Sample records for backhaul possibilities shallow

  1. Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions

    PubMed Central

    Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng

    2016-01-01

    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design. PMID:27322265

  2. Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions.

    PubMed

    Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng

    2016-06-16

    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design.

  3. Wireless multihop backhauls for rural areas: A preliminary study.

    PubMed

    Zaidi, Zainab; Lan, Kun-Chan

    2017-01-01

    Rural areas have very low revenue potential. The major issue in providing low-cost broadband to rural areas is to provide reliable backhaul connections that spread over tens or even hundreds of miles, connecting villages to the nearest service provider. Along with aerial networks of Google and Facebook, there has been a considerable amount of research toward long-distance terrestrial WiFi links. As a comparison, WiFi routers are easier to be deployed and maintained by non-technical people from the local communities, whereas the aerial networks require professional support to operate. Moreover, they are still in the experimentation phase. However, the long distance WiFi links require high-gain directional antennas and very expensive tall towers for high data rates. On the other hand, multihop paths with stronger links may provide better data rates without the need of tall towers. In this paper, we evaluated the concept of using such multihop WiFi links for long backhaul connections. Our simulation results show that these networks can possibly be a cost-effective and practical solution for rural connectivity. These initial results can serve as a first step to understand the comprehensive feasibility of using multihop WiFi networks for backhaul connections in rural area.

  4. Wireless multihop backhauls for rural areas: A preliminary study

    PubMed Central

    Zaidi, Zainab; Lan, Kun-chan

    2017-01-01

    Rural areas have very low revenue potential. The major issue in providing low-cost broadband to rural areas is to provide reliable backhaul connections that spread over tens or even hundreds of miles, connecting villages to the nearest service provider. Along with aerial networks of Google and Facebook, there has been a considerable amount of research toward long-distance terrestrial WiFi links. As a comparison, WiFi routers are easier to be deployed and maintained by non-technical people from the local communities, whereas the aerial networks require professional support to operate. Moreover, they are still in the experimentation phase. However, the long distance WiFi links require high-gain directional antennas and very expensive tall towers for high data rates. On the other hand, multihop paths with stronger links may provide better data rates without the need of tall towers. In this paper, we evaluated the concept of using such multihop WiFi links for long backhaul connections. Our simulation results show that these networks can possibly be a cost-effective and practical solution for rural connectivity. These initial results can serve as a first step to understand the comprehensive feasibility of using multihop WiFi networks for backhaul connections in rural area. PMID:28403167

  5. High-capacity mixed fiber-wireless backhaul networks using MMW radio-over-MCF and MIMO

    NASA Astrophysics Data System (ADS)

    Pham, Thu A.; Pham, Hien T. T.; Le, Hai-Chau; Dang, Ngoc T.

    2017-10-01

    In this paper, we have proposed a high-capacity backhaul network, which is based on mixed fiber-wireless systems using millimeter-wave radio-over-multi-core fiber (MMW RoMCF) and multiple-input multiple-output (MIMO) transmission, for next generation mobile access networks. In addition, we also investigate the use of avalanche photodiode (APD) to improve capacity of the proposed backhaul downlink. We then theoretically analyze the system capacity comprehensively while considering various physical impairments including noise, MCF crosstalk, and fading modeled by Rician MIMO channel. The feasibility of the proposed backhaul architecture is verified via the numerical simulation experiments. The research results demonstrate that our developed backhaul solution can significantly enhance the backhaul capacity; the system capacity of 24 bps/Hz can be achieved with 20-km 8-core MCF and 8 × 8 MIMO transmitted over 100-m Rician fading link. It is also shown that the system performance, in term of channel capacity, strongly depend on the MCF inter-core crosstalk, which is governed by the mode coupling coefficient, the core pitch, and the bending radius.

  6. 75 FR 52185 - Use of Microwave for Wireless Backhaul; Provision for Additional Flexibility To Broadcast...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Part V Federal Communications Commission 47 CFR Parts 1, 74, and 101 Use of Microwave for Wireless... Docket Nos. 10-153; 09-106; 07-121; FCC 10-146] Use of Microwave for Wireless Backhaul; Provision for... commences a proceeding to remove regulatory barriers to the use of spectrum for wireless backhaul and other...

  7. 77 FR 54511 - Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... CONTACT: For further information contact John Schauble, Deputy Chief, Wireless Telecommunications Bureau... increase the flexibility of our part 101 rules to promote wireless backhaul. We seek more detailed comment...

  8. Numerical Analysis of the Performance of Millimeter-Wave RoF-Based Cellular Backhaul Links

    NASA Astrophysics Data System (ADS)

    Pham, Thu A.; Pham, Hien T. T.; Le, Hai-Chau; Dang, Ngoc T.

    2017-08-01

    In this paper, we study the performance of a next-generation cellular backhaul network that is based on a hybrid architecture using radio-over-fiber (RoF) and millimeter-wave (MMW) techniques. We develop a mathematic model and comprehensively analyze the performance of a MMW/RoF-based backhaul downlink under the impacts of various physical layer impairments originated from both optical fiber and wireless links. More specifically, the effects of nonlinear distortion, chromatic dispersion, fading, and many types of noises including shot noise, thermal noise, amplifier noise, and relative intensity noise are investigated. The numerical results show that the nonlinear distortion, fiber dispersion, and wireless fading are key factors that limit the system performance. Setting the modulation index properly helps minimize the effect of nonlinear distortion while implementing dispersion shifted optical fibers could be used to reduce the impact of dispersion and as a result, they can improve the bit-error rate. Moreover, it is also verified that, to mitigate the effect of multipath fading, remote radio heads should be located as near the remote antenna units as possible.

  9. 76 FR 59614 - Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... 101 rules to promote wireless backhaul. We seek comment on certain proposals offered by parties in... America. In addition, we address a petition for rulemaking filed by Fixed Wireless Communications...

  10. 77 FR 54421 - Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... regulatory barriers and lowering costs for the wireless microwave backhaul facilities that are an important component of many mobile wireless networks. The steps we take will remove regulatory barriers that today...

  11. 76 FR 59559 - Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... FS licensees to reduce operational costs, increase reliability, and facilitate the use of wireless... for wireless backhaul and other point-to-point and point-to-multipoint communications. We also make...

  12. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    PubMed

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  13. A Novel Capacity Analysis for Wireless Backhaul Mesh Networks

    NASA Astrophysics Data System (ADS)

    Chung, Tein-Yaw; Lee, Kuan-Chun; Lee, Hsiao-Chih

    This paper derived a closed-form expression for inter-flow capacity of a backhaul wireless mesh network (WMN) with centralized scheduling by employing a ring-based approach. Through the definition of an interference area, we are able to accurately describe a bottleneck collision area for a WMN and calculate the upper bound of inter-flow capacity. The closed-form expression shows that the upper bound is a function of the ratio between transmission range and network radius. Simulations and numerical analysis show that our analytic solution can better estimate the inter-flow capacity of WMNs than that of previous approach.

  14. 48 CFR 47.305-7 - Quantity analysis, direct delivery, and reduction of crosshauling and backhauling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Quantity analysis, direct... Contracts 47.305-7 Quantity analysis, direct delivery, and reduction of crosshauling and backhauling. (a) Quantity analysis. (1) The requiring activity shall consider the acquisition of carload or truckload...

  15. 76 FR 65970 - Facilitating the use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 101 [WT Docket No. 10-153; RM-11602; DA 11-1674] Facilitating the use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To Broadcast Auxiliary Service and Operational Fixed Microwave Licensees AGENCY: Federal Communications...

  16. All-optical two-way relaying free-space optical communications for HAP-based broadband backhaul networks

    NASA Astrophysics Data System (ADS)

    Vu, Minh Q.; Nguyen, Nga T. T.; Pham, Hien T. T.; Dang, Ngoc T.

    2018-03-01

    High-altitude platforms (HAPs) are flexible, non-pollutant and cost-effective infrastructures compared to satellite or old terrestrial systems. They are being researched and developed widely in Europe, USA, Japan, Korea, and so on. However, the current limited data rates and the overload of radio frequency (RF) spectrum are problems which the developers for HAPs are confronting because most of them use RF links to communicate with the ground stations (GSs) or each other. In this paper, we propose an all-optical two-way half-duplex relaying free-space optical (FSO) communication for HAP-based backhaul networks, which connect the base transceiver station (BTS) to the core network (CN) via a single HAP. Our proposed backhaul solution can be deployed quickly and flexibly for disaster relief and for serving users in both urban environments and remote areas. The key subsystem of HAP is an optical regenerate-and-forward (ORF) equipped with an optical hard-limiter (OHL) and an optical XOR gate to perform all-optical processing and help mitigate the background noise. In addition, two-way half-duplex relaying can be provided thanks to the use of network coding scheme. The closed-form expression for the bit error rate (BER) of our proposed system under the effect of path loss, atmospheric turbulence, and noise induced by the background light is formulated. The numerical results are demonstrated to prove the feasibility of our proposed system with the verification by using Monte-Carlo (M-C) simulations.

  17. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania

    PubMed Central

    Warner, Nathaniel R.; Jackson, Robert B.; Darrah, Thomas H.; Osborn, Stephen G.; Down, Adrian; Zhao, Kaiguang; White, Alissa; Vengosh, Avner

    2012-01-01

    The debate surrounding the safety of shale gas development in the Appalachian Basin has generated increased awareness of drinking water quality in rural communities. Concerns include the potential for migration of stray gas, metal-rich formation brines, and hydraulic fracturing and/or flowback fluids to drinking water aquifers. A critical question common to these environmental risks is the hydraulic connectivity between the shale gas formations and the overlying shallow drinking water aquifers. We present geochemical evidence from northeastern Pennsylvania showing that pathways, unrelated to recent drilling activities, exist in some locations between deep underlying formations and shallow drinking water aquifers. Integration of chemical data (Br, Cl, Na, Ba, Sr, and Li) and isotopic ratios (87Sr/86Sr, 2H/H, 18O/16O, and 228Ra/226Ra) from this and previous studies in 426 shallow groundwater samples and 83 northern Appalachian brine samples suggest that mixing relationships between shallow ground water and a deep formation brine causes groundwater salinization in some locations. The strong geochemical fingerprint in the salinized (Cl > 20 mg/L) groundwater sampled from the Alluvium, Catskill, and Lock Haven aquifers suggests possible migration of Marcellus brine through naturally occurring pathways. The occurrences of saline water do not correlate with the location of shale-gas wells and are consistent with reported data before rapid shale-gas development in the region; however, the presence of these fluids suggests conductive pathways and specific geostructural and/or hydrodynamic regimes in northeastern Pennsylvania that are at increased risk for contamination of shallow drinking water resources, particularly by fugitive gases, because of natural hydraulic connections to deeper formations. PMID:22778445

  18. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania.

    PubMed

    Warner, Nathaniel R; Jackson, Robert B; Darrah, Thomas H; Osborn, Stephen G; Down, Adrian; Zhao, Kaiguang; White, Alissa; Vengosh, Avner

    2012-07-24

    The debate surrounding the safety of shale gas development in the Appalachian Basin has generated increased awareness of drinking water quality in rural communities. Concerns include the potential for migration of stray gas, metal-rich formation brines, and hydraulic fracturing and/or flowback fluids to drinking water aquifers. A critical question common to these environmental risks is the hydraulic connectivity between the shale gas formations and the overlying shallow drinking water aquifers. We present geochemical evidence from northeastern Pennsylvania showing that pathways, unrelated to recent drilling activities, exist in some locations between deep underlying formations and shallow drinking water aquifers. Integration of chemical data (Br, Cl, Na, Ba, Sr, and Li) and isotopic ratios ((87)Sr/(86)Sr, (2)H/H, (18)O/(16)O, and (228)Ra/(226)Ra) from this and previous studies in 426 shallow groundwater samples and 83 northern Appalachian brine samples suggest that mixing relationships between shallow ground water and a deep formation brine causes groundwater salinization in some locations. The strong geochemical fingerprint in the salinized (Cl > 20 mg/L) groundwater sampled from the Alluvium, Catskill, and Lock Haven aquifers suggests possible migration of Marcellus brine through naturally occurring pathways. The occurrences of saline water do not correlate with the location of shale-gas wells and are consistent with reported data before rapid shale-gas development in the region; however, the presence of these fluids suggests conductive pathways and specific geostructural and/or hydrodynamic regimes in northeastern Pennsylvania that are at increased risk for contamination of shallow drinking water resources, particularly by fugitive gases, because of natural hydraulic connections to deeper formations.

  19. Geochemical Evidence for Possible Natural Migration of Marcellus Formation Brine to Shallow Aquifers in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Warner, N. R.; Darrah, T. H.; Jackson, R. B.; Osborn, S.; Down, A.; Vengosh, A.

    2012-12-01

    The acceleration in production of natural gas from shale formations through horizontal drilling and hydraulic fracturing has altered the landscape of domestic energy production in the USA. Yet shale gas exploration has generated an increased awareness of risks to drinking water quality amid concerns for the possible migration of stray gas or hydraulic fracturing fluid and/or flowback brine to shallow drinking water aquifers. The degree to which shallow drinking water is at risk from hydraulic fracturing could depend upon the hydraulic connectivity between the shale gas formations and the surface. In this study, we analyzed the geochemistry of over 400 water samples located across six counties of northeastern Pennsylvania in the three principle aquifers, two Upper Devonian Age bedrock aquifers (Catskill and Lock Haven) and one Quaternary Age (Alluvium) that overlie the Marcellus Formation. Based on a detailed analysis of major (Br, Cl, Na, Mg, Ba, and Sr) and trace (Li) element geochemistry, coupled with utilization of a specific spectrum of isotopic tracers (87Sr/86Sr, 228Ra/ 226Ra, 2H/H, 18O/16O), we identify a salinized (Cl> 20 mg/L) shallow groundwater type which suggests conservative mixing relationships between fresh shallow groundwater and an underlying brine. Identification of the brine source is complicated as many of the brines in the northern Appalachian Basin likely share a common origin as the expelled remnants of the formation of the Silurian Salina evaporate deposits. To determine the ultimate source of the diluted brine we compared the observed geochemistry to over 80 brines produced from northern Appalachian Basin formations. The shallow salinized groundwater most closely resembles diluted produced water from the Middle Devonian Marcellus Formation. The 18O/16O and 2H/H of the salinized groundwater indicate that the brine is likely diluted with post-glacial (<10,000 ybp) meteoric water. Combined, these data indicate that hydraulic connections

  20. Highly Efficient Multi Channel Packet Forwarding with Round Robin Intermittent Periodic Transmit for Multihop Wireless Backhaul Networks

    PubMed Central

    Furukawa, Hiroshi

    2017-01-01

    Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164

  1. Investigations on the Possibilities of Monitoring Coastal Changes Including Shallow Under Water Areas with Uas Photo Bathmetry

    NASA Astrophysics Data System (ADS)

    Grenzdörffer, G. J.; Naumann, M.

    2016-06-01

    UAS become a very valuable tool for coastal morphology. Not only for mapping but also for change detection and a better understanding of processes along and across the shore. This contribution investigates the possibilities of UAS to determine the water depth in clear shallow waters by means of the so called "photo bathymetry". From the results of several test flights it became clear that three factors influence the ability and the accuracy of bathymetric sea floor measurements. Firstly, weather conditions. Sunny weather is not always good. Due to the high image resolution the sunlight gets focussed even in very small waves causing moving patterns on shallow grounds with high reflection properties, such as sand. This effect invisible under overcast weather conditions. Waves, may also introduce problems and mismatches. Secondly the quality and the accuracy of the georeferencing with SFM algorithms. As multi image key point matching will not work over water, the proposed approach will only work for projects closely to the coastline with enough control on the land. Thirdly the software used and the intensity of post processing and filtering. Refraction correction and the final interpolation of the point cloud into a DTM are the last steps. If everything is done appropriately, accuracies in the bathymetry in the range of 10 - 50 cm, depending on the water depth are possible.

  2. Shallow processing of ambiguous pronouns: evidence for delay.

    PubMed

    Stewart, Andrew J; Holler, Judith; Kidd, Evan

    2007-12-01

    Two self-paced reading-time experiments examined how ambiguous pronouns are interpreted under conditions that encourage shallow processing. In Experiment 1 we show that sentences containing ambiguous pronouns are processed at the same speed as those containing unambiguous pronouns under shallow processing, but more slowly under deep processing. We outline three possible models to account for the shallow processing of ambiguous pronouns. Two involve an initial commitment followed by possible revision, and the other involves a delay in interpretation. In Experiment 2 we provide evidence that supports the delayed model of ambiguous pronoun resolution under shallow processing. We found no evidence to support a processing system that makes an initial commitment to an interpretation of the pronoun when it is encountered. We extend the account of pronoun resolution proposed by Rigalleau, Caplan, and Baudiffier (2004) to include the treatment of ambiguous pronouns under shallow processing.

  3. Shallow End Response from ATEM

    NASA Astrophysics Data System (ADS)

    Vetrov, A.

    2014-12-01

    Different geological, hydrological, environmental and engineering targets are located shallow underground. The information collected with ATEM systems might be very useful for their study; although there are many deeper targets that the ATEM systems are traditionally used for. The idea to raise magnetic moment output and get deeper penetration response was one of the goals of ATEM systems development during the last decade. The shallow geology response was a trade for such systems, which sometimes were almost blind in the first hundred meter under surface. The possibility to achieve shallow end response from ATEM systems has become significant subject in last years. Several airborne TDEM systems got second higher frequency and lower magnetic moment signal to pick up shallow response together with deep one. Having a potential advantage such implementation raises complication and cost of the system. There's no need to receive 500 meter deep response when exploring shallow geology. P-THEM system having a compact size transmitter and relatively light weight is working on one base frequency at a time, but this frequency can be preset before a flight considering survey goals. A study of shallow geology response of the P-THEM system working on different base frequency has been conducted in 2014 in Ontario. The Alliston test area located in Southern Ontario has been flown with the P-THEM system working on base frequencies 30Hz and 90Hz. Results of the observations will be discussed in the presentation. The shallow end data can be used for mineral exploration applications and also for hydrological and environmental studies.

  4. Impairment assessment of orthogonal frequency division multiplexing over dispersion-managed links in backbone and backhaul networks

    NASA Astrophysics Data System (ADS)

    Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi

    2016-04-01

    The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.

  5. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Kraft M. Approach to the patient with respiratory disease. In: ... Elsevier Saunders; 2016:chap 83. McGee S. Respiratory rate and ...

  6. High-resolution surveys for geohazards and shallow gas: NW Adriatic (Italy) and Iskenderun Bay (Turkey)

    USGS Publications Warehouse

    Orange, D.L.; Garcia-Garcia, Ana; McConnell, D.; Lorenson, T.; Fortier, G.; Trincardi, F.; Can, E.

    2005-01-01

    The need for quantifying and understanding the distribution of shallow gas is both of academic interest and of relevance to offshore facilities. The combination of seafloor mapping, subbottom profiling, and multi-channel seismic data can provide information on regions of possible shallow gas, where the gas impacts the acoustic properties of the host material and the seafloor. In this paper, we present two case studies - one academic and one industry - that evaluate the distribution of shallow gas in two field areas in the Mediterranean. In the first case study, geophysical data from Iskenderun Bay, southeastern Turkey, indicate the presence and distribution of shallow gas. Pockmarks on the seafloor are associated with acoustic wipeout in the shallow subbottom data. Although deeper seismic data do not show bright spots or other indicators of possible gas, instantaneous frequency analysis clearly shows laterally restricted anomalies indicating gas-rich zones. The interpretation of possible shallow gas resulted in moving a proposed drilling location to a nearby area characterized by fewer (but still present) shallow gas signatures. In the second case study, cores acquired in the Po Delta, Adriatic Sea, provide quantitative ground-truthing of shallow gas - as suggested by geophysical data - and provide minimum estimates of the percentage of gas in the subsurface. Cores targeted on anomalous subbottom data yielded up to 41,000 ppm methane; cores with anomalous gas content are associated with thick recent flood deposits which may effectively isolate reactive terrigenous organic matter from biologic and physical re-working. ?? Springer 2005.

  7. Acute shallowing of the anterior chamber.

    PubMed Central

    Mapstone, R

    1981-01-01

    In aging eyes phenylephrine drops have no significant effect on the depth of the anterior chamber, whereas pilocarpine drops produce a significant shallowing. If both drugs are instilled simultaneously, a significantly greater decrease in anterior chamber depth occurs. The effect is seen in normal, glaucomatous, and hypertensive eyes, and in eyes with shallow anterior chambers. It did not occur in eyes that had had an iridectomy. During the course of a positive provocative test an acute reduction in anterior depth occurs which is reversed when the angle opens and pressure returns to normal levels. It is concluded that the depth of the anterior chamber is not a static dimension but that changes can occur which are rapid and transient. The mechanism of shallowing and deepening depends on an increase or a decrease in the pupil block force. It is a necessary consequence too that eyes with nonshallow anterior chambers can get closed-angle glaucoma and that this possibility cannot be detected by a conventional gonioscopic approach. PMID:6455153

  8. Volga shallow offing dynamics investigation based on space photography

    NASA Astrophysics Data System (ADS)

    Kovalev, E. E.

    offing and delta determines by river runoff fluctuations and sea level. The influence of sea level on intensity of shallow offing processes development is explored. New information about river flow paths advancing into sea at the seacoast is obtained. Its determined, that most intensive delta flooding is possible at sea level (near Makhachkala) more than -27,4 m abs. (7) Recommendations for canals layout in Volga shallow offing are given. (9) Prognosis of future channel net in Volga shallow offing is made.

  9. Shallow cells in directional solidification

    NASA Technical Reports Server (NTRS)

    Merchant, G. J.; Davis, S. H.

    1989-01-01

    The existing theory on two-dimensional transitions (appropriate to thin parallel-plate geometries) is presented in such a way that it is possible to identify easily conditions for the onset of shallow cells. Conditions are given under which succinonitrile-acetone mixtures should undergo supercritical bifurcation in experimentally accessible ranges. These results suggest a means for the quantitative test of the Mullins and Sekerka (1964) model and its weakly nonlinear extensions.

  10. Scoping Alternatives for Negative Emission Technologies. FRACCC - Possible Routes to Biomass-Derived Carbon Injection in Shallow Aquifers?

    NASA Astrophysics Data System (ADS)

    Correa Silva, R.; Larter, S.

    2016-12-01

    Atmospheric CO2 capture into biomass is one of the capture options for negative emission technologies, although proposed sequestration systems such as the permanent burial of total fresh biomass, algal lipids or soil amendment with biochar are yet to be successfully demonstrated as effective at scale. In the context of carbon sequestration, shallow geological reservoirs have not been exhaustively explored, even though they pose, away from groundwater protection zones, potentially low implementation cost, and geographically abundant potential carbon storage reservoirs. Typical carbon storage vectors considered, such as CO2 and biochar, are not suitable for shallow aquifer disposal, due either to cap rock containment requirements, or shallow aquifer CO2 densities, or issues related to formation damage from solid particles. Thus, a cost-effective technology, aimed at converting biomass into a large-scale carbon vector fit-for-disposal in shallow formations could be significant, linking promising carbon capture and containment strategies. In this work, we discuss the development of unconventional carbon vectors for subsurface storage in the form of Functionalized, Refractory and Aqueous Compatible Carbon Compounds (FRACCC), as a potential alternative negative emission technology (Larter et al., 2010). The concept is based on CO2 capture into microbial and algal biomass, followed by the modification of biomass constituents through facile chemical reactions aimed at rendering the biomass efficiently into a stable, biologically refractory but water soluble form, similar in some regards, to dissolved organic matter in the oceans, then sequestering the material in geological settings. As the injected material is not buoyant, containment specifications are more modest than for CO2 injection and potentially, more reservoirs could be accessible! This work analyses the technological, economic and societal implications of such potential FRACCC technologies, and make an

  11. A seismological study of shallow weak earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution

    NASA Astrophysics Data System (ADS)

    Dahm, Torsten; Heimann, Sebastian; Bialowons, Wilhelm

    2010-05-01

    In the night from 8/9 April 2009, shortly after midnight on Maundy Thursday before Easter, several people in Gross-Flottbek, Hamburg, felt unusual strong ground shocks so that some of them left their houses in fear of earthquake shaking. Police and Fire Brigade received phone calls of worried residents, and few days later Internet pages were published where people reported their observations. On 21 April 2009 at about 8 p.m. local time a second micro-earthquake was felt. Damage to buildings or infrastructure did not occur to our knowledge. The Institute of Geophysics, University of Hamburg, installed from 22 April to 17 May 2009 three temporal seismic stations in the epicentral area. Seismological data from two close-by stations at the Deutsches Elektron-Synchrotron (DESY) in about 1 km and the Geophysical Institute in about 7 km distance were collected and integrated to the temporal network. The events occurred above the roof of the shallow Othmarschen Langenfelde salt diapir (OLD), in an area known for active sinkhole formation and previous historic ground shaking events. The analysis of the seismological data recovers that three shallow micro-earthquakes occurred from 8 to 21 April at a depth of about 100m, the largest one with a moment magnitude of about MW 0.6. Depth location of such shallow events is difficult with standard methods, and is here constrained by waveform modeling of surface waves. Earthquakes occurring in soft sediments within the uppermost 100 m are a rare phenomena and cannot be explained by standard models. Rupture process in soft sediments differ from those on faults in more competent rock. We discuss the rupture and source mechanism of the earthquakes in the context of previous historic shocks and existing sinkhole and deformation data. Although the event was so weak, the rupture duration was unusual long and possibly 0.3 s. Three possible models for the generation of repeated micro-earthquakes in Gross Flottbek are developed and discussed

  12. Shallow-Water Reverberation

    DTIC Science & Technology

    2000-09-30

    Shallow- Water Reverberation J. X. Zhou School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0405 phone: (404) 894...6793 fax: (404) 894-7790 e-mail: jixun.zhou@me.gatech.edu Award Number: N00014-97-1-0170 Thrust Category: Shallow- Water Acoustics LONG-TERM GOALS...The long-term goals of this work are: to develop a theoretical model for predicting the reverberation in shallow water , to derive both small-angle

  13. Possible correlation between annual gravity change and shallow background seismicity rate at subduction zone by surface load

    NASA Astrophysics Data System (ADS)

    Mitsui, Yuta; Yamada, Kyohei

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) has monitored global gravity changes since 2002. Gravity changes are considered to represent hydrological water mass movements around the surface of the globe, although fault slip of a large earthquake also causes perturbation of gravity. Since surface water movements are expected to affect earthquake occurrences via elastic surface load or pore-fluid pressure increase, correlation between gravity changes and occurrences of small (not large) earthquakes may reflect the effects of surface water movements. In the present study, we focus on earthquakes smaller than magnitude 7.5 and examine the relation between annual gravity changes and earthquake occurrences at worldwide subduction zones. First, we extract amplitudes of annual gravity changes from GRACE data for land. Next, we estimate background seismicity rates in the epidemic-type aftershock sequence model from shallow seismicity data having magnitudes of over 4.5. Then, we perform correlation analysis of the amplitudes of the annual gravity changes and the shallow background seismicity rates, excluding source areas of large earthquakes, and find moderate positive correlation. It implies that annual water movements can activate shallow earthquakes, although the surface load elastostatic stress changes are on the order of or below 1 kPa, as small as a regional case in a previous study. We speculate that periodic stress perturbation is amplified through nonlinear responses of frictional faults.[Figure not available: see fulltext.

  14. Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Shelegedin, V. N.; Vdovina, M. A.; Pavlov, A. A.

    2010-01-01

    Low atmospheric pressures on Mars and the lack of substantial amounts of liquid water were suggested to be among the major limiting factors for the potential Martian biosphere. However, large amounts of ice were detected in the relatively shallow subsurface layers of Mars by the Odyssey Mission and when ice sublimates the water vapour can diffuse through the porous surface layer of the soil. Here we studied the possibility for the active growth of microorganisms in such a vapour diffusion layer. Our results showed the possibility of metabolism and the reproduction of non-extremophile terrestrial microorganisms (Vibrio sp.) under very low (0.01-0.1 mbar) atmospheric pressures in a Martian-like shallow subsurface regolith.

  15. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    Urbanized areas have environmental features that may influence the development of low-enthalpy geothermal systems and the choice of the most suitable among the available (roughly earth-coupled closed-loop and groundwater open-loop type). In particular, if compared to less anthropized areas, some characteristic urban elements require particular attention: underground extensive use, contamination of groundwater, interference between the systems, authorization procedures and planning restrictions, the competition with cogeneration systems and the impact on emissions of pollutants. In this general context, the increasing implementation in several areas of the world of the open-loop groundwater heat pumps technology which discharge into the aquifer for cooling and heating buildings, could potentially cause, even in the short term, a significant environmental impact associated with thermal interference with groundwater, particularly in the shallow aquifers. The discharge of water at different temperatures compared to baseline (warmer in summer and colder in winter) poses a number of problems in relation to the potential functionality of many existing situations of use of the groundwater (drinking water wells, agricultural, industrial, etc.). In addition, there may be cases of interference between systems, especially in the more densely urbanized areas. Appropriate hydrogeological investigations should be performed for the characterization of the main hydrogeological parameters of the subsoil at the considered site in order to minimize the environmental impact of discharges into aquifers. The current Italian legislation related to withdrawals and discharges into aquifers designs a framework suitable for the protection of groundwater and induce deciding the best configuration of the plant with a case by case approach. An increased contact area between the dispersant system and the ground makes it possible to affect a greater volume of aquifer and, consequently, reduce the

  16. Shallow-Water Mud Acoustics

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow- Water Mud Acoustics William L. Siegmann...shallow water over mud sediments and of acoustic detection, localization, and classification of objects buried in mud. OBJECTIVES • Develop...including long-range conveyance of information; detection, localization, and classification of objects buried in mud; and improvement of shallow water

  17. Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet: correction, possible causes and implications for reconstructing the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Hallot, Erwan

    2013-09-01

    A systematic bias towards low palaeomagnetic inclination recorded in clastic sediments, that is, inclination shallowing, has been recognized and studied for decades. Identification, understanding and correction of this inclination shallowing are critical for palaeogeographic reconstructions, particularly those used in climate models and to date collisional events in convergent orogenic systems, such as those surrounding the Neotethys. Here we report palaeomagnetic inclinations from the sedimentary Eocene upper Linzizong Group of Southern Tibet that are ˜20° lower than conformable underlying volcanic units. At face value, the palaeomagnetic results from these sedimentary rocks suggest the southern margin of Asia was located ˜10°N, which is inconsistent with recent reviews of the palaeolatitude of Southern Tibet. We apply two different correction methods to estimate the magnitude of inclination shallowing independently from the volcanics. The mean inclination is corrected from 20.5° to 40.0° within 95 per cent confidence limits between 33.1° and 49.5° by the elongation/inclination (E/I) correction method; an anisotropy-based inclination correction method steepens the mean inclination to 41.3 ± 3.3° after a curve fitting- determined particle anisotropy of 1.39 is applied. These corrected inclinations are statistically indistinguishable from the well-determined 40.3 ± 4.5º mean inclination of the underlying volcanic rocks that provides an independent check on the validity of these correction methods. Our results show that inclination shallowing in sedimentary rocks can be corrected. Careful inspection of stratigraphic variations of rock magnetic properties and remanence anisotropy suggests shallowing was caused mainly by a combination of syn- and post-depositional processes such as particle imbrication and sedimentary compaction that vary in importance throughout the section. Palaeolatitudes calculated from palaeomagnetic directions from Eocene sedimentary

  18. Testing the Shallow Structure Hypothesis in L2 Japanese

    ERIC Educational Resources Information Center

    Smith, Megan

    2016-01-01

    Language processing heuristics are one of the possible sources of divergence between first and second language systems. The Shallow Structure Hypothesis (SSH) (Clahsen and Felser, 2006) proposes that non-native language processing relies primarily on semantic, and not syntactic, information, and that second language (L2) processing is therefore…

  19. From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors

    PubMed Central

    Lindner, Alberto; Cairns, Stephen D.; Cunningham, Clifford W.

    2008-01-01

    Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors. PMID:18560569

  20. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vegetated shallows. 230.43 Section 230... Special Aquatic Sites § 230.43 Vegetated shallows. (a) Vegetated shallows are permanently inundated areas... reducing light penetration and hence photosynthesis; and (5) changing the capacity of a vegetated shallow...

  1. Spatially explicit shallow landslide susceptibility mapping over large areas

    Treesearch

    Dino Bellugi; William E. Dietrich; Jonathan Stock; Jim McKean; Brian Kazian; Paul Hargrove

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so...

  2. Heterogeneous distribution of pelagic sediments incoming the Japan Trench possibly controlling slip propagation on shallow plate boundary fault

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Nakamura, Y.; Fukuchi, R.; Kurano, H.; Ikehara, K.; Kanamatsu, T.; Arai, K.; Usami, K.; Ashi, J.

    2017-12-01

    Catastrophic tsunami of the 2011 Tohoku Earthquake was triggered by large coseismic slip reached to the Japan Trench axis (e.g. Fujiwara et al., 2011, Science; Kodaira et al., 2012, Nature Geoscience). Results of the IODP Expedition 343 (JFAST) suggest that small friction of smectite-rich pelagic clay caused slip propagation on shallow plate boundary fault (Ujiie et al., 2013, Science; Kameda et al., 2015, Geology; Moore et al., 2015, Geosphere). On the other hand, JAMSTEC high-resolution seismic profiles show that incoming sediments have large heterogeneities in thicknesses, and two areas of extremely thin sediments on the Pacific Plate (thickness less than 100 m) were found at around 39°N (Nakamura et al., AGU 2017, this session). To reconcile whether the smectite-rich pelagic clay even exists in these areas, we sampled surface sediments during the R/V Shinsei Maru KS-15-3 cruise. Seven piston cores were retrieved from seaward trench slope, horst, graben, and graben edge. Core lithologies are mainly diatomaceous ooze/clay including tephra layers, not resemble to pelagic clays discovered in JFAST. Ages of tephra layers were estimated by correlating mineral assemblages and refractive indices of volcanic glasses to Japanese widespread tephras. Averaged sedimentation rates of seaward trench slope, horst, graben, and graben edge are estimated to be 25-30, 6.5-20, 45, 0.9 cm/kyr, respectively. These sedimentation rates imply that sediments on seaward trench slope and horst have been deposited in the last 160-500 kyr, suggesting that entire pelagic sediments, including smectite-rich pelagic clay, have been removed by some reasons in the last 0.5 million years. Possible reason for such modification of sediment is near-trench igneous activity known as petit-spot volcanism (Hirano et al., 2006, Science). The lack of smectite-rich pelagic clay near 39°N of the Japan Trench is consistent with results of tsunami inversions proposing shallow large coseismic slip propagated

  3. Limitations of shallow nets approximation.

    PubMed

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Velocity structure of the shallow lunar crust

    NASA Technical Reports Server (NTRS)

    Gangi, A. F.; Yen, T. E.

    1979-01-01

    Data from the thumper shots of the Apollo 14 and Apollo 16 active seismic experiments, testing whether the velocity variation in the shallow lunar crust (depths less than or equal to 10 m) can be represented by a self-compacting-power-layer or by a constant-velocity-layer model, are analyzed. Although filtering and stacking improved the S/N ratios, it was found that measuring the arrival times or amplitudes of arrivals beyond 32 m was not possible. The data quality precluded a definitive distinction between the power-law velocity variation and the layered-velocity model. Furthermore, it was found that the shallow lunar regolith is made up of fine particles, which supports the idea of a 1/6 power-velocity model. Analysis of the amplitudes of first arrivals revealed large errors in the data due to variations in the geophone sensitivities and shot strengths; a least-squares method, that uses data redundancy was employed to eliminate them.

  5. The Potential Role of Tree Diversity in Reducing Shallow Landslide Risk.

    PubMed

    Kobayashi, Yuta; Mori, Akira S

    2017-05-01

    Recently, interest in utilizing ecosystems for disaster risk reduction has increased, even though there remains considerable uncertainty regarding the role of ecosystems in buffering against natural hazards. This ecosystem role can be considered an ecosystem service. Although a strong body of evidence shows that biodiversity enhances ecosystem services, there are only a few studies of the relationship between biodiversity and the role of the ecosystem in reducing the risk of natural disasters. To explore the desired state of an ecosystem for disaster risk reduction we applied the finding that biodiversity enhances ecosystem services to evaluate the role of woody vegetation in reducing the frequency and severity of shallow landslides. Using information related to shallow landslides and woody vegetation in Japan as a case study, we compared the severity of shallow landslides (i.e., landslide volume) with tree species richness. Although we provide no direct evidence that tree species richness reduces shallow landslide volume, we found that the predictability of the model, which evaluated relationships between landslide volume and environmental variables in watersheds throughout the Japanese Archipelago, increased with tree species richness. This finding suggests that biodiversity is likely associated with shallow landslide risk reduction, emphasizing a possible reduction of spatial and temporal uncertainty in the roles of woody vegetation. Our study identifies a need for socioecological systems to build new approaches found on the functionality of such ecosystems.

  6. Analysis of the possibilities of using aerial photographs to determine the bathymetry in shallow coastal zone of the selected section of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Cieszynski, Lukasz; Furmanczyk, Kazimierz

    2017-04-01

    Bathymetry data for the coastal zone of the Baltic Sea are usually created in profiles based on echo sounding measurements. However, in the shallow coastal zone (up to 4 m depth), the quality and accuracy of data is insufficient because of the spatial variability of the seabed. The green laser - LIDAR - can comprise a solution for studies of such shallow areas. However, this method is still an expensive one and that is why we have decided to use the RGB digital aerial photographs to create a model for mapping the seabed of the shallow coastal zone. So far, in the 60's, researchers in the USA (Musgrove, 1969) and Russia (Zdanowicz, 1963) developed the first method of bathymetry determining from aerial panchromatic (black-white) photographs. This method was adapted for the polish conditions by Furmanczyk in 1975 and in 2014 we have returned to his concept using more advanced techniques of recording and image processing. In our study, we propose to determine the bathymetry in shallow coastal zone of the Baltic Sea by using the digital vertical aerial photographs (both single and multi-channel spectral). These photos are the high-resolution matrix (10 cm per pixel) containing values of the grey level in the individual spectral bands (RGB). This gives great possibilities to determine the bathymetry in order to analyze the changes in the marine coastal zone. Comparing the digital bathymetry maps - obtained by proposed method - in the following periods, you can develop differential maps, which reflect the movements of sea-bottom sediments. This can be used to indicate the most dynamic regions in the examined area. The model is based on the image pixel values and relative depths measured in situ (in selected checkpoints). As a result, the relation of the pixel brightness and sea depth (the algorithm) was defined. Using the algorithm, depth calculations for the whole scene were done and high resolution bathymetric map created. However, the algorithm requires numbers of

  7. Optimal designs of bioretention cells in shallow groundwater

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Chui, T. F. M.

    2017-12-01

    Bioretention cells, as one representative low impact development practices, have been proved to be effective in controlling surface runoff, removing pollutants and recharging groundwater. However, they are often not recommended in shallow groundwater areas due to potential groundwater pollution, reduction in runoff control performance and groundwater drainage through the underdrain. Most design guidelines only require a minimum distance between bioretention cell bottom and seasonal high groundwater table without guiding the design of bioretention cells to mitigate the problem of shallow groundwater. This study therefore proposed some design recommendations of bioretention cells for different rainfall runoff loads, native soil types and initial water table depths. A variably saturated flow model was employed to conduct event-based simulations on one single hypothetical bioretention cell in shallow groundwater, which was calibrated using experimental and simulation data of an on-site bioretention cell. A wide range of climatic and geophysical factors (i.e. initial groundwater depths, native soils, rainfall runoff loads) and bioretention designs (i.e. media soil types and underdrain sizes) were considered. Surface runoff reduction, time before groundwater mound formation, as well as maximum height of groundwater mound were evaluated. Less-permeable media types (i.e. sandy loam) are recommended in areas with many extreme rainfall events (i.e. 40 - 70 mm/h or larger) and of shallower groundwater, which can better protect groundwater from mounding and possibly contamination although may slightly compromise the runoff control performance. For areas having seasonal high groundwater table of 0 - 1 m below bioretention bottom, underdrain is recommended to maintain good infiltration capacity without draining groundwater. However, underdrain is not recommended for areas of groundwater table always near or above the bioretention bottom, only if an impermeable sheet is added

  8. A SHALLOW WATER ISOBARIC BUOY.

    DTIC Science & Technology

    The genesis, development, and testing of an instrument for following currents in shallow waters is described. The volume of the ’shallow water ...isobaric buoy’ (SWIB) varies in response to pressure signals derived from the depth of the water in which the instrument floats. Mechanisms for auto...indicate the feasibility of the system. The instrument can hover in a relatively restricted horizontal layer. The instrument may find application as a water stability indicator as well as a shallow water current tag. (Author)

  9. Functional Metagenomic Investigations of Microbial Communities in a Shallow-Sea Hydrothermal System

    PubMed Central

    Tang, Kai; Liu, Keshao; Jiao, Nianzhi; Zhang, Yao; Chen, Chen-Tung Arthur

    2013-01-01

    Little is known about the functional capability of microbial communities in shallow-sea hydrothermal systems (water depth of <200 m). This study analyzed two high-throughput pyrosequencing metagenomic datasets from the vent and the surface water in the shallow-sea hydrothermal system offshore NE Taiwan. This system exhibited distinct geochemical parameters. Metagenomic data revealed that the vent and the surface water were predominated by Epsilonproteobacteria (Nautiliales-like organisms) and Gammaproteobacteria ( Thiomicrospira -like organisms), respectively. A significant difference in microbial carbon fixation and sulfur metabolism was found between the vent and the surface water. The chemoautotrophic microorganisms in the vent and in the surface water might possess the reverse tricarboxylic acid cycle and the Calvin−Bassham−Benson cycle for carbon fixation in response to carbon dioxide highly enriched in the environment, which is possibly fueled by geochemical energy with sulfur and hydrogen. Comparative analyses of metagenomes showed that the shallow-sea metagenomes contained some genes similar to those present in other extreme environments. This study may serve as a basis for deeply understanding the genetic network and functional capability of the microbial members of shallow-sea hydrothermal systems. PMID:23940820

  10. Reefal petroleum prospects possible in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadri, V.N.; Quadri, S.M.G.J.

    1996-03-25

    Carbonate buildups including reefs and banks have proven to be prolific hydrocarbon reservoirs in the US, Canada, Mexico, North Africa, Southeast Asia, and the Middle East. Seismic interpretation, particularly of high quality marine data, and geological analyses, including petrographic studies of selected formations, reveal a broad spectrum of possible reefal prospects in formations of different ages in Pakistan. However, the region with good seismic that provides good recognition of possible reefal buildups remains to date devoid of well confirmation. Oil and Gas Development Corp. of Pakistan formed the technical services department in 1976 for a systematic scientific review of allmore » exploration data and basin analysis. In 1985 this department was renamed offshore department, with responsibility for all offshore exploration. This article is based on the department`s work in collaboration with geoscientists from Russia, the US, Norway, and Canada covering the area shown. Four major types of carbonate buildups, easily recognized from seismic interpretation, include: barrier buildups that are linear with relatively deep water on both sides during deposition; pinnacle buildups that are roughly equidimensional and were surrounded by deep water during deposition; shelf margin buildups that are linear with deep water on one side and shallow water on the other; and patch buildups that form in shallow water either in close proximity to shelf margins, or over broad shallow seas.« less

  11. Rogue waves in shallow water

    NASA Astrophysics Data System (ADS)

    Soomere, T.

    2010-07-01

    Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.

  12. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt.

    PubMed

    Shlesinger, Tom; Grinblat, Mila; Rapuano, Hanna; Amit, Tal; Loya, Yossi

    2018-02-01

    Mesophotic coral ecosystems (i.e., deep coral reefs at 30-120 m depth) appear to be thriving while many shallow reefs in the world are declining. Amid efforts to understand and manage their decline, it was suggested that mesophotic reefs might serve as natural refuges and a possible source of propagules for the shallow reefs. However, our knowledge of how reproductive performance of corals alters with depth is sparse. Here, we present a comprehensive study of the reproductive phenology, fecundity, and abundance of seven reef-building conspecific corals in shallow and mesophotic habitats. Significant differences were found in the synchrony and timing of gametogenesis and spawning between shallow and mesophotic coral populations. Thus, mesophotic populations exhibited delayed or protracted spawning events, which led to spawning of the mesophotic colonies in large proportions at times where the shallow ones had long been depleted of reproductive material. All species investigated demonstrated a substantial reduction in fecundity and/or oocyte sizes at mesophotic depths (40-60 m). Two species (Seriatopora hystrix and Galaxea fascicularis) displayed a reduction in both fecundity and oocyte size at mesophotic depths. Turbinaria reniformis had only reduced fecundity and Acropora squarrosa and Acropora valida only reduced oocyte size. In Montipora verrucosa, reduced fecundity was found during one annual reproductive season while, in the following year, only reduced oocyte size was found. In contrast, reduced oocyte size in mesophotic populations of Acropora squarrosa was consistent along three studied years. One species, Acropora pharaonis, was found to be infertile at mesophotic depths along two studied years. This indicates that reproductive performance decreases with depth; and that although some species are capable of reproducing at mesophotic depths, their contribution to the replenishment of shallow reefs may be inconsequential. Reduced reproductive performance

  13. Microbial and geochemical quality of shallow well water in high-density areas in Mzuzu City in Malawi

    NASA Astrophysics Data System (ADS)

    Msilimba, Golden; Wanda, Elijah M. M.

    In Malawi, shallow wells constitute the most important water sources for domestic purposes. However, increasing human population coupled with poor sanitation and infrastructure is undermining the quality of shallow well water. An assessment of microbial and geochemical quality of shallow well water in high-density areas of Zolozolo, Ching’ambo and Chiputula in Mzuzu City, Northern Malawi, has been carried out. The study aimed at characterising domestic water sources, identifying possible sources of water contamination and determining levels of microbial and chemical contamination. Arc-view GIS was used to map the water sources. A questionnaire survey was carried out to elicit information on characteristics of drinking water sources. Water samples were collected from quasi-randomly selected shallow wells and analysed for microbial and chemical parameters using standard methods. HCA, performed using R-programme, was used to group sampled sites according to their bio-physicochemical characteristics. Compliance of the water with MBS/WHO water quality guidelines was determined. The WQI was computed to turn multifaceted data obtained from laboratory analyses into simple information that is comprehensible and useable by the public to assess overall quality of water at a specific water points. The GW-chart was used to show hydrogeochemical water types from each sampled site. Microbial analysis revealed that water from 96.3% of shallow wells recorded faecal coliforms ranging from 129 to 920 cfu per 100 ml which were significantly higher than the Malawi Standards and WHO thresholds. In general, shallow well water is of low mineralisation (EC range 80-500 μS cm-1), with hydrogeochemical facies dominated by Ca-HCO3, which evolves to Ca-Cl water type. The shallow well water registered a WQI range of 50.16-66.04%, with a medium WQ rating. This suggested that the water obtained from the shallow wells is unsuitable for direct human consumption. It was observed that 100% of the

  14. Shallow Subsurface Structures of Volcanic Fissures

    NASA Astrophysics Data System (ADS)

    Parcheta, C. E.; Nash, J.; Mitchell, K. L.; Parness, A.

    2015-12-01

    Volcanic fissure vents are a difficult geologic feature to quantify. They are often too thin to document in detail with seismology or remote geophysical methods. Additionally, lava flows, lava drain back, or collapsed rampart blocks typically conceal a fissure's surface expression. For exposed fissures, quantifying the surface (let along sub0surface) geometric expression can become an overwhelming and time-consuming task given the non-uniform distribution of wall irregularities, drain back textures, and the larger scale sinuosity of the whole fissure system. We developed (and previously presented) VolcanoBot to acquire robust characteristic data of fissure geometries by going inside accessible fissures after an eruption ends and the fissure cools off to <50 C. Data from VolcanoBot documents the fissure conduit geometry with a near-IR structured light sensor, and reproduces the 3d structures to cm-scale accuracy. Here we present a comparison of shallow subsurface structures (<30 m depth) within the Mauna Ulu fissure system and their counterpart features at the vent-to-ground-surface interface. While we have not mapped enough length of the fissure to document sinuosity at depth, we see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are, on average, 1 m across and protrude 30 cm into the drained fissure. This is significantly larger than the 10% wall roughness addressed in the engineering literature on fluid dynamics, and implies that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. In some locations, it is possible to match piercing points across the fissure walls, where the dike broke the wall rock in order to propagate upwards, yet in other locations there are erosional cavities, again, implying complex fluid dynamics in the shallow sub-surface during fissure eruptions.

  15. Spatially explicit shallow landslide susceptibility mapping over large areas

    USGS Publications Warehouse

    Bellugi, Dino; Dietrich, William E.; Stock, Jonathan D.; McKean, Jim; Kazian, Brian; Hargrove, Paul

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.

  16. A Novel Optimal Joint Resource Allocation Method in Cooperative Multicarrier Networks: Theory and Practice

    PubMed Central

    Gao, Yuan; Zhou, Weigui; Ao, Hong; Chu, Jian; Zhou, Quan; Zhou, Bo; Wang, Kang; Li, Yi; Xue, Peng

    2016-01-01

    With the increasing demands for better transmission speed and robust quality of service (QoS), the capacity constrained backhaul gradually becomes a bottleneck in cooperative wireless networks, e.g., in the Internet of Things (IoT) scenario in joint processing mode of LTE-Advanced Pro. This paper focuses on resource allocation within capacity constrained backhaul in uplink cooperative wireless networks, where two base stations (BSs) equipped with single antennae serve multiple single-antennae users via multi-carrier transmission mode. In this work, we propose a novel cooperative transmission scheme based on compress-and-forward with user pairing to solve the joint mixed integer programming problem. To maximize the system capacity under the limited backhaul, we formulate the joint optimization problem of user sorting, subcarrier mapping and backhaul resource sharing among different pairs (subcarriers for users). A novel robust and efficient centralized algorithm based on alternating optimization strategy and perfect mapping is proposed. Simulations show that our novel method can improve the system capacity significantly under the constraint of the backhaul resource compared with the blind alternatives. PMID:27077865

  17. Impact of geochemical stressors on shallow groundwater quality

    USGS Publications Warehouse

    An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.

    2005-01-01

    Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional geochemical stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.

  18. Geochemical Characterisation as a means of Distinguishing between Deep and Shallow Groundwater in the Karoo Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Swana, K.

    2015-12-01

    Although heralded as the solution to the world's energy shortage, shale-gas is proving to be extremely problematic from an environmental perspective. Fracking has in many instances led to the contamination of shallow groundwater resources in the vicinity of extraction sites. South Africa has significant energy issues and fracking has many attractions for the country as whole from an alternative energy supply perspective and also from a development perspective. However, the target region, the Karoo Basin, is a very water stressed region with significant ecological and agricultural value. The aim of this project was to establish whether it is possible to distinguish between deep and shallow groundwater throughout the Karoo using a wide variety of geochemical tracers. However, it is not possible to access groundwater located at depths of > 2500m. Therefore, waters derived from thermal springs and boreholes were used as proxies for deep groundwater. Eight locations within the Karoo Basin were chosen for sampling. Two sites were sampled at each location, one from a thermal spring or borehole and one from a shallow borehole in close proximity to the deep site. All of the samples were measured for temperature, pH, EC and alkalinity in the field and collected for major cations and anions, trace elements, O and H isotopes, Sr, B, Ra, Rn and CDIC isotopes, carbon 14, tritium, chlorine 36, He 4, and noble gases. From these analyses it was possible to differentiate thermal groundwater from shallow groundwater. The thermal groundwaters are interpreted to be deep because of their low carbon 14 content and further work, such as comparison of residence times using applicable tracers, is being completed to confirm this. A provisional list of tracers most reliable in identifying deep and shallow groundwater in the area has been developed and this can be used for monitoring programmes to assess the interaction of deep and shallow groundwater should fracking commence in the Karoo.

