Sample records for backscatter diffraction ebsd

  1. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  2. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    PubMed

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  3. Tackling pseudosymmetry problems in electron backscatter diffraction (EBSD) analyses of perovskite structures

    NASA Astrophysics Data System (ADS)

    Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John

    2016-04-01

    Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a

  4. An automated method of quantifying ferrite microstructures using electron backscatter diffraction (EBSD) data.

    PubMed

    Shrestha, Sachin L; Breen, Andrew J; Trimby, Patrick; Proust, Gwénaëlle; Ringer, Simon P; Cairney, Julie M

    2014-02-01

    The identification and quantification of the different ferrite microconstituents in steels has long been a major challenge for metallurgists. Manual point counting from images obtained by optical and scanning electron microscopy (SEM) is commonly used for this purpose. While classification systems exist, the complexity of steel microstructures means that identifying and quantifying these phases is still a great challenge. Moreover, point counting is extremely tedious, time consuming, and subject to operator bias. This paper presents a new automated identification and quantification technique for the characterisation of complex ferrite microstructures by electron backscatter diffraction (EBSD). This technique takes advantage of the fact that different classes of ferrite exhibit preferential grain boundary misorientations, aspect ratios and mean misorientation, all of which can be detected using current EBSD software. These characteristics are set as criteria for identification and linked to grain size to determine the area fractions. The results of this method were evaluated by comparing the new automated technique with point counting results. The technique could easily be applied to a range of other steel microstructures. © 2013 Published by Elsevier B.V.

  5. Comments on the paper "Bragg's law diffraction simulations for electron backscatter diffraction analysis" by Josh Kacher, Colin Landon, Brent L. Adams & David Fullwood.

    PubMed

    Maurice, Claire; Fortunier, Roland; Driver, Julian; Day, Austin; Mingard, Ken; Meaden, Graham

    2010-06-01

    This comment on the paper "Bragg's Law diffraction simulations for electron backscatter diffraction analysis" by Kacher et al. explains the limitations in determining elastic strains using synthetic EBSD patterns. Of particular importance are those due to the accuracy of determination of the EBSD geometry projection parameters. Additional references and supporting information are provided. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Structures of Astromaterials Revealed by EBSD

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2018-01-01

    Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment.

  7. Detail Extraction from Electron Backscatter Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Basinger, Jay

    Cross-correlation based analysis of electron backscatter diffraction (EBSD) patterns and the use of simulated reference patterns has opened up entirely new avenues of insight into local lattice properties within EBSD scans. The benefits of accessing new levels of orientation resolution and multiple types of previously inaccessible data measures are accompanied with new challenges in characterizing microscope geometry and other error previously ignored in EBSD systems. The foremost of these challenges, when using simulated patterns in high resolution EBSD (HR-EBSD), is the determination of pattern center (the location on the sample from which the EBSD pattern originated) with sufficient accuracy to avoid the introduction of phantom lattice rotations and elastic strain into these highly sensitive measures. This dissertation demonstrates how to greatly improve pattern center determination. It also presents a method for the extraction of grain boundary plane information from single two-dimensional surface scans. These are accomplished through the use of previously un-accessed detail within EBSD images, coupled with physical models of the backscattering phenomena. A software algorithm is detailed and applied for the determination of pattern center with an accuracy of ˜0.03% of the phosphor screen width, or ˜10μm. This resolution makes it possible to apply a simulated pattern method (developed at BYU) in HR-EBSD, with several important benefits over the original HR-EBSD approach developed by Angus Wilkinson. Experimental work is done on epitaxially-grown silicon and germanium in order to gauge the precision of HR-EBSD with simulated reference patterns using the new pattern center calibration approach. It is found that strain resolution with a calibrated pattern center and simulated reference patterns can be as low as 7x10-4. Finally, Monte Carlo-based models of the electron interaction volume are used in conjunction with pattern-mixing-strength curves of line scans

  8. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD

  9. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    DOE PAGES

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...

    2016-11-18

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

  10. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    NASA Astrophysics Data System (ADS)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We

  11. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    PubMed

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  13. A method to correct coordinate distortion in EBSD maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.

