Abraham, Jacinta; Barrett, Sophie; Barrett-Lee, Peter; Brown, Robert; Chan, Stephen; Dowsett, Mitchell; Flanagan, James M; Fox, Lisa; Grigoriadis, Anita; Gutin, Alexander; Harper-Wynne, Catherine; Hatton, Matthew Q; Hoadley, Katherine A; Parikh, Jyoti; Parker, Peter; Perou, Charles M; Roylance, Rebecca; Shah, Vandna; Shaw, Adam; Smith, Ian E; Timms, Kirsten M; Wardley, Andrew M; Wilson, Gregory; Gillett, Cheryl; Lanchbury, Jerry S; Ashworth, Alan; Rahman, Nazneen; Harries, Mark; Ellis, Paul; Pinder, Sarah E; Bliss, Judith M

    2018-05-01

    Germline mutations in BRCA1/2 predispose individuals to breast cancer (termed germline-mutated BRCA1/2 breast cancer, gBRCA-BC) by impairing homologous recombination (HR) and causing genomic instability. HR also repairs DNA lesions caused by platinum agents and PARP inhibitors. Triple-negative breast cancers (TNBCs) harbor subpopulations with BRCA1/2 mutations, hypothesized to be especially platinum-sensitive. Cancers in putative 'BRCAness' subgroups-tumors with BRCA1 methylation; low levels of BRCA1 mRNA (BRCA1 mRNA-low); or mutational signatures for HR deficiency and those with basal phenotypes-may also be sensitive to platinum. We assessed the efficacy of carboplatin and another mechanistically distinct therapy, docetaxel, in a phase 3 trial in subjects with unselected advanced TNBC. A prespecified protocol enabled biomarker-treatment interaction analyses in gBRCA-BC and BRCAness subgroups. The primary endpoint was objective response rate (ORR). In the unselected population (376 subjects; 188 carboplatin, 188 docetaxel), carboplatin was not more active than docetaxel (ORR, 31.4% versus 34.0%, respectively; P = 0.66). In contrast, in subjects with gBRCA-BC, carboplatin had double the ORR of docetaxel (68% versus 33%, respectively; biomarker, treatment interaction P = 0.01). Such benefit was not observed for subjects with BRCA1 methylation, BRCA1 mRNA-low tumors or a high score in a Myriad HRD assay. Significant interaction between treatment and the basal-like subtype was driven by high docetaxel response in the nonbasal subgroup. We conclude that patients with advanced TNBC benefit from characterization of BRCA1/2 mutations, but not BRCA1 methylation or Myriad HRD analyses, to inform choices on platinum-based chemotherapy. Additionally, gene expression analysis of basal-like cancers may also influence treatment selection.

  17. MUC4 Overexpression Augments Cell Migration and Metastasis through EGFR Family Proteins in Triple Negative Breast Cancer Cells

    PubMed Central

    Mukhopadhyay, Partha; Lakshmanan, Imayavaramban; Ponnusamy, Moorthy P.; Chakraborty, Subhankar; Jain, Maneesh; Pai, Priya; Smith, Lynette M.; Lele, Subodh M.; Batra, Surinder K.

    2013-01-01

    Introduction Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs. Method In the present study, we investigated the functional and mechanistic roles of MUC4 in potentiating pathogenic signals including EGFR family proteins to promote TNBC aggressiveness using in vitro and in vivo studies. Further, we studied the expression of MUC4 in invasive TNBC tissue and normal breast tissue by immunostaining. Results MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-γ, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue. Conclusions MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling. PMID

  18. Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in γ-secretase inhibitor drug responses

    PubMed Central

    Azzam, Diana J; Zhao, Dekuang; Sun, Jun; Minn, Andy J; Ranganathan, Prathibha; Drews-Elger, Katherine; Han, Xiaoqing; Picon-Ruiz, Manuel; Gilbert, Candace A; Wander, Seth A; Capobianco, Anthony J; El-Ashry, Dorraya; Slingerland, Joyce M

    2013-01-01

    Increasing evidence suggests that stem-like cells mediate cancer therapy resistance and metastasis. Breast tumour-initiating stem cells (T-ISC) are known to be enriched in CD44+CD24neg/low cells. Here, we identify two T-ISC subsets within this population in triple negative breast cancer (TNBC) lines and dissociated primary breast cancer cultures: CD44+CD24low+ subpopulation generates CD44+CD24neg progeny with reduced sphere formation and tumourigenicity. CD44+CD24low+ populations contain subsets of ALDH1+ and ESA+ cells, yield more frequent spheres and/or T-ISC in limiting dilution assays, preferentially express metastatic gene signatures and show greater motility, invasion and, in the MDA-MB-231 model, metastatic potential. CD44+CD24low+ but not CD44+CD24neg express activated Notch1 intracellular domain (N1-ICD) and Notch target genes. We show N1-ICD transactivates SOX2 to increase sphere formation, ALDH1+ and CD44+CD24low+cells. Gamma secretase inhibitors (GSI) reduced sphere formation and xenograft growth from CD44+CD24low+ cells, but CD44+CD24neg were resistant. While GSI hold promise for targeting T-ISC, stem cell heterogeneity as observed herein, could limit GSI efficacy. These data suggest a breast T-ISC hierarchy in which distinct pathways drive developmentally related subpopulations with different anti-cancer drug responsiveness. PMID:23982961

  19. Annexin A2 and its downstream IL-6 and HB-EGF as secretory biomarkers in the differential diagnosis of Her-2 negative breast cancer.

    PubMed

    Shetty, Praveenkumar; Patil, Vidya S; Mohan, Rajashekar; D'souza, Leonard Clinton; Bargale, Anil; Patil, Basavaraj R; Dinesh, U S; Haridas, Vikram; Kulkarni, Shrirang P

    2017-07-01

    Background AnnexinA2 (AnxA2) membrane deposition has a critical role in HB-EGF shedding as well as IL-6 secretion in breast cancer cells. This autocrine cycle has a major role in cancer cell proliferation, migration and metastasis. The objective of the study is to demonstrate annexinA2-mediated autocrine regulation via HB-EGF and IL-6 in Her-2 negative breast cancer progression. Methods Secretory annexinA2, HB-EGF and IL-6 were analysed in the peripheral blood sample of Her-2 negative ( n = 20) and positive breast cancer patients ( n = 16). Simultaneously, tissue expression was analysed by immunohistochemistry. The membrane deposition of these secretory ligands and their autocrine regulation was demonstrated using triple-negative breast cancer cell line model. Results Annexina2 and HB-EGF expression are inversely correlated with Her-2, whereas IL-6 expression is seen in both Her-2 negative and positive breast cancer cells. RNA interference studies and upregulation of annexinA2 proved that annexinA2 is the upstream of this autocrine pathway. Abundant soluble serum annexinA2 is secreted in Her-2 negative breast cancer (359.28 ± 63.73 ng/mL) compared with normal (286.10 ± 70.04 ng/mL, P < 0.01) and Her-2 positive cases (217.75 ± 60.59 ng/mL, P < 0.0001). In Her-2 negative cases, the HB-EGF concentrations (179.16 ± 118.81 pg/mL) were highly significant compared with normal (14.92 ± 17.33 pg/mL, P < 0.001). IL-6 concentrations were increased significantly in both the breast cancer phenotypes as compared with normal ( P < 0.001). Conclusion The specific expression pattern of annexinA2 and HB-EGF in triple-negative breast cancer tissues, increased secretion compared with normal cells, and their major role in the regulation of EGFR downstream signalling makes these molecules as a potential tissue and serum biomarker and an excellent therapeutic target in Her-2 negative breast cancer.

  20. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells).

    PubMed

    Meena, Ramovatar; Kumar, Sumit; Kumar, Raj; Gaharwar, Usha Singh; Rajamani, Paulraj

    2017-10-01

    Triple-negative breast cancers (TNBC) are aggressive cancers, which do not control by hormonal therapy or therapies that target HER-2 receptors. Curcumin (Cur) has shown cytotoxic effects in multiple cancer cell lines. However, its medical uses remain limited due to low aqueous solubility and poor bioavailability. Therefore, present study was aimed to fabricate the small positive charge curcumin nanoparticles (CN) by nanoprecipitation methods using PLGA and CTAB, and to evaluate its anticancer efficacy and underlying the mechanism in triple negative breast cancer cell lines (MDA-MB-231 cells). In in-vitro drug release assay, Cur was released from CN by flicking diffusion and anomalous transport process. CN showed a higher cellular incorporation than free Cur resulted in higher cytotoxicity. Checking the anticancer activity at the molecular level, Cur has shown to induce the reactive oxygen species production that subsequently causes the DNA damage and resulting in p38-MAPK activation. The p38-MAPK induce the expression of p16 /INKK4a , p21 /waf1/cip1 and p53 resulting in a reduction in the level of CDK2, CDK4, cyclin D1 and cyclin E and subsequently cell cycle arrest at G1/S and G2/M phase. It also reduces the expression of DNA repair gene, i.e. BRCA1, BRCA2, Rad51, Rad50, Mre11 and NBS1 resulting in apoptosis induction due to persistent DNA damage. This study presents an effective delivery of curcumin in TNBC cancer cells and it could open the new frontiers in clinical cancer chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Prognostic value of FDG PET/CT-based metabolic tumor volumes in metastatic triple negative breast cancer patients

    PubMed Central

    Marinelli, Brett; Espinet-Col, Carina; Ulaner, Gary A; McArthur, Heather L; Gonen, Mithat; Jochelson, Maxine; Weber, Wolfgang A

    2016-01-01

    FDG PET/CT-based measures of tumor burden show promise to predict survival in patients with metastatic breast cancer, but the patient populations studied so far are heterogeneous. The reports may have been confounded by the markedly different prognosis of the various subtypes of breast cancer. The purpose of this study is to evaluate the correlation between tumor burden on FDG PET/CT and overall survival (OS) in patients within a defined population: metastatic triple negative breast cancer (MTNBC). FDG PET/CT scans of 47 consecutive MTNBC patients (54±12 years-old) with no other known malignancies were analyzed. A total 393 lesions were identified, and maximum standardized uptake value (SUVmax), mean SUV, metabolic tumor volume (MTV), total lesion number (TLN) and total lesion glycolysis (TLG), were measured and correlated with patient survival by Mantel-Cox tests and Cox regression analysis. At a median follow-up time of 12.4 months, 41 patients died with a median OS of 12.1 months. Patients with MTV less than 51.5 ml lived nearly three times longer (22 vs 7.1 months) than those with a higher MTV (χ2=21.3, P<0.0001). In a multivariate Cox regression analysis only TLN and MTV were significantly correlated with survival. Those with an MTV burden in the 75th percentile versus the 25th percentile had a hazard ratio of 6.94 (p=0.001). In patients with MTNBC, MTV appears to be a strong prognostic factor. If validated in prospective studies, MTV may be a valuable tool for risk stratification of MTNBC patients in clinical trials and to guide patient management. PMID:27186439

  2. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer.

    PubMed

    Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P H; Zhao, Chunyan; Dahlman-Wright, Karin

    2015-04-10

    The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression.

  3. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial–mesenchymal transition in triple-negative breast cancer

    PubMed Central

    Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P.H.; Zhao, Chunyan; Dahlman-Wright, Karin

    2015-01-01

    The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression. PMID:25762639

  4. Diterpenoid natural compound C4 (Crassin) exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species.

    PubMed

    Richards, Cathy E; Vellanki, Sri H; Smith, Yvonne E; Hopkins, Ann M

    2018-02-01

    Triple-negative breast cancers (TNBC) lack expression of three common cell surface receptors, i.e., estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2). Accordingly, TNBCs are associated with fewer treatment options and a relatively poor prognosis. Having screened a National Cancer Institute natural compound library, the purpose of this study was to investigate the bioactivity of compound C4 (Crassin) in TNBC cells. Cell viability assays were performed in two TNBC cell lines, MDA-MB-231 and 4T1, following C4 treatment in the presence or absence of the antioxidant N-acetyl-L-cysteine (NAC). Phosphorylation of Akt and ERK was assessed by Western blotting. Apoptosis, necrosis, autophagy, necroptosis, ferroptosis and cytostasis assays were performed to explain viability deficits resulting from C4 exposure. We found that the viability of the TNBC cells tested decreased in a concentration- and time-dependent fashion following C4 treatment. This decrease coincided with an unexpected increase in the expression of the cell survival effectors pAkt and pERK. In addition, we found that both the decreased cell viability and the increased pAkt/pERK levels could be rescued by the antioxidant NAC, suggesting a central role for reactive oxygen species (ROS) in the mechanism of action of C4. Necrosis, apoptosis, necroptosis and ferroptosis could be ruled out as cell death mechanisms. Instead, we found that C4 induced cytostasis downstream of ROS activation. Finally, we observed a synergistic effect between C4 and the chemotherapeutic drug doxorubicin in TNBC cells. From our in vitro data we conclude that C4 exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species. Its potential value in combination with cytotoxic therapies merits deeper investigation in pre-clinical models.

  5. Toll Like Receptor-9 Mediated Invasion in Breast Cancer

    DTIC Science & Technology

    2012-07-01

    cancer models, but only in triple negative breast cancer cells. In line with these...expression and“dead DNA” are biologically important in triple negative breast cancer . 15. SUBJECT TERMS None provided 16. SECURITY CLASSIFICATION OF...experiments done so far in the Specific Aim # 1: Tumor TLR9 expression has a dramatic effect on prognosis in triple negative breast cancers . The lack

  6. Identification of Specific miRNA Signature in Paired Sera and Tissue Samples of Indian Women with Triple Negative Breast Cancer

    PubMed Central

    Thakur, Seema; Grover, Rajesh K.; Gupta, Sanjay; Yadav, Ajay K.; Das, Bhudev C.

    2016-01-01

    Of several subtypes of breast cancer, triple negative breast cancer (TNBC) is a highly aggressive tumor that lacks expression of hormone receptors for estrogen, progesterone and human epidermal growth factor receptor 2 and shows a worst prognosis. The small noncoding RNAs (miRNAs) considered as master regulator of gene expression play a key role in cancer initiation, progression and drug resistance and have emerged as attractive molecular biomarkers for diagnosis, prognosis and treatment targets in cancer. We have done expression profiling of selected miRNAs in paired serum and tissue samples of TNBC patients and corresponding cell lines and compared with that of other subtypes, in order to identify novel serum miRNA biomarkers for early detection and progression of TNBC. A total of 85 paired tumor tissues and sera with an equal number of adjacent normal tissue margins and normal sera from age matched healthy women including tissue and sera samples from 15 benign fibroadenomas were employed for the study. We report for the first time an extremely high prevalence (73.9%) of TNBC in premenopausal women below 35 years of age and a significant altered expression of a panel of three specific oncogenic miRNAs- miR-21, miR-221, miR-210, and three tumor suppressor miRNAs- miR-195, miR-145 and Let-7a in both tissues and corresponding sera of TNBC patients when compared with triple positive breast cancer (TPBC) patients. While miR-21, miR-221 and miR-210 showed significant over-expression, miR-195 and miR-145 were downregulated and well correlated with various clinicopathological and demographic risk factors, tumor grade, clinical stage and hormone receptor status. Interestingly, despite being a known tumor suppressor, Let-7a showed a significant overexpression in TNBCs. It is suggested that this panel of six miRNA signature may serve as a minimally invasive biomarker for an early detection of TNBC patients. PMID:27404381

  7. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism.

    PubMed

    Sartorius, C A; Hanna, C T; Gril, B; Cruz, H; Serkova, N J; Huber, K M; Kabos, P; Schedin, T B; Borges, V F; Steeg, P S; Cittelly, D M

    2016-06-02

    Brain metastases (BM) are a devastating consequence of breast cancer. BM occur more frequently in patients with estrogen receptor-negative (ER-) breast cancer subtypes; HER2 overexpressing (HER2+) tumors and triple-negative (TN) (ER-, progesterone receptor-negative (PR-) and normal HER2) tumors. Young age is an independent risk factor for the development of BM, thus we speculated that higher circulating estrogens in young, pre-menopausal women could exert paracrine effects through the highly estrogen-responsive brain microenvironment. Using a TN experimental metastases model, we demonstrate that ovariectomy decreased the frequency of magnetic resonance imaging-detectable lesions by 56% as compared with estrogen supplementation, and that the combination of ovariectomy and letrozole further reduced the frequency of large lesions to 14.4% of the estrogen control. Human BM expressed 4.2-48.4% ER+ stromal area, particularly ER+ astrocytes. In vitro, E2-treated astrocytes increased proliferation, migration and invasion of 231BR-EGFP cells in an ER-dependent manner. E2 upregulated epidermal growth factor receptor (EGFR) ligands Egf, Ereg and Tgfa mRNA and protein levels in astrocytes, and activated EGFR in brain metastatic cells. Co-culture of 231BR-EGFP cells with E2-treated astrocytes led to the upregulation of the metastatic mediator S100 Calcium-binding protein A4 (S100A4) (1.78-fold, P<0.05). Exogenous EGF increased S100A4 mRNA levels in 231BR-EGFP cells (1.40±0.02-fold, P<0.01 compared with vehicle control) and an EGFR/HER2 inhibitor blocked this effect, suggesting that S100A4 is a downstream effector of EGFR activation. Short hairpin RNA-mediated S100A4 silencing in 231BR-EGFP cells decreased their migration and invasion in response to E2-CM, abolished their increased proliferation in co-cultures with E2-treated astrocytes and decreased brain metastatic colonization. Thus, S100A4 is one effector of the paracrine action of E2 in brain metastatic cells. These

  8. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism

    PubMed Central

    Sartorius, Carol A.; Hanna, Colton T.; Gril, Brunilde; Cruz, Hazel; Serkova, Natalie J.; Huber, Kendra M.; Kabos, Peter; Schedin, Troy B.; Borges, Virginia F.; Steeg, Patricia S.; Cittelly, Diana M.

    2015-01-01

    Brain metastases (BM) are a devastating consequence of breast cancer. BM occur more frequently in patients with estrogen receptor-negative (ER−) breast cancer subtypes; HER2 overexpressing (HER2+) tumors and triple-negative (TN) (ER−, progesterone receptor-negative (PR−) and normal HER2) tumors. Young age is an independent risk factor for development of BM, thus we speculated that higher circulating estrogens in young, pre-menopausal women could exert paracrine effects through the highly estrogen-responsive brain microenvironment. Using a TN experimental metastases model, we demonstrate that ovariectomy decreased the frequency of MRI detectable lesions by 56% as compared to estrogen supplementation, and that the combination of ovariectomy and letrozole further reduced the frequency of large lesions to 14.4% of the estrogen control. Human BM expressed 4.2-48.4% ER+ stromal area, particularly ER+ astrocytes. In vitro, E2-treated astrocytes increased proliferation, migration and invasion of 231BR-EGFP cells in an ER-dependent manner. E2 upregulated EGFR ligands Egf, Ereg, and Tgfa mRNA and protein levels in astrocytes, and activated EGFR in brain metastatic cells. Co-culture of 231BR-EGFP cells with E2-treated astrocytes led to upregulation of the metastatic mediator S100 Calcium-binding protein A4 (S100A4) (1.78-fold, P<0.05). Exogenous EGF increased S100A4 mRNA levels in 231BR-EGFP cells (1.40±0.02 fold, P<0.01 compared to vehicle-control) and an EGFR/HER2 inhibitor blocked this effect, suggesting that S100A4 is a downstream effector of EGFR activation. ShRNA-mediated S100A4 silencing in 231BR-EGFP cells decreased their migration and invasion in response to E2-CM, abolished their increased proliferation in co-cultures with E2-treated astrocytes, and decreased brain metastatic colonization. Thus, S100A4 is one effector of the paracrine action of E2 in brain metastatic cells. These studies provide a novel mechanism by which estrogens, acting through ER

  9. Hsp90 Inhibition Results in Glucocorticoid Receptor Degradation in Association with Increased Sensitivity to Paclitaxel in Triple-Negative Breast Cancer.

    PubMed

    Agyeman, Abena S; Jun, Wesley J; Proia, David A; Kim, Caroline R; Skor, Maxwell N; Kocherginsky, Masha; Conzen, Suzanne D

    2016-04-01

    Targetable molecular drivers for triple-negative breast cancer (TNBC) have been difficult to identify; therefore, standard treatment remains limited to conventional chemotherapy. Recently, new-generation small-molecule Hsp90 inhibitors (e.g., ganetespib and NVP-AUY922) have demonstrated improved safety and activity profiles over the first-generation ansamycin class. In breast cancer, clinical responses have been observed in a subset of TNBC patients following ganetespib monotherapy; however, the underlying biology of Hsp90 inhibitor treatment and tumor response is not well understood. Glucocorticoid receptor (GR) activity in TNBC is associated with chemotherapy resistance. Here, we find that treatment of TNBC cell lines with ganetespib resulted in GR degradation and decreased GR-mediated gene expression. Ganetespib-associated GR degradation also sensitized TNBC cells to paclitaxel-induced cell death both in vitro and in vivo. The beneficial effect of the Hsp90 inhibitor on paclitaxel-induced cytotoxicity was reduced when GR was depleted in TNBC cells but could be recovered with GR overexpression. These findings suggest that GR-regulated anti-apoptotic and pro-proliferative signaling networks in TNBC are disrupted by Hsp90 inhibitors, thereby sensitizing TNBC to paclitaxel-induced cell death. Thus, GR+ TNBC patients may be a subgroup of breast cancer patients who are most likely to benefit from adding an Hsp90 inhibitor to taxane therapy.

  10. Differences in elongation of very long chain fatty acids and fatty acid metabolism between triple-negative and hormone receptor-positive breast cancer.

    PubMed

    Yamashita, Yuji; Nishiumi, Shin; Kono, Seishi; Takao, Shintaro; Azuma, Takeshi; Yoshida, Masaru

    2017-08-29

    Triple-negative breast cancer (TN) is more aggressive than other subtypes of breast cancer and has a lower survival rate. Furthermore, detailed biological information about the disease is lacking. This study investigated characteristics of metabolic pathways in TN. We performed the metabolome analysis of 74 breast cancer tissues and the corresponding normal breast tissues using LC/MS. Furthermore, we classified the breast cancer tissues into ER-positive, PgR-positive, HER2-negative breast cancer (EP+H-) and TN, and then the differences in their metabolic pathways were investigated. The RT-PCR and immunostaining were carried out to examine the expression of ELOVL1, 2, 3, 4, 5, 6, and 7. We identified 142 of hydrophilic metabolites and 278 of hydrophobic lipid metabolites in breast tissues. We found the differences between breast cancer and normal breast tissues in choline metabolism, glutamine metabolism, lipid metabolism, and so on. Most characteristic of comparison between EP+H- and TN were differences in fatty acid metabolism was which were related to the elongation of very long chain fatty acids were detected between TN and EP+H-. Real-time RT-PCR showed that the mRNA expression levels of ELOVL1, 5, and 6 were significantly upregulated by 8.5-, 4.6- and 7.0-fold, respectively, in the TN tumors compared with their levels in the corresponding normal breast tissue samples. Similarly, the mRNA expression levels of ELOVL1, 5, and 6 were also significantly higher in the EP+H- tissues than in the corresponding normal breast tissues (by 4.9-, 3.4-, and 2.1-fold, respectively). The mRNA expression level of ELOVL6 was 2.6-fold higher in the TN tumors than in the EP+H- tumors. During immunostaining, the TN and EP+H- tumors demonstrated stronger ELOVL1 and 6 staining than the corresponding normal breast tissues, but ELOVL5 was not stained strongly in the TN or EP+H- tumors. Furthermore, the TN tumors exhibited stronger ELOVL1 and 6 staining than the EP+H- tumors. Marked

  11. Endoplasmic reticulum stress induces secretion of high-mobility group proteins and is associated with tumor-infiltrating lymphocytes in triple-negative breast cancer

    PubMed Central

    Park, In Ah; Heo, Sun-Hee; Song, In Hye; Kim, Young-Ae; Park, Hye Seon; Bang, Won Seon; Park, Suk Young; Jo, Jeong-Hyon; Lee, Hee Jin; Gong, Gyungyub

    2016-01-01

    Background Although the prognostic and predictive significance of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC) have been shown, the cause of the TIL influx is unclear. Here, we investigated whether extracellular secretion of HMGN1 is associated with TIL influx, as well as increased endoplasmic reticulum stress (ERS), in human TNBC. Methods We reviewed the slides of 767 patients with TNBC and evaluated the TIL levels. We also assessed the expression of HMGs and several ERS-associated molecules using immunohistochemical staining. Western blot analysis of human TNBC cell lines and pharmacological ERS inducers was used to determine if HMGN1 migrates from the nucleus to the extracellular space in response to ERS. Results On immunohistochemical staining, either higher nuclear or cytoplasmic expression of both HMGB1 and HMGN1 was significantly associated with ERS. TILs showed a positive correlation with the cytoplasmic expression of the HMGs. Western blot analysis of TNBC cell lines showed that ERS induction resulted in the secretion of HMG proteins. Conclusions This is the first study to elucidate the associations among ERS, secretion of HMGs, and degree of TILs in TNBCs. Understanding the mechanisms of TIL influx will help in the development of effective immunotherapeutic agents for TNBC. PMID:27494867

  12. A small-molecule activator induces ULK1-modulating autophagy-associated cell death in triple negative breast cancer.

    PubMed

    Ouyang, Liang; Zhang, Lan; Fu, Leilei; Liu, Bo

    2017-04-03

    ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC. Moreover, such new inspiring findings may help us discover that this activator of ULK1 (LYN-1604) with its anti-tumor activity and ACD-modulating mechanisms can be further exploited as a small-molecule candidate drug for future TNBC therapy.

  13. Role of TP53 mutations in triple negative and HER2-positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy.

    PubMed

    Darb-Esfahani, Silvia; Denkert, Carsten; Stenzinger, Albrecht; Salat, Christoph; Sinn, Bruno; Schem, Christian; Endris, Volker; Klare, Peter; Schmitt, Wolfgang; Blohmer, Jens-Uwe; Weichert, Wilko; Möbs, Markus; Tesch, Hans; Kümmel, Sherko; Sinn, Peter; Jackisch, Christian; Dietel, Manfred; Reimer, Toralf; Loi, Sherene; Untch, Michael; von Minckwitz, Gunter; Nekljudova, Valentina; Loibl, Sibylle

    2016-10-18

    TP53 mutations are frequent in breast cancer, however their clinical relevance in terms of response to chemotherapy is controversial. 450 pre-therapeutic, formalin-fixed, paraffin-embedded core biopsies from the phase II neoadjuvant GeparSixto trial that included HER2-positive and triple negative breast cancer (TNBC) were subjected to Sanger sequencing of exons 5-8 of the TP53 gene. TP53 status was correlated to response to neoadjuvant anthracycline/taxane-based chemotherapy with or without carboplatin and trastuzumab/lapatinib in HER2-positive and bevacizumab in TNBC. p53 protein expression was evaluated by immunohistochemistry in the TNBC subgroup. Of 450 breast cancer samples 297 (66.0%) were TP53 mutant. Mutations were significantly more frequent in TNBC (74.8%) compared to HER2-positive cancers (55.4%, P < 0.0001). Neither mutations nor different mutation types and effects were associated with pCR neither in the whole study group nor in molecular subtypes (P > 0.05 each). Missense mutations tended to be associated with a better survival compared to all other types of mutations in TNBC (P = 0.093) and in HER2-positive cancers (P = 0.071). In TNBC, missense mutations were also linked to higher numbers of tumor-infiltrating lymphocytes (TILs, P = 0.028). p53 protein overexpression was also linked with imporved survival (P = 0.019). Our study confirms high TP53 mutation rates in TNBC and HER2-positive breast cancer. Mutations did not predict the response to an intense neoadjuvant chemotherapy in these two molecular breast cancer subtypes.

  14. Treatment of triple-negative breast cancer with Chinese herbal medicine: A prospective cohort study protocol.

    PubMed

    Meng, Hui; Peng, Nan; Yu, Mingwei; Sun, Xu; Ma, Yunfei; Yang, Guowang; Wang, Xiaomin

    2017-11-01

    Triple-negative breast cancer (TNBC) is featured with the biological properties of strong aggressive behaviors, rapid disease progression, high risk of recurrence and metastasis, and low disease free survival. Patients with this tumor are insensitive to the endocrine therapy and target treatment for HER-2; therefore, chemotherapy is often used as routine treatment in clinical. Because of the fact that a considerable number of patients seek for Chinese herbal medicine (CHM) treatment after operation and chemotherapy and (or) radiotherapy, it is thus need to evaluate the correlation between Chinese herbal medicine treatment and prognosis. This is a multicenter, prospective cohort study started in March 2016 in Beijing. A simple of 220 participants diagnosed with TNBC were recruited from nine hospitals and are followed up every 3 to 6 months till March 2020. Detailed information of participants includes personal information, history of cancer, quality of life, symptoms of traditional Chinese medicine and fatigue status is taken face-to-face at baseline. The study has received ethical approval from the Research Ethical Committee of Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University (No.2016BL-014-01). Articles summarizing the primary results and ancillary analyses will be published in peer-reviewed journals. Chinese Clinical Trial Registry: ChiCTR-OOC-16008246.

  15. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer.

    PubMed

    Brasó-Maristany, Fara; Filosto, Simone; Catchpole, Steven; Marlow, Rebecca; Quist, Jelmar; Francesch-Domenech, Erika; Plumb, Darren A; Zakka, Leila; Gazinska, Patrycja; Liccardi, Gianmaria; Meier, Pascal; Gris-Oliver, Albert; Cheang, Maggie Chon U; Perdrix-Rosell, Anna; Shafat, Manar; Noël, Elodie; Patel, Nirmesh; McEachern, Kristen; Scaltriti, Maurizio; Castel, Pau; Noor, Farzana; Buus, Richard; Mathew, Sumi; Watkins, Johnathan; Serra, Violeta; Marra, Pierfrancesco; Grigoriadis, Anita; Tutt, Andrew N

    2016-11-01

    Triple-negative breast cancers (TNBCs) have poor prognosis and lack targeted therapies. Here we identified increased copy number and expression of the PIM1 proto-oncogene in genomic data sets of patients with TNBC. TNBC cells, but not nonmalignant mammary epithelial cells, were dependent on PIM1 for proliferation and protection from apoptosis. PIM1 knockdown reduced expression of the anti-apoptotic factor BCL2, and dynamic BH3 profiling of apoptotic priming revealed that PIM1 prevents mitochondrial-mediated apoptosis in TNBC cell lines. In TNBC tumors and their cellular models, PIM1 expression was associated with several transcriptional signatures involving the transcription factor MYC, and PIM1 depletion in TNBC cell lines decreased, in a MYC-dependent manner, cell population growth and expression of the MYC target gene MCL1. Treatment with the pan-PIM kinase inhibitor AZD1208 impaired the growth of both cell line and patient-derived xenografts and sensitized them to standard-of-care chemotherapy. This work identifies PIM1 as a malignant-cell-selective target in TNBC and the potential use of PIM1 inhibitors for sensitizing TNBC to chemotherapy-induced apoptotic cell death.

  16. (-)-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer.

    PubMed

    Crous-Masó, Joan; Palomeras, Sònia; Relat, Joana; Camó, Cristina; Martínez-Garza, Úrsula; Planas, Marta; Feliu, Lidia; Puig, Teresa

    2018-05-11

    (-)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.

  17. Age/race differences in HER2 testing and in incidence rates for breast cancer triple subtypes: a population-based study and first report.