  19. Liquid Water in the Extremely Shallow Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  20. A spectral clustering search algorithm for predicting shallow landslide size and location

    Treesearch

    Dino Bellugi; David G. Milledge; William E. Dietrich; Jim A. McKean; J. Taylor Perron; Erik B. Sudderth; Brian Kazian

    2015-01-01

    The potential hazard and geomorphic significance of shallow landslides depend on their location and size. Commonly applied one-dimensional stability models do not include lateral resistances and cannot predict landslide size. Multi-dimensional models must be applied to specific geometries, which are not known a priori, and testing all possible geometries is...

  1. HF Radar Sea-echo from Shallow Water.

    PubMed

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-08-06

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  2. Stability analysis of shallow wake flows

    NASA Astrophysics Data System (ADS)

    Kolyshkin, A. A.; Ghidaoui, M. S.

    2003-11-01

    Experimentally observed periodic structures in shallow (i.e. bounded) wake flows are believed to appear as a result of hydrodynamic instability. Previously published studies used linear stability analysis under the rigid-lid assumption to investigate the onset of instability of wakes in shallow water flows. The objectives of this paper are: (i) to provide a preliminary assessment of the accuracy of the rigid-lid assumption; (ii) to investigate the influence of the shape of the base flow profile on the stability characteristics; (iii) to formulate the weakly nonlinear stability problem for shallow wake flows and show that the evolution of the instability is governed by the Ginzburg Landau equation; and (iv) to establish the connection between weakly nonlinear analysis and the observed flow patterns in shallow wake flows which are reported in the literature. It is found that the relative error in determining the critical value of the shallow wake stability parameter induced by the rigid-lid assumption is below 10% for the practical range of Froude number. In addition, it is shown that the shape of the velocity profile has a large influence on the stability characteristics of shallow wakes. Starting from the rigid-lid shallow-water equations and using the method of multiple scales, an amplitude evolution equation for the most unstable mode is derived. The resulting equation has complex coefficients and is of Ginzburg Landau type. An example calculation of the complex coefficients of the Ginzburg Landau equation confirms the existence of a finite equilibrium amplitude, where the unstable mode evolves with time into a limit-cycle oscillation. This is consistent with flow patterns observed by Ingram & Chu (1987), Chen & Jirka (1995), Balachandar et al. (1999), and Balachandar & Tachie (2001). Reasonable agreement is found between the saturation amplitude obtained from the Ginzburg Landau equation under some simplifying assumptions and the numerical data of Grubi

  3. HF Radar Sea-echo from Shallow Water

    PubMed Central

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-01-01

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements. PMID:27873776

  4. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Special Aquatic Sites § 230.43 Vegetated shallows. (a) Vegetated shallows are permanently inundated areas that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass...) releasing chemicals that adversely affect plants and animals; (4) increasing turbidity levels, thereby...

  5. Shallow moonquakes - How they compare with earthquakes

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.

    1980-01-01

    Of three types of moonquakes strong enough to be detectable at large distances - deep moonquakes, meteoroid impacts and shallow moonquakes - only shallow moonquakes are similar in nature to earthquakes. A comparison of various characteristics of moonquakes with those of earthquakes indeed shows a remarkable similarity between shallow moonquakes and intraplate earthquakes: (1) their occurrences are not controlled by tides; (2) they appear to occur in locations where there is evidence of structural weaknesses; (3) the relative abundances of small and large quakes (b-values) are similar, suggesting similar mechanisms; and (4) even the levels of activity may be close. The shallow moonquakes may be quite comparable in nature to intraplate earthquakes, and they may be of similar origin.

  6. DTMs Assessment to the Definition of Shallow Landslides Prone Areas

    NASA Astrophysics Data System (ADS)

    Martins, Tiago D.; Oka-Fiori, Chisato; Carvalho Vieira, Bianca; Montgomery, David R.

    2017-04-01

    Predictive methods have been developed, especially since the 1990s, to identify landslide prone areas. One of the examples it is the physically based model SHALSTAB (Shallow Landsliding Stability Model), that calculate the potential instability for shallow landslides based on topography and physical soil properties. Normally, in such applications in Brazil, the Digital Terrain Model (DTM), is obtained mainly from conventional contour lines. However, recently the LiDAR (Light Detection and Ranging) system has been largely used in Brazil. Thus, this study aimed to evaluate different DTM's, generated from conventional data and LiDAR, and their influence in generating susceptibility maps to shallow landslides using SHALSTAB model. For that were analyzed the physical properties of soil, the response of the model when applying conventional topographical data and LiDAR's in the generation of DTM, and the shallow landslides susceptibility maps based on different topographical data. The selected area is in the urban perimeter of the municipality of Antonina (PR), affected by widespread landslides in March 2011. Among the results, it was evaluated different LiDAR data interpolation, using GIS tools, wherein the Triangulation/Natural Neighbor presented the best performance. It was also found that in one of evaluation indexes (Scars Concentration), the LiDAR derived DTM presented the best performance when compared with the one originated from contour lines, however, the Landslide Potential index, has presented a small increase. Consequently, it was possible to assess the DTM's, and the one derived from LiDAR improved very little the certitude percentage. It is also noted a gap in researches carried out in Brazil on the use of products generated from LiDAR data on geomorphological analysis.

  7. New ideas for shallow gas well control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgoyne, A.T.; Kelly, O.A.; Sandoz, C.L.

    1996-06-01

    Flow from an unexpected shallow gas sand is one of the most difficult well control problems faced by oil and gas well operators during drilling operations. Current well control practice for bottom-supported marine rigs usually calls for shutting in the well when a kick is detected, if sufficient casing has been set to keep any flow underground. However, when shallow gas is encountered, casing may not be set deep enough to keep the underground flow from broaching to surface near the platform foundations. Once the flow reaches surface, craters are sometimes formed which can lead to loss of the rigmore » and associated marine structures. This short article overviews an ongoing study by Louisiana State University of the breakdown resistance of shallow marine sediments, using leak-off test data and geotechnical reports provided by Unocal. Such study is important for improving the characterization of shallow marine sediments to allow more reliable shallow casing designs, as the authors will conclude. This study has already proven that sediment failure mechanisms that lead to cratering have been poorly understood. In addition, there has been considerable uncertainty as to the best choices of well design parameters and well control contingency plans that will minimize risks associated with a shallow gas flow.« less

  8. Concentrations and potential health hazards of organochlorine pesticides in (shallow) groundwater of Taihu Lake region, China.

    PubMed

    Wu, Chunfa; Luo, Yongming; Gui, Tong; Huang, Yujuan

    2014-02-01

    A total of 27 shallow groundwater samples were collected from the Taihu Lake region (TLR), to determine the concentrations of 14 organochlorine pesticide (OCP) species, identify their possible sources, and estimate health risk of drinking the shallow groundwater. All OCP species occurred in the shallow groundwater of TLR with high detection frequency except p, p'-dichlorodiphenyldichlorothane (p, p'-DDD) and p, p'-dichlorodiphenyltrichloroethane (p, p'-DDT). DDTs and hexachlorocyclohexanes (HCHs) were the dominant OCP contaminants in the shallow groundwater of TLR, and they account for 44.2% total OCPs. The low α-HCH/γ-HCH ratio, high β-HCH/(α+γ)-HCH ratio and β-HCH being the dominant HCH isomers for the majority of samples suggest that the HCHs were mainly from the historical use of lindane after a period of degradation. p, p'-DDE being the dominant DDT metabolite for all the samples indicated that the DDTs were mainly from the historical residues. Compositional analysis also suggested that there were fresh input sources of heptachlors, aldrins and endrins in addition to the historical residues. Correlation analysis indicated the hexachlorobenzene (HCB) impurity in the shallow groundwater of TLR was likely from the historical application of lindane and technical HCH (a mixture of HCH isomers that is produced by photochlorination of benzene). Carcinogenic risk values for α-HCH, heptachlor, heptachlor epoxide, aldrins and dieldrin in the shallow groundwater in majority area of TLR were found to be >10(-6), posing a potentially serious cancer risk to those dependant on shallow groundwater for drinking water. © 2013.

  9. Hunting for shallow slow-slip events at Cascadia

    NASA Astrophysics Data System (ADS)

    Tan, Y. J.; Bletery, Q.; Fan, W.; Janiszewski, H. A.; Lynch, E.; McCormack, K. A.; Phillips, N. J.; Rousset, B.; Seyler, C.; French, M. E.; Gaherty, J. B.; Regalla, C.

    2017-12-01

    The discovery of slow earthquakes at subduction zones is one of the major breakthroughs of Earth science in the last two decades. Slow earthquakes involve a wide spectrum of fault slip behaviors and seismic radiation patterns, such as tremor, low-frequency earthquakes, and slow-slip events. The last of these are particularly interesting due to their large moment releases accompanied by minimal ground shaking. Slow-slip events have been reported at various subduction zones ; most of these slow-slip events are located down-dip of the megathrust seismogenic zone, while a few up-dip cases have recently been observed at Nankai and New Zealand. Up-dip slow-slip events illuminate the structure of faulting environments and rupture mechanisms of tsunami earthquakes. Their possible presence and location at a particular subduction zone can help assess earthquake and tsunami hazard for that region. However, their typical location distant from the coast requires the development of techniques using offshore instrumentation. Here, we investigate the absolute pressure gauges (APG) of the Cascadia Initiative, a four year amphibious seismic experiment, to search for possible shallow up-dip slow-slip events in the Cascadia subduction zone. These instruments are collocated with ocean bottom seismometers (OBS) and located close to buoys and onshore GPS stations, offering the opportunity to investigate the utility of multiple datasets. Ultimately, we aim to develop a protocol to analyze APG data for offshore shallow slow-slip event detections and quantify uncertainties, with direct applications to understanding the up-dip subduction interface system in Cascadia.

  10. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy

    NASA Astrophysics Data System (ADS)

    Gariano, S. L.; Brunetti, M. T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F.

    2015-01-01

    Empirical rainfall thresholds are tools to forecast the possible occurrence of rainfall-induced shallow landslides. Accurate prediction of landslide occurrence requires reliable thresholds, which need to be properly validated before their use in operational warning systems. We exploited a catalogue of 200 rainfall conditions that have resulted in at least 223 shallow landslides in Sicily, southern Italy, in the 11-year period 2002-2011, to determine regional event duration-cumulated event rainfall (ED) thresholds for shallow landslide occurrence. We computed ED thresholds for different exceedance probability levels and determined the uncertainty associated to the thresholds using a consolidated bootstrap nonparametric technique. We further determined subregional thresholds, and we studied the role of lithology and seasonal periods in the initiation of shallow landslides in Sicily. Next, we validated the regional rainfall thresholds using 29 rainfall conditions that have resulted in 42 shallow landslides in Sicily in 2012. We based the validation on contingency tables, skill scores, and a receiver operating characteristic (ROC) analysis for thresholds at different exceedance probability levels, from 1% to 50%. Validation of rainfall thresholds is hampered by lack of information on landslide occurrence. Therefore, we considered the effects of variations in the contingencies and the skill scores caused by lack of information. Based on the results obtained, we propose a general methodology for the objective identification of a threshold that provides an optimal balance between maximization of correct predictions and minimization of incorrect predictions, including missed and false alarms. We expect that the methodology will increase the reliability of rainfall thresholds, fostering the operational use of validated rainfall thresholds in operational early warning system for regional shallow landslide forecasting.

  11. Effects of wind waves on horizontal array performance in shallow-water conditions

    NASA Astrophysics Data System (ADS)

    Zavol'skii, N. A.; Malekhanov, A. I.; Raevskii, M. A.; Smirnov, A. V.

    2017-09-01

    We analyze the influence of statistical effects of the propagation of an acoustic signal excited by a tone source in a shallow-water channel with a rough sea surface on the efficiency of a horizontal phased array. As the array characteristics, we consider the angular function of the array response for a given direction to the source and the coefficient of amplification of the signal-to-noise ratio (array gain). Numerical simulation was conducted in to the winter hydrological conditions of the Barents Sea in a wide range of parameters determining the spatial signal coherence. The results show the main physical effects of the influence of wind waves on the array characteristics and make it possible to quantitatively predict the efficiency of a large horizontal array in realistic shallow-water channels.

  12. Justification of Shallow-Water Theory

    NASA Astrophysics Data System (ADS)

    Ostapenko, V. V.

    2018-01-01

    The basic conservation laws of shallow-water theory are derived from multidimensional mass and momentum integral conservation laws describing the plane-parallel flow of an ideal incompressible fluid above the horizontal bottom. This conclusion is based on the concept of hydrostatic approximation, which generalizes the concept of long-wavelength approximation and is used for justifying the applicability of the shallow-water theory in the simulation of wave flows of fluid with hydraulic bores.

  13. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    DOE PAGES

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; ...

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO 2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS).more » The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO 2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.« less

  14. Is evaporative colling important for shallow clouds?

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Park, S. B.; Davini, P.; D'Andrea, F.

    2017-12-01

    We here investigate and test using large-eddy simulations the hypothesis that evaporative cooling might not be crucial for shallow clouds. Results from various Shallow convection and stratocumulus LES experiments show that the influence of evaporative cooling is secondary compared to turbulent mixing, which dominates the buoyancy reversal. In shallow cumulus subising shells are not due to evaporative cooling but rather reflect a vortical structure, with a postive buoyancy anomaly in the core due to condensation. Disabling evaporative cooling has negligible impact on this vortical structure and on buoyancy reversal. Similarly in non-precipitating stratocumuli evaporative cooling is negeligible copmared to other factors, especially turbulent mixing and pressure effects. These results emphasize that it may not be critical to icnlude evaporative cooling in parameterizations of shallow clouds and that it does not alter entrainment.

  15. Shallow moonquakes - Depth, distribution and implications as to the present state of the lunar interior

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Latham, G. V.; Dorman, H. J.; Ibrahim, A.-B. K.; Koyama, J.; Horvath, P.

    1979-01-01

    The observed seismic amplitudes of HFT (high-frequency teleseismic) events do not vary with distance as expected for surface sources, but are consistent with sources in the upper mantle of the moon. Thus, the upper mantle of the moon is the only zone where tectonic stresses deriving from differential thermal contraction and expansion of the lunar interior are presently high enough to cause moonquakes. The distribution of shallow moonquake epicenters suggests a possible correlation with impact basins, implying a lasting tectonic influence of impact basins long after their formation. The finite depths now assigned to these shallow moonquakes necessitate further revision to the seismic structural model of the lunar interior.

  16. Shallow Turbulence in Rivers and Estuaries

    DTIC Science & Technology

    2012-09-30

    objectives are to: 1. Determine spatial patterns of shallow turbulence from in-situ and remote sensing data and investigate the effects and...production through a model parameter study, and determine the optimal model configuration that statistically reproduces the shallow turbulence...more probable cause. According to Nezu et al. (1993), longitudinal vorticity streets would cause alternating upwelling (boils) and down welling

  17. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  18. Refining the shallow slip deficit

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Tong, Xiaopeng; Sandwell, David T.; Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois

    2016-03-01

    Geodetic slip inversions for three major (Mw > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor-Cucapah) show a 15-60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4-6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3-19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could `make up' a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include

  19. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    NASA Astrophysics Data System (ADS)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un

  20. Moment Tensor Analysis of Shallow Sources

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.; Yoo, S. H.

    2015-12-01

    A potential issue for moment tensor inversion of shallow seismic sources is that some moment tensor components have vanishing amplitudes at the free surface, which can result in bias in the moment tensor solution. The effects of the free-surface on the stability of the moment tensor method becomes important as we continue to investigate and improve the capabilities of regional full moment tensor inversion for source-type identification and discrimination. It is important to understand these free surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have shallow seismicity such as volcanoes and geothermal systems. In this study, we apply the moment tensor based discrimination method to the HUMMING ALBATROSS quarry blasts. These shallow chemical explosions at approximately 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of vanishing traction issues. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first motion method enables the unique discrimination of these events. Recovering the correct yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.

  1. High Attenuation Rate for Shallow, Small Earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Si, Hongjun; Koketsu, Kazuki; Miyake, Hiroe

    2017-09-01

    We compared the attenuation characteristics of peak ground accelerations (PGAs) and velocities (PGVs) of strong motion from shallow, small earthquakes that occurred in Japan with those predicted by the equations of Si and Midorikawa (J Struct Constr Eng 523:63-70, 1999). The observed PGAs and PGVs at stations far from the seismic source decayed more rapidly than the predicted ones. The same tendencies have been reported for deep, moderate, and large earthquakes, but not for shallow, moderate, and large earthquakes. This indicates that the peak values of ground motion from shallow, small earthquakes attenuate more steeply than those from shallow, moderate or large earthquakes. To investigate the reason for this difference, we numerically simulated strong ground motion for point sources of M w 4 and 6 earthquakes using a 2D finite difference method. The analyses of the synthetic waveforms suggested that the above differences are caused by surface waves, which are predominant at stations far from the seismic source for shallow, moderate earthquakes but not for shallow, small earthquakes. Thus, although loss due to reflection at the boundaries of the discontinuous Earth structure occurs in all shallow earthquakes, the apparent attenuation rate for a moderate or large earthquake is essentially the same as that of body waves propagating in a homogeneous medium due to the dominance of surface waves.

  2. Shallow-water habitats as sources of fallback foods for hominins.

    PubMed

    Wrangham, Richard; Cheney, Dorothy; Seyfarth, Robert; Sarmiento, Esteban

    2009-12-01

    Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins.

  3. Nonlinear Programming shallow tomography improves deep structure imaging

    NASA Astrophysics Data System (ADS)

    Li, J.; Morozov, I.

    2004-05-01

    In areas with strong variations in topography or near-surface lithology, conventional seismic data processing methods do not produce clear images, neither shallow nor deep. The conventional reflection data processing methods do not resolve stacking velocities at very shallow depth; however, refraction tomography can be used to obtain the near-surface velocities. We use Nonlinear Programming (NP) via known velocity and depth in points from shallow boreholes and outcrop as well as derivation of slowness as constraint conditions to gain accurate shallow velocities. We apply this method to a 2D reflection survey shot across the Flame Mountain, a typical mountain with high gas reserve volume in Western China, by PetroChina and BGP in 1990s. The area has a highly rugged topography with strong variations of lithology near the surface. Over its hillside, the quality of reflection data is very good, but on the mountain ridge, reflection quality is poorer. Because of strong noise, only the first breaks are clear in the records, with velocities varying by more than 3 times in the near offsets. Because this region contains a steep cliff and an overthrust fold, it is very difficult to find a standard refraction horizon, therefore, GLI refractive statics conventional field and residual statics do not result in a good image. Our processing approach includes: 1) The Herglotz-Wiechert method to derive a starting velocity model which is better than horizontal velocity model; 2) using shallow boreholes and geological data, construct smoothness constraints on the velocity field as well as; 3) perform tomographic velocity inversion by NP algorithm; 4) by using the resulting accurate shallow velocities, derive the statics to correct the seismic data for the complex near-surface velocity variations. The result indicates that shallow refraction tomography can greatly improve deep seismic images in complex surface conditions.

  4. Computing nonhydrostatic shallow-water flow over steep terrain

    USGS Publications Warehouse

    Denlinger, R.P.; O'Connell, D. R. H.

    2008-01-01

    Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.

  5. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  6. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    USDA-ARS?s Scientific Manuscript database

    The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help to integrate groundwater effects on surface energy balance within land surface models and clima...

  7. The 2011 Hawthorne, Nevada, Earthquake Sequence; Shallow Normal Faulting

    NASA Astrophysics Data System (ADS)

    Smith, K. D.; Johnson, C.; Davies, J. A.; Agbaje, T.; Knezevic Antonijevic, S.; Kent, G.

    2011-12-01

    An energetic sequence of shallow earthquakes that began in early March 2011 in western Nevada, near the community of Hawthorne, has slowly decreased in intensity through mid-2011. To date about 1300 reviewed earthquake locations have been compiled; we have computed moment tensors for the larger earthquakes and have developed a set of high-precision locations for all reviewed events. The sequence to date has included over 50 earthquakes ML 3 and larger with the largest at Mw 4.6. Three 6-channel portable stations configured with broadband sensors and accelerometers were installed by April 20. Data from the portable instruments is telemetered through NSL's microwave backbone to Reno where it is integrated with regional network data for real-time notifications, ShakeMaps, and routine event analysis. The data is provided in real-time to NEIC, CISN and the IRIS DMC. The sequence is located in a remote area about 15-20 km southwest of Hawthorne in the footwall block of the Wassuk Range fault system. An initial concern was that the sequence might be associated with volcanic processes due to the proximity of late Quaternary volcanic flows; there have been no volcanic signatures observed in near source seismograms. An additional concern, as the sequence has proceeded, was a clear progression eastward toward the Wassuk Range front fault. The east dipping range bounding fault is capable of M 7+ events, and poses a significant hazard to the community of Hawthorne and local military facilities. The Hawthorne Army Depot is an ordinance storage facility and the nation's storage site for surplus mercury. The sequence is within what has been termed the 'Mina Deflection' of the Central Walker Lane Belt. Faulting along the Whiskey Flat section of the Wassuk front fault would be primarily down-to-the-east, with an E-W extension direction; moment tensors for the 2011 earthquake show a range of extension directions from E-W to NW-SE, suggesting a possible dextral component to the Wassuk

  8. Landslide maps and seismic noise: Rockmass weakening caused by shallow earthquakes

    NASA Astrophysics Data System (ADS)

    Uchida, Tara; Marc, Odin; Sens-Schönfelder, Christoph; Sawazaki, Kaoru; Hobiger, Manuel; Hovius, Niels

    2015-04-01

    Some studies have suggested that the shaking and deformation associated with earthquake would result in a temporary increased hillslope erodibility. However very few data have been able to clarify such effect. We present integrated geomorphic data constraining an elevated landslide rate following 4 continental shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999), the Mw 6.6 Niigata (2004) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. We constrained the magnitude, the recovery time and somewhat the mechanism at the source of this higher landslide risk. We provide some evidences excluding aftershocks or rain forcing intensity as possible mechanism and leaving subsurface weakening as the most likely. The landslide data suggest that this ground strength weakening is not limited to the soil cover but also affect the shallow bedrock. Additionally, we used ambient noise autocorrelation techniques to monitor shallow subsurface seismic velocity within the epicentral area of three of those earthquakes. For most stations we observe a velocity drop followed by a recovery processes of several years in fair agreement with the recovery time estimated based on landslide observation. Thus a common processes could alter the strength of the first 10m of soil/rock and simultaneously drive the landslide rate increase and the seismic velocity drop. The ability to firmly demonstrate this link require additional constraints on the seismic signal interpretation but would provide a very useful tool for post-earthquake risk managment.

  9. Why and Where do Large Shallow Slab Earthquakes Occur?

    NASA Astrophysics Data System (ADS)

    Seno, T.; Yoshida, M.

    2001-12-01

    Within a shallow portion (20-60 km depth) of subducting slabs, it has been believed that large earthquakes seldom occur because the differential stress is generally expected to be low between bending at the trench-outer rise and unbending at the intermediate-depth. However, there are several regions in which large ( M>=7.0 ) earthquakes, including three events early in this year, have occurred in this portion. Searching such events from published individual studies and Harvard University centroid moment tensor catalogue, we find nineteen events in eastern Hokkaido, Kyushu-SW Japan, Mariana, Manila, Sumatra, Vanuatu, Chile, Peru, El Salvador, Mexico, and Cascadia. Slab stresses revealed from the mechanism solutions of those large events and smaller events are tensional in a slab dip direction. However, ages of the subducting oceanic plates are generally young, which denies a possibility that the slab pull works as a cause. Except for Manila and Sumatra, the stresses in the overriding plates are characterized by the change in {σ }Hmax direction from arc-parallel in the back-arc to arc-perpendicular in the fore-arc, which implies that a horizontal stress gradient exists in the across-arc direction. Peru and Chile, where the back-arc is compressional, can be categorized into this type, because a horizontal stress gradient exists over the continent from tension in east to compression in the west. In these regions, it is expected that mantle drag forces are operating beneath the upper plates, which drive the upper plates to the trenchward overriding the subducting oceanic plates. Assuming that the mantle drag forces beneath the upper plates originate from the mantle convection currents or upwelling plumes, we infer that the upper plates driven by the convection suck the oceanic plates, making the shallow portion of the slabs in extra-tension, thus resulting in the large shallow slab earthquakes in this tectonic regime.

  10. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    USGS Publications Warehouse

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  11. CO2/Brine transport into shallow aquifers along fault zones.

    PubMed

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  12. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C.

    1980-01-01

    With the objective of demonstrating the feasibility of fabricating 2 x 2 cm efficient, shallow homojunction GaAs solar cells for space applications, this program addresses the basic problems of material preparation and device fabrication. Significant progress was made and conversion efficiencies close to 16 percent at AM0 were obtained on 2 x 2 cm cells. Measurements and computer analyses on the n(+)/p/p(+) shallow homojunction cells indicate that such cell configuration should be very resistant to 1 MeV electron irradiation.

  13. Stress shadow prohibits low interseismic coupling on shallow megathrusts, even where they are frictionally unlocked

    NASA Astrophysics Data System (ADS)

    Lindsey, E. O.; Almeida, R. V.; Bradley, K. E.; Hubbard, J.; Sathiakumar, S.; Mallick, R.; Barbot, S.; Hill, E.

    2017-12-01

    The possibility of large coseismic slip on the shallow part of megathrusts represents a significant hazard, due to both tsunami risk (for subduction zones) and strong seismic shaking hazard (for subaerial megathrusts). Laboratory experiments have long suggested that the shallow part of these faults may be frictionally unlocked. However, evidence for the predicted shallow creep remains scarce, and in the case of more accessible subaerial megathrusts such as the Himalaya, appears to be virtually absent. We propose that the lack of shallow creep can be due to the presence of a stress shadow from the down-dip locked portion of the fault and therefore that interseismic geodetic observations (even at the seafloor) are typically insufficient to constrain the frictional locking on the shallow portion of the fault. We use a boundary element model with rate-strengthening friction up-dip of a locked fault segment and find that a coupling value of zero at the trench is physically unrealistic even if only a small portion of the downdip fault zone is locked. For a typical subduction zone fault geometry which is frictionally unlocked from the surface to half the maximum seismogenic depth (considered an extreme case) we find that a coupling ratio of less than 0.7 at the trench is prohibited under most conditions. For a narrower zone of up-dip unlocking, the coupling ratio should be even higher. This result highlights the difference between frictional locking (a mechanical parameter) and geodetic coupling (a kinematic parameter), and indicates that published models of coupling that assume or predict low coupling at the trench need to be reevaluated. To assess how the up-dip slip deficit is ultimately released in the case of a frictionally unlocked (but geodetically coupled) zone, we conduct a series of earthquake cycle models based on rate- and state-dependent friction in two and three dimensions. The results show that strain in the shallow part of the fault is typically released

  14. A Comparison between Deep and Shallow Stress Fields in Korea Using Earthquake Focal Mechanism Inversions and Hydraulic Fracturing Stress Measurements

    NASA Astrophysics Data System (ADS)

    Lee, Rayeon; Chang, Chandong; Hong, Tae-kyung; Lee, Junhyung; Bae, Seong-Ho; Park, Eui-Seob; Park, Chan

    2016-04-01

    We are characterizing stress fields in Korea using two types of stress data: earthquake focal mechanism inversions (FMF) and hydraulic fracturing stress measurements (HF). The earthquake focal mechanism inversion data represent stress conditions at 2-20 km depths, whereas the hydraulic fracturing stress measurements, mostly conducted for geotechnical purposes, have been carried out at depths shallower than 1 km. We classified individual stress data based on the World Stress Map quality ranking scheme. A total of 20 FMF data were classified into A-B quality, possibly representing tectonic stress fields. A total of 83 HF data out of compiled 226 data were classified into B-C quality, which we use for shallow stress field characterization. The tectonic stress, revealed from the FMF data, is characterized by a remarkable consistency in its maximum stress (σ1) directions in and around Korea (N79±2° E), indicating a quite uniform deep stress field throughout. On the other hand, the shallow stress field, represented by HF data, exhibits local variations in σ1 directions, possibly due to effects of topography and geologic structures such as faults. Nonetheless, there is a general similarity in σ1 directions between deep and shallow stress fields. To investigate the shallow stress field statistically, we follow 'the mean orientation and wavelength analysis' suggested by Reiter et al. (2014). After the stress pattern analysis, the resulting stress points distribute sporadically over the country, not covering the entire region evenly. In the western part of Korea, the shallow σ1directions are generally uniform with their search radius reaching 100 km, where the average stress direction agrees well with those of the deep tectonic stress. We note two noticeable differences between shallow and deep stresses in the eastern part of Korea. First, the shallow σ1 orientations are markedly non-uniform in the southeastern part of Korea with their search radius less than 25 km

  15. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming.

    PubMed

    Davidson, Thomas A; Audet, Joachim; Svenning, Jens-Christian; Lauridsen, Torben L; Søndergaard, Martin; Landkildehus, Frank; Larsen, Søren E; Jeppesen, Erik

    2015-12-01

    Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2 O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem

  16. Probing the transition from shallow to deep convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, Zhiming; Gentine, Pierre

    2016-05-01

    In this funded project we highlighted the components necessary for the transition from shallow to deep convection. In particular we defined a prototype of shallow to deep convection, which is currently being implemented in the NASA GISS model. We also tried to highlight differences between land and oceanic convection.

  17. Pesticides in shallow groundwater in the Delmarva Peninsula

    USGS Publications Warehouse

    Koterba, M.T.; Banks, W.S.L.; Shedlock, R.J.

    1993-01-01

    A regional study of the areal and depth distribution of pesticides in shallow groundwater in the Delmarva Peninsula of Delaware, Maryland, and Virginia was done to (i) relate the pesticides detected to landscape and shallow subsurface features, and (ii) evaluate aquifer vulnerability and the potential contamination of drinking-water supplies. Water samples collected at 100 wells from 1988 to 1990 were analyzed for concentrations of 36 pesticides, four metabolites, and other constituents. The most commonly detected residues were atrazine, cyanazine, simazine, alachlor, metolachlor, and dicamba. Concentrations were low; few exceeded 3 ??g L-1. Most detections correlate with the intensive use of these herbicides in three widely distributed and commonly rotated crops-corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and small grain-particularly if grown in well- drained soils. Most detections occurred in samples collected from shallow wells screened within 10 m of the overlying water table. The shallow depth distribution of most residues is consistent with their suspected history of use (ca. 20 yr), and patterns in shallow groundwater flow in the surficial aquifer in the study area. The areal and depth distributions of detectable residues in groundwater did not correlate with a vulnerability index, nor any of the component scores developed to estimate that index using the DRASTIC method. The shallow depth of most detections also indicates why few samples from water-supply wells in this study had measurable concentrations of pesticides; most supply wells are deeper than 10 m below the water table. The low number of contaminated samples from supply wells implies that deep groundwater currently (1992) used for drinking generally does not contain detectable pesticide residues.

  18. Correlating Mediterranean shallow water deposits with global Oligocene-Miocene stratigraphy and oceanic events.

    PubMed

    Reuter, Markus; Piller, Werner E; Brandano, Marco; Harzhauser, Mathias

    2013-12-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene-Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene-Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene-late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO 3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale.

  19. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions.

    PubMed

    Cobaxin, Mayra; Martínez, Haydee; Ayala, Guadalupe; Holmgren, Jan; Sjöling, Asa; Sánchez, Joaquín

    2014-01-01

    Vibrio cholerae O1 classical, El Tor and O139 are the primary biotypes that cause epidemic cholera, and they also express cholera toxin (CT). Although classical V. cholerae produces CT in various settings, the El Tor and O139 strains require specific growth conditions for CT induction, such as the so-called AKI conditions, which consist of growth in static conditions followed by growth under aerobic shaking conditions. However, our group has demonstrated that CT production may also take place in shallow static cultures. How these type of cultures induce CT production has been unclear, but we now report that in shallow culture growth conditions, there is virtual depletion of dissolved oxygen after 2.5 h of growth. Concurrently, during the first three to 4 h, endogenous CO2 accumulates in the media and the pH decreases. These findings may explain CT expression at the molecular level because CT production relies on a regulatory cascade, in which the key regulator AphB may be activated by anaerobiosis and by low pH. AphB activation stimulates TcpP synthesis, which induces ToxT production, and ToxT directly stimulates ctxAB expression, which encodes CT. Importantly, ToxT activity is enhanced by bicarbonate. Therefore, we suggest that in shallow cultures, AphB is activated by initial decreases in oxygen and pH, and subsequently, ToxT is activated by intracellular bicarbonate that has been generated from endogenous CO2. This working model would explain CT production in shallow cultures and, possibly, also in other growth conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Correlating Mediterranean shallow water deposits with global Oligocene–Miocene stratigraphy and oceanic events☆

    PubMed Central

    Reuter, Markus; Piller, Werner E.; Brandano, Marco; Harzhauser, Mathias

    2013-01-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene–Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene–Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene–late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale. PMID:25844021

  1. Consistent nonlinear deterministic and stochastic evolution equations for deep to shallow water wave shoaling

    NASA Astrophysics Data System (ADS)

    Vrecica, Teodor; Toledo, Yaron

    2015-04-01

    oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves

  2. An investigation of shallow ground-water quality near East Fork Poplar Creek, Oak Ridge, Tennessee

    USGS Publications Warehouse

    Carmichael, J.K.

    1989-01-01

    Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radio-nuclides originating from the Y-12 Plant, a nuclear-processing facility located within the U.S. Department of Energy 's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the U.S. Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. (USGS)

  3. Cloud Size Distributions from Multi-sensor Observations of Shallow Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Kleiss, J.; Riley, E.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.

    2017-12-01

    Combined radar-lidar observations have been used for almost two decades to document temporal changes of shallow cumulus clouds at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Since the ARM zenith-pointed radars and lidars have a narrow field-of-view (FOV), the documented cloud statistics, such as distributions of cloud chord length (or horizontal length scale), represent only a slice along the wind direction of a region surrounding the SGP site, and thus may not be representative for this region. To investigate this impact, we compare cloud statistics obtained from wide-FOV sky images collected by ground-based observations at the SGP site to those from the narrow FOV active sensors. The main wide-FOV cloud statistics considered are cloud area distributions of shallow cumulus clouds, which are frequently required to evaluate model performance, such as routine large eddy simulation (LES) currently being conducted by the ARM LASSO (LES ARM Symbiotic Simulation and Observation) project. We obtain complementary macrophysical properties of shallow cumulus clouds, such as cloud chord length, base height and thickness, from the combined radar-lidar observations. To better understand the broader observational context where these narrow FOV cloud statistics occur, we compare them to collocated and coincident cloud area distributions from wide-FOV sky images and high-resolution satellite images. We discuss the comparison results and illustrate the possibility to generate a long-term climatology of cloud size distributions from multi-sensor observations at the SGP site.

  4. Shallow halogen vacancies in halide optoelectronic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (V H) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep V H contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH 3NH 3PbI 3 and TlBr. Both CH 3NH 3PbI 3 and TlBr have been found to have shallow V H, in contrast to commonly seen deep V H in halides. In this paper, several halide optoelectronic materials, i.e., CH 3NH 3PbI 3, CH 3NH 3SnI 3 (photovoltaic materials), TlBr, and CsPbBrmore » 3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether V H is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns 2 ions both play important roles in creating shallow V H in halides such as CH 3NH 3PbI 3, CH 3NH 3SnI 3, and TlBr. The key to identifying halides with shallow V H is to find the right crystal structures and compounds that suppress cation orbital hybridization at V H, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at V H. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow V H as good electronic and optoelectronic materials.« less

  5. Shallow halogen vacancies in halide optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Du, Mao-Hua

    2014-11-01

    Halogen vacancies (VH ) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., C H3N H3Pb I3 and TlBr. Both C H3N H3Pb I3 and TlBr have been found to have shallow VH , in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., C H3N H3Pb I3 , C H3N H3Sn I3 (photovoltaic materials), TlBr, and CsPbB r3 (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of n s2 ions both play important roles in creating shallow VH in halides such as C H3N H3Pb I3 , C H3N H3Sn I3 , and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH , such as those with large cation-cation distances and low anion coordination numbers and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH . The results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  6. Fundamental Study on the Dynamics of Heterogeneity-Enhanced CO2 Gas Evolution in the Shallow Subsurface During Possible Leakage from Deep Geologic Storage Sites

    NASA Astrophysics Data System (ADS)

    Plampin, M. R.; Lassen, R. N.; Sakaki, T.; Pawar, R.; Jensen, K.; Illangasekare, T. H.

    2013-12-01

    A concern for geologic carbon sequestration is the potential for CO2 stored in deep geologic formations to leak upward into shallow freshwater aquifers where it can have potentially detrimental impacts to the environment and human health. Understanding the mechanisms of CO2 exsolution, migration and accumulation (collectively referred to as 'gas evolution') in the shallow subsurface is critical to predict and mitigate the environmental impacts. During leakage, CO2 can move either as free-phase or as a dissolved component of formation brine. CO2 dissolved in brine may travel upward into shallow freshwater systems, and the gas may be released from solution. In the shallow aquifer, the exsolved gas may accumulate near interfaces between soil types, and/or create flow paths that allow the gas to escape through the vadose zone to the atmosphere. The process of gas evolution in the shallow subsurface is controlled by various factors, including temperature, dissolved CO2 concentration, water pressure, background water flow rate, and geologic heterogeneity. However, the conditions under which heterogeneity controls gas phase evolution have not yet been precisely defined and can therefore not yet be incorporated into models used for environmental risk assessment. The primary goal of this study is to conduct controlled laboratory experiments to help fill this knowledge gap. With this as a goal, a series of intermediate-scale laboratory experiments were conducted to observe CO2 gas evolution in porous media at multiple scales. Deionized water was saturated with dissolved CO2 gas under a specified pressure (the saturation pressure) before being injected at a constant volumetric flow rate into the bottom of a 1.7 meter-tall by 5.7 centimeter-diameter column or a 2.4 meter-tall by 40 centimeter-wide column that were both filled with sand in various heterogeneous packing configurations. Both test systems were initially saturated with fresh water and instrumented with soil

  7. Shallow cloud statistics over Tropical Western Pacific: CAM5 versus ARM Comparison

    NASA Astrophysics Data System (ADS)

    Chandra, A.; Zhang, C.; Klein, S. A.; Ma, H. Y.; Kollias, P.; Xie, S.

    2014-12-01

    The role of shallow convection in the tropical convective cloud life cycle has received increasing interest because of its sensitivity to simulate large-scale tropical disturbances such as MJO. Though previous studies have proposed several hypotheses to explain the role of shallow clouds in the convective life cycle, our understanding on the role of shallow clouds is still premature. There are more questions needs to be addressed related to the role of different cloud population, conditions favorable for shallow to deep convection transitions, and their characteristics at different stages of the convective cloud life. The present study aims to improve the understanding of the shallow clouds by documenting the role of different shallow cloud population for the Year of Tropical Convection period using Atmospheric Radiation Measurement observations at the Tropical Western Pacific Manus site. The performance of the CAM5 model to simulate shallow clouds are tested using observed cloud statistics.

  8. Two innovative pore pressure calculation methods for shallow deep-water formations

    NASA Astrophysics Data System (ADS)

    Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei

    2017-11-01

    There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.

  9. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    USGS Publications Warehouse

    Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2018-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger

  10. Numerical simulation of mechanical compaction of deepwater shallow sediments

    NASA Astrophysics Data System (ADS)

    Sun, Jin; Wu, Shiguo; Deng, Jingen; Lin, Hai; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei

    2018-02-01

    To study the compaction law and overpressure evolution in deepwater shallow sediments, a large-strain compaction model that considers material nonlinearity and moving boundary is formulated. The model considers the dependence of permeability and material properties on void ratio. The modified Cam-Clay model is selected as the constitutive relations of the sediments, and the deactivation/reactivation method is used to capture the moving top surface during the deposition process. A one-dimensional model is used to study the compaction law of the shallow sediments. Results show that the settlement of the shallow sediments is large under their own weight during compaction. The void ratio decreases strictly with burial depth and decreases more quickly near the seafloor than in the deeper layers. The generation of abnormal pressure in the shallow flow sands is closely related to the compaction law of shallow sediments. The two main factors that affect the generation of overpressure in the sands are deposition rate and permeability of overlying clay sediments. Overpressure increases with an increase in deposition rate and a decrease in the permeability of the overlying clay sediment. Moreover, an upper limit for the overpressure exists. A two-dimensional model is used to study the differential compaction of the shallow sediments. The pore pressure will still increase due to the inflow of the pore fluid from the neighboring clay sediment even though the deposition process is interrupted.

  11. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    PubMed

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be

  12. Shallow gas in Cenozoic sediments of the Southern North Sea

    NASA Astrophysics Data System (ADS)

    Trampe, Anna F.; Lutz, Rüdiger; Franke, Dieter; Thöle, Hauke; Arfai, Jashar

    2013-04-01

    Shallow petroleum systems in the southern North Sea are known for several decades but they were not actively explored for a long time. In recent years these unconventional shallow petroleum systems are studied in greater detail and one shallow gas field (A-12) is in production in the Netherlands. Additionally, oil was encountered in Miocene sandstones in the southern Danish North Sea (Lille John well) just north of the Danish-German border. Seismic amplitude anomalies are an indication for hydrocarbons in sediments. Therefore we have mapped the occurrence of seismic amplitude anomalies in the German North Sea based on more than 25.000 km of 2D seismic data and around 4.000 km2 of 3D seismic data. Amplitude anomalies are ubiquitous phenomena in the study area. These anomalies are not only caused by hydrocarbons but also by changing lithologies e.g. peat or fluid migration. Therefore several classes of seismic anomalies, e.g. bright spots, chimneys, blanking areas and velocity pull-down were mapped. Examples for these classes were studied with AVO (amplitude variation with offset) analyses to verify the existence or non-existence of gas in the sediments. Shallow gas can be produced and transported through the dense pipeline grid of the southern and central North Sea or it could be burned offshore close to wind parks in small power plants and the electric energy then transported through the existing power connections of the wind parks. Thus enabling a continuous energy supply during calm wind periods. This study is carried out within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)" in which the Cenozoic sedimentary system was mapped in great detail. A detailed model of delta evolution (Baltic river system) was developed which serves as a structural framework. The studied interval is time equivalent to the Utsira formation which is used offshore Norway for sequestration of CO2. These different possibilities of using or exploiting

  13. MAPPING BATHYMETRY AND BOTTOM TYPE IN A SHALLOW ESTUARY

    EPA Science Inventory

    Bathymetry and bottom type are important in characterizing estuaries and their ecology but hard to map, especially in shallow estuaries. Acoustic backscattering was used to remotely sense these properties in the shallow Slocums River Estuary of Massachusetts. Acoustic pulses were...

  14. Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA

    USGS Publications Warehouse

    Bruce, B.W.; McMahon, P.B.

    1996-01-01

    A survey of the chemical quality of ground water in the unconsolidated alluvial aquifer beneath a major urban center (Denver, Colorado, USA) was performed in 1993 with the objective of characterizing the quality of shallow ground-water in the urban area and relating water quality to land use. Thirty randomly selected alluvial wells were each sampled once for a broad range of dissolved constituents. The urban land use at each well site was sub- classified into one of three land-use settings: residential, commercial, and industrial. Shallow ground-water quality was highly variable in the urban area and the variability could be related to these land-use setting classifications. Sulfate (SO4) was the predominant anion in most samples from the residential and commercial land-use settings, whereas bicarbonate (HCO3) was the predominant anion in samples from the industrial land-use setting, indicating a possible shift in redox conditions associated with land use. Only three of 30 samples had nitrate concentrations that exceeded the US national drinking-water standard of 10 mg l-1 as nitrogen, indicating that nitrate contamination of shallow ground water may not be a serious problem in this urban area. However, the highest median nitrate concentration (4.2 mg l-1) was in samples from the residential setting, where fertilizer application is assumed to be most intense. Twenty-seven of 30 samples had detectable pesticides and nine of 82 analyzed pesticide compounds were detected at low concentrations, indicating that pesticides are widely distributed in shallow ground water in this urban area. Although the highest median total pesticide concentration (0.17 ??g l-1) was in the commercial setting, the herbicides prometon and atrazine were found in each land-use setting. Similarly, 25 of 29 samples analyzed had detectable volatile organic compounds (VOCs) indicating these compounds are also widely distributed in this urban area. The total VOC concentrations in sampled wells

  15. Canonical structures for dispersive waves in shallow water

    NASA Astrophysics Data System (ADS)

    Neyzi, Fahrünisa; Nutku, Yavuz

    1987-07-01

    The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac's theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham-Broer-Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri-Hamiltonian structure.

  16. Moment tensor analysis of very shallow sources

    DOE PAGES

    Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.; ...

    2016-10-11

    An issue for moment tensor (MT) inversion of shallow seismic sources is that some components of the Green’s functions have vanishing amplitudes at the free surface, which can result in bias in the MT solution. The effects of the free surface on the stability of the MT method become important as we continue to investigate and improve the capabilities of regional full MT inversion for source–type identification and discrimination. It is important to understand free–surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have very shallow seismicity, such asmore » volcanic and geothermal systems. We examine the effects of the free surface on the MT via synthetic testing and apply the MT–based discrimination method to three quarry blasts from the HUMMING ALBATROSS experiment. These shallow chemical explosions at ~10 m depth and recorded up to several kilometers distance represent rather severe source–station geometry in terms of free–surface effects. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first–motion method enables the unique discrimination of these events. Furthermore, recovering the design yield using seismic moment estimates from MT inversion remains challenging, but we can begin to put error bounds on our moment estimates using the network sensitivity solution technique.« less

  17. 3D resistivity survey for shallow subsurface fault investigations

    NASA Astrophysics Data System (ADS)

    Petrit, Kraipat; Klamthim, Poonnapa; Duerrast, Helmut

    2018-03-01

    The shallow subsurface is subject to various human activities, and the place of occurrence of geohazards, e.g. shallow active faults. The identification of the location and orientation of such faults can be vital for infrastructure development. The aim of this study was to develop a low-cost 3D resistivity survey system, with reasonable survey time for shallow fault investigations. The study area in Songkhla Province, Thailand is located in an old quarry where faults could be identified in outcrops. The study area was designed to cover the expected fault with 100 electrodes arranged in a 10×10 square grid with an electrode spacing of 3 meters in x and y axis. Each electrode in turn was used as a current and potential electrode using a dipole-dipole array. Field data have been processed and interpreted using 3DResINV. Results, presented in horizontal depth slices and vertical xz- and yz-cross sections, revealed through differences in resistivity down to 8 m depths a complex structural setting with two shallow faults and dipping sedimentary rock layers. In conclusion, this study has shown that a 3D resistivity survey can imagine complex tectonic structures, thus providing a far more insight into the shallow subsurface.

  18. Methane hydrate - A major reservoir of carbon in the shallow geosphere?

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1988-01-01

    Methane hydrates are solids composed of rigid cages of water molecules that enclose methane. Sediment containing methane hydrates is found within specific pressure-temperature conditions that occur in regions of permafrost and beneath the sea in outer continental margins. Because methane hydrates are globally widespread and concentrate methane within the gas-hydrate structure, the potential amount of methane present in the shallow geosphere at subsurface depths of < ???2000 m is very large. However, estimates of the amount are speculative and range over about three orders of magnitude, from 2 ?? 103 to 4 ?? 106 Gt (gigatons = 1015 g) of carbon, depending on the assumptions made. The estimate I favor is ??? 1 ?? 104 Gt of carbon. The estimated amount of organic carbon in the methane-hydrate reservoir greatly exceeds that in many other reservoirs of the global carbon cycle - for example, the atmosphere (3.6 Gt); terrestrial biota (830 Gt); terrestrial soil, detritus and peat (1960 Gt); marine biota (3 Gt); and marine dissolved materials (980 Gt). In fact, the amount of carbon may exceed that in all fossil fuel deposits (5 ?? 103 Gt). Because methane hydrates contain so much methane and occur in the shallow geosphere, they are of interest as a potential resource of natural gas and as a possible source of atmospheric methane released by global warming. As a potential resource, methane hydrates pose both engineering and production problems. As a contributor to a changing global climate, destabilized methane hydrates, particularly those in shallow, nearshore regions of the Arctic Ocean, may have some effect, but this effect will probably be minimal, at least during the next 100 years. ?? 1988.

  19. Refining the Magnitude of the Shallow Slip Deficit

    NASA Astrophysics Data System (ADS)

    Xu, X.; Tong, X.; Sandwell, D. T.; Milliner, C. W. D.

    2014-12-01

    Geodetic inversions for slip versus depth for several major (Mw > 7) strike-slip earthquakes (e.g. 1992 Landers, 1999 Hector Mine, 2010 El_Mayor-Cucapah) show a 10% to 40% reduction in slip near surface (depth < 2 km) compared to the slip at deeper depths (5 to 8 km). This has been called the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions used incomplete data that do not go close to fault so the shallow portions of the slip models were poorly resolved and generally underestimated. In this study we improve the geodetic inversion, especially at shallow depth by: 1) refining the InSAR processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU using a correlation mask and allowing a phase discontinuity along the rupture; 2) including near-fault offset data from optical imagery and SAR azimuth offsets; 3) using more detailed fault geometry; 4) and using additional campaign GPS data. With these improved observations, the slip inversion has significantly increased resolution at shallow depth. For the Landers rupture the SSD is reduced from 45% to 16%. Similarly for the Hector Mine rupture the SSD is reduced from 15% to 5%. We are assembling all the relevant co-seismic data for the El Major-Cucapah earthquake and will report the inversion result with its SSD at the meeting.

  20. Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Dependent Acoustic Propagation in Shallow Water ...theory is inadequate for properly describing loss in shallow water acoustic propagation. Finally there is range dependence, which can be significant in...work will lead to a practical method to investigate seismo- acoustic propagation in shallow - water environments, and allow us to compare and contrast

  1. Occurrence of the gasoline additive MTBE in shallow ground water in urban and agricultural areas

    USGS Publications Warehouse

    Squillace, Paul J.; Pope, Daryll A.; Price, Curtis V.

    1995-01-01

    Methyl tert-butyl ether (MTBE) is a volatile organic compound (VOC) derived from natural gas that is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. In 1993, production of MTBE ranked second among all organic chemicals manufactured in the United States. Currently, the U.S. Environmental Protection Agency (EPA) tentatively classifies MTBE as a possible human carcinogen. Health complaints related to MTBE in the air were first reported in Fairbanks, Alaska in November 1992 when about 200 residents reported problems such as headaches, dizziness, eye irritation, burning of the nose and throat, disorientation, and nausea. Similar health complaints have been registered in Anchorage, Alaska; Missoula, Montana; Milwaukee, Wisconsin; and New Jersey.As part of the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program, concentrations of 60 VOCs were measured in samples from 211 shallow wells in 8 urban areas and 524 shallow wells in 20 agricultural areas. Chloroform and MTBE were the two most frequently detected VOCs. MTBE was detected in 27 percent of the urban wells and 1.3 percent of the agricultural wells. Concentrations ranged from less than the detection level of 0.2 μg/L (micrograms per liter) to as high as 23,000 μg/L. When detected, the median concentration of MTBE was 0.6 μg/L. MTBE was most frequently detected in shallow ground water in Denver, Colorado and urban areas in New England. In Denver, 79 percent of the samples from shallow urban wells had detectable concentrations of MTBE and in New England, 37 percent of the samples from urban wells had detectable concentrations. Only 3 percent of the wells sampled in urban areas had concentrations of MTBE that exceeded 20 μg/L, which is the estimated lower limit of the EPA draft drinking water health advisory level. Contaminant concentrations below the health advisory

  2. Improving accuracy in shallow-landslide susceptibility analyses at regional scale

    NASA Astrophysics Data System (ADS)

    Iovine, Giulio G. R.; Rago, Valeria; Frustaci, Francesco; Bruno, Claudia; Giordano, Stefania; Muto, Francesco; Gariano, Stefano L.; Pellegrino, Annamaria D.; Conforti, Massimo; Pascale, Stefania; Distilo, Daniela; Basile, Vincenzo; Soleri, Sergio; Terranova, Oreste G.