    2014-10-15

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less

  14. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berecz, Tibor, E-mail: berecz@eik.bme.hu; Jenei, Péter, E-mail: jenei@metal.elte.hu; Csóré, András, E-mail: csorean@gmail.com

    2016-03-15

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreementmore » with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.« less

  15. Comparison of quartz crystallographic preferred orientations identified with optical fabric analysis, electron backscatter and neutron diffraction techniques.

    PubMed

    Hunter, N J R; Wilson, C J L; Luzin, V

    2017-02-01

    Three techniques are used to measure crystallographic preferred orientations (CPO) in a naturally deformed quartz mylonite: transmitted light cross-polarized microscopy using an automated fabric analyser, electron backscatter diffraction (EBSD) and neutron diffraction. Pole figure densities attributable to crystal-plastic deformation are variably recognizable across the techniques, particularly between fabric analyser and diffraction instruments. Although fabric analyser techniques offer rapid acquisition with minimal sample preparation, difficulties may exist when gathering orientation data parallel with the incident beam. Overall, we have found that EBSD and fabric analyser techniques are best suited for studying CPO distributions at the grain scale, where individual orientations can be linked to their source grain or nearest neighbours. Neutron diffraction serves as the best qualitative and quantitative means of estimating the bulk CPO, due to its three-dimensional data acquisition, greater sample area coverage, and larger sample size. However, a number of sampling methods can be applied to FA and EBSD data to make similar approximations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  16. Application of Electron Backscatter Diffraction to evaluate the ASR risk of concrete aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rößler, C., E-mail: christiane.roessler@uni-weimar.de; Möser, B.; Giebson, C.

    Alkali-Silica Reaction (ASR) is a frequent cause of reduced concrete durability. Eliminating the application of alkali reactive aggregates would reduce the quantity of ASR concrete deterioration in the field. This study introduces an Electron Backscatter Diffraction (EBSD) technique to distinguish the ASR risk of slow-late reacting aggregates by measuring microstructural properties of quartz. Quantifying the amount of quartz grain boundaries and the associated misorientation of grains can thereby be used to differentiate microstructures bearing an ASR risk. It is also shown that dissolution of quartz in high pH environments occurs along quartz grain and subgrain boundaries. Results of EBSD analysismore » are compared with ASR performance testing on concrete prisms and optical light microscopy characterization of quartz microstructure. EBSD opens new possibilities to quantitatively characterize microstructure of quartz in concrete aggregates with respect to ASR. This leads to a better understanding on the actual cause of ASR.« less

  17. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    NASA Astrophysics Data System (ADS)

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  18. Large area stress distribution in crystalline materials calculated from lattice deformation identified by electron backscatter diffraction.

    PubMed

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-08-05

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.

  19. Large Area Stress Distribution in Crystalline Materials Calculated from Lattice Deformation Identified by Electron Backscatter Diffraction

    PubMed Central

    Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin

    2014-01-01

    We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data. PMID:25091314

  20. Combined application of electron backscatter diffraction and stereo-photogrammetry in fractography studies.

    PubMed

    Davies, P A; Randle, V

    2001-10-01

    The main aim of this paper is to report on recent experimental developments that have succeeded in combining electron back-scatter diffraction (EBSD) with stereo-photogrammetry, compared with two other methods for study of fracture surfaces, namely visual fractography analysis in the scanning electron microscope (SEM) and EBSD directly from facets. These approaches will be illustrated with data relating to the cleavage plane orientation analysis in a ferritic and C-Mn steel. It is demonstrated that the combined use of EBSD and stereo-photogrammetry represents a significant advance in the methodology for facet crystallography analysis. The results of point counting from fractograph characterization determined that the proportions of intergranular fracture in C-Mn and ferritic steels were 10.4% and 9.4%, respectively. The crystallographic orientation was determined directly from the fracture surface of a ferritic steel sample and produced an orientation distribution with a clear trend towards the [001] plane. A stereo-photogrammetry technique was validated using the known geometry of a Vickers hardness indent. The technique was then successfully employed to measure the macroscopic orientation of individual cleavage facets in the same reference frame as the EBSD measurements. Correlating the results of these measurements indicated that the actual crystallographic orientation of every cleavage facet identified in the steel specimens is [001].

  1. Assessing Strain Mapping by Electron Backscatter Diffraction and Confocal Raman Microscopy Using Wedge-indented Si

    PubMed Central

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.