    PubMed

    Lund, Mary Jo; Butler, Ebonee N; Hair, Brionna Y; Ward, Kevin C; Andrews, Judy H; Oprea-Ilies, Gabriella; Bayakly, A Rana; O'Regan, Ruth M; Vertino, Paula M; Eley, J William

    2010-06-01

    Although US year 2000 guidelines recommended characterizing breast cancers by human epidermal growth factor receptor 2 (HER2), national cancer registries do not collect HER2, rendering a population-based understanding of HER2 and clinical "triple subtypes" (estrogen receptor [ER] / progesterone receptor [PR] / HER2) largely unknown. We document the population-based prevalence of HER2 testing / status, triple subtypes and present the first report of subtype incidence rates. Medical records were searched for HER2 on 1842 metropolitan Atlanta females diagnosed with breast cancer during 2003-2004. HER2 testing/status and triple subtypes were analyzed by age, race/ethnicity, tumor factors, socioeconomic status, and treatment. Age-adjusted incidence rates were calculated. Over 90% of cases received HER2 testing: 12.6% were positive, 71.7% negative, and 15.7% unknown. HER2 testing compliance was significantly better for women who were younger, of Caucasian or African-American descent, or diagnosed with early stage disease. Incidence rates (per 100,000) were 21.1 for HER2+ tumors and 27.8 for triple-negative tumors, the latter differing by race (36.3 and 19.4 for black and white women, respectively). HER2 recommendations are not uniformly adhered to. Incidence rates for breast cancer triple subtypes differ by age/race. As biologic knowledge is translated into the clinical setting eg, HER2 as a biomarker, it will be incumbent upon national cancer registries to report this information. Incidence rates cautiously extrapolate to an annual burden of 3000 and 17,000 HER2+ tumors for black and white women, respectively, and triple-negative tumors among 5000 and 16,000 respectively. Testing, rate, and burden variations warrant population-based in-depth exploration and clinical translation. (c) 2010 American Cancer Society.

  18. Aldehyde dehydrogenase 1 (ALDH1) expression is an independent prognostic factor in triple negative breast cancer (TNBC).

    PubMed

    Ma, Fei; Li, Huihui; Li, Yiqun; Ding, Xiaoyan; Wang, Haijuan; Fan, Ying; Lin, Chen; Qian, Haili; Xu, Binghe

    2017-04-01

    Triple negative breast cancer (TNBC) is a subset of breast cancer that is highly aggressive and has a poor prognosis. Meanwhile, cancer stem cells (CSCs) are also characterized by a strong tumorigenic potential, which might be partly responsible for the aggressive behavior of TNBC. We previously showed that CSCs are enriched in TNBC cell lines and tissues. Further experiments in animal models revealed higher tumorigenicity of CSCs sorted from TNBC cell lines. In this study, we aimed to determine the clinical relationship between CSCs and TNBC by exploring the expression of aldehyde dehydrogenase 1 (ALDH1), which is a putative marker of breast CSCs, in TNBC tissues.ALDH1 levels in paraffin-embedded tumor tissues from 158 TNBC patients were evaluated by immunohistochemistry staining using an ALDH1A1 primary antibody. Staining evaluation was performed independently by two pathologists, and the expression level of ALDH1 was evaluated in terms of the percentage and intensity of positive cells. The association of immunohistochemistry staining of ALDH1 expression with clinical parameters was also analyzed.ALDH1 expression in tumor cells was observed in 88 out of 158 cases (55.7%). Analysis of clinicopathological parameters showed that the immunohistochemistry staining of ALDH1 was significantly correlated with tumor size (P = 0.02) and stage (P = 0.04). Survival analysis in patients with ALDH1 expression demonstrated shorter relapse-free survival (RFS) and overall survival (OS) times (P = 0.01; P = 0.001). Moreover, Cox multivariate analysis revealed that ALDH1 expression was an independent prognostic indicator of RFS and OS (P = 0.04; P = 0.04).Immunohistochemistry staining of ALDH1 in tumor cells is an independent prognostic indicator of RFS and OS in TNBC patients.

  19. Novel immunohistochemistry-based signatures to predict metastatic site of triple-negative breast cancers.

    PubMed

    Klimov, Sergey; Rida, Padmashree Cg; Aleskandarany, Mohammed A; Green, Andrew R; Ellis, Ian O; Janssen, Emiel Am; Rakha, Emad A; Aneja, Ritu

    2017-09-05

    Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and the most common underlying cause of cancer related deaths, the outcome following the development of DM is related to the site of metastasis. Triple negative BC (TNBC) is an aggressive form of BC characterised by early recurrences and high mortality. Athough multiple variables can be used to predict the risk of metastasis, few markers can predict the specific site of metastasis. This study aimed at identifying a biomarker signature to predict particular sites of DM in TNBC. A clinically annotated series of 322 TNBC were immunohistochemically stained with 133 biomarkers relevant to BC, to develop multibiomarker models for predicting metastasis to the bone, liver, lung and brain. Patients who experienced metastasis to each site were compared with those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Cox univariate analyses. Biomarker combinations were finally ranked based on statistical significance, and evaluated in multivariable analyses. Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 6, 7 and 8 times higher risk of developing metastasis to the bone, liver, lung and brain, respectively, than low-risk subgroups. These models for predicting site-specific metastasis retained significance following adjustment for tumour size, patient age and chemotherapy status. Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumours, enable prediction of specific sites of metastasis, and potentially unravel biomarkers previously unknown in site tropism.

  20. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease.

    PubMed

    Kaur, Punit; Nagaraja, Ganachari M; Zheng, Hongying; Gizachew, Dawit; Galukande, Moses; Krishnan, Sunil; Asea, Alexzander

    2012-03-27

    Triple-negative breast cancer (TNBC) exhibit characteristics quite distinct from other kinds of breast cancer, presenting as an aggressive disease--recurring and metastasizing more often than other kinds of breast cancer, without tumor-specific treatment options and accounts for 15% of all types of breast cancer with higher percentages in premenopausal African-American and Hispanic women. The reason for this aggressive phenotype is currently the focus of intensive research. However, progress is hampered by the lack of suitable TNBC cell model systems. To understand the mechanistic basis for the aggressiveness of TNBC, we produced a stable TNBC cell line by sorting for 4T1 cells that do not express the estrogen receptor (ER), progesterone receptor (PgR) or the gene for human epidermal growth factor receptor 2 (HER2). As a control, we produced a stable triple-positive breast cancer (TPBC) cell line by transfecting 4T1 cells with rat HER2, ER and PgR genes and sorted for cells with high expression of ER and PgR by flow cytometry and high expression of the HER2 gene by Western blot analysis. We isolated tumor-initiating cells (TICs) by sorting for CD24+/CD44high/ALDH1+ cells from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) stable cell lines. Limiting dilution transplantation experiments revealed that CD24+/CD44high/ALDH1+ cells derived from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) were significantly more effective at repopulating the mammary glands of naïve female BALB/c mice than CD24-/CD44-/ALDH1- cells. Implantation of the TNBC-TICs resulted in significantly larger tumors, which metastasized to the lungs to a significantly greater extent than TNBC, TPBC-TICs, TPBC or parental 4T1 cells. We further demonstrated that the increased aggressiveness of TNBC-TICs correlates with the presence of high levels of mouse twenty-five kDa heat shock protein (Hsp25/mouse HspB1) and seventy-two kDa heat shock protein (Hsp72/HspA1A). Taken together, we have developed a TNBC-TICs model system

  1. Tumor infiltrating lymphocytes in triple negative breast cancer receiving neoadjuvant chemotherapy

    PubMed Central

    Castaneda, Carlos A; Mittendorf, Elizabeth; Casavilca, Sandro; Wu, Yun; Castillo, Miluska; Arboleda, Patricia; Nunez, Teresa; Guerra, Henry; Barrionuevo, Carlos; Dolores-Cerna, Ketty; Belmar-Lopez, Carolina; Abugattas, Julio; Calderon, Gabriela; De La Cruz, Miguel; Cotrina, Manuel; Dunstan, Jorge; Gomez, Henry L; Vidaurre, Tatiana

    2016-01-01

    AIM To determine influence of neoadjuvant-chemotherapy (NAC) over tumor-infiltrating-lymphocytes (TIL) in triple-negative-breast-cancer (TNBC). METHODS TILs were evaluated in 98 TNBC cases who came to Instituto Nacional de Enfermedades Neoplasicas from 2005 to 2010. Immunohistochemistry staining for CD3, CD4, CD8 and FOXP3 was performed in tissue microarrays (TMA) sections. Evaluation of H/E in full-face and immunohistochemistry in TMA sections was performed in pre and post-NAC samples. STATA software was used and P value < 0.05 was considered statistically significant. RESULTS Higher TIL evaluated in full-face sections from pre-NAC tumors was associated to pathologic-complete-response (pCR) (P = 0.0251) and outcome (P = 0.0334). TIL evaluated in TMA sections showed low level of agreement with full-face sections (ICC = 0.017-0.20) and was not associated to pCR or outcome. TIL in post-NAC samples were not associated to response or outcome. Post-NAC lesions with pCR had similar TIL levels than those without pCR (P = 0.6331). NAC produced a TIL decrease in full-face sections (P < 0.0001). Percentage of TIL subpopulations was correlated with their absolute counts. Higher counts of CD3, CD4, CD8 and FOXP3 in pre-NAC samples had longer disease-free-survival (DFS). Higher counts of CD3 in pre-NAC samples had longer overall-survival. Higher ratio of CD8/CD4 counts in pre-NAC was associated with pCR. Higher ratio of CD4/FOXP3 counts in pre-NAC was associated with longer DFS. Higher counts of CD4 in post-NAC samples were associated with pCR. CONCLUSION TIL in pre-NAC full-face sections in TNBC are correlated to longer survival. TIL in full-face differ from TMA sections, absolute count and percentage analysis of TIL subpopulation closely related. PMID:27777881

  2. BRCA1-IRIS overexpression promotes and maintains the tumor initiating phenotype: implications for triple negative breast cancer early lesions

    PubMed Central

    Sullivan, Lisa M.; Sims, Hillary; Bastawisy, Ahmed El; Yousef, Hend F.; Zekri, Abdel-Rahman N.; Bahnassy, Abeer A.; ElShamy, Wael M.

    2017-01-01

    Tumor-initiating cells (TICs) are cancer cells endowed with self-renewal, multi-lineage differentiation, increased chemo-resistance, and in breast cancers the CD44+/CD24-/ALDH1+ phenotype. Triple negative breast cancers show lack of BRCA1 expression in addition to enhanced basal, epithelial-to-mesenchymal transition (EMT), and TIC phenotypes. BRCA1-IRIS (hereafter IRIS) is an oncogene produced by the alternative usage of the BRCA1 locus. IRIS is involved in induction of replication, transcription of selected oncogenes, and promoting breast cancer cells aggressiveness. Here, we demonstrate that IRIS overexpression (IRISOE) promotes TNBCs through suppressing BRCA1 expression, enhancing basal-biomarkers, EMT-inducers, and stemness-enforcers expression. IRISOE also activates the TIC phenotype in TNBC cells through elevating CD44 and ALDH1 expression/activity and preventing CD24 surface presentation by activating the internalization pathway EGFR→c-Src→cortactin. We show that the intrinsic sensitivity to an anti-CD24 cross-linking antibody-induced cell death in membranous CD24 expressing/luminal A cells could be acquired in cytoplasmic CD24 expressing IRISOE TNBC/TIC cells through IRIS silencing or inactivation. We show that fewer IRISOE TNBC/TICs cells form large tumors composed of TICs, resembling TNBCs early lesions in patients that contain metastatic precursors capable of disseminating and metastasizing at an early stage of the disease. IRIS-inhibitory peptide killed these IRISOE TNBC/TICs, in vivo and prevented their dissemination and metastasis. We propose IRIS inactivation could be pursued to prevent dissemination and metastasis from early TNBC tumor lesions in patients. PMID:28052035

  3. Reproducibility and predictive value of scoring stromal tumour infiltrating lymphocytes in triple-negative breast cancer: a multi-institutional study.

    PubMed

    O'Loughlin, Mark; Andreu, Xavier; Bianchi, Simonetta; Chemielik, Ewa; Cordoba, Alicia; Cserni, Gábor; Figueiredo, Paulo; Floris, Giuseppe; Foschini, Maria P; Heikkilä, Päivi; Kulka, Janina; Liepniece-Karele, Inta; Regitnig, Peter; Reiner, Angelika; Ryska, Ales; Sapino, Anna; Shalaby, Aliaa; Stovgaard, Elisabeth Specht; Quinn, Cecily; Walsh, Elaine M; Zolota, Vicky; Glynn, Sharon A; Callagy, Grace

    2018-05-17

    Several studies have demonstrated a prognostic role for stromal tumour infiltrating lymphocytes (sTILs) in triple-negative breast cancer (TNBC). The reproducibility of scoring sTILs is variable with potentially excellent concordance being achievable using a software tool. We examined agreement between breast pathologists across Europe scoring sTILs on H&E-stained sections without software, an approach that is easily applied in clinical practice. The association between sTILs and response to anthracycline-taxane NACT was also examined. Pathologists from the European Working Group for Breast Screening Pathology scored sTILs in 84 slides from 75 TNBCs using the immune-oncology biomarker working group guidance in two circulations. There were 16 participants in the first and 19 in the second circulation. Moderate agreement was achieved for absolute sTILs scores (intraclass correlation coefficient (ICC) = 0.683, 95% CI 0.601-0.767, p-value < 0.001). Agreement was less when a 25% threshold was used (ICC 0.509, 95% CI 0.416-0.614, p-value < 0.001) and for lymphocyte predominant breast cancer (LPBC) (ICC 0.504, 95% CI 0.412-0.610, p-value < 0.001). Intra-observer agreement was strong for absolute sTIL values (Spearman ρ = 0.727); fair for sTILs ≥ 25% (κ = 0.53) and for LPBC (κ = 0.49), but poor for sTILs as 10% increments (κ = 0.24). Increasing sTILs was significantly associated with an increased likelihood of a pathological complete response (pCR) on multivariable analysis. Increasing sTILs in TNBCs improves the likelihood of a pCR. However, inter-observer agreement is such that H&E-based assessment is not sufficiently reproducible for clinical application. Other methodologies should be explored, but may be at the cost of ease of application.

  4. Knockdown of CAVEOLIN-1 Sensitizes Human Basal-Like Triple-Negative Breast Cancer Cells to Radiation.

    PubMed

    Zou, Man; Li, Yanhui; Xia, Shu; Chu, Qian; Xiao, Xiaoguang; Qiu, Hong; Chen, Yu; Zheng, Zu'an; Liu, Fei; Zhuang, Liang; Yu, Shiying

    2017-01-01

    Triple-negative breast cancer (TNBC) is a high-risk breast cancer phenotype without specific targeted therapy options and is significantly associated with increased local recurrence in patients treated with radiotherapy. CAVEOLIN-1 (CAV-1)-mediated epidermal growth factor receptor (EGFR) nuclear translocation following irradiation promotes DNA repair and thus induces radiation resistance. In this study, we aimed to determine whether knockdown of CAV-1 enhances the radiosensitivity of basal-like TNBC cell lines and to explore the possible mechanisms. Western blotting was used to compare protein expression in a panel of breast cancer cell lines. Nuclear accumulation of EGFR as well as DNA repair and damage at multiple time points following irradiation with or without CAV-1 siRNA pretreatment were investigated using western blotting and confocal microscopy. The radiosensitizing effect of CAV-1 siRNA was evaluated using a clonogenic assay. Flowcytometry was performed to analyse cell apoptosis and cell cycle alteration. We found that CAV-1 is over-expressed in basal-like TNBC cell lines and barely expressed in HER-2-positive cells; additionally, we observed that HER-2-positive cell lines are more sensitive to irradiation than basal-like TNBC cells. Our findings revealed that radiation-induced EGFR nuclear translocation was impaired by knockdown of CAV-1. In parallel, radiation-induced elevation of DNA repair proteins was also hampered by pretreatment with CAV-1 siRNA before irradiation. Silencing of CAV-1 also promoted DNA damage 24 h after irradiation. Colony formation assays verified that cells could be radiosensitized after knockdown of CAV-1. Furthermore, G2/M cell cycle arrest and apoptosis enhancement may also contribute to the radiosensitizing effect of CAV-1 siRNA. Our results support the hypothesis that CAV-1 knockdown by siRNA causes increased radiosensitivity in basal-like TNBC cells. The mechanisms associated with this effect are reduced DNA repair through

  5. Node-Negative Breast Cancer: Which Patients Should Be Treated?

    PubMed Central

    Schmidt, Marcus

    2008-01-01

    Summary Adjuvant systemic therapy has led to markedly improved outcome in early-stage breast cancer. However, the absolute gains from chemotherapy might be modest in node-negative patients. Adjuvant chemotherapy is the only option for triple-negative breast cancer patients and should be used with trastuzumab in HER2-positive patients. Considering the large group of patients with some degree of endocrine responsiveness, adding chemotherapy according to risk is an option. At present, we guide our therapeutic decisions using clinicopathologic risk classifications like the St. Gallen risk category or Adjuvant! online. A downside of these risk estimations is a low specificity and consequently the risk for overtreatment of a considerable number of patients. To spare patients unnecessary toxicities we need more reliable prognostic factors or tumor markers. From the plethora of tumor markers, only urokinase-type plasminogen activator (uPA)/plasminogen activator inhibitor 1 (PAI-1) and certain multiparameter gene expression assays are recommended by the American Society of Clinical Oncology. These tumor markers are presently investigated in clinical trials in node-negative breast cancer (NNBC-3, MINDACT, TAILORx). These studies will hopefully allow us to quantify the risk of progression in the individual patient and to tailor treatment accordingly. This should lead to a more personalized treatment recommendation. PMID:21076603

  6. Age-Specific Incidence of Breast Cancer Subtypes: Understanding the Black–White Crossover

    PubMed Central

    2012-01-01

    Background Breast cancer incidence is higher among black women than white women before age 40 years, but higher among white women than black women after age 40 years (black–white crossover). We used newly available population-based data to examine whether the age-specific incidences of breast cancer subtypes vary by race and ethnicity. Methods We classified 91908 invasive breast cancers diagnosed in California between January 1, 2006, and December 31, 2009, by subtype based on tumor expression of estrogen receptor (ER) and progesterone receptor (PR)—together referred to as hormone receptor (HR)—and human epidermal growth factor receptor 2 (HER2). Breast cancer subtypes were classified as ER or PR positive and HER2 negative (HR+/HER2−), ER or PR positive and HER2 positive (HR+/HER2+), ER and PR negative and HER2 positive (HR−/HER2+), and ER, PR, and HER2 negative (triple-negative). We calculated and compared age-specific incidence rates, incidence rate ratios, and 95% confidence intervals by subtype and race (black, white, Hispanic, and Asian). All P values are two-sided. Results We did not observe an age-related black–white crossover in incidence for any molecular subtype of breast cancer. Compared with white women, black women had statistically significantly higher rates of triple-negative breast cancer at all ages but statistically significantly lower rates of HR+/HER2− breast cancers after age 35 years (all P < .05). The age-specific incidence of HR+/HER2+ and HR−/HER2+ subtypes did not vary markedly between white and black women. Conclusions The black–white crossover in breast cancer incidence occurs only when all breast cancer subtypes are combined and relates largely to higher rates of triple-negative breast cancers and lower rates of HR+/HER2− breast cancers in black vs white women. PMID:22773826

  7. The Critical, Clinical Role of Interferon-Beta in Regulating Cancer Stem Cell Properties in Triple-Negative Breast Cancer.

    PubMed

    Doherty, Mary R; Jackson, Mark W

    2018-05-11

    Triple-negative breast cancer (TNBC) the deadliest form of this disease currently lacks a targeted therapy and is characterized by increased risk of metastasis and presence of therapeutically resistant cancer stem cells (CSC). Recent evidence has demonstrated that the presence of an interferon (IFN)/signal transducer of activated transcription 1 (STAT1) gene signature correlates with improved therapeutic response and overall survival in TNBC patients. In agreement with these clinical observations, our recent work has demonstrated, in a cell model of TNBC that CSC have intrinsically repressed IFN signaling. Administration of IFN-β represses CSC properties, inducing a less aggressive non-CSC state. Moreover, an elevated IFN-β gene signature correlated with repressed CSC-related genes and an increased presence of tumor-infiltrating lymphocytes in TNBC specimens. We therefore propose that IFN-β be considered as a potential therapeutic option in the treatment of TNBC, to repress the CSC properties responsible for therapy failure. Future studies aim to improve methods to target delivery of IFN-β to tumors, to maximize therapeutic efficacy while minimizing systemic side effects.

  8. Panobinostat suppresses the mesenchymal phenotype in a novel claudin-low triple negative patient-derived breast cancer model.

    PubMed

    Matossian, Margarite D; Burks, Hope E; Elliott, Steven; Hoang, Van T; Bowles, Annie C; Sabol, Rachel A; Bunnell, Bruce A; Martin, Elizabeth C; Burow, Matthew E; Collins-Burow, Bridgette M

    2018-03-01

    Claudin-low triple negative breast cancer (CL-TNBC) is a clinically aggressive molecular TNBC subtype characterized by a propensity to metastasize, recur and acquire chemoresistance. CL-TNBC has a diverse intra- and extracellular composition and microenvironment, and currently there are no clinically approved targeted therapies. Histone deacetylase inhibitors (HDACi) have been investigated as therapeutic agents targeting invasive TNBC phenotypes. However, further studies are required to evaluate HDAC inhibition in CL-TNBC. Here, we utilize a novel CL- TNBC patient-derived xenograft model to study the various and diverse therapeutic potential targets within CL-TNBC tumors. To evaluate effects of the pan-HDACi panobinostat on metastasis and the mesenchymal phenotype of CL-TNBC, we utilize immunohistochemistry staining and qRT-PCR in in vitro , ex vivo and in vivo studies. Further, we evaluate pan-HDAC inhibition on stem-like subpopulations using 3D mammosphere culture techniques and quantification. Finally, we show that pan- HDACi suppresses collagen expression in CL-TNBC. In this study, we provide evidence that pan-HDAC inhibition has effects on various components of the CL-TNBC subtype, and we demonstrate the potential of our novel CL-TNBC PDX model in therapeutic discovery research.

  9. Prognostic Subcellular Notch2, Notch3 and Jagged1 Localization Patterns in Early Triple-negative Breast Cancer.

    PubMed

    Strati, Titika-Marina; Kotoula, Vassiliki; Kostopoulos, Ioannis; Manousou, Kyriaki; Papadimitriou, Christos; Lazaridis, Georgios; Lakis, Sotiris; Pentheroudakis, George; Pectasides, Dimitrios; Pazarli, Elissavet; Christodoulou, Christos; Razis, Evangelia; Pavlakis, Kitty; Magkou, Christina; Chrisafi, Sofia; Aravantinos, Gerasimos; Bafaloukos, Dimitrios; Papakostas, Pavlos; Gogas, Helen; Kalogeras, Konstantine T; Fountzilas, George

    2017-05-01

    The Notch pathway has been implicated in triple-negative breast cancer (TNBC). Herein, we studied the subcellular localization of the less investigated Notch2 and Notch3 and that of the Jagged1 (Jag1) ligand in patients with operable TNBC. We applied immunohistochemistry for Notch2, Notch3 and Jag1 in 333 tumors from TNBC patients treated with adjuvant anthracycline-based chemotherapy. We evaluated cytoplasmic (c), membranous (m) and nuclear (n) protein localization. c-Notch2 (35% positive tumors), c-Notch3 (63%), c-Jag1 (43%), m-Notch3 (23%) and n-Jag1 (17%) were analyzed individually and by using hierarchical clustering for prognostic evaluation. Upon multivariate analysis, compared to high m-Notch3 in the absence of n-Jag1 (cluster 4), all other marker combinations (clusters 1, 2, 3) conferred significantly higher risk for relapse (p<0.05). Specific Notch3 and Jag1 subcellular localization patterns may provide clues for the behavior of the tumors and potentially for Jag1 targeting in TNBC patients. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Guide to Understanding Triple-Negative Breast Cancer

    MedlinePlus

    ... Therapy Expressive Writing Guided Imagery Hypnosis Massage Therapy Medical Marijuana Mindfulness-Based Stress Reduction Yoga and Breast Cancer Getting Started With Yoga Popular Yoga Styles Common ...

  11. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer

    PubMed Central

    Bhardwaj, Anjana; Singh, Harpreet; Rajapakshe, Kimal; Tachibana, Kazunoshin; Ganesan, Nivetha; Pan, Yinghong; Gunaratne, Preethi H.; Coarfa, Cristian; Bedrosian, Isabelle

    2017-01-01

    Little is understood about the early molecular drivers of triple-negative breast cancer (TNBC), making the identification of women at risk and development of targeted therapy for prevention significant challenges. By sequencing a TNBC cell line-based breast cancer progression model we have found that miRNA-29c is progressively lost during TNBC tumorigenesis. In support of the tumor suppressive role of miRNA 29c, we found that low levels predict poor overall patient survival and, conversely, that ectopic expression of miRNA-29c in preneoplastic cell models inhibits growth. miRNA-29c exerts its growth inhibitory effects through direct binding and regulation of TGFB-induced factor homeobox 2 (TGIF2), CAMP-responsive element binding protein 5 (CREB5), and V-Akt murine thymoma viral oncogene homolog 3 (AKT3). miRNA-29c regulation of these gene targets seems to be functionally relevant, as TGIF2, CREB5, and AKT3 were able to rescue the inhibition of cell proliferation and colony formation caused by ectopic expression of miRNA-29c in preneoplastic cells. AKT3 is an oncogene of known relevance in breast cancer, and as a proof of principle we show that inhibition of phosphoinositide 3-kinase (PI3K) activity, a protein upstream of AKT3, suppressed proliferation in TNBC preneoplastic cells. We explored additional opportunities for prevention of TNBC by studying the regulation of miRNA-29c and identified DNA methylation to have a role in the inhibition of miRNA-29c during TNBC tumorigenesis. Consistent with these observations, we found 5 aza-cytadine to relieve the suppression of miRNA-29c. Together, these results demonstrate that miRNA-29c loss plays a key role in the early development of TNBC. PMID:28160548

  12. Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells

    PubMed Central

    Tarasewicz, Elizabeth; Rivas, Lisbi; Hamdan, Randala; Dokic, Danijela; Parimi, Vamsi; Bernabe, Beatriz Penalver; Thomas, Alexandra; Shea, Lonnie D; Jeruss, Jacqueline S

    2014-01-01

    Breast cancer onset and disease progression have been linked to members of the TGFβ superfamily and their downstream signaling components, the Smads. Alterations in Smad3 signaling are associated with the dichotomous role of TGFβ in malignancy, mediating both tumor suppressant and pro-metastatic behaviors. Overexpression of cell cycle regulators, cyclins D and E, renders cyclin-dependent kinases (CDKs) 4/2 hyperactive. Noncanonical phosphorylation of Smad3 by CDK4/2 inhibits tumor suppressant actions of Smad3. We hypothesized that CDK inhibition (CDKi) would restore Smad3 action and help promote cancer cell regression. Treatment of triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-436, Hs578T) with CDK2i or CDK4i resulted in increased Smad3 activity and decreased cell migration. Transfection with a 5M Smad3 construct containing inhibitory mutations in 5 CDK phosphorylation sites also resulted in decreased TNBC cell migration and invasion. MDA-MB-231 cells treated with CDK2i or CDK4i resulted in decreased Smad3 protein phosphorylation at the CDK phosphorylation T179 site, decreased MMP2 and c-myc expression, and increased p15 and p21 expression. Using a novel transfected cell array, we found that CDK2i treatment decreased activity of the epithelial-to-mesenchymal transition related transcription factors Snail and Twist. In vivo studies in an MDA-MB-231 tumor model showed that individual and combination treatment with paclitaxel and CDK2i resulted in decreased tumor volume and Ki67 staining. Collectively, these data support further investigation of targeted CDK inhibitors as a promising therapeutic strategy for TNBC, a breast cancer subtype with limited treatment options. PMID:25485498

  13. A Phase 1 trial of the PARP inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer

    PubMed Central

    Liu, Joyce F.; Tolaney, Sara M.; Birrer, Michael; Fleming, Gini F.; Buss, Mary K.; Dahlberg, Suzanne E.; Lee, Hang; Whalen, Christin; Tyburski, Karin; Winer, Eric; Ivy, Percy; Matulonis, Ursula A.

    2014-01-01

    Background PARP-inhibitors and anti-angiogenics have activity in recurrent ovarian and breast cancer; however, the effect of combined therapy against PARP and angiogenesis in this population has not been reported. We investigated the toxicities and recommended phase 2 dosing (RP2D) of the combination of cediranib, a multitargeted inhibitor of VEGFR-1/2/3, and olaparib, a PARP-inhibitor (NCT01116648). Methods Cediranib tablets once daily and olaparib capsules twice daily were administered orally in a standard 3+3 dose escalation design. Patients with recurrent ovarian or metastatic triple-negative breast cancer were eligible. Patients had measurable disease by RECIST 1.1 or met GCIG CA125 criteria. No prior PARP-inhibitors or anti-angiogenics in the recurrent setting were allowed. Results 28 patients (20 ovarian, 8 breast) enrolled to 4 dose levels. 2 DLTs (1 grade 4 neutropenia ≥4 days; 1 grade 4 thrombocytopenia) occurred at the highest dose level (cediranib 30mg daily; olaparib 400mg BID). The RP2D was cediranib 30mg daily and olaparib 200mg BID. Grade 3 or higher toxicities occurred in 75% of patients, and included grade 3 hypertension (25%) and grade 3 fatigue (18%). One grade 3 bowel obstruction occurred. The overall response rate (ORR) in the 18 RECIST-evaluable ovarian cancer patients was 44%, with a clinical benefit rate (ORR plus SD >24 weeks) of 61%. None of the 7 evaluable breast cancer patients achieved clinical response; 2 patients had stable disease for >24 weeks. Interpretation The combination of cediranib and olaparib has hematologic DLTs and anticipated class toxicities, with promising evidence of activity in ovarian cancer patients. PMID:23810467

  14. Comparative Analysis of Breast Cancer Phenotypes in African American, White American, and West Versus East African patients: Correlation Between African Ancestry and Triple-Negative Breast Cancer.

    PubMed

    Jiagge, Evelyn; Jibril, Aisha Souleiman; Chitale, Dhananjay; Bensenhaver, Jessica M; Awuah, Baffour; Hoenerhoff, Mark; Adjei, Ernest; Bekele, Mahteme; Abebe, Engida; Nathanson, S David; Gyan, Kofi; Salem, Barbara; Oppong, Joseph; Aitpillah, Francis; Kyei, Ishmael; Bonsu, Ernest Osei; Proctor, Erica; Merajver, Sofia D; Wicha, Max; Stark, Azadeh; Newman, Lisa A

    2016-11-01

    Triple-negative breast cancer (TNBC) is more common among African American (AA) and western sub-Saharan African breast cancer (BC) patients compared with White/Caucasian Americans (WA) and Europeans. Little is known about TNBC in east Africa. Invasive BC diagnosed 1998-2014 were evaluated: WA and AA patients from the Henry Ford Health System in Detroit, Michigan; Ghanaian/west Africans from the Komfo Anokye Teaching Hospital in Kumasi, Ghana; and Ethiopian/east Africans from the St. Paul's Hospital Millennium Medical College in Addis Ababa, Ethiopia. Histopathology and immunohistochemistry for estrogen receptor (ER), progesterone receptor (PR), and HER2/neu expression was performed in Michigan on formalin-fixed, paraffin-embedded samples from all cases. A total of 234 Ghanaian (mean age 49 years), 94 Ethiopian (mean age 43 years), 272 AA (mean age 60 years), and 321 WA (mean age 62 years; p = 0.001) patients were compared. ER-negative and TNBC were more common among Ghanaian and AA compared with WA and Ethiopian cases (frequency ER-negativity 71.1 and 37.1 % vs. 19.8 and 28.6 % respectively, p < 0.0001; frequency TNBC 53.2 and 29.8 % vs. 15.5 and 15.0 %, respectively, p < 0.0001). Among patients younger than 50 years, prevalence of TNBC remained highest among Ghanaians (50.8 %) and AA (34.3 %) compared with WA and Ethiopians (approximately 16 % in each; p = 0.0002). This study confirms an association between TNBC and West African ancestry; TNBC frequency among AA patients is intermediate between WA and Ghanaian/West Africans consistent with genetic admixture following the west Africa-based trans-Atlantic slave trade. TNBC frequency was low among Ethiopians/East Africans; this may reflect less shared ancestry between AA and Ethiopians.