    2015-04-01

    Calabria (southern Italy) is particularly exposed to geo-hydrological risk. In the last decades, slope instabilities, mainly related to rainfall-induced landslides, repeatedly affected its territory. Among these, shallow landslides, characterized by abrupt onset and extremely rapid movements, are among the most destructive and dangerous phenomena for people and infrastructures. In this study, a susceptibility analysis to shallow landslides has been performed by refining a method recently applied in Costa Viola - central Calabria (Iovine et al., 2014), and only focusing on landslide source activations (regardless of their possible evolution as debris flows). A multivariate approach has been applied to estimating the presence/absence of sources, based on linear statistical relationships with a set of causal variables. The different classes of numeric causal variables have been determined by means of a data clustering method, designed to determine the best arrangement. A multi-temporal inventory map of sources, mainly obtained from interpretation of air photographs taken in 1954-1955, and in 2000, has been adopted to selecting the training and the validation sets. Due to the wide extend of the territory, the analysis has been iteratively performed by a step-by-step decreasing cell-size approach, by adopting greater spatial resolutions and thematic details (e.g. lithology, land-use, soil, morphometry, rainfall) for high-susceptible sectors. Through a sensitivity analysis, the weight of the considered factors in predisposing shallow landslides has been evaluated. The best set of variables has been identified by iteratively including one variable at a time, and comparing the results in terms of performance. Furthermore, susceptibility evaluations obtained through logistic regression have been compared to those obtained by applying neural networks. Obtained results may be useful to improve land utilization planning, and to select proper mitigation measures in shallow

  3. Shallow Geothermal Admissibility Maps: a Methodology to Achieve a Sustainable Development of Shallow Geothermal Energy with Regards to Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Bréthaut, D.; Parriaux, A.; Tacher, L.

    2009-04-01

    Implantation and use of shallow geothermal systems may have environmental impacts. Traditionally, risks are divided into 2 categories: direct and indirect. Direct risks are linked with the leakage of the circulating fluid (usually water with anti-freeze) of ground source heat pumps into the underground which may be a source of contamination. Indirect risks are linked with the borehole itself and the operation of the systems which can modify the groundwater flow, change groundwater temperature and chemistry, create bypasses from the surfaces to the aquifers or between two aquifers. Groundwater source heat pumps (GWSHP) may provoke indirect risks, while ground source heat pumps (GSHP) may provoke both direct and indirect risks. To minimize those environmental risks, the implantation of shallow geothermal systems must be regulated. In 2007, more than 7000 GSHP have been installed in Switzerland, which represents 1.5 Mio drilled meters. In the canton of Vaud, each shallow geothermal project has to be approved by the Department of the Environment. Approximately 1500 demands have been treated during 2007, about 15 times more than in 1990. Mapping shallow geothermal systems implantation restrictions due to environmental constrains permits: 1) to optimize the management and planning of the systems, 2) to minimize their impact on groundwater resources and 3) to facilitate administrative procedures for treating implantation demands. Such maps are called admissibility maps. Here, a methodology to elaborate them is presented and tested. Interactions between shallow geothermal energy and groundwater resources have been investigated. Admissibility criteria are proposed and structured into a flow chart which provides a decision making tool for shallow geothermal systems implantation. This approach has been applied to three areas of West Switzerland ranging from 2 to 6 km2. For each area, a geological investigation has been realized and complementary territorial information (e

  4. [Two cases of Vogt-Koyanagi-Harada disease presenting shallow anterior chamber].

    PubMed

    Takemoto, Daisuke; Ijiri, Shigeyuki; Shimizu, Michiharu; Higashide, Tomomi; Sugiyama, Kazuhisa

    2015-05-01

    We report two cases of Vogt-Koyanagi-Harada disease (VKH) in which shallow anterior chambers were improved after steroid pulse therapy. The patients were women aged 65 and 72. They had headaches, decreased visual acuity and shallow anterior chamber in both eyes. There was no inflammation in the anterior chamber. Ultrasound biomicroscopy (UBM) showed ciliary edema, ciliochoroidal detachment, and angle closure. One case showed high intraocular pressure (IOP), and a diagnosis of acute primary angle closure was made. Although cataract surgery was performed in the left eye, postoperative optical coherence tomography (OCT) revealed serous retinal detachment in both eyes. The shallow anterior chamber and UBM findings were improved and serous retinal detachment disappeared after steroid pulse therapy in both cases. VKH may cause shallow anterior chamber and angle closure. The inflammatory changes of VKH in the anterior segment, i. e. ciliary edema and ciliochoroidal detachment, may exacerbate the shallow anterior chambers and narrow angles and result in an acute increase in IOP in eyes with short axial length. VKH associated with shallow anterior chamber may be misdiagnosed as acute primary angle closure. For differential diagnosis, examinations of the ocular fundus including OCT are useful.

  5. Development of a low background liquid scintillation counter for a shallow underground laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunitymore » for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.« less

  6. Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force

    NASA Astrophysics Data System (ADS)

    Tort, Marine; Dubos, Thomas; Bouchut, François; Zeitlin, Vladimir

    2014-05-01

    Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force Marine Tort1, Thomas Dubos1, François Bouchut2 & Vladimir Zeitlin1,3 1 Laboratoire of Dynamical Meteorology, Univ. P. and M. Curie, Ecole Normale Supérieure, and Ecole Polytechnique, FRANCE 2 Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, FRANCE 3 Institut Universitaire de France Atmospheric and oceanic motion are usually modeled within the shallow-fluid approximation, which simplifies the 3D spherical geometry. For dynamical consistency, i.e. to ensure conservation laws for potential vorticity, energy and angular momentum, the horizontal component of the Coriolis force is neglected. Here new equation sets combining consistently a simplified shallow-fluid geometry with a complete Coriolis force is presented. The derivation invokes Hamilton's principle of least action with an approximate Lagrangian capturing the small increase with height of the solid-body entrainment velocity due to planetary rotation. A three-dimensional compressible model and a one-layer shallow-water model are obtained. The latter extends previous work done on the f-plane and β-plane. Preliminary numerical results confirm the accuracy of the 3D model within the range of parameters for which the equations are relevant. These new models could be useful to incorporate a full Coriolis force into existing numerical models and to disentangle the effects of the shallow-atmosphere approximation from those of the traditional approximation. Related papers: Tort M., Dubos T., Bouchut F. and Zeitlin V. Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography. J. Fluid Mech. (under revisions) Tort M. and Dubos T. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Q.J.R. Meteorol. Soc. (DOI: 10.1002/qj.2274)

  7. Deep and shallow water effects on developing preschoolers' aquatic skills.

    PubMed

    Costa, Aldo M; Marinho, Daniel A; Rocha, Helena; Silva, António J; Barbosa, Tiago M; Ferreira, Sandra S; Martins, Marta

    2012-05-01

    The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher's exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk's method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (p<0.001). Body position in gliding and leg displacements were the main predictors. For 12 and 18 months of practice, the discriminant function do not revealed any significant association between groups. As a conclusion, it seems that the teaching methodology of aquatic readiness based on deep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills.

  8. Deep and Shallow Water Effects on Developing Preschoolers’ Aquatic Skills

    PubMed Central

    Costa, Aldo M.; Marinho, Daniel A.; Rocha, Helena; Silva, António J.; Barbosa, Tiago M.; Ferreira, Sandra S.; Martins, Marta

    2012-01-01

    The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher’s exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk’s method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (p<0.001). Body position in gliding and leg displacements were the main predictors. For 12 and 18 months of practice, the discriminant function do not revealed any significant association between groups. As a conclusion, it seems that the teaching methodology of aquatic readiness based on deep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills. PMID:23487406

  9. Performance of an optical equalizer in a 10 G wavelength converting optical access network.

    PubMed

    Mendinueta, José Manuel D; Cao, Bowen; Thomsen, Benn C; Mitchell, John E

    2011-12-12

    A centralized optical processing unit (COPU) that functions both as a wavelength converter (WC) and optical burst equaliser in a 10 Gb/s wavelength-converting optical access network is proposed and experimentally characterized. This COPU is designed to consolidate drifting wavelengths generated with an uncooled laser in the upstream direction into a stable wavelength channel for WDM backhaul transmission and to equalize the optical loud/soft burst power in order to relax the burst-mode receiver dynamic range requirement. The COPU consists of an optical power equaliser composed of two cascaded SOAs followed by a WC. Using an optical packet generator and a DC-coupled PIN-based digital burst-mode receiver, the COPU is characterized in terms of payload-BER for back-to-back and backhaul transmission distances of 22, 40, and 62 km. We show that there is a compromise between the receiver sensitivity and overload points that can be optimized tuning the WC operating point for a particular backhaul fiber transmission distance. Using the optimized settings, sensitivities of -30.94, -30.17, and -27.26 dBm with overloads of -9.3, -5, and >-5 dBm were demonstrated for backhaul transmission distances of 22, 40 and 62 km, respectively. © 2011 Optical Society of America

  10. Methyl tert‐butyl ether degradation in the unsaturated zone and the relation between MTBE in the atmosphere and shallow groundwater

    USGS Publications Warehouse

    Baehr, Arthur L.; Charles, Emmanuel G.; Baker, Ronald J.

    2001-01-01

    Atmospheric methyl tert‐butyl ether (MTBE) concentrations in southern New Jersey generally exceeded concentrations in samples taken from the unsaturated zone. A simple unsaturated zone transport model indicates that MTBE degradation can explain the attenuation with half‐lives from a few months to a couple of years. Tert‐butyl alcohol (TBA), a possible degradation product of MTBE, was detected in unsaturated‐zone samples at concentrations exceeding atmospheric levels at some sites, suggesting the possible conversion of MTBE to TBA. At sites where MTBE was detected in shallow groundwater, the concentration was typically higher than the overlying unsaturated‐zone concentration. This observation is consistent with outgassing from the aquifer and combined with the unsaturated‐zone attenuation suggests some of the MTBE detections in shallow groundwater are nonatmospheric in origin, coming from leaking tanks, road runoff, or other sources. The identification of sources of MTBE in groundwater and attenuation mechanisms through the hydrologic cycle is critical in developing an understanding of the long‐term effect of MTBE releases.

  11. On the Shallow Processing (Dis)Advantage: Grammar and Economy.

    PubMed

    Koornneef, Arnout; Reuland, Eric

    2016-01-01

    In the psycholinguistic literature it has been proposed that readers and listeners often adopt a "good-enough" processing strategy in which a "shallow" representation of an utterance driven by (top-down) extra-grammatical processes has a processing advantage over a "deep" (bottom-up) grammatically-driven representation of that same utterance. In the current contribution we claim, both on theoretical and experimental grounds, that this proposal is overly simplistic. Most importantly, in the domain of anaphora there is now an accumulating body of evidence showing that the anaphoric dependencies between (reflexive) pronominals and their antecedents are subject to an economy hierarchy. In this economy hierarchy, deriving anaphoric dependencies by deep-grammatical-operations requires less processing costs than doing so by shallow-extra-grammatical-operations. In addition, in case of ambiguity when both a shallow and a deep derivation are available to the parser, the latter is actually preferred. This, we argue, contradicts the basic assumptions of the shallow-deep dichotomy and, hence, a rethinking of the good-enough processing framework is warranted.

  12. Development of exploration and monitoring techniques for the sustainable thermal use of the shallow subsurface

    NASA Astrophysics Data System (ADS)

    Vienken, Thomas; Dietrich, Peter

    2013-04-01

    The increasing use of shallow geothermal energy, especially the rising numbers of geothermal ground source heat pumps that are installed to nowadays heat entire residential neighborhoods and the increasing use of ground water to cool residential buildings, as well as industrial facilities have led to an increasing need to assess possible effects of the use of shallow geothermal energy and to model subsurface heat transport. Potential effects include depletion of groundwater quality with resulting reduction of ground water ecosystem services. Heat and mass transport by groundwater dispersion and convection may lead to a carryover of effects into groundwater dependent ecosystems. These effects are often not directly accessible. Therefore, conflicting interests between geothermal energy use and groundwater protection as well as conflicting use between geothermal energy users are expected to arise especially in densely populated urban areas where the highest demand for the use of shallow geothermal energy is located but exploitation of shallow geothermal energy is limited and, at the same time, groundwater vulnerability is at its highest. Until now, only limited information about the potential effects of the intensive use of ground source heat pumps are available. Analyses conducted in the course of regulatory permission procedures consider only single applications and often rely on models that are solely parameterized based on standard literature values (e.g. thermal conductivity, porosity, and hydraulic conductivity). In addition, heat transport by groundwater dynamics is not considered. Due to the costs of conventionally applied geothermal in-situ tests (e.g. Geothermal Response Test - GRT) these can often only be applied at larger project scale. In this regard, our study will showcase the necessity for the development of novel geothermal monitoring and exploration concepts and tools based on a case story of a thermal intensively used residential neighborhood. We

  13. InSAR Evidence for an active shallow thrust fault beneath the city of Spokane Washington, USA

    USGS Publications Warehouse

    Wicks, Charles W.; Weaver, Craig S.; Bodin, Paul; Sherrod, Brian

    2013-01-01

    In 2001, a nearly five month long sequence of shallow, mostly small magnitude earthquakes occurred beneath the city of Spokane, a city with a population of about 200,000, in the state of Washington. During most of the sequence, the earthquakes were not well located because seismic instrumentation was sparse. Despite poor-quality locations, the earthquake hypocenters were likely very shallow, because residents near the city center both heard and felt many of the earthquakes. The combination of poor earthquake locations and a lack of known surface faults with recent movement make assessing the seismic hazards related to the earthquake swarm difficult. However, the potential for destruction from a shallow moderate-sized earthquake is high, for example Christchurch New Zealand in 2011, so assessing the hazard potential of a seismic structure involved in the Spokane earthquake sequence is important. Using interferometric synthetic aperture radar (InSAR) data from the European Space Agency ERS2 and ENVISAT satellites and the Canadian Space Agency RADARSAT-1, satellite we are able to show that slip on a shallow previously unknown thrust fault, which we name the Spokane Fault, is the source of the earthquake sequence. The part of the Spokane Fault that slipped during the 2001 earthquake sequence underlies the north part of the city, and slip on the fault was concentrated between ~0.3 and 2 km depth. Projecting the buried fault plane to the surface gives a possible surface trace for the Spokane Fault that strikes northeast from the city center into north Spokane.

  14. Propagation of Exploration Seismic Sources in Shallow Water

    NASA Astrophysics Data System (ADS)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  15. Late Paleocene Arctic Ocean shallow-marine temperatures from mollusc stable isotopes

    USGS Publications Warehouse

    Bice, Karen L.; Arthur, Michael A.; Marincovich, Louie

    1996-01-01

    Late Paleocene high-latitude (80°N) Arctic Ocean shallow-marine temperatures are estimated from molluscan δ18O time series. Sampling of individual growth increments of two specimens of the bivalve Camptochlamys alaskensis provides a high-resolution record of shell stable isotope composition. The heavy carbon isotopic values of the specimens support a late Paleocene age for the youngest marine beds of the Prince Creek Formation exposed near Ocean Point, Alaska. The oxygen isotopic composition of regional freshwater runoff is estimated from the mean δ18O value of two freshwater bivalves collected from approximately coeval fluviatile beds. Over a 30 – 34‰ range of salinity, values assumed to represent the tolerance of C. alaskensis, the mean annual shallow-marine temperature recorded by these individuals is between 11° and 22°C. These values could represent maximum estimates of the mean annual temperature because of a possible warm-month bias imposed on the average δ18O value by slowing or cessation of growth in winter months. The amplitude of the molluscan δ18O time series probably records most of the seasonality in shallow-marine temperature. The annual temperature range indicated is approximately 6°C, suggesting very moderate high-latitude marine temperature seasonality during the late Paleocene. On the basis of analogy with modern Chlamys species, C. alaskensis probably inhabited water depths of 30–50 m. The seasonal temperature range derived from δ18O is therefore likely to be damped relative to the full range of annual sea surface temperatures. High-resolution sampling of molluscan shell material across inferred growth bands represents an important proxy record of seasonality of marine and freshwater conditions applicable at any latitude. If applied to other regions and time periods, the approach used here would contribute substantially to the paleoclimate record of seasonality.

  16. Nanodiamond finding in the hyblean shallow mantle xenoliths.

    PubMed

    Simakov, S K; Kouchi, A; Mel'nik, N N; Scribano, V; Kimura, Y; Hama, T; Suzuki, N; Saito, H; Yoshizawa, T

    2015-06-01

    Most of Earth's diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter.

  17. Flow through a very porous obstacle in a shallow channel.

    PubMed

    Creed, M J; Draper, S; Nishino, T; Borthwick, A G L

    2017-04-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.

  18. Flow through a very porous obstacle in a shallow channel

    PubMed Central

    Draper, S.; Nishino, T.; Borthwick, A. G. L.

    2017-01-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence. PMID:28484321

  19. SHALLOW GROUNDWATER USE BY ALFALFA

    USDA-ARS?s Scientific Manuscript database

    One proposal for drainage water disposal is to reuse drainage water for irrigation of salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept of serial biological concentration requires in-situ crop water reuse from shallow gr...

  20. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting

    NASA Astrophysics Data System (ADS)

    Uenishi, K.

    2010-12-01

    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland

  1. Sulfur Metabolizing Microbes Dominate Microbial Communities in Andesite-Hosted Shallow-Sea Hydrothermal Systems

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan’s coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH4) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260

  2. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    PubMed

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  3. A new physically-based model considered antecedent rainfall for shallow landslide

    NASA Astrophysics Data System (ADS)

    Luo, Yu; He, Siming

    2017-04-01

    Rainfall is the most significant factor to cause landslide especially shallow landslide. In previous studies, rainfall intensity and duration are take part in the physically based model to determining the occurrence of the rainfall-induced landslides, but seldom considered the antecedent rainfall. In this study, antecedent rainfall is took into account to derive a new physically based model for shallow landslides prone area predicting at the basin scale. Based on the Rosso's equation of seepage flow considering the antecedent rainfall to construct the hillslope hydrology model. And then, the infinite slope stability theory is using to construct the slope stability model. At last, the model is apply in the Baisha river basin of Chengdu, Sichuan, China, and the results are compared with the one's from unconsidered antecedent rainfall. The results show that the model is simple, but has the capability of consider antecedent rainfall in the triggering mechanism of shallow landslide. Meanwhile, antecedent rainfall can make an obvious effect on shallow landslides, so in shallow landslide hazard assessment, the influence of the antecedent rainfall can't be ignored.

  4. Reusable Reinforcement Learning via Shallow Trails.

    PubMed

    Yu, Yang; Chen, Shi-Yong; Da, Qing; Zhou, Zhi-Hua

    2018-06-01

    Reinforcement learning has shown great success in helping learning agents accomplish tasks autonomously from environment interactions. Meanwhile in many real-world applications, an agent needs to accomplish not only a fixed task but also a range of tasks. For this goal, an agent can learn a metapolicy over a set of training tasks that are drawn from an underlying distribution. By maximizing the total reward summed over all the training tasks, the metapolicy can then be reused in accomplishing test tasks from the same distribution. However, in practice, we face two major obstacles to train and reuse metapolicies well. First, how to identify tasks that are unrelated or even opposite with each other, in order to avoid their mutual interference in the training. Second, how to characterize task features, according to which a metapolicy can be reused. In this paper, we propose the MetA-Policy LEarning (MAPLE) approach that overcomes the two difficulties by introducing the shallow trail. It probes a task by running a roughly trained policy. Using the rewards of the shallow trail, MAPLE automatically groups similar tasks. Moreover, when the task parameters are unknown, the rewards of the shallow trail also serve as task features. Empirical studies on several controlling tasks verify that MAPLE can train metapolicies well and receives high reward on test tasks.

  5. Wave turbulence in shallow water models.

    PubMed

    Clark di Leoni, P; Cobelli, P J; Mininni, P D

    2014-06-01

    We study wave turbulence in shallow water flows in numerical simulations using two different approximations: the shallow water model and the Boussinesq model with weak dispersion. The equations for both models were solved using periodic grids with up to 2048{2} points. In all simulations, the Froude number varies between 0.015 and 0.05, while the Reynolds number and level of dispersion are varied in a broader range to span different regimes. In all cases, most of the energy in the system remains in the waves, even after integrating the system for very long times. For shallow flows, nonlinear waves are nondispersive and the spectrum of potential energy is compatible with ∼k{-2} scaling. For deeper (Boussinesq) flows, the nonlinear dispersion relation as directly measured from the wave and frequency spectrum (calculated independently) shows signatures of dispersion, and the spectrum of potential energy is compatible with predictions of weak turbulence theory, ∼k{-4/3}. In this latter case, the nonlinear dispersion relation differs from the linear one and has two branches, which we explain with a simple qualitative argument. Finally, we study probability density functions of the surface height and find that in all cases the distributions are asymmetric. The probability density function can be approximated by a skewed normal distribution as well as by a Tayfun distribution.

  6. Interaction of deep and shallow convection is key to Madden-Julian Oscillation simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Song, Xiaoliang

    2009-05-01

    This study investigates the role of the interaction between deep and shallow convection in MJO simulation using the NCAR CAM3. Two simulations were performed, one using a revised Zhang-McFarlane convection scheme for deep convection and the Hack scheme for shallow convection, and the other disallowing shallow convection below 700 mb in the tropical belt. The two simulations produce dramatically different MJO characteristics. While the control simulation produces realistic MJOs, the simulation without shallow convection has very weak MJO signals in the Indian Ocean and western Pacific. Composite analysis finds that shallow convection serves to precondition the lower troposphere by moistening it ahead of deep convection. It also produces enhanced low-level mass convergence below 850 mb ahead of deep convection. This work, together with previous studies, suggests that a correct simulation of the interaction between deep and shallow convection is key to MJO simulation in global climate models.

  7. A pilot muon radiography to image the shallow conduit of the Stromboli volcano: results and future prospects

    NASA Astrophysics Data System (ADS)

    Miyamoto, Seigo; Tioukov, Valeri; Sirignano, Chiara; Bozza, Cristiano; Morishima, Kunihiro

    2017-04-01

    The test result of imaging the shallow part of the Stromboli crater zone by using cosmic-ray muons in 2012 and possible performance of the future muon observation will be presented. It is well known that the behavior of volcanic eruptions strongly depends on the shape of the conduit. Stromboli is one of the most known and studied active volcanoes in the world, nevertheless the details of its internal structure are not well defined yet. Geophysical exploration method which use high energy cosmic-ray muons and makes the density image of the object like X-ray radiography for the human body is called "muon radiography " or "muography". A pilot muography was done for the shallow part of Stromboli in 2012. We succeeded to clarify that there is a less density part at the North-East cone in the crater zone. It is considered that the stack of volcanic ashes. On the other hand, we also confirmed that the contamination of the physical background particles and they makes the noisy density image especially about 50 meter below from the top of the crater. In another observation, Nishiyama et al (2014) revealed the contents of background particles and the way to remove them were presented. They showed that the main contents of the background particles is low kinetic energy charged particles and also showed that it is possible to remove them by using multi-layerd muon film detector. We can plan the future muography observation to see the deeper part of the conduit( at least until 100 meter from the top of crater) by their backgroundless method. Therefore we estimated possible performance of the future observation by multi-layer muon films. The result suggests that we might get the image of shallow conduit from the surface to the depth of e.g. 55 meter with 20 meter spatial resolution or 100 meter with 27 meter resolution in case the density in the conduit is 0.0 g/cm3 and with 71 percent statistical confidence level.

  8. Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities

    NASA Astrophysics Data System (ADS)

    Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.

    2002-12-01

    The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface

  9. A moist Boussinesq shallow water equations set for testing atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.

    The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that

  10. Geohydrology of the shallow aquifers in the Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1996-01-01

    The Denver metropolitan area is underlain by shallow layers of water-bearing sediments (aquifers) consisting of unconsolidated gravel, sand, silt, and clay. The depth to water in these aquifers is less than 20 feet in much of the area, and the aquifers provide a ready source of water to numerous shallow, small-capacity wells. The shallow depth to water also makes the aquifers susceptible to contamination from the land surface. Water percolating downward from residential, commercial, and industrial property, spills of hazardous materials, and leaks from underground storage tanks and pipelines can cause contaminants to enter the shallow aquifers. Wet basements, unstable foundation materials, and waterlogged soils also are common in areas of very shallow ground water.Knowledge of the extent, thickness, and water-table altitude of the shallow aquifers is incomplete. This, coupled with the complexity of development in this large metropolitan area, makes effective use, management, and protection of these aquifers extremely difficult. Mapping of the geologic and hydrologic characteristics of these aquifers would provide the general public and technical users with information needed to better use, manage, and protect this water resource. A study to map the geohydrology of shallow aquifers in the Denver metropolitan area was begun in 1994. The work was undertaken by the U.S. Geological Survey in cooperation with the U.S. Army-Rocky Mountain Arsenal, U.S. Department of Energy-Rocky Flats Field Office, Colorado Department of Public Health and Environment, Colorado Department of Natural Resources-State Engineers Office, Denver Water Department, Littleton-Englewood Wastewater Treatment Plant, East Cherry Creek Valley Water and Sanitation District, Metro Wastewater Reclamation District, Willows Water District, and the cities of Aurora, Lakewood, and Thornton.This report presents the results of a systematic mapping of the extent, thickness, and water-table altitude of the shallow

  11. [Sleep disorder of schizophrenia treated with shallow needling: a randomized controlled trial].

    PubMed

    Huang, Yanxi; Zheng, Ying

    2015-09-01

    To compare the clinical effective differences between shallow needling and medication for the sleep disorder of schizophrenia. Ninety-six patients with the sleep disorder of schizophrenia were randomly divided into a shallow needling group and a medication group, 48 cases in each one (one case dropping in the shallow needling group and two cases dropping in the medication group). The same dose paliperidone tablets were adopted in the two groups. In the shallow needling group, the main acupoints were Baihui (GV 20), Shangenxue (Extra) and Ezhongxian (MS 1), and the acupoints based on syndrome differentiation were selected. The shallow needling manipulation was used once a day, 5 times a week. In the medication group, 3 mg eszopiclone tablets were prescribed orally before sleep once every night. The patients were treated for 6 weeks in the two groups. Sleep condition was evaluated by Pittsburgh sleep quality index (PSQI) before and after treatment, and the clinical efficacy and the adverse reaction were assessed by positive and negative symptoms scale (PANSS) and treatment emergent symptom scale (TESS) before and after 2-week, 4-week and 6-week treatment. The clinical effects between the two groups were compared. After treatment in the two groups, both the total scores and the each factor score of the PSQI and the PANSS were apparently decreased (P<0. 05, P<0. 01). As for the PSQI scale, after treatment the daytime dysfunctional score of the shallow needling group was reduced more obviously than that of the medication group (P<0. 05), and the falling asleep time in the medication group was declined more markedly compared with that in the shallow needling group (P<0. 05). Regarding the PANSS, the improvement of the pathological factor in the shallow needling group was better than that in the medication group after treatment (P<0. 05), and the improvement of the positive factor in the medication group was superior to that in the shallow needling group after treatment

  12. Imaging shallow magma chambers at Alaskan volcanoes with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Prejean, S. G.

    2009-05-01

    Ambient noise tomography/inversion (ANT) is an emerging technique in seismology with the ability to provide 3D images of subsurface volcanic structure using relatively sparse seismic networks. The method relies on the principle that the cross-correlation of noise recordings at two different seismic stations reproduces an experiment in which one of the stations acts as an active source. Ambient seismic noise in the frequency band from 0.1 to 1 Hz is mostly composed of fundamental mode surface waves, of both Love and Rayleigh type. As a result, noise cross-correlations are sensitive to shear-wave structure and complement compressional-wave images computed from phase arrivals of local earthquakes. At Okmok volcano in the Aleutian islands, a 3D image constructed from 40 days of noise recordings in 2005 on a 12 station network clearly shows two low velocity zones (LVZs) centered about the 10-km-wide caldera: a shallow zone in the upper 1-2 km and a deeper zone between 4-4.5 km. The shallow LVZ is interpreted to be weak, poorly-consolidated material within the caldera; the deeper LVZ is indicative of the shallow magma chamber at Okmok. That the chamber is imaged as an LVZ in 2005 points to it remaining in a molten state throughout the time period between the 1997 and 2008 eruptions. The existence of a shallow chamber at Okmok is consistent with independent studies based on GPS, InSAR, and petrologic data. A 3D image has also been determined for the Katmai group of volcanoes along the Alaska peninsula from 60 days of continuous recordings in 2005 and 2006. An LVZ at Katmai Pass, previously known from local earthquake tomography (LET), is evident in the 3D shear-wave velocity model at depths down to 2 km BSL. That the LVZ exists in compressional-wave velocity models suggests it is a shallow magma storage area for Trident volcano. In contrast, low shear-wave velocity under Martin volcano is likely fluid-related, given the lack of low compressional-wave velocities in images

  13. The effect of heterogeneity identifying the leakage of carbon dioxide in a shallow aquifer: an experimental study

    NASA Astrophysics Data System (ADS)

    Ha, S. W.; Lee, S. H.; Jeon, W. T.; Joo, Y. J.; Lee, K. K.

    2014-12-01

    Carbon dioxide (CO2) leakage into the shallow aquifer is one of the main concerns at a CO2 sequestration site. Various hydrogeochemical parameters have been suggested to determine the leakage (i.e., pH, EC, Alkalinity, Ca and δ13C). For the practical point of view, direct and continuous measurement of the dissolved CO2 concentration at the proper location can be the most useful strategy for the CO2 leakage detection in a shallow aquifer. In order to enhance possibility of identifying leaked CO2, monitoring location should be determined with regard to the shallow aquifer heterogeneity. In this study, a series of experiments were conducted to investigate the effects of heterogeneity on the dissolved CO2 concentrations. A 2-D sand tank of homogeneous medium sands including a single heterogeneity layer was designed. Two NDIR CO2 sensors, modified for continuous measuring in aquatic system, were installed above and below the single heterogeneous layer (clay, fine and medium sand lenses). Also, temperature and water contents were measured continuously at a same position. Bromocresol purple which is one of the acid-base indicator was used to visualize CO2 migration. During the gas phase CO2 injection at the bottom of the sand tank, dissolved CO2 in the water is continuously measured. In the results, significant differences of concentrations were observed due to the presence of heterogeneity layer, even the locations were close. These results suggested that monitoring location should be determined considering vertical heterogeneity of shallow aquifer at a CO2 leakage site.

  14. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas

    USGS Publications Warehouse

    Warner, Nathaniel R.; Kresse, Timothy M.; Hays, Phillip D.; Down, Adrian; Karr, Jonathan D.; Jackson, R.B.; Vengosh, Avner

    2013-01-01

    Exploration of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling and hydraulic fracturing has changed the energy landscape in the USA providing a vast new energy source. The accelerated production of natural gas has triggered a debate concerning the safety and possible environmental impacts of these operations. This study investigates one of the critical aspects of the environmental effects; the possible degradation of water quality in shallow aquifers overlying producing shale formations. The geochemistry of domestic groundwater wells was investigated in aquifers overlying the Fayetteville Shale in north-central Arkansas, where approximately 4000 wells have been drilled since 2004 to extract unconventional natural gas. Monitoring was performed on 127 drinking water wells and the geochemistry of major ions, trace metals, CH4 gas content and its C isotopes (δ13CCH4), and select isotope tracers (δ11B, 87Sr/86Sr, δ2H, δ18O, δ13CDIC) compared to the composition of flowback-water samples directly from Fayetteville Shale gas wells. Dissolved CH4 was detected in 63% of the drinking-water wells (32 of 51 samples), but only six wells exceeded concentrations of 0.5 mg CH4/L. The δ13CCH4 of dissolved CH4 ranged from −42.3‰ to −74.7‰, with the most negative values characteristic of a biogenic source also associated with the highest observed CH4 concentrations, with a possible minor contribution of trace amounts of thermogenic CH4. The majority of these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ13CCH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO3 dominated, (3) TDS > 100 mg/L and Na–HCO3dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated

  15. On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame

    NASA Technical Reports Server (NTRS)

    Mahalov, A.

    1994-01-01

    The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).

  16. Plant pigment types, distributions, and influences on shallow water submerged aquatic vegetation mapping

    NASA Astrophysics Data System (ADS)

    Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert

    2004-11-01

    Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.

  17. Large-scale field testing on flexible shallow landslide barriers

    NASA Astrophysics Data System (ADS)

    Bugnion, Louis; Volkwein, Axel; Wendeler, Corinna; Roth, Andrea

    2010-05-01

    the thickness of the failure layer and the width of the possible failure are essential for the required barrier design parameter height and width. First results of the calculated drag coefficients of dynamic impact pressure measurements showed that the dynamic coefficient cw is much lower than 1.0 which is contradictory to most of existing dimensioning property protection guidelines. It appears to us that special adaptation to the system like smaller mesh sizes and special ground-barrier interface compared to normal rock-fall barriers and channelised debris flow barriers are necessary to improve the retention behavior of shallow landslide barriers. Detailed analysis of the friction coefficient in relationship with pore water pressure measurements gives interesting insights into the dynamic of fluid-solid mixed flows. Impact pressures dependencies on flow features are analyzed and discussed with respect to existing models and guidelines for shallow landslides.

  18. Acoustic MIMO communications in a very shallow water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  19. Water quality in shallow alluvial aquifers, Upper Colorado River Basin, Colorado, 1997

    USGS Publications Warehouse

    Apodaca, L.E.; Bails, J.B.; Smith, C.M.

    2002-01-01

    Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water-quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground-water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground-water quality in the study area.

  20. Ecological evaluation of an experimental beneficial use scheme for dredged sediment disposal in shallow tidal waters.

    PubMed

    van der Wal, Daphne; Forster, Rodney M; Rossi, Francesca; Hummel, Herman; Ysebaert, Tom; Roose, Frederik; Herman, Peter M J

    2011-01-01

    An experiment was performed to test an alternative dredging strategy for the Westerschelde estuary. Clean sand dredged from the navigation channel was disposed seawards of an eroding intertidal flat in order to modify morphology and hydrodynamics, improving the multi-channel system with ecologically productive shallow water habitat. Five years of intensive monitoring revealed that part of the disposed sediment moved slowly towards the flat, increasing the very shallow subtidal and intertidal area, as planned. The sand in the impact zone became gradually finer after disposal, possibly due to reduced current velocities. Nevertheless, no changes in macrobenthic biomass, density, species richness and composition were detected in the subtidal zone, also demonstrating rapid macrobenthic recovery. In the intertidal zone, no ecological effects could be revealed superimposed on trends associated with long-term sediment fining. Thus, despite morphological success and absence of detected negative ecological impacts of the experiment, new beneficial habitat was not created. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Shallow-level magma-sediment interaction and explosive behaviour at Anak Krakatau (Invited)

    NASA Astrophysics Data System (ADS)

    Troll, V. R.; Jolis, E. M.; Dahren, B.; Deegan, F. M.; Blythe, L. S.; Harris, C.; Berg, S. E.; Hilton, D. R.; Freda, C.

    2013-12-01

    Crustal contamination of ascending arc magmas is generally thought to be a significant process which occurs at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus potential eruptive behaviour. Distinguishing deep vs. shallow crustal contamination processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3], employing rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). This obeservation places a significant element of magma-crust interaction into the uppermost, sediment-rich crust beneath the volcano. Magma storage in the uppermost crust can thus offer a possible explanation for the compositional modifications of primitive Krakatau magmas, and likely provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.

  2. Shallow water bathymetry correction using sea bottom classification with multispectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Kazama, Yoriko; Yamamoto, Tomonori

    2017-10-01

    Bathymetry at shallow water especially shallower than 15m is an important area for environmental monitoring and national defense. Because the depth of shallow water is changeable by the sediment deposition and the ocean waves, the periodic monitoring at shoe area is needed. Utilization of satellite images are well matched for widely and repeatedly monitoring at sea area. Sea bottom terrain model using by remote sensing data have been developed and these methods based on the radiative transfer model of the sun irradiance which is affected by the atmosphere, water, and sea bottom. We adopted that general method of the sea depth extraction to the satellite imagery, WorldView-2; which has very fine spatial resolution (50cm/pix) and eight bands at visible to near-infrared wavelengths. From high-spatial resolution satellite images, there is possibility to know the coral reefs and the rock area's detail terrain model which offers important information for the amphibious landing. In addition, the WorldView-2 satellite sensor has the band at near the ultraviolet wavelength that is transmitted through the water. On the other hand, the previous study showed that the estimation error by the satellite imagery was related to the sea bottom materials such as sand, coral reef, sea alga, and rocks. Therefore, in this study, we focused on sea bottom materials, and tried to improve the depth estimation accuracy. First, we classified the sea bottom materials by the SVM method, which used the depth data acquired by multi-beam sonar as supervised data. Then correction values in the depth estimation equation were calculated applying the classification results. As a result, the classification accuracy of sea bottom materials was 93%, and the depth estimation error using the correction by the classification result was within 1.2m.

  3. Investigating controls on boron isotope ratios in shallow marine carbonates

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.

    2017-01-01

    The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives

  4. Viability of modelling gas transport in shallow injection-monitoring experiment field at Maguelone, France

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Fagerlund, Fritjof; Sharma, Prabhakar; Pezard, Philippe; Niemi, Auli

    2015-04-01

    In this study, TOUGH2/EOS7CA model is used to simulate the shallow injection-monitoring experiment carried out at Maguelone, France, during 2012 and 2013. The possibility of CO2 leakage from storage reservoir to upper layers is one of the issues that need to be addressed in CCS projects. Developing reliable monitoring techniques to detect and characterize CO2 leakage is necessary for the safety of CO2 storage in reservoir formations. To test and cross-validate different monitoring techniques, a series of shallow gas injection-monitoring experiments (SIMEx) has been carried out at the Maguelone. The experimental site is documented in Lofi et al [2013]. At the site, a series of nitrogen and one CO2 injection experiment have been carried out during 2012-2013 and different monitoring techniques have been applied. The purpose of modelling is to acquire understanding of the system performance as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. The preliminary simulation of the experiment including the simulation for the Nitrogen injection test in 2012 was presented in Basirat et al [2013]. In this work, the simulations represent the gaseous CO2 distribution and dissolved CO2 within range obtained by monitoring approaches. The Multiphase modelling in combination with geophysical monitoring can be used for process understanding of gas phase migration- and mass transfer processes resulting from gaseous CO2 injection. Basirat, F., A. Niemi, H. Perroud, J. Lofi, N. Denchik, G. Lods, P. Pezard, P. Sharma, and F. Fagerlund (2013), Modeling Gas Transport in the Shallow Subsurface in Maguelone Field Experiment, Energy Procedia, 40, 337-345. Lofi, J., P. Pezard, F. Bouchette, O. Raynal, P. Sabatier, N. Denchik, A. Levannier, L. Dezileau, and R. Certain (2013), Integrated Onshore-Offshore Investigation of a Mediterranean Layered Coastal Aquifer, Groundwater, 51(4), 550-561.

  5. Nonlinear modes of snap-through motions of a shallow arch

    NASA Astrophysics Data System (ADS)

    Breslavsky, I.; Avramov, K. V.; Mikhlin, Yu.; Kochurov, R.

    2008-03-01

    Nonlinear modes of snap-through motions of a shallow arch are analyzed. Dynamics of shallow arch is modeled by a two-degree-of-freedom system. Two nonlinear modes of this discrete system are treated. The methods of Ince algebraization and Hill determinants are used to study stability of nonlinear modes. The analytical results are compared with the data of the numerical simulations.

  6. Characterization of irradiation induced deep and shallow impurities

    NASA Astrophysics Data System (ADS)

    Treberspurg, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred

    2013-12-01

    Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other.

  7. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).

  8. The roll-up and merging of coherent structures in shallow mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, M. Y., E-mail: celmy@connect.ust.hk; Ghidaoui, M. S.; Kolyshkin, A. A.

    2016-09-15

    The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onsetmore » and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.« less

  9. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    NASA Astrophysics Data System (ADS)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with

  10. 77 FR 1501 - Special Purpose Permit Application; Draft Environmental Assessment; Hawaii-Based Shallow-Set...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ...-FF01M01000] Special Purpose Permit Application; Draft Environmental Assessment; Hawaii-Based Shallow-Set... the operation of the Hawaii-based shallow-set longline fishery that targets swordfish (Xiphias gladius... albatross, by NMFS in its regulation of the shallow-set longline fishery based in Hawaii. This fishery...

  11. Comparison of thermal, salt and dye tracing to estimate shallow flow velocities: Novel triple-tracer approach

    NASA Astrophysics Data System (ADS)

    Abrantes, João R. C. B.; Moruzzi, Rodrigo B.; Silveira, Alexandre; de Lima, João L. M. P.

    2018-02-01

    The accurate measurement of shallow flow velocities is crucial to understand and model the dynamics of sediment and pollutant transport by overland flow. In this study, a novel triple-tracer approach was used to re-evaluate and compare the traditional and well established dye and salt tracer techniques with the more recent thermal tracer technique in estimating shallow flow velocities. For this purpose a triple tracer (i.e. dyed-salted-heated water) was used. Optical and infrared video cameras and an electrical conductivity sensor were used to detect the tracers in the flow. Leading edge and centroid velocities of the tracers were measured and the correction factors used to determine the actual mean flow velocities from tracer measured velocities were compared and investigated. Experiments were carried out for different flow discharges (32-1813 ml s-1) on smooth acrylic, sand, stones and synthetic grass bed surfaces with 0.8, 4.4 and 13.2% slopes. The results showed that thermal tracers can be used to estimate shallow flow velocities, since the three techniques yielded very similar results without significant differences between them. The main advantages of the thermal tracer were that the movement of the tracer along the measuring section was more easily visible than it was in the real image videos and that it was possible to measure space-averaged flow velocities instead of only one velocity value, with the salt tracer. The correction factors used to determine the actual mean velocity of overland flow varied directly with Reynolds and Froude numbers, flow velocity and slope and inversely with flow depth and bed roughness. In shallow flows, velocity estimation using tracers entails considerable uncertainty and caution must be taken with these measurements, especially in field studies where these variables vary appreciably in space and time.

  12. Shallow Aquifer Methane Gas Source Assessment

    NASA Astrophysics Data System (ADS)

    Coffin, R. B.; Murgulet, D.; Rose, P. S.; Hay, R.

    2014-12-01

    Shale gas can contribute significantly to the world's energy demand. Hydraulic fracturing (fracking) on horizontal drill lines developed over the last 15 years makes formerly inaccessible hydrocarbons economically available. From 2000 to 2035 shale gas is predicted to rise from 1% to 46% of the total natural gas for the US. A vast energy resource is available in the United States. While there is a strong financial advantage to the application of fracking there is emerging concern about environmental impacts to groundwater and air quality from improper shale fracking operations. Elevated methane (CH4) concentrations have been observed in drinking water throughout the United States where there is active horizontal drilling. Horizontal drilling and hydraulic-fracturing can increase CH4 transport to aquifers, soil and the vadose zone. Seepage can also result from casing failure in older wells. However, there is strong evidence that elevated CH4 concentrations can be associated with topographic and hydrogeologic features, rather than shale-gas extraction processes. Carbon isotope geochemistry can be applied to study CH4source(s) in shallow vadose zone and groundwater systems. A preliminary TAMU-CC isotope data set from samples taken at different locations in southern Texas shows a wide range of CH4 signatures suggesting multiple sources of methane and carbon dioxide. These data are interpreted to distinguish regions with methane contributions from deep-sourced horizontal drilling versus shallow system microbial production. Development of a thorough environmental assessment using light isotope analysis can provide understanding of shallow anthropogenic versus natural CH4sources and assist in identifying regions that require remedial actions.

  13. Analysis of flexible layered shallow shells on elastic foundation

    NASA Astrophysics Data System (ADS)

    Stupishin, L.; Kolesnikov, A.; Tolmacheva, T.

    2017-05-01

    This paper contains numerical analysis of a layered geometric nonlinear flexible shallow shell based on an elastic foundation. Rise of arch in the center of the shell, width, length and type of support are given. The design variable is taken to be the thickness of the shallow shell, the form of the middle surface forming and the characteristic of elastic foundations. Critical force coefficient and stress of shells are calculated by Bubnov-Galerkin. Stress, characteristic of elastic foundations - thickness dependence are presented.

  14. Topological soliton solutions for three shallow water waves models

    NASA Astrophysics Data System (ADS)

    Liu, Jiangen; Zhang, Yufeng; Wang, Yan

    2018-07-01

    In this article, we investigate three distinct physical structures for shallow water waves models by the improved ansatz method. The method was improved and can be used to obtain more generalized form topological soliton solutions than the original method. As a result, some new exact solutions of the shallow water equations are successfully established and the obtained results are exhibited graphically. The results showed that the improved ansatz method can be applied to solve other nonlinear differential equations arising from mathematical physics.

  15. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    NASA Astrophysics Data System (ADS)

    Wintermeyer, Niklas; Winters, Andrew R.; Gassner, Gregor J.; Kopriva, David A.

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  16. Strategies towards an optimized use of the shallow geothermal potential

    NASA Astrophysics Data System (ADS)

    Schelenz, S.; Firmbach, L.; Kalbacher, T.; Goerke, U.; Kolditz, O.; Dietrich, P.; Vienken, T.

    2013-12-01

    Thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies, e.g. in the course of German energy transition, with application shifting from isolated to intensive use. The planning and dimensioning of (geo-)thermal applications is strongly influenced by the availability of exploration data. Hence, reliable site-specific dimensioning of systems for the thermal use of the shallow subsurface will contribute to an increase in resource efficiency, cost reduction during installation and operation, as well as reduction of environmental impacts and prevention of resource over-exploitation. Despite large cumulative investments that are being made for the utilization of the shallow thermal potential, thermal energy is in many cases exploited without prior on-site exploration and investigation of the local geothermal potential, due to the lack of adequate and cost-efficient exploration techniques. We will present new strategies for an optimized utilization of urban thermal potential, showcased at a currently developed residential neighborhood with high demand for shallow geothermal applications, based on a) enhanced site characterization and b) simulation of different site specific application scenarios. For enhanced site characterization, surface geophysics and vertical high resolution direct push-profiling were combined for reliable determination of aquifer structure and aquifer parameterization. Based on the site characterization, different site specific geothermal application scenarios, including different system types and system configurations, were simulated using OpenGeoSys to guarantee an environmental and economic sustainable thermal use of the shallow subsurface.

  17. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their modelmore » does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet

  18. Rainfall characteristics for shallow landsliding in Seattle, Washington, USA

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Chleborad, A.F.

    2006-01-01

    Shallow landsliding in the Seattle, Washington, area, has caused the occasional loss of human life and millions of dollars in damage to property. The effective management of the hazzard requires an understanding of the rainfall conditions that result in landslides. We present an empirical approach to quantify the antecedent moisture conditions and rainstorm intensity and duration that have triggered shallow landsliding using 25 years of hourly rainfull data and a complementary record of landslide occurrence. Our approach combines a simple water balance to estimate the antecedent moisture conditions of hillslope materials and a rainfall intensity-duration threshold to identify periods when shallow landsliding can be expected. The water balance is calibrated with field-monitoring data and combined with the rainfall intensity-duration threshold using a decision tree. Results are cast in terms of a hypothetical landslide warning system. Two widespread landslide events are correctly identified by the warning scheme; however, it is less accurate for more isolated landsliding. Copyright ?? 2005 John Wiley & Sons, Ltd.

  19. Inclination Shallowing in the Permian/Triassic Boundary Sedimentary Sections of the East European Platform: the New Paleomagnetic Pole and its Significance for GAD Hypothesis

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Fetisova, A. M.; Balabanov, Y.

    2017-12-01

    One of the key challenges which are traditionally encountered in studying the paleomagnetism of terrigenous sedimentary strata is the necessity to allow for the effect of shallowing of paleomagnetic inclinations which takes place under the compaction of the sediment at the early stages of diagenesis and most clearly manifests itself in the case of midlatitude sedimentation. Traditionally, estimating the coefficient of inclination flattening (f) implies routine re-deposition experiments and studying their magnetic anisotropy (Kodama, 2012), which is not possible in every standard paleomagnetic laboratory. The Elongation-Inclination (E/I) statistical method for estimating the coefficient of inclination shallowing, which was recently suggested in (Tauxe and Kent, 2004), does not require the investigation of the rock material in a specially equipped laboratory but toughens the requirements on the paleomagnetic data and, primarily, regarding the volume of the data, which significantly restricts the possibilities of the post factum estimation and correction for inclination shallowing. We present the results of the paleomagnetic reinvestigation of the some key sections of the Upper Permian and Lower Triassic rocks located on the East European Platform. The obtained paleomagnetic data allowed us to estimate the coefficient of inclination shallowing by the E/I method and calculate a new P-Tr paleomagnetic pole for Europe. The absence of a statistically significant difference between the mean Siberian, European and North American Permian-Triassic paleomagnetic poles allow us to conclude that 252 Ma the configuration of the Earth's magnetic field was predominantly dipole. We believe that the assumption of the non-dipolarity of the geomagnetic field at the Permian-Triassic boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), arose due to the failure to take into account the

  20. GDP: A new source for shallow high-resolution seismic exploration

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed A.

    2009-06-01

    Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.

  1. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on...

  2. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on...

  3. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on...

  4. Grain transport mechanics in shallow flow

    USDA-ARS?s Scientific Manuscript database

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  5. Aquatic Invertebrate Assemblages in Shallow Prairie Lakes: Fish and Environmental Influences

    USGS Publications Warehouse

    Paukert, C.P.; Willis, D.W.

    2003-01-01

    We sampled zooplankton and benthic macroinvertebrate assemblages in 30 shallow natural lakes to determine the effects of the environment (i.e., habitat and fish abundance) on invertebrates. Zooplankters were identified to genus, and up to 120 individuals per genus were measured. Macroinvertebrates were identified to order, class, or family. Fish communities were also sampled. Relative abundances of zooplankton and macroinvertebrates were low at increased chlorophyll a concentrations, although mean zooplankton length increased with total phosphorus, possibly because of an increased proportion of microzooplankton (rotifers and copepod nauplii) at higher phosphorus levels. Canonical correspondence analysis revealed that zooplankton and macroinvertebrate abundance was influenced by submersed vegetation coverage, whereas zooplankton abundance and size structure were also related to productivity (i.e., chlorophyll a and total phosphorus). However, relative abundance of fish species or fish feeding guilds was not strongly correlated with zooplankton or macroinvertebrate abundance or zooplankton size structure. Physical habitat (e.g., vegetation coverage) may exert substantial influences on invertebrate assemblages in these lakes, possibly providing a refuge from fish predation.

  6. Shallow water equations: viscous solutions and inviscid limit

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Perepelitsa, Mikhail

    2012-12-01

    We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.

  7. Microbes mediate carbon and nitrogen retention in shallow photic sediments

    NASA Astrophysics Data System (ADS)

    Hardison, A.; Anderson, I.; Canuel, E. A.; Tobias, C.; Veuger, B.