    2016-01-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2 × 10−4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  2. Microstructural and microtextural characterization of oxide scale on steel using electron backscatter diffraction.

    PubMed

    Birosca, S; Dingley, D; Higginson, R L

    2004-03-01

    High-temperature oxidation of steel has been extensively studied. The microstructure of iron oxides is, however, not well understood because of the difficulty in imaging it using conventional methods, such as optical or electron microscopy. A knowledge of the oxide microstructure and texture is critical in understanding how the oxide film behaves during high-temperature deformation of steels and more importantly how it can be removed following processing. Recently, electron back-scatter diffraction (EBSD) has proved to be a powerful technique for distinguishing the different phases in scales. This technique gives valuable information both on the microstructure and on the orientation relationships between the steel and the scale layers. In the current study EBSD has been used to investigate the microstructure and microtexture of iron oxide layers grown on interstitial free steel at different times and temperatures. Heat treatments have been carried out under normal oxidation conditions in order to relate the results to real steel manufacturing in industry. The composition, morphologies, microstructure and microtexture of selected conditions have been studied using EBSD.

  3. Three dimensional X-ray Diffraction Contrast Tomography Reconstruction of Polycrystalline Strontium Titanate during Sintering and Electron Backscatter Diffraction Validation

    NASA Astrophysics Data System (ADS)

    Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.

    The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.

  4. Electron imaging with an EBSD detector.

    PubMed

    Wright, Stuart I; Nowell, Matthew M; de Kloe, René; Camus, Patrick; Rampton, Travis

    2015-01-01

    Electron Backscatter Diffraction (EBSD) has proven to be a useful tool for characterizing the crystallographic orientation aspects of microstructures at length scales ranging from tens of nanometers to millimeters in the scanning electron microscope (SEM). With the advent of high-speed digital cameras for EBSD use, it has become practical to use the EBSD detector as an imaging device similar to a backscatter (or forward-scatter) detector. Using the EBSD detector in this manner enables images exhibiting topographic, atomic density and orientation contrast to be obtained at rates similar to slow scanning in the conventional SEM manner. The high-speed acquisition is achieved through extreme binning of the camera-enough to result in a 5 × 5 pixel pattern. At such high binning, the captured patterns are not suitable for indexing. However, no indexing is required for using the detector as an imaging device. Rather, a 5 × 5 array of images is formed by essentially using each pixel in the 5 × 5 pixel pattern as an individual scattered electron detector. The images can also be formed at traditional EBSD scanning rates by recording the image data during a scan or can also be formed through post-processing of patterns recorded at each point in the scan. Such images lend themselves to correlative analysis of image data with the usual orientation data provided by and with chemical data obtained simultaneously via X-Ray Energy Dispersive Spectroscopy (XEDS). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Two-dimensional strain-mapping by electron backscatter diffraction and confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gayle, Andrew J.; Friedman, Lawrence H.; Beams, Ryan; Bush, Brian G.; Gerbig, Yvonne B.; Michaels, Chris A.; Vaudin, Mark D.; Cook, Robert F.

    2017-11-01

    The strain field surrounding a spherical indentation in silicon is mapped in two dimensions (2-D) using electron backscatter diffraction (EBSD) cross-correlation and confocal Raman spectroscopy techniques. The 200 mN indentation created a 4 μm diameter residual contact impression in the silicon (001) surface. Maps about 50 μm × 50 μm area with 128 pixels × 128 pixels were generated in several hours, extending, by comparison, assessment of the accuracy of both techniques to mapping multiaxial strain states in 2-D. EBSD measurements showed a residual strain field dominated by in-surface normal and shear strains, with alternating tensile and compressive lobes extending about three to four indentation diameters from the contact and exhibiting two-fold symmetry. Raman measurements showed a residual Raman shift field, dominated by positive shifts, also extending about three to four indentation diameters from the contact but exhibiting four-fold symmetry. The 2-D EBSD results, in combination with a mechanical-spectroscopic analysis, were used to successfully predict the 2-D Raman shift map in scale, symmetry, and shift magnitude. Both techniques should be useful in enhancing the reliability of microelectromechanical systems (MEMS) through identification of the 2-D strain fields in MEMS devices.