  15. Targeted Cancer Therapy: Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity (Adv. Healthcare Mater. 11/2016).

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    On page 1310 J. S. Merzaban, A. E. Porter, and co-workers present fluorescently labeled RGD-targeted ZnO nanoparticles (NPs; green) for the targeted delivery of cytotoxic ZnO to integrin αvβ3 receptors expressed on triple negative breast cancer cells. Correlative light-electron microscopy shows that NPs dissolve into ionic Zn(2+) (blue) upon uptake and cause apoptosis (red) with intra-tumor heterogeneity, thereby providing a possible strategy for targeted breast cancer therapy. Cover design by Ivan Gromicho. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer.

    PubMed

    Haiman, Christopher A; Chen, Gary K; Vachon, Celine M; Canzian, Federico; Dunning, Alison; Millikan, Robert C; Wang, Xianshu; Ademuyiwa, Foluso; Ahmed, Shahana; Ambrosone, Christine B; Baglietto, Laura; Balleine, Rosemary; Bandera, Elisa V; Beckmann, Matthias W; Berg, Christine D; Bernstein, Leslie; Blomqvist, Carl; Blot, William J; Brauch, Hiltrud; Buring, Julie E; Carey, Lisa A; Carpenter, Jane E; Chang-Claude, Jenny; Chanock, Stephen J; Chasman, Daniel I; Clarke, Christine L; Cox, Angela; Cross, Simon S; Deming, Sandra L; Diasio, Robert B; Dimopoulos, Athanasios M; Driver, W Ryan; Dünnebier, Thomas; Durcan, Lorraine; Eccles, Diana; Edlund, Christopher K; Ekici, Arif B; Fasching, Peter A; Feigelson, Heather S; Flesch-Janys, Dieter; Fostira, Florentia; Försti, Asta; Fountzilas, George; Gerty, Susan M; Giles, Graham G; Godwin, Andrew K; Goodfellow, Paul; Graham, Nikki; Greco, Dario; Hamann, Ute; Hankinson, Susan E; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Holbrook, Andrea; Hoover, Robert N; Hu, Jennifer J; Hunter, David J; Ingles, Sue A; Irwanto, Astrid; Ivanovich, Jennifer; John, Esther M; Johnson, Nicola; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Ko, Yon-Dschun; Kolonel, Laurence N; Konstantopoulou, Irene; Kosma, Veli-Matti; Kulkarni, Swati; Lambrechts, Diether; Lee, Adam M; Marchand, Loïc Le; Lesnick, Timothy; Liu, Jianjun; Lindstrom, Sara; Mannermaa, Arto; Margolin, Sara; Martin, Nicholas G; Miron, Penelope; Montgomery, Grant W; Nevanlinna, Heli; Nickels, Stephan; Nyante, Sarah; Olswold, Curtis; Palmer, Julie; Pathak, Harsh; Pectasides, Dimitrios; Perou, Charles M; Peto, Julian; Pharoah, Paul D P; Pooler, Loreall C; Press, Michael F; Pylkäs, Katri; Rebbeck, Timothy R; Rodriguez-Gil, Jorge L; Rosenberg, Lynn; Ross, Eric; Rüdiger, Thomas; Silva, Isabel dos Santos; Sawyer, Elinor; Schmidt, Marjanka K; Schulz-Wendtland, Rüdiger; Schumacher, Fredrick; Severi, Gianluca; Sheng, Xin; Signorello, Lisa B; Sinn, Hans-Peter; Stevens, Kristen N; Southey, Melissa C; Tapper, William J; Tomlinson, Ian; Hogervorst, Frans B L; Wauters, Els; Weaver, JoEllen; Wildiers, Hans; Winqvist, Robert; Van Den Berg, David; Wan, Peggy; Xia, Lucy Y; Yannoukakos, Drakoulis; Zheng, Wei; Ziegler, Regina G; Siddiq, Afshan; Slager, Susan L; Stram, Daniel O; Easton, Douglas; Kraft, Peter; Henderson, Brian E; Couch, Fergus J

    2011-10-30

    Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.

  17. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer

    PubMed Central

    Haiman, Christopher A; Chen, Gary K; Vachon, Celine M; Canzian, Federico; Dunning, Alison; Millikan, Robert C; Wang, Xianshu; Ademuyiwa, Foluso; Ahmed, Shahana; Ambrosone, Christine B; Baglietto, Laura; Balleine, Rosemary; Bandera, Elisa V; Beckmann, Matthias W; Berg, Christine D; Bernstein, Leslie; Blomqvist, Carl; Blot, William J; Brauch, Hiltrud; Buring, Julie E; Carey, Lisa A; Carpenter, Jane E; Chang-Claude, Jenny; Chanock, Stephen J; Chasman, Daniel I; Clarke, Christine L; Cox, Angela; Cross, Simon S; Deming, Sandra L; Diasio, Robert B; Dimopoulos, Athanasios M; Driver, W Ryan; Dünnebier, Thomas; Durcan, Lorraine; Eccles, Diana; Edlund, Christopher K; Ekici, Arif B; Fasching, Peter A; Feigelson, Heather S; Flesch-Janys, Dieter; Fostira, Florentia; Försti, Asta; Fountzilas, George; Gerty, Susan M; Giles, Graham G; Godwin, Andrew K; Goodfellow, Paul; Graham, Nikki; Greco, Dario; Hamann, Ute; Hankinson, Susan E; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Holbrook, Andrea; Hoover, Robert N; Hu, Jennifer J; Hunter, David J; Ingles, Sue A; Irwanto, Astrid; Ivanovich, Jennifer; John, Esther M; Johnson, Nicola; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Ko, Yon-Dschun; Kolonel, Laurence N; Konstantopoulou, Irene; Kosma, Veli-Matti; Kulkarni, Swati; Lambrechts, Diether; Lee, Adam M; Le Marchand, Loïc; Lesnick, Timothy; Liu, Jianjun; Lindstrom, Sara; Mannermaa, Arto; Margolin, Sara; Martin, Nicholas G; Miron, Penelope; Montgomery, Grant W; Nevanlinna, Heli; Nickels, Stephan; Nyante, Sarah; Olswold, Curtis; Palmer, Julie; Pathak, Harsh; Pectasides, Dimitrios; Perou, Charles M; Peto, Julian; Pharoah, Paul D P; Pooler, Loreall C; Press, Michael F; Pylkäs, Katri; Rebbeck, Timothy R; Rodriguez-Gil, Jorge L; Rosenberg, Lynn; Ross, Eric; Rüdiger, Thomas; Silva, Isabel dos Santos; Sawyer, Elinor; Schmidt, Marjanka K; Schulz-Wendtland, Rüdiger; Schumacher, Fredrick; Severi, Gianluca; Sheng, Xin; Signorello, Lisa B; Sinn, Hans-Peter; Stevens, Kristen N; Southey, Melissa C; Tapper, William J; Tomlinson, Ian; Hogervorst, Frans B L; Wauters, Els; Weaver, JoEllen; Wildiers, Hans; Winqvist, Robert; Van Den Berg, David; Wan, Peggy; Xia, Lucy Y; Yannoukakos, Drakoulis; Zheng, Wei; Ziegler, Regina G; Siddiq, Afshan; Slager, Susan L; Stram, Daniel O; Easton, Douglas; Kraft, Peter; Henderson, Brian E; Couch, Fergus J

    2012-01-01

    Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10−10). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10−9), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10−9). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations. PMID:22037553

  18. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer

    PubMed Central

    Remenyi, Judit; Banerji, Christopher R.S.; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R.; Purdie, Colin A.; Jordan, Lee B.; Thompson, Alastair M.; Finn, Richard S.; Rueda, Oscar M.; Caldas, Carlos; Gil, Jesus; Coombes, R. Charles; Fuller-Pace, Frances V.; Teschendorff, Andrew E.; Buluwela, Laki; Ali, Simak

    2015-01-01

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells. PMID:26280373

  19. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer.

    PubMed

    Lin, Meng-Lay; Patel, Hetal; Remenyi, Judit; Banerji, Christopher R S; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Thompson, Alastair M; Finn, Richard S; Rueda, Oscar M; Caldas, Carlos; Gil, Jesus; Coombes, R Charles; Fuller-Pace, Frances V; Teschendorff, Andrew E; Buluwela, Laki; Ali, Simak

    2015-08-28

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.

  20. Evaluation with 3.0-T MR imaging: predicting the pathological response of triple-negative breast cancer treated with anthracycline and taxane neoadjuvant chemotherapy.

    PubMed

    Kim, Min Jung; Kim, Eun-Kyung; Park, Seho; Moon, Hee Jung; Kim, Seung Il; Park, Byeong-Woo

    2015-09-01

    Triple-negative breast cancer (TNBC) which expresses neither hormonal receptors nor HER-2 is associated with poor prognosis and shorter survival. Several studies have suggested that TNBC patients attaining pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) show a longer survival than those without pCR. To assess the accuracy of 3.0-T breast magnetic resonance imaging (MRI) in predicting pCR and to evaluate the clinicoradiologic factors affecting the diagnostic accuracy of 3.0-T breast MRI in TNBC patients treated with anthracycline and taxane (ACD). This retrospective study was approved by the institutional review board; patient consent was not required. Between 2009 and 2012, 35 TNBC patients with 3.0-T breast MRI prior to (n = 26) or after (n = 35) NAC were included. MRI findings were reviewed according to pCR to chemotherapy. The diagnostic accuracy of 3.0-T breast MRI for predicting pCR and the clinicoradiological factors affecting MRI accuracy and response to NAC were analyzed. 3.0-T MRI following NAC with ACD accurately predicted pCR in 91.4% of TNBC patients. The residual tumor size between pathology and 3.0-T MRI in non-pCR cases showed a higher correlation in the Ki-67-positive TNBC group (r = 0.947) than in the Ki-67 negative group (r = 0.375) with statistical trends (P = 0.069). Pre-treatment MRI in the non-pCR group compared to the pCR group showed a larger tumor size (P = 0.030) and non-mass presentation (P = 0.015). 3.0-T MRI in TNBC patients following NAC with ACD showed a high accuracy for predicting pCR to NAC. Ki-67 can affect the diagnostic accuracy of 3.0-T MRI for pCR to NAC with ACD in TNBC patients. © The Foundation Acta Radiologica 2014.

  1. RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs.

    PubMed

    Robinson, Tyler J W; Liu, Jeff C; Vizeacoumar, Frederick; Sun, Thomas; Maclean, Neil; Egan, Sean E; Schimmer, Aaron D; Datti, Alessandro; Zacksenhaus, Eldad

    2013-01-01

    Triple negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which only chemotherapy and radiation therapy are currently available. The retinoblastoma (RB1) tumor suppressor is frequently lost in human TNBC. Knockdown of RB1 in luminal BC cells was shown to affect response to endocrine, radiation and several antineoplastic drugs. However, the effect of RB1 status on radiation and chemo-sensitivity in TNBC cells and whether RB1 status affects response to divergent or specific treatment are unknown. Using multiple basal-like and claudin-low cell lines, we hereby demonstrate that RB-negative TNBC cell lines are highly sensitive to gamma-irradiation, and moderately more sensitive to doxorubicin and methotrexate compared to RB-positive TNBC cell lines. In contrast, RB1 status did not affect sensitivity of TNBC cells to multiple other drugs including cisplatin (CDDP), 5-fluorouracil, idarubicin, epirubicin, PRIMA-1(met), fludarabine and PD-0332991, some of which are used to treat TNBC patients. Moreover, a non-biased screen of ∼3400 compounds, including FDA-approved drugs, revealed similar sensitivity of RB-proficient and -deficient TNBC cells. Finally, ESA(+)/CD24(-/low)/CD44(+) cancer stem cells from RB-negative TNBC lines were consistently more sensitive to gamma-irradiation than RB-positive lines, whereas the effect of chemotherapy on the cancer stem cell fraction varied irrespective of RB1 expression. Our results suggest that patients carrying RB-deficient TNBCs would benefit from gamma-irradiation as well as doxorubicin and methotrexate therapy, but not necessarily from many other anti-neoplastic drugs.

  2. Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers

    PubMed Central

    Yao, Song; McCann, Susan E.; Dolnick, Ree Y.; Wallace, Paul K.; Gong, Zhihong; Quan, Lei; Lee, Kelvin P.; Evans, Sharon S.; Repasky, Elizabeth A.; Edge, Stephen B.; Ambrosone, Christine B.

    2014-01-01

    Immune signatures in breast tumors differ by estrogen receptor (ER) status. The purpose of this study was to assess associations between ER phenotypes and circulating levels of cytokines that co-ordinate cell-mediated [T-helper type 1 (Th1)] and humoral [T-helper type 2 (Th2)] immunity. We conducted a case–case comparison of 523 women with newly diagnosed breast cancer to evaluate associations between 27 circulating cytokines, measured using Luminex XMap technology, and breast cancer phenotypes [ER− vs. ER+; triple negative breast cancer (TNBC) vs. luminal A (LumA)]. Ratios of Th1 to Th2 cytokines were also evaluated. Levels of interleukin (IL)-5, a Th-2 cytokine, were higher in ER− than in ER+ tumors. The highest tertile of IL-5 was more strongly associated with ER− (OR = 2.33, 95 % CI 1.40–3.90) and TNBCs (OR = 2.78, 95 % CI 1.53–5.06) compared to ER+ and LumA cancers, respectively, particularly among premenopausal women (OR = 4.17, 95 % CI 1.86–9.34, ER− vs. ER+; OR = 5.60, 95 % CI 2.09–15.01, TNBC vs. LumA). Elevated Th1 cytokines were also detected in women with ER− and TNBCs, with women in the highest tertile of interferon α2 (OR = 2.39, 95 % CI 1.31–4.35) or tumor necrosis factor-α (OR = 2.27, 95 % CI 1.21–4.26) being twice as likely to have TNBC versus LumA cancer. When cytokine ratios were examined, women with the highest ratios of Th1 cytokines to IL-5 levels were least likely to have ER− or TNBCs compared to ER+ or LumA cancers, respectively. The strongest associations were in premenopausal women, who were up to 80 % less likely to have TNBC than LumA cancers (IL-12p40/IL-5, OR = 0.19, 95 % CI 0.07–0.56). These findings indicate that immune function is associated with ER− and TNBC and may be most relevant among younger women, who are likely to be diagnosed with these aggressive phenotypes. PMID:23624818

  3. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women

    PubMed Central

    Sugita, Bruna; Gill, Mandeep; Mahajan, Akanskha; Duttargi, Anju; Kirolikar, Saurabh; Almeida, Rodrigo; Regis, Kenny; Oluwasanmi, Olusayo L.; Marchi, Fabio; Marian, Catalin; Makambi, Kepher; Kallakury, Bhaskar; Sheahan, Laura; Cavalli, Iglenir J.; Ribeiro, Enilze M.; Madhavan, Subha; Boca, Simina; Gusev, Yuriy; Cavalli, Luciane R.

    2016-01-01

    Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78−0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature. PMID:27813494

  4. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women.

    PubMed

    Sugita, Bruna; Gill, Mandeep; Mahajan, Akanskha; Duttargi, Anju; Kirolikar, Saurabh; Almeida, Rodrigo; Regis, Kenny; Oluwasanmi, Olusayo L; Marchi, Fabio; Marian, Catalin; Makambi, Kepher; Kallakury, Bhaskar; Sheahan, Laura; Cavalli, Iglenir J; Ribeiro, Enilze M; Madhavan, Subha; Boca, Simina; Gusev, Yuriy; Cavalli, Luciane R

    2016-11-29

    Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78-0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature.

  5. Taraxacum mongolicum extract induced endoplasmic reticulum stress associated-apoptosis in triple-negative breast cancer cells.

    PubMed

    Li, Xiao-Hong; He, Xi-Ran; Zhou, Yan-Yan; Zhao, Hai-Yu; Zheng, Wen-Xian; Jiang, Shan-Tong; Zhou, Qun; Li, Ping-Ping; Han, Shu-Yan

    2017-07-12

    Triple-negative breast cancer (TNBC) is an aggressive and deadly breast cancer subtype with limited treatment options. It is necessary to seek complementary strategies for TNBC management. Taraxacum mongolicum, commonly named as dandelion, is a herb medicine with anti-cancer activity and has been utilized to treat mammary abscess, hyperplasia of mammary glands from ancient time in China, but the scientific evidence and action mechanisms still need to be studied. This study was intended to investigate the therapeutic effect and molecular mechanisms of dandelion extract in TNBC cell line. Dandelion extract was prepared and purified, and then its chemical composition was determined. Cell viability was evaluated by MTT assay. Analysis of cell apoptosis and cell cycle was assessed by flow cytometry. The expression levels of mRNA and proteins were determined by real-time PCR and Western blotting, respectively. Caspase inhibitor Z-VAD-FMK and CHOP siRNA were used to confirm the cell apoptosis induced by dandelion extract. Dandelion extract significantly decreased MDA-MB-231cell viability, triggered G2/M phase arrest and cell apoptosis. Concurrently, it caused a markedly increase of cleaved caspase-3 and PARP proteins. Caspase inhibitor Z-VAD-FMK abolished the apoptosis triggered by dandelion extract. The three ER stress-related signals were strongly induced after dandelion treatment, including increased mRNA expressions of ATF4, ATF6, XBP1s, GRP78 and CHOP genes, elevated protein levels of phosphorylated PERK, eIF-2α, IRE1, as well as the downstream molecules of CHOP and GRP78. MDA-MB-231 cells transfected with CHOP siRNA significantly reduced apoptosis induced by dandelion extract. The underlying mechanisms at least partially ascribe to the strong activation of PERK/p-eIF2α/ATF4/CHOP axis. ER stress related cell apoptosis accounted for the anti-cancer effect of dandelion extract, and these findings support dandelion extract might be a potential therapeutic approach to

  6. Dermatomyositis with anti-TIF-1γ antibodies as a presenting symptom of underlying triple-negative breast cancer: a case report.

    PubMed

    Kubeček, Ondřej; Soukup, Tomáš; Paulík, Adam; Kopecký, Jindřich

    2016-08-25

    Dermatomyositis is an autoimmune myopathy characterized by proximal muscle weakness, muscle inflammation, and typical skin findings. It is a rare disease with an incidence of ~1/100 000. About 15-30 % of adult-onset cases are caused by underlying malignancy and dermatomyositis can be the first symptom of undiagnosed cancer, mainly in the case of anti-transcription intermediary factor 1γ (anti-TIF-1γ) antibodies presence. TIF-1γ is a transcriptional cofactor which is implicated in TGFβ signaling pathway that controls cell proliferation, differentiation, apoptosis, and tumorigenesis. Its expression was shown to be associated with younger age, higher tumor grade, more estrogen receptor negativity, tumors larger than 2 cm, and tendency towards poor outcome in early breast cancer. No association between anti-TIF-1γ antibodies and prognosis has been proposed yet. We report a case of a 43-year-old premenopausal woman presenting with the symptoms of systemic rheumatic disease, the most prominent being a typical skin rash and muscle pain. After a series of investigations, the patient was diagnosed with anti-TIF-1γ positive dermatomyositis and concurrent triple-negative breast cancer (cT1c N3c M0) as an underlying cause. Immediate intravenous corticosteroid therapy relieved the symptoms and enabled anticancer therapy to be commenced. Considering the tumor stage, neoadjuvant therapy with 4 courses of AC (Doxorubicin/Cyclophosphamide) followed by 4 courses of Paclitaxel/Carboplatin was administered. However, no tumor regression was documented and radiotherapy was chosen as the definitive treatment. Early detection of anti-TIF-1γ autoantibodies can contribute to a rapid diagnosis of tumor-associated dermatomyositis and enable immediate anticancer treatment. We demonstrate the emerging role of anti-TIF-1γ antibodies in the diagnostics of tumor-associated dermatomyositis. Furthermore, we propose a potential role of anti-TIF-1γ antibodies as a prognostic marker in

  7. The 3′UTR signature defines a highly metastatic subgroup of triple-negative breast cancer

    PubMed Central

    Wang, Lei; Hu, Xin; Wang, Peng; Shao, Zhi-Ming

    2016-01-01

    Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with an aggressive clinical course. Prognostic models are needed to chart potential patient outcomes. To address this, we used alternative 3′UTR patterns to improve postoperative risk stratification. We collected 327 publicly available microarrays and generated the 3′UTR landscape based on expression ratios of alternative 3′UTR. After initial feature filtering, we built a 17-3′UTR-based classifier using an elastic net model. Time-dependent ROC comparisons and Kaplan–Meier analyses confirmed an outstanding discriminating power of our prognostic model for TNBC patients. In the training cohort, 5-year event-free survival (EFS) was 78.6% (95% CI 71.2–86.0) for the low-risk group, and 16.3% (95% CI 2.3–30.4) for the high-risk group (log-rank p<0.0001; hazard ratio [HR] 8.29, 95% CI 4.78–14.4), In the validation set, 5-year EFS was 75.6% (95% CI 68.0–83.2) for the low-risk group, and 33.2% (95% CI 17.1–49.3) for the high-risk group (log-rank p<0.0001; HR 3.17, 95% CI 1.66–5.42). In conclusion, the 17-3′UTR-based classifier provides a superior prognostic performance for estimating disease recurrence and metastasis in TNBC patients and it may permit personalized management strategies. PMID:27494850

  8. Treating triple negative breast cancer cells with erlotinib plus a select antioxidant overcomes drug resistance by targeting cancer cell heterogeneity.

    PubMed

    Bao, Bin; Mitrea, Cristina; Wijesinghe, Priyanga; Marchetti, Luca; Girsch, Emily; Farr, Rebecca L; Boerner, Julie L; Mohammad, Ramzi; Dyson, Greg; Terlecky, Stanley R; Bollig-Fischer, Aliccia

    2017-03-10

    Among breast cancer patients, those diagnosed with the triple-negative breast cancer (TNBC) subtype have the worst prog-nosis. TNBC does not express estrogen receptor-alpha, progesterone receptor, or the HER2 oncogene; therefore, TNBC lacks targets for molecularly-guided therapies. The concept that EGFR oncogene inhibitor drugs could be used as targeted treatment against TNBC has been put forth based on estimates that 30-60% of TNBC express high levels of EGFR. However, results from clinical trials testing EGFR inhibitors, alone or in combination with cytotoxic chemotherapy, did not improve patient outcomes. Results herein offer an explanation as to why EGFR inhibitors failed TNBC patients and support how combining a select antioxidant and an EGFR-specific small molecule kinase inhibitor (SMKI) could be an effective, novel therapeutic strategy. Treatment with CAT-SKL-a re-engineered protein form of the antioxidant enzyme catalase-inhibited cancer stem-like cells (CSCs), and treatment with the EGFR-specific SMKI erlotinib inhibited non-CSCs. Thus, combining the antioxidant CAT-SKL with erlotinib targeted both CSCs and bulk cancer cells in cultures of EGFR-expressing TNBC-derived cells. We also report evidence that the mechanism for CAT-SKL inhibition of CSCs may depend on antioxidant-induced downregulation of a short alternative mRNA splicing variant of the methyl-CpG binding domain 2 gene, isoform MBD2c.

  9. Arctigenin inhibits triple-negative breast cancers by targeting CIP2A to reactivate protein phosphatase 2A.

    PubMed

    Huang, Qiuyue; Qin, Shanshan; Yuan, Xiaoning; Zhang, Liang; Ji, Juanli; Liu, Xuewen; Ma, Wenjing; Zhang, Yunfei; Liu, Pengfei; Sun, Zhiting; Zhang, Jingxuan; Liu, Ying

    2017-07-01

    We have shown that a novel STAT3 inhibitor arctigenin (Atn) induces significant cytotoxicity in triple-negative breast cancer (TNBC) cells. This study further delineated molecular mechanisms where by Atn triggered cytotoxicity in TNBC cells. We found Atn can also inhibit metastasis in TNBC cells through cancerous inhibitor of protein phosphatase 2A (CIP2A) pathway. CIP2A is an endogenous inhibitor of protein phosphatase 2A (PP2A), which can increase the migration and invasion of various cancer cells. PP2A is a tumor suppressor, which is functionally defective in various cancers. Atn-induced metastasis inhibition was associated with reactivation of PP2A, downregulation of CIP2A and Akt phosphorylation. Silencing CIP2A enhanced Atn-induced metastasis inhibition and apoptosis in TNBCs. Furthermore, ectopic expression of CIP2A or inhibition of PP2A in TNBC cells abolished the effects of Atn. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A, at least in part, promotes the anti-metastasis effect induced by Atn. Our findings disclose the novel therapeutic mechanism of this targeted agent, and suggest the therapeutic potential and feasibility of developing PP2A enhancers as a novel anticancer strategy.

  10. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model.

    PubMed

    Jung, Jaeyun; Jang, Kiwon; Ju, Jung Min; Lee, Eunji; Lee, Jong Won; Kim, Hee Jung; Kim, Jisun; Lee, Sae Byul; Ko, Beom Seok; Son, Byung Ho; Lee, Hee Jin; Gong, Gyungyup; Ahn, Sei Yeon; Choi, Jung Kyoon; Singh, Shree Ram; Chang, Suhwan

    2018-08-01

    Despite the improved 5-year survival rate of breast cancer, triple-negative breast cancer (TNBC) remains a challenge due to lack of effective targeted therapy and higher recurrence and metastasis than other subtypes. To identify novel druggable targets and to understand its unique biology, we tried to implement 24 patient-derived xenografts (PDXs) of TNBC. The overall success rate of PDX implantation was 45%, much higher than estrogen receptor (ER)-positive cases. Immunohistochemical analysis revealed conserved ER/PR/Her2 negativity (with two exceptions) between the original and PDX tumors. Genomic analysis of 10 primary tumor-PDX pairs with Ion AmpliSeq CCP revealed high degree of variant conservation (85.0%-96.9%) between primary and PDXs. Further analysis showed 44 rare variants with a predicted high impact in 36 genes including Trp53, Pten, Notch1, and Col1a1. Among them, we confirmed frequent Notch1 variant. Furthermore, RNA-seq analysis of 24 PDXs revealed 594 gene fusions, of which 163 were in-frame, including AZGP1-GJC3 and NF1-AARSD1. Finally, western blot analysis of oncogenic signaling proteins supporting molecular diversity of TNBC PDXs. Overall, our report provides a molecular basis for the usefulness of the TNBC PDX model in preclinical study. Published by Elsevier B.V.

  11. Minocycline, a putative neuroprotectant, co-administered with doxorubicin-cyclophosphamide chemotherapy in a xenograft model of triple-negative breast cancer

    PubMed Central

    Himmel, Lauren E.; Lustberg, Maryam B.; DeVries, A. Courtney; Poi, Ming; Chen, Ching-Shih; Kulp, Samuel K.

    2016-01-01

    Minocycline is purported to have neuroprotective properties in experimental models of some human neurologic diseases, and has therefore been identified as a putative neuroprotectant for chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. However, because its mechanism of action is believed to be mediated through anti-inflammatory, anti-apoptotic, and anti-oxidant pathways, co-administration of minocycline with chemotherapeutic agents has the potential to reduce the efficacy of anticancer drugs. The objective of this study is to evaluate the effect of minocycline on the activity of the AC chemotherapeutic regimen (Adriamycin [doxorubicin], Cytoxan [cyclophosphamide]) in in vitro and in vivo models of triple-negative breast cancer (TNBC). Clonogenic and methylthiazol tetrazolium (MTT) assays were used to assess survival and viability in two TNBC cell lines treated with increasing concentrations of AC in the presence or absence of minocycline. Biomarkers of apoptosis, cell stress, and DNA damage were evaluated by western blot. The in vivo effects of AC and minocycline, each alone and in combination, were assessed in a xenograft model of TNBC in female athymic nude mice by weekly tumor volume measurement, body and organ weight measurement, and histopathology. Apoptosis and proliferation were characterized by immunohistochemistry in the xenografts tumors. Brains from tumor-bearing mice were evaluated for microglial activation, glial scars, and the proportion of neural progenitor cells. Data from these in vitro and in vivo studies demonstrate that minocycline does not diminish the cytotoxic and tumor-suppressive effects of this chemotherapeutic drug combination in TNBC cells. Moreover, minocycline appeared to prevent the reduction in doublecortin-positive neural progenitor cells observed in AC-treated mice. We posit that minocycline may be useful clinically for its reported neuroprotective activity in breast cancer patients receiving AC without

  12. Minocycline, a putative neuroprotectant, co-administered with doxorubicin-cyclophosphamide chemotherapy in a xenograft model of triple-negative breast cancer.

    PubMed

    Himmel, Lauren E; Lustberg, Maryam B; DeVries, A Courtney; Poi, Ming; Chen, Ching-Shih; Kulp, Samuel K

    2016-10-01

    Minocycline is purported to have neuroprotective properties in experimental models of some human neurologic diseases, and has therefore been identified as a putative neuroprotectant for chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. However, because its mechanism of action is believed to be mediated through anti-inflammatory, anti-apoptotic, and anti-oxidant pathways, co-administration of minocycline with chemotherapeutic agents has the potential to reduce the efficacy of anticancer drugs. The objective of this study is to evaluate the effect of minocycline on the activity of the AC chemotherapeutic regimen (Adriamycin [doxorubicin], Cytoxan [cyclophosphamide]) in in vitro and in vivo models of triple-negative breast cancer (TNBC). Clonogenic and methylthiazol tetrazolium (MTT) assays were used to assess survival and viability in two TNBC cell lines treated with increasing concentrations of AC in the presence or absence of minocycline. Biomarkers of apoptosis, cell stress, and DNA damage were evaluated by western blot. The in vivo effects of AC and minocycline, each alone and in combination, were assessed in a xenograft model of TNBC in female athymic nude mice by weekly tumor volume measurement, body and organ weight measurement, and histopathology. Apoptosis and proliferation were characterized by immunohistochemistry in the xenografts tumors. Brains from tumor-bearing mice were evaluated for microglial activation, glial scars, and the proportion of neural progenitor cells. Data from these in vitro and in vivo studies demonstrate that minocycline does not diminish the cytotoxic and tumor-suppressive effects of this chemotherapeutic drug combination in TNBC cells. Moreover, minocycline appeared to prevent the reduction in doublecortin-positive neural progenitor cells observed in AC-treated mice. We posit that minocycline may be useful clinically for its reported neuroprotective activity in breast cancer patients receiving AC without

  13. Analysis of radiation therapy in a model of triple-negative breast cancer brain metastasis.

    PubMed

    Smart, DeeDee; Garcia-Glaessner, Alejandra; Palmieri, Diane; Wong-Goodrich, Sarah J; Kramp, Tamalee; Gril, Brunilde; Shukla, Sudhanshu; Lyle, Tiffany; Hua, Emily; Cameron, Heather A; Camphausen, Kevin; Steeg, Patricia S

    2015-10-01

    Most cancer patients with brain metastases are treated with radiation therapy, yet this modality has not yet been meaningfully incorporated into preclinical experimental brain metastasis models. We applied two forms of whole brain radiation therapy (WBRT) to the brain-tropic 231-BR experimental brain metastasis model of triple-negative breast cancer. When compared to sham controls, WBRT as 3 Gy × 10 fractions (3 × 10) reduced the number of micrometastases and large metastases by 87.7 and 54.5 %, respectively (both p < 0.01); whereas a single radiation dose of 15 Gy × 1 (15 × 1) was less effective, reducing metastases by 58.4 % (p < 0.01) and 47.1 % (p = 0.41), respectively. Neuroinflammation in the adjacent brain parenchyma was due solely to a reaction from metastases, and not radiotherapy, while adult neurogenesis in brains was adversely affected following both radiation regimens. The nature of radiation resistance was investigated by ex vivo culture of tumor cells that survived initial WBRT ("Surviving" cultures). The Surviving cultures surprisingly demonstrated increased radiosensitivity ex vivo. In contrast, re-injection of Surviving cultures and re-treatment with a 3 × 10 WBRT regimen significantly reduced the number of large and micrometastases that developed in vivo, suggesting a role for the microenvironment. Micrometastases derived from tumor cells surviving initial 3 × 10 WBRT demonstrated a trend toward radioresistance upon repeat treatment (p = 0.09). The data confirm the potency of a fractionated 3 × 10 WBRT regimen and identify the brain microenvironment as a potential determinant of radiation efficacy. The data also nominate the Surviving cultures as a potential new translational model for radiotherapy.