    2009-12-01

    Sediments in shallow coastal bays are sites of intense biogeochemical cycling facilitated by a complex microbial consortium. Unlike deeper coastal environments, much of the benthos is illuminated by sunlight in these bays. As a result, benthic autotrophs such as benthic microalgae (BMA) and macroalgae play an integral role in nutrient cycling. Investigating pathways of carbon (C) and nitrogen (N) flow through individual compartments within the sediment microbial community has previously proved challenging due to methodological difficulties. However, it is now possible using stable isotopes and microbial biomarkers such as fatty acids and amino acids to track C and N flow through individual microbial pools. We investigated the uptake and retention of C and N by bacteria and BMA in a shallow subtidal system. Using bulk and compound specific isotopic analysis, we traced the pathways of dissolved inorganic 13C and 15N under various treatments: 1) in ambient light or dark, 2) from porewater or water column sources, and 3) in the presence or absence of bloom forming nuisance macroalgae. Excess 13C and 15N in THAAs and excess 13C in total PLFAs showed a strong dependence on light. Enrichment of these pools represents uptake by the microbial community, which can include both autotrophic and heterotrophic components. Higher excess 13C in benthic microalgal fatty acids (C20, C22 PUFAs) provides evidence that benthic microalgae were fixing 13C. Aditionally, the ratio of excess 13C in branched fatty acids to microbial fatty acids (BAR) and excess 13C and 15N in D-Ala to L-Ala (D/L-Ala) were low, suggesting dominance by benthic microalgae over bacteria to total label incorporation. Our results support uptake and retention of C and N by the sediment microbial community and indicate a tight coupling between BMA and bacteria in shallow illuminated systems. This uptake is diminished in the presence of macroalgae, likely due to shading and/or nutrient competition. Therefore

  8. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  9. Susceptibility and triggering scenarios at a regional scale for shallow landslides

    NASA Astrophysics Data System (ADS)

    Gullà, G.; Antronico, L.; Iaquinta, P.; Terranova, O.

    2008-07-01

    The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an ˜ 15,075 km 2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing. Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors. The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps. On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility. Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been

  10. Longevity of shallow subsurface drip irrigation tubing under three tillage practices

    USDA-ARS?s Scientific Manuscript database

    Shallow Sub-Surface drip irrigation (S3DI) has drip tubing buried about 2-in below the soil surface. It is unknown how long drip tubing would be viable at this shallow soil depth using strip- or no-tillage systems. The objectives were to determine drip tube longevity, resultant crop yield, and parti...

  11. CO 2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Vyacheslav N.; Ackman, Terry E.; Soong, Yee

    2009-02-01

    For coal to be a viable energy source, its excessive CO 2 emissions must be curtailed. Sequestration of CO 2 and other greenhouse gases is a possibility, but success therein is preceded by a significant number of challenges. Perhaps the most onerous is the tradeoff between using deep mines that would better trap CO 2 against using shallower options that are more economical to access. In confronting this issue, a group of U.S. Department of Energy researchers argue that recent advances in the understanding of materials afforded by nanoscale mechanistic models point in a promising direction to develop better sequestrationmore » technologies.« less

  12. Do septic systems contribute micropollutants and their transformation products to shallow groundwater?

    USDA-ARS?s Scientific Manuscript database

    Septic systems may contribute micropollutants to shallow groundwater and surface water. We constructed two in situ conventional drainfields (drip dispersal and gravel trench) and an advanced drainfield of septic systems to investigate the fate and transport of micropollutants to shallow groundwater....

  13. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from

  14. Dealing With Shallow-Water Flow in the Deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ostermeier, R.

    2006-05-01

    Some of the Shell experience in dealing with the shallow-water flow problem in the Deepwater Gulf of Mexico (GOM) will be presented. The nature of the problem, including areal extent and over-pressuring mechanisms, will be discussed. Methods for sand prediction and shallow sediment and flow characterization will be reviewed. These include seismic techniques, the use of geo-technical wells, regional trends, and various MWD methods. Some examples of flow incidents with pertinent drilling issues, including well failures and abandonment, will be described. To address the shallow-water flow problem, Shell created a multi-disciplinary team of specialists in geology, geophysics, petrophysics, drilling, and civil engineering. The team developed several methodologies to deal with various aspects of the problem. These include regional trends and data bases, shallow seismic interpretation and sand prediction, well site and casing point selection, geo-technical well design and data interpretation, logging program design and interpretation, cementing design and fluids formulation, methods for remediation and mitigation of lost circulation, and so on. Shell's extensive Deepwater GOM drilling experience has lead to new understanding of the problem. Examples include delineation of trends in shallow water flow occurrence and severity, trends and departures in PP/FG, rock properties pertaining to seismic identification of sands, and so on. New knowledge has also been acquired through the use of geo-technical wells. One example is the observed rapid onset and growth of over-pressures below the mudline. Total trouble costs due to shallow water flow for all GOM operators almost certainly runs into the several hundred million dollars. Though the problem remains a concern, advances in our knowledge and understanding make it a problem that is manageable and not the "show stopper" once feared.

  15. Mechanical and chemical compaction in fine-grained shallow-water limestones.

    USGS Publications Warehouse

    Shinn, E.A.; Robbin, D.M.

    1983-01-01

    Significant mechanical compaction resulted from pressures simulating less than 305 m of burial. Increasing loads to an equivalent of more than 3400 m did not significantly increase compaction or reduce sediment core length. Chemical compaction (pressure dissolution) was detected only in sediment cores compacted to pressures greater than 3400 m of burial. These short-term experiments suggest that chemical compaction would begin at much shallower depths given geologic time. Compaction experiments that caused chemical compaction lend support to the well-established hypothesis; that cement required to produce a low-porosity/low-permeability fine-grained limestone is derived internally. Dissolution, ion diffusion, and reprecipitation are considered the most likely processes for creating significant thicknesses of dense limestone in the geologic record. Continuation of chemical compaction after significant porosity reduction necessitates expulsion of connate fluids, possibly including hydrocarbons. -from Authors

  16. Chlorate origin and fate in shallow groundwater below agricultural landscapes.

    PubMed

    Mastrocicco, Micòl; Di Giuseppe, Dario; Vincenzi, Fabio; Colombani, Nicolò; Castaldelli, Giuseppe

    2017-12-01

    In agricultural lowland landscapes, intensive agricultural is accompanied by a wide use of agrochemical application, like pesticides and fertilizers. The latter often causes serious environmental threats such as N compounds leaching and surface water eutrophication; additionally, since perchlorate can be present as impurities in many fertilizers, the potential presence of perchlorates and their by-products like chlorates and chlorites in shallow groundwater could be a reason of concern. In this light, the present manuscript reports the first temporal and spatial variation of chlorates, chlorites and major anions concentrations in the shallow unconfined aquifer belonging to Ferrara province (in the Po River plain). The study was made in 56 different locations to obtain insight on groundwater chemical composition and its sediment matrix interactions. During the monitoring period from 2010 to 2011, in June 2011 a nonpoint pollution of chlorates was found in the shallow unconfined aquifer belonging to Ferrara province. Detected chlorates concentrations ranged between 0.01 and 38 mg/l with an average value of 2.9 mg/l. Chlorates were found in 49 wells out of 56 and in all types of lithology constituting the shallow aquifer. Chlorates concentrations appeared to be linked to NO 3 - , volatile fatty acids (VFA) and oxygen reduction potential (ORP) variations. Chlorates behaviour was related to the biodegradation of perchlorates, since perchlorates are favourable electron acceptors for the oxidation of labile dissolved organic carbon (DOC) in groundwater. Further studies must take into consideration to monitor ClO 4 - in pore waters and groundwater to better elucidate the mass flux of ClO 4 - in shallow aquifers belonging to agricultural landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modifiying shallow-water equations as a model for wave-vortex turbulence

    NASA Astrophysics Data System (ADS)

    Mohanan, A. V.; Augier, P.; Lindborg, E.

    2017-12-01

    The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic

  18. Shallow peatland ecohydrology - the control of peat depth on moss productivity

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function

  19. Integration of shallow gradients of Shh and Netrin-1 guides commissural axons.

    PubMed

    Sloan, Tyler F W; Qasaimeh, Mohammad A; Juncker, David; Yam, Patricia T; Charron, Frédéric

    2015-03-01

    During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.

  20. Integration of Shallow Gradients of Shh and Netrin-1 Guides Commissural Axons

    PubMed Central

    Sloan, Tyler F. W.; Qasaimeh, Mohammad A.; Juncker, David; Yam, Patricia T.; Charron, Frédéric

    2015-01-01

    During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting. PMID:25826604

  1. Flagging optically shallow pixels for improved analysis of ocean color data

    NASA Astrophysics Data System (ADS)

    McKinna, L. I. W.; Werdell, J.; Knowles, D., Jr.

    2016-02-01

    Ocean color remote-sensing is routinely used to derive marine geophysical parameters from sensor-observed water-leaving radiances. However, in clear geometrically shallow regions, traditional ocean color algorithms can be confounded by light reflected from the seafloor. Such regions are typically referred to as "optically shallow". When performing spatiotemporal analyses of ocean color datasets, optically shallow features such as coral reefs can lead to unexpected regional biases. Benthic contamination of the water-leaving radiance is dependent on bathymetry, water clarity and seafloor albedo. Thus, a prototype ocean color processing flag called OPTSHAL has been developed that takes all three variables into account. In the method described here, the optical depth of the water column at 547 nm, ζ(547), is predicted from known bathymetry and estimated inherent optical properties. If ζ(547) is less then the pre-defined threshold, a pixel is flagged as optically shallow. Radiative transfer modeling was used to identify the appropriate threshold value of ζ(547) for a generic benthic sand albedo. OPTSHAL has been evaluated within the NASA Ocean Biology Processing Group's L2GEN code. Using MODIS Aqua imagery, OPTSHAL was tested in two regions: (i) the Pedro Bank south-west of Jamaica, and (ii) the Great Barrier Reef, Australia. It is anticipated that OPTSHAL will benefit end-users when quality controlling derived ocean color products. Further, OPTSHAL may prove useful as a mechanism for switching between optically deep and shallow algorithms during ocean color processing.

  2. Interactions Between Raindrop Impact and Shallow Interrill Flow Under Wind-Driven Rain

    USDA-ARS?s Scientific Manuscript database

    Raindrops impacting shallow interrill flow create hydraulic friction in overland flow, and the roughness caused by raindrops against the shallow flow is generally explained by the Darcy-Weisbach friction coefficient, which is calculated as a function of rainfall intensity along with bed roughness. H...

  3. Modeling Diel Oxygen Dynamics and Ecosystem Metabolism in a Shallow, Eutrophic Estuary

    EPA Science Inventory

    Weeks Bay is a shallow eutrophic estuary that exhibits frequent summertime diel-cycling hypoxia and periods of dissolved oxygen (DO) oversaturation during the day. Diel DO dynamics in shallow estuaries like Weeks Bay are complex, and may be influenced by wind forcing, vertical an...

  4. Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide.

    PubMed

    Cox, S F; Davis, E A; Cottrell, S P; King, P J; Lord, J S; Gil, J M; Alberto, H V; Vilão, R C; Piroto Duarte, J; Ayres de Campos, N; Weidinger, A; Lichti, R L; Irvine, S J

    2001-03-19

    We confirm the recent prediction that interstitial protium may act as a shallow donor in zinc oxide, by direct spectroscopic observation of its muonium counterpart. On implantation into ZnO, positive muons--chemically analogous to protons in this context--form paramagnetic centers below about 40 K. The muon-electron contact hyperfine interaction, as well as the temperature and activation energy for ionization, imply a shallow level. Similar results for the cadmium chalcogenides suggest that such shallow donor states are generic to the II-VI compounds. The donor level depths should serve as a guide for the electrical activity of interstitial hydrogen.

  5. Shallow-landslide hazard map of Seattle, Washington

    USGS Publications Warehouse

    Harp, Edwin L.; Michael, John A.; Laprade, William T.

    2006-01-01

    Landslides, particularly debris flows, have long been a significant cause of damage and destruction to people and property in the Puget Sound region. Following the years of 1996 and 1997, the Federal Emergency Management Agency (FEMA) designated Seattle as a 'Project Impact' city with the goal of encouraging the city to become more disaster resistant to the effects of landslides and other natural hazards. A major recommendation of the Project Impact council was that the city and the U.S. Geological Survey (USGS) collaborate to produce a landslide hazard map of the city. An exceptional data set archived by the city, containing more than 100 years of landslide data from severe storm events, allowed comparison of actual landslide locations with those predicted by slope-stability modeling. We used an infinite-slope analysis, which models slope segments as rigid friction blocks, to estimate the susceptibility of slopes to shallow landslides which often mobilize into debris flows, water-laden slurries that can form from shallow failures of soil and weathered bedrock, and can travel at high velocities down steep slopes. Data used for analysis consisted of a digital slope map derived from recent Light Detection and Ranging (LIDAR) imagery of Seattle, recent digital geologic mapping, and shear-strength test data for the geologic units in the surrounding area. The combination of these data layers within a Geographic Information System (GIS) platform allowed the preparation of a shallow landslide hazard map for the entire city of Seattle.

  6. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    NASA Astrophysics Data System (ADS)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  7. The "shallow-waterness" of the wave climate in European coastal regions

    NASA Astrophysics Data System (ADS)

    Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind

    2017-07-01

    In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.

  8. The role of land use changes in the distribution of shallow landslides.

    PubMed

    Persichillo, Maria Giuseppina; Bordoni, Massimiliano; Meisina, Claudia

    2017-01-01

    The role of land use dynamics on shallow landslide susceptibility remains an unresolved problem. Thus, this work aims to assess the influence of land use changes on shallow landslide susceptibility. Three shallow landslide-prone areas that are representative of peculiar land use settings in the Oltrepò Pavese (North Apennines) are analysed: the Rio Frate, Versa and Alta Val Tidone catchments. These areas were affected by widespread land abandonment and modifications in agricultural practices from 1954 to 2012 and relevant shallow landslide phenomena in 2009, 2013 and 2014. A multi-temporal land use change analysis allows us to evaluate the degree of transformation in the three investigated areas and the influence of these changes on the susceptibility to shallow landslides. The results show that the three catchments were characterised by pronounced land abandonment and important changes in agricultural practices. In particular, abandoned cultivated lands that gradually recovered through natural grasses, shrubs and woods were identified as the land use change classes that were most prone to shallow landslides. Additionally, the negative qualities of the agricultural maintenance practices increased the surface water runoff and consequently intensified erosion processes and instability phenomena. Although the land use was identified as the most important predisposing factor in all the study areas, some cases existed in which the predisposition of certain areas to shallow landslides was influenced by the combined effect of land use changes and the geological conditions, as highlighted by the high susceptibility of slopes that are characterised by adverse local geological (thick soils derived from clayey-marly bedrocks) and geomorphological (slope angle higher than 25°) conditions. Thus, the achieved results are particularly useful to understand the best land conservation strategies to be adopted to reduce instability phenomena and the consequent economic losses in

  9. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington.

    PubMed

    Flinders, Ashton F; Shen, Yang

    2017-08-07

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.

  10. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington

    USGS Publications Warehouse

    Flinders, Ashton; Shen, Yang

    2017-01-01

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.

  11. Bottom Backscattering Strengths Measured in Shallow and Deep Water

    DTIC Science & Technology

    2017-01-18

    basically the same experimental set up (Fig. 2-1) as the BBS experiments that form the basis of the shallow-water portion of this report1. Their dates...6 experiments in 5 distinct environments from 1993 to 2005. This report presents the BBS results from these experiments , as well as empirical fits...Test Operations…………………………………………………………..50 B Measured Bottom Backscattering Strengths…………………...……..50 7 CROSS- EXPERIMENT EPL-FIT VALUES (SHALLOW

  12. Oral Microbiome of Deep and Shallow Dental Pockets In Chronic Periodontitis

    PubMed Central

    Ge, Xiuchun; Rodriguez, Rafael; Trinh, My; Gunsolley, John; Xu, Ping

    2013-01-01

    We examined the subgingival bacterial biodiversity in untreated chronic periodontitis patients by sequencing 16S rRNA genes. The primary purpose of the study was to compare the oral microbiome in deep (diseased) and shallow (healthy) sites. A secondary purpose was to evaluate the influences of smoking, race and dental caries on this relationship. A total of 88 subjects from two clinics were recruited. Paired subgingival plaque samples were taken from each subject, one from a probing site depth >5 mm (deep site) and the other from a probing site depth ≤3mm (shallow site). A universal primer set was designed to amplify the V4–V6 region for oral microbial 16S rRNA sequences. Differences in genera and species attributable to deep and shallow sites were determined by statistical analysis using a two-part model and false discovery rate. Fifty-one of 170 genera and 200 of 746 species were found significantly different in abundances between shallow and deep sites. Besides previously identified periodontal disease-associated bacterial species, additional species were found markedly changed in diseased sites. Cluster analysis revealed that the microbiome difference between deep and shallow sites was influenced by patient-level effects such as clinic location, race and smoking. The differences between clinic locations may be influenced by racial distribution, in that all of the African Americans subjects were seen at the same clinic. Our results suggested that there were influences from the microbiome for caries and periodontal disease and these influences are independent. PMID:23762384

  13. In situ disinfection of sewage contaminated shallow groundwater: a feasibility study.

    PubMed

    Bailey, Morgan M; Cooper, William J; Grant, Stanley B

    2011-11-01

    Sewage-contaminated shallow groundwater is a potential cause of beach closures and water quality impairment in marine coastal communities. In this study we set out to evaluate the feasibility of several strategies for disinfecting sewage-contaminated shallow groundwater before it reaches the coastline. The disinfection rates of Escherichia coli (EC) and enterococci bacteria (ENT) were measured in mixtures of raw sewage and brackish shallow groundwater collected from a coastal community in southern California. Different disinfection strategies were explored, ranging from benign (aeration alone, and aeration with addition of brine) to aggressive (chemical disinfectants peracetic acid (PAA) or peroxymonosulfate (Oxone)). Aeration alone and aeration with brine did not significantly reduce the concentration of EC and ENT after 6 h of exposure, while 4-5 mg L(-1) of PAA or Oxone achieved >3 log reduction after 15 min of exposure. Oxone disinfection was more rapid at higher salinities, most likely due to the formation of secondary oxidants (e.g., bromine and chlorine) that make this disinfectant inappropriate for marine applications. Using a Lagrangian modeling framework, we identify several factors that could influence the performance of in-situ disinfection with PAA, including the potential for bacterial regrowth, and the non-linear dependence of disinfection rate upon the residence time of water in the shallow groundwater. The data and analysis presented in this paper provide a framework for evaluating the feasibility of in-situ disinfection of shallow groundwater, and elucidate several topics that warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Relict gas hydrates as possible reason of gas emission from shallow permafrost at the northern part of West Siberia

    NASA Astrophysics Data System (ADS)

    Chuvilin, Evgeny; Bukhanov, Boris; Tumskoy, Vladimir; Istomin, Vladimir; Tipenko, Gennady

    2017-04-01

    Intra-permafrost gas (mostly methane) is represent a serious geological hazards during exploration and development of oil and gas fields. Special danger is posed by large methane accumulations which usually confined to sandy and silty sand horizons and overlying in the frozen strata on the depth up to 200 meters. Such methane accumulations are widely spread in a number of gas fields in the northern part of Western Siberia. According to indirect indicators this accumulations can be relic gas hydrates, that formed earlier during favorable conditions for hydrate accumulation (1, 2). Until now, they could be preserved in the frozen sediments due to geological manifestation of the self-preservation effect of gas hydrates at temperatures below zero. These gas hydrate formations, which are lying above the gas hydrate stability zone today, are in a metastable state and are very sensitive to various anthropogenic impacts. During drilling and operation of production wells in the areas where the relic of gas hydrates can occur, there are active gas emission and gas explosion, that can lead to various technical complications up to the accident. Mathematical and experimental simulations were were conducted to evaluate the possibility of existence of relic gas hydrates in the northern part of West Siberia. The results of math simulations revealed stages of geological history when the gas hydrate stability zone began virtually from the ground surface and saturated in shallow permafrost horizons. Later permafrost is not completely thaw. Experimental simulations of porous gas hydrate dissociation in frozen soils and evaluation of self-preservation manifestation of gas hydrates at negative temperatures were carried out for identification conditions for relic gas hydrates existence in permafrost of northern part of West Siberia. Sandy and silty sand sediments were used in experimental investigations. These sediments are typical of most gas-seeping (above the gas hydrate stability

  15. The Possible Emergence of Life and Differentiation of a Shallow Biosphere on Irradiated Icy Worlds: The Example of Europa.

    PubMed

    Russell, Michael J; Murray, Alison E; Hand, Kevin P

    2017-12-01

    Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs-relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts-could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms-Europa-Extraterrestrial life-Hydrothermal systems. Astrobiology 17, 1265-1273.

  16. The Possible Emergence of Life and Differentiation of a Shallow Biosphere on Irradiated Icy Worlds: The Example of Europa

    NASA Astrophysics Data System (ADS)

    Russell, Michael J.; Murray, Alison E.; Hand, Kevin P.

    2017-12-01

    Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs - relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts - could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes.

  17. Thermal Impact of Medium Deep Borehole Thermal Energy Storage on the Shallow Subsurface

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Schulte, Daniel O.; Rühaak, Wolfram; Bär, Kristian; Sass, Ingo

    2017-04-01

    Borehole heat exchanger arrays are a well-suited and already widely applied method for exploiting the shallow subsurface as seasonal heat storage. However, in most of the populated regions the shallow subsurface also comprises an important aquifer system used for drinking water production. Thus, the operation of shallow geothermal heat storage systems leads to a significant increase in groundwater temperatures in the proximity of the borehole heat exchanger array. The magnitude of the impact on groundwater quality and microbiology associated with this temperature rise is controversially discussed. Nevertheless, the protection of shallow groundwater resources has priority. Accordingly, water authorities often follow restrictive permission policies for building such storage systems. An alternative approach to avoid this issue is the application of medium deep borehole heat exchanger arrays instead of shallow ones. The thermal impact on shallow aquifers can be significantly reduced as heat is stored at larger depth. Moreover, it can be further diminished by the installation of a thermally insulating materials in the upper section of the borehole heat exchangers. Based on a numerical simulation study, the advantageous effects of medium deep borehole thermal energy storage are demonstrated and quantified. A finite element software is used to model the heat transport in the subsurface in 3D, while the heat transport in the borehole heat exchangers is solved analytically in 1D. For this purpose, an extended analytical solution is implemented, which also allows for the consideration of a thermally insulating borehole section.

  18. Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus

    NASA Astrophysics Data System (ADS)

    Werner, F.; Ditas, F.; Siebert, H.; Simmel, M.; Wehner, B.; Pilewskie, P.; Schmeissner, T.; Shaw, R. A.; Hartmann, S.; Wex, H.; Roberts, G. C.; Wendisch, M.

    2014-02-01

    Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (reff) and cloud optical thickness (τ), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity (γλ) are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of τ and γλ toward larger values is observed, while the mean values and observed ranges of retrieved reff decrease. The relative susceptibilities (RS) of reff, τ, and γλ to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for reff and τ, and 0.27 for γλ. These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured reff and from a microphysical parcel model are in close agreement.

  19. Effect and Safety of Deep Needling and Shallow Needling for Functional Constipation

    PubMed Central

    Wu, Jiani; Liu, Baoyan; Li, Ning; Sun, Jianhua; Wang, Lingling; Wang, Liping; Cai, Yuying; Ye, Yongming; Liu, Jun; Wang, Yang; Liu, Zhishun

    2014-01-01

    Abstract Aupuncture is widely used for functional constipation. Effect of acupuncture might be related to the depth of needling; however, the evidence is limited. This trial aimed to evaluate the effect and safety of deep needling and shallow needling for functional constipation, and to assess if the deep needling and shallow needling are superior to lactulose. We conducted a prospective, superiority-design, 5-center, 3-arm randomized controlled trial. A total of 475 patients with functional constipation were randomized to the deep needling group (237), shallow needling group (119), and lactulose-controlled group (119) in a ratio of 2:1:1. Sessions lasted 30 minutes each time and took place 5 times a week for 4 weeks in 2 acupuncture groups. Participants in the lactulose group took lactulose orally for 16 continuous weeks. The primary outcome was the change from baseline of mean weekly spontaneous bowel movements (SBMs) during week 1 to 4 (changes from the baselines of the weekly SBMs at week 8 and week 16 in follow-up period were also assessed simultaneously). Secondary outcomes were the weekly SBMs of each assessing week, the mean score change from the baseline of constipation-related symptoms over week 1 to 4, and the time to the first SBM. Emergency drug usage and adverse effects were monitored throughout the study. SBMs and constipation-related symptoms were all improved in the 3 groups compared with baseline at each time frame (P < 0.01, all). The changes in the mean weekly SBMs over week 1 to 4 were 2 (1.75) in the deep needling group, 2 (1.75) in the shallow needling group, and 2 (2) in the lactulose group (P > 0.05, both compared with the lactulose group). The changes of mean weekly SBMs at week 8 and week 16 in the follow-up period were 2 (2), 2 (2.5) in the deep needling group, 2 (3), 1.5 (2.5) in the shallow needling group, and 1 (2), 1 (2) in the lactulose group (P < 0.05, all compared with the lactulose group). No significant difference

  20. Status of shallow-aquifer mapping in the Northern Front Range Area, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    2001-01-01

    Mapping of shallow aquifers in the northern Front Range area of Colorado has been completed as part of the U.S. Geological Survey Front Range Infrastructure Resources Project. The aquifer mapping was undertaken as part of a comprehensive effort to better define the mineral, energy, cartographic, biological, and water resources that are critical to the support and development of the area's infrastructure, such as streets. highways, airports, and buildings. The aquifer mapping was undertaken in cooperation with the Colorado Division of Water Resources and the Colorado Water Conservation Board. The shallow aquifers have been mapped in a 2,450-square-mile area extending as an approximately 30-mile-wide band from north of Fort Collins to the Arapahoe-Douglas County line south of Denver (fig. I). The shallow aquifer mapping in the Denver metropolitan area was published in 1996 as Hydrologic Investigations Atlas HA-736 (Robson. 1996). Shallow aquifer mapping in the Greeley-Nunn area was published as HA-746A (Robson, Arnold, and Heiny, 2000a); mapping in the Fort Collins-Loveland area was published as HA-746B (Robson, Arnold, and Heiny, 2000b); mapping in the Fort Lupton-Gilcrest area was published as HA-746C (Robson, Heiny, and Arnold, 2000c); and mapping in the Boulder-Longmont area was published as HA-746D (Robson, Heiny, and Arnold, 2000d). Each of the five atlases contains five map sheets at 1:50,000 scale showing: 1. The thickness and extent of the unconsolidated sediments (loose gravel. sand. silt, and clay) that overlie the bedrock formations in the area (fig. 2). 2. The altitude and configuration of the bedrock surface. 3. The altitude of the water table and direction of ground-water movement. 4. The saturated thickness of the shallow aquifers. 5. The depth to the water table in the shallow aquifers.

  1. Shallow (2-meter) Temperature Surveys in Colorado

    DOE Data Explorer

    Richard E. Zehner

    2012-02-01

    Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54" outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below.

  2. Measurement of optical scattered power from laser-induced shallow pits on silica

    DOE PAGES

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm 2 and 11 J/cm 2 are characterized as well and found in good agreement withmore » model predictions.« less

  3. Shallow drilling in the 'Bunte Breccia' impact deposits, Ries Crater, Germany

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Gall, H.; Huettner, R.; Oberbeck, V. R.

    1977-01-01

    The paper is a field report concerning a shallow core drilling program in the multicolored breccia deposits which constitute 90% of all the impact breccias beyond the outer rim of the Ries, a 26-km-diam impact crater. About 480 m of core was recovered from 11 locations with radial ranges between 16.5 and 35 km from the crater center. The cores consist of breccias, whose components are derived from the crater itself and the terrain outside the crater. The local components dominate the breccias at the larger ranges, and possibly constitute more than 90% of the breccia volume at the greatest distances investigated. The great depth of the Bunte Breccia (84 m at 27 km range), together with the preponderance of local components, necessitates an emplacement mechanism that ploughed up and mixed the crater surroundings to depths greater than 50 m.

  4. Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters

    NASA Astrophysics Data System (ADS)

    Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.

    2017-06-01

    It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.

  5. Energy saving by using natural energy from the shallow ground depths - many years operating results

    NASA Astrophysics Data System (ADS)

    Besler, Maciej; Skrzycki, Maciej; Cepiński, Wojciech

    2017-11-01

    We pay back more and more larger attention on solutions which saving energy produced from conventional fuels. This is possible to obtainment in significant quantities in fields in which use up the large quantities of energy. The formation the microclimate of interiors is an example of such situation. Especially in the case air conditioning, heating and mechanical ventilation. There is, however, a possibility of energy saving as well as considerable reducing the pollution coming from combustion of raw materials by utilising the natural renewable energy from the shallow ground. In the paper the results gained during several year of continuous measurement on the exchanger were presented. In summer periods an air cooling occurs 10-12 K, e. g. from +30 °C to +20 °C. In winter on the other hand, a preparatory preheating of the air is possible, e.g. from-18°C to about ± 0°C. It is then possible to obtain for the air conditioning system the total energy needed for cooling purposes at the summer periods, or up to 50% of the ventilation heat energy in winter picks.

  6. Grain transport mechanics in shallow overland flow

    USDA-ARS?s Scientific Manuscript database

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  7. Major determinants of the biogeographic pattern of the shallow-sea fauna

    NASA Technical Reports Server (NTRS)

    Valentine, J. W.; Jablonski, D.

    1982-01-01

    The benthic shallow-sea is defined as the region of sea floor lying between the supralittoral zone at the shoreline and the impingement of the thermocline separating a warm shallow and variable portion of the water column from rather homogeneous and constant cooler waters beneath. Three types of shallow-sea provinces can be recognized: (1) one-dimensional, linear shelves; (2) two-dimensional shelves; and (3) scattered islands in two-dimensional arrays. Dispersal powers of marine invertebrates vary with developmental mode, and patterns of dispersal, endemism and speciation vary among the different provincial types. Invertebrate developmental modes vary systematically with geography, and presumably are adaptive to environmental conditions. Clades with only a single mode of development tend to be restricted to regions appropriate to that mode, significantly affecting their biogeographic patterns. The consequences of geographic and other environmental changes are reviewed.

  8. Creation of a sharp compositional interface in the Pu`u `O`o shallow magma reservoir, Kilauea volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Garcia, M. O.

    2006-12-01

    Lavas from the early episodes of the Pu`u `O`O eruption (1983-85) of Kilauea Volcano on the island of Hawai'i display rapid compositional variation over short periods for some episodes, especially from the well sampled episode 30 with ~2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change suggesting a sharp compositional interface within the Pu`u `O`o dike-like shallow reservoir. The change in lava composition throughout the eruption is due to changes in cooling within the dike-like shallow reservoir of Pu`u `O`o. Potential explanations for a sharp interface, such as a reservoir of changing width and changing country rock thermal properties, are evaluated using a simple thermal model of a dike-like body with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in thermal conductivity from 2.7 to 11 W m-1 C-1. which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted at depth possibly by increasing numbers of dikes acting as acuacludes or decreasing pore space due to formation of secondary minerals. Results suggest that country rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.

  9. Mini 3D for shallow gas reconnaissance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallieres, T. des; Enns, D.; Kuehn, H.

    1996-12-31

    The Mini 3D project was undertaken by TOTAL and ELF with the support of CEPM (Comite d`Etudes Petrolieres et Marines) to define an economical method of obtaining 3D seismic HR data for shallow gas assessment. An experimental 3D survey was carried out with classical site survey techniques in the North Sea. From these data 19 simulations, were produced to compare different acquisition geometries ranging from dual, 600 m long cables to a single receiver. Results show that short offset, low fold and very simple streamer positioning are sufficient to give a reliable 3D image of gas charged bodies. The 3Dmore » data allow a much more accurate risk delineation than 2D HR data. Moreover on financial grounds Mini-3D is comparable in cost to a classical HR 2D survey. In view of these results, such HR 3D should now be the standard for shallow gas surveying.« less

  10. Interactions between raindrop impact and shallow interrill flow under wind-driven rain (WDR)

    USDA-ARS?s Scientific Manuscript database

    Raindrops impacting shallow interrill flow create hydraulic friction in overland flow, and the roughness caused by raindrops against the shallow flow is generally explained by the Darcy-Weisbach friction coefficient, which is calculated as a function of rainfall intensity along with bed roughness. H...

  11. Shallow Groundwater Movement in the Skagit River Delta Area, Skagit County, Washington

    USGS Publications Warehouse

    Savoca, Mark E.; Johnson, Kenneth H.; Fasser, Elisabeth T.

    2009-01-01

    Shallow groundwater movement in an area between the lower Skagit River and Puget Sound was characterized by the U.S. Geological Survey to assist Skagit County and the Washington State Department of Ecology with the identification of areas where water withdrawals from existing and new wells could adversely affect streamflow in the Skagit River. The shallow groundwater system consists of alluvial, lahar runout, and recessional outwash deposits composed of sand, gravel, and cobbles, with minor lenses of silt and clay. Upland areas are underlain by glacial till and outwash deposits that show evidence of terrestrial and shallow marine depositional environments. Bedrock exposures are limited to a few upland outcrops in the southwestern part of the study area, and consist of metamorphic, sedimentary, and igneous rocks. Water levels were measured in 47 wells on a quarterly basis (August 2007, November 2007, February 2008, and May 2008). Measurements from 34 wells completed in the shallow groundwater system were used to construct groundwater-level and flow-direction maps and perform a linear-regression analysis to estimate the overall, time averaged shallow groundwater-flow direction and gradient. Groundwater flow in the shallow groundwater system generally moves in a southwestward direction away from the Skagit River and toward the Swinomish Channel and Skagit Bay. Local groundwater flow towards the river was inferred during February 2008 in areas west and southwest of Mount Vernon. Water-level altitudes varied seasonally, however, and generally ranged from less than 3 feet (August 2007) in the west to about 15 feet (May 2008) in the east. The time-averaged, shallow groundwater-flow direction derived from regression analysis, 8.5 deg south of west, was similar to flow directions depicted on the quarterly water-level maps. Seasonal changes in groundwater levels in most wells in the Skagit River Delta follow a typical pattern for shallow wells in western Washington. Water

  12. Uncertainty on shallow landslide hazard assessment: from field data to hazard mapping

    NASA Astrophysics Data System (ADS)

    Trefolini, Emanuele; Tolo, Silvia; Patelli, Eduardo; Broggi, Matteo; Disperati, Leonardo; Le Tuan, Hai

    2015-04-01

    Shallow landsliding that involve Hillslope Deposits (HD), the surficial soil that cover the bedrock, is an important process of erosion, transport and deposition of sediment along hillslopes. Despite Shallow landslides generally mobilize relatively small volume of material, they represent the most hazardous factor in mountain regions due to their high velocity and the common absence of warning signs. Moreover, increasing urbanization and likely climate change make shallow landslides a source of widespread risk, therefore the interest of scientific community about this process grown in the last three decades. One of the main aims of research projects involved on this topic, is to perform robust shallow landslides hazard assessment for wide areas (regional assessment), in order to support sustainable spatial planning. Currently, three main methodologies may be implemented to assess regional shallow landslides hazard: expert evaluation, probabilistic (or data mining) methods and physical models based methods. The aim of this work is evaluate the uncertainty of shallow landslides hazard assessment based on physical models taking into account spatial variables such as: geotechnical and hydrogeologic parameters as well as hillslope morphometry. To achieve this goal a wide dataset of geotechnical properties (shear strength, permeability, depth and unit weight) of HD was gathered by integrating field survey, in situ and laboratory tests. This spatial database was collected from a study area of about 350 km2 including different bedrock lithotypes and geomorphological features. The uncertainty associated to each step of the hazard assessment process (e.g. field data collection, regionalization of site specific information and numerical modelling of hillslope stability) was carefully characterized. The most appropriate probability density function (PDF) was chosen for each numerical variable and we assessed the uncertainty propagation on HD strength parameters obtained by

  13. Redox potential of shallow groundwater by 1-month continuous in situ potentiometric measurements

    NASA Astrophysics Data System (ADS)

    Ioka, Seiichiro; Muraoka, Hirofumi; Suzuki, Yota

    2017-10-01

    One-month continuous in situ potentiometric measurements of redox potential (Eh) were used to investigate the dominant redox processes in the shallow groundwater (i.e., <10 m) of a Holocene aquifer, Aomori City, northern Japan. The Eh values, which were determined using a platinum electrode, were -163, -169 and -173 mV, respectively, for three monitoring campaigns. The temperatures and pH values of shallow groundwater during all three periods were approximately 12 °C and 6.6, respectively. Dissolved oxygen and sulfide ion concentrations were not detected. Chemical analyses showed that the shallow groundwater is Na-Fe-HCO3 type, and contains over 40 mg/L of Fe (the dominant cation) and over 200 mg/L of HCO3 - (the dominant anion). A good fit was found between measured Eh values and Eh values calculated using thermodynamic data of fine-grained goethite. This suggests that Fe redox system is related to the Eh values of shallow groundwater in the Aomori City aquifer.

  14. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  15. The Possible Emergence of Life and Differentiation of a Shallow Biosphere on Irradiated Icy Worlds: The Example of Europa

    PubMed Central

    Murray, Alison E.; Hand, Kevin P.

    2017-01-01

    Abstract Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs—relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts—could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as “electron disposal units” for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms—Europa—Extraterrestrial life—Hydrothermal systems. Astrobiology 17, 1265–1273. PMID:29016193

  16. Indicators: Shallow Water Habitat/In-stream Fish Habitat

    EPA Pesticide Factsheets

    Shallow water habitat, also referred to as in-stream fish habitat, refers to areas that fish and other aquatic organisms need for concealment, breeding and feeding. This includes large woody snags, boulders, rock ledges, and undercut banks.

  17. Nonlinear and linear bottom interaction effects in shallow water

    NASA Technical Reports Server (NTRS)

    Shemdin, O.; Hsiao, S. V.; Hasselmann, K.; Herterich, K.

    1978-01-01

    The paper examines wave-energy dissipation rates in shallow water calculated from measured wave spectra at different distances from the shore. Different linear and nonlinear transfer and dissipation mechanisms are discussed. The various data sets are interpreted in terms of prevailing mechanisms at the respective sites. The incorporation of different processes in a predictive shallow-water model is outlined. The analysis suggests that bottom motion is primarily responsible for wave-energy dissipation in the Delta Region of the Gulf of Mexico, that friction is mainly responsible for wave-energy dissipation in Marineland, Panama City and Melkbosstrand, and that percolation is probably the dominant mechanism in the JONSWAP area of the North Sea.

  18. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are

  19. Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda

    PubMed Central

    Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D.; Goffredo, Stefano

    2015-01-01

    Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa. PMID:26544963

  20. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  1. Flexible and fast: linguistic shortcut affects both shallow and deep conceptual processing.

    PubMed

    Connell, Louise; Lynott, Dermot

    2013-06-01

    Previous research has shown that people use linguistic distributional information during conceptual processing, and that it is especially useful for shallow tasks and rapid responding. Using two conceptual combination tasks, we showed that this linguistic shortcut extends to the processing of novel stimuli, is used in both successful and unsuccessful conceptual processing, and is evident in both shallow and deep conceptual tasks. Specifically, as predicted by the ECCo theory of conceptual combination, people use the linguistic shortcut as a "quick-and-dirty" guide to whether the concepts are likely to combine into a coherent conceptual representation, in both shallow sensibility judgment and deep interpretation generation tasks. Linguistic distributional frequency predicts both the likelihood and the time course of rejecting a novel word compound as nonsensical or uninterpretable. However, it predicts the time course of successful processing only in shallow sensibility judgment, because the deeper conceptual process of interpretation generation does not allow the linguistic shortcut to suffice. Furthermore, the effects of linguistic distributional frequency are independent of any effects of conventional word frequency. We discuss the utility of the linguistic shortcut as a cognitive triage mechanism that can optimize processing in a limited-resource conceptual system.

  2. Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.

    PubMed

    Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D; Goffredo, Stefano

    2015-01-01

    Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.

  3. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery.

    PubMed

    Prasetia, Rian; Sinniger, Frederic; Hashizume, Kaito; Harii, Saki

    2017-01-01

    Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential contribution of mesophotic corals to shallow coral reef recovery. However, the reproductive biology of mesophotic S. hystrix and its potential to recolonize shallow reefs is currently unknown. This study reports for the first time, different temporal scales of reproductive periodicity and larval settlement of S. hystrix from an upper mesophotic reef (40 m depth) in Okinawa. We examined reproductive seasonality, lunar, and circadian periodicity (based on polyp dissection, histology, and ex situ planula release observations) and larval settlement rates in the laboratory. Mesophotic S. hystrix reproduced mainly in July and early August, with a small number of planulae being released at the end of May, June and August. Compared to shallow colonies in the same region, mesophotic S. hystrix has a 4-month shorter reproductive season, similar circadian periodicity, and smaller planula size. In addition, most of the planulae settled rapidly, limiting larval dispersal potential. The shorter reproductive season and smaller planula size may result from limited energy available for reproduction at deeper depths, while the similar circadian periodicity suggests that this reproductive aspect is not affected by environmental conditions differing with depth. Overall, contribution of mesophotic S. hystrix to shallow reef rapid recovery appears limited, although they may recruit to shallow reefs through a multistep process over a few generations or through random extreme mixing such as typhoons.

  4. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery

    PubMed Central

    Prasetia, Rian; Sinniger, Frederic; Hashizume, Kaito; Harii, Saki

    2017-01-01

    Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential contribution of mesophotic corals to shallow coral reef recovery. However, the reproductive biology of mesophotic S. hystrix and its potential to recolonize shallow reefs is currently unknown. This study reports for the first time, different temporal scales of reproductive periodicity and larval settlement of S. hystrix from an upper mesophotic reef (40 m depth) in Okinawa. We examined reproductive seasonality, lunar, and circadian periodicity (based on polyp dissection, histology, and ex situ planula release observations) and larval settlement rates in the laboratory. Mesophotic S. hystrix reproduced mainly in July and early August, with a small number of planulae being released at the end of May, June and August. Compared to shallow colonies in the same region, mesophotic S. hystrix has a 4-month shorter reproductive season, similar circadian periodicity, and smaller planula size. In addition, most of the planulae settled rapidly, limiting larval dispersal potential. The shorter reproductive season and smaller planula size may result from limited energy available for reproduction at deeper depths, while the similar circadian periodicity suggests that this reproductive aspect is not affected by environmental conditions differing with depth. Overall, contribution of mesophotic S. hystrix to shallow reef rapid recovery appears limited, although they may recruit to shallow reefs through a multistep process over a few generations or through random extreme mixing such as typhoons. PMID

  5. Tree-root control of shallow landslides

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots

  6. Magma Transport from Deep to Shallow Crust and Eruption

    NASA Astrophysics Data System (ADS)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  7. Photosymbiosis and the expansion of shallow-water corals

    PubMed Central

    Frankowiak, Katarzyna; Wang, Xingchen T.; Sigman, Daniel M.; Gothmann, Anne M.; Kitahara, Marcelo V.; Mazur, Maciej; Meibom, Anders; Stolarski, Jarosław

    2016-01-01

    Roughly 240 million years ago (Ma), scleractinian corals rapidly expanded and diversified across shallow marine environments. The main driver behind this evolution is uncertain, but the ecological success of modern reef-building corals is attributed to their nutritional symbiosis with photosynthesizing dinoflagellate algae. We show that a suite of exceptionally preserved Late Triassic (ca. 212 Ma) coral skeletons from Antalya (Turkey) have microstructures, carbonate 13C/12C and 18O/16O, and intracrystalline skeletal organic matter 15N/14N all indicating symbiosis. This includes species with growth forms conventionally considered asymbiotic. The nitrogen isotopes further suggest that their Tethys Sea habitat was a nutrient-poor, low-productivity marine environment in which photosymbiosis would be highly advantageous. Thus, coral-dinoflagellate symbiosis was likely a key driver in the evolution and expansion of shallow-water scleractinians. PMID:27847868

  8. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    USGS Publications Warehouse

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  9. Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus

    NASA Astrophysics Data System (ADS)

    Slattery, Marc; Gochfeld, Deborah J.; Diaz, M. Cristina; Thacker, Robert W.; Lesser, Michael P.

    2016-03-01

    The transition between shallow and mesophotic coral reef communities in the tropics is characterized by a significant gradient in abiotic and biotic conditions that could result in potential trade-offs in energy allocation. The mesophotic reefs in the Bahamas and the Cayman Islands have a rich sponge fauna with significantly greater percent cover of sponges than in their respective shallow reef communities, but relatively low numbers of spongivores. Plakortis angulospiculatus, a common sponge species that spans the depth gradient from shallow to mesophotic reefs in the Caribbean, regenerates faster following predation and invests more energy in protein synthesis at mesophotic depths compared to shallow reef conspecifics. However, since P. angulospiculatus from mesophotic reefs typically contain lower concentrations of chemical feeding deterrents, they are not able to defend new tissue from predation as efficiently as conspecifics from shallow reefs. Nonetheless, following exposure to predators on shallow reefs, transplanted P. angulospiculatus from mesophotic depths developed chemical deterrence to predatory fishes. A survey of bioactive extracts indicated that a specific defensive metabolite, plakortide F, varied in concentration with depth, producing altered deterrence between shallow and mesophotic reef P. angulospiculatus. Different selective pressures in shallow and mesophotic habitats have resulted in phenotypic plasticity within this sponge species that is manifested in variable chemical defense and tissue regeneration at wound sites.

  10. A “Shallow Phylogeny” of Shallow Barnacles (Chthamalus)

    PubMed Central

    Wares, John P.; Pankey, M. Sabrina; Pitombo, Fabio; Daglio, Liza Gómez; Achituv, Yair

    2009-01-01

    Background We present a multi-locus phylogenetic analysis of the shallow water (high intertidal) barnacle genus Chthamalus, focusing on member species in the western hemisphere. Understanding the phylogeny of this group improves interpretation of classical ecological work on competition, distributional changes associated with climate change, and the morphological evolution of complex cirripede phenotypes. Methodology and Findings We use traditional and Bayesian phylogenetic and ‘deep coalescent’ approaches to identify a phylogeny that supports the monophyly of the mostly American ‘fissus group’ of Chthamalus, but that also supports a need for taxonomic revision of Chthamalus and Microeuraphia. Two deep phylogeographic breaks were also found within the range of two tropical American taxa (C. angustitergum and C. southwardorum) as well. Conclusions Our data, which include two novel gene regions for phylogenetic analysis of cirripedes, suggest that much more evaluation of the morphological evolutionary history and taxonomy of Chthamalid barnacles is necessary. These data and associated analyses also indicate that the radiation of species in the late Pliocene and Pleistocene was very rapid, and may provide new insights toward speciation via transient allopatry or ecological barriers. PMID:19440543

  11. On radon emanation as a possible indicator of crustal deformation

    USGS Publications Warehouse

    King, C.-Y.

    1979-01-01

    Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 ?? 10-4 cm sec-1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement. ?? 1979.

  12. Quality of Shallow Ground Water in Three Areas of Unsewered Low-Density Development in Wyoming and Montana, 2001

    USGS Publications Warehouse

    Bartos, Timothy T.; Quinn, Thomas L.; Hallberg, Laura L.; Eddy-Miller, Cheryl A.

    2008-01-01

    suitability of water for drinking or other intended uses rather than any constituents suspected of being introduced as a result of human activities. Effects of human activities associated with low-density development, such as septic systems; fertilizer and pesticide use on pastures, lawns and gardens; manure from horses, cattle, and pets; and increases in road construction and vehicular traffic, were minimal at the time of sampling (2001) but were apparent in the presence of a few types of constituents in shallow ground water. Concentrations of nitrate generally were less than a national background level (1.1 milligrams per liter) assumed to indicate effects from human activities. Total coliform bacteria were detected infrequently (in samples from three wells), and Escherichia coli were not detected in samples from a subset of wells. Trace concentrations of methylene blue active substances (ingredients in laundry detergents) were detected at concentrations slightly greater than laboratory reporting levels in samples from 11 wells, but it is unclear if the detections are indicative of natural sources or possible aquifer contamination from septic-tank effluent. Pesticides were detected in both the Sheridan and Lander, Wyo., study areas. Volatile organic compounds were detected very infrequently in all three study areas. Most pesticides and volatile organic compounds were found in water from a few wells in each study area, and commonly as mixtures. The primary exception to this generalization was the relatively widespread detection of the pesticide prometon at trace levels in the Sheridan and Lander study areas. Concentrations of pesticides and volatile organic compounds generally were small and always were smaller than applicable drinking-water standards. Detections of all constituents indicating possible human effects on shallow ground-water quality were consistent with overlying land use mapped during the study, and potential sources of contamination inventoried du

  13. 76 FR 55276 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    .... 101126522-0640-02] RIN 0648-XA680 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... fourth seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  14. 76 FR 39794 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    .... 101126522-0640-02] RIN 0648-XA539 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... species catch (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors...

  15. 77 FR 54837 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    .... 111207737-2141-02] RIN 0648-XC204 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... fourth seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  16. 77 FR 33103 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    .... 111207737-2141-02] RIN 0648-XC056 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... second seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  17. 77 FR 19146 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    .... 111207737-2141-02] RIN 0648-XB122 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... first seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  18. 77 FR 42193 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    .... 111207737-2141-02] RIN 0648-0648-XC112 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... third seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  19. Acoustic Propagation Modeling in Shallow Water

    DTIC Science & Technology

    1996-10-01

    Oceanography La Jolla, California 92093-0701 (Received April 15, 1996) This paper provides references for the Navy’s existing databases . Various...a compilation of many aspects of high-frequency (OAML) contains a description of Navy models and acoustics. databases . The Navy’s use of shallow...become significant because the propagation path may involve many tens of bounces. A description of a reflectivity database is (b) Geometry for the

  20. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

    PubMed Central

    Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-01-01

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348

  1. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    PubMed

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  2. Diversity and Distribution of Prokaryotes within a Shallow-Water Pockmark Field.

    PubMed

    Giovannelli, Donato; d'Errico, Giuseppe; Fiorentino, Federica; Fattorini, Daniele; Regoli, Francesco; Angeletti, Lorenzo; Bakran-Petricioli, Tatjana; Vetriani, Costantino; Yücel, Mustafa; Taviani, Marco; Manini, Elena

    2016-01-01

    Pockmarks are crater-like depression on the seafloor associated with hydrocarbon ascent through muddy sediments in continental shelves around the world. In this study, we examine the diversity and distribution of benthic microbial communities at shallow-water pockmarks adjacent to the Middle Adriatic Ridge. We integrate microbial diversity data with characterization of local hydrocarbons concentrations and sediment geochemistry. Our results suggest these pockmarks are enriched in sedimentary hydrocarbons, and host a microbial community dominated by Bacteria, even in deeper sediment layers. Pockmark sediments showed higher prokaryotic abundance and biomass than surrounding sediments, potentially due to the increased availability of organic matter and higher concentrations of hydrocarbons linked to pockmark activity. Prokaryotic diversity analyses showed that the microbial communities of these shallow-water pockmarks are unique, and comprised phylotypes associated with the cycling of sulfur and nitrate compounds, as well as numerous know hydrocarbon degraders. Altogether, this study suggests that shallow-water pockmark habitats enhance the diversity of the benthic prokaryotic biosphere by providing specialized environmental niches.

  3. 77 FR 12213 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species by Amendment 80...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    .... 101126522-0640-02] RIN 0648-XB044 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery by... shallow-water species fishery by Amendment 80 vessels in the GOA has been reached. DATES: Effective 1200...