  6. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    NASA Technical Reports Server (NTRS)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with <100>{010} slip. The deformation bands are unlike

  7. Use of reciprocal lattice layer spacing in electron backscatter diffraction pattern analysis

    PubMed

    Michael; Eades

    2000-03-01

    In the scanning electron microscope using electron backscattered diffraction, it is possible to measure the spacing of the layers in the reciprocal lattice. These values are of great use in confirming the identification of phases. The technique derives the layer spacing from the higher-order Laue zone rings which appear in patterns from many materials. The method adapts results from convergent-beam electron diffraction in the transmission electron microscope. For many materials the measured layer spacing compares well with the calculated layer spacing. A noted exception is for higher atomic number materials. In these cases an extrapolation procedure is described that requires layer spacing measurements at a range of accelerating voltages. This procedure is shown to improve the accuracy of the technique significantly. The application of layer spacing measurements in EBSD is shown to be of use for the analysis of two polytypes of SiC.

  8. Energy dependence of the spatial distribution of inelastically scattered electrons in backscatter electron diffraction

    NASA Astrophysics Data System (ADS)

    Ram, Farangis; De Graef, Marc

    2018-04-01

    In an electron backscatter diffraction pattern (EBSP), the angular distribution of backscattered electrons (BSEs) depends on their energy. Monte Carlo modeling of their depth and energy distributions suggests that the highest energy BSEs are more likely to hit the bottom of the detector than the top. In this paper, we examine experimental EBSPs to validate the modeled angular BSE distribution. To that end, the Kikuchi bandlet method is employed to measure the width of Kikuchi bands in both modeled and measured EBSPs. The results show that in an EBSP obtained with a 15 keV primary probe, the width of a Kikuchi band varies by about 0 .4∘ from the bottom of the EBSD detector to its top. The same is true for a simulated pattern that is composed of BSEs with 5 keV to 15 keV energies, which validates the Monte Carlo simulations.

  9. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  10. Electron backscatter diffraction applied to lithium sheets prepared by broad ion beam milling.

    PubMed

    Brodusch, Nicolas; Zaghib, Karim; Gauvin, Raynald

    2015-01-01

    Due to its very low hardness and atomic number, pure lithium cannot be prepared by conventional methods prior to scanning electron microscopy analysis. Here, we report on the characterization of pure lithium metallic sheets used as base electrodes in the lithium-ion battery technology using electron backscatter diffraction (EBSD) and X-ray microanalysis using energy dispersive spectroscopy (EDS) after the sheet surface was polished by broad argon ion milling (IM). No grinding and polishing were necessary to achieve the sufficiently damage free necessary for surface analysis. Based on EDS results the impurities could be characterized and EBSD revealed the microsctructure and microtexture of this material with accuracy. The beam damage and oxidation/hydration resulting from the intensive use of IM and the transfer of the sample into the microscope chamber was estimated to be <50 nm. Despite the fact that the IM process generates an increase of temperature at the specimen surface, it was assumed that the milling parameters were sufficient to minimize the heating effect on the surface temperature. However, a cryo-stage should be used if available during milling to guaranty a heating artefact free surface after the milling process. © 2014 Wiley Periodicals, Inc.

  11. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, S., E-mail: wronski@ftj.agh.edu.pl; Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl; Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distributionmore » and misorientation characteristics are examined using EBSD.« less

  12. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.G., E-mail: helen.jones@npl.co.uk

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beammore » exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.« less

  13. Analysis of soft magnetic materials by electron backscatter diffraction as a powerful tool

    NASA Astrophysics Data System (ADS)

    Schuller, David; Hohs, Dominic; Loeffler, Ralf; Bernthaler, Timo; Goll, Dagmar; Schneider, Gerhard