  14. Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer.

    PubMed

    Hiraki, Masayuki; Maeda, Takahiro; Mehrotra, Neha; Jin, Caining; Alam, Maroof; Bouillez, Audrey; Hata, Tsuyoshi; Tagde, Ashujit; Keating, Amy; Kharbanda, Surender; Singh, Harpal; Kufe, Donald

    2018-01-01

    B-cell lymphoma 2-related protein A1 (BCL2A1) is a member of the BCL-2 family of anti-apoptotic proteins that confers resistance to treatment with anti-cancer drugs; however, there are presently no agents that target BCL2A1. The MUC1-C oncoprotein is aberrantly expressed in triple-negative breast cancer (TNBC) cells, induces the epithelial-mesenchymal transition (EMT) and promotes anti-cancer drug resistance. The present study demonstrates that targeting MUC1-C genetically and pharmacologically in TNBC cells results in the downregulation of BCL2A1 expression. The results show that MUC1-C activates the BCL2A1 gene by an NF-κB p65-mediated mechanism, linking this pathway with the induction of EMT. The MCL-1 anti-apoptotic protein is also of importance for the survival of TNBC cells and is an attractive target for drug development. We found that inhibiting MCL-1 with the highly specific MS1 peptide results in the activation of the MUC1-C→NF-κB→BCL2A1 pathway. In addition, selection of TNBC cells for resistance to ABT-737, which inhibits BCL-2, BCL-xL and BCL-W but not MCL-1 or BCL2A1, is associated with the upregulation of MUC1-C and BCL2A1 expression. Targeting MUC1-C in ABT-737-resistant TNBC cells suppresses BCL2A1 and induces death, which is of potential therapeutic importance. These findings indicate that MUC1-C is a target for the treatment of TNBCs unresponsive to agents that inhibit anti-apoptotic members of the BCL-2 family.

  15. Final efficacy and updated safety results of the randomized phase III BEATRICE trial evaluating adjuvant bevacizumab-containing therapy in triple-negative early breast cancer.

    PubMed

    Bell, R; Brown, J; Parmar, M; Toi, M; Suter, T; Steger, G G; Pivot, X; Mackey, J; Jackisch, C; Dent, R; Hall, P; Xu, N; Morales, L; Provencher, L; Hegg, R; Vanlemmens, L; Kirsch, A; Schneeweiss, A; Masuda, N; Overkamp, F; Cameron, D

    2017-04-01

    The purpose of this analysis was to assess the long-term impact of adding bevacizumab to adjuvant chemotherapy for early triple-negative breast cancer (TNBC). Patients eligible for the open-label randomized phase III BEATRICE trial had centrally confirmed triple-negative operable primary invasive breast cancer (pT1a-pT3). Investigators selected anthracycline- and/or taxane-based chemotherapy for each patient. After definitive surgery, patients were randomized 1:1 to receive ≥4 cycles of chemotherapy alone or with 1 year of bevacizumab (5 mg/kg/week equivalent). Stratification factors were nodal status, selected chemotherapy, hormone receptor status, and type of surgery. The primary end point was invasive disease-free survival (IDFS; previously reported). Secondary outcome measures included overall survival (OS) and safety. After 56 months' median follow-up, 293 of 2591 randomized patients had died. There was no statistically significant difference in OS between treatment arms in either the total population (hazard ratio 0.93, 95% confidence interval [CI] 0.74-1.17; P = 0.52) or pre-specified subgroups. The 5-year OS rate was 88% (95% CI 86-90%) in both treatment arms. Updated IDFS results were consistent with the primary IDFS analysis. Five-year IDFS rates were 77% (95% CI 75-79%) with chemotherapy alone versus 80% (95% CI 77-82%) with bevacizumab. From 18 months after first study dose to study end, new grade ≥3 adverse events occurred in 4.6% and 4.5% of patients in the two arms, respectively. Final OS results showed no significant benefit from bevacizumab therapy for early TNBC. Late-onset toxicities were rare in both groups. Five-year OS and IDFS rates suggest that the prognosis for patients with TNBC is better than previously thought. NCT00528567. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Oseltamivir phosphate monotherapy ablates tumor neovascularization, growth, and metastasis in mouse model of human triple-negative breast adenocarcinoma

    PubMed Central

    Haxho, Fiona; Allison, Stephanie; Alghamdi, Farah; Brodhagen, Lacey; Kuta, Victoria EL; Abdulkhalek, Samar; Neufeld, Ronald J; Szewczuk, Myron R

    2014-01-01

    Background Triple-negative breast cancers (TNBCs) lack the estrogen, progesterone, and epidermal growth factor (EGF) receptor-2 (HER2/neu) receptors. Patients with TNBC have typical high grading, more frequent relapses, and exhibit poorer outcomes or prognosis compared with the other subtypes of breast cancers. Currently, there are no targeted therapies that are effective for TNBC. Preclinical antitumor activity of oseltamivir phosphate (OP) therapy was investigated to identify its role in tumor neovascularization, growth, invasiveness, and long-term survival in a mouse model of human TNBC. Methods Live cell sialidase, water soluble tetrazolium, WST-1 cell viability, and immunohistochemistry assays were used to evaluate sialidase activity, cell survival, and the expression levels of tumor E-cadherin, N-cadherin, and host endothelial CD31+/PECAM-1 cells in archived paraffin-embedded TNBC MDA-MB-231 tumors grown in RAGxCγ double mutant mice. Results OP, anti-Neu1 antibodies, and matrix metalloproteinase-9-specific inhibitor blocked Neu1 activity associated with EGF-stimulated TNBC MDA-MB-231 cells. OP treatment of MDA-MB-231 and MCF-7 cells and their long-term tamoxifen-resistant clones reproducibly and dose-dependently reduced the sialidase activity associated with EGF-stimulated live cells and the cell viability after 72 hours of incubation. Combination of 1 μM cisplatin, 5-FU, paclitaxel, gemcitabine, or tamoxifen with OP dosages ≥300 μg/mL significantly reduced cell viability at 24, 48, and 72 hours when compared to the chemodrug alone. Heterotopic xenografts of MDA-MB-231 tumors developed robust and bloody tumor vascularization in RAG2xCγ double mutant mice. OP treatment at 30 mg/kg daily intraperitoneally reduced tumor vascularization and growth rate as well as significantly reduced tumor weight and spread to the lungs compared with the untreated cohorts. OP treatment at 50 mg/kg completely ablated tumor vascularization, tumor growth and spread to the

  17. Germline BRCA mutation evaluation in a prospective triple-negative breast cancer registry: implications for hereditary breast and/or ovarian cancer syndrome testing

    PubMed Central

    Klemp, Jennifer R.; Kimler, Bruce F.; Mahnken, Jonathan D.; Geier, Larry J.; Khan, Qamar J.; Elia, Manana; Connor, Carol S.; McGinness, Marilee K.; Mammen, Joshua M. W.; Wagner, Jamie L.; Ward, Claire; Ranallo, Lori; Knight, Catherine J.; Stecklein, Shane R.; Jensen, Roy A.; Fabian, Carol J.; Godwin, Andrew K.

    2014-01-01

    NCCN guidelines recommend genetic testing for all triple-negative breast cancer (TNBC) patients aged ≤60 years. However, due to the lack of prospective information in unselected patients, these guidelines are not uniformly adopted by clinicians and insurance carriers. The aim of this study was to determine the prevalence of BRCA mutations and evaluate the utility of NCCN guidelines in unselected TNBC population. Stage I–IV TNBC patients were enrolled on a prospective registry at academic and community practices. All patients underwent BRCA1/2 testing. Significant family history (SFH) was defined >1 relative with breast cancer at age ≤50 or ≥1 relative with ovarian cancer. Mutation prevalence in the entire cohort and subgroups was calculated. 207 TNBC patients were enrolled between 2011 and 2013. Racial/ethnic distribution: Caucasian (80 %), African–American (14 %), Ashkenazi (1 %). Deleterious BRCA1/2 mutations were identified in 15.4 % (32/207) of patients (BRCA1:11.1 %, BRCA2:4.3 %). SFH reported by 36 % of patients. Mutation prevalence in patients with and without SFH was 31.6 and 6.1 %, respectively. When assessed by age at TNBC diagnosis, the mutation prevalences were 27.6 % (≤50 years), 11.4 % (51–60 years), and 4.9 % (≥61 years). Using SFH or age ≤50 as criteria, 25 and 34 % of mutations, respectively, were missed. Mutation prevalence in patients meeting NCCN guidelines was 18.3 % (32/175) and 0 % (0/32) in patients who did not meet guidelines (p = .0059). In this unselected academic and community population with negligible Ashkenazi representation, we observed an overall BRCA mutation prevalence rate of 15.4 %. BRCA testing based on NCCN guidelines identified all carriers supporting its routine application in clinical practice for TNBC. PMID:24807107

  18. Phase I Study of Veliparib (ABT-888) Combined with Cisplatin and Vinorelbine in Advanced Triple-Negative Breast Cancer and/or BRCA Mutation-Associated Breast Cancer.

    PubMed

    Rodler, Eve T; Kurland, Brenda F; Griffin, Melissa; Gralow, Julie R; Porter, Peggy; Yeh, Rosa F; Gadi, Vijayakrishna K; Guenthoer, Jamie; Beumer, Jan H; Korde, Larissa; Strychor, Sandra; Kiesel, Brian F; Linden, Hannah M; Thompson, John A; Swisher, Elizabeth; Chai, Xiaoyu; Shepherd, Stacie; Giranda, Vincent; Specht, Jennifer M

    2016-06-15

    Cisplatin is synergistic with vinorelbine and the PARP inhibitor veliparib, and has antineoplastic activity in triple-negative breast cancer (TNBC) and BRCA mutation-associated breast cancer. This phase I study assessed veliparib with cisplatin and vinorelbine. A 3+3 dose-escalation design evaluated veliparib administered twice daily for 14 days with cisplatin (75 mg/m(2) day 1) and vinorelbine (25 mg/m(2) days 1, 8) every 21 days, for 6 to 10 cycles, followed by veliparib monotherapy. Pharmacokinetics, measurement of poly(ADP-ribose) in peripheral blood mononuclear cells, and preliminary efficacy were assessed. IHC and gene-expression profiling were evaluated as potential predictors of response. Forty-five patients enrolled in nine dose cohorts plus five in an expansion cohort at the highest dose level and recommended phase II dose, 300 mg twice daily. The MTD of veliparib was not reached. Neutropenia (36%), anemia (30%), and thrombocytopenia (12%) were the most common grade 3/4 adverse events. Best overall response for 48 patients was radiologic response with 9-week confirmation for 17 (35%; 2 complete, 15 partial), and stable disease for 21 (44%). Germline BRCA mutation presence versus absence was associated with 6-month progression-free survival [PFS; 10 of 14 (71%) vs. 8 of 27 (30%), mid-P = 0.01]. Median PFS for all 50 patients was 5.5 months (95% confidence interval, 4.1-6.7). Veliparib at 300 mg twice daily combined with cisplatin and vinorelbine is well tolerated with encouraging response rates. A phase II randomized trial is planned to assess veliparib's contribution to cisplatin chemotherapy in metastatic TNBC and BRCA mutation-associated breast cancer. Clin Cancer Res; 22(12); 2855-64. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.

    PubMed

    Shu, Dan; Li, Hui; Shu, Yi; Xiong, Gaofeng; Carson, William E; Haque, Farzin; Xu, Ren; Guo, Peixuan

    2015-10-27

    MicroRNAs play important roles in regulating the gene expression and life cycle of cancer cells. In particular, miR-21, an oncogenic miRNA is a major player involved in tumor initiation, progression, invasion and metastasis in several cancers, including triple negative breast cancer (TNBC). However, delivery of therapeutic miRNA or anti-miRNA specifically into cancer cells in vivo without collateral damage to healthy cells remains challenging. We report here the application of RNA nanotechnology for specific and efficient delivery of anti-miR-21 to block the growth of TNBC in orthotopic mouse models. The 15 nm therapeutic RNA nanoparticles contains the 58-nucleotide (nt) phi29 pRNA-3WJ as a core, a 8-nt sequence complementary to the seed region of miR-21, and a 39-nt epidermal growth factor receptor (EGFR) targeting aptamer for internalizing RNA nanoparticles into cancer cells via receptor mediated endocytosis. The RNase resistant and thermodynamically stable RNA nanoparticles remained intact after systemic injection into mice and strongly bound to tumors with little or no accumulation in healthy organs 8 h postinjection, and subsequently repressed tumor growth at low doses. The observed specific cancer targeting and tumor regression is a result of several key attributes of RNA nanoparticles: anionic charge which disallows nonspecific passage across negatively charged cell membrane; "active" targeting using RNA aptamers which increases the homing of RNA nanoparticles to cancer cells; nanoscale size and shape which avoids rapid renal clearance and engulfment by lung macrophages and liver Kupffer cells; favorable biodistribution profiles with little accumulation in healthy organs, which minimizes nonspecific side effects; and favorable pharmacokinetic profiles with extended in vivo half-life. The results demonstrate the clinical potentials of RNA nanotechnology based platform to deliver miRNA based therapeutics for cancer treatment.

  20. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology

    PubMed Central

    2015-01-01

    MicroRNAs play important roles in regulating the gene expression and life cycle of cancer cells. In particular, miR-21, an oncogenic miRNA is a major player involved in tumor initiation, progression, invasion and metastasis in several cancers, including triple negative breast cancer (TNBC). However, delivery of therapeutic miRNA or anti-miRNA specifically into cancer cells in vivo without collateral damage to healthy cells remains challenging. We report here the application of RNA nanotechnology for specific and efficient delivery of anti-miR-21 to block the growth of TNBC in orthotopic mouse models. The 15 nm therapeutic RNA nanoparticles contains the 58-nucleotide (nt) phi29 pRNA-3WJ as a core, a 8-nt sequence complementary to the seed region of miR-21, and a 39-nt epidermal growth factor receptor (EGFR) targeting aptamer for internalizing RNA nanoparticles into cancer cells via receptor mediated endocytosis. The RNase resistant and thermodynamically stable RNA nanoparticles remained intact after systemic injection into mice and strongly bound to tumors with little or no accumulation in healthy organs 8 h postinjection, and subsequently repressed tumor growth at low doses. The observed specific cancer targeting and tumor regression is a result of several key attributes of RNA nanoparticles: anionic charge which disallows nonspecific passage across negatively charged cell membrane; “active” targeting using RNA aptamers which increases the homing of RNA nanoparticles to cancer cells; nanoscale size and shape which avoids rapid renal clearance and engulfment by lung macrophages and liver Kupffer cells; favorable biodistribution profiles with little accumulation in healthy organs, which minimizes nonspecific side effects; and favorable pharmacokinetic profiles with extended in vivo half-life. The results demonstrate the clinical potentials of RNA nanotechnology based platform to deliver miRNA based therapeutics for cancer treatment. PMID:26387848

  1. [Development of Peptide Vaccines for Triple-Negative Breast Cancer Treatment].

    PubMed

    Toh, Uhi; Saku, Shuko; Okabe, Mina; Iwakuma, Nobutaka; Kimitsuki, Yuko; Akashi, Momoko; Ogo, Etsuyo; Yamada, Akira; Shichijo, Shigeki; Itoh, Kyogo; Akagi, Yoshito

    2016-10-01

    Our previous phase II clinical trial showed that therapeutically selected personalized peptide vaccines(PPVs)were effective at boosting anticancer immunity; the immune response after PPV was associated with a clinical outcome as a prognostic factor for metastatic breast cancer(mBC). We conducted an early phase II study to evaluate the safety and efficacy of a new regimen using multiple peptide vaccines(KRM-19)for patients with metastatictriple -negative breast cancer. KRM-19 consisted of 19 mixed peptides chosen from the previously reported 31 PPVs according to their anti-tumor immunologiceffec ts and safety profiles for patients with mBC. All patients had histologically confirmed measurable ER-PgR-HER2- mBC and their human leukocyte antigen(HLA) / -A molecules were A2, A3, A11, A24, A26, A31, or A33. KRM-19(19mg/mL)was administrated subcutaneously every week for a total of 6 doses. Concurrent conventional chemo- and/or endocrine therapy were not permitted during treatment. This was an open-label, early phase II study. The primary endpoint was safety and anti-tumor immunologic effect, while the secondary endpoints were clinical responses and progression-free survival(PFS). The estimated enrollment was 10-15 and 8 patients were enrolled(Clinical trial registry number: UMIN000014616). Measurement of peptide-specific cytotoxic T lymphocyte and IgG responses were conducted before and after vaccination. The correlation between PFS and the increased IgG response and/or CTL levels were investigated.

  2. Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1.

    PubMed

    Maharjan, Sony; Park, Byoung Kwon; Lee, Su In; Lim, Yoonho; Lee, Keunwook; Kwon, Hyung-Joo

    2018-05-01

    A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.

  3. Impact of breast cancer subtypes and patterns of metastasis on outcome.

    PubMed

    Kast, Karin; Link, Theresa; Friedrich, Katrin; Petzold, Andrea; Niedostatek, Antje; Schoffer, Olaf; Werner, Carmen; Klug, Stefanie J; Werner, Andreas; Gatzweiler, Axel; Richter, Barbara; Baretton, Gustavo; Wimberger, Pauline

    2015-04-01

    Clinical outcome of patients with stage IV breast cancer is dependent on tumor biology, extent, and localization of metastases. Routine imaging diagnostics for distant metastasis is not recommended by the national guidelines for breast cancer follow-up. In this study, we evaluated different patterns of metastases of cancer subtypes in order to generate hypotheses on individualization of follow-up after breast cancer in the adjuvant setting. Patients of the Regional Breast Cancer Center Dresden diagnosed within the years 2006-2011 were classified into the five intrinsic subtypes luminal A (ER+, Her2-, G1/2), luminal B/Her2 negative (ER+, Her2-, G3), triple positive (ER+, PR+, Her2+), Her2-enriched (ER-, Her2+), and triple negative (ER-, PR-, Her2-) and with a median follow-up of 45 months. Tumor stage at time of first diagnosis of breast cancer as well as time and site of metastasis at first diagnosis of distant metastatic disease was analyzed. Tumor specimen of 2284 female patients with primary breast cancer was classified into five subtypes. Distant recurrence-free survival at 3 years was most unfavorable in Her2-enriched (66.8 %), triple negative (75.9 %), and triple-positive breast cancer (81.7 %). The same subtypes most frequently presented with visceral metastases only at first presentation: Her2-enriched 46.9 %, triple negative 45.5 %, and triple-positive breast cancer 37.5 %. Longest median survival of 2.3 years was seen in luminal A and in Her2-enriched metastatic disease, respectively. Median survival was significantly better in the luminal A, Her2-enriched, and triple-positive subtype compared to triple-negative breast cancer (p < 0.005). Differences in time to metastatic disease, first localization of metastases, and overall survival after diagnosis of metastatic disease were shown. Considering new targeted therapies and the option of surgery of oligometastases, screening for visceral metastases might be reasonable after diagnosis of Her2-positive

  4. GTSE1: a novel TEAD4-E2F1 target gene involved in cell protrusions formation in triple-negative breast cancer cell models

    PubMed Central

    Stelitano, Debora; Leticia, Yamila Peche; Dalla, Emiliano; Monte, Martin; Piazza, Silvano; Schneider, Claudio

    2017-01-01

    GTSE1 over-expression has been reported as a potential marker for metastasis in various types of malignancies, including breast cancer. Despite this, the transcriptional regulation of this protein and the causes of its misregulation in tumors remain largely unknown. The aims of this work were to elucidate how GTSE1 is regulated at the transcriptional level and to clarify the mechanism underlying GTSE1-dependent cell functions in triple-negative breast cancer (TNBC). Here, we identified GTSE1 as a novel target gene of the TEAD4 transcription factor, highlighting a role for the YAP and TAZ coactivators in the transcriptional regulation of GTSE1. Moreover, we found that TEAD4 controls the formation of cell protrusions required for cell migration through GTSE1, unveiling a relevant effector role for this protein in the TEAD-dependent cellular functions and confirming TEAD4 role in promoting invasion and metastasis in breast cancer. Finally, we highlighted a role for the pRb-E2F1 pathway in the control of GTSE1 transcription and observed that treatment with drugs targeting the pRb-E2F1 or YAP/TAZ-TEAD pathways dramatically downregulated the expression levels of GTSE1 and of other genes involved in the formation of metastasis, suggesting their potential use in the treatment of TNBC. PMID:28978043

  5. Targeted Nanoparticles for Image-guided Treatment of Triple Negative Breast Cancer: Clinical Significance and Technological Advances

    PubMed Central

    Miller-Kleinhenz, Jasmine M.; Bozeman, Erica N.

    2015-01-01

    Effective treatment of triple negative breast cancer (TNBC) with its aggressive tumor biology, highly heterogeneous tumor cells, and poor prognosis requires an integrated therapeutic approach that addresses critical issues in cancer therapy. Multifunctional nanoparticles with the abilities of targeted drug delivery and non-invasive imaging for monitoring drug delivery and responses to therapy, such as theranostic nanoparticles, hold great promise towards the development of novel therapeutic approaches for the treatment of TNBC using a single therapeutic platform. The biological and pathological characteristics of TNBC provide insight into several potential molecular targets for current and future nanoparticle based therapeutics. Extensive tumor stroma, highly proliferative cells, and a high rate of drug-resistance are all barriers that must be appropriately addressed in order for these nanotherapeutic platforms to be effective. Utilization of the enhanced permeability and retention (EPR) effect coupled with active targeting of cell surface receptors expressed by TNBC cells, and tumor associated endothelial cells, stromal fibroblasts and macrophages is likely to overcome such barriers to facilitate more effective drug delivery. An in depth summary of current studies investigating targeted nanoparticles in preclinical TNBC mouse and human xenograft models is presented. This review aims to outline the current status of nanotherapeutic options for TNBC patients, identification of promising molecular targets, challenges associated with the development of targeted nanotherapeutics, the research done by our group as well as others and future perspectives on the nanomedicine field and ways to translate current preclinical studies into the clinic. PMID:25966677

  6. Wnt-beta-catenin pathway signals metastasis-associated tumor cell phenotypes in triple negative breast cancers.

    PubMed

    De, Pradip; Carlson, Jennifer H; Wu, Hui; Marcus, Adam; Leyland-Jones, Brian; Dey, Nandini

    2016-07-12

    Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronectin-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship

  7. Wnt-beta-catenin pathway signals metastasis-associated tumor cell phenotypes in triple negative breast cancers

    PubMed Central

    De, Pradip; Carlson, Jennifer H.; Wu, Hui; Marcus, Adam; Leyland-Jones, Brian; Dey, Nandini

    2016-01-01

    Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronection-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship

  8. Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer.

    PubMed

    Goodwin, C M; Rossanese, O W; Olejniczak, E T; Fesik, S W

    2015-12-01

    Breast cancer is the second-most frequently diagnosed malignancy in US women. The triple-negative breast cancer (TNBC) subtype, which lacks expression of the estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, afflicts 15% of patients and is refractory to current targeted therapies. Like many cancers, TNBC cells often deregulate programmed cell death by upregulating anti-apoptotic proteins of the B-cell CLL/lymphoma 2 (Bcl-2) family. One family member, myeloid cell leukemia-1 (Mcl-1), is commonly amplified in TNBC and correlates with a poor clinical prognosis. Here we show the effect of silencing Mcl-1 and Bcl-2-like protein 1 isoform 1 (Bcl-xL) expression on viability in a panel of seventeen TNBC cell lines. Cell death was observed in a subset upon Mcl-1 knockdown. In contrast, Bcl-xL knockdown only modestly reduced viability, indicating that Mcl-1 is a more important survival factor. However, dual silencing of both Mcl-1 and Bcl-xL reduced viability in most cell lines tested. These proliferation results were recapitulated by BH3 profiling experiments. Treatment with a Bcl-xL and Bcl-2 peptide had only a moderate effect on any of the TNBC cell lines, however, co-dosing an Mcl-1-selective peptide with a peptide that inhibits Bcl-xL and Bcl-2 was effective in each line tested. Similarly, the selective Bcl-xL inhibitor WEHI-539 was only weakly cytotoxic across the panel, but sensitization by Mcl-1 knockdown markedly improved its EC50. ABT-199, which selectively inhibits Bcl-2, did not synergize with Mcl-1 knockdown, indicating the relatively low importance of Bcl-2 in these lines. Mcl-1 sensitivity is not predicted by mRNA or protein levels of a single Bcl-2 family member, except for only a weak correlation for Bak and Bax protein expression. However, a more comprehensive index composed of Mcl-1, Bcl-xL, Bim, Bak and Noxa protein or mRNA expression correlates well with Mcl-1 sensitivity in TNBC and can also predict Mcl-1 dependency

  9. Assessing treatment response in triple-negative breast cancer from quantitative image analysis in perfusion magnetic resonance imaging.

    PubMed

    Banerjee, Imon; Malladi, Sadhika; Lee, Daniela; Depeursinge, Adrien; Telli, Melinda; Lipson, Jafi; Golden, Daniel; Rubin, Daniel L

    2018-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is sensitive but not specific to determining treatment response in early stage triple-negative breast cancer (TNBC) patients. We propose an efficient computerized technique for assessing treatment response, specifically the residual tumor (RT) status and pathological complete response (pCR), in response to neoadjuvant chemotherapy. The proposed approach is based on Riesz wavelet analysis of pharmacokinetic maps derived from noninvasive DCE-MRI scans, obtained before and after treatment. We compared the performance of Riesz features with the traditional gray level co-occurrence matrices and a comprehensive characterization of the lesion that includes a wide range of quantitative features (e.g., shape and boundary). We investigated a set of predictive models ([Formula: see text]) incorporating distinct combinations of quantitative characterizations and statistical models at different time points of the treatment and some area under the receiver operating characteristic curve (AUC) values we reported are above 0.8. The most efficient models are based on first-order statistics and Riesz wavelets, which predicted RT with an AUC value of 0.85 and pCR with an AUC value of 0.83, improving results reported in a previous study by [Formula: see text]. Our findings suggest that Riesz texture analysis of TNBC lesions can be considered a potential framework for optimizing TNBC patient care.

  10. Patient-Specific Circulating Tumor DNA Detection during Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer.

    PubMed

    Riva, Francesca; Bidard, Francois-Clement; Houy, Alexandre; Saliou, Adrien; Madic, Jordan; Rampanou, Aurore; Hego, Caroline; Milder, Maud; Cottu, Paul; Sablin, Marie-Paule; Vincent-Salomon, Anne; Lantz, Olivier; Stern, Marc-Henri; Proudhon, Charlotte; Pierga, Jean-Yves

    2017-03-01

    In nonmetastatic triple-negative breast cancer (TNBC) patients, we investigated whether circulating tumor DNA (ctDNA) detection can reflect the tumor response to neoadjuvant chemotherapy (NCT) and detect minimal residual disease after surgery. Ten milliliters of plasma were collected at 4 time points: before NCT; after 1 cycle; before surgery; after surgery. Customized droplet digital PCR (ddPCR) assays were used to track tumor protein p53 ( TP53 ) mutations previously characterized in tumor tissue by massively parallel sequencing (MPS). Forty-six patients with nonmetastatic TNBC were enrolled. TP53 mutations were identified in 40 of them. Customized ddPCR probes were validated for 38 patients, with excellent correlation with MPS ( r = 0.99), specificity (≥2 droplets/assay), and sensitivity (at least 0.1%). At baseline, ctDNA was detected in 27/36 patients (75%). Its detection was associated with mitotic index ( P = 0.003), tumor grade ( P = 0.003), and stage ( P = 0.03). During treatment, we observed a drop of ctDNA levels in all patients but 1. No patient had detectable ctDNA after surgery. The patient with rising ctDNA levels experienced tumor progression during NCT. Pathological complete response (16/38 patients) was not correlated with ctDNA detection at any time point. ctDNA positivity after 1 cycle of NCT was correlated with shorter disease-free ( P < 0.001) and overall ( P = 0.006) survival. Customized ctDNA detection by ddPCR achieved a 75% detection rate at baseline. During NCT, ctDNA levels decreased quickly and minimal residual disease was not detected after surgery. However, a slow decrease of ctDNA level during NCT was strongly associated with shorter survival. © 2016 American Association for Clinical Chemistry.

  11. Veliparib, Cisplatin, and Vinorelbine Ditartrate in Treating Patients With Recurrent and/or Metastatic Breast Cancer

    ClinicalTrials.gov

    2017-08-08

    Estrogen Receptor-negative Breast Cancer; HER2-negative Breast Cancer; Hereditary Breast/Ovarian Cancer - BRCA1; Hereditary Breast/Ovarian Cancer - BRCA2; Male Breast Cancer; Progesterone Receptor-negative Breast Cancer; Recurrent Breast Cancer; Stage IV Breast Cancer; Triple-negative Breast Cancer

  12. Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators.

    PubMed

    Rhodes, Lyndsay V; Tate, Chandra R; Segar, H Chris; Burks, Hope E; Phamduy, Theresa B; Hoang, Van; Elliott, Steven; Gilliam, Diari; Pounder, F Nell; Anbalagan, Muralidharan; Chrisey, Douglas B; Rowan, Brian G; Burow, Matthew E; Collins-Burow, Bridgette M

    2014-06-01

    Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. We previously showed the pan-deacetylase inhibitor LBH589 induces CDH1 expression in TNBC cells, suggesting regulation of EMT. The purpose of this study was to examine the effects of LBH589 on the metastatic qualities of TNBC cells and the role of EMT in this process. A panel of breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549), drugged with LBH589, was examined for changes in cell morphology, migration, and invasion in vitro. The effect on in vivo metastasis was examined using immunofluorescent staining of lung sections. EMT gene expression profiling was used to determine LBH589-induced changes in TNBC cells. ZEB overexpression studies were conducted to validate requirement of ZEB in LBH589-mediated proliferation and tumorigenesis. Our results indicate a reversal of EMT by LBH589 as demonstrated by altered morphology and altered gene expression in TNBC. LBH589 was shown to be a more potent inhibitor of EMT than other HDAC inhibitors, SAHA and TMP269. Additionally, we found that LBH589 inhibits metastasis of MDA-MB-231 cells in vivo. These effects of LBH589 were mediated in part by inhibition of ZEB, as overexpression of ZEB1 or ZEB2 mitigated the effects of LBH589 on MDA-MB-231 EMT-associated gene expression, migration, invasion, CDH1 expression, and tumorigenesis. These data indicate therapeutic potential of LBH589 in targeting EMT and metastasis of TNBC.

  13. 5,6,7,3′,4′,5′-Hexamethoxyflavone inhibits growth of triple-negative breast cancer cells via suppression of MAPK and Akt signaling pathways and arresting cell cycle

    PubMed Central

    Torres, Haydee; McDonnell, Susan; Van Slambrouck, Severine

    2017-01-01

    Natural components continue to be an important source for the discovery and development of novel anticancer agents. Polymethoxyflavones are a class of flavonoids found in citrus fruits and medicinal plants used in traditional medicine. In the present study, the anticancer activity of the well-known nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) was compared against its less studied structural isomer 5,6,7,3′,4′,5′-hexamethoxyflavone. These compounds were evaluated on the Hs578T triple-negative breast cancer cell line and its more migratory subclone Hs578Ts(i)8. 5,6,7,3′,4′,5′-hexamethoxyflavone was found to be less toxic than nobiletin, while a similar growth inhibitory effect was observed after 72 h. Additionally, 5,6,7,3′,4′,5′-hexamethoxyflavone arrested the cell cycle in the G2/M phase, while no effect was observed on apoptosis or the migratory behavior of these cells. Furthermore, mechanistic studies revealed that the growth inhibition was concomitant with reduced phosphorylation levels of signaling molecules in the MAPK and Akt pathways as well as cell cycle regulators, involved in regulating cell proliferation, survival and cell cycle. In summary, the present study is the first to report on the anticancer activities of 5,6,7,3′,4′,5′-hexamethoxyflavone and to provide evidence that this flavone could have a greater potential than nobiletin for prevention or treatment of triple-negative breast cancer. PMID:29039514

  14. Identification and prognostic value of anterior gradient protein 2 expression in breast cancer based on tissue microarray.