  4. 76 FR 72643 - Western Pacific Pelagic Fisheries; Closure of the Hawaii Shallow-Set Pelagic Longline Fishery Due...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    .... 080225267-91393-03] RIN 0648-XA370 Western Pacific Pelagic Fisheries; Closure of the Hawaii Shallow- Set...: Temporary rule; fishery closure. SUMMARY: NMFS closes the shallow-set pelagic longline fishery north of the Equator for all vessels registered under the Hawaii longline limited access program. The shallow-set...

  5. 75 FR 54290 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    .... 0910131362-0087-02] RIN 0648-XY78 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the shallow-water species fishery in the...

  6. 75 FR 38938 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    .... 0910131362-0087-02] RIN 0648-XX31 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery for... (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors subject to...

  7. A Nonlinear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells

    NASA Technical Reports Server (NTRS)

    Kaplan, A; Fung, Y C

    1954-01-01

    The problem of the finite displacement and buckling, of a shallow spherical dome is investigated both theoretically and experimentally. Experimental results seem to indicate that the classical criterion of buckling is applicable to very shallow spherical domes for which the theoretical calculation was made. A transition to energy criterion for higher domes is also indicated.

  8. Analysis of physical layer performance of hybrid optical-wireless access network

    NASA Astrophysics Data System (ADS)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.

    2011-09-01

    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  9. Dynamic controls on shallow clinoform geometry: Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Eidam, E. F.; Nittrouer, C. A.; Ogston, A. S.; DeMaster, D. J.; Liu, J. P.; Nguyen, T. T.; Nguyen, T. N.

    2017-09-01

    Compound deltas, composed of a subaerial delta plain and subaqueous clinoform, are common termini of large rivers. The transition between clinoform topset and foreset, or subaqueous rollover point, is located at 25-40-m water depth for many large tide-dominated deltas; this depth is controlled by removal of sediment from the topset by waves, currents, and gravity flows. However, the Mekong Delta, which has been classified as a mixed-energy system, has a relatively shallow subaqueous rollover at 4-6-m depth. This study evaluates dynamical measurements and seabed cores collected in Sep 2014 and Mar 2015 to understand processes of sediment transfer across the subaqueous delta, and evaluate possible linkages to geometry. During the southwest rainy monsoon (Sep 2014), high river discharge, landward return flow under the river plume, and regional circulation patterns facilitated limited sediment flux to the topset and foreset, and promoted alongshore flux to the northeast. Net observed sediment fluxes in Sep 2014 were landward, however, consistent with hypotheses about seasonal storage on the topset. During the northeast rainy monsoon, low river discharge and wind-driven currents facilitated intense landward and southwestward fluxes of sediment. In both seasons, bed shear velocities frequently exceeded the 0.01-0.02 m/s threshold of motion for sand, even in the absence of strong wave energy. Most sediment transport occurred at water depths <14 m, as expected from observed cross-shelf gradients of sedimentation. Sediment accumulation rates were highest on the upper and lower foreset beds (>4 cm/yr at <10 m depth, and 3-8 cm/yr at 10-20 m depth) and lowest on the bottomset beds. Physically laminated sediments transitioned into mottled sediments between the upper foreset and bottomset regions. Application of a simple wave-stress model to the Mekong and several other clinoforms illustrates that shallow systems are not necessarily energy-limited, and thus rollover depths

  10. Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993-1994

    USGS Publications Warehouse

    Squillace, P.T.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.

    1997-01-01

    The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE), is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-94 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Samples were collected from 5 drinking-water wells, 12 springs, and 1g3 monitoring wells in urban areas. No MTBE was detected in drinking-water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in 8 areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in 9 areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft lifetime drinking water health advisory. Because MTBE is persistent and mobile in groundwater) it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylenes (BTEX) compounds which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and nonpoint sources, such as recharge of precipitation and storm-water runoff.

  11. Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993-1994

    USGS Publications Warehouse

    Squillace, P.J.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.

    1996-01-01

    The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE) is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-1994 aspart of the U.S. Geological Survey's National Water-Quality Assessment program. Samples were collected from five drinking water wells, 12 springs, and 193 monitoring wells in urban areas. No MTBE was detected in drinking water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in eight areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in nine areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft drinking water health advisory. Because MTBE is persistent and mobile in groundwater, it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylene (BTEX) compounds, which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and non-point sources, such as recharge of precipitation and stormwater runoff.

  12. TESTING MODELS FOR THE SHALLOW DECAY PHASE OF GAMMA-RAY BURST AFTERGLOWS WITH POLARIZATION OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Mi-Xiang; Dai, Zi-Gao; Wu, Xue-Feng, E-mail: dzg@nju.edu.cn

    2016-08-01

    The X-ray afterglows of almost one-half of gamma-ray bursts have been discovered by the Swift satellite to have a shallow decay phase of which the origin remains mysterious. Two main models have been proposed to explain this phase: relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly rotating black holes, respectively. Based on these models, we investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both opticalmore » and X-ray afterglows, while the polarization position angle abruptly changes its direction by 90°. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, we conclude that these two models for the shallow decay phase and relevant central engines would be testable with future polarization observations.« less

  13. Sediment dynamics in a large shallow lake characterized by seasonal flood pulse in Southeast Asia.

    PubMed

    Siev, Sokly; Yang, Heejun; Sok, Ty; Uk, Sovannara; Song, Layheang; Kodikara, Dilini; Oeurng, Chantha; Hul, Seingheng; Yoshimura, Chihiro

    2018-08-01

    Most of studies on sediment dynamics in stable shallow lakes focused on the resuspension process as it is the dominant process. However, understanding of sediment dynamics in a shallow lake influenced by flood pulse is unclear. We tested a hypothesis that floodplain vegetation plays as a significant role in lessening the intensity of resuspension process in a shallow lake characterized by the flood pulse system. Therefore, this study aimed to investigate sediment dynamics in this type of shallow lake. The target was Tonle Sap Lake (TSL), which is a large shallow lake influenced by a flood pulse system of Mekong River located in Southeast Asia. An extensive and seasonal sampling survey was conducted to measure total suspended solid (TSS) concentrations, sedimentation and resuspension rates in TSL and its 4 floodplain areas. The study revealed that sedimentation process was dominant (TSS ranged: 3-126mgL -1 ) in the high water period (September-December) while resuspension process was dominant (TSS ranged: 4-652mgL -1 ) only in the low water period (March-June). In addition, floodplain vegetation reduced the resuspension of sediment (up to 26.3%) in water. The implication of the study showed that resuspension is a seasonally dominant process in shallow lake influenced by the flood pulse system at least for the case of TSL. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Reaction of Hardwood Timber to Shallow-Water Impoundments

    Treesearch

    W. M. Broadfoot

    1958-01-01

    In recent years farmers and sportsmen have built many temporary shallow-water impoundments in southern hardwood forests. While the main purpose has been to attract waterfowl, a recent study shows that these forest lakes, if properly managed, can also benefit the timber.

  15. A multidimensional stability model for predicting shallow landslide size and shape across landscapes

    Treesearch

    David G. Milledge; Dino Bellugi; Jim A. McKean; Alexander L. Densmore; William E. Dietrich

    2014-01-01

    The size of a shallow landslide is a fundamental control on both its hazard and geomorphic importance. Existing models are either unable to predict landslide size or are computationally intensive such that they cannot practically be applied across landscapes. We derive a model appropriate for natural slopes that is capable of predicting shallow landslide size but...

  16. Investigation on H-containing shallow trap of hydrogenated TiO2 with in situ Fourier transform infrared diffuse reflection spectroscopy.

    PubMed

    Han, Bing; Hang Hu, Yun

    2017-07-28

    A novel technique, high temperature high pressure in situ Fourier transform infrared diffuse reflection spectroscopy, was successfully used to investigate the formation and stability of shallow trap states in P25 TiO 2 nanoparticles. Two types of shallow traps (with and without H atoms) were identified. The H-containing shallow trap can be easily generated by heating in H 2 atmosphere. However, the trap is unstable in vacuum at 600 °C. In contrast, the H-free shallow trap, which can be formed by heating in vacuum, is stable even at 600 °C. The energy gaps between shallow trap states and the conduction band are 0.09 eV for H-containing shallow trap and 0.13 eV for H-free shallow trap, indicating that the H-containing shallow trap state is closer to the conduction band than that without H.

  17. The Calibration and error analysis of Shallow water (less than 100m) Multibeam Echo-Sounding System

    NASA Astrophysics Data System (ADS)

    Lin, M.

    2016-12-01

    Multibeam echo-sounders(MBES) have been developed to gather bathymetric and acoustic data for more efficient and more exact mapping of the oceans. This gain in efficiency does not come without drawbacks. Indeed, the finer the resolution of remote sensing instruments, the harder they are to calibrate. This is the case for multibeam echo-sounding systems (MBES). We are no longer dealing with sounding lines where the bathymetry must be interpolated between them to engender consistent representations of the seafloor. We now need to match together strips (swaths) of totally ensonified seabed. As a consequence, misalignment and time lag problems emerge as artifacts in the bathymetry from adjacent or overlapping swaths, particularly when operating in shallow water. More importantly, one must still verify that bathymetric data meet the accuracy requirements. This paper aims to summarize the system integration involved with MBES and identify the various source of error pertaining to shallow water survey (100m and less). A systematic method for the calibration of shallow water MBES is proposed and presented as a set of field procedures. The procedures aim at detecting, quantifying and correcting systematic instrumental and installation errors. Hence, calibrating for variations of the speed of sound in the water column, which is natural in origin, is not addressed in this document. The data which used in calibration will reference International Hydrographic Organization(IHO) and other related standards to compare. This paper aims to set a model in the specific area which can calibrate the error due to instruments. We will construct a procedure in patch test and figure out all the possibilities may make sounding data with error then calculate the error value to compensate. In general, the problems which have to be solved is the patch test's 4 correction in the Hypack system 1.Roll 2.GPS Latency 3.Pitch 4.Yaw. Cause These 4 correction affect each others, we run each survey line

  18. Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields

    NASA Astrophysics Data System (ADS)

    Fairley, Jerry P.; Nicholson, Kirsten N.

    2006-04-01

    Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.

  19. Review of factors affecting the distribution and abundance of waterfowl in shallow-water habitats of Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Deller, A.S.

    1996-01-01

    Long-term trends of waterfowl populations in Chesapeake Bay demonstrate the importance of shallow-water habitats for waterfowl species. Although recent increases in field feeding by geese and swans lessened the importance of shallow-water areas for these species, most duck species depend almost exclusively on shallow-water habitats. Many factors influenced the distribution and abundance of waterfowl in shallow-water habitats. Habitat degradation resulted in the decline in numbers of most duck species and a change in distribution of some species. Increased numbers of mallards (Anas platyrhynchos) in recent decades probably resulted from release programs conducted by the Maryland Department of Natural Resources and private individuals. Studies of food habits since 1885 showed a decline in submerged-aquatic vegetation in the diet of some species, such as the canvasback (Aythya valisineria ), and an increase in the proportions of invertebrates in the diet. Diversity of food organisms for many waterfowl species has declined. Surveys of vegetation and invertebrates in the Chesapeake Bay generally reflect a degradation of shallow-water habitat. Human population increases in the Chesapeake Bay watershed directly and indirectly affected waterfowl distribution and abundance. The increase of exotic plant and invertebrate species in the bay, in most cases, benefited waterfowl populations. Increased contaminants have reduced the quality and quantity of habitat, although serious attempts to reverse this trend are underway. The use of shallow-water habitats by humans for fishing, hunting, boating, and other recreational and commercial uses reduced the use of shallow-water habitats by waterfowl. Humans can lessen the adverse influences on the valuable shallow-water habitats by restricting human population growth near these habitats and improving the water quality of the bay tributaries. Other affirmative actions that will improve these areas for waterfowl include greater

  20. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    PubMed

    Reis, Vanessa Moura Dos; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  1. Laboratory assessment of bioleaching of shallow eutrophic sediment by immobilized photosynthetic bacteria.

    PubMed

    Sun, Shiyong; Fan, Shenglan; Shen, Kexuan; Lin, Shen; Nie, Xiaoqin; Liu, Mingxue; Dong, Faqin; Li, Jian

    2017-10-01

    Eutrophic sediment is a serious problem in ecosystem restoration, especially in shallow lake ecosystems. We present a novel bioleaching approach to treat shallow eutrophic sediment with the objective of preventing the release of nitrate, phosphate, and organic compounds from the sediment to the water column, using porous mineral-immobilized photosynthetic bacteria (PSB). Bioactivity of bacteria was maintained during the immobilization process. Immobilized PSB beads were directly deposited on the sediment surface. The deposited PSB utilized pollutants diffused from the sediment as a nutritive matrix for growth. We evaluated the effects of light condition, temperature, initial pH, amount of PSB beads, and frequency of addition of PSB beads for contaminant removal efficiency during bioleaching operations. The presented study indicated that immobilized PSB beads using porous minerals as substrates have considerable application potential in bioremediation of shallow eutrophic lakes.

  2. Computed narrow-band azimuthal time-reversing array retrofocusing in shallow water.

    PubMed

    Dungan, M R; Dowling, D R

    2001-10-01

    The process of acoustic time reversal sends sound waves back to their point of origin in reciprocal acoustic environments even when the acoustic environment is unknown. The properties of the time-reversed field commonly depend on the frequency of the original signal, the characteristics of the acoustic environment, and the configuration of the time-reversing transducer array (TRA). In particular, vertical TRAs are predicted to produce horizontally confined foci in environments containing random volume refraction. This article validates and extends this prediction to shallow water environments via monochromatic Monte Carlo propagation simulations (based on parabolic equation computations using RAM). The computational results determine the azimuthal extent of a TRA's retrofocus in shallow-water sound channels either having random bottom roughness or containing random internal-wave-induced sound speed fluctuations. In both cases, randomness in the environment may reduce the predicted azimuthal angular width of the vertical TRA retrofocus to as little as several degrees (compared to 360 degrees for uniform environments) for source-array ranges from 5 to 20 km at frequencies from 500 Hz to 2 kHz. For both types of randomness, power law scalings are found to collapse the calculated azimuthal retrofocus widths for shallow sources over a variety of acoustic frequencies, source-array ranges, water column depths, and random fluctuation amplitudes and correlation scales. Comparisons are made between retrofocusing on shallow and deep sources, and in strongly and mildly absorbing environments.

  3. Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone.

    PubMed

    Nakano, Masaru; Hori, Takane; Araki, Eiichiro; Kodaira, Shuichi; Ide, Satoshi

    2018-03-14

    Recent studies of slow earthquakes along plate boundaries have shown that tectonic tremor, low-frequency earthquakes, very-low-frequency events (VLFEs), and slow-slip events (SSEs) often accompany each other and appear to share common source faults. However, the source processes of slow events occurring in the shallow part of plate boundaries are not well known because seismic observations have been limited to land-based stations, which offer poor resolution beneath offshore plate boundaries. Here we use data obtained from seafloor observation networks in the Nankai trough, southwest of Japan, to investigate shallow VLFEs in detail. Coincident with the VLFE activity, signals indicative of shallow SSEs were detected by geodetic observations at seafloor borehole observatories in the same region. We find that the shallow VLFEs and SSEs share common source regions and almost identical time histories of moment release. We conclude that these slow events arise from the same fault slip and that VLFEs represent relatively high-frequency fluctuations of slip during SSEs.

  4. [Analysis of refractive status after cataract surgery in age-related cataract patients with shallow anterior chamber].

    PubMed

    Yang, Fei; Hou, Xianru; Wu, Huijuan; Bao, Yongzhen

    2014-02-01

    To evaluate the characteristics of postoperative refractive status in age-related cataract patients with shallow anterior chamber and the correlation between pre-operative anterior chamber depth and postoperative refractive status. Prospective case-control study. Sixty-eight cases (90 eyes) with age-related cataract were recruited from October 2010 to January 2012 in People's Hospital Peking University including 28 cases (34 eyes) in control group and 40 cases (56 eyes) in shallow anterior chamber group according to anterior chamber depth (ACD) measured by Pentacam system. Axial length and keratometer were measured by IOL Master and intraocular lens power was calculated using SRK/T formula. Postoperative refraction, ACD and comprehensive eye examination were performed at 1 month and 3 months after cataract surgery. Using SPSS13.0 software to establish a database, the two groups were compared with independent samples t-test and correlation analysis were performed with binary logical regression. The postoperative refractive deviation at 1 month were (-0.39 ± 0.62) D in control group and (+0.73 ± 0.26) D in shallow anterior chamber group respectively which present statistical significance between the two groups (P = 0.00, t = 3.67); the postoperative refractive deviation in 3 month was (-0.37 ± 0.62) D in control group and (+0.79 ± 0.28) D in shallow anterior chamber group operatively which present statistical significance between the two groups (P = 0.00, t = 3.33). In shallow anterior chamber group, with the shallower of ACD, the greater of refractive deviation (P = 0.00, r1 month = -0.57, r3 months = -0.61). Hyperopic shift existed in age-related cataract patients with shallow anterior chamber and the shallower of ACD was, the greater of hyperopic shift happened.

  5. Initial results from the Nankai Trough shallow splay and frontal thrust (IODP Expedition 316): Implications for fluid flow

    NASA Astrophysics Data System (ADS)

    Screaton, E.; Kimura, G.; Curewitz, D.; Scientists, E.

    2008-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 316 examined the frontal thrust and the shallow portion of the megasplay fault offshore of the Kii peninsula, and was the third drilling expedition of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). NanTroSEIZE will integrate seafloor observations, drilling, and observatories to investigate the processes controlling slip along subduction zone plate boundary fault systems. Site C0004 examined a shallow portion of the splay fault system where it overrides slope basin sediments. Site C0008, located in the slope basin 1 km seaward of Site C0004, provided a reference site for the footwall sediments. Results of drilling indicate that the footwall sediments have dewatered significantly, suggesting permeable routes for fluid escape. These high-permeability pathways might be provided by coarse-grained layers within the slope sediments. In situ dewatering and multiple fluid escape paths will tend to obscure any geochemical signature of flow from depth. Sites C0006 and C0007 examined the frontal thrust system. Although poorly recovered, coarse-grained trench sediments were sampled within the footwall. These permeable sediments would be expected to allow rapid escape of any fluid pressures due to loading. At both sites, low porosities are observed at shallow depths, suggesting removal of overlying material. This observation is consistent with interpretations that the prism is unstable and currently in a period of collapse. Anomalously low temperatures were measured within boreholes at these sites. One possible explanation for the low temperatures is circulation of seawater along normal faults in the unstable prism.

  6. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    USGS Publications Warehouse

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  7. Physically-based failure analysis of shallow layered soil deposits over large areas

    NASA Astrophysics Data System (ADS)

    Cuomo, Sabatino; Castorino, Giuseppe Claudio; Iervolino, Aniello

    2014-05-01

    In the last decades, the analysis of slope stability conditions over large areas has become popular among scientists and practitioners (Cascini et al., 2011; Cuomo and Della Sala, 2013). This is due to the availability of new computational tools (Baum et al., 2002; Godt et al., 2008; Baum and Godt, 2012; Salciarini et al., 2012) - implemented in GIS (Geographic Information System) platforms - which allow taking into account the major hydraulic and mechanical issues related to slope failure, even for unsaturated soils, as well as the spatial variability of both topography and soil properties. However, the effectiveness (Sorbino et al., 2010) of the above methods it is still controversial for landslides forecasting especially depending on the accuracy of DTM (Digital Terrain Model) and for the chance that distinct triggering mechanisms may occur over large area. Among the major uncertainties, layering of soil deposits is of primary importance due to soil layer conductivity contrast and differences in shear strength. This work deals with the hazard analysis of shallow landslides over large areas, considering two distinct schematizations of soil stratigraphy, i.e. homogeneous or layered. To this purpose, the physically-based model TRIGRS (Baum et al., 2002) is firstly used, then extended to the case of layered deposit: specifically, a unique set of hydraulic properties is assumed while distinct soil unit weight and shear strength are considered for each soil layer. Both models are applied to a significant study area of Southern Italy, about 4 km2 large, where shallow deposits of air-fall volcanic (pyroclastic) soils have been affected by several landslides, causing victims, damages and economic losses. The achieved results highlight that soil volume globally mobilized over the study area highly depends on local stratigraphy of shallow deposits. This relates to the depth of critical slip surface which rarely corresponds to the bedrock contact where cohesionless coarse

  8. The problem of scattering in fibre-fed VPH spectrographs and possible solutions

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott

    2014-07-01

    All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.

  9. Analysis of shallow landslides and soil erosion induced by rainfall over large areas

    NASA Astrophysics Data System (ADS)

    Cuomo, Sabatino; Della Sala, Maria

    2014-05-01

    Due to heavy rainstorms, steep hillslopes may be affected by either shallow landslides or soil superficial erosion (Acharya et al., 2011), which originate different flow-like mass movements in adjacent or overlapping source areas (Cascini et al., 2013). Triggering analysis (Cascini et al., 2011) is a relevant issue for hazard assessment that is, in turn, the first step of risk analysis procedures (Fell et al., 2008). Nevertheless, the available approaches separately consider shallow landslides and soil erosion. Specifically, quantitative models for landslides triggering analysis allow simulating the physical processes leading to failure such as pore water pressure increase and soil shear mobilization and provide estimates of the amount of material potentially involved; however, success of quantitative methods must be carefully evaluated in complex geological setting as recently outlined (Sorbino et al., 2010) and further applications to real case histories are straightforward. On the other hand, a wide range of models exist for soil erosion analysis, which differ in terms of complexity, processes considered and data required for the model calibration and practical applications; in particular, quantitative models can estimate the source areas and the amount of eroded soil through empirical relationships or mathematical equations describing the main physical processes governing soil erosion (Merritt et al., 2003). In this work a spatially distributed analysis is proposed for testing the potentialities of two available models to respectively investigate the spatial occurrence of first-time shallow landslides and superficial soil erosion repeatedly occurring in a large test area of the Southern Italy. Both analyses take into account the seasonal variation of soil suction, rainfall characteristics and soil cover use (Cuomo and Della Sala, 2013). The achieved results show that the source areas of shallow landslides strongly depend on rainfall intensity and duration and

  10. New approaches to the restoration of shallow marginal peatlands.

    PubMed

    Grand-Clement, E; Anderson, K; Smith, D; Angus, M; Luscombe, D J; Gatis, N; Bray, L S; Brazier, R E

    2015-09-15

    Globally, the historic and recent exploitation of peatlands through management practices such as agricultural reclamation, peat harvesting or forestry, have caused extensive damage to these ecosystems. Their value is now increasingly recognised, and restoration and rehabilitation programmes are underway to improve some of the ecosystem services provided by peatlands: blocking drainage ditches in deep peat has been shown to improve the storage of water, decrease carbon losses in the long-term, and improve biodiversity. However, whilst the restoration process has benefitted from experience and technical advice gained from restoration of deep peatlands, shallow peatlands have received less attention in the literature, despite being extensive in both uplands and lowlands. Using the experience gained from the restoration of the shallow peatlands of Exmoor National Park (UK), and two test catchments in particular, this paper provides technical guidance which can be applied to the restoration of other shallow peatlands worldwide. Experience showed that integrating knowledge of the historical environment at the planning stage of restoration was essential, as it enabled the effective mitigation of any threat to archaeological features and sites. The use of bales, commonly employed in other upland ecosystems, was found to be problematic. Instead, 'leaky dams' or wood and peat combination dams were used, which are both more efficient at reducing and diverting the flow, and longer lasting than bale dams. Finally, an average restoration cost (£306 ha(-1)) for Exmoor, below the median national value across the whole of the UK, demonstrates the cost-effectiveness of these techniques. However, local differences in peat depth and ditch characteristics (i.e. length, depth and width) between sites affect both the feasibility and the cost of restoration. Overall, the restoration of shallow peatlands is shown to be technically viable; this paper provides a template for such process

  11. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Garbe-Schönberg, Dieter; Lebrato, Mario; Li, Xiaohu; Zhang, Hai-Yan; Zhang, Ping-Ping; Chen, Chen-Tung Arthur; Ye, Ying

    2018-04-01

    Shallow water hydrothermal vents are a source of heavy metals leading to their accumulation in marine organisms that manage to live under extreme environmental conditions. This is the case at Kueishantao (KST) shallow-sea vents system offshore northeast Taiwan, where the heavy metal distribution in vent fluids and ambient seawater is poorly understood. This shallow vent is an excellent natural laboratory to understand how heavy and volatile metals behave in the nearby water column and ecosystem. Here, we investigated the submarine venting of heavy metals from KST field and its impact on ambient surface seawater. The total heavy metal concentrations in the vent fluids and vertical plumes were 1-3 orders of magnitude higher than the overlying seawater values. When compared with deep-sea hydrothermal systems, the estimated KST end-member fluids exhibited much lower concentrations of transition metals (e.g., Fe and Mn) but comparable concentrations of toxic metals such as Pb and As. This may be attributed to the lower temperature of the KST reaction zone and transporting fluids. Most of the heavy metals (Fe, Mn, As, Y, and Ba) in the plumes and seawater mainly originated from hydrothermal venting, while Cd and Pb were largely contributed by external sources such as contaminated waters (anthropogenic origin). The spatial distribution of heavy metals in the surface seawater indicated that seafloor venting impacts ambient seawater. The measurable influence of KST hydrothermal activity, however, was quite localized and limited to an area of < 1 km2. The estimated annual fluxes of heavy metals emanating from the yellow KST hydrothermal vent were: 430-2600 kg Fe, 24-145 kg Mn, 5-32 kg Ba, 10-60 kg As, 0.3-1.9 kg Cd, and 2-10 kg Pb. This study provides important data on heavy metals from a shallow-sea hydrothermal field, and it helps to better understand the environmental impact of submarine shallow hydrothermal venting.

  12. Redox controls on methane formation, migration and fate in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Bayegnak, Guy; Millot, Romain; Kloppmann, Wolfram

    2016-07-01

    Development of unconventional energy resources such as shale gas and coalbed methane has generated some public concern with regard to the protection of groundwater and surface water resources from leakage of stray gas from the deep subsurface. In terms of environmental impact to and risk assessment of shallow groundwater resources, the ultimate challenge is to distinguish (a) natural in situ production of biogenic methane, (b) biogenic or thermogenic methane migration into shallow aquifers due to natural causes, and (c) thermogenic methane migration from deep sources due to human activities associated with the exploitation of conventional or unconventional oil and gas resources. This study combines aqueous and gas (dissolved and free) geochemical and isotope data from 372 groundwater samples obtained from 186 monitoring wells of the provincial Groundwater Observation Well Network (GOWN) in Alberta (Canada), a province with a long record of conventional and unconventional hydrocarbon exploration. We investigated whether methane occurring in shallow groundwater formed in situ, or whether it migrated into the shallow aquifers from elsewhere in the stratigraphic column. It was found that methane is ubiquitous in groundwater in Alberta and is predominantly of biogenic origin. The highest concentrations of biogenic methane (> 0.01 mM or > 0.2 mgL-1), characterized by δ13CCH4 values < -55 ‰, occurred in anoxic Na-Cl, Na-HCO3, and Na-HCO3-Cl type groundwaters with negligible concentrations of nitrate and sulfate suggesting that methane was formed in situ under methanogenic conditions for 39.1 % of the samples. In only a few cases (3.7 %) was methane of biogenic origin found in more oxidizing shallow aquifer portions suggesting limited upward migration from deeper methanogenic aquifers. Of the samples, 14.1 % contained methane with δ13CCH4 values > -54 ‰, potentially suggesting a thermogenic origin, but aqueous and isotope

  13. Shallow cumuli ensemble statistics for development of a stochastic parameterization

    NASA Astrophysics Data System (ADS)

    Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs

    2014-05-01

    According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a

  14. Hydrologic Controls on Shallow Landslide Location, Size, and Shape

    NASA Astrophysics Data System (ADS)

    Bellugi, D.; Milledge, D.; Perron, T.; McKean, J. A.; Dietrich, W.; Rulli, M.

    2012-12-01

    Shallow landslides, typically involving just the soil mantle, are principally controlled by topography, soil and root strengths, and soil thickness, and are typically triggered by storm-induced increases in pore water pressure. The response of a landscape to landslide-triggering storms will thus depend on factors such as rainfall totals, storm intensity and duration, and antecedent moisture conditions. The two dominant mechanisms that generate high pore water pressures at a point are topographically-steered lateral subsurface flow (over timescales of days to weeks), and rapid vertical infiltration (over timescales of minutes to hours). We aim to understand the impact of different storm characteristics and hydrologic regimes on shallow landslide location, size, and shape. We have developed a regional-scale model, which applies a low-parameter grid-based multi-dimensional slope stability model within a novel search algorithm, to generate discrete landslide predictions. This model shows that the spatial organization of parameters such as root strength and pore water pressure has a strong control on shallow landslide location, size, and shape. We apply this model to a field site near Coos Bay, OR, where a ten-year landslide inventory has been mapped onto high-resolution topographic data. Our model predicts landslide size generally increases with increasing rainfall intensity, except when root strength is extremely high and pore pressures are topographically steered. The distribution of topographic index values (the ratios of contributing area to slope) of predicted landslides is a clear signature of the pore water pressure generation mechanism: as laterally dominated flow increases, landslides develop in locations with lower slopes and higher contributing areas; in contrast, in the case of vertically-dominated pore pressure rise, landslides are consistently found in locations with higher slopes and lower contributing areas. While in both cases landslides are found in

  15. Radar Detected Rainfall Intensity As An Input For Shallow Landslides Slope Stability Model

    NASA Astrophysics Data System (ADS)

    Leoni, L.; Rossi, G.; Catani, F.; Righini, G.; Rudari, R.

    2008-12-01

    The term "shallow landslides" is widely used in literature to describe a slope movement of limited size that mainly develops in soils up to a maximum of a few meters. Shallow landslides are usually triggered by heavy rainfall because, as the water starts to infiltrate in the soil, the pore-water pressure increases so that the shear strength of the soil is reduced leading to slope failure. For this work we have developed a distributed hydrological-geotechnical model for the forecasting of the temporal and spatial distribution of shallow landslide to be used as a warning system for civil protection purpose. The main goal of this work is the use of radar detected rainfall intensity as the input for the hydrological simulation of the infiltration. Using the rainfall pattern detected by the radar is in fact possible to dynamically control the redistribution of groundwater pressure associated with transient infiltration of rain so as to infer the slope stability of the studied area. The model deals with both saturated and unsaturated conditions. Two pilot sites have been chosen to develop and test this model: the Armea basin (Liguria, Italy) and the Ischia Island (Campania, Italy). In recent years several severe rainstorms have occurred in both these areas. In at least two cases these have triggered numerous shallow landslides that have caused victims and damaged roads, buildings and agricultural activities. In its current stage the basic basin-scale model applied for predicting the probable location of shallow landslides involves several stand-alone components. A module for estimating the groundwater pressure head distribution according to radar detected rainfall intensity, a soil depth prediction scheme and a limit-equilibrium infinite slope stability algorithm which produces a factor of safety (FS). The additional ancillary data required have been collected during the field work. The single components are seamlessly integrated into a system that automatically

  16. Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.

    PubMed

    Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John

    2018-03-01

    Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon

  17. Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.

    PubMed

    Vienken, T; Schelenz, S; Rink, K; Dietrich, P

    2015-01-01

    Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.

  18. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    NASA Astrophysics Data System (ADS)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Studies of the Vector Field in Shallow Water and in the Presence of 3-D Variability

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Studies of the Vector Field in Shallow Water and in the...including noise variability in shallow water and the influence of three-dimensional environmental variability on the propagation of acoustic energy...issue, known to be a problem in SSF algorithms in shallow water . Figure 1 displays results of TL traces at a depth of 100m for a 100Hz source

  20. Mechanisms of sediment flux between shallows and marshes

    USGS Publications Warehouse

    Lacy, Jessica R.; Schile, L.M.; Callaway, J.C.; Ferner, M.C.

    2015-01-01

    We conducted a field study to investigate temporal variation and forcing mechanisms of sediment flux between a salt marsh and adjacent shallows in northern San Francisco Bay. Suspended-sediment concentration (SSC), tidal currents, and wave properties were measured over the marsh, in marsh creeks, and in bay shallows. Cumulative sediment flux in the marsh creeks was bayward during the study, and was dominated by large bayward flux during the largest tides of the year. This result was unexpected because extreme high tides with long inundation periods are commonly assumed to supply sediment to marshes, and long-term accretion estimates show that the marsh in the study site is depositional. A water mass-balance shows that some landward transport bypassed the creeks, most likely across the marsh-bay interface. An estimate of transport by this pathway based on observed SSC and inferred volume indicates that it was likely much less than the observed export.

  1. Numerical modeling of the thin shallow solar dynamo

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Jarboe, T. R.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.

  2. A pitfall in shallow shear-wave refraction surveying

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Wightman, E.; Nigbor, R.

    2002-01-01

    The shallow shear-wave refraction method works successfully in an area with a series of horizontal layers. However, complex near-surface geology may not fit into the assumption of a series of horizontal layers. That a plane SH-wave undergoes wave-type conversion along an interface in an area of nonhorizontal layers is theoretically inevitable. One real example shows that the shallow shear-wave refraction method provides velocities of a converted wave rather than an SH- wave. Moreover, it is impossible to identify the converted wave by refraction data itself. As most geophysical engineering firms have limited resources, an additional P-wave refraction survey is necessary to verify if velocities calculated from a shear-wave refraction survey are velocities of converted waves. The alternative at this time may be the surface wave method, which can provide reliable S-wave velocities, even in an area of velocity inversion (a higher velocity layer underlain by a lower velocity layer). ?? 2002 Elsevier Science B.V. All rights reserved.

  3. The effects of soil suction on shallow slope stability.

    DOT National Transportation Integrated Search

    2013-07-01

    This study investigates the slope failures associated with clayey soils so engineers can better : understand the problem and better predict shallow slope stability, and implement preventive : measures if necessary. This research also examines the mec...

  4. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh

    PubMed Central

    Taylor, Richard G.; Chandler, Richard E.

    2015-01-01

    Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation‐induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L−1). At these scales, the GRMs reveal statistically significant inverse associations between observed As concentrations and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped and developed groundwater‐fed irrigation periods. Further, the GRMs show that the spatial variation of groundwater As concentrations is well explained by not only surface geology but also statistical interactions (i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irrigation, which induces additional recharge where it is enabled by a permeable surface geology. Collectively, these statistical associations indicate that irrigation‐induced recharge serves to flush mobile As from shallow groundwater. PMID:27524841

  5. Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS

    NASA Astrophysics Data System (ADS)

    Bordoni, M.; Meisina, C.; Valentino, R.; Bittelli, M.; Chersich, S.

    2015-05-01

    Rainfall-induced shallow landslides are common phenomena in many parts of the world, affecting cultivation and infrastructure and sometimes causing human losses. Assessing the triggering zones of shallow landslides is fundamental for land planning at different scales. This work defines a reliable methodology to extend a slope stability analysis from the site-specific to local scale by using a well-established physically based model (TRIGRS-unsaturated). The model is initially applied to a sample slope and then to the surrounding 13.4 km2 area in Oltrepo Pavese (northern Italy). To obtain more reliable input data for the model, long-term hydro-meteorological monitoring has been carried out at the sample slope, which has been assumed to be representative of the study area. Field measurements identified the triggering mechanism of shallow failures and were used to verify the reliability of the model to obtain pore water pressure trends consistent with those measured during the monitoring activity. In this way, more reliable trends have been modelled for past landslide events, such as the April 2009 event that was assumed as a benchmark. The assessment of shallow landslide triggering zones obtained using TRIGRS-unsaturated for the benchmark event appears good for both the monitored slope and the whole study area, with better results when a pedological instead of geological zoning is considered at the regional scale. The sensitivity analyses of the influence of the soil input data show that the mean values of the soil properties give the best results in terms of the ratio between the true positive and false positive rates. The scheme followed in this work allows us to obtain better results in the assessment of shallow landslide triggering areas in terms of the reduction in the overestimation of unstable zones with respect to other distributed models applied in the past.

  6. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes.

    PubMed

    Andersen, Mikkel R; Kragh, Theis; Sand-Jensen, Kaj

    2017-09-13

    A common perception in limnology is that shallow lakes are homogeneously mixed owing to their small water volume. However, this perception is largely gained by downscaling knowledge from large lakes to their smaller counterparts. Here we show that shallow vegetated lakes (less than 0.6 m), in fact, undergo recurring daytime stratification and nocturnal mixing accompanied by extreme chemical variations during summer. Dense submerged vegetation effectively attenuates light and turbulence generating separation between warm surface waters and much colder bottom waters. Photosynthesis in surface waters produces oxygen accumulation and CO 2 depletion, whereas respiration in dark bottom waters causes anoxia and CO 2 accumulation. High daytime pH in surface waters promotes precipitation of CaCO 3 which is re-dissolved in bottom waters. Nocturnal convective mixing re-introduces oxygen into bottom waters for aerobic respiration and regenerated inorganic carbon into surface waters, which supports intense photosynthesis. Our results reconfigure the basic understanding of local environmental gradients in shallow lakes, one of the most abundant freshwater habitats globally. © 2017 The Author(s).

  7. Changes in shallow groundwater quality beneath recently urbanized areas in the Memphis, Tennessee area

    USGS Publications Warehouse

    Barlow, Jeannie R.; Kingsbury, James A.; Coupe, Richard H.

    2012-01-01

    Memphis, the largest city in the state of Tennessee, and its surrounding suburbs depend on a confined aquifer, the Memphis aquifer, for drinking water. Concern over the potential for downward movement of water from an overlying shallow aquifer to the underlying Memphis aquifer provided impetus for monitoring groundwater quality within the shallow aquifer. The occurrence of volatile organic compounds (VOCs), nitrate, and pesticides in samples from the shallow well network indicate a widespread affect on water quality from the overlying urban land use. Total pesticide concentration was generally higher in more recently recharged groundwater indicating that as the proportion of recent water increases, the occurrence of pesticides related to the current urban land use also increases. Groundwater samples with nitrate concentrations greater than 1.5 mg/l and detectable concentrations of the pesticides atrazine and simazine also had higher concentrations of chloroform, a VOC primarily associated with urban land use, than in other samples. The age of the water from these wells indicates that these concentrations are most likely not representative of past agricultural use, but of more recent urban use of these chemicals. Given that the median age of water represented by the shallow well network was 21 years, a lag time likely exists between changes in land use and the occurrence of constituents related to urbanization in shallow groundwater.

  8. Lateral baroclinic forcing enhances sediment transport from shallows to channel in an estuary

    USGS Publications Warehouse

    Lacy, Jessica R.; Gladding, Steve; Brand, Andreas; Collignon, Audric; Stacey, Mark

    2014-01-01

    We investigate the dynamics governing exchange of sediment between estuarine shallows and the channel based on field measurements at eight stations spanning the interface between the channel and the extensive eastern shoals of South San Francisco Bay. The study site is characterized by longitudinally homogeneous bathymetry and a straight channel, with friction more important than the Coriolis forcing. Data were collected for 3 weeks in the winter and 4 weeks in the late summer of 2009, to capture a range of hydrologic and meteorologic conditions. The greatest sediment transport from shallows to channel occurred during a pair of strong, late-summer wind events, with westerly winds exceeding 10 m/s for more than 24 h. A combination of wind-driven barotropic return flow and lateral baroclinic circulation caused the transport. The lateral density gradient was produced by differences in temperature and suspended sediment concentration (SSC). During the wind events, SSC-induced vertical density stratification limited turbulent mixing at slack tides in the shallows, increasing the potential for two-layer exchange. The temperature- and SSC-induced lateral density gradient was comparable in strength to salinity-induced gradients in South Bay produced by seasonal freshwater inflows, but shorter in duration. In the absence of a lateral density gradient, suspended sediment flux at the channel slope was directed towards the shallows, both in winter and during summer sea breeze conditions, indicating the importance of baroclinically driven exchange to supply of sediment from the shallows to the channel in South San Francisco Bay and systems with similar bathymetry.

  9. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil

    PubMed Central

    dos Reis, Vanessa Moura; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013–2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future. PMID:27119151

  10. 76 FR 57679 - Fisheries of the Exclusive Economic Zone Off Alaska; Shallow-Water Species by Vessels Using Trawl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    .... 101126522-0640-02] RIN 0648-XA704 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by vessels using trawl gear... apportionment of the 2011 Pacific halibut bycatch allowance specified for the trawl shallow-water species...

  11. 75 FR 56017 - Fisheries of the Exclusive Economic Zone Off Alaska; Shallow-Water Species by Vessels Using Trawl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    .... 0910131362-0087-02] RIN 0648-XZ06 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water Species... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by vessels using trawl gear... of the 2010 Pacific halibut bycatch allowance specified for the trawl shallow-water species fishery...

  12. Statistical description of large datasets of Cumulated and Duration values related to shallow landslides initiated by rainfalls

    NASA Astrophysics Data System (ADS)

    Pisano, Luca; Vessia, Giovanna; Vennari, Carmela; Parise, Mario

    2015-04-01

    Empirical rainfall thresholds are a well established method to draw information about Duration (D) and Cumulated (E) values of the rainfalls that are likely to initiate shallow landslides. To this end, rain-gauge records of rainfall heights are commonly used. Several procedures can be applied to address the calculation of the Duration-Cumulated height and, eventually, the Intensity values related to the rainfall events responsible for shallow landslide onset. A large number of procedures are drawn from particular geological settings and climate conditions based on an expert identification of the rainfall event. A few researchers recently devised automated procedures to reconstruct the rainfall events responsible for landslide onset. In this study, 300 pairs of D, E couples, related to shallow landslides that occurred in a ten year span 2002-2012 on the Italian territory, have been drawn by means of two procedures: the expert method (Brunetti et al., 2010) and the automated method (Vessia et al., 2014). The two procedures start from the same sources of information on shallow landslides occurred during or soon after a rainfall. Although they have in common the method to select the date (up to the hour of the landslide occurrence), the site of the landslide and the choice of the rain-gauge representative for the rainfall, they differ when calculating the Duration and Cumulated height of the rainfall event. Moreover, the expert procedure identifies only one D, E pair for each landslide whereas the automated procedure draws 6 possible D,E pairs for the same landslide event. Each one of the 300 D, E pairs calculated by the automated procedure reproduces about 80% of the E values and about 60% of the D values calculated by the expert procedure. Unfortunately, no standard methods are available for checking the forecasting ability of both the expert and the automated reconstruction of the true D, E pairs that result in shallow landslide. Nonetheless, a statistical analysis

  13. Combined effects of climate change and bank stabilization on shallow water habitats of chinook salmon.

    PubMed

    Jorgensen, Jeffrey C; McClure, Michelle M; Sheer, Mindi B; Munn, Nancy L

    2013-12-01

    Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the

  14. Shallow magma diversions during explosive maar-diatreme eruptions in mafic volcanic fields

    NASA Astrophysics Data System (ADS)

    Le Corvec, N.; Muirhead, J.; White, J. D. L.

    2017-12-01

    Maar-diatremes are inverted conical structures formed by subterranean excavation and remobilization of country rocks during explosive volcanism and common in mafic volcanic fields. We focus on impacts of excavation and filling of maar-diatremes on the local state of stress, and its subsequent influence on underlying feeder dikes, which are critical for understanding the development of intrusive networks that feed surface eruptions. We address this issue using finite element models in COMSOL Multiphysics®. Inverted conical structures of varying sizes are excavated in a gravitationally loaded elastic half-space, and then progressively filled with volcaniclastic material, resulting in changes in the orientations and magnitudes of stresses generated within surrounding rocks and within the filling portion of the maar-diatreme. Our results show that rapid unloading during maar-diatreme excavation generates a horizontal compressive stress state beneath diatremes. These stresses allow magma to divert laterally as saucer-shaped sills and circumferential dikes at varying depths in the shallow feeder system, and produce intrusion geometries consistent with both field observations from exhumed volcanic fields and conceptual models of diatreme growth. Stresses generated in these models also provide an explanation for the evolving locations of fragmentation zones over the course of diatreme's filling. In particular, results from this study suggest that: (1) extensional stresses at the base of the diatreme fill favor magma ascent in the lower half of the structure, and possibly promote volatile exsolution and magma fragmentation; and (2) increased filling of diatremes creates a shallow compressive stress state that can inhibit magma ascent to the surface, promoting widespread intra-diatreme explosions, efficient mixing of host rock, and upward widening of the diatreme structure.

  15. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    USGS Publications Warehouse

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  16. Re-evaluation Of The Shallow Seismicity On Mt Etna Applying Probabilistic Earthquake Location Algorithms.

    NASA Astrophysics Data System (ADS)

    Tuve, T.; Mostaccio, A.; Langer, H. K.; di Grazia, G.

    2005-12-01

    A recent research project carried out together with the Italian Civil Protection concerns the study of amplitude decay laws in various areas on the Italian territory, including Mt Etna. A particular feature of seismic activity is the presence of moderate magnitude earthquakes causing frequently considerable damage in the epicentre areas. These earthquakes are supposed to occur at rather shallow depth, no more than 5 km. Given the geological context, however, these shallow earthquakes would origin in rather weak sedimentary material. In this study we check the reliability of standard earthquake location, in particular with respect to the calculated focal depth, using standard location methods as well as more advanced approaches such as the NONLINLOC software proposed by Lomax et al. (2000) using it with its various options (i.e., Grid Search, Metropolis-Gibbs and Oct-Tree) and 3D velocity model (Cocina et al., 2005). All three options of NONLINLOC gave comparable results with respect to hypocenter locations and quality. Compared to standard locations we note a significant improve of location quality and, in particular a considerable difference of focal depths (in the order of 1.5 - 2 km). However, we cannot find a clear bias towards greater or lower depth. Further analyses concern the assessment of the stability of locations. For this purpose we carry out various Monte Carlo experiments perturbing travel time reading randomly. Further investigations are devoted to possible biases which may arise from the use of an unsuitable velocity model.

  17. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments

    USGS Publications Warehouse

    Cahoon, D.R.; Marin, P.E.; Black, B.K.; Lynch, J.C.

    2000-01-01

    High-resolution measures of vertical accretion, elevation, and compaction of shallow-water sediments are fundamental to understanding the processes that control elevation change and the mechanisms of progradation (e.g., development of mudflats and intertidal wetlands) in coastal systems. Yet, measurements of elevation by traditional survey methods often are of low accuracy because of the compressible nature of the substrates. Nor do they provide measures of vertical accretion or sediment compaction. This paper evaluates the use in shallow-water systems of an approach designed to measure these variables in vegetated wetlands. The approach employs simultaneous measures of elevation from temporary benchmarks using a sedimentation-erosion table (SET) and vertical accretion from marker horizons with sediment cores collected with a cryogenic coring apparatus. The measures are made with a level of resolution sufficient to distinguish between the influence of surface and subsurface processes on elevation, thus providing quantitative estimates of shallow subsidence. The SET-marker horizon approach was evaluated on a developing splay created by an artificial crevasse of a distributary in the Mississippi River delta. The approach provided high-resolution measures of vertical accretion (48.3 ' 2.0 cm.) and elevation (36.7 ' 1.6 cm) over a 4-year period, with the difference between the two indicating the amount of shallow subsidence. In addition, by laying new marker horizons in later years, the approach provided rates not only of shallow subsidence (3.9 ' 0.5 cm y-1) but also compaction of newly deposited seiments (2.1 ' 0.6 cm y-1) and compaction of underlying sediments (1.8 ' 2.0 cm y-1 ) over a two-year period. Hence, the SET-marker horizon approach has widespread applicability in both emergent wetland and shallow water environments for providing high resolution measures of the processes controlling elevation change.

  18. Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2017-12-01

    Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.

  19. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy

    USGS Publications Warehouse

    Salciarini, D.; Godt, J.W.; Savage, W.Z.; Conversini, P.; Baum, R.L.; Michael, J.A.

    2006-01-01

    We model the rainfall-induced initiation of shallow landslides over a broad region using a deterministic approach, the Transient Rainfall Infiltration and Grid-based Slope-stability (TRIGRS) model that couples an infinite-slope stability analysis with a one-dimensional analytical solution for transient pore pressure response to rainfall infiltration. This model permits the evaluation of regional shallow landslide susceptibility in a Geographic Information System framework, and we use it to analyze susceptibility to shallow landslides in an area in the eastern Umbria Region of central Italy. As shown on a landslide inventory map produced by the Italian National Research Council, the area has been affected in the past by shallow landslides, many of which have transformed into debris flows. Input data for the TRIGRS model include time-varying rainfall, topographic slope, colluvial thickness, initial water table depth, and material strength and hydraulic properties. Because of a paucity of input data, we focus on parametric analyses to calibrate and test the model and show the effect of variation in material properties and initial water table conditions on the distribution of simulated instability in the study area in response to realistic rainfall. Comparing the results with the shallow landslide inventory map, we find more than 80% agreement between predicted shallow landslide susceptibility and the inventory, despite the paucity of input data.

  20. Improving predictive power of physically based rainfall-induced shallow landslide models: a probablistic approach

    USGS Publications Warehouse

    Raia, S.; Alvioli, M.; Rossi, M.; Baum, R.L.; Godt, J.W.; Guzzetti, F.

    2013-01-01

    are analyzed statistically, and compared to the original (deterministic) model output. The comparison suggests an improvement of the predictive power of the model of about 10% and 16% in two small test areas, i.e. the Frontignano (Italy) and the Mukilteo (USA) areas, respectively. We discuss the computational requirements of TRIGRS-P to determine the potential use of the numerical model to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides in very large areas, extending for several hundreds or thousands of square kilometers. Parallel execution of the code using a simple process distribution and the Message Passing Interface (MPI) on multi-processor machines was successful, opening the possibly of testing the use of TRIGRS-P for the operational forecasting of rainfall-induced shallow landslides over large regions.

  1. Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2017-01-01

    In recent years, lightweight, inexpensive, vessel-mounted ‘recreational grade’ sonar systems have rapidly grown in popularity among aquatic scientists, for swath imaging of benthic substrates. To promote an ongoing ‘democratization’ of acoustical imaging of shallow water environments, methods to carry out geometric and radiometric correction and georectification of sonar echograms are presented, based on simplified models for sonar-target geometry and acoustic backscattering and attenuation in shallow water. Procedures are described for automated removal of the acoustic shadows, identification of bed-water interface for situations when the water is too turbid or turbulent for reliable depth echosounding, and for automated bed substrate classification based on singlebeam full-waveform analysis. These methods are encoded in an open-source and freely-available software package, which should further facilitate use of recreational-grade sidescan sonar, in a fully automated and objective manner. The sequential correction, mapping, and analysis steps are demonstrated using a data set from a shallow freshwater environment.

  2. Wind wave prediction in shallow water: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavaleri, L.; Rizzoli, P.M.

    1981-11-20

    A wind wave forecasting model is described, based upon the ray technique, which is specifically designed for shallow water areas. The model explicitly includes wave generation, refraction, and shoaling, while nonlinear dissipative processes (breaking and bottom fricton) are introduced through a suitable parametrization. The forecast is provided at a specified time and target position, in terms of a directional spectrum, from which the one-dimensional spectrum and the significant wave height are derived. The model has been used to hindcast storms both in shallow water (Northern Adriatic Sea) and in deep water conditions (Tyrrhenian Sea). The results have been compared withmore » local measurements, and the rms error for the significant wave height is between 10 and 20%. A major problems has been found in the correct evaluation of the wind field.« less

  3. Monitoring culvert load with shallow filling under Geofoam areas.

    DOT National Transportation Integrated Search

    2008-08-01

    Geofoam and the "Imperfect Ditch" method can be used effectively on embankment projects to reduce pressures on underground structures when sufficient fill height is available to create an arching effect. When the fill height is too shallow the archin...

  4. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes

    Treesearch

    Suzanne Peyer; John C. Hermanson; Carol Eunmi Lee

    2010-01-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such...

  5. Identifying zooplankton community changes between shallow and upper-mesophotic reefs on the Mesoamerican Barrier Reef, Caribbean.