    2018-04-01

    The current work demonstrates that electron backscatter diffraction (EBSD) is a powerful and versatile characterization technique for investigating soft magnetic materials. The properties of soft magnets, e.g., magnetic losses strongly depend on the materials chemical composition and microstructure, including grain size and shape, texture, degree of plastic deformation and elastic strain. In electrical sheet stacks for e-motor applications, the quality of the machined edges/surfaces of each individual sheet is of special interest. Using EBSD, the influence of the punching process on the microstructure at the cutting edge is quantitatively assessed by evaluating the crystallographic misorientation distribution of the deformed grains. Using an industrial punching process, the maximum affected deformation depth is determined to be 200 - 300 μm. In the case of laser cutting, the affected deformation depth is determined to be approximately zero. Reliability and detection limits of the developed EBSD approach are evaluated on non-affected sample regions and model samples containing different indentation test bodies. A second application case is the investigation of the recrystallization process during the annealing step of soft magnetic composites (SMC) toroids produced by powder metallurgy as a function of compaction pressure, annealing parameters and powder particle size. With increasing pressure and temperature, the recrystallized area fraction (e.g., grains with crystallographic misorientations < 3°) increases from 71 % (200 MPa, 800°C) to 90% (800 MPa, 800°C). Recrystallization of the compacted powder material starts at the particle boundaries or areas with existing plastic deformation. The progress of recrystallization is visualized as a function of time and of different particle to grain size distributions. Here, large particles with coarse internal grain structures show a favorable recrystallization behavior which results in large bulk permeability of up to

  14. Tutorial: Crystal orientations and EBSD — Or which way is up?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, T.B., E-mail: b.britton@imperial.ac.uk; Jiang, J.; Guo, Y.

    2016-07-15

    Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figuremore » and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader.« less

  15. Electron back-scattered diffraction and nanoindentation analysis of nanostructured Al tubes processed by multipass tubular-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Mesbah, Mohsen; Faraji, Ghader; Bushroa, A. R.

    2016-03-01

    Microstructural evolution and mechanical properties of nanostructured 1060 aluminum alloy tubes processed by tubular-channel angular pressing (TCAP) process were investigated using electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM) and nanoindentation analyzes. EBSD scans revealed a homogeneous ultrafine grained microstructure after the third passes of the TCAP process. Apart from that the mean grain sizes of the TCAP processed tubes were refined to 566 nm, 500 nm and 480 nm respectively after the first, second and third passes. The results showed that after the three TCAP passes, the grain boundaries with a high angle comprised 78% of all the boundaries. This is in comparison to the first pass processed sample that includes approximately 20% HAGBs. The TEM inspection afforded an appreciation of the role of very low-angle misorientation boundaries in the process of refining microstructure. Nanoindentation results showed that hardness was the smallest form of an unprocessed sample while the largest form of the processed sample after the three passes of TCAP indicated the highest resistant of the material. In addition, the module of elasticity of the TCAP processed samples was greater from that of the unprocessed sample.

  16. ECCI, EBSD and EPSC characterization of rhombohedral twinning in polycrystalline α-alumina deformed in a D-DIA apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaboli, Shirin; Burnley, Pamela C.

    Rhombohedral twinning in alumina (aluminium oxide, α-Al 2O 3) is an important mechanism for plastic deformation under high-temperature–pressure conditions. Rhombohedral twins in a polycrystalline alumina sample deformed in a D-DIA apparatus at 965 K and 4.48 GPa have been characterized. Three classes of grains were imaged, containing single, double and mosaic twins, using electron channeling contrast imaging (ECCI) in a field emission scanning electron microscope. These twinned grains were analyzed using electron backscatter diffraction (EBSD). The methodology for twin identification presented here is based on comparison of theoretical pole figures for a rhombohedral twin with experimental pole figures obtained withmore » EBSD crystal orientation mapping. An 85°(02{\\overline 2}1) angle–axis pair of misorientation was identified for rhombohedral twin boundaries in alumina, which can be readily used in EBSD post-processing software to identify the twin boundaries in EBSD maps and distinguish the rhombohedral twins from basal twins. Elastic plastic self-consistent (EPSC) modeling was then used to model the synchrotron X-ray diffraction data from the D-DIA experiments utilizing the rhombohedral twinning law. From these EPSC models, a critical resolved shear stress of 0.25 GPa was obtained for rhombohedral twinning under the above experimental conditions, which is internally consistent with the value estimated from the applied load and Schmid factors determined by EBSD analysis.« less

  17. HR-EBSD as a new tool for quantifying geometrically necessary dislocations in quartz: Application to chessboard subgrain boundaries

    NASA Astrophysics Data System (ADS)

    Wallis, D.; Parsons, A. J.; Hansen, L. N.