    PubMed

    Guo, Jilong; Gong, Guohua; Zhang, Bin

    2017-07-01

    Breast cancer has attracted substantial attention as one of the major cancers causing death in women. It is crucial to find potential biomarkers of prognostic value in breast cancer. In this study, the expression pattern of anterior gradient protein 2 in breast cancer was identified based on the main molecular subgroups. Through analysis of 69 samples from the Gene Expression Omnibus database, we found that anterior gradient protein 2 expression was significantly higher in non-triple-negative breast cancer tissues compared with normal tissues and triple-negative breast cancer tissues (p < 0.05). The data from a total of 622 patients from The Cancer Genome Atlas were analysed. The data from The Cancer Genome Atlas and results from quantitative reverse transcription polymerase chain reaction also verified the anterior gradient protein 2 expression pattern. Furthermore, we performed immunohistochemical analysis. The quantification results revealed that anterior gradient protein 2 is highly expressed in non-triple-negative breast cancer (grade 3 excluded) and grade 1 + 2 (triple-negative breast cancer excluded) tumours compared with normal tissues. Anterior gradient protein 2 was significantly highly expressed in non-triple-negative breast cancer (grade 3 excluded) and non-triple-negative breast cancer tissues compared with triple-negative breast cancer tissues (p < 0.01). In addition, anterior gradient protein 2 was significantly highly expressed in grade 1 + 2 (triple-negative breast cancer excluded) and grade 1 + 2 tissues compared with grade 3 tissues (p < 0.05). Analysis by Fisher's exact test revealed that anterior gradient protein 2 expression was significantly associated with histologic type, histological grade, oestrogen status and progesterone status. Univariate analysis of clinicopathological variables showed that anterior gradient protein 2 expression, tumour size and lymph node status were significantly correlated with overall

  15. Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p.

    PubMed

    Li, Shuqin; Zhou, Jun; Wang, Zhaoxin; Wang, Peishun; Gao, Xitao; Wang, Yan

    2018-05-21

    Triple-negative breast cancer (TNBC) is considered to be the most aggressive and lethal type of breast cancer. Many studies have suggested that the dysfunction of long noncoding RNAs (lncRNAs) is correlated with breast cancer metastasis and progression. Here, we show that levels of the lncRNA, growth arrest-specific transcript 5 (GAS5), are decreased in TNBC tissues, and this down-regulation of GAS5 is associated with an aggressive tumor phenotype in patients, affecting clinical stage, lymph node metastasis and overall survival. Using an ectopic overexpression system in TNBC cells, we found that up-regulation of GAS5 can significantly attenuate proliferation and enhance apoptosis in TNBC cells. Through bioinformatics analysis and verification with qRT-PCR and luciferase assay, we found that GAS5 can bind to miR-196a-5p and there is a negative relationship between GAS5 and miR-196a-5p expression among TNBC patient samples. Furthermore, we demonstrated that overexpression of GAS5 can partially undermine the tumor promotion effect induced by ectopic expression of miR-196a-5p, including invasion and downstream FOXO1/PI3K/AKT signal pathway activation. In our study, GAS5 functioned as a competing endogenous RNA (ceRNA) antagonizing tumor promotion of miR-196a-5p-expressing TNBC cells. These data suggest that GAS5 can suppress TNBC progression by competitively binding miR-196a-5p, therefore GAS5 may be a prognostic biomarker of TNBC. Copyright © 2018. Published by Elsevier Masson SAS.

  16. The anti-androgen drug dutasteride renders triple negative breast cancer cells more sensitive to chemotherapy via inhibition of HIF-1α-/VEGF-signaling.

    PubMed

    von Wahlde, Marie-Kristin; Hülsewig, Carolin; Ruckert, Christian; Götte, Martin; Kiesel, Ludwig; Bernemann, Christof

    2015-02-01

    Triple negative breast cancer (TNBC) is characterized by lack of expression of both estrogen and progesterone receptor as well as lack of amplification of HER2. Patients with TNBC carry an unfavorable prognosis compared to other breast cancer subtypes given that endocrine or HER2 targeted therapies are not effective, rendering chemotherapy the sole effective treatment option to date. Therefore, there is a high demand for additional novel treatment options. We previously published a list of genes showing both higher gene expression rates in TNBC and, in addition, are known to encode targets of non-oncologic drugs. SRD5A1, which encodes the type-1 isoform of the steroid-5alpha-reductase, which is involved in androgen metabolism, was found to be one of these genes. Dutasteride is a dual blocker of both the type-1 and type-2 isoform of SRD5A1 and is indicated in the treatment of benign prostate hyperplasia. Treatment of TNBC cell lines with dutasteride was associated with a dose-dependent decrease in cell viability, altered protein expression of VEGF and HIF-1α and increased chemosensitivity. Our results demonstrate that the SRD5A1-corresponding anti-androgenic drug dutasteride might act as a combinatorial therapeutic option besides standard chemotherapy in highly aggressive TNBC.

  17. The role of BRCA1-IRIS in the development and progression of triple negative breast cancers in Egypt: possible link to disease early lesion.

    PubMed

    Bogan, Danielle; Meile, Lucio; El Bastawisy, Ahmed; Yousef, Hend F; Zekri, Abdel-Rahman N; Bahnassy, Abeer A; ElShamy, Wael M

    2017-05-12

    Breast cancer is the most globally diagnosed female cancer, with the triple negative breast cancer (TNBC) being the most aggressive subtype of the disease. In this study we aimed at comparing the effect of BRCA1-IRIS overexpression on the clinico-pathological characteristics in breast cancer patients with TNBC or non-TNBC in the largest comprehensive cancer center in Egypt. To reach this goal, we conducted an observational study at the National Cancer Institute (NCI), Cairo University (Cairo, Egypt). The data on all diagnosed breast cancer patients, between 2009 and 2012, were reviewed. BRCA1-IRIS expression measured using real time RT/PCR in these patients' tumor samples was correlated to tumor characteristics, such as to clinico-pathological features, therapeutic responses, and survival outcomes. 96 patients were enrolled and of these 45% were TNBC, and 55% were of other subtypes (hereafter, non-TNBC). All patients presented with invasive ductal carcinomas. No significant difference was observed for risk factors, such as age and menopausal status between the TNBC and the non-TNBC groups except after BRCA1-IRIS expression was factored in. The majority of the tumors in both groups were ≤5 cm at surgery (p = 0.013). However, in the TNBC group, ≤5 cm tumors were BRCA1-IRIS-overexpressing, whereas in the non-TNBC group they were BRCA1-IRIS-negative (p = 0.00007). Most of the TNBC patients diagnosed with grade 1 or 2 were BRCA1-IRIS-overexpressing, whereas non-TNBCs were IRIS-negative (p = 0.00035). No statistical significance was measured in patients diagnosed with grade 3 tumors. Statistically significant difference between TNBCs and non-TNBCs and tumor stage with regard to BRCA1-IRIS-overexpression was observed. Presence of axillary lymph node metastases was positively associated with BRCA1-IRIS overexpression in TNBC group, and with BRCA1-IRIS-negative status in the non-TNBC group (p = 0.00009). Relapse after chemotherapy (p < 0.00001), and local

  18. Methionine Deprivation Induces a Targetable Vulnerability in Triple-Negative Breast Cancer Cells by Enhancing TRAIL Receptor-2 Expression.

    PubMed

    Strekalova, Elena; Malin, Dmitry; Good, David M; Cryns, Vincent L

    2015-06-15

    Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab, or the combination. Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. Clin Cancer Res; 21(12); 2780-91. ©2015 AACR. ©2015 American Association for Cancer

  19. Methionine Deprivation Induces a Targetable Vulnerability in Triple-negative Breast Cancer Cells by Enhancing TRAIL Receptor-2 Expression

    PubMed Central

    Strekalova, Elena; Malin, Dmitry; Good, David M.; Cryns, Vincent L.

    2015-01-01

    Purpose Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Experimental Design Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab or the combination. Results Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Conclusion Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. PMID:25724522

  20. The Impact of Epithelial-Stromal Interactions on Human Breast Tumor Heterogeneity

    DTIC Science & Technology

    2014-10-01

    Triple - Negative (TN) breast cancer cases. In addition to the intrinsic molecular characteristics of the tumor...associated with TN breast cancer . 15. SUBJECT TERMS Triple - negative breast cancer , epithelium, stroma, gene expression, microRNA, laser capture...expression  signatures  in human stroma can  predict  outcome of  breast   cancer  patients  independently of clinical parameters and molecular subtypes 

  1. The prognostic value of BRCA1 promoter methylation in early stage triple negative breast cancer

    PubMed Central

    Kimler, Bruce F.; Sethi, Geetika; Petroff, Brian K.; Phillips, Teresa A.; Tawfik, Ossama W.; Godwin, Andrew K.; Jensen, Roy A.

    2014-01-01

    Introduction Methylation of the BRCA1 promoter is frequent in triple negative breast cancers (TNBC) and results in a tumor phenotype similar to BRCA1-mutated tumors. BRCA1 mutation-associated cancers are more sensitive to DNA damaging agents as compared to conventional chemotherapy agents. It is not known if there is an interaction between the presence of BRCA1 promoter methylation (PM) and response to chemotherapy agents in sporadic TNBC. We sought to investigate the prognostic significance of BRCA1 PM in TNBC patients receiving standard chemotherapy. Methods Subjects with stage I-III TNBC treated with chemotherapy were identified and their formalin-fixed paraffin-embedded (FFPE) tumor specimens retrieved. Genomic DNA was isolated and subjected to methylation-specific PCR (MSPCR). Results DNA was isolated from primary tumor of 39 subjects. BRCA1 PM was detected in 30% of patients. Presence of BRCA1 PM was associated with lower BRCA1 transcript levels, suggesting epigenetic BRCA1 silencing. All patients received chemotherapy (anthracycline:90%, taxane:69%). At a median follow-up of 64 months, 46% of patients have recurred and 36% have died. On univariate analysis, African-American race, node positivity, stage, and BRCA1 PM were associated with worse RFS and OS. Five year OS was 36% for patients with BRCA1 PM vs. 77% for patients without BRCA1 PM (p=0.004). On multivariable analysis, BRCA1 PM was associated with significantly worse RFS and OS. Conclusions We show that BRCA1 PM is common in TNBC and has the potential to identify a significant fraction of TNBC patients who have suboptimal outcomes with standard chemotherapy. PMID:25177489

  2. GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells.

    PubMed

    Yu, Tenghua; Liu, Manran; Luo, Haojun; Wu, Chengyi; Tang, Xi; Tang, Shifu; Hu, Ping; Yan, Yuzhao; Wang, Zhiliang; Tu, Gang

    2014-09-01

    Triple-negative breast cancer (TNBC) is an aggressive breast cancer with a generally poor prognosis. Due to lack of specific targets for its treatment, an efficient therapy is needed. G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, has been reported to be expressed in TNBC tissues. In this study, we investigated the effects of blocking non-genomic signaling mediated by the estrogen/GPER pathway on cell viability and motility in the TNBC cells. GPER was strongly expressed in the TNBC cell lines MDA-MB-468 and MDA-MB-436, and the estrogen-mediated non-genomic ERK signaling activated by GPER was involved in cell viability and motility of TNBC cells. Treatment with 17β-estradiol (E2), the GPER-specific agonist G-1 and tamoxifen (TAM) led to rapid activation of p-ERK1/2, but not p-Akt. Moreover, estrogen/GPER/ERK signaling was involved in increasing cell growth, survival, and migration/invasion by upregulating expression of cyclinA, cyclinD1, Bcl-2, and c-fos associated with the cell cycle, proliferation, and apoptosis. Immunohistochemical analysis of TNBC specimens showed a significantly different staining of p-ERK1/2 between GPER-positive tissues (58/66, 87.9%) and GPER-negative tissues (13/30, 43.3%). The positivity of GPER and p-ERK1/2 displayed a strong association with large tumor size and poor clinical stage, indicating that GPER/ERK signaling might also contribute to tumor progression in TNBC patients which corresponded with in vitro experimental data. Our findings suggest that inhibition of estrogen/GPER/ERK signaling represents a novel targeted therapy in TNBC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells.

    PubMed

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2017-07-01

    This study aimed at development of poly (lactic-co-glycolic acid) (PLGA) nanoparticles embedded with paclitaxel and coated with hyaluronic acid (HA-PTX-PLGA) to actively target the drug to a triple negative breast cancer cells. Nanoparticles were successfully fabricated using a modified oil-in-water emulsion method. The effect of various formulations parameters on the physicochemical properties of the nanoparticles was investigated. SEM imaging confirmed the spherical shape and nano-scale size of the nanoparticles. A sustained drug release profile was obtained and enhanced PTX cytotoxicity was observed when MDA-MB-231 cells were incubated with the HA-PTX-PLGA formulation compared to cells incubated with the non-HA coated nanoparticles. Moreover, HA-PLGA nanoparticles exhibited improved cellular uptake, based on a possible receptor mediated endocytosis due to interaction of HA with CD44 receptors when compared to non-coated PLGA nanoparticles. The non-haemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6.

    PubMed

    Hsiao, Yu-Chun; Yeh, Ming-Hsin; Chen, Yun-Ju; Liu, Ju-Fang; Tang, Chih-Hsin; Huang, Wei-Chien

    2015-11-10

    Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor (TKI), has been approved for HER2-positive breast cancer patients. Nevertheless, its inhibitory effect on EGFR did not deliver clinical benefits for triple-negative breast cancer (TNBC) patients even EGFR overexpression was frequently found in this disease. Moreover, lapatinib was unexpectedly found to enhance metastasis of TNBC cells, but the underlying mechanisms are not fully understood. In this study, we explored that the level of interleukin-6 (IL-6) was elevated in lapatinib-treated TNBC cells. Treatment with IL-6 antibody abolished the lapatinib-induced migration. Mechanistically, the signaling axis of Raf-1/mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinases (JNKs), p38 MAPK, and activator protein 1 (AP-1) was activated in response to lapatinib treatment to induce IL-6 expression. Furthermore, our data showed that microRNA-7 directly binds and inhibits Raf-1 3'UTR activity, and that down-regulation of miR-7 by lapatinib contributes to the activation of Raf-1 signaling pathway and the induction of IL-6 expression. Our results not only revealed IL-6 as a key regulator of lapatinib-induced metastasis, but also explored the requirement of miR7/Raf-1/MAPK/AP-1 axis in lapatinib-induced IL-6 expression.

  5. Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6

    PubMed Central

    Chen, Yun-Ju; Liu, Ju-Fang; Tang, Chih-Hsin; Huang, Wei-Chien

    2015-01-01

    Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor (TKI), has been approved for HER2-positive breast cancer patients. Nevertheless, its inhibitory effect on EGFR did not deliver clinical benefits for triple-negative breast cancer (TNBC) patients even EGFR overexpression was frequently found in this disease. Moreover, lapatinib was unexpectedly found to enhance metastasis of TNBC cells, but the underlying mechanisms are not fully understood. In this study, we explored that the level of interleukin-6 (IL-6) was elevated in lapatinib-treated TNBC cells. Treatment with IL-6 antibody abolished the lapatinib-induced migration. Mechanistically, the signaling axis of Raf-1/mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinases (JNKs), p38 MAPK, and activator protein 1 (AP-1) was activated in response to lapatinib treatment to induce IL-6 expression. Furthermore, our data showed that microRNA-7 directly binds and inhibits Raf-1 3′UTR activity, and that down-regulation of miR-7 by lapatinib contributes to the activation of Raf-1 signaling pathway and the induction of IL-6 expression. Our results not only revealed IL-6 as a key regulator of lapatinib-induced metastasis, but also explored the requirement of miR7/Raf-1/MAPK/AP-1 axis in lapatinib-induced IL-6 expression. PMID:26513016

  6. Molecular subtype shift in breast cancer upon trastuzumab treatment: a case report.

    PubMed

    Āboliņš, Arnis; Vanags, Andrejs; Trofimovičs, Genadijs; Miklaševičs, Edvīns; Gardovskis, Jānis; Štrumfa, Ilze

    2011-01-01

    Breast cancer is the most common cancer in women. The mortality remains significant despite advanced treatment possibilities. The management of breast cancer is guided by immunohistochemical data that are summarized into molecular subtypes, namely, luminal A, luminal B, HER2 positive and triple negative. HER2 positive and triple negative subtypes of breast cancer are considered to be biologically distinct. We present a case of clinically aggressive breast cancer in a 58-year-old female. Along the course of the disease, the molecular type switched from HER2 positive to triple negative. The patient deteriorated despite combined therapy. We recommend making a possible change of the molecular subtype and employing repeated immunohistochemical investigation in case of relapse.

  7. Role of Ultrasonography of Regional Nodal Basins in Staging Triple-Negative Breast Cancer and Implications For Local-Regional Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaitelman, Simona F., E-mail: sfshaitelman@mdanderson.org; Tereffe, Welela; Dogan, Basak E.

    2015-09-01

    Purpose: We sought to determine the rate at which regional nodal ultrasonography would increase the nodal disease stage in patients with triple-negative breast cancer (TNBC) beyond the clinical stage determined by physical examination and mammography alone, and significantly affect the treatments delivered to these patients. Methods and Materials: We retrospectively reviewed the charts of women with stages I to III TNBC who underwent physical examination, mammography, breast and regional nodal ultrasonography with needle biopsy of abnormal nodes, and definitive local-regional treatment at our institution between 2004 and 2011. The stages of these patients' disease with and without ultrasonography of the regionalmore » nodal basins were compared using the Pearson χ{sup 2} test. Definitive treatments of patients whose nodal disease was upstaged on the basis of ultrasonographic findings were compared to those of patients whose disease stage remained the same. Results: A total of 572 women met the study requirements. In 111 (19.4%) of these patients, regional nodal ultrasonography with needle biopsy resulted in an increase in disease stage from the original stage by physical examination and mammography alone. Significantly higher percentages of patients whose nodal disease was upstaged by ultrasonographic findings compared to that in patients whose disease was not upstaged underwent neoadjuvant systemic therapy (91.9% and 51.2%, respectively; P<.0001), axillary lymph node dissection (99.1% and 34.5%, respectively; P<.0001), and radiation to the regional nodal basins (88.2% and 29.1%, respectively; P<.0001). Conclusions: Regional nodal ultrasonography in TNBC frequently changes the initial clinical stage and plays an important role in treatment planning.« less

  8. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1).

    PubMed

    Bonnefoi, H; Grellety, T; Tredan, O; Saghatchian, M; Dalenc, F; Mailliez, A; L'Haridon, T; Cottu, P; Abadie-Lacourtoisie, S; You, B; Mousseau, M; Dauba, J; Del Piano, F; Desmoulins, I; Coussy, F; Madranges, N; Grenier, J; Bidard, F C; Proudhon, C; MacGrogan, G; Orsini, C; Pulido, M; Gonçalves, A

    2016-05-01

    Several expression array studies identified molecular apocrine breast cancer (BC) as a subtype that expresses androgen receptor (AR) but not estrogen receptor α. We carried out a multicentre single-arm phase II trial in women with AR-positive, estrogen, progesterone receptor and HER2-negative (triple-negative) metastatic or inoperable locally advanced BC to assess the efficacy and safety of abiraterone acetate (AA) plus prednisone. Patients with a metastatic or locally advanced, centrally reviewed, triple-negative and AR-positive (≥10% by immunohistochemistry, IHC) BC were eligible. Any number of previous lines of chemotherapy was allowed. AA (1000 mg) was administered once a day with prednisone (5 mg) twice a day until disease progression or intolerance. The primary end point was clinical benefit rate (CBR) at 6 months defined as the proportion of patients presenting a complete response (CR), partial response (PR) or stable disease (SD) ≥6 months. Secondary end points were objective response rate (ORR), progression-free survival (PFS) and safety. One hundred and forty-six patients from 27 centres consented for IHC central review. Of the 138 patients with sufficient tissue available, 53 (37.6%) were AR-positive and triple-negative, and 34 of them were included from July 2013 to December 2014. Thirty patients were eligible and evaluable for the primary end point. The 6-month CBR was 20.0% [95% confidence interval (CI) 7.7%-38.6%], including 1 CR and 5 SD ≥6 months, 5 of them still being under treatment at the time of analysis (6.4+, 9.2+, 14.5+, 17.6+, 23.4+ months). The ORR was 6.7% (95% CI 0.8%-22.1%). The median PFS was 2.8 months (95% CI 1.7%-5.4%). Fatigue, hypertension, hypokalaemia and nausea were the most common drug-related adverse events; the majority of them being grade 1 or 2. AA plus prednisone treatment is beneficial for some patients with molecular apocrine tumours and five patients are still on treatment. NCT01842321. © The Author 2016

  9. Stromal Fibroblasts from the Interface Zone of Triple Negative Breast Carcinomas Induced Epithelial-Mesenchymal Transition and its Inhibition by Emodin

    PubMed Central

    Wang, Hao-Yu; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Way, Tzong-Der

    2017-01-01

    Triple negative breast cancer” (TNBC) is associated with a higher rate and earlier time of recurrence and worse prognosis after recurrence. In this study, we aimed to examine the crosstalk between fibroblasts and TNBC cells. The fibroblasts were isolated from TNBC patients’ tissue in tumor burden zones, distal normal zones and interface zones. The fibroblasts were indicated as cancer-associated fibroblasts (CAFs), normal zone fibroblasts (NFs) and interface zone fibroblasts (INFs). Our study found that INFs grew significantly faster than NFs and CAFs in vitro. The epithelial BT20 cells cultured with the conditioned medium of INFs (INFs-CM) and CAFs (CAFs-CM) showed more spindle-like shape and cell scattering than cultured with the conditioned medium of NFs (NFs-CM). These results indicated that factors secreted by INFs-CM or CAFs-CM could induce the epithelial-mesenchymal transition (EMT) phenotype in BT20 cells. Using an in vitro co-culture model, INFs or CAFs induced EMT and promoted cancer cell migration in BT20 cells. Interestingly, we found that emodin inhibited INFs-CM or CAFs-CM-induced EMT programming and phenotype in BT20 cells. Previous studies reported that CAFs and INFs-secreted TGF-β promoted human breast cancer cell proliferation, here; our results indicated that TGF-β initiated EMT in BT20 cells. Pretreatment with emodin significantly suppressed the TGF-β-induced EMT and cell migration in BT20 cells. These results suggest that emodin may be used as a novel agent for the treatment of TNBC. PMID:28060811

  10. Dual Inhibition of Key Proliferation Signaling Pathways in Triple-Negative Breast Cancer Cells by a Novel Derivative of Taiwanin A.

    PubMed

    Kuo, Yueh-Hsiung; Chiang, En-Pei Isabel; Chao, Che-Yi; Rodriguez, Raymond L; Chou, Pei-Yu; Tsai, Shu-Yao; Pai, Man-Hui; Tang, Feng-Yao

    2017-03-01

    The treatment of breast cancer cells obtained by blocking the aberrant activation of the proliferation signaling pathways PI3K/Akt/mTOR and MEK/ERK has received considerable attention in recent years. Previous studies showed that Taiwanin A inhibited the proliferation of several types of cancer cells. In this study, we report that 3,4-bis-3,4,5-trimethoxybenzylidene-dihydrofuran (BTMB), a novel derivative of Taiwanin A, significantly inhibited the proliferation of triple-negative breast cancer (TNBC) cells both in vitro and in vivo The results show that BTMB inhibited the proliferation of human TNBC cells by the induction of cell-cycle arrest and apoptosis in a dose-dependent fashion. BTMB inhibited the expression of β-catenin, cdc2 and the cell-cycle regulatory proteins, cyclin A, cyclin D1, and cyclin E. The mechanism of action was associated with the suppression of cell survival signaling through inactivation of the Akt and ERK1/2 signaling pathways. Moreover, BTMB induced cell apoptosis through an increase in the expression of BAX, cleaved caspase-3, and cleaved PARP. Moreover, BTMB inhibited TNBC cell colony formation and sensitized TNBC cells to cisplatin, a chemotherapeutic drug. In a TNBC mouse xenograft model, BTMB significantly inhibited the growth of mammary carcinomas through decreased expression of cyclin D1. BTMB was shown to significantly suppress the growth of mammary carcinoma and therefore to have potential as an anticancer therapeutic agent. Mol Cancer Ther; 16(3); 480-93. ©2016 AACR . ©2016 American Association for Cancer Research.

  11. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances.

    PubMed

    Miller-Kleinhenz, Jasmine M; Bozeman, Erica N; Yang, Lily

    2015-01-01

    Effective treatment of triple-negative breast cancer (TNBC) with its aggressive tumor biology, highly heterogeneous tumor cells, and poor prognosis requires an integrated therapeutic approach that addresses critical issues in cancer therapy. Multifunctional nanoparticles with the abilities of targeted drug delivery and noninvasive imaging for monitoring drug delivery and responses to therapy, such as theranostic nanoparticles, hold great promise toward the development of novel therapeutic approaches for the treatment of TNBC using a single therapeutic platform. The biological and pathological characteristics of TNBC provide insight into several potential molecular targets for current and future nanoparticle-based therapeutics. Extensive tumor stroma, highly proliferative cells, and a high rate of drug resistance are all barriers that must be appropriately addressed in order for these nanotherapeutic platforms to be effective. Utilization of the enhanced permeability and retention effect coupled with active targeting of cell surface receptors expressed by TNBC cells, and tumor-associated endothelial cells, stromal fibroblasts, and macrophages is likely to overcome such barriers to facilitate more effective drug delivery. An in-depth summary of current studies investigating targeted nanoparticles in preclinical TNBC mouse and human xenograft models is presented. This review aims to outline the current status of nanotherapeutic options for TNBC patients, identification of promising molecular targets, challenges associated with the development of targeted nanotherapeutics, the research done by our group as well as by others, and future perspectives on the nanomedicine field and ways to translate current preclinical studies into the clinic. © 2015 Wiley Periodicals, Inc.

  12. Inhibition of Bone Marrow-Derived Mesenchymal Stem Cells Homing Towards Triple-Negative Breast Cancer Microenvironment Using an Anti-PDGFRβ Aptamer

    PubMed Central

    Camorani, Simona; Hill, Billy Samuel; Fontanella, Raffaela; Greco, Adelaide; Gramanzini, Matteo; Auletta, Luigi; Gargiulo, Sara; Albanese, Sandra; Lucarelli, Enrico; Cerchia, Laura; Zannetti, Antonella

    2017-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are shown to participate in tumor progression by establishing a favorable tumor microenvironment (TME) that promote metastasis through a cytokine networks. However, the mechanism of homing and recruitment of BM-MSCs into tumors and their potential role in malignant tissue progression is poorly understood and controversial. Here we show that BM-MSCs increase aggressiveness of triple-negative breast cancer (TNBC) cell lines evaluated as capability to migrate, invade and acquire stemness markers. Importantly, we demonstrate that the treatment of BM-MSCs with a nuclease-resistant RNA aptamer against platelet-derived growth factor receptor β (PDGFRβ) causes the inhibition of receptor-dependent signaling pathways thus drastically hampering BM-MSC recruitment towards TNBC cell lines and BM-MSCs trans-differentiation into carcinoma-associated fibroblast (CAF)-like cells. Moreover, in vivo molecular imaging analysis demonstrated the aptamer ability to prevent BM-MSCs homing to TNBC xenografts. Collectively, our results indicate the anti-PDGFRβ aptamer as a novel therapeutic tool to interfere with BM-MSCs attraction to TNBC providing the rationale to further explore the aptamer in more complex pre-clinical settings. PMID:28912898

  13. Novel application of the published kinase inhibitor set to identify therapeutic targets and pathways in triple negative breast cancer subtypes

    PubMed Central

    Phamduy, Theresa B.; Chrisey, Douglas B.

    2017-01-01

    Triple negative breast cancers (TNBCs) have high recurrence and metastasis rates. Acquisition of a mesenchymal morphology and phenotype in addition to driving migration is a consequential process that promotes metastasis. Although some kinases are known to regulate a mesenchymal phenotype, the role for a substantial portion of the human kinome remains uncharacterized. Here we evaluated the Published Kinase Inhibitor Set (PKIS) and screened a panel of TNBC cell lines to evaluate the compounds’ effects on a mesenchymal phenotype. Our screen identified 36 hits representative of twelve kinase inhibitor chemotypes based on reversal of the mesenchymal cell morphology, which was then prioritized to twelve compounds based on gene expression and migratory behavior analyses. We selected the most active compound and confirmed mesenchymal reversal on transcript and protein levels with qRT-PCR and Western Blot. Finally, we utilized a kinase array to identify candidate kinases responsible for the EMT reversal. This investigation shows the novel application to identify previously unrecognized kinase pathways and targets in acquisition of a mesenchymal TNBC phenotype that warrant further investigation. Future studies will examine specific roles of the kinases in mechanisms responsible for acquisition of the mesenchymal and/or migratory phenotype. PMID:28771473

  14. Neoadjuvant Pembrolizumab + Decitabine Followed by Std Neoadj Chemo for Locally Advanced HER2- Breast Ca

    ClinicalTrials.gov

    2018-04-17

    Breast Adenocarcinoma; Estrogen Receptor- Negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; HER2/Neu Negative; Invasive Breast Carcinoma; Progesterone Receptor Negative; Progesterone Receptor Positive Tumor; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Triple-negative Breast Carcinoma

  15. Inhibition of growth hormone receptor by Somavert reduces expression of GPER and prevents growth stimulation of triple-negative breast cancer by 17β-estradiol

    PubMed Central

    Girgert, Rainer; Emons, Günter; Gründker, Carsten

    2018-01-01

    Currently, conventional chemotherapy is the only treatment option for triple-negative breast cancers (TNBC) due to a lack of a unique target. In TNBC, a high expression of the membrane bound G protein-coupled estrogen receptor (GPER), correlates with a worse outcome. There is a potential for an association between growth hormone receptor (GHR) and GPER expression. To confirm this hypothesis, GHR was inhibited in TNBC cells with Somavert, and GPER expression levels, and the effect on signal transduction and proliferation induction in TNBC cells were analyzed. Proliferation of TNBC cells was measured using an Alamar-blue assay. Expression of GPER and activation of c-src and epidermal growth factor receptor (EGFR) by 17β-estradiol was analyzed by western blotting. Induction of c-fos, cyclin D1 and aromatase expression was determined by reverse transcription-semi-quantitative polymerase chain reaction. The expression of GPER was concentration- and time-dependently reduced by Somavert down to 46±7% (P<0.01) of the control. Furthermore, 17β-estradiol significantly increased the cell number of HCC1806 cells to 128±14% (P<0.05), and that of MDA-MB-453 cells to 115±3%. This increase in cell number was reduced to 103±11% in HCC1806 cells in which GPER expression was downregulated by Somavert, and to 102±3% in MDA-MB-453 cells. In addition, 17β-estradiol increased the activation of c-src in HCC1806 cells by 1.8-fold, and Somavert reduced p-src to 63% of control. In MDA-MB-453 cells src phosphorylation increased by 7-fold upon stimulation with estradiol, but after treatment with Somavert only a 4-fold increase was observed. Phosphorylation of EGFR was increased by 2.2-fold of control in HCC1806 cells by 17β-estradiol, and by 1.4-fold in MDA-MD-453 cells. Somavert completely prevented this activation. Induction of cyclin D1 and aromatase expression by 17β-estradiol was also prevented by Somavert. Somavert reduces GPER expression in triple negative breast cancer cells

  16. Inhibition of growth hormone receptor by Somavert reduces expression of GPER and prevents growth stimulation of triple-negative breast cancer by 17β-estradiol.