    PubMed

    Andradi-Brown, Dominic A; Head, Catherine E I; Exton, Dan A; Hunt, Christina L; Hendrix, Alicia; Gress, Erika; Rogers, Alex D

    2017-01-01

    Mesophotic coral ecosystems (MCEs, reefs 30-150 m) are understudied, yet the limited research conducted has been biased towards large sessile taxa, such as scleractinian corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton communities on shallow reefs and MCEs around Utila on the southern Mesoamerican Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad taxonomic groups. Our results indicate similar taxonomic zooplankton richness and overall biomass between shallow reefs and MCEs. However, the abundance of larger bodied (>2 mm) zooplanktonic groups, including decapod crab zoea, mysid shrimps and peracarid crustaceans, was higher on MCEs than shallow reefs. Our findings highlight the importance of considering zooplankton when identifying broader reef community shifts across the shallow reef to MCE depth gradient.

  6. Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia

    USGS Publications Warehouse

    Smith, Barry S.; Harlow, George E.

    2002-01-01

    The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations

  7. Down to 2 nm Ultra Shallow Junctions : Fabrication by IBS Plasma Immersion Ion Implantation Prototype PULSION registered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torregrosa, Frank; Etienne, Hasnaa; Mathieu, Gilles

    Classical beam line implantation is limited in low energies and cannot achieve P+/N junctions requirements for <45nm node. Compared to conventional beam line ion implantation, limited to a minimum of about 200 eV, the efficiency of Plasma Immersion Ion Implantation (PIII) is no more to prove for the realization of Ultra Shallow Junctions (USJ) in semiconductor applications: this technique allows to get ultimate shallow profiles (as implanted) thanks to no lower limitation of energy and offers high dose rate. In the field of the European consortium NANOCMOS, Ultra Shallow Junctions implanted on a semi-industrial PIII prototype (PULSION registered ) designedmore » by the French company IBS, have been studied. Ultra shallow junctions implanted with BF3 at acceleration voltages down to 20V were realized. Contamination level, homogeneity and depth profile are studied. The SIMS profiles obtained show the capability to make ultra shallow profiles (as implanted) down to 2nm.« less

  8. A preliminary assessment of the occurrence and possible sources of MTBE in ground water of the United States, 1993-94

    USGS Publications Warehouse

    Squillace, P.J.

    1995-01-01

    The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concen- trations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE), is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient ground water from urban areas that were collected during 1993-94 as part of the U.S. Geological Survey's National Water-Quality Assessment program. Samples were collected from 5 drinking-water wells, 12 springs, and 193 monitoring wells in urban areas. No MTBE was detected in drinking-water wells. At a reporting level of 0.2 ug/L (micrograms per liter), MTBE was detected most frequently in shallow ground water from urban areas (27 percent of 210 wells and springs sampled in 8 areas) as compared to shallow ground water from agricultural areas (1.3 percent of 549 wells sampled in 21 areas) or deeper ground water from major aquifers (1 percent of 412 wells sampled in 9 areas). Only 3 percent of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ug/L, which is the estimated lower limit of the U.S. Environmental Protection Agency draft drinking-water health advisory. Because MTBE is persistent and mobile in ground water, it can move from shallow to deeper aquifers with time. In shallow urban ground water, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylenes (BTEX) compounds which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in ground water include point sources, such as leaking storage tanks, and nonpoint sources, such as recharge of precipitation and storm-water runoff.

  9. GROUND-WATER SAMPLING BIAS OBSERVED IN SHALLOW, CONVENTIONAL WELLS

    EPA Science Inventory

    A previous field demonstration project on nitrate-based bioremediation of a fuel-contaminated aquifer used short-screened clustered well points in addition to shallow (10 foot), conventional monitoring wells to monitor the progress of remediation during surface application of rec...

  10. Annealing shallow traps in electron beam irradiated high mobility metal-oxide-silicon transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Sung; Tyryshkin, Alexei; Lyon, Stephen

    In metal-oxide-silicon (MOS) quantum devices, electron beam lithography (EBL) is known to create defects at the Si/SiO2 interface which can be catastrophic for single electron control. Shallow traps ( meV), which only manifest themselves at low temperature ( 4 K), are especially detrimental to quantum devices but little is known about annealing them. In this work, we use electron spin resonance (ESR) to measure the density of shallow traps in two sets of high mobility (μ) MOS transistors. One set (μ=14,000 cm2/Vs) was irradiated with an EBL dose (10 kV, 40 μC/cm2) and was subsequently annealed in forming gas while the other remained unexposed (μ=23,000 cm2/Vs). Our ESR data show that the forming gas anneal is sufficient to remove shallow traps generated by the EBL dose over the measured shallow trap energy range (0.3-4 meV). We additionally fit these devices' conductivity data to a percolation transition model and extract a zero temperature percolation threshold density, n0 ( 9 ×1010 cm-2 for both devices). We find that the extracted n0 agrees within 15 % with our lowest temperature (360 mK) ESR measurements, demonstrating agreement between two independent methods of evaluating the interface.

  11. Application of carbon isotope stratigraphy to late miocene shallow marine sediments, new zealand.

    PubMed

    Loutit, T S; Kennett, J P

    1979-06-15

    A distinct (0.5 per mil) carbon-13/carbon-12 isotopic shift in the light direction has been identified in a shallow marine sedimentary sequence of Late Miocene age at Blind River, New Zealand, and correlated with a similar shift in Late Miocene Deep Sea Drilling Project sequences throughout the Indo-Pacific. A dated piston core provides an age for the shift of 6.2 +/- 0.1 million years. Correlations based on the carbon isotopic change require a revision of the previously established magnetostratigraphy at Blind River. The carbon shift at Blind River occurs between 6.2 and 6.3 +/- 0.1 million years before present. A new chronology provides an age for the evolutionary first appearance datum of Globorotalia conomiozea at 6.1 +/- 0.1 million years, the beginning of a distinct latest Miocene cooling event associated with the Kapitean stage at 6.2 +/- 0.1 million years, and the beginning of a distinct shallowing of water depths at 6.1 +/- 0.1 million years. The Miocene-Pliocene boundary as recognized in New Zealand is now dated at 5.3 +/- 0.1 million years. Extension of carbon isotope stratigraphy to other shallow Late Miocene sequences should provide an important datum for international correlation of Late Miocene shallow and deep marine sequences.

  12. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step

  13. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?

    NASA Astrophysics Data System (ADS)

    Semmler, Robert F.; Hoot, Whitney C.; Reaka, Marjorie L.

    2017-06-01

    We analyzed an extensive dataset of over 9000 benthic and suprabenthic species found throughout the Gulf of Mexico (GoMx) to assess whether mesophotic coral ecosystems represent distinct assemblages and evaluate their potential to serve as refugia for shallow reef communities. We assessed community structure of the overall benthic community from 0 to 300 m via non-metric multidimensional scaling (NMDS) of species presence across depth bands. We used the Jaccard index of similarity to calculate the proportion of shared species between adjacent depth bands, measure species turnover with depth, and assess taxonomic overlap between shallow reefs versus progressively deeper depth bands. NMDS ordinations showed that the traditionally defined mesophotic range (30-150 m) as a whole is not a distinct community. In contrast, taxonomically distinct communities, determined by hierarchical clustering, were found at 0-70, 60-120, 110-200, and 190-300 m. Clustering highlighted an important separation in the benthic community at 60 m, which was especially important for actinopterygian fishes. Species turnover between adjacent depths decreased with depth for all taxa combined and individual taxa, with peaks at 60, 90-120, and 190-200 m. Fishes showed lower turnover from shallow to upper mesophotic depths (0-50 m) than all taxa combined, a substantial peak at 60 m, followed by a precipitous and continued decline in turnover thereafter. Taxonomic overlap between shallow (0-20 m) and progressively deeper zones declined steadily with depth in all taxa and individual taxa, suggesting that mid- and lower mesophotic habitats have less (but not inconsequential) potential to serve as refugia (60-150 m, 15-25% overlap with shallow habitats) than upper mesophotic zones (30-60 m, 30-45% overlap with shallow habitats) for all taxa combined. We conclude that the traditional mesophotic zone is home to three ecological communities in the GoMx, one that is confluent with shallow reefs, a distinct

  14. Environmental and ecological upheval in shallow marine systems during the Early Jurassic (Pliensbachian and Toarcian)

    NASA Astrophysics Data System (ADS)

    Martindale, R. C.; Ettinger, N. P.; Bodin, S.; Kosir, A.; Brame, H. M. R.; Thibodeau, A. M.; Larson, T. E.; Kerans, C.

    2017-12-01

    Carbon cycle perturbations, such as the Toarcian Oceanic Anoxic Event (T-OAE), have a significant influence on marine communities (e.g., extinctions), as well as the nature of the sedimentary record (e.g., carbonate factory collapse and black shale deposition) and geochemical cycling. To date, there remains a gap in our knowledge about the shallow-water record of the T-OAE and the geochemical signature of this event. This research combines geochemical, sedimentological, and paleontological data from two shallow-water Early Jurassic records in Slovenia and Morocco. The Dinaric Carbonate Platform (Slovenia) records a relatively continuous record of Pliensbachian and Toarcian strata and captures the T-OAE in shallow-water carbonates. The Trnovski Gozd karst plateau (western Slovenia) contains Pleinsbachian lithiotid (bivalve) biostromes, coral bioherms, and a diverse assemblage of carbonate producing fauna. This work documents the geochemical and sedimentological signature of the T-OAE in shallow water carbonates and tests whether mercury concentrations link paleontological and sedimentological changes with the Karoo-Ferrar Large Igneous Province. Elemental data coupled with sedimentologic and stratigraphic evidence indicate a prolonged period of deoxygenation on the shelf coincident with both large igneous province activity and the OAE. The Moroccan High Atlas Mountains provide another excellent shallow-water record of the T-OAE, with a thick mixed carbonate-siliciclastic shelf-to-ramp setting with sustained deposition through the Early Jurassic interval. In Morocco there is no evidence for anoxia in this shallow-water locality; however, the carbonate factory collapses at the Pliensbachian-Toarcian stage boundary as well as the T-OAE. Reef communities, particularly the lithiotid biostromes, persist across the stage boundary and are observed through to the T-OAE. The studied localities also record the oldest corals reefs following the T-OAE; coral reefs recover

  15. The Argentinean network for the assessment and monitoring of Pampean shallow-lakes (PAMPA2)

    NASA Astrophysics Data System (ADS)

    Zagarese, H. E.

    2012-12-01

    The Pampa region of Argentina is an extensive wetland containing nearly 200,000 shallow-lakes. The region is under increasing agricultural pressure resulting from climate change (increased temperature and precipitation) and the substitution of cattle breeding and traditional cultures by transgenic soy. Among the many services that they provide, shallow-lakes are highly responsive to changes in climate and land use. Therefore, long-term studies of shallow-lakes provide useful clues to understand and track changes occurring in their complex watersheds. PAMPA2 is a recently funded, long-term network project, with wide geographic coverage, aimed at studying Pampean shallow-lakes. Thirteen network sites (i.e., shallow lakes) occurring along the precipitation gradient (from < 300 mm y-1 to > 1000 mm y-1) form the core of the project. The network integrates various research teams from eight universities and research centers, with a strong multidisciplinary component. The approaches combine traditional sampling; high-rate monitoring using automated sensors; and remote sensing. The network develops and manufactures most the instruments, including automated buoys and unmanned aircrafts. In this presentation, we will provide details on the structure and state of development of the PAMPA2 network, and present a long-term case study of a large Pampean shallow-lake, exemplifying the strong dependence of lake processes on weather variables. Laguna Chascomús is a large, hypertrophic shallow-lake. Chascomús is one of the PAMPA2 study sites that have been more extensively studied. In this shallow-lake, high nutrient availability permits the development of a dense microbial plankton community, which in turn translates into exceptionally high water turbidity. Phytoplankton primary production is strongly limited by light availability. As a consequence, turbidity is strongly and positively correlated to the incoming solar radiation, resulting in a remarkable seasonal pattern of water

  16. Delay/Disruption Tolerant Network-Based Message Forwarding for a River Pollution Monitoring Wireless Sensor Network Application.

    PubMed

    Velásquez-Villada, Carlos; Donoso, Yezid

    2016-03-25

    Communications from remote areas that may be of interest is still a problem. Many innovative projects applied to remote sites face communications difficulties. The GOLDFISH project was an EU-funded project for river pollution monitoring in developing countries. It had several sensor clusters, with floating WiFi antennas, deployed along a downstream river's course. Sensor clusters sent messages to a Gateway installed on the riverbank. This gateway sent the messages, through a backhaul technology, to an Internet server where data was aggregated over a map. The communication challenge in this scenario was produced by the antennas' movement and network backhaul availability. Since the antennas were floating on the river, communications could be disrupted at any time. Also, 2G/3G availability near the river was not constant. For non-real-time applications, we propose a Delay/Disruption Tolerant Network (DTN)-based solution where all nodes have persistent storage capabilities and DTN protocols to be able to wait minutes or hours to transmit. A mechanical backhaul will periodically visit the river bank where the gateway is installed and it will automatically collect sensor data to be carried to an Internet-covered spot. The proposed forwarding protocol delivers around 98% of the messages for this scenario, performing better than other well-known DTN routing protocols.

  17. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    PubMed

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-11-01

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ( 3 H) and stable isotopes ( 2 H and 18 O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ 18 O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ 18 O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ 18 O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ( 3 H: 5 - 10 T.U.) and deeper zone ( 3 H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    PubMed

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  19. Association between the rapid shallow breathing index and extubation success in patients with traumatic brain injury

    PubMed Central

    dos Reis, Helena França Correia; Almeida, Mônica Lajana Oliveira; da Silva, Mário Ferreira; Moreira, Julião Oliveira; Rocha, Mário de Seixas

    2013-01-01

    Objective To investigate the association between the rapid shallow breathing index and successful extubation in patients with traumatic brain injury. Methods This study was a prospective study conducted in patients with traumatic brain injury of both genders who underwent mechanical ventilation for at least two days and who passed a spontaneous breathing trial. The minute volume and respiratory rate were measured using a ventilometer, and the data were used to calculate the rapid shallow breathing index (respiratory rate/tidal volume). The dependent variable was the extubation outcome: reintubation after up to 48 hours (extubation failure) or not (extubation success). The independent variable was the rapid shallow breathing index measured after a successful spontaneous breathing trial. Results The sample comprised 119 individuals, including 111 (93.3%) males. The average age of the sample was 35.0±12.9 years old. The average duration of mechanical ventilation was 8.1±3.6 days. A total of 104 (87.4%) participants achieved successful extubation. No association was found between the rapid shallow breathing index and extubation success. Conclusion The rapid shallow breathing index was not associated with successful extubation in patients with traumatic brain injury. PMID:24213084

  20. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics

    PubMed Central

    Jacob, Donna L.; Hanson, Mark A.; Herwig, Brian R.; Bowe, Shane E.; Otte, Marinus L.

    2015-01-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds. PMID:26074657

  1. Widespread inclination shallowing in Permian and Triassic paleomagnetic data from Laurentia: Support from new paleomagnetic data from Middle Permian shallow intrusions in southern Illinois (USA) and virtual geomagnetic pole distributions

    USGS Publications Warehouse

    Domeier, M.; Van Der Voo, R.; Denny, F.B.

    2011-01-01

    Recent paleomagnetic work has highlighted a common and shallow inclination bias in continental redbeds. The Permian and Triassic paleomagnetic records from Laurentia are almost entirely derived from such sedimentary rocks, so a pervasive inclination error will expectedly bias the apparent polar wander path of Laurentia in a significant way. The long-standing discrepancy between the apparent polar wander paths of Laurentia and Gondwana in Permian and Triassic time may be a consequence of such a widespread data-pathology. Here we present new Middle Permian paleomagnetic data from igneous rocks and a contact metamorphosed limestone from cratonic Laurentia. The exclusively reversed Middle Permian magnetization is hosted by low-Ti titanomagnetite and pyrrhotite and yields a paleomagnetic pole at 56.3??S, 302.9??E (A95=3.8, N=6). This pole, which is unaffected by inclination shallowing, suggests that a shallow inclination bias may indeed be present in the Laurentian records. To further consider this hypothesis, we conduct a virtual geomagnetic pole distribution analysis, comparing theoretical expectations of a statistical field model (TK03.GAD) against published data-sets. This exercise provides independent evidence that the Laurentian paleomagnetic data is widely biased, likely because of sedimentary inclination shallowing. We estimate the magnitude of this error from our model results and present and discuss several alternative corrections. ?? 2011 Elsevier B.V.

  2. High stress shallow moonquakes - Evidence for an initially totally molten moon

    NASA Technical Reports Server (NTRS)

    Binder, A. B.; Oberst, J.

    1985-01-01

    Thermoelastic stress calculations show that if the moon was initially molten only in the outer few hundred kilometers, as in the magma ocean model of the moon, the highlands crust should be aseismic. In contrast, if the moon was initially totally molten, high stress (1 to more than about 3 kbar), shallow (0 to about 6 km deep), compressional moonquakes should be occurring in the highlands crust. Calculations of the minimum stress drops made for the 28 observed shallow moonquakes suggest that 3 of them probably have stress drops in the kbar range. Thus, these very limited seismic data are consistent with the model that the moon was initially totally molten.

  3. Law of Strata Pressure Behavior in Shallow Coal Seam

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Liu, Leibin; Zheng, Zhiyang

    2018-02-01

    The law of strata pressure behavior in shallow coal seam is analyzed, according to the load data of Jinjie Coal Mine 31109 working face hydraulic supports. The first weighting distance of main roof is 80 m, and the periodic weighting distance of main roof is about 20 m. And according to the load data in the middle and both ends of the working face, the working resistance of hydraulic supports and the setting load are a bit small, so they couldn’t meet the needs of supporting roof. Then, the front abutment pressure of working face is analyzed by numerical simulation. It does not only explain the reason that the load is too big, but also explains the reason that the strata pressure behavior in shallow coal seam is serious. The length of undamaged main roof rock beam verifies the correctness of the periodic weighting distance.

  4. Geologic structure of shallow maria. [topography of lunar maria

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.; Waskom, J. A.

    1975-01-01

    Isopach maps and structural contour maps of the eastern mare basins (30 deg N to 30 deg S; 0 deg to 100 deg E), constructed from measurements of partially buried craters, are presented and discussed. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of basalt in the irregular maria is between 200 and 400 m. Correlations between surface topography, basalt thickness, and basin floor structure are apparent in most of the basins that were studied. The mare surface is commonly depressed in regions of thick mare basalts; mare ridges are typically located in regions of pronounced thickness changes; and arcuate mare rilles are confined to thin mare basalts. Most surface structures are attributed to shallow stresses developed within the mare basalts during consolidation and volume reduction.

  5. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water

  6. 77 FR 69586 - Petition for Reconsideration of Action in Rulemaking Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... to Facilitate the Use of Microwave for Wireless Backhaul and Other Uses and to Provide Additional Flexibility to Broadcast Auxiliary Services and Operational Fixed Microwave Licenses, Petition for...

  7. Isotopic evidence for oxygenated Mesoarchaean shallow oceans

    NASA Astrophysics Data System (ADS)

    Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny

    2018-02-01

    Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8-3.2 billion years ago (Ga)) and Neoarchaean (2.8-2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2-2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of 30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (-1.31 to -0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases 3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

  8. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems.

    PubMed

    Simon, Marianne; Jardillier, Ludwig; Deschamps, Philippe; Moreira, David; Restoux, Gwendal; Bertolino, Paola; López-García, Purificación

    2015-10-01

    Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well known. Some molecular surveys of lakes exist, but little information is available from smaller, shallower and often ephemeral freshwater systems, despite their global distribution and ecological importance. We carried out a comparative study based on massive pyrosequencing of amplified 18S rRNA gene fragments of protists in the 0.2-5 μm size range in one brook and four shallow ponds located in the Natural Regional Park of the Chevreuse Valley, France. Our study revealed a wide diversity of small protists, with 812 stringently defined operational taxonomic units (OTUs) belonging to the recognized eukaryotic supergroups (SAR--Stramenopiles, Alveolata, Rhizaria--Archaeplastida, Excavata, Amoebozoa, Opisthokonta) and to groups of unresolved phylogenetic position (Cryptophyta, Haptophyta, Centrohelida, Katablepharida, Telonemida, Apusozoa). Some OTUs represented deep-branching lineages (Cryptomycota, Aphelida, Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1 Haptophyta). We identified several lineages previously thought to be marine including, in addition to MAST-2 and MAST-12, already detected in freshwater, MAST-3 and possibly MAST-6. Protist community structures were different in the five ecosystems. These differences did not correlate with geographical distances, but seemed to be influenced by environmental parameters. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems

    PubMed Central

    Simon, Marianne; Jardillier, Ludwig; Deschamps, Philippe; Moreira, David; Restoux, Gwendal; Bertolino, Paola; López-García, Purificación

    2014-01-01

    Summary Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well-known. Some molecular surveys of lakes exist, but little information is available from smaller, shallower and often ephemeral freshwater systems, despite their global distribution and ecological importance. We carried out a comparative study based on massive pyrosequencing of amplified 18S rRNA gene fragments of protists in the 0.2-5 μm-size range in one brook and four shallow ponds located in the Natural Regional Park of the Chevreuse Valley, France. Our study revealed a wide diversity of small protists, with 812 stringently defined operational taxonomic units (OTUs) belonging to the recognized eukaryotic supergroups (SAR –Stramenopiles, Alveolata, Rhizaria–, Archaeplastida, Excavata, Amoebozoa, Opisthokonta) and to groups of unresolved phylogenetic position (Cryptophyta, Haptophyta, Centrohelida, Katablepharida, Telonemida, Apusozoa). Some OTUs represented deep-branching lineages (Cryptomycota, Aphelida, Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1 Haptophyta). We identified several lineages previously thought to be marine including, in addition to MAST-2 and MAST-12, already detected in freshwater, MAST-3 and possibly MAST-6. Protist community structures were different in the five ecosystems. These differences did not correlate with geographical distances, but seemed to be influenced by environmental parameters. PMID:25115943

  10. Nitrogen and organic carbon cycling processes in tidal marshes and shallow estuarine habitats

    NASA Astrophysics Data System (ADS)

    Bergamaschi, B. A.; Downing, B. D.; Pellerin, B. A.; Kraus, T. E. C.; Fleck, J.; Fujii, R.

    2016-02-01

    Tidal wetlands and shallow water habitats can be sites of high aquatic productivity, and they have the potential of exchanging this newly produced organic carbon with adjacent deeper habitats. Indeed, export of organic carbon from wetlands and shallow water habitats to pelagic food webs is one of the primary ecosystem functions targeted in tidal wetland restorations. Alternatively, wetlands and shallow water habitats can function as retention areas for nutrients due to the nutrient demand of emergent macrophytes and denitrification in anoxic zones. They can also remove phytoplankton and non-algal particles from the aquatic food webs because the shallower waters can result in higher rates of benthic grazing and higher settling due to lower water velocities. We conducted studies in wetland and channel sites in the San Francisco estuary (USA) to investigate the dynamics of nutrients and carbon production at a variety of temporal scales. We collected continuous time series of nutrients, oxygen, chlorophyll and pH in conjunction with continuous acoustic measurement of water velocity and discharge to provide mass controls and used simple biogeochemical models to assess rates. We found a high degree of temporal variability in individual systems, corresponding to, for example, changes in nutrient supply, water level, light level, wind, wind direction, and other physical factors. There was also large variability among the different systems, probably due to differences in flows and geomorphic features. We compare the aquatic productivity of theses environments and speculate as to the formative elements of each. Our findings demonstrate the complex interaction between physical, chemical, and biological factors that determine the type of production and degree of export from tidal wetlands and shallow water habitats, suggesting that a clearer picture of these processes is important for guiding future large scale restoration efforts.

  11. Response of deep and shallow tropical maritime cumuli to large-scale processes

    NASA Technical Reports Server (NTRS)

    Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.

    1976-01-01

    The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.

  12. Imaging The Shallow Velocity Structure Of The Hikurangi Megathrust Using Full-Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Gray, M.; Bell, R. E.; Morgan, J. V.

    2017-12-01

    The Hikurangi margin, offshore North Island, New Zealand, exhibits a number of different slip behaviours, including shallow slow slip events (SSEs) (<2km to 15 km). There is also a strong contrast in geodetic coupling along the margin. While reflection data provides an image of the structure, no information about physical properties is provided. Full-waveform inversion (FWI) is an imaging technique which incorporates the full seismic wavelet rather than just the first arrivals, as in traditional tomography. By propagating synthetic seismic waves through a velocity model and comparing the synthetic wavelets to the field data, we update the velocity model until the real and synthetic wavelets match. In this way, we can resolve high-resolution physical property variations which influence the seismic wavefield. In our study, FWI was used to resolve the P-wave velocity structure at the Hikurangi megathrust up to 2km. This method enables investigation of how upper-plate structure may influence plate boundary slip behaviour. In 2005, a seismic survey was carried out over the Hikurangi megathrust. The data was acquired from a 12km streamer, allowing FWI analysis up to 2km below the seabed. The results show low velocity zones correlating to faults interpreted from reflection seismic imaging. We believe these low velocity zones, particularly near the frontal thrust resolve faulting in the area, and present these faults as possible fluid conduits. As the dataset was not collected specifically for FWI, the results show promise in resolving more information at depth. As such, both a 3D seismic survey and two drilling expeditions have been approved for the period November 2017 - May 2018. The seismic survey will be carried out with parameters optimal for FWI, allow imaging of the fault boundary, which is not possible with the current 2D data. The cores will provide direct geological evidence which can be used in conjunction with velocity models to discern lithology and structure

  13. Testing & Validating: 3D Seismic Travel Time Tomography (Detailed Shallow Subsurface Imaging)

    NASA Astrophysics Data System (ADS)

    Marti, David; Marzan, Ignacio; Alvarez-Marron, Joaquina; Carbonell, Ramon

    2016-04-01

    A detailed full 3 dimensional P wave seismic velocity model was constrained by a high-resolution seismic tomography experiment. A regular and dense grid of shots and receivers was use to image a 500x500x200 m volume of the shallow subsurface. 10 GEODE's resulting in a 240 channels recording system and a 250 kg weight drop were used for the acquisition. The recording geometry consisted in 10x20m geophone grid spacing, and a 20x20 m stagered source spacing. A total of 1200 receivers and 676 source points. The study area is located within the Iberian Meseta, in Villar de Cañas (Cuenca, Spain). The lithological/geological target consisted in a Neogen sedimentary sequence formed from bottom to top by a transition from gyspum to silstones. The main objectives consisted in resolving the underground structure: contacts/discontinuities; constrain the 3D geometry of the lithology (possible cavities, faults/fractures). These targets were achieved by mapping the 3D distribution of the physical properties (P-wave velocity). The regularly space dense acquisition grid forced to acquire the survey in different stages and with a variety of weather conditions. Therefore, a careful quality control was required. More than a half million first arrivals were inverted to provide a 3D Vp velocity model that reached depths of 120 m in the areas with the highest ray coverage. An extended borehole campaign, that included borehole geophysical measurements in some wells provided unique tight constraints on the lithology an a validation scheme for the tomographic results. The final image reveals a laterally variable structure consisting of four different lithological units. In this methodological validation test travel-time tomography features a high capacity of imaging in detail the lithological contrasts for complex structures located at very shallow depths.

  14. Possible Habilability of Martian Regolity and Research of Ancient Life "Biomarkers"

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.

    2017-05-01

    We consider environments of modern subsurface martian regolith layer as possible habitats of the terrestrial like microorganisms. Recent experimental studies demonstrate that low atmospheric pressure, low temperature and high level of cosmic rays ionizing radiation are not able to sterilize the subsurface layer of Mars. Even nonextremofile microorganisms can reproduce in martian regolith using films of liquid water which are produced by absorption of water vapor of subsurface ice sublimation. Areas of possible seasonal subsurface water flow (recurring slope lineae, dark dune spots) and methane emission regions are discussed as perspective sites for discovering of modern life on Mars. Degradation of "biomarkers" (complex organic molecules and isotopic ratio 13C/12C) in martian soil under high level of cosmic rays radiation is analyzed. We show the ancient biomarkers are effectively destroyed within period 108 -109 years. As result, probability of its discovering in shallow subsurface martian layer is low.

  15. The solution of the dam-break problem in the Porous Shallow water Equations

    NASA Astrophysics Data System (ADS)

    Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico

    2018-04-01

    The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.

  16. Internal evaporation and condensation characteristics in the shallow soil layer of an oasis

    NASA Astrophysics Data System (ADS)

    Ao, Yinhuan; Han, Bo; Lu, Shihua; Li, Zhaoguo

    2016-07-01

    The surface energy balance was analyzed using observations from the Jinta oasis experiment in the summer of 2005. A negative imbalance energy flux was found during daytime that could not be attributed to the soil heat storage process. Rather, the imbalance was related to the evaporation within the soil. The soil heat storage rate and the soil moisture variability always showed similar variations at a depth of 0.05 m between 0800 and 1000 (local standard time), while the observed imbalanced energy flux was very small, which implied that water vapor condensation occurred within the soil. Therefore, the distillation in shallow soil can be derived using reliable surface energy flux observations. In order to show that the importance of internal evaporation and condensation in the shallow soil layer, the soil temperatures at the depths of 0.05, 0.10, and 0.20 m were reproduced using a one-dimensional thermal diffusion equation, with the observed soil temperature at the surface and at 0.40 m as the boundary conditions. It was found that the simulated soil temperature improves substantially in the shallow layer when the water distillation is added as a sink/source term, even after the soil effective thermal conductivity has been optimized. This result demonstrates that the process of water distillation may be a dominant cause of both the temperature and moisture variability in the shallow soil layer.

  17. Dependence of mobility on shallow localized gap states in single-crystal organic field-effect-transistors

    NASA Astrophysics Data System (ADS)

    Butko, V. Y.; So, W.; Lang, D. V.; Chi, X.; Lashley, J. C.; Ramirez, A. P.

    2009-12-01

    In order to optimize the performance of molecular organic electronic devices it is important to study the intermolecular density of states and charge transport mechanisms in the environment of crystalline organic material. Using this approach in Field Effect Transistors (FETs) we show that material purification improves carrier mobility and decreases density of the deep localized electronic state. We also report a general exponential energy dependence of the density of localized states in a vicinity of the mobility edge (Fermi energies up to ∼7 times higher than the thermal energy (kT)) in a variety of the extensively purified molecular organic crystal FETs. This observation and the low activation energy of the order of ∼kT suggest that molecular structural misplacements of the sizes that are comparable with thermal molecular modes rather than impurity deep traps play a role in formation of these shallow states. We find that the charge carrier mobility in the FET nanochannels, μeff, is parameterized by two factors, the free-carrier mobility, μ0, and the ratio of the free carrier density to the total carrier density induced by gate bias. Crystalline FETs fabricated from rubrene, pentacene, and tetracene have a high free-carrier mobility, μ0∼50 cm2/Vs, at 300 K with lower device μeff dominated by localized shallow gap states. This relationship suggests that further improvements in electronic performance could be possible with enhanced device quality.

  18. [Deep needling and shallow needling at three acupoints around ear for subjective tinnitus: a randomized controlled trial].

    PubMed

    Yin, Tao; Ni, Jinxia; Zhu, Wenzeng

    2015-10-01

    To compare the effective differences between deep needling and shallow needling at three acupoints around ear for subjective tinnitus. Fifty patients with subjective tinnitus were randomized divided into a deep needling group and a shallow needling group, 25 cases in each group. Twenty-two patients in the deep needling group and 20 patients in the shallow needling group were brought into statistic in the end. In the two groups, the three acupoints around ear and distal acupoints were both selected. The acupoints of the affected side such as Yifeng (TE 17), Tinghui (GB 2), Ermen (TE 21), Zhigou (TE 6), Zhongzhu (TE 3) and Hegu (LI 4) were adopted. Yifeng (TE 17), Tinghui (GB 2) and Ermen (TE 21) were acupunctured 30-38 mm in the deep needling group and 15-20 mm in the shallow needling group. The other acupoints were conventionally acupunctured in the two groups. The needles were retained for 30 min,once a day and five times a week for all patients. The treatment was continuously for 4 weeks in the two groups. Tinnitus handicap inventory (THI) scores, tinnitus grades and visual analogue scale (VAS) for tinnitus sound levels were observed before and after treatment, and the effects of the two groups were compared. The total effective rate in the deep needling group was 59.1% (13/22), and it was better than 20.0% (4/20) in the shallow needling group (P < 0.05). In the deep needling, group, the THI score, tinnitus grade and the VAS score were improved than those before treatment (all P < 0.05). In the shallow needling group, the three above indices before and after treatment were not different in statistical significance (all P > 0.05). After treatment, all the three indices in the deep needling group were superior to those in the shallow needling group (all P < 0.05). Acupuncture at the three acupoints around ear deeply could apparently improve tinnitus, and reduce tinnitus sound levels for subjective tinnitus. The effect is better than that by shallow needling at the

  19. Temporal-spatial variations and influencing factors of nitrogen in the shallow groundwater of the nearshore vegetable field of Erhai Lake, China.

    PubMed

    Chen, Anqiang; Lei, Baokun; Hu, Wanli; Wang, Hongyuan; Zhai, Limei; Mao, Yanting; Fu, Bin; Zhang, Dan

    2018-02-01

    Nitrogen export from the nearshore vegetable field of Erhai Lake seriously threatens the water quality of Erhai Lake, which is the second largest highland freshwater lake in Yunnan Province, China. Among the nitrogen flows into Erhai Lake, shallow groundwater migration is a major pathway. The nitrogen variation and influencing factors in the shallow groundwater of the nearshore vegetable field of Erhai Lake are not well documented. A 2-year field experiment was conducted to determine the concentrations of nitrogen species in the shallow groundwater and their influencing factors in the nearshore vegetable field of Erhai Lake. The results showed that concentrations of TN, NO 3 - -N, and NO 2 - -N gradually increased with increasing elevation and distance from Erhai Lake, but the opposite was observed for NH 4 + -N in the shallow groundwater. The concentrations of nitrogen species in the rainy season were greater than those in the dry season. NO 3 - -N accounted for more than 79% of total nitrogen in shallow groundwater. Redundancy analysis showed that more than 70% of the temporal and spatial variations of nitrogen concentrations in the shallow groundwater were explained by shallow groundwater depth, and only approximately 10% of variation was explained by the factors of soil porosity, silt clay content of soil, and NH 4 + -N and NO 3 - -N concentrations of soil (p < 0.05). The shallow groundwater depth had more notable effects on nitrogen concentrations in the shallow groundwater than other factors. This result will strongly support the need for further research regarding the management practices for reducing nitrogen concentrations in shallow groundwater.

  20. Might rock moisture in shallow fractured bedrock underlying hillslopes provide vegetation resilience to future droughts?

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.; Dawson, T. E.; Salve, R.; Simonin, K. A.; Oshun, J.; Rempe, D.; Fung, I.

    2009-12-01

    the summer (controlling river baseflow). Sap flow measurements show strong seasonal response, and flow reversal, i.e. flow returning to the feeding root system at night. Together these data suggest the hypotheses that: 1) in the dry summers trees use “hydraulic lift” to exploit seasonally recharged rock moisture at depth (in the unsaturated zone above the groundwater table) and store this water in the soil in the evening (possibly benefiting lower canopy plants), 2) this process could provide a forest ecosystem resilience to the expanding droughts anticipated for California, and 3) available rock moisture depends on rock type and whether the shallow fractured rock zone develops. Rock moisture is missing from global climate models, and its availability to plants may strongly influence vegetation response and changes in regional climate.

  1. CO2 Leakage-Induced Shallow Aquifer Contaminations and Associated Health Risk Assessment.

    NASA Astrophysics Data System (ADS)

    Kim, C. Y.; Han, W. S.; Park, E.; Choung, S.; Piao, J.; Han, G.; Tianfu, X.

    2016-12-01

    Leakage of stored CO2 from designated deep formation could degrade portable groundwater quality in overlaying shallow aquifers. Dissolution of leaked CO2 causes to reduction of pH and alters dominant geochemical reactions, which ultimately enhances mobility of toxic heavy metals in shallow aquifer. In this study, among various toxic heavy metals, mobilization of As and U were focused because these metals are considered to be cancer potency factor when human being continuously exposes for long period. For this reason, it is critical to evaluate relationship between the amount of leaked CO2 into shallow aquifer and a degree of mobility in As and U. In the end, cancer risk to human body were quantified with probabilistic approach after accounting for shallow groundwater velocity, pumping rate from residential well, geologic heterogeneity. For this study, two-dimensional reactive transport models were developed. Geologic heterogeneity was accounted with three interbedded rock types, which consisted of sandstone, As and U bearing shale, and carbonate rocks, respectively. Within these three-rock types, variability includes changes in permeability, porosity, a type of minerals, and its volume fraction, accounting for both physical and chemical heterogeneities Finally, human health risk is calculated through multiplying cancer potency factor by average daily dose, which is obtained after acquiring for both As and U concentrations profile at residential well through reactive transport modeling. As per variability, a series of human health risks were calculated. Quantification of risk in conjunction with sensitivity analysis aids to evaluate a list of geologic parameters enhancing human health risk.

  2. Shallow-water habitat use by Bering Sea flatfishes along the central Alaska Peninsula

    NASA Astrophysics Data System (ADS)

    Hurst, Thomas P.

    2016-05-01

    Flatfishes support a number of important fisheries in Alaskan waters and represent major pathways of energy flow through the ecosystem. Despite their economic and ecological importance, little is known about the use of habitat by juvenile flatfishes in the eastern Bering Sea. This study describes the habitat characteristics of juvenile flatfishes in coastal waters along the Alaska Peninsula and within the Port Moller-Herendeen Bay system, the largest marine embayment in the southern Bering Sea. The two most abundant species, northern rock sole and yellowfin sole, differed slightly in habitat use with the latter occupying slightly muddier substrates. Both were more common along the open coastline than they were within the bay, whereas juvenile Alaska plaice were more abundant within the bay than along the coast and used shallow waters with muddy, high organic content sediments. Juvenile Pacific halibut showed the greatest shift in distribution between age classes: age-0 fish were found in deeper waters (~ 30 m) along the coast, whereas older juveniles were found in the warmer, shallow waters within the bay, possibly due to increased thermal opportunities for growth in this temperature-sensitive species. Three other species, starry flounder, flathead sole, and arrowtooth flounder, were also present, but at much lower densities. In addition, the habitat use patterns of spring-spawning flatfishes (northern rock sole, Pacific halibut, and Alaska plaice) in this region appear to be strongly influenced by oceanographic processes that influence delivery of larvae to coastal habitats. Overall, use of the coastal embayment habitats appears to be less important to juvenile flatfishes in the Bering Sea than in the Gulf of Alaska.

  3. Progress in the development of shallow-water mapping systems

    USGS Publications Warehouse

    Bergeron, E.; Worley, C.R.; O'Brien, T.

    2007-01-01

    The USGS (US Geological Survey) Coastal and Marine Geology has deployed an advance autonomous shallow-draft robotic vehicle, Iris, for shallow-water mapping in Apalachicola Bay, Florida. The vehicle incorporates a side scan sonar system, seismic-reflection profiler, single-beam echosounder, and global positioning system (GPS) navigation. It is equipped with an onboard microprocessor-based motor controller, delivering signals for speed and steering to hull-mounted brushless direct-current thrusters. An onboard motion sensor in the Sea Robotics vehicle control system enclosure has been integrated in the vehicle to measure the vehicle heave, pitch, roll, and heading. Three water-tight enclosures are mounted along the vehicle axis for the Edgetech computer and electronics system including the Sea Robotics computer, a control and wireless communications system, and a Thales ZXW real-time kinematic (RTK) GPS receiver. The vehicle has resulted in producing high-quality seismic reflection and side scan sonar data, which will help in developing the baseline oyster habitat maps.

  4. Optimization of shallow arches against instability using sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Kamat, Manohar P.

    1987-01-01

    The author discusses the problem of optimization of shallow frame structures which involve a coupling of axial and bending responses. A shallow arch of a given shape and of given weight is optimized such that its limit point load is maximized. The cross-sectional area, A(x) and the moment of inertia, I(x) of the arch obey the relationship I(x) = rho A(x) sup n, n = 1,2,3 and rho is a specified constant. Analysis of the arch for its limit point calculation involves a geometric nonlinear analysis which is performed using a corotational formulation. The optimization is carried out using a second-order projected Lagrangian algorithm and the sensitivity derivatives of the critical load parameter with respect to the areas of the finite elements of the arch are calculated using implicit differentation. Results are presented for an arch of a specified rise to span ratio under two different loadings and the limitations of the approach for the intermediate rise arches are addressed.

  5. Shallow, non-pumped wells: a low-energy alternative for cleaning polluted groundwater.

    PubMed

    Hudak, Paul F

    2013-07-01

    This modeling study evaluated the capability of non-pumped wells with filter media for preventing contaminant plumes from migrating offsite. Linear configurations of non-pumped wells were compared to permeable reactive barriers in simulated shallow homogeneous and heterogeneous aquifers. While permeable reactive barriers enabled faster contaminant removal and shorter distances of contaminant travel, non-pumped wells also prevented offsite contaminant migration. Overall, results of this study suggest that discontinuous, linear configurations of non-pumped wells may be a viable alternative to much more costly permeable reactive barriers for preventing offsite contaminant travel in some shallow aquifers.

  6. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes

    PubMed Central

    Fagherazzi, Sergio; Carniello, Luca; D'Alpaos, Luigi; Defina, Andrea

    2006-01-01

    Shallow tidal basins are characterized by extensive tidal flats and salt marshes that lie within specific ranges of elevation, whereas intermediate elevations are less frequent in intertidal landscapes. Here we show that this bimodal distribution of elevations stems from the characteristics of wave-induced sediment resuspension and, in particular, from the reduction of maximum wave height caused by dissipative processes in shallow waters. The conceptual model presented herein is applied to the Venice Lagoon, Italy, and demonstrates that areas at intermediate elevations are inherently unstable and tend to become either tidal flats or salt marshes. PMID:16707583

  7. Monitoring of shallow landslides by distributed optical fibers: insights from a physical model

    NASA Astrophysics Data System (ADS)

    Luca, Schenato; Matteo, Camporese; Luca, Palmieri; Alessandro, Pasuto; Salandin, Paolo

    2017-04-01

    Shallow landslides represent an extreme risk for individuals and structures due to their fast propagation and the very short time between appearance of warning signs and collapse. A lot of attention has been paid in the last decades to the analysis of activation mechanisms and to the implementation of appropriate early warning systems. Intense rainfall, stream erosion, flash floods, etc, are only few of the possible triggering factors that have been identified. All those factors may induce an increase in the forces acting and/or in the pore water pressure that eventually trigger the collapse. Due to the decrease of the shear resistance of soils, significant stresses develop at the sliding surface, determining local anomalous strain even before the collapse. This highlights the importance of monitoring the early appearance of hazardous strain fields. In light of the intrinsic lack of control and reproducibility in real cases, strain sensors have been applied in small-scale physical models and testbeds. Nonetheless, it has been observed that a reliable correlation between the landslide evolution and the strain field can be determined only by using minimally invasive sensors, while comprehensive information can be achieved at the cost of very fine spatial sampling, which represents the primary issue with small-to-medium scale physical models. It is evident how the two requirements, i.e., minimal invasiveness and high spatial resolution, are a limiting factor for standard sensor technology. In this regard, strain is one of the first variable addressed by optical fiber sensors, yet only recently for geotechnical applications and in very few case for landslide monitoring. In particular, the technology of distributed fiber optic sensors, with centimeter scale resolution, has the potential to address the aforementioned needs of small scale physical testing. In this work, for the first time, the strain field at the failure surface of a shallow landslide, reproduced in an

  8. The Windy Island Soliton Experiment (WISE): Shallow Water and Basin Experiment Configuration and Preliminary Observations

    DTIC Science & Technology

    2009-02-19

    Virginia 22203-1995 The Windy Island Soliton Experiment (WISE): Shallow Water and Basin Experiment Configuration and Preliminary Observations...case letters) The Windy Island Soliton Experiment (WISE): Shallow water and Basin Experiment Configuration and Preliminary Observations 5. FUNDING...release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The Windy Islands Soliton Experiment (WISE) was

  9. Estimation of Cloud Fraction Profile in Shallow Convection Using a Scanning Cloud Radar

    DOE PAGES

    Oue, Mariko; Kollias, Pavlos; North, Kirk W.; ...

    2016-10-18

    Large spatial heterogeneities in shallow convection result in uncertainties in estimations of domain-averaged cloud fraction profiles (CFP). This issue is addressed using large eddy simulations of shallow convection over land coupled with a radar simulator. Results indicate that zenith profiling observations are inadequate to provide reliable CFP estimates. Use of Scanning Cloud Radar (SCR), performing a sequence of cross-wind horizon-to-horizon scans, is not straightforward due to the strong dependence of radar sensitivity to target distance. An objective method for estimating domain-averaged CFP is proposed that uses observed statistics of SCR hydrometeor detection with height to estimate optimum sampling regions. Thismore » method shows good agreement with the model CFP. Results indicate that CFP estimates require more than 35 min of SCR scans to converge on the model domain average. Lastly, the proposed technique is expected to improve our ability to compare model output with cloud radar observations in shallow cumulus cloud conditions.« less

  10. Balanced bilinguals favor lexical processing in their opaque language and conversion system in their shallow language.

    PubMed

    Buetler, Karin A; de León Rodríguez, Diego; Laganaro, Marina; Müri, René; Nyffeler, Thomas; Spierer, Lucas; Annoni, Jean-Marie

    2015-11-01

    Referred to as orthographic depth, the degree of consistency of grapheme/phoneme correspondences varies across languages from high in shallow orthographies to low in deep orthographies. The present study investigates the impact of orthographic depth on reading route by analyzing evoked potentials to words in a deep (French) and shallow (German) language presented to highly proficient bilinguals. ERP analyses to German and French words revealed significant topographic modulations 240-280 ms post-stimulus onset, indicative of distinct brain networks engaged in reading over this time window. Source estimations revealed that these effects stemmed from modulations of left insular, inferior frontal and dorsolateral regions (German>French) previously associated to phonological processing. Our results show that reading in a shallow language was associated to a stronger engagement of phonological pathways than reading in a deep language. Thus, the lexical pathways favored in word reading are reinforced by phonological networks more strongly in the shallow than deep orthography. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A mathematical model of algae growth in a pelagic-benthic coupled shallow aquatic ecosystem.

    PubMed

    Zhang, Jimin; Shi, Junping; Chang, Xiaoyuan

    2018-04-01

    A coupled system of ordinary differential equations and partial differential equations is proposed to describe the interaction of pelagic algae, benthic algae and one essential nutrient in an oligotrophic shallow aquatic ecosystem with ample supply of light. The existence and uniqueness of non-negative steady states are completely determined for all possible parameter range, and these results characterize sharp threshold conditions for the regime shift from extinction to coexistence of pelagic and benthic algae. The influence of environmental parameters on algal biomass density is also considered, which is an important indicator of algal blooms. Our studies suggest that the nutrient recycling from loss of algal biomass may be an important factor in the algal blooms process; and the presence of benthic algae may limit the pelagic algal biomass density as they consume common resources even if the sediment nutrient level is high.

  12. A multidisciplinary methodological approach for slope stability assessment of an area prone to shallow landslides

    NASA Astrophysics Data System (ADS)

    Bordoni, Massimiliano; Meisina, Claudia; Valentino, Roberto; Bittelli, Marco; Battista Bischetti, Gian; Vercesi, Alberto; Chersich, Silvia; Giuseppina Persichillo, Maria

    2016-04-01

    Rainfall-induced shallow landslides are widespread slope instabilities phenomena in several hilly and mountainous contexts all over the world. Due to their high density of diffusion also in small areas, they can provoke important damages to terrains, infrastructures, buildings, and, sometimes, loss of human lives. Shallow landslides affect superficial soils of limited thickness (generally lower than 2 m), located above weathered or not bedrock levels. Their triggering mechanism is strictly linked to the hydrological response of the soils to rainfall events. Thus, it becomes fundamental a comprehensive analysis of the soil properties which can influence the susceptibility of a slope to shallow landslides. In this study, a multidisciplinary approach was followed for the characterization of the soils and the individuation of the triggering conditions in an area particularly prone to shallow failures, for slope stability assessment. This area corresponded to the hilly sector of North-Eastern Oltrepò Pavese (Lombardy Region, Northern Italy), where the density of shallow landslides is really high, reaching more than 36 landslides per km2. The soils of the study area were analyzed through a multidisciplinary characterization, which took into account for the main geotechnical, mechanical and mineralogical parameters and also for the main pedological features of the materials. This approach allowed for identifying the main features and the horizons which could influence the soil behavior in relation to the conditions that are preparatory to shallow landslides development. In a test-site slope, representative of the main geomorphological, geological and landslides distribution characteristics typical of the study area, a continuous in time monitoring of meteorological (rainfall amount, air temperature, air humidity, atmospheric pressure, net solar radiation, wind speed and direction) and hydrological (soil water content, pore water pressure) parameters was implemented. In

  13. Phase petrology reveals shallow magma storage prior to large explosive silicic eruptions at Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Weber, Gregor; Castro, Jonathan M.

    2017-05-01

    Understanding the conditions that culminate in explosive eruptions of silicic magma is of great importance for volcanic hazard assessment and crisis mitigation. However, geological records of active volcanoes typically show a wide range of eruptive behavior and magnitude, which can vary dramatically for individual eruptive centers. In order to evaluate possible future scenarios of eruption precursors, magmatic system variables for different eruption types need to be constrained. Here we use petrological experiments and microanalysis of crystals to clarify the P-T-x state under which rhyodacitic melts accumulated prior to the H3 eruption; the largest Holocene Plinian eruption of Hekla volcano in Iceland. Cobalt-buffered, H2O-saturated phase equilibrium experiments reproduce the natural H3 pumice phenocryst assemblage (pl > fa + cpx > ilm + mt > ap + zrc) and glass chemistry, at 850 ± 15°C and PH2O of 130 to 175 MPa, implying shallow crustal magma storage between 5 and 6.6 km. The systematics of FeO and anorthite (CaAl2Si2O8) content in plagioclase reveal that thermal gradients were more important than compositional mixing or mingling within this magma reservoir. As these petrological findings indicate magma storage much shallower than is currently thought of Hekla's mafic system, we use the constrained storage depth in combination with deformation modeling to forecast permissible surface uplift patterns that could stem from pre-eruptive magma intrusion. Using forward modeling of surface deformation above various magma storage architectures, we show that vertical surface displacements caused by silicic magma accumulation at ∼6 km depth would be narrower than those observed in recent mafic events, which are fed from a lower crustal storage zone. Our results show how petrological reconstruction of magmatic system variables can help link signs of pre-eruptive geophysical unrest to magmatic processes occurring in reservoirs at shallow depths. This will enhance our

  14. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  15. Micro Unmanned Surface Vehicle for Shallow Littoral Data Sampling

    NASA Astrophysics Data System (ADS)

    Murphy, R. R.; Wilde, G.