    2017-12-01

    Chessboard subgrains in quartz, with boundaries composed of {m}[c] edge dislocations, are widely used as evidence for high-temperature deformation and have been suggested to form only in β-quartz. However, the origins and dislocation structure of chessboard subgrains remain poorly constrained and, without precise constraints on axes of misorientations across subgrain boundaries, other subgrain types formed at lower temperatures can be misidentified as chessboard subgrains. The technique most commonly employed to investigate subgrain structures, electron backscatter diffraction, can only resolve misorientation angles and axes for a portion of the substructure. This limitation hinders detailed interpretation of the dislocation types, densities, and processes that generate characteristic subgrain structures. We overcome these limitations by employing high-angular resolution electron backscatter diffraction (HR-EBSD), which employs cross-correlation of diffraction patterns to achieve angular resolution on the order of 0.01° with well-constrained misorientation axes. We analyse chessboard subgrains in samples from the Greater Himalayan Sequence, Nepal, which were deformed along well constrained pressure-temperature paths confined to the stability field of α-quartz. HR-EBSD analysis demonstrates that the subgrain boundaries consist of two sets. One set consists primarily of {m}[c] edge dislocations and the other consists of dislocations primarily with Burgers vectors. Apparent densities of geometrically necessary dislocations vary from > 1013 m-2 within some subgrain boundaries to < 1012 m-2 within subgrain interiors. This analysis provides new insight into the structure of chessboard subgrain boundaries, and a new tool to distinguish them from superficially similar deformation microstructures formed by other dislocation types at lower temperatures. Application of HR-EBSD to quartz from the Greater Himalayan Sequence confirms the activity of {m}[c] slip in the

  18. Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction

    PubMed Central

    Wisniewski, Wolfgang; Patschger, Marek; Murdzheva, Steliana; Thieme, Christian; Rüssel, Christian

    2016-01-01

    Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO – TiO2 –3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems. PMID:26853738

  19. A pseudo-3D approach based on electron backscatter diffraction and backscatter electron imaging to study the character of phase boundaries between Mg and long period stacking ordered phase in a Mg–2Y–Zn alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afshar, Mehran, E-mail: m.afshar@mpie.de; Zaefferer, Stefan, E-mail: s.zaefferer@mpie.de

    2015-03-15

    In Mg–2 at.% Y–1 at.% Zn alloys, the LPSO (Long Period Stacking Ordered) phase is important to improve mechanical properties of the material. The aim of this paper is to present a study on the phase boundary character in these two-phase alloys. Using EBSD pattern analysis it was found that the 24R structure is the dominant LPSO phase structure in the current alloy. The phase boundary character between the Mg matrix and the LPSO phase was investigated using an improved pseudo-3D EBSD (electron backscatter diffraction) technique in combination with BSE or SE (backscatter or secondary electron) imaging. A large amountmore » of very low-angle phase boundaries was detected. The (0 0 0 2) plane in the Mg matrix which is parallel to the (0 0 0 24) plane in the LPSO phase was found to be the most frequent plane for these phase boundaries. This plane is supposed to be the habit plane of the eutectic co-solidification of the Mg matrix and the LPSO phase. - Highlights: • It is shown that for the investigated alloy the LPSO phase has mainly 24R crystal structure. • A new method is presented which allows accurate determination of the 5-parameter grain or phase boundary character. • It is found that the low-angle phase boundaries appearing in the alloy all have basal phase boundary planes.« less