    PubMed

    Girgert, Rainer; Emons, Günter; Gründker, Carsten

    2018-06-01

    Currently, conventional chemotherapy is the only treatment option for triple-negative breast cancers (TNBC) due to a lack of a unique target. In TNBC, a high expression of the membrane bound G protein-coupled estrogen receptor (GPER), correlates with a worse outcome. There is a potential for an association between growth hormone receptor (GHR) and GPER expression. To confirm this hypothesis, GHR was inhibited in TNBC cells with Somavert, and GPER expression levels, and the effect on signal transduction and proliferation induction in TNBC cells were analyzed. Proliferation of TNBC cells was measured using an Alamar-blue assay. Expression of GPER and activation of c-src and epidermal growth factor receptor (EGFR) by 17β-estradiol was analyzed by western blotting. Induction of c-fos, cyclin D1 and aromatase expression was determined by reverse transcription-semi-quantitative polymerase chain reaction. The expression of GPER was concentration- and time-dependently reduced by Somavert down to 46±7% (P<0.01) of the control. Furthermore, 17β-estradiol significantly increased the cell number of HCC1806 cells to 128±14% (P<0.05), and that of MDA-MB-453 cells to 115±3%. This increase in cell number was reduced to 103±11% in HCC1806 cells in which GPER expression was downregulated by Somavert, and to 102±3% in MDA-MB-453 cells. In addition, 17β-estradiol increased the activation of c-src in HCC1806 cells by 1.8-fold, and Somavert reduced p-src to 63% of control. In MDA-MB-453 cells src phosphorylation increased by 7-fold upon stimulation with estradiol, but after treatment with Somavert only a 4-fold increase was observed. Phosphorylation of EGFR was increased by 2.2-fold of control in HCC1806 cells by 17β-estradiol, and by 1.4-fold in MDA-MD-453 cells. Somavert completely prevented this activation. Induction of cyclin D1 and aromatase expression by 17β-estradiol was also prevented by Somavert. Somavert reduces GPER expression in triple negative breast cancer cells

  17. A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients

    PubMed Central

    Cheng, Lijun; Schneider, Bryan P

    2016-01-01

    Background Cancer has been extensively characterized on the basis of genomics. The integration of genetic information about cancers with data on how the cancers respond to target based therapy to help to optimum cancer treatment. Objective The increasing usage of sequencing technology in cancer research and clinical practice has enormously advanced our understanding of cancer mechanisms. The cancer precision medicine is becoming a reality. Although off-label drug usage is a common practice in treating cancer, it suffers from the lack of knowledge base for proper cancer drug selections. This eminent need has become even more apparent considering the upcoming genomics data. Methods In this paper, a personalized medicine knowledge base is constructed by integrating various cancer drugs, drug-target database, and knowledge sources for the proper cancer drugs and their target selections. Based on the knowledge base, a bioinformatics approach for cancer drugs selection in precision medicine is developed. It integrates personal molecular profile data, including copy number variation, mutation, and gene expression. Results By analyzing the 85 triple negative breast cancer (TNBC) patient data in the Cancer Genome Altar, we have shown that 71.7% of the TNBC patients have FDA approved drug targets, and 51.7% of the patients have more than one drug target. Sixty-five drug targets are identified as TNBC treatment targets and 85 candidate drugs are recommended. Many existing TNBC candidate targets, such as Poly (ADP-Ribose) Polymerase 1 (PARP1), Cell division protein kinase 6 (CDK6), epidermal growth factor receptor, etc., were identified. On the other hand, we found some additional targets that are not yet fully investigated in the TNBC, such as Gamma-Glutamyl Hydrolase (GGH), Thymidylate Synthetase (TYMS), Protein Tyrosine Kinase 6 (PTK6), Topoisomerase (DNA) I, Mitochondrial (TOP1MT), Smoothened, Frizzled Class Receptor (SMO), etc. Our additional analysis of target and drug

  18. Revealing the Molecular Portrait of Triple Negative Breast Tumors in an Understudied Population through Omics Analysis of Formalin-Fixed and Paraffin-Embedded Tissues

    PubMed Central

    Vaca-Paniagua, Felipe; Alvarez-Gomez, Rosa María; Maldonado-Martínez, Hector Aquiles; Pérez-Plasencia, Carlos; Fragoso-Ontiveros, Veronica; Lasa-Gonsebatt, Federico; Herrera, Luis Alonso; Cantú, David; Bargallo-Rocha, Enrique; Mohar, Alejandro; Durand, Geoffroy; Forey, Nathalie; Voegele, Catherine; Vallée, Maxime; Le Calvez-Kelm, Florence; McKay, James; Ardin, Maude; Villar, Stéphanie; Zavadil, Jiri; Olivier, Magali

    2015-01-01

    Triple negative breast cancer (TNBC), defined by the lack of expression of the estrogen receptor, progesterone receptor and human epidermal receptor 2, is an aggressive form of breast cancer that is more prevalent in certain populations, in particular in low- and middle-income regions. The detailed molecular features of TNBC in these regions remain unexplored as samples are mostly accessible as formalin-fixed paraffin embedded (FFPE) archived tissues, a challenging material for advanced genomic and transcriptomic studies. Using dedicated reagents and analysis pipelines, we performed whole exome sequencing and miRNA and mRNA profiling of 12 FFPE tumor tissues collected from pathological archives in Mexico. Sequencing analyses of the tumor tissues and their blood pairs identified TP53 and RB1 genes as the most frequently mutated genes, with a somatic mutation load of 1.7 mutations/exome Mb on average. Transcriptional analyses revealed an overexpression of growth-promoting signals (EGFR, PDGFR, VEGF, PIK3CA, FOXM1), a repression of cell cycle control pathways (TP53, RB1), a deregulation of DNA-repair pathways, and alterations in epigenetic modifiers through miRNA:mRNA network de-regulation. The molecular programs identified were typical of those described in basal-like tumors in other populations. This work demonstrates the feasibility of using archived clinical samples for advanced integrated genomics analyses. It thus opens up opportunities for investigating molecular features of tumors from regions where only FFPE tissues are available, allowing retrospective studies on the search for treatment strategies or on the exploration of the geographic diversity of breast cancer. PMID:25961742

  19. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer

    PubMed Central

    Jadaliha, Mahdieh; Zong, Xinying; Malakar, Pushkar; Ray, Tania; Singh, Deepak K.; Freier, Susan M.; Jensen, Tor; Prasanth, Supriya G.; Karni, Rotem; Ray, Partha S.; Prasanth, Kannanganattu V.

    2016-01-01

    MALAT1 (metastasis associated lung adenocarcinoma transcript1) is a conserved long non-coding RNA, known to regulate gene expression by modulating transcription and post-transcriptional pre-mRNA processing of a large number of genes. MALAT1 expression is deregulated in various tumors, including breast cancer. However, the significance of such abnormal expression is yet to be fully understood. In this study, we demonstrate that regulation of aggressive breast cancer cell traits by MALAT1 is not predicted solely based on an elevated expression level but is context specific. By performing loss- and gain-of-function studies, both under in vitro and in vivo conditions, we demonstrate that MALAT1 facilitates cell proliferation, tumor progression and metastasis of triple-negative breast cancer (TNBC) cells despite having a comparatively lower expression level than ER or HER2-positive breast cancer cells. Furthermore, MALAT1 regulates the expression of several cancer metastasis-related genes, but displays molecular subtype specific correlations with such genes. Assessment of the prognostic significance of MALAT1 in human breast cancer (n=1992) revealed elevated MALAT1 expression was associated with decreased disease-specific survival in ER negative, lymph node negative patients of the HER2 and TNBC molecular subtypes. Multivariable analysis confirmed MALAT1 to have independent prognostic significance in the TNBC lymph node negative patient subset (HR=2.64, 95%CI 1.35 − 5.16, p=0.005). We propose that the functional significance of MALAT1 as a metastasis driver and its potential use as a prognostic marker is most promising for those patients diagnosed with ER negative, lymph node negative breast cancer who might otherwise mistakenly be stratified to have low recurrence risk. PMID:27250026

  20. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer.

    PubMed

    Jadaliha, Mahdieh; Zong, Xinying; Malakar, Pushkar; Ray, Tania; Singh, Deepak K; Freier, Susan M; Jensen, Tor; Prasanth, Supriya G; Karni, Rotem; Ray, Partha S; Prasanth, Kannanganattu V

    2016-06-28

    MALAT1 (metastasis associated lung adenocarcinoma transcript1) is a conserved long non-coding RNA, known to regulate gene expression by modulating transcription and post-transcriptional pre-mRNA processing of a large number of genes. MALAT1 expression is deregulated in various tumors, including breast cancer. However, the significance of such abnormal expression is yet to be fully understood. In this study, we demonstrate that regulation of aggressive breast cancer cell traits by MALAT1 is not predicted solely based on an elevated expression level but is context specific. By performing loss- and gain-of-function studies, both under in vitro and in vivo conditions, we demonstrate that MALAT1 facilitates cell proliferation, tumor progression and metastasis of triple-negative breast cancer (TNBC) cells despite having a comparatively lower expression level than ER or HER2-positive breast cancer cells. Furthermore, MALAT1 regulates the expression of several cancer metastasis-related genes, but displays molecular subtype specific correlations with such genes. Assessment of the prognostic significance of MALAT1 in human breast cancer (n=1992) revealed elevated MALAT1 expression was associated with decreased disease-specific survival in ER negative, lymph node negative patients of the HER2 and TNBC molecular subtypes. Multivariable analysis confirmed MALAT1 to have independent prognostic significance in the TNBC lymph node negative patient subset (HR=2.64, 95%CI 1.35- 5.16, p=0.005). We propose that the functional significance of MALAT1 as a metastasis driver and its potential use as a prognostic marker is most promising for those patients diagnosed with ER negative, lymph node negative breast cancer who might otherwise mistakenly be stratified to have low recurrence risk.

  1. Prevention of ER-Negative Breast Cancer

    PubMed Central

    Li, Yuxin

    2014-01-01

    The successful demonstration that the selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene reduce the risk of breast cancer has stimulated great interest in using drugs to prevent breast cancer in high-risk women. In addition, recent results from breast cancer treatment trials suggest that aromatase inhibitors may be even more effective at preventing breast cancer than are SERMs. However, while SERMs and aromatase inhibitors do prevent the development of many estrogen-receptor (ER)-positive breast cancers, these drugs do not prevent the development of ER-negative breast cancer. Thus, there is an urgent need to identify agents that can prevent ER-negative breast cancer. We have studied the cancer preventative activity of several classes of drugs for their ability to prevent ER-negative breast cancer in preclinical models. Results from these studies demonstrate that rexinoids (analogs of retinoids that bind and activate RXR receptors), tyrosine kinase inhibitors (such as EGFR inhibitors and dual kinase inhibitors that block EGFR and HER2/neu signaling), and cyclo-oxygenase 2 (COX-2) inhibitors all prevent ER-negative breast cancer in transgenic mice that develop ER-negative breast cancer. Other promising agents now under investigation include vitamin D and vitamin D analogs, drugs that activate PPAR-gamma nuclear receptors, and statins. Many of these agents are now being tested in early phase cancer prevention clinical trials to determine whether they will show activity in breast tissue and whether they are safe for use in high-risk women without breast cancer. The current status of these studies will be reviewed. It is anticipated that in the future, drugs that effectively prevent ER-negative breast cancer will be used in combination with hormonal agents such SERMs or aromatase inhibitors to prevent all forms of breast cancer. PMID:19213564

  2. Effect of BRCA germline mutations on breast cancer prognosis

    PubMed Central

    Baretta, Zora; Mocellin, Simone; Goldin, Elena; Olopade, Olufunmilayo I.; Huo, Dezheng

    2016-01-01

    Abstract Background: The contribution of BRCA germline mutational status to breast cancer patients’ prognosis is unclear. We aimed to systematically review and perform meta-analysis of the available evidence of effects of BRCA germline mutations on multiple survival outcomes of breast cancer patients as a whole and in specific subgroups of interest, including those with triple negative breast cancer, those with Ashkenazi Jewish ancestry, and patients with stage I–III disease. Methods: Sixty studies met all inclusion criteria and were considered for this meta-analysis. These studies involved 105,220 breast cancer patients, whose 3588 (3.4%) were BRCA mutations carriers. The associations between BRCA genes mutational status and overall survival (OS), breast cancer-specific survival (BCSS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were evaluated using random-effect models. Results: BRCA1 mutation carriers have worse OS than BRCA-negative/sporadic cases (hazard ratio, HR 1.30, 95% CI: 1.11–1.52) and worse BCSS than sporadic/BRCA-negative cases among patients with stage I–III breast cancer (HR 1.45, 95% CI: 1.01–2.07). BRCA2 mutation carriers have worse BCSS than sporadic/BRCA-negative cases (HR 1.29, 95% CI: 1.03–1.62), although they have similar OS. Among triple negative breast cancer, BRCA1/2 mutations carriers had better OS than BRCA-negative counterpart (HR 0.49, 95% CI: 0.26–0.92). Among Ashkenazi Jewish women, BRCA1/2 mutations carriers presented higher risk of death from breast cancer (HR 1.44, 95% CI: 1.05–1.97) and of distant metastases (HR 1.82, 95% CI: 1.05–3.16) than sporadic/BRCA-negative patients. Conclusion: Our results support the evaluation of BRCA mutational status in patients with high risk of harboring BRCA germline mutations to better define the prognosis of breast cancer in these patients. PMID:27749552

  3. H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells.

    PubMed

    Pandolfi, Laura; Bellini, Michela; Vanna, Renzo; Morasso, Carlo; Zago, Andrea; Carcano, Sofia; Avvakumova, Svetlana; Bertolini, Jessica Armida; Rizzuto, Maria Antonietta; Colombo, Miriam; Prosperi, Davide

    2017-10-09

    Triple negative breast cancer (TNBC) is a highly aggressive, invasive, and metastatic tumor. Although it is reported to be sensitive to cytotoxic chemotherapeutics, frequent relapse and chemoresistance often result in treatment failure. In this study, we developed a biomimetic nanodrug consisting of a self-assembling variant (HFn) of human apoferritin loaded with curcumin. HFn nanocage improved the solubility, chemical stability, and bioavailability of curcumin, allowing us to reliably carry out several experiments in the attempt to establish the potential of this molecule as a therapeutic agent and elucidate the mechanism of action in TNBC. HFn biopolymer was designed to bind selectively to the TfR1 receptor overexpressed in TNBC cells. HFn-curcumin (CFn) proved to be more effective in viability assays compared to the drug alone using MDA-MB-468 and MDA-MB-231 cell lines, representative of basal and claudin-low TNBC subtypes, respectively. Cellular uptake of CFn was demonstrated by flow cytometry and label-free confocal Raman imaging. CFn could act as a chemosensitizer enhancing the cytotoxic effect of doxorubicin by interfering with the activity of multidrug resistance transporters. In addition, CFn exhibited different cell cycle effects on these two TNBC cell lines, blocking MDA-MB-231 in G0/G1 phase, whereas MDA-MB-468 accumulated in G2/M phase. CFn was able to inhibit the Akt phosphorylation, suggesting that the effect on the proliferation and cell cycle involved the alteration of PI3K/Akt pathway.

  4. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells.

    PubMed

    Smith, Matthew L; Murphy, Kaylee; Doucette, Carolyn D; Greenshields, Anna L; Hoskin, David W

    2016-08-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a flavonoid found in a number of fruits and vegetables, has diverse biological activities, including cytotoxic effects on cancer cells. In this study, we investigated the effect of fisetin on triple-negative breast cancer (TNBC) cells. TNBC has a poorer prognosis than other types of breast cancer and treatment options for this disease are limited. Fisetin inhibited the growth of MDA-MB-468 and MDA-MB-231 TNBC cells, as well as their ability to form colonies, without substantially affecting the growth of non-malignant cells. In addition, fisetin inhibited the growth of estrogen receptor-bearing MCF-7 breast cancer cells and human epidermal growth factor receptor 2-overexpressing SK-BR-3 breast cancer cells. Fisetin inhibited TNBC cell division and induced apoptosis, which was associated with mitochondrial membrane permeabilization and the activation of caspase-9 and caspase-8, as well as the cleavage of poly(ADP-ribose) polymerase-1. Induction of caspase-dependent apoptosis by fisetin was confirmed by reduced killing of TNBC cells in the presence of the pan-caspase inhibitors Z-VAD-FMK and BOC-D-FMK. Decreased phosphorylation of histone H3 at serine 10 in fisetin-treated TNBC cells at G2/M phase of the cell cycle suggested that fisetin-induced apoptosis was the result of Aurora B kinase inhibition. Interestingly, the cytotoxic effect of cisplatin, 5-fluorouracil, and 4-hydroxycyclophosphamide metabolite of cyclophosphamide on TNBC cells was increased in the presence of fisetin. These findings suggest that further investigation of fisetin is warranted for possible use in the management of TNBC. J. Cell. Biochem. 117: 1913-1925, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells.

    PubMed

    Koike, Yoshikazu; Ohta, Yusuke; Saitoh, Wataru; Yamashita, Tetsumasa; Kanomata, Naoki; Moriya, Takuya; Kurebayashi, Junichi

    2017-09-01

    Triple-negative breast cancer (TNBC) exhibits biologically aggressive behavior and has a poor prognosis. Novel molecular targeting agents are needed to control TNBC. Recent studies revealed that the non-canonical hedgehog (Hh) signaling pathway plays important roles in the regulation of cancer stem cells (CSCs) in breast cancer. Therefore, the anti-cell growth and anti-CSC effects of the non-canonical Hh inhibitor GANT61 were investigated in TNBC cells. The effects of GANT61 on cell growth, cell cycle progression, apoptosis, and the proportion of CSCs were investigated in three TNBC cell lines. Four ER-positive breast cancer cell lines were also used for comparisons. The expression levels of effector molecules in the Hh pathway: glioma-associated oncogene (GLI) 1 and GLI2, were measured. The combined effects of GANT61 and paclitaxel on anti-cell growth and anti-CSC activities were also investigated. Basal expression levels of GLI1 and GLI2 were significantly higher in TNBC cells than in ER-positive breast cancer cells. GANT61 dose-dependently decreased cell growth in association with G1-S cell cycle retardation and increased apoptosis. GANT61 significantly decreased the CSC proportion in all TNBC cell lines. Paclitaxel decreased cell growth, but not the CSC proportion. Combined treatments of GANT61 and paclitaxel more than additively enhanced anti-cell growth and/or anti-CSC activities. The non-canonical Hh inhibitor GANT61 decreased not only cell growth, but also the CSC population in TNBC cells. GANT61 enhanced the anti-cell growth activity of paclitaxel in these cells. These results suggest for the first time that GANT61 has potential as a therapeutic agent in the treatment of patients with TNBC.

  6. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma.

    PubMed

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Marike Boezen, H; de Bock, Geertruida H; van der Graaf, Winette T A; Wesseling, Jelle

    2011-10-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast carcinoma (IDC), the most common type of breast cancer. Immunohistochemistry was performed on tumor tissue of a consecutive cohort of 429 female patients treated for operable primary IDC. Associations between IGF1R expression with clinicopathological parameters, disease free survival (DFS) and breast cancer specific survival (BCSS) were evaluated by multivariate analyses focusing on ER-positive and triple negative IDC (TN-IDC). To enlarge the TN-IDCs cohort, we analyzed a combined dataset of 51 TN-IDC tumors from our series with 64 TN-IDCs with similar clinicopathological parameters. Patients with tumors expressing cytoplasmic IGF1R have a longer DFS and BCSS (DFS: HR 0.46, 95% CI 0.27-0.49, P = 0.005, BCSS: HR 0.38, 95% CI 0.19-0.74, P = 0.005). This effect was most prominent in ER-positive tumors. However, in a combined series of 105 TN-IDCs cytoplasmic IGF1R expression was associated with a shorter DFS (HR = 2.29, 95% CI 1.08-4.84, P = 0.03), also when combined in a multivariate model, including well-known prognostic factors (HR 2.06; 95% CI 0.95-4.47; P = 0.07). IGF1R expression in ER-positive IDC is strongly related to a favorable DFS and BCSS, but to a shorter DFS in TN-IDC tumors. This divergent effect of IGF1R expression in subgroups of IDC may affect selection of patients for IGF1R targeted therapy.

  7. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil

    PubMed Central

    2014-01-01

    Background To compare the distribution of the intrinsic molecular subtypes of breast cancer based on immunohistochemical profile in the five major geographic regions of Brazil, a country of continental dimension, with a wide racial variation of people. Methods The study was retrospective observational. We classified 5,687 invasive breast cancers by molecular subtype based on immunohistochemical expression of estrogen-receptor (ER), progesterone-receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 proliferation index. Cases were classified as luminal A (ER and/or PR positive and HER2 negative, Ki-67 < 14%), luminal B (ER and/or PR positive, HER2 negative, and Ki-67 > 14%), triple-positive (ER and/or PR positive and HER2 positive), HER2-enriched (ER and PR negative, and HER2- positive), and triple-negative (TN) (ER negative, PR negative, and HER2- negative). Comparisons of the ages of patients and molecular subtypes between different geographic regions were performed. Results South and Southeast regions with a higher percentage of European ancestry and higher socioeconomic status presented with the highest proportion of luminal tumors. The North region presented with more aggressive subtypes (HER2-enriched and triple-negative), while the Central-West region predominated triple-positive carcinomas. The Northeast—a region with a high African influence—presented intermediate frequency of the different molecular subtypes. The differences persisted in subgroups of patients under and over 50 years. Conclusions The geographic regions differ according to the distribution of molecular subtypes of breast cancer. However, other differences, beside those related to African ancestry, such as socioeconomic, climatic, nutritional, and geographic, have to be considered to explain our results. The knowledge of the differences in breast cancer characteristics among the geographic regions may help to organize healthcare programs in large countries

  8. Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women.

    PubMed

    Yeong, Joe; Thike, Aye Aye; Ikeda, Murasaki; Lim, Jeffrey Chun Tatt; Lee, Bernett; Nakamura, Seigo; Iqbal, Jabed; Tan, Puay Hoon

    2018-02-01

    Triple-negative breast cancers (TNBCs) are defined by their lack of oestrogen receptor, progesterone receptor and epidermal growth factor receptor 2. Although heterogeneous, the majority are aggressive and treatment options are limited. Caveolin acts as tumour suppressor or promoter depending on the cancer type. In this study, we aimed to determine if the expression levels of the candidate biomarker caveolin-1 on stromal or tumour cells were associated with clinicopathological parameters and disease outcomes in TNBCs from an ethnically diverse cohort of Asian women. Tumour specimens from 699 women with TNBC were subjected to immunohistochemical analysis of the frequency and intensity of caveolin-1 expression in tumour and stromal cells. A subset of 141 tumour samples also underwent Nanostring measurement of CAV1 mRNA. Results were correlated with clinicopathological parameters and disease outcomes. Expression of caveolin-1 in stromal cells was observed in 14.4% of TNBC cases. TNBCs of the basal-like phenotype (85% of samples) were significantly more likely to exhibit stromal cell caveolin-1 expression (p=0.028), as were those with a trabecular growth pattern (p=0.007). Lack of stromal caveolin-1 expression in both TNBCs and those with the basal-like phenotype was significantly associated with worse overall survival (p=0.009 and p=0.026, respectively): accordingly, increasing mRNA levels of CAV1 in TNBC samples predicted better overall survival. Caveolin-1 expression on TNBC tumour cells was not associated with clinical outcome. Stromal, but not tumoural, caveolin-1 expression is significantly associated with survival in Asian women with TNBC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Synthetic Lethal Strategy Identifies a Potent and Selective TTK and CLK2 Inhibitor for Treatment of Triple-negative Breast Cancer with a Compromised G1/S Checkpoint.

    PubMed

    Zhu, Dan; Xu, Shuichan; Deyanat-Yazdi, Gordafaried; Peng, Sophie X; Barnes, Leo A; Narla, Rama Krishna; Tran, Tam; Mikolon, David; Ning, Yuhong; Shi, Tao; Jiang, Ning; Raymon, Heather K; Riggs, Jennifer R; Boylan, John F

    2018-06-04

    Historically, phenotypic-based drug discovery has yielded a high percentage of novel drugs while uncovering new tumor biology. CC-671 was discovered using a phenotypic screen for compounds that preferentially induced apoptosis in triple negative breast cancer cell lines while sparing luminal breast cancer cell lines. Detailed in vitro kinase profiling shows CC-671 potently and selectively inhibits two kinases-TTK and CLK2. Cellular mechanism of action studies demonstrate that CC-671 potently inhibits the phosphorylation of KNL1 and SRp75, direct TTK and CLK2 substrates, respectively. Furthermore, CC-671 causes mitotic acceleration and modification of pre-mRNA splicing leading to apoptosis, consistent with cellular TTK and CLK inhibition. Correlative analysis of genomic and potency data against a large panel of breast cancer cell lines identifies breast cancer cells with a dysfunctional G1/S checkpoint as more sensitive to CC-671, suggesting synthetic lethality between G1/S checkpoint and TTK/CLK2 inhibition. Furthermore, significant in vivo CC-671 efficacy was demonstrated in two cell line-derived and one patient tumor-derived xenograft models of TNBC following weekly dosing. These findings are the first to demonstrate the unique inhibitory combination activity of a dual TTK/CLK2 inhibitor that preferably kills TNBC cells and shows synthetic lethality with a compromised G1/S checkpoint in breast cancer cell lines. Based on these data, CC-671 was moved forward for clinical development as a potent and selective TTK/CLK2 inhibitor in a subset of TNBC patients. Copyright ©2018, American Association for Cancer Research.

  10. MK2206 in Treating Patients With Stage I, Stage II, or Stage III Breast Cancer

    ClinicalTrials.gov

    2017-08-01

    Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; HER2/Neu Positive; Progesterone Receptor Negative; Progesterone Receptor Positive; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-Negative Breast Carcinoma

  11. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide.

    PubMed

    Knickle, Allison; Fernando, Wasundara; Greenshields, Anna L; Rupasinghe, H P Vasantha; Hoskin, David W

    2018-05-06

    Myricetin is a dietary phytochemical with anticancer activity; however, the effect of myricetin on breast cancer cells remains unclear. Here, we show that myricetin inhibited the growth of triple-negative breast cancer (TNBC) cells but was less inhibitory for normal cells. The effect of myricetin was comparable to epigallocatechin gallate and doxorubicin, and greater than resveratrol and cisplatin. Myricetin-treated TNBC cells showed evidence of early and late apoptosis/necrosis, which was associated with intracellular reactive oxygen species (ROS) accumulation, extracellular regulated kinase 1/2 and p38 mitogen-activated protein kinase activation, mitochondrial membrane destabilization and cytochrome c release, and double-strand DNA breaks. The antioxidant N-acetyl-cysteine protected myricetin-treated TNBC cells from cytotoxicity due to DNA damage. Myricetin also induced hydrogen peroxide (H 2 O 2 ) production in cell-free culture medium, as well as in the presence of TNBC cells and normal cells. In addition, deferriprone-mediated inhibition of intracellular ROS generation via the iron-dependent Fenton reaction and inhibition of extracellular ROS accumulation with superoxide dismutase plus catalase prevented myricetin-induced cytotoxicity in TNBC cell cultures. We conclude that the cytotoxic effect of myricetin on TNBC cells was due to oxidative stress initiated by extracellular H 2 O 2 formed by autoxidation of myricetin, leading to intracellular ROS production via the Fenton reaction. Copyright © 2018. Published by Elsevier Ltd.

  12. Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and "BRCA-Like" Status, in Both Blood and Tumour DNA.

    PubMed

    Daniels, Sarah L; Burghel, George J; Chambers, Philip; Al-Baba, Shadi; Connley, Daniel D; Brock, Ian W; Cramp, Helen E; Dotsenko, Olena; Wilks, Octavia; Wyld, Lynda; Cross, Simon S; Cox, Angela

    2016-01-01

    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies.

  13. Expression of HIF-1α and Markers of Angiogenesis Are Not Significantly Different in Triple Negative Breast Cancer Compared to Other Breast Cancer Molecular Subtypes: Implications for Future Therapy.

    PubMed

    Yehia, Lamis; Boulos, Fouad; Jabbour, Mark; Mahfoud, Ziyad; Fakhruddin, Najla; El-Sabban, Marwan

    2015-01-01

    Triple negative breast cancer lacks estrogen, progesterone and epidermal growth factor receptors rendering it refractory to available targetedtherapies. TNBC is associated with central fibrosis and necrosis, both indicators of tumor hypoxia. Hypoxia inducible factor 1α is up-regulated under hypoxia and its expression is associated with induction of angiogenesis resulting in proliferation, aggressive tumor phenotype and metastasis. In this study we evaluate the potential use of HIF-1α as aTNBC-specific marker. 62 TNBC, 64 HER2+, and 64 hormone-receptors positive breast cancer cases were evaluated for central fibrosis and necrosis, HIF-1α, HIF-1β, VEGFR3, CD31 expression and microvessel density. RNA extraction from paraffin-embedded samples, followed by quantitative real-time polymerase chain reaction (qRT-PCR) evaluation of HIF-1α and VEGF transcripts was performed on 54 cases (18 from each subtype). HIF-1α protein was expressed in 35.5% TNBC, 45.3% HER2+and 25.0% ER+/PR+ (p = 0.055; χ2 test). PCRanalysis of subgroup of breast cancers, 84.2% expressed HIF-1α protein and its transcripts, while only 66.7% expressed VEGF transcripts simultaneously with the HIF-1α protein and its transcripts. Central fibrosis and necrosis was highest in TNBC (p = 0.015; χ2 test), while MVD was comparable among all groups (p = 0.928; χ2 test). VEGFR3 was highest in TNBC expressing HIF-1α. HIF-1β protein was expressed in 32.0% of HIF-1α(+), and in (44.3%) of HIF-1α(-) breast cancer cases (p = 0.033; χ2 test). Moreover, HIF-1α expression in cases with central fibrosis and necrosis was highest in the HER2+ followed by the TNBC (p = 0.156; χ2 test). A proportion of TNBC express HIF-1α but not in a significantly different manner from other breast cancer subtypes. The potential of anti-HIF-1α targeted therapy is therefore not a candidate for exclusive use in TNBC, but should be considered in all breast cancers, especially in the setting of clinically aggressive or

  14. Paclitaxel Albumin-Stabilized Nanoparticle Formulation in Treating Older Patients With Locally Advanced or Metastatic Breast Cancer

    ClinicalTrials.gov

    2018-03-05

    Male Breast Cancer; Recurrent Breast Cancer; Stage IV Breast Cancer; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-negative Breast Cancer

  15. Distinct Microbial Signatures Associated With Different Breast Cancer Types

    PubMed Central

    Banerjee, Sagarika; Tian, Tian; Wei, Zhi; Shih, Natalie; Feldman, Michael D.; Peck, Kristen N.; DeMichele, Angela M.; Alwine, James C.; Robertson, Erle S.

    2018-01-01

    A dysbiotic microbiome can potentially contribute to the pathogenesis of many different diseases including cancer. Breast cancer is the second leading cause of cancer death in women. Thus, we investigated the diversity of the microbiome in the four major types of breast cancer: endocrine receptor (ER) positive, triple positive, Her2 positive and triple negative breast cancers. Using a whole genome and transcriptome amplification and a pan-pathogen microarray (PathoChip) strategy, we detected unique and common viral, bacterial, fungal and parasitic signatures for each of the breast cancer types. These were validated by PCR and Sanger sequencing. Hierarchical cluster analysis of the breast cancer samples, based on their detected microbial signatures, showed distinct patterns for the triple negative and triple positive samples, while the ER positive and Her2 positive samples shared similar microbial signatures. These signatures, unique or common to the different breast cancer types, provide a new line of investigation to gain further insights into prognosis, treatment strategies and clinical outcome, as well as better understanding of the role of the micro-organisms in the development and progression of breast cancer. PMID:29867857

  16. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer.