    2016-02-01

    This paper describes the creation of an autonomous air boat that can be carried by one person, called a micro unmanned surface vehicle (USV), for sensor sampling in shallow littoral areas such as inlets and creeks. A USV offers advantages over other types of unmanned marine vehicles. Unlike an autonomous underwater vehicle, the Challenge 1.0 air boat can operate in shallow water of less than 15 cm depth and maintain network connectivity for control and data sampling. A USV does not require a tether, like a remotely operated marine vehicle (ROV), which would limit the distance and mobility. However, a USV operating in shallow littoral areas poses several challenges. Navigation is a challenge since rivers and bays may have semi-submerged obstacles and there may be no depth maps; the approach taken in the Challenge 1.0 project is to let the operator specify a safe area of the water by visual inspection and then the USV autonomously creates a path to optimally sample the collision free area. Navigation is also a challenge because of platform dynamics-the USV we describe is a non-holonomic vehicle; this paper explores spiral paths rather than boustrophedon paths. Another challenge is the quality of sensing. Water-based sensing is noisy and thus a reading at a single point may not reflect the overall value. In practice, areas are sampled rather than a single point, but the noise in the point values within the sampled area produce a survey with widely varying numbers and are difficult for humans to interpret. This paper implements an inverse distance weighting interpolation algorithm to produce a visual "heatmap" that reliably portrays the smoothed data.

  16. California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project--shallow aquifer assessment

    USGS Publications Warehouse

    ,

    2013-01-01

    The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.

  17. Use of reinforced soil foundation (RSF) to support shallow foundation.

    DOT National Transportation Integrated Search

    2008-11-01

    This research study aims at investigating the potential benefits of using reinforced soil foundations to improve the bearing capacity and reduce the settlement of shallow foundations on soils. To implement this objective, a total of 117 tests, includ...

  18. Use of reinforced soil foundation (RSF) to support shallow foundation.

    DOT National Transportation Integrated Search

    2008-11-01

    The main objective of this research study is to investigate potential benefits of using the reinforced soil foundations to improve the bearing capacity and to reduce the settlement of shallow foundations on soils. This includes examining influences o...

  19. Spatial attenuation of different sound field components in a water layer and shallow-water sediments

    NASA Astrophysics Data System (ADS)

    Belov, A. I.; Kuznetsov, G. N.

    2017-11-01

    The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.

  20. A compact cosmic muon veto detector and possible use with the Iron Calorimeter detector for neutrinos

    NASA Astrophysics Data System (ADS)

    Panchal, N.; Mohanraj, S.; Kumar, A.; Dey, T.; Majumder, G.; Shinde, R.; Verma, P.; Satyanarayana, B.; Datar, V. M.

    2017-11-01

    The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction, through the assembly and testing of a ~1 m × 1 m × 0.3 m plastic scintillator based detector, is described. The plan for making a CMV detector for a smaller prototype mini-ICAL is also outlined.

  1. The momentum constraints on the shallow meridional circulation associated with the marine ITCZ

    NASA Astrophysics Data System (ADS)

    Dixit, Vishal; Srinivasan, J.

    2017-12-01

    Recent studies have shown that the shallow meridional circulation (SMC) coexists with the deep circulation in the marine ITCZ. The SMC has been assumed to be forced by strong meridional gradients of Sea Surface Temperature (SST) which affect the atmosphere under hydrostatic balance. In this paper, we present a new viewpoint that the shallow meridional circulation is a part of circulation that forms when the marine ITCZ is located away from the equator. To support this view, we have used reanalysis data over east Pacific ocean to show that the shallow meridional circulation is absent when the ITCZ is located near the equator while it is strong to the south of the ITCZ when the ITCZ is located away from the equator. To further support this view, we have conducted idealized aquaplanet experiments by shifting SST maximum polewards to simulate the observed contrast in the meridional circulation associated with near equatorial and off-equatorial ITCZ. The detailed momentum budget of the flow above the boundary layer shows that, to the south of an off-equatorial ITCZ, the dominant balance between the Coriolis force and the advection of relative vorticity by the mean flow leads to cancellation of the planetary rotational effects. As a result, the net rotational effects experienced by the diverging flow above the boundary layer are negligible and a shallow meridional flow along the pressure gradients is generated. This dominant balance does not occur in the aquaplanet GCM when the ITCZ forms near the equator.

  2. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.

    PubMed

    Funane, Tsukasa; Atsumori, Hirokazu; Katura, Takusige; Obata, Akiko N; Sato, Hiroki; Tanikawa, Yukari; Okada, Eiji; Kiguchi, Masashi

    2014-01-15

    To quantify the effect of absorption changes in the deep tissue (cerebral) and shallow tissue (scalp, skin) layers on functional near-infrared spectroscopy (fNIRS) signals, a method using multi-distance (MD) optodes and independent component analysis (ICA), referred to as the MD-ICA method, is proposed. In previous studies, when the signal from the shallow tissue layer (shallow signal) needs to be eliminated, it was often assumed that the shallow signal had no correlation with the signal from the deep tissue layer (deep signal). In this study, no relationship between the waveforms of deep and shallow signals is assumed, and instead, it is assumed that both signals are linear combinations of multiple signal sources, which allows the inclusion of a "shared component" (such as systemic signals) that is contained in both layers. The method also assumes that the partial optical path length of the shallow layer does not change, whereas that of the deep layer linearly increases along with the increase of the source-detector (S-D) distance. Deep- and shallow-layer contribution ratios of each independent component (IC) are calculated using the dependence of the weight of each IC on the S-D distance. Reconstruction of deep- and shallow-layer signals are performed by the sum of ICs weighted by the deep and shallow contribution ratio. Experimental validation of the principle of this technique was conducted using a dynamic phantom with two absorbing layers. Results showed that our method is effective for evaluating deep-layer contributions even if there are high correlations between deep and shallow signals. Next, we applied the method to fNIRS signals obtained on a human head with 5-, 15-, and 30-mm S-D distances during a verbal fluency task, a verbal working memory task (prefrontal area), a finger tapping task (motor area), and a tetrametric visual checker-board task (occipital area) and then estimated the deep-layer contribution ratio. To evaluate the signal separation

  3. 76 FR 59064 - Fisheries of the Exclusive Economic Zone Off Alaska; Shallow-Water Species by Vessels Using Trawl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    .... 101126522-0640-02] RIN 0648-XA722 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by [[Page 59065

  4. Contributions to a shallow aquifer study by reprocessed seismic sections from petroleum exploration surveys, eastern Abu Dhabi, United Arab Emirates

    USGS Publications Warehouse

    Woodward, D.

    1994-01-01

    The US Geological Survey, in cooperation with the National Drilling Company of Abu Dhabi, is conducting a 4-year study of the fresh and slightly saline groundwater resources of the eastern Abu Dhabi Emirate. Most of this water occurs in a shallow aquifer, generally less than 150 m deep, in the Al Ain area. A critical part of the Al Ain area coincides with a former petroleum concession area where about 2780 km of vibroseis data were collected along 94 seismic lines during 1981-1983. Field methods, acquistion parameters, and section processing were originally designed to enhance reflections expected at depths ranging from 5000 to 6000 m, and subsurface features directly associated with the shallow aquifer system were deleted from the original seismic sections. The original field tapes from the vibroseis survey were reprocessed in an attempt to extract shallow subsurface information (depths less than 550 m) for investigating the shallow aquifer. A unique sequence of reproccessing parameters was established after reviewing the results from many experimental tests. Many enhancements to the resolution of shallow seismic reflections resulted from: (1) application of a 20-Hz, low-cut filter; (2) recomputation of static corrections to a datum nearer the land surface; (3) intensive velocity analyses; and (4) near-trace muting analyses. The number, resolution, and lateral continuity of shallow reflections were greatly enhanced on the reprocessed sections, as was the delineation of shallow, major faults. Reflections on a synthetic seismogram, created from a borehole drilled to a depth of 786 m on seismic line IQS-11, matcheddprecisely with shallow reflections on the reprocessed section. The 33 reprocessed sections were instrumental in preparing a map showing the major structural features that affect the shallow aquifer system. Analysis of the map provides a better understanding of the effect of these shallow features on the regional occurrence, movement, and quality of

  5. High-k shallow traps observed by charge pumping with varying discharging times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are inmore » fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.« less

  6. Study on low intensity aeration oxygenation model and optimization for shallow water

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  7. A Galerkin approximation for linear elastic shallow shells

    NASA Astrophysics Data System (ADS)

    Figueiredo, I. N.; Trabucho, L.

    1992-03-01

    This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.

  8. Evaluating shallow-flow rock structures as scour countermeasures at bridges.

    DOT National Transportation Integrated Search

    2009-12-01

    A study to determine whether or not shallow-flow rock structures could reliably be used at bridge abutments in place of riprap. Research was conducted in a two-phase effort beginning with numerical modeling and ending with field verification of model...

  9. Guide for fabricating and installing shallow ground water observation wells

    Treesearch

    Carolyn C. Bohn

    2001-01-01

    The fabrication and use of three tools to assist in the manual installation of shallow ground water observation wells are described. These tools are easily fabricated at a local machine shop. A method for calibrating pressure transducers is also described.

  10. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  11. Shallow-water seismoacoustic noise generated by tropical storms Ernesto and Florence.

    PubMed

    Traer, James; Gerstoft, Peter; Bromirski, Peter D; Hodgkiss, William S; Brooks, Laura A

    2008-09-01

    Land-based seismic observations of double frequency (DF) microseisms generated during tropical storms Ernesto and Florence are dominated by signals in the 0.15-0.5 Hz band. In contrast, data from sea floor hydrophones in shallow water (70 m depth, 130 km off the New Jersey coast) show dominant signals in the ocean gravity-wave frequency band, 0.02-0.18 Hz, and low amplitudes from 0.18 to 0.3 Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Florence produced large waves over deep water while Ernesto only generated waves in coastal regions, yet both storms produced similar spectra. This suggests near-coastal shallow water as the dominant region for observed microseism generation.

  12. Predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States.

    PubMed

    Yang, Ningfang; Winkel, Lenny H E; Johannesson, Karen H

    2014-05-20

    Groundwater contaminated with arsenic (As) threatens the health of more than 140 million people worldwide. Previous studies indicate that geology and sedimentary depositional environments are important factors controlling groundwater As contamination. The Mississippi River delta has broadly similar geology and sedimentary depositional environments to the large deltas in South and Southeast Asia, which are severely affected by geogenic As contamination and therefore may also be vulnerable to groundwater As contamination. In this study, logistic regression is used to develop a probability model based on surface hydrology, soil properties, geology, and sedimentary depositional environments. The model is calibrated using 3286 aggregated and binary-coded groundwater As concentration measurements from Bangladesh and verified using 78 As measurements from south Louisiana. The model's predictions are in good agreement with the known spatial distribution of groundwater As contamination of Bangladesh, and the predictions also indicate high risk of As contamination in shallow groundwater from Holocene sediments of south Louisiana. Furthermore, the model correctly predicted 79% of the existing shallow groundwater As measurements in the study region, indicating good performance of the model in predicting groundwater As contamination in shallow aquifers of south Louisiana.

  13. Environmental assessment model for shallow land disposal of low-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Little, C. A.; Fields, D. E.; Emerson, C. J.; Hiromoto, G.

    1981-09-01

    The PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) computer code developed to evaluate health effects from shallow land burial trenches is described. This generic model assesses radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000 y period following the end of burial operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population includes ground water transport overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer. Cumulative health effects in terms of deaths from cancer are calculated for the population over the 1000 y period using a life table approach. Data bases for three shallow land burial sites (Barnwell, South Carolina, Beatty, Nevada, and West Valley, New York) are under development. The interim model, includes coding for environmental transport through air, surface water, and ground water.

  14. Earthquake source properties of a shallow induced seismic sequence in SE Brazil

    NASA Astrophysics Data System (ADS)

    Agurto-Detzel, Hans; Bianchi, Marcelo; Prieto, Germán. A.; Assumpção, Marcelo

    2017-04-01

    We study source parameters of a cluster of 21 very shallow (<1 km depth) small-magnitude (Mw < 2) earthquakes induced by percolation of water by gravity in SE Brazil. Using a multiple empirical Green's functions (meGf) approach, we estimate seismic moments, corner frequencies, and static stress drops of these events by inversion of their spectral ratios. For the studied magnitude range (-0.3 < Mw < 1.9), we found an increase of stress drop with seismic moment. We assess associated uncertainties by considering different signal time windows and by performing a jackknife resampling of the spectral ratios. We also calculate seismic moments by full waveform inversion to independently validate our moments from spectral analysis. We propose repeated rupture on a fault patch at shallow depth, following continuous inflow of water, as the cause for the observed low absolute stress drop values (<1 MPa) and earthquake size dependency. To our knowledge, no other study on earthquake source properties of shallow events induced by water injection with no added pressure is available in the literature. Our study suggests that source parameter characterization may provide additional information of induced seismicity by hydraulic stimulation.

  15. A Shallow Layer Approach for Geo-flow emplacement

    NASA Astrophysics Data System (ADS)

    Costa, A.; Folch, A.; Mecedonio, G.

    2009-04-01

    Geophysical flows such as lahars or lava flows severely threat the communities located on or near the volcano flanks. Risks and damages caused by the propagation of this kind of flows require a quantitative description of this phenomenon and reliable tools for forecasting their emplacement. Computational models are a valuable tool for planning risk mitigation countermeasures, such as human intervention to force flow diversion, artificial barriers, and allow for significant economical and social benefits. A FORTRAN 90 code based on a Shallow Layer Approach for Geo-flows (SLAG) for describing transport and emplacement of diluted lahars, water and lava was developed in both serial and parallel version. Three rheological models, such as those describing i) a viscous, ii) a turbulent, and iii) a dilatant flow respectively, were implemented in order to describe transport of lavas, water and diluted lahars. The code was made user-friendly by creating some interfaces that allow the user to easily define the problem, extract and interpolate the topography of the simulation domain. Moreover SLAG outputs can be written in both GRD format (e.g., Surfer), NetCDF format, or visualized directly in GoogleEarth. In SLAG the governing equations were treated using a Godunov splitting method following George (2008) algorithm based on a Riemann solver for the shallow water equations that decomposes an augmented state variable the depth, momentum, momentum flux, and bathymetry into four propagating discontinuities or waves. For our application, the algorithm was generalized for solving the energy equation. For validating the code in simulating real geophysical flows, we performed few simulations the lava flow event of the the 3rd and 4th January 1992 Etna eruption, the July 2001 Etna lava flows, January 2002 Nyragongo lava flows and few test cases for simulating transport of diluted lahars. Ref: George, D.L. (2008), Augmented Riemann Solvers for the Shallow Water Equations over Variable

  16. Flow and coherent structures around circular cylinders in shallow water

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Constantinescu, George

    2017-06-01

    Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid

  17. The role of dispersal mode and habitat specialization for metacommunity structure of shallow beach invertebrates.

    PubMed

    Rodil, Iván F; Lucena-Moya, Paloma; Jokinen, Henri; Ollus, Victoria; Wennhage, Håkan; Villnäs, Anna; Norkko, Alf

    2017-01-01

    Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific traits of the study organism. We examined the role of environmental and spatial factors in structuring benthic communities from a highly connected shallow beach network using a metacommunity approach. Both factors contributed to a varying degree to the structure of the local communities suggesting that environmental filters and dispersal-related mechanisms played key roles in determining abundance patterns. We categorized benthic taxa according to their dispersal mode (passive vs. active) and habitat specialization (generalist vs. specialist) to understand the relative importance of environment and dispersal related processes for shallow beach metacommunities. Passive dispersers were predicted by a combination of environmental and spatial factors, whereas active dispersers were not spatially structured and responded only to local environmental factors. Generalists were predicted primarily by spatial factors, while specialists were only predicted by local environmental factors. The results suggest that the role of the spatial component in metacommunity organization is greater in open coastal waters, such as shallow beaches, compared to less-connected environmentally controlled aquatic systems. Our results also reveal a strong environmental role in structuring the benthic metacommunity of shallow beaches. Specifically, we highlight the sensitivity of shallow beach macrofauna to environmental factors related to eutrophication proxies.

  18. Shallow near-fault material self organizes so it is just nonlinear in typical strong shaking

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2011-12-01

    Cracking within shallow compliant fault zones self-organizes so that strong dynamic stresses marginally exceed the elastic limit. To the first order, the compliant material experiences strain boundary conditions imposed by underlying stiffer rock. A major strike-slip fault yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic stress is this quantity times the local shear modulus. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock surrounding the shallow fault zone. The imposed dynamic strain in stiff rock causes Coulomb failure and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Each subsequent event causes more cracking until the rock becomes compliant enough that it just reaches its elastic limit. Further events maintain the material at the shear modulus where it just fails. Analogously, shallow damaged regolith forms with its shear modulus and S-wave velocity increasing with depth so it just reaches failure during typical strong shaking. The general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock. The equilibrium shear modulus and S-wave velocity depend only modestly on the effective coefficient of internal friction.

  19. The role of dispersal mode and habitat specialization for metacommunity structure of shallow beach invertebrates

    PubMed Central

    Lucena-Moya, Paloma; Jokinen, Henri; Ollus, Victoria; Wennhage, Håkan; Villnäs, Anna; Norkko, Alf

    2017-01-01

    Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific traits of the study organism. We examined the role of environmental and spatial factors in structuring benthic communities from a highly connected shallow beach network using a metacommunity approach. Both factors contributed to a varying degree to the structure of the local communities suggesting that environmental filters and dispersal-related mechanisms played key roles in determining abundance patterns. We categorized benthic taxa according to their dispersal mode (passive vs. active) and habitat specialization (generalist vs. specialist) to understand the relative importance of environment and dispersal related processes for shallow beach metacommunities. Passive dispersers were predicted by a combination of environmental and spatial factors, whereas active dispersers were not spatially structured and responded only to local environmental factors. Generalists were predicted primarily by spatial factors, while specialists were only predicted by local environmental factors. The results suggest that the role of the spatial component in metacommunity organization is greater in open coastal waters, such as shallow beaches, compared to less-connected environmentally controlled aquatic systems. Our results also reveal a strong environmental role in structuring the benthic metacommunity of shallow beaches. Specifically, we highlight the sensitivity of shallow beach macrofauna to environmental factors related to eutrophication proxies. PMID:28196112

  20. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    NASA Astrophysics Data System (ADS)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  1. Preliminary numerical simulation for shallow strata stability of coral reef in South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Qinqin; Zhan, Wenhuan; Zhang, Jinchang

    2017-04-01

    Coral reefs are the geologic material and special rock and soil, which live in shallow water of the tropic ocean and are formed through biological and geological action. Since infrastructure construction is being increasingly developed on coral reefs during recent years, it is necessary to evaluate the shallow strata stability of coral reefs in the South China Sea. The paper is to study the borehole profiles for shallow strata of coral reefs in the South China Sea, especially in the hydrodynamic marine environment?, and to establish a geological model for numerical simulation with Geo-Studio software. Five drilling holes show a six-layer shallow structure of South China Sea, including filling layer, mid-coarse sand, coral sand gravel, fine sand, limestone debris and reef limestone. The shallow coral reef profile next to lagoon is similar to "layers cake", in which the right side close to the sea is analogous to "block cake". The simulation results show that coral reef stability depends on wave loads and earthquake strength, as well as the physical properties of coral reefs themselves. The safety factor of the outer reef is greater than 10.0 in the static condition, indicating that outer reefs are less affected by the wave and earthquake. However, the safety factor next to lagoon is ranging from 0.1 to 4.9. The main reason for the variations that the strata of coral reefs close to the sea are thick. For example, the thickness of reef limestone is more than 10 m and equivalent to the block. When the thickness of inside strata is less than 10 m, they show weak engineering geological characteristics. These findings can provide useful information for coral reef constructions in future. This work was funded by National Basic Research Program of China (contract: 2013CB956104) and National Natural Science Foundation of China (contract: 41376063).

  2. Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.

    2017-12-01

    Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.

  3. Effects of shallow and deep endotracheal tube suctioning on cardiovascular indices in patients in intensive care units.

    PubMed

    Irajpour, Alireza; Abbasinia, Mohammad; Hoseini, Abbas; Kashefi, Parviz

    2014-07-01

    Clearing the endotracheal tube through suctioning should be done to promote oxygenation. Depth of suctioning is one of the variables in this regard. In shallow suctioning method, the catheter passes to the tip of the endotracheal tube, and in deep suctioning method, it passes beyond the tip into the trachea or brunches. This study aimed to evaluate the effect of shallow and deep suctioning methods on cardiovascular indices in patients hospitalized in the intensive care units (ICUs). In this clinical trial, 74 patients were selected among those who had undergone mechanical ventilation in the ICU of Al-Zahra Hospital, Isfahan, Iran using convenience sampling method. The subjects were randomly allocated to shallow and deep suctioning groups. Heart rate (HR) and blood pressure (BP) were measured immediately before and 1, 2, and 3 min after each suctioning. Number of times of suctioning was also noted in both the groups. Data were analyzed using repeated measures analysis of variance (ANOVA), Chi-square and independent t-tests. HR and BP were significantly increased after suctioning in both the groups (P < 0.05). But these changes were not significant between the two groups (P > 0.05). The suctioning count was significantly higher in the shallow suctioning group than in the deep suctioning group. Shallow and deep suctioning were similar in their effects on HR and BP, but shallow suctioning caused further manipulation of patient's trachea than deep suctioning method. Therefore, in order to prevent complications, nurses are recommended to perform the endotracheal tube suctioning by the deep method.

  4. Delay/Disruption Tolerant Network-Based Message Forwarding for a River Pollution Monitoring Wireless Sensor Network Application

    PubMed Central

    Velásquez-Villada, Carlos; Donoso, Yezid

    2016-01-01

    Communications from remote areas that may be of interest is still a problem. Many innovative projects applied to remote sites face communications difficulties. The GOLDFISH project was an EU-funded project for river pollution monitoring in developing countries. It had several sensor clusters, with floating WiFi antennas, deployed along a downstream river’s course. Sensor clusters sent messages to a Gateway installed on the riverbank. This gateway sent the messages, through a backhaul technology, to an Internet server where data was aggregated over a map. The communication challenge in this scenario was produced by the antennas’ movement and network backhaul availability. Since the antennas were floating on the river, communications could be disrupted at any time. Also, 2G/3G availability near the river was not constant. For non-real-time applications, we propose a Delay/Disruption Tolerant Network (DTN)-based solution where all nodes have persistent storage capabilities and DTN protocols to be able to wait minutes or hours to transmit. A mechanical backhaul will periodically visit the river bank where the gateway is installed and it will automatically collect sensor data to be carried to an Internet-covered spot. The proposed forwarding protocol delivers around 98% of the messages for this scenario, performing better than other well-known DTN routing protocols. PMID:27023554

  5. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    NASA Astrophysics Data System (ADS)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  6. Removing sun glint from optical remote sensing images of shallow rivers

    USGS Publications Warehouse

    Overstreet, Brandon T.; Legleiter, Carl

    2017-01-01

    Sun glint is the specular reflection of light from the water surface, which often causes unusually bright pixel values that can dominate fluvial remote sensing imagery and obscure the water-leaving radiance signal of interest for mapping bathymetry, bottom type, or water column optical characteristics. Although sun glint is ubiquitous in fluvial remote sensing imagery, river-specific methods for removing sun glint are not yet available. We show that existing sun glint-removal methods developed for multispectral images of marine shallow water environments over-correct shallow portions of fluvial remote sensing imagery resulting in regions of unreliable data along channel margins. We build on existing marine glint-removal methods to develop a river-specific technique that removes sun glint from shallow areas of the channel without overcorrection by accounting for non-negligible water-leaving near-infrared radiance. This new sun glint-removal method can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. For an example image of the gravel-bed Snake River, Wyoming, USA, observed-vs.-predicted R2 values for depth retrieval improved from 0.66 to 0.76 following sun glint removal. The methodology presented here is straightforward to implement and could be incorporated into image processing workflows for multispectral images that include a near-infrared band.

  7. Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment

    NASA Astrophysics Data System (ADS)

    Luo, Jing

    Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.

  8. The legacy of large regime shifts in shallow lakes.

    PubMed

    Ramstack Hobbs, Joy M; Hobbs, William O; Edlund, Mark B; Zimmer, Kyle D; Theissen, Kevin M; Hoidal, Natalie; Domine, Leah M; Hanson, Mark A; Herwig, Brian R; Cotner, James B

    2016-12-01

    Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention. © 2016 by the Ecological Society of America.

  9. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  10. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    PubMed

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  11. Evidence of a possible NNE-trending fault zone in the Summerville, South Carolina, area from shallow seismic reflection surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marple, R.T.; Talwani, P.

    1994-03-01

    Five high-resolution seismic-reflection surveys trending approximately WNW-ESE and totaling about 31 km were acquired in the Summerville, South Carolina, area. The surveys trend across the postulated Woodstock fault zone. These newly acquired data together with earlier data revealed the existence of an [approximately]50-km-long feature associated with gentle warping of the shallow sediments that lies along a recently described zone of river anomalies (ZRA). The first ([approximately]5.9-km-long) seismic reflection profile located about 14 km NNE of Summerville revealed that the J reflector (basalt) at about 670 m depth is offset about 30--40 m with the west side up. The overlying sedimentsmore » displayed upwarping rather than brittle offset. A second ([approximately]6.7-km-long) survey located along interstate Highway 26 revealed as much as 30--40 m of upwarping of the sediments above about 450 m depth. A third ([approximately]7.3-km-long) profile acquired through the town of Summerville revealed four, [approximately]200--300 m wide, nearly vertical zones in which the reflectors are noncoherent. Away from these zones the reflectors are relatively flat and are slightly higher on the west side of each zone. The fourth (3-km-long) survey was located about 5 km SW of Middleton Gardens and indicated minor faulting at about 500 m depth. The fifth ([approximately]6.4-km-long) seismic survey acquired just north of Ravenel revealed an [approximately]0.5-km-wide zone in which the reflectors in the top 350 m displayed as much as 20 m of upwarping. On all the surveys, except for the first, the basalt was at too great a depth to be resolved.« less

  12. Muon background studies for shallow depth Double - Chooz near detector

    NASA Astrophysics Data System (ADS)

    Gómez, H.

    2015-08-01

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  13. Sediment Transport at Density Fronts in Shallow Water

    DTIC Science & Technology

    2014-07-16

    June 2009 on the Skagit Tidal flats in Puget Sound, coordinated with other researchers in the Tidal Flats DRI. Focused observations of the shallow...on wind correlation length scales and implications for coastal ocean modeling (Raubenheimer et al., 2013). We also worked on applying to the model...From the Skagit model results, we found that the rate of change of stratification, quantified as the integrated potential energy anomaly O (Simpson

  14. Recalcitrant deep and shallow nodes in Aristolochia (Aristolochiaceae) illuminated using anchored hybrid enrichment.

    PubMed

    Wanke, Stefan; Granados Mendoza, Carolina; Müller, Sebastian; Paizanni Guillén, Anna; Neinhuis, Christoph; Lemmon, Alan R; Lemmon, Emily Moriarty; Samain, Marie-Stéphanie

    2017-12-01

    Recalcitrant relationships are characterized by very short internodes that can be found among shallow and deep phylogenetic scales all over the tree of life. Adding large amounts of presumably informative sequences, while decreasing systematic error, has been suggested as a possible approach to increase phylogenetic resolution. The development of enrichment strategies, coupled with next generation sequencing, resulted in a cost-effective way to facilitate the reconstruction of recalcitrant relationships. By applying the anchored hybrid enrichment (AHE) genome partitioning strategy to Aristolochia using an universal angiosperm probe set, we obtained 231-233 out of 517 single or low copy nuclear loci originally contained in the enrichment kit, resulting in a total alignment length of 154,756bp to 160,150bp. Since Aristolochia (Piperales; magnoliids) is distantly related to any angiosperm species whose genome has been used for the plant AHE probe design (Amborella trichopoda being the closest), it serves as a proof of universality for this probe set. Aristolochia comprises approximately 500 species grouped in several clades (OTUs), whose relationships to each other are partially unknown. Previous phylogenetic studies have shown that these lineages branched deep in time and in quick succession, seen as short-deep internodes. Short-shallow internodes are also characteristic of some Aristolochia lineages such as Aristolochia subsection Pentandrae, a clade of presumably recent diversification. This subsection is here included to test the performance of AHE at species level. Filtering and subsampling loci using the phylogenetic informativeness method resolves several recalcitrant phylogenetic relationships within Aristolochia. By assuming different ploidy levels during bioinformatics processing of raw data, first hints are obtained that polyploidization contributed to the evolution of Aristolochia. Phylogenetic results are discussed in the light of current systematics and

  15. Developing a Robust Geochemical and Reactive Transport Model to Evaluate Possible Sources of Arsenic at the CO2 Sequestration Natural Analog Site in Chimayo, New Mexico

    EPA Science Inventory

    Migration of carbon dioxide (CO2) from deep storage formations into shallow drinking water aquifers is a possible system failure related to geologic CO2 sequestration. A CO2 leak may cause mineral precipitation/dissolution reactions, changes in a...

  16. Delineation of a landfill leachate plume using shallow electromagnetic and ground-penetrating radar surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobes, D.C.; Armstrong, M.J.; Broadbent, M.

    1994-12-31

    Leachate plumes are often more electrically conductive than the surrounding host pore waters, and thus can be detected using shallow electromagnetic (EM) methods. The depth of penetration of ground penetrating radar (GPR) is controlled to a large extent by the electrical conductivity. Conductive leachate plumes will appear as ``blank`` areas in the radar profiles, because the radar energy is more severely attenuated in the region of the leachate plume. The authors present here the results of EM and GPR Surveys carried out in an area adjacent to a landfill site. Previous resistivity surveys indicated the presence of a leachate plumemore » originating from an early stage of the landfill operation. The shallow EM and GPR surveys were carried out, in part, to confirm and refine the resistivity results, and to delineate the spatial extent of the plume. The surficial sediments are coastal sands, and the dune topography has an effect on the EM results, even though the variations in elevation are, in general, no more than 3 m. Besides the leachate plume, numerous conductivity highs and lows are present, which are at least coarsely correlated with topographic lows and highs. Following the empirical procedure outlined by Monier-Williams et al. (1990), the topographic effects have been removed, and the plume is better isolated and delineated. A possible second, weaker leachate plume has been identified, emanating from the current landfill operation. The second plume may follow a channel that was masked by the overlying dune sands. The leading edge of the primary leachate plume is moving to the south-southeast at a rate of 14 to 15 m/yr.« less

  17. High resolution shallow co-seismic and post-seismic slip from the 2016 central Italy earthquake sequence captured using terrestrial laser scanning, structure from motion and low-cost near-field GNSS

    NASA Astrophysics Data System (ADS)

    Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M.; Walters, R. J.

    2017-12-01

    Coseismic fault slip in the shallow crust is poorly constrained by many of the conventional tools used to record deformation during earthquakes. GNSS stations are often distributed too far from faults and radar images tend to decorrelate across earthquake surface ruptures. As a result, our understanding of near-field fault slip, shallow slip deficits, and off-fault deformation is limited. We present evidence from the 2016 central Italy earthquake sequence, during which we captured shallow coseismic and post-seismic slip using a combination of terrestrial laser scanning (TLS), structure-from-motion (SfM), and near-field low-cost GNSS recording at 1Hz. Three Mw>6 earthquakes on the 24th August, 26th and 30th October all involved slip on the Mt Vettore-Mt Bove fault system. We collected TLS and SfM point clouds across three separate segments of this system. Each segment experienced a different record of slip during the earthquake sequence; all three ruptured in the largest event (Mw 6.6. on October 30th) but two segments also ruptured during either the 24th August or the 26th October earthquakes. Following the Mw 6.6 earthquake, the faults were repeatedly surveyed using TLS, with the first scan collected c. 5 hours following the earthquake. This represents the first known instance where shallow co-seismic slip has been recorded by pre- and post-event terrestrial laser scanning. Displacement continuously measured across GNSS pairs at 1 Hz demonstrates that permanent near field displacement developed across the fault in the immediate seconds following the initiation of the rupture. However, a discrepancy between on-fault field measurements of surface displacement and the GNSS recorded displacement over 1km long baselines hints at a more complex rupture processes and the possibility of high slip gradients in the shallow subsurface. Displacement measured by differential TLS confirms the presence of these shallow slip deficits but suggests that shallow slip gradient may be

  18. Wrinkle ridges on Venusian plains: Indicators of shallow crustal stress orientations at local and regional scales

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1992-01-01

    The plains regions of Venus exhibit a complex array of structural features, including deformation belts of various types, wrinkle ridges, grabens, and enigmatic radar-bright linears. Probably the most pervasive of these structures are the wrinkle ridges, which appear to be morphologically identical to their counterparts on the Moon and Mars. Almost all workers agree that wrinkle ridges result from horizontal compressive stresses in the crust; they either are explained as flexural fold structures, or alternatively as scarps or folds related to reverse faults. Wrinkle ridges generally are narrow, have small amplitudes, and commonly are closely spaced as well, characteristics that imply a shallow crustal origin. If wrinkle ridges are due to horizontally directed compressive stresses in the shallow crust, as generally has been inferred, then the trends of these features provide a means to map both local and regional orientations of principal stresses in the uppermost part of the venusian crust: maximum compressive stress is normal to the ridges, minimum compressive stress is normal to the topographic surface, and thus the wrinkle ridge trends trace the orientation of the intermediate principal stress. Because there are few plains areas on Venus totally devoid of wrinkle ridges, it should be possible to establish a number of interesting relationships on a near-global scale by mapping the trends of wrinkle ridges wherever they occur. The present study is addressing three questions: (1) Do the trends of wrinkle ridges define domains that are large relative to the sizes of individual plains regions? If so, can these domains be related to large-scale topographic or geologic features? (2) Are regional trends of wrinkle ridges affected by local features such as coronae? If so, is it possible to determine the relative ages of the far-field and local stresses from detailed study of trend inheritance or superposition relationships? (3) What is the relationship between wrinkle

  19. Response of the Rio Grande and shallow ground water in the Mesilla Bolson to irrigation, climate stress, and pumping

    USGS Publications Warehouse

    Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.

    1999-01-01

    The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.

  20. Deep and shallow forms of the sulcus for extensor carpi ulnaris.

    PubMed

    Nakashima, T; Hojo, T; Furukawa, H

    1993-12-01

    Anatomical variations in the sulcus for the tendon of extensor carpi ulnaris were studied in 240 upper limbs. The sulcus lies between the head and the styloid process on the dorsal surface of the distal end of the ulna. This groove has deep and shallow forms and, rarely, a flat form. The sulcus was classified into 4 grades according to its depth. Grade I, a deep sulcus, was found in 51.3%. Grades II and III are shallow, but the styloid process in grade II is more prominent than in grade III. The former was found in 28.8%, the latter in 14.2%. Grade IV is a flat form. This was rare and found only in 1.3%. This variation was not age-related, but was a congenital feature.

  1. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  2. Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas

    Treesearch

    Ying Ouyang; Jia-En Zhang

    2012-01-01

    Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic...

  3. Observational Constraints on the Identification of Shallow Lunar Magmatism: Insights from Floor-Fractured Craters

    NASA Technical Reports Server (NTRS)

    Jozwiak, L. M.; Head, J. W., III; Neumann, G. A.; Wilson, L.

    2016-01-01

    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity solution from GRAIL and also a degree 100-600 band-filtered Bouguer gravity solution. The low-magnitude of anomalies arising from shallow magmatic intrusions makes identification using unfiltered Bouguer gravity solutions inconclusive. The observed anomalies in the degree 100-600 Bouguer gravity solution are spatially heterogeneous, although there is spatial correlation between volcanic surface morphologies and positive Bouguer anomalies. We interpret these observations to mean that the spatial heterogeneity observed in the Bouguer signal is the result of variable degrees of magmatic degassing within the intrusions.

  4. Comparison of Shallow Survey 2012 Multibeam Datasets

    NASA Astrophysics Data System (ADS)

    Ramirez, T. M.

    2012-12-01

    The purpose of the Shallow Survey common dataset is a comparison of the different technologies utilized for data acquisition in the shallow survey marine environment. The common dataset consists of a series of surveys conducted over a common area of seabed using a variety of systems. It provides equipment manufacturers the opportunity to showcase their latest systems while giving hydrographic researchers and scientists a chance to test their latest algorithms on the dataset so that rigorous comparisons can be made. Five companies collected data for the Common Dataset in the Wellington Harbor area in New Zealand between May 2010 and May 2011; including Kongsberg, Reson, R2Sonic, GeoAcoustics, and Applied Acoustics. The Wellington harbor and surrounding coastal area was selected since it has a number of well-defined features, including the HMNZS South Seas and HMNZS Wellington wrecks, an armored seawall constructed of Tetrapods and Akmons, aquifers, wharves and marinas. The seabed inside the harbor basin is largely fine-grained sediment, with gravel and reefs around the coast. The area outside the harbor on the southern coast is an active environment, with moving sand and exposed reefs. A marine reserve is also in this area. For consistency between datasets, the coastal research vessel R/V Ikatere and crew were used for all surveys conducted for the common dataset. Using Triton's Perspective processing software multibeam datasets collected for the Shallow Survey were processed for detail analysis. Datasets from each sonar manufacturer were processed using the CUBE algorithm developed by the Center for Coastal and Ocean Mapping/Joint Hydrographic Center (CCOM/JHC). Each dataset was gridded at 0.5 and 1.0 meter resolutions for cross comparison and compliance with International Hydrographic Organization (IHO) requirements. Detailed comparisons were made of equipment specifications (transmit frequency, number of beams, beam width), data density, total uncertainty, and

  5. The impact of a shallow biobarrier on water recharge patterns in a semi-arid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laundre, J.W.

    1997-12-31

    This study attempted to measure the effect of a shallow biobarrier of gravel and cobble on water flow patterns during spring snow melt and recharge. The design consisted of 30 metal culverts 3 m in diameter and 1.6 m long, positioned on end. Test culverts contained 50-cm biobarrier of gravel or cobble and then an additional 50 cm of soil placed above the barrier layer. A neutron probe was used to measure soil moisture above and below the barrier. Measurements were made in the fall and again immediately after snow melt in the spring. During recharge, the biobarriers provided amore » capillary break which resulted in a pooling of water above the barrier layer. With sufficient snowmelt, the water can penetrate the break and possibly penetrate deeper than in the absence of the barrier layer.« less

  6. A modified siphon sampler for shallow water

    USGS Publications Warehouse

    Diehl, Timothy H.

    2008-01-01

    A modified siphon sampler (or 'single-stage sampler') was developed to sample shallow water at closely spaced vertical intervals. The modified design uses horizontal rather than vertical sample bottles. Previous siphon samplers are limited to water about 20 centimeters (cm) or more in depth; the modified design can sample water 10 cm deep. Several mounting options were used to deploy the modified siphon sampler in shallow bedrock streams of Middle Tennessee, while minimizing alteration of the stream bed. Sampling characteristics and limitations of the modified design are similar to those of the original design. Testing showed that the modified sampler collects unbiased samples of suspended silt and clay. Similarity of the intake to the original siphon sampler suggests that the modified sampler would probably take downward-biased samples of suspended sand. Like other siphon samplers, it does not sample isokinetically, and the efficiency of sand sampling can be expected to change with flow velocity. The sampler needs to be located in the main flow of the stream, and is subject to damage from rapid flow and floating debris. Water traps were added to the air vents to detect the flow of water through the sampler, which can cause a strong upward bias in sampled suspended-sediment concentration. Water did flow through the sampler, in some cases even when the top of the air vent remained above water. Air vents need to be extended well above maximum water level to prevent flow through the sampler.

  7. Shallow landslide hazard map of Seattle, Washington

    USGS Publications Warehouse

    Harp, Edwin L.; Michael, John A.; Laprade, William T.

    2008-01-01

    Landslides, particularly debris flows, have long been a significant cause of damage and destruction to people and property in the Puget Sound region. Following the years of 1996 and 1997, the Federal Emergency Management Agency designated Seattle as a “Project Impact” city with the goal of encouraging the city to become more disaster resistant to landslides and other natural hazards. A major recommendation of the Project Impact council was that the city and the U.S. Geological Survey collaborate to produce a landslide hazard map. An exceptional data set archived by the city containing more than 100 yr of landslide data from severe storm events allowed comparison of actual landslide locations with those predicted by slope-stability modeling. We used an infinite-slope analysis, which models slope segments as rigid friction blocks, to estimate the susceptibility of slopes to debris flows, which are water-laden slurries that can form from shallow failures of soil and weathered bedrock and can travel at high velocities down steep slopes. Data used for the analysis consisted of a digital slope map derived from recent light detection and ranging (LiDAR) imagery of Seattle, recent digital geologic mapping of the city, and shear-strength test data for the geologic units found in the surrounding area. The combination of these data layers within a geographic information system (GIS) platform allowed us to create a shallow landslide hazard map for Seattle.

  8. Comparison of ground-water quality in samples from selected shallow and deep wells in the central Oklahoma aquifer, 2003-2005

    USGS Publications Warehouse

    Becker, Carol J.

    2006-01-01

    The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in

  9. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-02-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  10. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    PubMed Central

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-01-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater. PMID:28220874

  11. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area.

    PubMed

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S

    2017-02-21

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m 3 . The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  12. Seismic identification and origin of shallow gas in the Baiyun Sag Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Qin, Q.

    2016-12-01

    The analytics of three dimensional high resolution seismic data and multi-beam data gotten from Baiyun Sag(BYS), the northern South China Sea(SCS) reveals varieties of shallow gas indicators. Such indicators include gas chimneys, enhanced reflections, bright spots, pipes and acoustic blanking. Among them, the enhanced reflections suggest that the free gas has been presented. And, there are also some very high amplitude reflections and they have occurred in both deep and shallow sedimentary sections. Gas chimneys are dominant and pipes (line zones of big faults) also have been observed in much of the surveyed area if observing at 31 lines. Gas chimneys and pipes in the study area can be associated with some known faults that would act as migration pathways from deep fluids. There are some columnar zones of acoustic blanking in the survey area. This suggests that the observed structures in Baiyun sag sediments allow the emission of gases which might be for a large share of source rocks or deep gas reservoir, and there are abundant shallow gas in the Baiyun Sag. As we all know, the obvious characteristics of shallow gas are high pressure and highly dangerous. So our results are very essential to explore resources (hydrocarbon and gas hydrate) in such a petroliferous basin.

  13. Yield response and economics of shallow subsurface drip irrigation systems

    USDA-ARS?s Scientific Manuscript database

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  14. Rapid deployable global sensing hazard alert system

    DOEpatents

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  15. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic

  16. McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009

    DOE Data Explorer

    Richard Zehner

    2009-01-01

    This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.

  17. Shear wave velocities of unconsolidated shallow sediments in the Gulf of Mexico

    USGS Publications Warehouse

    Lee, Myung W.

    2013-01-01

    Accurate shear-wave velocities for shallow sediments are important for a variety of seismic applications such as inver-sion and amplitude versus offset analysis. During the U.S. Department of Energy-sponsored Gas Hydrate Joint Industry Project Leg II, shear-wave velocities were measured at six wells in the Gulf of Mexico using the logging-while-drilling SonicScope acoustic tool. Because the tool measurement point was only 35 feet from the drill bit, the adverse effect of the borehole condition, which is severe for the shallow unconsolidated sediments in the Gulf of Mexico, was mini-mized and accurate shear-wave velocities of unconsolidated sediments were measured. Measured shear-wave velocities were compared with the shear-wave velocities predicted from the compressional-wave velocities using empirical formulas and the rock physics models based on the Biot-Gassmann theory, and the effectiveness of the two prediction methods was evaluated. Although the empirical equation derived from measured shear-wave data is accurate for predicting shear-wave velocities for depths greater than 500 feet in these wells, the three-phase Biot-Gassmann-theory -based theory appears to be optimum for predicting shear-wave velocities for shallow unconsolidated sediments in the Gulf of Mexico.

  18. Optical lattice clock with atoms confined in a shallow trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemonde, Pierre; Wolf, Peter; Bureau International des Poids et Mesures, Pavillon de Breteuil, 92312 Sevres Cedex

    2005-09-15

    We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunneling leads to a residual sensitivity to the atom dynamics hence requiring large depths [(50-100)E{sub r} for Sr] to avoid any frequency shift or line broadening of the atomic transition at the 10{sup -17}-10{sup -18} level. Such large depths and the corresponding laser power may, however, lead to difficulties (e.g., higher-order light shifts, two-photon ionization, technical difficulties) and therefore one would like to operate the clock in much shallower traps. To circumvent this problem we propose themore » use of an accelerated lattice. Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunneling. We show that using the Earth's gravity, much shallower traps (down to 5E{sub r} for Sr) can be used for the same accuracy goal.« less

  19. Estimating spatiotemporal variability and sustainability of shallow groundwater in a well-irrigated plain of the Haihe River basin using SWAT model

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Ren, Li; Kong, Xiangbin

    2016-10-01

    Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.

  20. WISDOM, a polarimetric GPR for the shallow subsurface characterization

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Plettemeier, D.; Hassen-Kodja, R.; Clifford, S. M.; Wisdom Team

    2011-12-01

    WISDOM (Water Ice and Subsurface Deposit Observations on Mars) is a polarimetric Ground Penetrating Radar (GPR) that has been selected to be part of the Pasteur payload onboard the Rover of the 2018 ExoMars mission. It will perform large-scale scientific investigations of the sub-surface of the landing site and provide precise information about the subsurface structure prior to drilling. WISDOM has been designed to provide accurate information on the sub-surface structure down to a depth in excess to 2 meters (commensurate to the drill capacities) with a vertical resolution of a several centimetres. It will give access to the geological structure, electromagnetic nature, and, possibly, to the hydrological state of the shallow subsurface by retrieving the layering and properties of the layers and buried reflectors. The data will also be used to determine the most promising locations to collect underground samples with the drilling system mounted on board the rover. Polarimetric measurements have been recently acquired on perfectly known targets as well as in natural environments. They demonstrated the ability to provide a better understanding of sub-surface structure and significantly reduce the ambiguity associated with identifying the location of off-nadir reflectors, relative to the rover path. This work describes the instrument and its operating modes with particular emphasis on its polarimetric capacities.

  1. Shallow landslides: lessons from Sachseln 1997

    NASA Astrophysics Data System (ADS)

    Graf, Frank; Grunder, Karl

    2017-04-01

    A retrospective analysis of the heavy rainstorm in 1997 in Sachseln with almost 500 shallow landslides - half of them within forests, the other half in open land - reveals interesting perspectives. A total of 218 of these landslides were comprehensively documented, including 107 events triggered in forests that have been subjected to a more accurate analysis. A preliminary statistical approach based on distribution functions applied to slope inclination α and shear angle Φ' gives rise to the assumption that optimally managed forests have high protection potential - optimally managed in this context means the NaiS standard improved by findings of our project SOSTANAH. NaiS: www.bafu.admin.ch/publikationen/publikation/00732/index.html?lang=de SOSTANAH: www.slf.ch/ueber/organisation/oekologie/gebirgsoekosysteme/projekte/SOSTANH/index_EN Thus, it can be speculated that up to about four-fifths of these landslides could have been prevented, provided the forests fit the corresponding requirements. In an exemplary calculation, only about 80 ha of the investigated forest area (˜400 ha) would have been affected or roughly 20 landslides triggered of the 107 analysed. Given the specific characteristics for sites and improvement in Sachseln, the approximate costs for forest management, starting from an almost uncovered landslide area up to a mature protection forest (120 years), are estimated at about 35'000 CHF ha-1, yielding yearly 300 CHF ha-1 (price basis: 2016). The expected average annual expenditure to sustainably ensure continued existence of optimal protection forests is slightly lower. In the case of Sachseln, this amounts to about 12 Mio CHF for the whole area of 400 ha and a 100-year period (cost estimate by oeko-b, Stans: www.oeko-b.ch). The total damage of the 1997 event in Sachseln, with an estimated return period of 100 years, exceeded 120 Mio CHF. Of course, destruction was not merely caused by or obviously linked to shallow landslides. Nevertheless, from a

  2. A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments

    PubMed Central

    Albaladejo, Cristina; Soto, Fulgencio; Torres, Roque; Sánchez, Pedro; López, Juan A.

    2012-01-01

    Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications. PMID:23012562

  3. Nonlinear Buckling Analysis of Functionally Graded Graphene Reinforced Composite Shallow Arches with Elastic Rotational Constraints under Uniform Radial Load.

    PubMed

    Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang

    2018-05-28

    The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.

  4. Regional Mapping and Resource Assessment of Shallow Gas Hydrates of Japan Sea - METI Launched 3 Years Project in 2013.

    NASA Astrophysics Data System (ADS)

    Matsumoto, R.

    2014-12-01

    Agency of Natural Resources and Energy of METI launched a 3 years shallow gas hydrate exploration project in 2013 to make a precise resource assessment of shallow gas hydrates in the eastern margin of Japan Sea and around Hokkaido. Shallow gas hydrates of Japan Sea occur in fine-grained muddy sediments of shallow subsurface of mounds and gas chimneys in the form of massive nodular to platy accumulation. Gas hydrate bearing mounds are often associated with active methane seeps, bacterial mats and carbonate concretions and pavements. Gases of gas hydrates are derived either from deep thermogenic, shallow microbial or from the mixed gases, contrasting with totally microbial deep-seated stratigraphically controlled hydrates. Shallow gas hydrates in Japan Sea have not been considered as energy resource due to its limited distribution in narrow Joetsu basin. However recently academic research surveys have demonstrated regional distribution of gas chimney and hydrate mound in a number of sedimentary basins along the eastern margin of Japan Sea. Regional mapping of gas chimney and hydrate mound by means of MBES and SBP surveys have confirmed that more than 200 gas chimneys exist in 100 km x 100 km area. ROV dives have identified dense accumulation of hydrates on the wall of half collapsed hydrate mound down to 30 mbsf. Sequential LWD and shallow coring campaign in the Summer of 2014, R/V Hakurei, which is equipped with Fugro Seacore R140 drilling rig, drilled through hydrate mounds and gas chimneys down to the BGHS (base of gas hydrate stability) level and successfully recovered massive gas hydrates bearing sediments from several horizons.

  5. Report on the 1999 ONR Shallow-Water Reverberation Focus Workshop

    DTIC Science & Technology

    1999-12-31

    Pseudo Spectral models. • Develop reverberation and scattering benchmarks accepted by the scientific community. (The ASA penetrable wedge problem has...Paul C. Hines, W. Cary Risley , and Martin P. O’Connor, "A Wide-Band Sonar for underwater acoustics measurements in shallow water," in Oceans 󈨦

  6. Adult Developmental Dyslexia in a Shallow Orthography: Are There Subgroups?

    ERIC Educational Resources Information Center

    Laasonen, Marja; Service, Elisabet; Lipsanen, Jari; Virsu, Veijo

    2012-01-01

    The existence and stability of subgroups among adult dyslexic readers of a shallow orthography was explored by comparing three different cluster analyses based on previously suggested combinations of two variables. These were oral reading speed versus accuracy, word versus pseudoword reading speed, and phonological awareness versus rapid naming.…

  7. Relative stability of deep- versus shallow-side bone levels in angular proximal infrabony defects.

    PubMed

    Heins, P; Hartigan, M; Low, S; Chace, R

    1989-01-01

    The relative changes with time, in the position of the coronal margin of the mesial and distal bone of proximal, angular infrabony defects, were investigated. Tracings of the radiographs of 51 mandibular posterior sites, treated by flap curettage, with a mean post-surgical duration of 11.8 years, were measured using a digitizer pad. The group consisting of shallow-side sites (N = 51), exhibited no significant change in the bone height with time; however, there was a significant decrease in bone height in the deep-side group (N = 51). The mean area of proximal bone decreased significantly with time. The defects were divided into early (N = 25) and advanced (N = 26) angular groups, and then into deep- and shallow-side subgroups. In the early defect group, there was a significant decrease in the mean bone height of the deep-side subgroup. There were no differences in the changes of mean bone level of the remaining 3 subgroups with time. There was no correlation between changes in bone levels of adjacent mesial and distal sides of angular defects with time (r = 0.27). There was no difference between the deep- and shallow-side groups in the number of sites which gained, lost or evidenced no change in bone height. In the study population, the bone height of 73% of the deep-side, and 84% of the shallow-side sites was either unchanged or in a more coronal position.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Uncertainties related to the representation of momentum transport in shallow convection

    NASA Astrophysics Data System (ADS)

    Schlemmer, Linda; Bechtold, Peter; Sandu, Irina; Ahlgrimm, Maike

    2017-04-01

    The vertical transport of horizontal momentum by convection has an important impact on the general circulation of the atmosphere as well as on the life cycle and track of cyclones. So far convective momentum transport (CMT) has mostly been studied for deep convection, whereas little is known about its characteristics and importance in shallow convection. In this study CMT by shallow convection is investigated by analyzing both data from large-eddy simulations (LES) and simulations performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). In addition, the central terms underlying the bulk mass-flux parametrization of CMT are evaluated offline. Further, the uncertainties related to the representation of CMT are explored by running the stochastically perturbed parametrizations (SPP) approach of the IFS. The analyzed cases exhibit shallow convective clouds developing within considerable low-level wind shear. Analysis of the momentum fluxes in the LES data reveals significant momentum transport by the convection in both cases, which is directed down-gradient despite substantial organization of the cloud field. A detailed inspection of the convection parametrization reveals a very good representation of the entrainment and detrainment rates and an appropriate representation of the convective mass and momentum fluxes. To determine the correct values of mass-flux and in-cloud momentum at the cloud base in the parametrization yet remains challenging. The spread in convection-related quantities generated by the SPP is reasonable and addresses many of the identified uncertainties.