    PubMed

    He, Chunsheng; Cai, Ping; Li, Jason; Zhang, Tian; Lin, Lucy; Abbasi, Azhar Z; Henderson, Jeffrey T; Rauth, Andrew Michael; Wu, Xiao Yu

    2017-01-28

    Brain metastasis is a fatal disease with limited treatment options and very short survival. Although systemic chemotherapy has some effect on peripheral metastases of breast cancer, it is ineffective in treating brain metastasis due largely to the blood-brain barrier (BBB). Here we developed a BBB-penetrating amphiphilic polymer-lipid nanoparticle (NP) system that efficiently delivered anti-mitotic drug docetaxel (DTX) for the treatment of brain metastasis of triple negative breast cancer (TNBC). We evaluated the biodistribution, brain accumulation, pharmacokinetics and efficacy of DTX-NP in a mouse model of brain metastasis of TNBC. Confocal fluorescence microscopy revealed extravasation of dye-loaded NPs from intact brain microvessels in healthy mice. DTX-NP also extravasated from brain microvessels and accumulated in micrometastasis lesions in the brain. Intravenously injected DTX-NPs increased the blood circulation time of DTX by 5.5-fold and the AUC 0-24h in tumor-bearing brain by 5-fold compared to the clinically used DTX formulation Taxotere® . The kinetics of NPs in the brain, determined by ex vivo fluorescence imaging, showed synchronization with DTX kinetics in the brain measured by LC-MS/MS. This result confirmed successful delivery of DTX by the NPs into the brain and suggested that ex vivo fluorescence imaging of NP could be an effective and quick means for probing drug disposition in the brain. Treatment with the DTX-NP formulation delayed tumor growth by 11-fold and prolonged median survival of tumor-bearing mice by 94% compared to an equivalent dose of Taxotere®, without inducing histological changes in the major organs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers.

    PubMed

    Gray, Michael J; Gong, Jian; Hatch, Michaela M S; Nguyen, Van; Hughes, Christopher C W; Hutchins, Jeff T; Freimark, Bruce D

    2016-05-11

    The purpose of this study was to investigate the potential of antibody-directed immunotherapy targeting the aminophospholipid phosphatidylserine, which promotes immunosuppression when exposed in the tumor microenvironment, alone and in combination with antibody treatment towards the T-cell checkpoint inhibitor PD-1 in breast carcinomas, including triple-negative breast cancers. Immune-competent mice bearing syngeneic EMT-6 or E0771 tumors were subjected to treatments comprising of a phosphatidylserine-targeting and an anti-PD-1 antibody either as single or combinational treatments. Anti-tumor effects were determined by tumor growth inhibition and changes in overall survival accompanying each treatment. The generation of a tumor-specific immune response in animals undergoing complete tumor regression was assessed by secondary tumor cell challenge and splenocyte-produced IFNγ in the presence or absence of irradiated tumor cells. Changes in the presence of tumor-infiltrating lymphocytes were assessed by flow cytometry, while mRNA-based immune profiling was determined using NanoString PanCancer Immune Profiling Panel analysis. Treatment by a phosphatidylserine-targeting antibody inhibits in-vivo growth and significantly enhances the anti-tumor activity of antibody-mediated PD-1 therapy, including providing a distinct survival advantage over treatment by either single agent. Animals in which complete tumor regression occurred with combination treatments were resistant to secondary tumor challenge and presented heightened expression levels of splenocyte-produced IFNγ. Combinational treatment by a phosphatidylserine-targeting antibody with anti-PD-1 therapy increased the number of tumor-infiltrating lymphocytes more than that observed with single-arm therapies. Finally, immunoprofiling analysis revealed that the combination of anti-phosphatidylserine targeting antibody and anti-PD-1 therapy enhanced tumor-infiltrating lymphocytes, and increased expression of pro

  18. Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy.

    PubMed

    Jing, Hui; Cheng, Wen; Li, Shouqiang; Wu, Bolin; Leng, Xiaoping; Xu, Shouping; Tian, Jiawei

    2016-10-01

    The lack of safe and effective gene delivery strategies remains a bottleneck for cancer gene therapy. Here, we describe the synthesis, characterization, and application of cell-penetrating peptide (CPP)-loaded nanobubbles (NBs), which are characterized by their safety, strong penetrating power and high gene loading capability for gene delivery. An epidermal growth factor receptor (EGFR)-targeted small interfering RNA (siEGFR) was transfected into triple negative breast cancer (TNBC) cells via prepared CPP-NBs synergized with ultrasound-targeted microbubble destruction (UTMD) technology. Fluorescence microscopy showed that siEGFR and CPP were loaded on the shells of the NBs. The transfection efficiency and cell proliferation levels were evaluated by FACS and MTT assays, respectively. In addition, in vivo experiments showed that the expression of EGFR mRNA and protein could be efficiently downregulated and that the growth of a xenograft tumor derived from TNBC cells could be inhibited. Our results indicate that CPP-NBs carrying siEGFR could potentially be used as a promising non-viral gene vector that can be synergized with UTMD technology for efficient TNBC therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Genome-wide effects of MELK-inhibitor in triple-negative breast cancer cells indicate context-dependent response with p53 as a key determinant

    PubMed Central

    Simon, Marisa; Mesmar, Fahmi; Helguero, Luisa

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive, highly recurrent breast cancer subtype, affecting approximately one-fifth of all breast cancer patients. Subpopulations of treatment-resistant cancer stem cells within the tumors are considered to contribute to disease recurrence. A potential druggable target for such cells is the maternal embryonic leucine-zipper kinase (MELK). MELK expression is upregulated in mammary stem cells and in undifferentiated cancers, where it correlates with poor prognosis and potentially mediates treatment resistance. Several MELK inhibitors have been developed, of which one, OTSSP167, is currently in clinical trials. In order to better understand how MELK and its inhibition influence TNBC, we verified its anti-proliferative and apoptotic effects in claudin-low TNBC cell lines MDA-MB-231 and SUM-159 using MTS assays and/or trypan blue viability assays together with analysis of PARP cleavage. Then, using microarrays, we explored which genes were affected by OTSSP167. We demonstrate that different sets of genes are regulated in MDA-MB-231 and SUM-159, but in both cell lines genes involved in cell cycle, mitosis and protein metabolism and folding were regulated. We identified p53 (TP53) as a potential upstream regulator of the regulated genes. Using western blot we found that OTSSP167 downregulates mutant p53 in all tested TNBC cell lines (MDA-MB-231, SUM-159, and BT-549), but upregulates wild-type p53 in the luminal A subtype MCF-7 cell line. We propose that OTSSP167 might have context-dependent or off-target effects, but that one consistent mechanism of action could involve the destabilization of mutant p53. PMID:28235006

  20. Enhanced targeting of triple-negative breast carcinoma and malignant melanoma by photochemical internalization of CSPG4-targeting immunotoxins.

    PubMed

    Eng, M S; Kaur, J; Prasmickaite, L; Engesæter, B Ø; Weyergang, A; Skarpen, E; Berg, K; Rosenblum, M G; Mælandsmo, G M; Høgset, A; Ferrone, S; Selbo, P K

    2018-05-16

    Triple-negative breast cancer (TNBC) and malignant melanoma are highly aggressive cancers that widely express the cell surface chondroitin sulfate proteoglycan 4 (CSPG4/NG2). CSPG4 plays an important role in tumor cell growth and survival and promotes chemo- and radiotherapy resistance, suggesting that CSPG4 is an attractive target in cancer therapy. In the present work, we applied the drug delivery technology photochemical internalization (PCI) in combination with the novel CSPG4-targeting immunotoxin 225.28-saporin as an efficient and specific strategy to kill aggressive TNBC and amelanotic melanoma cells. Light-activation of the clinically relevant photosensitizer TPCS2a (fimaporfin) and 225.28-saporin was found to act in a synergistic manner, and was superior to both PCI of saporin and PCI-no-drug (TPCS2a + light only) in three TNBC cell lines (MDA-MB-231, MDA-MB-435 and SUM149) and two BRAFV600E mutated malignant melanoma cell lines (Melmet 1 and Melmet 5). The cytotoxic effect was highly dependent on the light dose and expression of CSPG4 since no enhanced cytotoxicity of PCI of 225.28-saporin compared to PCI of saporin was observed in the CSPG4-negative MCF-7 cells. The PCI of a smaller, and clinically relevant CSPG4-targeting toxin (scFvMEL-rGel) validated the CSPG4-targeting concept in vitro and induced a strong inhibition of tumor growth in the amelanotic melanoma xenograft A-375 model. In conclusion, the combination of the drug delivery technology PCI and CSPG4-targeting immunotoxins is an efficient, specific and light-controlled strategy for the elimination of aggressive cells of TNBC and malignant melanoma origin. This study lays the foundation for further preclinical evaluation of PCI in combination with CSPG4-targeting.

  1. A phase II trial to assess efficacy and safety of afatinib in extensively pretreated patients with HER2-negative metastatic breast cancer.

    PubMed

    Schuler, Martin; Awada, Ahmad; Harter, Philipp; Canon, Jean Luc; Possinger, Kurt; Schmidt, Marcus; De Grève, Jacques; Neven, Patrick; Dirix, Luc; Jonat, Walter; Beckmann, Matthias W; Schütte, Jochen; Fasching, Peter A; Gottschalk, Nina; Besse-Hammer, Tatiana; Fleischer, Frank; Wind, Sven; Uttenreuther-Fischer, Martina; Piccart, Martine; Harbeck, Nadia

    2012-08-01

    Afatinib (BIBW 2992) is an ErbB-family blocker that irreversibly inhibits signaling from all relevant ErbB-family dimers. Afatinib has demonstrated preclinical activity in human epidermal growth factor receptor HER2 (ErbB2)-positive and triple-negative xenograft models of breast cancer, and clinical activity in phase I studies. This was a multicenter phase II study enrolling patients with HER2-negative metastatic breast cancer progressing following no more than three lines of chemotherapy. No prior epidermal growth factor receptor-targeted therapy was allowed. Patients received 50-mg afatinib once daily until disease progression. Tumor assessment was performed at every other 28-day treatment course. The primary endpoint was clinical benefit (CB) for ≥4 treatment courses in triple-negative (Cohort A) metastatic breast cancer (TNBC) and objective responses measured by Response Evaluation Criteria in Solid Tumors in patients with HER2-negative, estrogen receptor-positive, and/or progesterone receptor-positive breast cancer (Cohort B). Fifty patients received treatment, including 29 patients in Cohort A and 21 patients in Cohort B. No objective responses were observed in either cohort. Median progression-free survival was 7.4 and 7.7 weeks in Cohorts A and B, respectively. Three patients with TNBC had stable disease for ≥4 treatment courses, one of them for 12 courses (median 26.3 weeks; range 18.9-47.9 weeks). The most frequently observed afatinib-associated adverse events (AEs) were gastrointestinal and skin-related side effects, which were manageable by symptomatic treatment and dose reductions. Afatinib pharmacokinetics were comparable to those observed in previously reported phase I trials. In conclusion, afatinib had limited activity in HER2-negative breast cancer. AEs were generally manageable and mainly affected the skin and the gastrointestinal tract.

  2. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    PubMed

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  3. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer

    PubMed Central

    Shields, Sarah; Conroy, Emer; O’Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P.; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W.; O’Connor, Darran; McCann, Amanda; Gallagher, William M.; Coppinger, Judith A.

    2018-01-01

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC. PMID:29644001

  4. Pretreatment TG/HDL-C Ratio Is Superior to Triacylglycerol Level as an Independent Prognostic Factor for the Survival of Triple Negative Breast Cancer Patients.

    PubMed

    Dai, Danian; Chen, Bo; Wang, Bin; Tang, Hailin; Li, Xing; Zhao, Zhiping; Li, Xuan; Xie, Xiaoming; Wei, Weidong

    2016-01-01

    Previous studies have reported that the triacylglycerol (TG) level and high-density lipoprotein cholesterol (HDL-C) are connected with breast cancer. However, the prognostic utility of the TG level and the TG/HDL-C ratio (THR) as conventional biomarkers in patients with triple negative breast cancer (TNBC) has not been elucidated. In this research, we investigate and compare the predictive value of the pretreatment serum TG level and THR in TNBC patients. We evaluated 221 patients with TNBC who had pretreatment conventional blood biochemical examinations and calculated the THR. Univariate and multivariate logistic regression analyses were used to assess the effect of the TG level and the THR on overall survival (OS) and disease-free survival (DFS). The optimal cutoff values of the TG level and the THR were determined to be 0.935 mmol/L and 0.600, respectively. As shown in a Kaplan-Meier analysis, TNBC patients with a high TG level and THR had shorter OS and DFS than patients in the low-level groups ( p < 0.05). The multivariate analysis suggested that the pretreatment THR level is an independent prognostic factor of OS (HR: 1.935; 95%CI: 1.032-3.629; p = 0.040) in TNBC patients. In conclusion, our data indicate that a high THR is an independent predictor and is superior to the TG level for predicting poor clinical outcomes in TNBC patients.

  5. Challenges in the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer with brain metastases.

    PubMed

    Liu, Minetta C; Cortés, Javier; O'Shaughnessy, Joyce

    2016-06-01

    Brain metastases are a major cause of morbidity and mortality for women with hormone receptor (HR)-positive breast cancer, yet little is known about the optimal treatment of brain disease in this group of patients. Although these patients are at lower risk for brain metastases relative to those with HER2-positive and triple-negative disease, they comprise the majority of women diagnosed with breast cancer. Surgery and radiation continue to have a role in the treatment of brain metastases, but there is a dearth of effective systemic therapies due to the poor penetrability of many systemic drugs across the blood-brain barrier (BBB). Additionally, patients with brain metastases have long been excluded from clinical trials, and few studies have been conducted to evaluate the safety and effectiveness of systemic therapies specifically for the treatment of HER2-negative breast cancer brain metastases. New approaches are on the horizon, such as nanoparticle-based cytotoxic drugs that have the potential to cross the BBB and provide clinically meaningful benefits to patients with this life-threatening consequence of HR-positive breast cancer.

  6. Protein and chemotherapy profiling of extracellular vesicles harvested from therapeutic induced senescent triple negative breast cancer cells

    PubMed Central

    Kavanagh, E L; Lindsay, S; Halasz, M; Gubbins, L C; Weiner-Gorzel, K; Guang, M H Z; McGoldrick, A; Collins, E; Henry, M; Blanco-Fernández, A; Gorman, P O'; Fitzpatrick, P; Higgins, M J; Dowling, P; McCann, A

    2017-01-01

    Triple negative breast cancer (TNBC) is an aggressive subtype with relatively poor clinical outcomes and limited treatment options. Chemotherapy, while killing cancer cells, can result in the generation of highly chemoresistant therapeutic induced senescent (TIS) cells that potentially form stem cell niches resulting in metastases. Intriguingly, senescent cells release significantly more extracellular vesicles (EVs) than non-senescent cells. Our aim was to profile EVs harvested from TIS TNBC cells compared with control cells to identify a potential mechanism by which TIS TNBC cells maintain survival in the face of chemotherapy. TIS was induced and confirmed in Cal51 TNBC cells using the chemotherapeutic paclitaxel (PTX) (Taxol). Mass spectrometry (MS) analysis of EVs harvested from TIS compared with control Cal51 cells was performed using Ingenuity Pathway Analysis and InnateDB programs. We demonstrate that TIS Cal51 cells treated with 75 nM PTX for 7 days became senescent (senescence-associated β-galactosidase (SA-β-Gal) positive, Ki67-negative, increased p21 and p16, G2/M cell cycle arrest) and released significantly more EVs (P=0.0002) and exosomes (P=0.0007) than non-senescent control cells. Moreover, TIS cells displayed an increased expression of the multidrug resistance protein 1/p-glycoprotein. MS analysis demonstrated that EVs derived from senescent Cal51 cells contained 142 proteins with a significant increased fold change compared with control EVs. Key proteins included ATPases, annexins, tubulins, integrins, Rabs and insoluble senescence-associated secretory phenotype (SASP) factors. A fluorescent analogue of PTX (Flutax-2) allowed appreciation of the removal of chemotherapy in EVs from senescent cells. Treatment of TIS cells with the exosome biogenesis inhibitor GW4869 resulted in reduced SA-β-Gal staining (P=0.04). In summary, this study demonstrates that TIS cells release significantly more EVs compared with control cells, containing chemotherapy

  7. Targeting Histone Abnormality in Triple Negative Breast Cancer

    DTIC Science & Technology

    2016-08-01

    Davidson NE. The Health Consequences of Smoking—50 Years of Progress. A Report of the Surgeon General. US Department of Health and Human Service...LSD1 proteins in human primary breast tumor specimens. By using in vitro and in vivo models, we identified that sulforaphane (SFN), a natural bioactive...characterized genes in the human genome. Raw intensity data were normalized by the Robust Multi-array Average (RMA). Student’s t- tests were

  8. Targeting Prolyl Peptidases in Triple-Negative Breast Cancer

    DTIC Science & Technology

    2017-02-01

    cell survival. We identified a protein called PRCP (prolylcarboxypeptidase) that promotes metastasis and survival in breast cancer cells. We found...PRCP/PREP inhibition reduces IRS1 and IRS2 protein levels, blocks proliferation, and induces death in multiple TNBC cell lines of different sub-types...2 are adaptor proteins that mediate signaling downstream of both IGF-1R and EGFR/ErbB3 [6-8]. Pathways activated downstream of IRS-1/2 include the

  9. NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest.

    PubMed

    Diluvio, Giulia; Del Gaudio, Francesca; Giuli, Maria Valeria; Franciosa, Giulia; Giuliani, Eugenia; Palermo, Rocco; Besharat, Zein Mersini; Pignataro, Maria Gemma; Vacca, Alessandra; d'Amati, Giulia; Maroder, Marella; Talora, Claudio; Capalbo, Carlo; Bellavia, Diana; Checquolo, Saula

    2018-05-25

    Notch dysregulation has been implicated in numerous tumors, including triple-negative breast cancer (TNBC), which is the breast cancer subtype with the worst clinical outcome. However, the importance of individual receptors in TNBC and their specific mechanism of action remain to be elucidated, even if recent findings suggested a specific role of activated-Notch3 in a subset of TNBCs. Epidermal growth factor receptor (EGFR) is overexpressed in TNBCs but the use of anti-EGFR agents (including tyrosine kinase inhibitors, TKIs) has not been approved for the treatment of these patients, as clinical trials have shown disappointing results. Resistance to EGFR blockers is commonly reported. Here we show that Notch3-specific inhibition increases TNBC sensitivity to the TKI-gefitinib in TNBC-resistant cells. Mechanistically, we demonstrate that Notch3 is able to regulate the activated EGFR membrane localization into lipid rafts microdomains, as Notch3 inhibition, such as rafts depletion, induces the EGFR internalization and its intracellular arrest, without involving receptor degradation. Interestingly, these events are associated with the EGFR tyrosine dephosphorylation at Y1173 residue (but not at Y1068) by the protein tyrosine phosphatase H1 (PTPH1), thus suggesting its possible involvement in the observed Notch3-dependent TNBC sensitivity response to gefitinib. Consistent with this notion, a nuclear localization defect of phospho-EGFR is observed after combined blockade of EGFR and Notch3, which results in a decreased TNBC cell survival. Notably, we observed a significant correlation between EGFR and NOTCH3 expression levels by in silico gene expression and immunohistochemical analysis of human TNBC primary samples. Our findings strongly suggest that combined therapies of TKI-gefitinib with Notch3-specific suppression may be exploited as a drug combination advantage in TNBC treatment.

  10. MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis.

    PubMed

    Lü, Lingshuang; Mao, Xuhua; Shi, Peiyi; He, Biyu; Xu, Kun; Zhang, Simin; Wang, Jianming

    2017-06-01

    Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by their aggressive nature and poor associated survival. MicroRNAs (miRs) have been found to play an important role in the occurrence and development of human cancers, but their role in the prognosis of TNBC patients remains unclear. We performed a meta-analysis to explore the prognostic value of miRs in TNBC. We systematically searched the PubMed, Embase, and Web of Science databases to identify eligible studies. A meta-analysis was performed to estimate the pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) for the associations between levels of miR expression (predictive factors) and overall survival (OS) and disease-free survival (DFS) (outcomes) in patients with TNBC. After performing the literature search and review, 21 relevant studies including 2510 subjects were identified. Six miRs (miR-155, miR-21, miR-27a/b, miR-374a/b, miR-210, and miR-454) were assessed in the meta-analysis. Decreased expression of miR-155 was associated with reduced OS (adjusted HR = 0.58, 95% CI: 0.34-0.99; crude HR = 0.67, 95% CI: 0.58-0.79). High miR-21 expression was also predictive of reduced OS (crude HR = 2.50, 95% CI: 1.56-4.01). We found that elevated levels of miR-27a/b, miR-210, and miR-454 expression were associated with shorter OS, while the levels of miR-454 and miR-374a/b expression were associated with DFS. Specific miRs could serve as potential prognostic biomarkers in TNBC. Due to the limited research available, the clinical application of these findings has yet to be verified.

  11. Paclitaxel With or Without Carboplatin and/or Bevacizumab Followed by Doxorubicin and Cyclophosphamide in Treating Patients With Breast Cancer That Can Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-29

    Estrogen Receptor Negative; HER2/Neu Negative; Male Breast Carcinoma; Progesterone Receptor Negative; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Triple-Negative Breast Carcinoma

  12. Targeting histone abnormality in triple negative breast cancer

    DTIC Science & Technology

    2017-08-01

    ELEMENT NUMBER N/A 6. AUTHOR(S) 5d. PROJECT NUMBER N/A Yi Huang, M.D., Ph.D. 5e. TASK NUMBER N/A E -Mail:huangy2@upmc.edu 5f. WORK UNIT NUMBER...prevention. This funded Breast Cancer Breakthrough Award is initially a partnership between Dr. Yi Huang (initiating PI) and Dr. Nancy E . Davidson...partner PI). During the current funding period, Dr. Nancy E . Davidson moved to University of Washington at Seattle and transferred the Partnering PI to

  13. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/ Src signaling in triple negative breast cancer cells.

    PubMed

    Hamurcu, Zuhal; Delibaşı, Nesrin; Geçene, Seda; Şener, Elif Funda; Dönmez-Altuntaş, Hamiyet; Özkul, Yusuf; Canatan, Halit; Ozpolat, Bulent

    2018-03-01

    Autophagy is a catabolic process for degrading dysfunctional proteins and organelles, and closely associated with cancer cell survival under therapeutic, metabolic stress, hypoxia, starvation and lack of growth factors, contributing to resistance to therapies. However, the role of autophagy in breast cancer cells is not well understood. In the present study, we investigated the role of autophagy in highly aggressive and metastatic triple negative breast cancer (TNBC) and non-metastatic breast cancer cells and demonstrated that the knockdown of autophagy-related genes (LC3 and Beclin-1) inhibited autophagy and significantly suppressed cell proliferation, colony formation, migration/invasion and induced apoptosis in MDA-MB-231 and BT-549 TNBC cells. Knockdown of LC3 and Beclin-1 led to inhibition of multiple proto-oncogenic signaling pathways, including cyclin D1, uPAR/integrin-β1/Src, and PARP1. In conclusion, our study suggests that LC3 and Beclin-1 are required for cell proliferation, survival, migration and invasion, and may contribute to tumor growth and progression of highly aggressive and metastatic TNBC cells and therapeutic targeting of autophagy genes may be a potential therapeutic strategy for TNBC in breast cancer.

  14. The combination of PD-L1 expression and decreased tumor-infiltrating lymphocytes is associated with a poor prognosis in triple-negative breast cancer

    PubMed Central

    Yamaguchi, Rin; Nishimura, Reiki; Osako, Tomofumi; Arima, Nobuyuki; Okumura, Yasuhiro; Okido, Masayuki; Yamada, Mai; Kai, Masaya; Kishimoto, Junji; Oda, Yoshinao; Nakamura, Masafumi

    2017-01-01

    This study included patients with primary triple-negative breast cancer (TNBC) who underwent resection without neoadjuvant chemotherapy between January 2004 and December 2014. Among the 248 TNBCs studied, programmed cell death ligand-1 (PD-L1) expression was detected in 103 (41.5%) tumors, and high levels of tumor-infiltrating lymphocytes (TILs) were present in 118 (47.6%) tumors. PD-L1 expression correlated with high levels of TILs, but was not a prognostic factor. Patients with TILs-high tumors had better overall survival than those with TILs-low tumors (P = 0.016). There was a strong interaction between PD-L1 expression and TILs that was associated with both recurrence-free survival (P = 0.0018) and overall survival (P = 0.015). Multivariate Cox proportional hazards model analysis showed that PD-L1-positive/TILs-low was an independent negative prognostic factor for both recurrence-free survival and overall survival. Our findings suggest that PD-L1-positive/TILs-low tumors are associated with a poor prognosis in patients with TNBC, and that it is important to focus on the combination of PD-L1 expression on tumor cells and TILs present in the tumor microenvironment. These biomarkers may be useful for stratification of TNBCs and for predicting prognosis and developing novel cancer immunotherapies. PMID:28107186

  15. Altering calcium influx for selective destruction of breast tumor.

    PubMed

    Yu, Han-Gang; McLaughlin, Sarah; Newman, Mackenzie; Brundage, Kathleen; Ammer, Amanda; Martin, Karen; Coad, James

    2017-03-04

    Human triple-negative breast cancer has limited therapeutic choices. Breast tumor cells have depolarized plasma membrane potential. Using this unique electrical property, we aim to develop an effective selective killing of triple-negative breast cancer. We used an engineered L-type voltage-gated calcium channel (Cec), activated by membrane depolarization without inactivation, to induce excessive calcium influx in breast tumor cells. Patch clamp and flow cytometry were used in testing the killing selectivity and efficiency of human breast tumor cells in vitro. Bioluminescence and ultrasound imaging were used in studies of human triple-negative breast cancer cell MDA-MB-231 xenograft in mice. Histological staining, immunoblotting and immunohistochemistry were used to investigate mechanism that mediates Cec-induced cell death. Activating Cec channels expressed in human breast cancer MCF7 cells produced enormous calcium influx at depolarized membrane. Activating the wild-type Cav1.2 channels expressed in MCF7 cells also produced a large calcium influx at depolarized membrane, but this calcium influx was diminished at the sustained membrane depolarization due to channel inactivation. MCF7 cells expressing Cec died when the membrane potential was held at -10 mV for 1 hr, while non-Cec-expressing MCF7 cells were alive. MCF7 cell death was 8-fold higher in Cec-expressing cells than in non-Cec-expressing cells. Direct injection of lentivirus containing Cec into MDA-MB-231 xenograft in mice inhibited tumor growth. Activated caspase-3 protein was detected only in MDA-MB-231 cells expressing Cec, along with a significantly increased expression of activated caspase-3 in xenograft tumor treated with Cec. We demonstrated a novel strategy to induce constant calcium influx that selectively kills human triple-negative breast tumor cells.

  16. Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and “BRCA-Like” Status, in Both Blood and Tumour DNA

    PubMed Central

    Burghel, George J.; Chambers, Philip; Al-Baba, Shadi; Connley, Daniel D.; Brock, Ian W.; Cramp, Helen E.; Dotsenko, Olena; Wilks, Octavia; Wyld, Lynda; Cross, Simon S.; Cox, Angela

    2016-01-01

    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies. PMID:27463681

  17. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen

    PubMed Central

    Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Nakamura, Yuko; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Aim Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. Method After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week (“two split” NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week (“three split” NIR-PIT). Result Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro

  18. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen.

    PubMed

    Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Nakamura, Yuko; Choyke, Peter L; Kobayashi, Hisataka

    2015-01-01

    Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week ("two split" NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week ("three split" NIR-PIT). Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet

  19. 4-1BB-Enhanced Expansion of CD8+ TIL from Triple-Negative Breast Cancer Unveils Mutation-Specific CD8+ T Cells.

    PubMed

    Harao, Michiko; Forget, Marie-Andrée; Roszik, Jason; Gao, Hui; Babiera, Gildy V; Krishnamurthy, Savitri; Chacon, Jessica A; Li, Shumin; Mittendorf, Elizabeth A; DeSnyder, Sarah M; Rockwood, Korrene F; Bernatchez, Chantale; Ueno, Naoto T; Radvanyi, Laszlo G; Vence, Luis; Haymaker, Cara; Reuben, James M

    2017-06-01

    Triple-negative breast cancer (TNBC) highly infiltrated with CD8 + tumor-infiltrating lymphocytes (TIL) has been associated with improved prognosis. This observation led us to hypothesize that CD8 + TIL could be utilized in autologous adoptive cell therapy for TNBC, although this concept has proven to be challenging, given the difficulty in expanding CD8 + TILs in solid cancers other than in melanoma. To overcome this obstacle, we used an agonistic antibody (urelumab) to a TNFR family member, 4-1BB/CD137, which is expressed by recently activated CD8 + T cells. This approach was first utilized in melanoma and, in this study, led to advantageous growth of TILs for the majority of TNBC tumors tested. The agonistic antibody was only added in the initial setting of the culture and yet favored the propagation of CD8 + TILs from TNBC tumors. These expanded CD8 + TILs were capable of cytotoxic functions and were successfully utilized to demonstrate the presence of immunogenic mutations in autologous TNBC tumor tissue without recognition of the wild-type counterpart. Our findings open the way for a successful adoptive immunotherapy for TNBC. Cancer Immunol Res; 5(6); 439-45. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer.

    PubMed

    Sun, Dejuan; Zhu, Lingjuan; Zhao, Yuqian; Jiang, Yingnan; Chen, Lixia; Yu, Yang; Ouyang, Liang

    2018-04-01

    Triple negative breast cancer (TNBC) is a complex and intrinsically aggressive tumour with poor prognosis, and the discovery of targeted small-molecule drugs for TNBC treatment still remains in its infancy. In this study, we aimed to discover a small-molecule agent for TNBC treatment and illuminate its potential mechanisms. Cell viability was detected by using methylthiazoltetrazolium (MTT) assay. Electron microscopy, GFP-LC3 transfection, monodansylcadaverine staining and apoptosis assay were performed to determine Fluoxetine-induced autophagy and apoptosis. Western blotting and siRNA transfection were carried out to investigate the mechanisms of Fluoxetine-induced autophagy. iTRAQ-based proteomics analysis was used to explore the underlying mechanisms. We have demonstrated that Fluoxetine had remarkable anti-proliferative activities and induced autophagic cell death in MDA-MB-231 and MDA-MB-436 cells. The mechanism for Fluoxetine-induced autophagic cell death was associated with inhibition of eEF2K and activation of AMPK-mTOR-ULK complex axis. Further iTRAQ-based proteomics and network analyses revealed that Fluoxetine-induced mechanism was involved in BIRC6, BNIP1, SNAP29 and Bif-1. These results demonstrate that Fluoxetine induces apoptosis and autophagic cell death in TNBC, which will hold a promise for the future TNBC therapy. © 2017 John Wiley & Sons Ltd.

  1. Association between mammogram density and background parenchymal enhancement of breast MRI

    NASA Astrophysics Data System (ADS)

    Aghaei, Faranak; Danala, Gopichandh; Wang, Yunzhi; Zarafshani, Ali; Qian, Wei; Liu, Hong; Zheng, Bin

    2018-02-01

    Breast density has been widely considered as an important risk factor for breast cancer. The purpose of this study is to examine the association between mammogram density results and background parenchymal enhancement (BPE) of breast MRI. A dataset involving breast MR images was acquired from 65 high-risk women. Based on mammography density (BIRADS) results, the dataset was divided into two groups of low and high breast density cases. The Low-Density group has 15 cases with mammographic density (BIRADS 1 and 2), while the High-density group includes 50 cases, which were rated by radiologists as mammographic density BIRADS 3 and 4. A computer-aided detection (CAD) scheme was applied to segment and register breast regions depicted on sequential images of breast MRI scans. CAD scheme computed 20 global BPE features from the entire two breast regions, separately from the left and right breast region, as well as from the bilateral difference between left and right breast regions. An image feature selection method namely, CFS method, was applied to remove the most redundant features and select optimal features from the initial feature pool. Then, a logistic regression classifier was built using the optimal features to predict the mammogram density from the BPE features. Using a leave-one-case-out validation method, the classifier yields the accuracy of 82% and area under ROC curve, AUC=0.81+/-0.09. Also, the box-plot based analysis shows a negative association between mammogram density results and BPE features in the MRI images. This study demonstrated a negative association between mammogram density and BPE of breast MRI images.

  2. Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India.