  9. Concentrations and potential health hazards of polycyclic aromatic hydrocarbon in shallow groundwater of a metal smelting area in Southeastern China.

    PubMed

    Wu, Chunfa; Zhu, Hao; Luo, Yongming; Wang, Jun

    2016-11-01

    A total of 20 shallow groundwater samples were collected from a metal smelting area in southeastern China to determine the concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs), calculate their toxic equivalents (TEQs) to benzo[a]pyrene (BaP), and estimate the carcinogenic risk of drinking the shallow groundwater. The total concentrations of the 16PAHs (∑PAHs) in the shallow groundwater ranged from 9.62 to 1663.93ngL(-1), with a mean value of 312.63ngL(-1), and the total concentrations of the 7 potentially carcinogenic PAHs (∑PAHC7) ranged from 3.11 to 33.60ngL(-1), with a mean value of 9.61ngL(-1). Naphthalene and BaP, were the dominant PAH species and potentially carcinogenic PAH species in the shallow groundwater of the study area, and they account for 89.97% of ∑PAHs and 82.62% of ∑PAHC7, respectively. High molecular weight-PAHs (HM-PAHs) accounted for a relatively high proportion in the majority of shallow groundwater samples with lower concentrations of ΣPAHs, indicated that HM-PAHs were mainly from historical residues. The TEQs to BaP of the 16PAHs in the 20 shallow groundwater samples varied greatly from 2.55 to 32.73ngL(-1), with a mean value of 8.61ngL(-1), and BaP was the dominant contributor. The total carcinogenic risk levels caused by the 16PAHs in the shallow groundwater in majority of the area were found to be higher than the limit set by the US EPA, posing a potentially serious health risk to those who depend on shallow groundwater for drinking water. Copyright © 2016. Published by Elsevier B.V.

  10. Monitoring the subsurface hydrologic response to shallow landsliding in the San Francisco Bay Area, California

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Stock, J. D.; Foster, K. A.; Knepprath, N.; Reid, M. E.; Schmidt, K. M.; Whitman, M. W.

    2011-12-01

    Intense or prolonged rainfall triggers shallow landslides in steeplands of the San Francisco Bay Area each year. These landslides cause damage to built infrastructure and housing, and in some cases, lead to fatalities. Although our ability to forecast and map the distribution of rainfall has improved (e.g., NEXRAD, SMART-R), our ability to estimate landslide susceptibility is limited by a lack of information about the subsurface response to rainfall. In particular, the role of antecedent soil moisture content in setting the timing of shallow landslide failures remains unconstrained. Advances in instrumentation and telemetry have substantially reduced the cost of such monitoring, making it feasible to set up and maintain networks of such instruments in areas with a documented history of shallow landslides. In 2008, the U.S. Geological Survey initiated a pilot project to establish a series of shallow landslide monitoring stations in the San Francisco Bay area. The goal of this project is to obtain a long-term (multi-year) record of subsurface hydrologic conditions that occur from winter storms. Three monitoring sites are now installed in key landslide prone regions of the Bay Area (East Bay Hills, Marin County, and San Francisco Peninsula Hills) each consisting of a rain gage and multiple nests of soil-moisture sensors, matric-potential sensors, and piezometers. The sites were selected with similar characteristics in mind consisting of: (1) convergent bedrock hollow topographic settings located near ridge tops, (2) underlying sandstone bedrock substrates, (3) similar topographic gradients (~30°), (4) vegetative assemblages of grasses with minor chaparral, and (5) a documented history of landsliding in the vicinity of each site. These characteristics are representative of shallow-landslide-prone regions of the San Francisco Bay Area and also provide some constraint on the ability to compare and contrast subsurface response across different regions. Data streams from

  11. Integration of data-driven and physically-based methods to assess shallow landslides susceptibility

    NASA Astrophysics Data System (ADS)

    Lajas, Sara; Oliveira, Sérgio C.; Zêzere, José Luis

    2016-04-01

    Approaches used to assess shallow landslides susceptibility at the basin scale are conceptually different depending on the use of statistic or deterministic methods. The data-driven methods are sustained in the assumption that the same causes are likely to produce the same effects and for that reason a present/past landslide inventory and a dataset of factors assumed as predisposing factors are crucial for the landslide susceptibility assessment. The physically-based methods are based on a system controlled by physical laws and soil mechanics, where the forces which tend to promote movement are compared with forces that tend to promote resistance to movement. In this case, the evaluation of susceptibility is supported by the calculation of the Factor of safety (FoS), and dependent of the availability of detailed data related with the slope geometry and hydrological and geotechnical properties of the soils and rocks. Within this framework, this work aims to test two hypothesis: (i) although conceptually distinct and based on contrasting procedures, statistic and deterministic methods generate similar shallow landslides susceptibility results regarding the predictive capacity and spatial agreement; and (ii) the integration of the shallow landslides susceptibility maps obtained with data-driven and physically-based methods, for the same study area, generate a more reliable susceptibility model for shallow landslides occurrence. To evaluate these two hypotheses, we select the Information Value data-driven method and the physically-based Infinite Slope model to evaluate shallow landslides in the study area of Monfalim and Louriceira basins (13.9 km2), which is located in the north of Lisbon region (Portugal). The landslide inventory is composed by 111 shallow landslides and was divide in two independent groups based on temporal criteria (age ≤ 1983 and age > 1983): (i) the modelling group (51 cases) was used to define the weights for each predisposing factor

  12. Evidence for direct water absorption by shallow-rooted desert plants in desert-oasis ecotone, Northwest China

    NASA Astrophysics Data System (ADS)

    Fang, Jing

    2014-05-01

    Besides the absorption by roots from the soil substrate, it has long been known that plants exhibit alternative water-absorption strategies, particularly in drought-prone environments. For many tropical epiphytic orchids, air moisture can be absorbed directly by aerial roots. Some conifers are also found to utilize air moisture by foliar absorption during the summer fog season. However, few studies have been carried out on the atmospheric water vapor absorption by shallow-rooted desert plants. We conducted experiments in desert-oasis ecotone and investigated the effects of dew absorbed by three kinds of shallow-rooted seedlings on net photosynthesis rate, as well as on other water relations variables. Three kinds of typical shallow-rooted desert species (Bassia dasyphylla, Salsola collina and Corispermum declinatum) have been chosen and potted. Each species were subjected to contrasting watering regimes (normal and deficient) and different air moisture conditions (having dew and having no dew) for 10 weeks. Net photosynthesis rate was measured on six occasions during the study. Other water relations variables (midday shoot water potential, relative water content, stomatal conductance) were also measured. Under the dew conditions, average net photosynthesis rate, shoot water potential, leaf relative water content and stomatal conductance increased, with greater responses observed for plants subjected to a deficient watering regime than for well-watered plants. These results indicated dew occurred in arid region could be utilized through foliar absorption by some shallow-rooted plants, and for the shallow-rooted plants, the presence of dew could significantly relieve the deficit of water in water-stressed regime.

  13. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Raymond, Carol A.; Schenk, Paul M.; Fu, Roger R.; Kneissl, Thomas; Pasckert, Jan Hendrik; Hiesinger, Harry; Preusker, Frank; Park, Ryan S.; Marchi, Simone; King, Scott D.; Castillo-Rogez, Julie C.; Russell, Christopher T.

    2016-07-01

    Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.

  14. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology

    USGS Publications Warehouse

    Bland, Michael T.; Carol A. Raymond,; Schenk, Paul M.; Roger R. Fu,; Thomas Kneisl,; Hendrick Pasckert, Jan; Hiesinger, Harald; Frank Preusker,; Ryan S. Park,; Simone Marchi,; Scott King,; Castillo-Rogez, Julie C.; Christopher T. Russell,

    2016-01-01

    Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.

  15. Underwater partial polarization signatures from the shallow water real-time imaging polarimeter (SHRIMP)

    NASA Astrophysics Data System (ADS)

    Taylor, James S., Jr.; Davis, P. S.; Wolff, Lawrence B.

    2003-09-01

    Research has shown that naturally occurring light outdoors and underwater is partially linearly polarized. The polarized components can be combined to form an image that describes the polarization of the light in the scene. This image is known as the degree of linear polarization (DOLP) image or partial polarization image. These naturally occurring polarization signatures can provide a diver or an unmanned underwater vehicle (UUV) with more information to detect, classify, and identify threats such as obstacles and/or mines in the shallow water environment. The SHallow water Real-time IMaging Polarimeter (SHRIMP), recently developed under sponsorship of Dr. Tom Swean at the Office of Naval Research (Code 321OE), can measure underwater partial polarization imagery. This sensor is a passive, three-channel device that simultaneously measures the three components of the Stokes vector needed to determine the partial linear polarization of the scene. The testing of this sensor has been completed and the data has been analyzed. This paper presents performance results from the field-testing and quantifies the gain provided by the partial polarization signature of targets in the Very Shallow Water (VSW) and Surf Zone (SZ) regions.

  16. Effect and safety of deep needling and shallow needling for functional constipation: a multicenter, randomized controlled trial.

    PubMed

    Wu, Jiani; Liu, Baoyan; Li, Ning; Sun, Jianhua; Wang, Lingling; Wang, Liping; Cai, Yuying; Ye, Yongming; Liu, Jun; Wang, Yang; Liu, Zhishun

    2014-12-01

    Aupuncture is widely used for functional constipation. Effect of acupuncture might be related to the depth of needling; however, the evidence is limited. This trial aimed to evaluate the effect and safety of deep needling and shallow needling for functional constipation, and to assess if the deep needling and shallow needling are superior to lactulose. We conducted a prospective, superiority-design, 5-center, 3-arm randomized controlled trial. A total of 475 patients with functional constipation were randomized to the deep needling group (237), shallow needling group (119), and lactulose-controlled group (119) in a ratio of 2:1:1. Sessions lasted 30 minutes each time and took place 5 times a week for 4 weeks in 2 acupuncture groups. Participants in the lactulose group took lactulose orally for 16 continuous weeks. The primary outcome was the change from baseline of mean weekly spontaneous bowel movements (SBMs) during week 1 to 4 (changes from the baselines of the weekly SBMs at week 8 and week 16 in follow-up period were also assessed simultaneously). Secondary outcomes were the weekly SBMs of each assessing week, the mean score change from the baseline of constipation-related symptoms over week 1 to 4, and the time to the first SBM. Emergency drug usage and adverse effects were monitored throughout the study.SBMs and constipation-related symptoms were all improved in the 3 groups compared with baseline at each time frame (P<0.01, all). The changes in the mean weekly SBMs over week 1 to 4 were 2 (1.75) in the deep needling group, 2 (1.75) in the shallow needling group, and 2 (2) in the lactulose group (P>0.05, both compared with the lactulose group). The changes of mean weekly SBMs at week 8 and week 16 in the follow-up period were 2 (2), 2 (2.5) in the deep needling group, 2 (3), 1.5 (2.5) in the shallow needling group, and 1 (2), 1 (2) in the lactulose group (P<0.05, all compared with the lactulose group). No significant difference was observed among the 3

  17. Seasonality of major redox constituents in a shallow subterranean estuary

    NASA Astrophysics Data System (ADS)

    O'Connor, Alison E.; Krask, Julie L.; Canuel, Elizabeth A.; Beck, Aaron J.

    2018-03-01

    The subterranean estuary (STE), the subsurface mixing zone of outflowing fresh groundwater and infiltrating seawater, is an area of extensive geochemical reactions that determine the composition of groundwater that flows into coastal environments. This study examined the porewater composition of a shallow STE (<5 m depth) in Gloucester Point, VA (USA) over two years to determine seasonal variations in dissolved organic carbon (DOC) and the reduced metabolites Fe, Mn, and sulfide. An additional aim of this study was to investigate the relative importance of salinity gradients (which have great geochemical influence in surface estuaries) versus redox gradients on STE geochemistry. Two freshwater endmembers were identified, between which redox potential and composition varied with depth-a shallow freshwater endmember was oxidizing and high in DOC, whereas a deep freshwater endmember was reducing, lower in DOC, and high in sulfide. Results showed that dissolved Fe, Mn, and sulfide varied along a redox gradient distinct from the salinity gradient, and that three-endmember mixing was required to quantify non-conservative chemical addition/removal in the STE. In addition to salinity, humic carbon was used as a quasi-conservative tracer to quantify mixing according to a three-endmember model. The vertical distributions of DOC and reduced metabolites remained approximately constant over time, but concentrations varied with season. Dissolved organic carbon concentrations were greatest in the summer, and shallow meteoric groundwater supplied the majority of DOC to the STE. In summer, there was additional evidence for shallow non-conservative addition of DOC. Dissolved Fe and Mn were highest in a subsurface plume through the middle of the STE (100-140 cm below sediment surface at the high tide line) which was characterized by higher concentrations and greater non-conservative addition in the winter. In contrast, sulfide was higher in summer at depths within the Fe and Mn plume

  18. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    PubMed

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

  19. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals

    PubMed Central

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849

  20. Shallow velocity structure of the Alaska Peninsula subduction zone and implications for controls on seismic behavior

    NASA Astrophysics Data System (ADS)

    Li, J.; Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Kuehn, H.; Webb, S. C.; Abers, G. A.; Keranen, K. M.; Saffer, D. M.

    2014-12-01

    Downdip and along-strike variations in the seismic behavior of subduction zone megathrust faults are thought to be strongly controlled by changes in the material properties along the plate boundary. Roughness and hydration of the incoming plate, fluid pressure and lithology in the subducting sediment channel are likely to control the distribution of shallower rupture. Here, we focus on the subduction zone offshore of the Alaska Peninsula. In 2011, the ALEUT program acquired deep penetration multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data across the apparently freely sliding Shumagin Gap, the locked Semidi segment that last ruptured in 1938 M8.2 earthquake, and the locked western Kodiak asperity, which ruptured in the 1964 M9.2 earthquake. Seismic reflection data from the ALEUT cruise reveal significant variability in the thickness of sediment on the incoming plate and entering the trench, and the roughness and degree of hydration of the incoming plate. Oceanic crust entering the trench in the Shumagin gap is rugged with extensive faults and only a thin layer of sediment (<0.5 km thick). Farther east in the Semidi segment, the subducting plate has a smoother surface with thicker sediments (~1 km thick) and less faulting/hydration. To better constrain the properties of the accretionary prism and shallow part of the plate boundary, we are undertaking travel time tomography using reflection/refraction phases in OBS and MCS data, and constraints on the interface geometry from MCS images to estimate the detailed shallow velocity structure, with particular focus on properties within the shallow subduction channel. We observe refractions and reflections in OBS data from the shallow part of the subduction zone in both the Shumagin Gap and Semidi segment, including reflections off the top and base of what appears to be a layer of subducting sediment, which can be used for this work. We plan to present initial models of the shallow part of the

  1. Messinian Salinity Crisis' Primary Evaporites: the shallow gypsum vs. deep dolomite formation paradox solved

    NASA Astrophysics Data System (ADS)

    De Lange, G. J.; Krijgsman, W.

    2015-12-01

    The Messinian Salinity Crisis (MSC) is a dramatic event that took place ~ 5.9 Ma ago, resulting in deposition of 1-3 km thick evaporites at the Mediterranean seafloor. A considerable, long-lasting controversy existed on the modes of their formation, including the observed shallow gypsum versus deep dolostone deposits for the early phase of MSC. The onset of MSC is marked by deposition of gypsum/sapropel-like alternations, thought to relate to arid/humid climate conditions at a precessional rhythm. Gypsum precipitation only occurred at marginal- and dolomite formation at deeper settings. A range of potential explanations was given, most of which cannot satisfactorily explain all observations. Biogeochemical processes during MSC are commonly neglected but may explain that different deposits formed in shallow vs deep environments without exceptional physical boundary conditions for each. A unifying mechanism is presented in which gypsum formation occurs at all shallow water depths but its preservation is limited to shallow sedimentary settings. In contrast, ongoing deep-basin anoxic organic matter (OM) degradation processes result in dolomite formation. Gypsum precipitation in evaporating seawater takes place at 3-7 times concentrated seawater; seawater is always oversaturated relative to dolomite but its formation is inhibited by the presence of dissolved sulphate. Thus conditions for formation of gypsum exclude those for formation of dolomite and vice versa. Another process linking the saturation states of gypsum and dolomite is that of OM degradation by sulphate reduction. In stagnant deep water, ongoing OM-degradation may result in reducing the sulphate and enhancing the dissolved carbonate content. Such low-sulphate / high carbonate conditions in MSC deepwater are. unfavorable for gypsum preservation and favorable for dolomite formation, and always coincide with anoxic, i.e. oxygen-free conditions. Including dynamic biogeochemical processes in the thusfar static

  2. Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping

    NASA Astrophysics Data System (ADS)

    Dong, Gangqiang; Liu, Fengzhen; Liu, Jing; Zhang, Hailong; Zhu, Meifang

    2013-12-01

    A radial p-n junction solar cell based on vertically free-standing silicon nanowire (SiNW) array is realized using a novel low-temperature and shallow phosphorus doping technique. The SiNW arrays with excellent light trapping property were fabricated by metal-assisted chemical etching technique. The shallow phosphorus doping process was carried out in a hot wire chemical vapor disposition chamber with a low substrate temperature of 250°C and H2-diluted PH3 as the doping gas. Auger electron spectroscopy and Hall effect measurements prove the formation of a shallow p-n junction with P atom surface concentration of above 1020 cm-3 and a junction depth of less than 10 nm. A short circuit current density of 37.13 mA/cm2 is achieved for the radial p-n junction SiNW solar cell, which is enhanced by 7.75% compared with the axial p-n junction SiNW solar cell. The quantum efficiency spectra show that radial transport based on the shallow phosphorus doping of SiNW array improves the carrier collection property and then enhances the blue wavelength region response. The novel shallow doping technique provides great potential in the fabrication of high-efficiency SiNW solar cells.

  3. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. Wemore » conclude by presenting measurement targets and future opportunities.« less

  4. Evidence of Decoupling between Arsenic and Phosphate in Shallow Groundwater of Bangladesh and Potential Implications.

    PubMed

    Aziz, Z; Bostick, B C; Zheng, Y; Huq, M R; Rahman, M M; Ahmed, K M; van Geen, A

    2017-02-01

    Reductive dissolution of iron oxyhydroxides and reduction of arsenic are often invoked as leading causes of high dissolved As levels in shallow groundwater of Bangladesh. The second of these assumptions is questioned here by comparing the behavior As and phosphate (P), a structural analogue for As (V) which also adsorbs strongly to Fe oxyhydroxides but is not subject to reduction. The first line of evidence is provided by a detailed groundwater time-series spanning two years for three wells in the 6-9 m depth range showing removal of As(III) from shallow groundwater during the monsoon without of loss of P. The data indicate a loss of ~90% of the dissolved As from groundwater in the intermediate well relative to a level of 3 μmol/L As predicted by conservative mixing between groundwater sampled from the shallower and the deeper well. In contrast, P concentrations of ~30 μmol/L in the intermediate well closely match the prediction from conservative mixing. Reduction therefore appears to inhibit the release of As to groundwater at this site relative to P instead of enhancing it. A re-analysis of existing groundwater As and P data from across the country provides a broader context for this finding and confirms that, without reduction, elevated concentrations of As would probably be even more widespread in shallow aquifers of Bangladesh. Without providing definite proof, X-ray absorption spectroscopy of sediment from the time-series site and elsewhere suggests that the loss of As from groundwater may be coupled to precipitation of As sulfide. Further study is needed to assess the implications of these observations for shallow aquifers that have been subjected to increased withdrawals for irrigation in recent decades.

  5. Evidence of Decoupling between Arsenic and Phosphate in Shallow Groundwater of Bangladesh and Potential Implications

    PubMed Central

    Aziz, Z.; Bostick, B.C.; Zheng, Y.; Huq, M.R.; Rahman, M.M.; Ahmed, K.M.; van Geen, A.

    2016-01-01

    Reductive dissolution of iron oxyhydroxides and reduction of arsenic are often invoked as leading causes of high dissolved As levels in shallow groundwater of Bangladesh. The second of these assumptions is questioned here by comparing the behavior As and phosphate (P), a structural analogue for As (V) which also adsorbs strongly to Fe oxyhydroxides but is not subject to reduction. The first line of evidence is provided by a detailed groundwater time-series spanning two years for three wells in the 6–9 m depth range showing removal of As(III) from shallow groundwater during the monsoon without of loss of P. The data indicate a loss of ~90% of the dissolved As from groundwater in the intermediate well relative to a level of 3 μmol/L As predicted by conservative mixing between groundwater sampled from the shallower and the deeper well. In contrast, P concentrations of ~30 μmol/L in the intermediate well closely match the prediction from conservative mixing. Reduction therefore appears to inhibit the release of As to groundwater at this site relative to P instead of enhancing it. A re-analysis of existing groundwater As and P data from across the country provides a broader context for this finding and confirms that, without reduction, elevated concentrations of As would probably be even more widespread in shallow aquifers of Bangladesh. Without providing definite proof, X-ray absorption spectroscopy of sediment from the time-series site and elsewhere suggests that the loss of As from groundwater may be coupled to precipitation of As sulfide. Further study is needed to assess the implications of these observations for shallow aquifers that have been subjected to increased withdrawals for irrigation in recent decades. PMID:28239232

  6. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    USGS Publications Warehouse

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  7. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  8. Wind-driven currents in a shallow lake or sea

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Gedney, R. T.

    1971-01-01

    For shallow lakes and seas such as the great lakes (especially Lake Erie) where the depth is not much greater than the Ekman depth, the usual Ekman dynamics cannot be used to predict the wind driven currents. The necessary extension to include shallow bodies of water, given by Welander, leads to a partial differential equation for the surface displacement which in turn determines all other flow quantities. A technique for obtaining exact analytical solutions to Welander's equation for bodies of water with large class of bottom topographies which may or may not contain islands is given. It involves applying conformal mapping methods to an extension of Welander's equation into the complex plane. When the wind stress is constant (which is the usual assumption for lakes) the method leads to general solutions which hold for bodies of water of arbitrary shape (the shape appears in the solutions through a set of constants which are the coefficients in the Laurent expansion of a mapping of the particular lake geometry). The method is applied to an elliptically shaped lake and a circular lake containing an eccentrically located circular island.

  9. Fertile fathoms: Deep reproductive refugia for threatened shallow corals

    PubMed Central

    Holstein, Daniel M.; Smith, Tyler B.; Gyory, Joanna; Paris, Claire B.

    2015-01-01

    The persistence of natural metapopulations may depend on subpopulations that exist at the edges of species ranges, removed from anthropogenic stress. Mesophotic coral ecosystems (30–150 m) are buffered from disturbance by depth and distance, and are potentially massive reservoirs of coral diversity and fecundity; yet we know little about the reproductive capabilities of their constituent species and the potential for these marginal environments to influence patterns of coral reef persistence. We investigated the reproductive performance of the threatened depth-generalist coral Orbicella faveolata over the extent of its vertical range to assess mesophotic contributions to regional larval pools. Over equal habitat area, mesophotic coral populations were found to produce over an order of magnitude more eggs than nearby shallow populations. Positive changes with depth in both population abundance and polyp fecundity contributed to this discrepancy. Relative larval pool contributions of deeper living corals will likely increase as shallow habitats further degrade due to climate change and local habitat degradation. This is a compelling example of the potential for marginal habitat to be critical to metapopulation persistence as reproductive refugia. PMID:26196243

  10. The feeder system of the Toba supervolcano from the slab to the shallow reservoir

    PubMed Central

    Koulakov, Ivan; Kasatkina, Ekaterina; Shapiro, Nikolai M.; Jaupart, Claude; Vasilevsky, Alexander; El Khrepy, Sami; Al-Arifi, Nassir; Smirnov, Sergey

    2016-01-01

    The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ∼150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ∼50,000 km3 reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions. PMID:27433784

  11. Collapse of caves at shallow depth in Gaziantep city center, Turkey: a case study

    NASA Astrophysics Data System (ADS)

    Canakci, Hanifi

    2007-12-01

    This paper focuses on an investigation of the possible causes for the collapse of limestone caves in Gaziantep, Turkey. The city contains a lot of man-made caves, at a shallow depth, of various width and length. These caves were mainly excavated to provide work or storage space. As the city has been growing fast with increased population, many structures were constructed over these caves. Recently, two caves collapsed and five houses were damaged. These caves are all made of limestone and it was observed after the collapse that the limestone was saturated with water due to sewer pipe leakage and surface water. Tests were carried out on the limestone and it was determined that the compressive strength of limestone decreases by about 50% and the tensile strength decreased by about 80% when saturated with water. It was concluded that the reduced strength of the limestone combined with additional loads due to the factors mentioned above seem to be the main reason for these collapses.

  12. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L.

    2008-01-01

    Application of transient deterministic shallow landslide models over broad regions for hazard and susceptibility assessments requires information on rainfall, topography and the distribution and properties of hillside materials. We survey techniques for generating the spatial and temporal input data for such models and present an example using a transient deterministic model that combines an analytic solution to assess the pore-pressure response to rainfall infiltration with an infinite-slope stability calculation. Pore-pressures and factors of safety are computed on a cell-by-cell basis and can be displayed or manipulated in a grid-based GIS. Input data are high-resolution (1.8??m) topographic information derived from LiDAR data and simple descriptions of initial pore-pressure distribution and boundary conditions for a study area north of Seattle, Washington. Rainfall information is taken from a previously defined empirical rainfall intensity-duration threshold and material strength and hydraulic properties were measured both in the field and laboratory. Results are tested by comparison with a shallow landslide inventory. Comparison of results with those from static infinite-slope stability analyses assuming fixed water-table heights shows that the spatial prediction of shallow landslide susceptibility is improved using the transient analyses; moreover, results can be depicted in terms of the rainfall intensity and duration known to trigger shallow landslides in the study area.

  13. Hydrochemical evaluation and identification of geochemical processes in the shallow and deep wells in the Ramganga Sub-Basin, India.

    PubMed

    Rajmohan, Natarajan; Patel, Neelam; Singh, Gaurav; Amarasinghe, Upali A

    2017-09-01

    Groundwater samples were collected from 44 wells in the Ramganga Sub-Basin (RSB), India, and analysed for major ions, nutrients and trace metals. The primary goal of this study is to evaluate the hydrochemistry and to identify the geochemical processes that govern the water chemistry in the shallow and deep tube wells in the study area using geochemical methods. The knowledge of changes in hydrochemistry of the aquifers is important for both groundwater recharge and use in the region. This study found that there are substantial differences of water chemistry between shallow and deep wells. In the shallow wells, the average concentrations of total dissolved solid (TDS), Na, K, Ca, Mg, HCO 3 , Cl, SO 4 , NO 3 , PO 4 , F, Cu, Mn, Fe and Cr are twofold higher than the deep wells. The concentrations of dissolved silica in the groundwater do not vary with the depth, which implies that the variation in the water chemistry is not due to mineral dissolution alone. Major ion ratios and saturation indices suggest that the water chemistry is predominantly controlled by dissolution of carbonate minerals, silicate weathering and ion exchange reactions. Thermodynamic evaluation (ion activity ratios and stability filed diagrams) indicates that the kaolinite and gibbsite controlled the water chemistry in the both shallow and deep wells. In addition, the groundwater chemistry in the shallow wells is affected by the vertical infiltration of contaminated water from surface contamination sources and nitrification process. In the deep wells, absence of NO 3 and low concentrations of Cl, SO 4 , PO 4 and F imply the role of regional flow and denitrification in the groundwater. Results concluded that proper management plan is necessary to protect the shallow aquifer in the RSB since shallow aquifer pumping is less expensive than the deeper one.

  14. Seismic reflection imaging of shallow oceanographic structures

    NASA Astrophysics Data System (ADS)

    Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André

    2013-05-01

    Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.

  15. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    NASA Astrophysics Data System (ADS)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  16. The SACLANTCEN Shallow-Water Transmission-Loss Data-Filing System.

    DTIC Science & Technology

    1980-10-01

    HASTRUP , T AKAL, A PARISOTTO JNCLASSIFIED SACLANTCEN-SM-141 NL SEMEN SACLANTCEN Memorandum U RESEARCH CENTRE- MEMORANDUM THE SACLANTCEN SHALLOW-WATER...TRAN SMISSION-LOSS DATA-FILING SYSTEM by OLE F. HASTRUP , TUNCAY AKAL, ARTURO PARISOTTO I OCTOBER 1980 . ATLANTIC TREATY LA SPEZIA, ITALY ORGANIZATION...WATER TRANSMISSION-LOSS DATA-FILING SYSTEM, Ol1e F./ Hastrup Y/Akal Arturo/Parisotto/ This memorandum has been prepared within the SACLANTCEN

  17. Sequence Capture versus Restriction Site Associated DNA Sequencing for Shallow Systematics.

    PubMed

    Harvey, Michael G; Smith, Brian Tilston; Glenn, Travis C; Faircloth, Brant C; Brumfield, Robb T

    2016-09-01

    Sequence capture and restriction site associated DNA sequencing (RAD-Seq) are two genomic enrichment strategies for applying next-generation sequencing technologies to systematics studies. At shallow timescales, such as within species, RAD-Seq has been widely adopted among researchers, although there has been little discussion of the potential limitations and benefits of RAD-Seq and sequence capture. We discuss a series of issues that may impact the utility of sequence capture and RAD-Seq data for shallow systematics in non-model species. We review prior studies that used both methods, and investigate differences between the methods by re-analyzing existing RAD-Seq and sequence capture data sets from a Neotropical bird (Xenops minutus). We suggest that the strengths of RAD-Seq data sets for shallow systematics are the wide dispersion of markers across the genome, the relative ease and cost of laboratory work, the deep coverage and read overlap at recovered loci, and the high overall information that results. Sequence capture's benefits include flexibility and repeatability in the genomic regions targeted, success using low-quality samples, more straightforward read orthology assessment, and higher per-locus information content. The utility of a method in systematics, however, rests not only on its performance within a study, but on the comparability of data sets and inferences with those of prior work. In RAD-Seq data sets, comparability is compromised by low overlap of orthologous markers across species and the sensitivity of genetic diversity in a data set to an interaction between the level of natural heterozygosity in the samples examined and the parameters used for orthology assessment. In contrast, sequence capture of conserved genomic regions permits interrogation of the same loci across divergent species, which is preferable for maintaining comparability among data sets and studies for the purpose of drawing general conclusions about the impact of

  18. On the role of subducting oceanic plateaus in the development of shallow flat subduction

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.

    2002-08-01

    Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600-700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.

  19. Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms

    USGS Publications Warehouse

    Watanabe, N.; Harter, T.H.; Bergamaschi, B.A.

    2008-01-01

    Pharmaceuticals used in animal feeding operations have been detected in various environmental settings. There is a growing concern about the impact on terrestrial and aquatic organisms and the development of antibiotic-resistant strains of microorganisms. Pharmaceutical use in milking cows is relatively limited compared with other livestock operations, except for the ionophore monensin, which is given to lactating cows as a feed. By weight, monensin can be the most significant antibiotic used in a dairy farm. This study investigates the potential of monensin to move from dairy operations into the surrounding ground water. Using two dairy farms in California as study sites, we twice collected samples along the environmental pathway-from flush lanes, lagoon waters, and shallow ground water beneath the dairies and beneath its associated manured fields. Monensin concentrations were determined using solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Monensin was detected in all of the flush lane and lagoon water samples. Theoretical maximum concentration estimated from the actual dosing rate and the theoretical excretion rate assuming no attenuation was one order of magnitude greater than observed concentrations, suggesting significant attenuation in the manure collection and storage system. Monensin was also detected, at levels ranging from 0.04 to 0.39 microg L(-1), in some of the ground water samples underneath the production area of the dairy but not from the adjacent manured fields. Concentrations in ground water immediately downgradient of the lagoons were one to two orders of magnitude lower than the concentrations detected in lagoons, suggesting attenuation in the subsurface. The data suggest the possibility of monensin transport into shallow (2-5 m) alluvial ground water from dairy management units, including manure storage lagoons and freestalls occupied by heifers, lactating cows, and dry cows.

  20. Imaging Shallow Salt With 3D Refraction Migration

    NASA Astrophysics Data System (ADS)

    Vanschuyver, C. J.; Hilterman, F. J.

    2005-05-01

    In offshore West Africa, numerous salt walls are within 200 m of sea level. Because of the shallowness of these salt walls, reflections from the salt top can be difficult to map, making it impossible to build an accurate velocity model for subsequent pre-stack depth migration. An accurate definition of salt boundaries is critical to any depth model where salt is present. Unfortunately, when a salt body is very shallow, the reflection from the upper interface can be obscured due to large offsets between the source and near receivers and also due to the interference from multiples and other near-surface noise events. A new method is described using 3D migration of the refraction waveforms which is simplified because of several constraints in the model definition. The azimuth and dip of the refractor is found by imaging with Kirchhoff theory. A Kirchhoff migration is performed where the traveltime values are adjusted to use the CMP refraction traveltime equation. I assume the sediment and salt velocities to be known such that once the image time is specified, then the dip and azimuth of the refraction path can be found. The resulting 3D refraction migrations are in excellent depth agreement with available well control. In addition, the refraction migration time picks of deeper salt events are in agreement with time picks of the same events on the reflection migration.

  1. Caribbean Shallow-water Black Corals (Cnidaria: Anthozoa: Antipatharia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opresko, Dennis M; Sanchez, Juan Armando

    2005-01-01

    Our aim is to provide a complete key and guide to the species of black corals from the Caribbean reefs at depths shallower than about 100 m. The key to the species is mostly based on colonial features that are recognized in the field, although some closely related species can only be differentiated by microscopic skeletal features. Each species is illustrated with one or more photos showing the size and shape of the colony; many photos were taken in the natural environment to facilitate underwater identification. Additionally, a short description is provided of each species and their microscopic diagnostic charactersmore » are illustrated with the aid of the Scanning Electron Microscope (SEM). Fifteen black coral species are found in relatively shallow-water in the Caribbean, Gulf of Mexico, and other parts of the tropical western Atlantic; these belong to the families Myriopathidae [Tanacetipathes hirta (Gray), T. tanacetum (Pourtales), T. barbadensis (Brook), T. thamnea (Warner), and Plumapathes pennacea (Pallas)]; Antipathidae [Antipathes lenta Pourtales, A. rubusifonnis Warner and Opresko, A. furcata Gray, A. umbratica Opresko, A. atlantica Gray, A. gracilis Gray, A. caribbeana Opresko, Stichopathes lutkeni Brook, and S. accidentalis (Gray)]; and Aphanipathidae [Rhipidipathes colombiana (Opresko and Sinchez)]. We hope that this guide will facilitate research on black corals on Caribbean reefs, where population surveys are urgently needed to evaluate or modify conservation policies.« less

  2. The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles.

    PubMed

    Lasagna, Manuela; De Luca, Domenico Antonio

    2016-10-01

    Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.

  3. Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers

    USGS Publications Warehouse

    Cook, P.G.; Solomon, D.K.; Sanford, W.E.; Busenberg, E.; Plummer, Niel; Poreda, R.J.

    1996-01-01

    The Ridge and Valley Province of eastern Tennessee is characterized by (1) substantial topographic relief, (2) folded and highly fractured rocks of various lithologies that have low primary permeability and porosity, and (3) a shallow residuum of medium permeability and high total porosity. Conceptual models of shallow groundwater flow and solute transport in this system have been developed but are difficult to evaluate using physical characterization or short‐term tracer methods due to extreme spatial variability in hydraulic properties. In this paper we describe how chlorofluorocarbon 12, 3H, and 3He were used to infer groundwater flow and solute transport in saprolite and fractured rock near Oak Ridge, Tennessee. In the shallow residuum, fracture spacings are <0.05 m, suggesting that concentrations of these tracers in fractures and in the matrix have time to diffusionally equilibrate. The relatively smooth nature of tracer concentrations with depth in the residuum is consistent with this model and quantitatively suggests recharge fluxes of 0.2 to 0.4 m yr−1. In contrast, groundwater flow within the unweathered rock appears to be controlled by fractures with spacings of the order of 2 to 5 m, and diffusional equilibration of fractures and matrix has not occurred. For this reason, vertical fluid fluxes in the unweathered rock cannot be estimated from the tracer data.

  4. Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.

    PubMed

    Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I

    2011-09-01

    Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography. © 2011 Acoustical Society of America

  5. Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Deng, Jingen; Sun, Jin; Liu, Wei; Yu, Baohua

    2018-02-01

    Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS (minimum horizontal principle stress) model and the FIF (fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC (permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling.

  6. Simulation of Shallow Cumuli and Their Transition to Deep Convective Clouds by Cloud-resolving Models with Different Third-order Turbulence Closures

    NASA Technical Reports Server (NTRS)

    Cheng, Anning; Xu, Kuan-Man

    2006-01-01

    The abilities of cloud-resolving models (CRMs) with the double-Gaussian based and the single-Gaussian based third-order closures (TOCs) to simulate the shallow cumuli and their transition to deep convective clouds are compared in this study. The single-Gaussian based TOC is fully prognostic (FP), while the double-Gaussian based TOC is partially prognostic (PP). The latter only predicts three important third-order moments while the former predicts all the thirdorder moments. A shallow cumulus case is simulated by single-column versions of the FP and PP TOC models. The PP TOC improves the simulation of shallow cumulus greatly over the FP TOC by producing more realistic cloud structures. Large differences between the FP and PP TOC simulations appear in the cloud layer of the second- and third-order moments, which are related mainly to the underestimate of the cloud height in the FP TOC simulation. Sensitivity experiments and analysis of probability density functions (PDFs) used in the TOCs show that both the turbulence-scale condensation and higher-order moments are important to realistic simulations of the boundary-layer shallow cumuli. A shallow to deep convective cloud transition case is also simulated by the 2-D versions of the FP and PP TOC models. Both CRMs can capture the transition from the shallow cumuli to deep convective clouds. The PP simulations produce more and deeper shallow cumuli than the FP simulations, but the FP simulations produce larger and wider convective clouds than the PP simulations. The temporal evolutions of cloud and precipitation are closely related to the turbulent transport, the cold pool and the cloud-scale circulation. The large amount of turbulent mixing associated with the shallow cumuli slows down the increase of the convective available potential energy and inhibits the early transition to deep convective clouds in the PP simulation. When the deep convective clouds fully develop and the precipitation is produced, the cold pools

  7. Shallow subtidal survey of the Washington outer coast and Olympic National park to determine the distribution, fate, and effects of spilled bunker C fuel oil. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carney, D.; Kvitek, R.G.

    1990-12-01

    The report provides an evaluation of the impacts of the bunker C fuel oil spill on the shallow subtidal benthic communities of the Washington coast. The study is designed to provide a subtidal extension of the intertidal investigation performed by Battelle Laboratories. As such, the study sites and many of the methodologies are the same. There are four objectives of the study. They are: (1) to identify and define from existing data, the probable distribution of subtidal deposits along the Washington coast, (2) to document petroleum hydrocarbon contamination in shallow subtidal sediments in the Olympic National Park and along themore » Washington outer coast, (3) to characterize petroleum hydrocarbon contamination in molluscan and other species' tissues of opportunity in subtidal habitats along the Washington outer coast, and (4) to collect the initial faunal and sediment samples required for possible future analyses should oil-spill related hydrocarbons be detected from initial sediment and tissue analyses.« less

  8. Influence of shallow traps on time-resolved optically stimulated luminescence measurements of Al2O3:C,Mg

    NASA Astrophysics Data System (ADS)

    Denis, G.; Akselrod, M. S.; Yukihara, E. G.

    2011-05-01

    The objective of this paper is to investigate the influence of shallow traps on the signals from Al2O3:C,Mg obtained using time-resolved optically stimulated luminescence (TR-OSL) measurements through experiments and numerical simulations. TR-OSL measurements of Al2O3:C,Mg were carried out and the resulting optically stimulated luminescence (OSL) curves were investigated as a function of the temperature. The numerical simulations were carried out using the rate-equations for a simplified model of Al2O3:C,Mg containing two types of luminescence centers with different luminescence lifetimes and three types of electron traps (a shallow trap, a main dosimetric trap, and a thermally disconnected deep trap). Both experimental results and simulations show that the OSL signals during and between the stimulation pulses are affected by the presence of shallow traps. However, with an appropriate choice of timing parameters, the influence of shallow traps can be reduced by calculating the difference between the signals during and between stimulation pulses. Therefore, TR-OSL can be useful in dosimetry using materials having a large concentration of shallow traps and OSL components with short luminescence lifetimes, for example Al2O3:C,Mg and BeO. Our results also show that the presence of shallow traps has to be taken into account when using the TR-OSL for discrimination between luminescence centers with different luminescence lifetimes, or separation between the OSL from different materials based on their characteristic luminescence lifetimes. The experimental results also show evidence of thermal assistance in the OSL process of Al2O3:C,Mg.

  9. The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities

    PubMed Central

    Clark, Graeme F.; Stark, Jonathan S.; Palmer, Anne S.; Riddle, Martin J.; Johnston, Emma L.

    2017-01-01

    On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics. PMID:28076438

  10. The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities.

    PubMed

    Clark, Graeme F; Stark, Jonathan S; Palmer, Anne S; Riddle, Martin J; Johnston, Emma L

    2017-01-01

    On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics.

  11. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less

  12. Effect of LEO cycling at shallow depths of discharge on MANTECH IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.

    1988-01-01

    An individual pressure vessel nickel-hydrogen battery is being considered as an alternate for a nickel-cadmium battery on the Hubble Space Telescope. The space telescope battery will primarily be operating at a shallow depth of discharge (10 percent DOD) with an occasional 40 percent DOD. This shallow DOD raises several issues: (1) What is the cycle life. It is projected to be acceptable; however, there is no reported real time data base for validation. (2) The state of charge of the nickel electrode at the beginning of charge is 90 percent. Will this cause an acceleration of divergence in the battery individual cell voltages. (3) After prolonged cycling at 10 percent DOD, will there be enough capacity remaining to support the 40 percent DOD. (4) Is the state of charge really 90 percent during cycling. There is no reported real time data base at shallow depths of discharge. A data base to address the above issues was initiated.

  13. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Lin, W.; Pengfei, L.

    2015-05-01

    When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  14. Expanded Craters on Mars: Implications for Shallow, Mid-latitude Excess Ice

    NASA Astrophysics Data System (ADS)

    Viola, Donna

    Understanding the age and distribution of shallow ice on Mars is valuable for interpreting past and present climate conditions, and has implications on habitability and future in situ resource utilization. Many ice-related features, such as lobate debris aprons and concentric crater fill, have been studied using a range of remote sensing techniques. Here, I explore the distribution of expanded craters, a form of sublimation thermokarst where shallow, excess ice has been destabilized and sublimated following an impact event. This leads to the collapse of the overlying dry regolith to produce the appearance of diameter widening. The modern presence of these features suggests that excess ice has remained preserved in the terrain immediately surrounding the craters since the time of their formation in order to maintain the surface. High-resolution imagery is ideal for observing thermokarst features, and much of the work described here will utilize data from the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO). Expanded craters tend to be found in clusters that emanate radially from at least four primary craters in Arcadia Planitia, and are interpreted as secondary craters that formed nearly simultaneously with their primaries. Crater age dates of the primaries indicate that the expanded secondaries, as well as the ice layer into which they impacted, must be at least tens of millions of years old. Older double-layer ejecta craters in Arcadia Planitia commonly have expanded craters superposed on their ejecta - and they tend to be more expanded (with larger diameters) in the inner ejecta layer. This has implications on the formation mechanisms for craters with this unique ejecta morphology. Finally, I explore the distribution of expanded craters south of Arcadia Planitia and across the southern mid-latitudes, along with scalloped depressions (another form of sublimation thermokarst), in order to identify

  15. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, T. R.; Weber, R. C.; Collins, G. C.; Johnson, C. L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and thrust faults consistent with lobate scarp orientations. Stresses due to orbital recession do not change with orbital position, thus it is with the addition of diurnal stresses that peak stresses are reached. At apogee, diurnal and recession stresses are most compressive near the tidal axis, while at perigee they are most compressive 90 degrees away from the tidal axis. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we show the results of relocating the shallow moonquake using an algorithm designed for sparse networks to better constrain their epicentral locations in order to compare them with stress models. The model for the current stress state of the Moon is refined by investigating the

  16. Activation and thermal stability of ultra-shallow B{sup +}-implants in Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, B. R.; Darby, B. L.; Jones, K. S.

    2012-12-15

    The activation and thermal stability of ultra-shallow B{sup +} implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B{sup +} implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B{sup +} implants at 2, 4, and 6 keV to fluences ranging from 5.0 Multiplication-Signmore » 10{sup 13} to 5.0 Multiplication-Sign 10{sup 15} cm{sup -2} was studied using micro Hall effect measurements after annealing at 400-600 Degree-Sign C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed at 400 Degree-Sign C for 60 s was characterized by channeling analysis with a 650 keV H{sup +} beam by utilizing the {sup 11}B(p, {alpha})2{alpha} nuclear reaction and confirmed the large fraction of off-lattice B for both c-Ge and PA-Ge. Within the investigated annealing range, no significant change in activation was observed. An increase in the fraction of activated dopant was observed with increasing energy which suggests that the surface proximity and the local point defect environment has a strong impact on B activation in Ge. The results suggest the presence of an inactive B-Ge cluster for ultra-shallow implants in both c-Ge and PA-Ge that remains stable upon annealing for temperatures up to 600 Degree-Sign C.« less

  17. Local feedback mechanisms of the shallow water region around the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Xue, Pengfei; Eltahir, Elfatih A. B.; Malanotte-Rizzoli, Paola; Wei, Jun

    2014-10-01

    The focus of this study is the local-scale air-sea feedback mechanisms over the shallow shelf water region (water depth <200 m) of the Maritime Continent (MC). MC was selected as a pilot study site for its extensive shallow water coverage, geographic complexity, and importance in the global climate system. To identify the local-scale air-sea feedback processes, we ran numerical experiments with perturbed surface layer water temperature using a coupled ocean-atmosphere model and an uncoupled ocean model. By examining the responses of the coupled and uncoupled models to the water temperature perturbation, we identify that, at a local-scale, a negative feedback process through the coupled dynamics that tends to restore the SST from its perturbation could dominate the shallow water region of the MC at a short time scale of several days. The energy budget shows that 38% of initial perturbation-induced heat energy was adjusted through the air-sea feedback mechanisms within 2 weeks, of which 58% is directly transferred into the atmosphere by the adjustment of latent heat flux due to the evaporative cooling mechanism. The increased inputs of heat and moisture into the lower atmosphere then modifies its thermal structure and increases the formation of low-level clouds, which act as a shield preventing incoming solar radiation from reaching the sea surface, accounts for 38% of the total adjustment of surface heat fluxes, serving as the second mechanism for the negative feedback process. The adjustment of sensible heat flux and net longwave radiation play a secondary role. The response of the coupled system to the SST perturbation suggests a response time scale of the coupled feedback process of about 3-5 days. The two-way air-sea feedback tightly links the surface heat fluxes, clouds and SST, and can play an important role in regulating the short-term variability of the SST over the shallow shelf water regions.

  18. A multitracer approach for characterizing interactions between shallow groundwater and the hydrothermal system in the Norris Geyser Basin area, Yellowstone National Park

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2011-01-01

    Multiple environmental tracers are used to investigate age distribution, evolution, and mixing in local- to regional-scale groundwater circulation around the Norris Geyser Basin area in Yellowstone National Park. Springs ranging in temperature from 3??C to 90??C in the Norris Geyser Basin area were sampled for stable isotopes of hydrogen and oxygen, major and minor element chemistry, dissolved chlorofluorocarbons, and tritium. Groundwater near Norris Geyser Basin is comprised of two distinct systems: a shallow, cool water system and a deep, high-temperature hydrothermal system. These two end-member systems mix to create springs with intermediate temperature and composition. Using multiple tracers from a large number of springs, it is possible constrain the distribution of possible flow paths and refine conceptual models of groundwater circulation in and around a large, complex hydrothermal system. Copyright 2011 by the American Geophysical Union.

  19. Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study.

    PubMed

    Schilirò, Luca; Montrasio, Lorella; Scarascia Mugnozza, Gabriele

    2016-11-01

    In recent years, physically-based numerical models have frequently been used in the framework of early-warning systems devoted to rainfall-induced landslide hazard monitoring and mitigation. For this reason, in this work we describe the potential of SLIP (Shallow Landslides Instability Prediction), a simplified physically-based model for the analysis of shallow landslide occurrence. In order to test the reliability of this model, a back analysis of recent landslide events occurred in the study area (located SW of Messina, northeastern Sicily, Italy) on October 1st, 2009 was performed. The simulation results have been compared with those obtained for the same event by using TRIGRS, another well-established model for shallow landslide prediction. Afterwards, a simulation over a 2-year span period has been performed for the same area, with the aim of evaluating the performance of SLIP as early warning tool. The results confirm the good predictive capability of the model, both in terms of spatial and temporal prediction of the instability phenomena. For this reason, we recommend an operating procedure for the real-time definition of shallow landslide triggering scenarios at the catchment scale, which is based on the use of SLIP calibrated through a specific multi-methodological approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Distribution, vertical position and ecological implications of shallow gas in Bahía Blanca estuary (Argentina)

    NASA Astrophysics Data System (ADS)

    Bravo, M. E.; Aliotta, S.; Fiori, S.; Ginsberg, S.

    2018-03-01

    There has been a growing interest in the study of shallow gas due its importance in relation to the marine environment, climate change and human activities. In Bahía Blanca estuary, Argentina, shallow gas has a wide distribution. Acoustic turbidity and blanking are the main seismic evidence for the presence of shallow gas in the estuary. The former prevails in the inner sector of the estuary where gas is either near or in contact with the seabed. Gas deposits are generally associated with paleochannels corresponding to the Holocene paleodeltaic environment. Distribution studies of shallow gas in this estuary are necessary because its presence implies not only a geological risk for harbor activities but also because it may have noxious effects on the marine ecosystem, mainly on benthic communities. The comparison of benthic communities at a gas site (GS) with those at a control site (CS) indicated that gas could generate impoverishment in terms of individuals' abundance (GS: N = 357; CS: N = 724). Also, diversity indices showed great differences in the community structure at each site. This indicates that methane gas may act as a natural disturbance agent in estuarine ecosystems. The presence of gas in seabed sediments must therefore be taken into account when distribution studies are conducted of estuarine benthic communities.