    PubMed

    Sultana, Rizwana; Kataki, Amal Ch; Borthakur, Bibhuti Bhusan; Basumatary, Tarun K; Bose, Sujoy

    2017-07-20

    Triple-Negative breast cancer (TNBC), accounts for a large percentage of breast cancer cases in India including Northeast India. TNBC has an unclear molecular aetiology and hence limited targeted therapies. Human breast is comprised of glandular, ductal, connective, and adipose tissues. Adipose tissue is composed of adipocytes. The adipocytes apart from being energy storage depots, are also active sources of adipocytokines and/or adipokines. The role of adipokines in breast cancer including TNBC has been sporadically documented. Two adipokines in particular, leptin and adiponectin, have come to be recognized for their influence on breast cancer risk and tumour biology. Therefore, the aim of this study was to understand the association of differential expression of critical adipokines and associated cellular mechanism in the susceptibility and severity of TNBC in northeast Indian population. We collected 68 TNBC and 63 controls cases and examined for serum leptin and adiponectin levels using enzyme linked immunosorbent assay (ELISA). Leptin Receptor (Ob-R) mRNA expression was determined by real-time polymerase chain reaction (RT-PCR) assay. Differential Ob-R mRNA expression and correlation with cancer stem cell (CSC) markers was evaluated, and correlated with severity. The serum leptin levels were significantly associated with TNBC severity, while the adiponectin levels were comparative. The serum leptin levels correlated inversely with the adiponetin levels. Serum leptin levels were unaffected with difference in parity. The difference in leptin levels in pre and post menopausal cases were found to be statistically non-significant. Higher leptin levels were also found to be associated obesity, mortality and recurrence. Obesity was found to be a factor for TNBC pathogenesis and severity. Increased Ob-R mRNA expression was associated with TNBC, significantly with TNBC severity, and was significantly higher in obese patients with higher grade TNBC cases. The Ob-R gene

  3. Quantification of Estrogen Receptor Expression in Normal Breast Tissue in Postmenopausal Women With Breast Cancer and Association With Tumor Subtypes.

    PubMed

    Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E

    2017-09-01

    Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.

  4. In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer.

    PubMed

    Kutty, Rajaletchumy Veloo; Chia, Sing Ling; Setyawati, Magdiel I; Muthu, Madaswamy S; Feng, Si-Shen; Leong, David Tai

    2015-09-01

    In this study we examined the efficacy of our micellar system in xenograft models of triple negative breast cancers and explored the effect of the micelles on post-treatment tumours in order to elucidate the mechanism underlying the nanomedicine treatment in oncology. Here, we developed docetaxel-loaded vitamin E D-α-tocopheryl polyethylene glycol succinate (TPGS) micelles, of which the surface modified with cetuximab ligands for targeting epidermal growth factor receptors (EGFR) that are overexpressed in MDA-MB-231 breast cancer cells. The targeting micelles accumulated in the tumours immediately after the intravenous injection and retained for at least 24 h. The successful delivery of docetaxel into the tumours by the targeting micelles was shown by the greater degree of tumour growth inhibition than that for Taxotere(®) after the 15-day treatment. Furthermore, the explanted tumour culture study involving gene analysis and immunohistochemistry staining indicated that the in vivo micelle treatment induced cell cycle arrest and attenuated cell proliferation. In addition, the targeting and non-targeting micellar formulations brought about anti-angiogenesis and anti-migration effects. Overall, both the in vivo and ex vivo data increased the confidence that our micellar formulations effectively targeted and inhibited EGFR-overexpressing MDA-MB-231 tumours. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells.

    PubMed

    Bernard, Megan M; McConnery, Jason R; Hoskin, David W

    2017-04-01

    The ginger rhizome is rich in bioactive compounds, including [6]-gingerol, [8]-gingerol, and [10]-gingerol; however, to date, most research on the anti-cancer activities of gingerols have focused on [6]-gingerol. In this study, we compared [10]-gingerol with [8]-gingerol and [6]-gingerol in terms of their ability to inhibit the growth of human and mouse mammary carcinoma cells. A colorimetric assay based on the enzymatic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide revealed that [10]-gingerol was more potent than [6]-gingerol and at least as potent as [8]-gingerol for the inhibition of triple-negative human (MDA-MB-231, MDA-MB-468) and mouse (4T1, E0771) mammary carcinoma cell growth. Further investigation of [10]-gingerol showed that it suppressed the growth of estrogen receptor-bearing (MCF-7, T47D) and HER2-overexpressing (SKBR3) breast cancer cells. The inhibitory effect of [10]-gingerol on the growth of MDA-MB-231 cells was associated with a reduction in the number of rounds of cell division and evidence of S phase-cell cycle arrest, as well as induction of apoptosis due to mitochondrial outer membrane permeabilization and the release of proapoptotic mitochondrial cytochrome c and SMAC/DIABLO into the cytoplasm. Surprisingly, killing of MDA-MB-231 cells by [10]-gingerol was not affected by a pan-caspase inhibitor (zVAD-fmk) or an anti-oxidant (N-acetylcysteine), suggesting that the cytotoxic effect of [10]-gingerol did not require caspase activation or the accumulation of reactive oxygen species. These findings suggest that further investigation of [10]-gingerol is warranted for its possible use in the treatment of breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Enterolactone modulates the ERK/NF-κB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-β-induced epithelial-mesenchymal transition.

    PubMed

    Mali, Aniket V; Joshi, Asavari A; Hegde, Mahabaleshwar V; Kadam, Shivajirao S

    2018-05-01

    Triple-negative breast cancer (TNBC) is highly metastatic, and there is an urgent unmet need to develop novel therapeutic strategies leading to the new drug discoveries against metastasis. The transforming growth factor-β (TGF-β) is known to promote the invasive and migratory potential of breast cancer cells through induction of epithelial-mesenchymal transition (EMT) via the ERK/NF-κB/Snail signaling pathway, leading to breast cancer metastasis. Targeting this pathway to revert the EMT would be an attractive, novel therapeutic strategy to halt breast cancer metastasis. Effects of enterolactone (EL) on the cell cycle and apoptosis were investigated using flow cytometry and a cleaved caspase-3 enzyme-linked immunosorbent assay (ELISA), respectively. Effects of TGF-β induction and EL treatment on the functional malignancy of MDA-MB-231 breast cancer cells were investigated using migration and chemo-invasion assays. The effects of EL on EMT markers and the ERK/NF-κB/Snail signaling pathway after TGF-β induction were studied using confocal microscopy, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and flow cytometry. Herein, we report that EL exhibits a significant antimetastatic effect on MDA-MB-231 cells by almost reverting the TGF-β-induced EMT in vitro . EL downregulates the mesenchymal markers N-cadherin and vimentin, and upregulates the epithelial markers E-cadherin and occludin. It represses actin stress fiber formation via inhibition of mitogen-activated protein kinase p-38 (MAPK-p38) and cluster of differentiation 44 (CD44). EL also suppresses ERK-1/2, NF-κB, and Snail at the mRNA and protein levels. Briefly, EL was found to inhibit TGF-β-induced EMT by blocking the ERK/NF-κB/Snail signaling pathway, which is a promising target for breast cancer metastasis therapy.

  7. Individualized Molecular Analyses Guide Efforts (IMAGE): A Prospective Study of Molecular Profiling of Tissue and Blood in Metastatic Triple-Negative Breast Cancer.

    PubMed

    Parsons, Heather A; Beaver, Julia A; Cimino-Mathews, Ashley; Ali, Siraj M; Axilbund, Jennifer; Chu, David; Connolly, Roisin M; Cochran, Rory L; Croessmann, Sarah; Clark, Travis A; Gocke, Christopher D; Jeter, Stacie C; Kennedy, Mark R; Lauring, Josh; Lee, Justin; Lipson, Doron; Miller, Vincent A; Otto, Geoff A; Rosner, Gary L; Ross, Jeffrey S; Slater, Shannon; Stephens, Philip J; VanDenBerg, Dustin A; Wolff, Antonio C; Young, Lauren E; Zabransky, Daniel J; Zhang, Zhe; Zorzi, Jane; Stearns, Vered; Park, Ben H

    2017-01-15

    The clinical utility of next-generation sequencing (NGS) in breast cancer has not been demonstrated. We hypothesized that we could perform NGS of a new biopsy from patients with metastatic triple-negative breast cancer (TNBC) in a clinically actionable timeframe. We planned to enroll 40 patients onto a prospective study, Individualized Molecular Analyses Guide Efforts (IMAGE), to evaluate the feasibility of obtaining a new biopsy of a metastatic site, perform NGS (FoundationOne), and convene a molecular tumor board to formulate treatment recommendations within 28 days. We collected blood at baseline and at time of restaging to assess cell-free circulating plasma tumor DNA (ptDNA). We enrolled 26 women with metastatic TNBC who had received ≥1 line of prior chemotherapy, and 20 (77%) underwent NGS of a metastatic site biopsy. Twelve (60%) evaluable patients received treatment recommendations within 28 days of consent. The study closed after 20 patients underwent NGS, based on protocol-specified interim futility analysis. Three patients went on to receive genomically directed therapies. Twenty-four of 26 patients had genetic alterations successfully detected in ptDNA. Among 5 patients, 4 mutations found in tumor tissues were not identified in blood, and 4 mutations found in blood were not found in corresponding tumors. In 9 patients, NGS of follow-up blood samples showed 100% concordance with baseline blood samples. This study demonstrates challenges of performing NGS on prospective tissue biopsies in patients with metastatic TNBC within 28 days, while also highlighting the potential use of blood as a more time-efficient and less invasive method of mutational assessment. Clin Cancer Res; 23(2); 379-86. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Targeting Androgen Receptor in Breast Cancer: Enzalutamide as a Novel Breast Cancer Therapeutic

    DTIC Science & Technology

    2015-09-01

    preclinical work. Clinical Aim 3: To determine if changes in molecular determinants between pre-treatment biopsies and tissue at time of disease ...D’Amato NC, Elias A, Richer JK. Androgen receptor biology in triple negative breast cancer: a case for AR+ and quadruple negative disease subtypes...cancer and can we target it? 14th Annual International Congress on the Future of Breast Cancer. PER. Huntington Beach, CA 7/17/15. Inventions

  9. Hot Spot and Whole-Tumor Enumeration of CD8+ Tumor-Infiltrating Lymphocytes Utilizing Digital Image Analysis Is Prognostic in Triple-Negative Breast Cancer.

    PubMed

    McIntire, Patrick J; Irshaid, Lina; Liu, Yifang; Chen, Zhengming; Menken, Faith; Nowak, Eugene; Shin, Sandra J; Ginter, Paula S

    2018-05-07

    CD8 + tumor-infiltrating lymphocytes (TILs) have emerged as a prognostic indicator in triple-negative breast cancer (TNBC). There is debate surrounding the prognostic value of hot spots for CD8 + TIL enumeration. We compared hot spot versus whole-tumor CD8 + TIL enumeration in prognosticating TNBC using immunohistochemistry on whole tissue sections and quantification by digital image analysis (Halo imaging analysis software; Indica Labs, Corrales, NM). A wide range of clinically relevant hot spot sizes was evaluated. CD8 + TIL enumeration was independently statistically significant for all hot spot sizes and whole-tumor annotations for disease-free survival by multivariate analysis. A 10× objective (2.2 mm diameter) hot spot was found to correlate significantly with overall survival (P = .04), while the remaining hot spots and whole-tumor CD8 + TIL enumeration did not (P > .05). Statistical significance was not demonstrated when comparing between hot spots and whole-tumor annotations, as the groups had overlapping confidence intervals. CD8 + TIL hot spot enumeration is equivalent to whole-tumor enumeration for prognostication in TNBC and may serve as a good alternative methodology in future studies and clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Occurrence of breast cancer subtypes in adolescent and young adult women

    PubMed Central

    2012-01-01

    Introduction Breast cancers are increasingly recognized as heterogeneous based on expression of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2). Triple-negative tumors (ER-/PR-/HER2-) have been reported to be more common among younger women, but occurrence of the spectrum of breast cancer subtypes in adolescent and young adult (AYA) women aged between 15 and 39 years is otherwise poorly understood. Methods Data regarding all 5,605 AYA breast cancers diagnosed in California during the period 2005 to 2009, including ER and PR status (referred to jointly as hormone receptor (HR) status) and HER2 status, was obtained from the population-based California Cancer Registry. Incidence rates were calculated by subtype (triple-negative; HR+/HER2-; HR+/HER2+; HR-/HER2+), and logistic regression was used to evaluate differences in subtype characteristics by age group. Results AYAs had higher proportions of HR+/HER2+, triple-negative and HR-/HER2+ breast cancer subtypes and higher proportions of patients of non-White race/ethnicity than did older women. AYAs also were more likely to be diagnosed with stage III/IV disease and high-grade tumors than were older women. Rates of HR+/HER2- and triple-negative subtypes in AYAs varied substantially by race/ethnicity. Conclusions The distribution of breast cancer subtypes among AYAs varies from that observed in older women, and varies further by race/ethnicity. Observed subtype distributions may explain the poorer breast cancer survival previously observed among AYAs. PMID:22452927

  11. Pretreatment Serum Concentrations of 25-Hydroxyvitamin D and Breast Cancer Prognostic Characteristics: A Case-Control and a Case-Series Study

    PubMed Central

    Yao, Song; Sucheston, Lara E.; Millen, Amy E.; Johnson, Candace S.; Trump, Donald L.; Nesline, Mary K.; Davis, Warren; Hong, Chi-Chen; McCann, Susan E.; Hwang, Helena; Kulkarni, Swati; Edge, Stephen B.; O'Connor, Tracey L.; Ambrosone, Christine B.

    2011-01-01

    Background Results from epidemiologic studies on the relationship between vitamin D and breast cancer risk are inconclusive. It is possible that vitamin D may be effective in reducing risk only of specific subtypes due to disease heterogeneity. Methods and Findings In case-control and case-series analyses, we examined serum concentrations of 25-hydroxyvitamin D (25OHD) in relation to breast cancer prognostic characteristics, including histologic grade, estrogen receptor (ER), and molecular subtypes defined by ER, progesterone receptor (PR) and HER2, among 579 women with incident breast cancer and 574 controls matched on age and time of blood draw enrolled in the Roswell Park Cancer Institute from 2003 to 2008. We found that breast cancer cases had significantly lower 25OHD concentrations than controls (adjusted mean, 22.8 versus 26.2 ng/mL, p<0.001). Among premenopausal women, 25OHD concentrations were lower in those with high- versus low-grade tumors, and ER negative versus ER positive tumors (p≤0.03). Levels were lowest among women with triple-negative cancer (17.5 ng/mL), significantly different from those with luminal A cancer (24.5 ng/mL, p = 0.002). In case-control analyses, premenopausal women with 25OHD concentrations above the median had significantly lower odds of having triple-negative cancer (OR = 0.21, 95% CI = 0.08–0.53) than those with levels below the median; and every 10 ng/mL increase in serum 25OHD concentrations was associated with a 64% lower odds of having triple-negative cancer (OR = 0.36, 95% CI = 0.22–0.56). The differential associations by tumor subtypes among premenopausal women were confirmed in case-series analyses. Conclusion In our analyses, higher serum levels of 25OHD were associated with reduced risk of breast cancer, with associations strongest for high grade, ER negative or triple negative cancers in premenopausal women. With further confirmation in large prospective studies, these findings could warrant

  12. Impact of chemotherapy relative dose intensity on cause-specific and overall survival for stage I-III breast cancer: ER+/PR+, HER2- vs. triple-negative.

    PubMed

    Zhang, Lu; Yu, Qingzhao; Wu, Xiao-Cheng; Hsieh, Mei-Chin; Loch, Michelle; Chen, Vivien W; Fontham, Elizabeth; Ferguson, Tekeda

    2018-05-01

    To investigate the impact of chemotherapy relative dose intensity (RDI) on cause-specific and overall survival for stage I-III breast cancer: estrogen receptor or progesterone receptor positive, human epidermal-growth factor receptor negative (ER+/PR+ and HER2-) vs. triple-negative (TNBC) and to identify the optimal RDI cut-off points in these two patient populations. Data were collected by the Louisiana Tumor Registry for two CDC-funded projects. Women diagnosed with stage I-III ER+/PR+, HER2- breast cancer, or TNBC in 2011 with complete information on RDI were included. Five RDI cut-off points (95, 90, 85, 80, and 75%) were evaluated on cause-specific and overall survival, adjusting for multiple demographic variables, tumor characteristics, comorbidity, use of granulocyte-growth factor/cytokines, chemotherapy delay, chemotherapy regimens, and use of hormone therapy. Cox proportional hazards models and Kaplan-Meier survival curves were estimated and adjusted by stabilized inverse probability treatment weighting (IPTW) of propensity score. Of 494 ER+/PR+, HER2- patients and 180 TNBC patients, RDI < 85% accounted for 30.4 and 27.8%, respectively. Among ER+/PR+, HER2- patients, 85% was the only cut-off point at which the low RDI was significantly associated with worse overall survival (HR = 1.93; 95% CI 1.09-3.40). Among TNBC patients, 75% was the cut-off point at which the high RDI was associated with better cause-specific (HR = 2.64; 95% CI 1.09, 6.38) and overall survival (HR = 2.39; 95% CI 1.04-5.51). Higher RDI of chemotherapy is associated with better survival for ER+/PR+, HER2- patients and TNBC patients. To optimize survival benefits, RDI should be maintained ≥ 85% in ER+/PR+, HER2- patients, and ≥ 75% in TNBC patients.

  13. Imaging features of breast cancers on digital breast tomosynthesis according to molecular subtype: association with breast cancer detection.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Shin, Sung Ui; Chu, A Jung; Yi, Ann; Cho, Nariya; Moon, Woo Kyung

    2017-12-01

    To evaluate imaging features of breast cancers on digital breast tomosynthesis (DBT) according to molecular subtype and to determine whether the molecular subtype affects breast cancer detection on DBT. This was an institutional review board--approved study with a waiver of informed consent. DBT findings of 288 invasive breast cancers were reviewed according to Breast Imaging Reporting and Data System lexicon. Detectability of breast cancer was quantified by the number of readers (0-3) who correctly detected the cancer in an independent blinded review. DBT features and the cancer detectability score according to molecular subtype were compared using Fisher's exact test and analysis of variance. Of 288 invasive cancers, 194 were hormone receptor (HR)-positive, 48 were human epidermal growth factor receptor 2 (HER2) positive and 46 were triple negative breast cancers. The most common DBT findings were irregular spiculated masses for HR-positive cancer, fine pleomorphic or linear branching calcifications for HER2 positive cancer and irregular masses with circumscribed margins for triple negative breast cancers (p < 0.001). Cancer detectability on DBT was not significantly different according to molecular subtype (p = 0.213) but rather affected by tumour size, breast density and presence of mass or calcifications. Breast cancers showed different imaging features according to molecular subtype; however, it did not affect the cancer detectability on DBT. Advances in knowledge: DBT showed characteristic imaging features of breast cancers according to molecular subtype. However, cancer detectability on DBT was not affected by molecular subtype of breast cancers.

  14. Relationship between quantitative GRB7 RNA expression and recurrence after adjuvant anthracycline chemotherapy in triple-negative breast cancer.

    PubMed

    Sparano, Joseph A; Goldstein, Lori J; Childs, Barrett H; Shak, Steven; Brassard, Diana; Badve, Sunil; Baehner, Frederick L; Bugarini, Roberto; Rowley, Steve; Perez, Edith A; Shulman, Lawrence N; Martino, Silvana; Davidson, Nancy E; Kenny, Paraic A; Sledge, George W; Gray, Robert

    2011-11-15

    To conduct an exploratory analysis of the relationship between gene expression and recurrence in patients with operable triple-negative breast cancer (TNBC) treated with adjuvant doxorubicin-containing chemotherapy. RNA was extracted from archived tumor samples derived from 246 patients with stage I-III TNBC treated with adjuvant doxorubicin-containing chemotherapy, and was analyzed by quantitative reverse transcriptase PCR for a panel of 374 genes. The relationship between gene expression and recurrence was evaluated using weighted Cox proportional hazards model score tests. Growth factor receptor bound protein 7 (GRB7) was the only gene for which higher expression was significantly associated with increased recurrence in TNBC (Korn's adjusted P value = 0.04). In a Cox proportional hazards model adjusted for clinicopathologic features, higher GRB7 expression was associated with an increased recurrence risk (HR = 2.31; P = 0.04 using the median as the split). The 5-year recurrence rates were 10.5% [95% confidence intervals (CI), 7.8-14.1] in the low and 20.4% (95% CI, 16.5-25.0) in the high GRB7 groups. External validation in other datasets indicated that GRB7 expression was not prognostic in two adjuvant trials including variable systemic therapy, but in two other trials showed that high GBR7 expression was associated with resistance to neoadjuvant doxorubicin and taxane therapy. GRB7 was associated with an increased risk of recurrence in TNBC, suggesting that GRB7 or GRB7-dependent pathways may serve as potential biomarkers for therapeutic targets. Therapeutic targeting of one or more factors identified which function as interaction nodes or effectors should also be considered.

  15. Relationship Between Quantitative GRB7 RNA Expression and Recurrence after Adjuvant Anthracycline Chemotherapy in Triple Negative Breast Cancer

    PubMed Central

    Sparano, Joseph A.; Goldstein, Lori J.; Childs, Barrett H.; Shak, Steven; Brassard, Diana; Badve, Sunil; Baehner, Frederick L.; Bugarini, Roberto; Rowley, Steve; Perez, Edith; Shulman, Lawrence N.; Martino, Silvana; Davidson, Nancy E.; Kenny, Paraic A.; Sledge, George W.; Gray, Robert

    2012-01-01

    Purpose To perform an exploratory analysis of the relationship between gene expression and recurrence in patients with operable triple negative breast cancer (TNBC) treated with adjuvant doxorubicin-containing chemotherapy. Experimental design RNA was extracted from archived tumor samples derived from 246 patients with stage I-III TNBC treated with adjuvant doxorubicin-containing chemotherapy, and was analyzed by quantitative RT-PCR for a panel of 374 genes. The relationship between gene expression and recurrence was evaluated using weighted Cox proportional hazards model score tests. Results GRB7 was the only gene for which higher expression was significantly associated with increased recurrence in TNBC (Korn’s adjusted p value=0.04). In a Cox proportional hazards model adjusted for clinicopathologic features, higher GRB7 expression was associated with an increased recurrence risk (HR 2.31, p=0.04 using the median as the split). The 5-year recurrence rates were 10.5% (95% confidence intervals [CI] 7.8%, 14.1%) in the low and 20.4% (95% CI 16.5%, 25.0%) in the high GRB7 groups. External validation in other datasets indicated that GRB7 expression was not prognostic in two adjuvant trials including variable systemic therapy, but in two other trials showed that high GBR7 expression was associated with resistance to neoadjuvant doxorubicin and taxane therapy. Conclusions GRB7 was associated with an increased risk of recurrence in TNBC, suggesting that GRB7 or GRB7-dependent pathways may serve as potential biomarkers for therapeutic targets. Therapeutic targeting of one or more factors identified which function as interaction nodes or effectors should also be considered. PMID:21933890

  16. Study on the Mechanism of Cell Cycle Checkpoint Kinase 2 (CHEK2) Gene Dysfunction in Chemotherapeutic Drug Resistance of Triple Negative Breast Cancer Cells.

    PubMed

    Luo, Li; Gao, Wei; Wang, Jinghui; Wang, Dingxue; Peng, Xiaobo; Jia, Zhaoyang; Jiang, Ye; Li, Gongzhuo; Tang, Dongxin; Wang, Yajie

    2018-05-15

    BACKGROUND This study aimed to investigate the mechanism of CHEK2 gene dysfunction in drug resistance of triple negative breast cancer (TNBC) cells. MATERIAL AND METHODS To perform our study, a stable CHEK2 wild type (CHEK2 WT) or CHEK2 Y390C mutation (CHEK2 Y390C) expressed MDA-MB-231 cell line was established. MTT assay, cell apoptosis assay and cell cycle assay were carried out to analyze the cell viability, apoptosis, and cell cycle respectively. Western blotting and qRT-PCR were applied for related protein and gene expression detection. RESULTS We found that the IC50 value of DDP (Cisplatin) to CHEK2 Y390C expressed MDA-MB-231 cells was significantly higher than that of the CHEK2 WT expressed cells and the control cells. After treatment with DDP for 48 h, cells expressing CHEK2 WT showed lower cell viability than that of the CHEK2 Y390C expressed cells and the control cells; compared with the CHEK2 Y390C expressed cells and the control cells, cells expressing CHEK2 WT showed significant G1/S arrest. Meanwhile, we found that compared with the CHEK2 Y390C expressed cells and the control cells, cell apoptosis was significantly increased in CHEK2 WT expressed cells. Moreover, our results suggested that cells expressing CHEK2 WT showed higher level of p-CDC25A, p-p53, p21, Bax, PUMA, and Noxa than that of the CHEK2 Y390C expressed cells and the control cells. CONCLUSIONS Our findings indicated that CHEK2 Y390C mutation induced the drug resistance of TNBC cells to chemotherapeutic drugs through administrating cell apoptosis and cell cycle arrest via regulating p53 activation and CHEK2-p53 apoptosis pathway.

  17. Adenoid cystic carcinoma of breast: Recent advances

    PubMed Central

    Miyai, Kosuke; Schwartz, Mary R; Divatia, Mukul K; Anton, Rose C; Park, Yong Wook; Ayala, Alberto G; Ro, Jae Y

    2014-01-01

    Adenoid cystic carcinoma (ACC) of the breast is a rare special subtype of breast cancer characterized by the presence of a dual cell population of luminal and basaloid cells arranged in specific growth patterns. Most breast cancers with triple-negative, basal-like breast features (i.e., tumors that are devoid of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, and express basal cell markers) are generally high-grade tumors with an aggressive clinical course. Conversely, while ACCs also display a triple-negative, basal-like phenotype, they are usually low-grade and exhibit an indolent clinical behavior. Many discoveries regarding the molecular and genetic features of the ACC, including a specific chromosomal translocation t(6;9) that results in a MYB-NFIB fusion gene, have been made in recent years. This comprehensive review provides our experience with the ACC of the breast, as well as an overview of clinical, histopathological, and molecular genetic features. PMID:25516849

  18. Clinical and pathological factors influencing survival in a large cohort of triple-negative breast cancer patients.

    PubMed

    Urru, Silvana Anna Maria; Gallus, Silvano; Bosetti, Cristina; Moi, Tiziana; Medda, Ricardo; Sollai, Elisabetta; Murgia, Alma; Sanges, Francesca; Pira, Giovanna; Manca, Alessandra; Palmas, Dolores; Floris, Matteo; Asunis, Anna Maria; Atzori, Francesco; Carru, Ciriaco; D'Incalci, Maurizio; Ghiani, Massimo; Marras, Vincenzo; Onnis, Daniela; Santona, Maria Cristina; Sarobba, Giuseppina; Valle, Enrichetta; Canu, Luisa; Cossu, Sergio; Bulfone, Alessandro; Rocca, Paolo Cossu; De Miglio, Maria Rosaria; Orrù, Sandra

    2018-01-08

    To provide further information on the clinical and pathological prognostic factors in triple-negative breast cancer (TNBC), for which limited and inconsistent data are available. Pathological characteristics and clinical records of 841 TNBCs diagnosed between 1994 and 2015 in four major oncologic centers from Sardinia, Italy, were reviewed. Multivariate hazard ratios (HRs) for mortality and recurrence according to various clinicopathological factors were estimated using Cox proportional hazards models. After a mean follow-up of 4.3 years, 275 (33.3%) TNBC patients had a progression of the disease and 170 (20.2%) died. After allowance for study center, age at diagnosis, and various clinicopathological factors, all components of the TNM staging system were identified as significant independent prognostic factors for TNBC mortality. The HRs were 3.13, 9.65, and 29.0, for stage II, III and IV, respectively, vs stage I. Necrosis and Ki-67 > 16% were also associated with increased mortality (HR: 1.61 and 1.99, respectively). Patients with tumor histotypes other than ductal invasive/lobular carcinomas had a more favorable prognosis (HR: 0.40 vs ductal invasive carcinoma). No significant associations with mortality were found for histologic grade, tumor infiltrating lymphocytes, and lymphovascular invasion. Among lymph node positive TNBCs, lymph node ratio appeared to be a stronger predictor of mortality than pathological lymph nodes stage (HR: 0.80 for pN3 vs pN1, and 3.05 for >0.65 vs <0.21 lymph node ratio), respectively. Consistent results were observed for cancer recurrence, except for Ki-67 and necrosis that were not found to be significant predictors for recurrence. This uniquely large study of TNBC patients provides further evidence that, besides tumor stage at diagnosis, lymph node ratio among lymph node positive tumors is an additional relevant predictor of survival and tumor recurrence, while Ki-67 seems to be predictive of mortality, but not of recurrence.

  19. MicroRNA-211-5p suppresses tumour cell proliferation, invasion, migration and metastasis in triple-negative breast cancer by directly targeting SETBP1.

    PubMed

    Chen, Liang-Liang; Zhang, Zhou-Jing; Yi, Zhan-Bo; Li, Jian-Jun

    2017-06-27

    Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancer in women globally. This subtype often has early and high recurrence rates, resulting in poor survival, partially due to lack of targeted therapies. To date, the detailed molecular mechanisms underlying TNBC progression are unclear. Given the crucial role of microRNAs (miRNAs) in cancer metastasis, we aimed to analyse the expression and function of a metastasis-associated miRNA named miR-211-5p in TNBC. MiRNA array analysis was performed to search for metastasis-associated miRNAs in TNBC. The miR-211-5p expression in tumour tissues, adjacent non-tumourous breast tissues of TNBC patients and cell lines were evaluated by real-time PCR. The protein expression levels were analysed by western blot, immunohistochemistry and in situ hybridisation. Luciferase reporter assays were employed to validate the target of miR-211-5p. The effect of miR-211-5p on TNBC progression was investigated in vitro and in vivo. MiR-211-5p was significantly downregulated in TNBC, and its expression level was associated with overall survival in TNBC. The expression of miR-211-5p suppressed TNBC cell proliferation, invasion, migration and metastasis in vitro and in vivo. Furthermore, SETBP1 was identified as a target of miR-211-5p. Through gain-of-function and loss-of-function studies, SETBP1 was shown to significantly affect colony and cell number in vitro. Enforced expression of miR-211-5p inhibited the expression of SETBP1 significantly and the restoration of SETBP1 expression reversed the inhibitory effects of miR-211-5p on TNBC cell proliferation and metastasis. These findings collectively demonstrate a tumour suppressor role of miR-211-5p in TNBC progression by targeting SETBP1, suggesting that miR-211-5p could serve as a potential prognostic biomarker and therapeutic target for TNBC.

  20. Racial disparities in breast cancer diagnosis and treatment by hormone receptor and HER2 status

    PubMed Central

    Chen, Lu; Li, Christopher I.

    2015-01-01

    Background African American and Hispanic women are more likely to be diagnosed with aggressive forms of breast cancer. Disparities within each subtype of breast cancer have not been well documented. Methods Using data from 18 SEER cancer registries, we identified 102,064 women aged 20 years or older, diagnosed with invasive breast cancer in 2010–2011, and with known stage, hormone receptor (HR) and HER2 status. Associations between race/ethnicity and cancer stage and receipt of guideline concordant treatment were evaluated according to HR/HER2 status. Results Overall, African American and Hispanic women were 30–60% more likely to be diagnosed with stage II–IV breast cancer compared to Non-Hispanic whites. African American women had 40–70% higher risks of stage IV breast cancer across all four subtypes. American Indian/Alaska Native women had a 3.9-fold higher risk of stage IV triple negative breast cancer. African American and Hispanic whites were 30–40% more likely to receive non-guideline concordant treatment for breast cancer overall and across subtypes. Conclusions Women in several racial/ethnic groups are more likely to be diagnosed with more advanced stage breast cancer. African American and American Indian/Alaska native women in particular had the highest risk of being diagnosed with stage IV triple negative breast cancer. African American and Hispanic women were also consistently at higher risk of not receiving guideline concordant treatment across subtypes. Impact These findings provide important characterization of which subtypes of breast cancer racial/ethnic disparities in stage and treatment persist. PMID:26464428