  20. Statistical analysis of dislocations and dislocation boundaries from EBSD data.

    PubMed

    Moussa, C; Bernacki, M; Besnard, R; Bozzolo, N

    2017-08-01

    Electron BackScatter Diffraction (EBSD) is often used for semi-quantitative analysis of dislocations in metals. In general, disorientation is used to assess Geometrically Necessary Dislocations (GNDs) densities. In the present paper, we demonstrate that the use of disorientation can lead to inaccurate results. For example, using the disorientation leads to different GND density in recrystallized grains which cannot be physically justified. The use of disorientation gradients allows accounting for measurement noise and leads to more accurate results. Misorientation gradient is then used to analyze dislocations boundaries following the same principle applied on TEM data before. In previous papers, dislocations boundaries were defined as Geometrically Necessary Boundaries (GNBs) and Incidental Dislocation Boundaries (IDBs). It has been demonstrated in the past, through transmission electron microscopy data, that the probability density distribution of the disorientation of IDBs and GNBs can be described with a linear combination of two Rayleigh functions. Such function can also describe the probability density of disorientation gradient obtained through EBSD data as reported in this paper. This opens the route for determining IDBs and GNBs probability density distribution functions separately from EBSD data, with an increased statistical relevance as compared to TEM data. The method is applied on deformed Tantalum where grains exhibit dislocation boundaries, as observed using electron channeling contrast imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Measuring Shock Stage of ltokawa Regolith Grains by Electron Back-Scattered Diffraction and Synchrotron X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Hagiya, Kenji; Sitzman, Scott; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; hide

    2017-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction techniques. We are making measurements of olivine crystal structures and using these to elucidate critical regolith impact processes. We use electron back-scattered diffraction (EBSD) and synchrotron X-ray diffraction (SXRD). We are comparing the Itokawa samples to L and LL chondrite meteorites chosen to span the shock scale experienced by Itokawa, specifically Chainpur (LL3.4, Shock Stage 1), Semarkona (LL3.00, S2), Kilabo (LL6, S3), NWA100 (L6, S4) and Chelyabinsk (LL5, S4). In SXRD we measure the line broadening of olivine reflections as a measure of shock stage. In this presentation we concentrate on the EBSD work. We employed JSC's Supra 55 variable pressure FEG-SEM and Bruker EBSD system. We are not seeking actual strain values, but rather indirect strain-related measurements such as extent of intra-grain lattice rotation, and determining whether shock state "standards" (meteorite samples of accepted shock state, and appropriate small grain size) show strain measurements that may be statistically differentiated, using a sampling of particles (number and size range) typical of asteroid regoliths. Using our system we determined that a column pressure of 9 Pa and no C-coating on the sample was optimal. We varied camera exposure time and gain to optimize mapping performance, concluding that 320x240 pattern pixilation, frame averaging of 3, 15 kV, and low extractor voltage yielded an acceptable balance of hit rate (>90%), speed (11 fps) and map quality using an exposure time of 30 ms (gain 650). We found that there was no strong effect of step size on Grain Orientation Spread (GOS) and Grain Reference Orientation Deviation angle (GROD-a) distribution; there was some

  2. EBSD and Nanoindentation-Correlated Study of Delamination Fracture in Al-Li Alloy 2090

    NASA Technical Reports Server (NTRS)

    Tayon, Wesley A.; Crooks, Roy E.; Domack, Marcia S.; Wagner, John A.; Elmustafa, A. A.

    2008-01-01

    Al-Li alloys offer attractive combinations of high strength and low density. However, a tendency for delamination fracture has limited their use. A better understanding of the delamination mechanisms may identify methods to control delaminations through processing modifications. A combination of new techniques has been used to evaluate delamination fracture in Al-Li alloys. Both high quality electron backscattered diffraction (EBSD) information and valid nanoindentation measurements were obtained from fractured test specimens. Correlations were drawn between nano-scale hardness variations and local texture along delaminating boundaries. Intriguing findings were observed for delamination fracture through the combined analysis of grain orientation, Taylor factor, and kernel average misorientation.

  3. Investigation of Parent Austenite Grains from Martensite Structure Using EBSD in a Wear Resistant Steel

    PubMed Central

    Gyhlesten Back, Jessica; Engberg, Göran

    2017-01-01

    Crystallographic reconstruction of parent austenite grain boundaries from the martensitic microstructure in a wear resistant steel was carried out using electron backscattered diffraction (EBSD). The present study mainly aims to investigate the parent austenite grains from the martensitic structure in an as-rolled (reference) steel sample and samples obtained by quenching at different cooling rates with corresponding dilatometry. Subsequently, this study is to correlate the nearest cooling rate by the dilatometer which yields a similar orientation relationship and substructure as the reference sample. The Kurdjumov-Sachs orientation relationship was used to reconstruct the parent austenite grain boundaries from the martensite boundaries in both reference and dilatometric samples using EBSD crystallographic data. The parent austenite grain boundaries were successfully evaluated from the EBSD data and the corresponding grain sizes were measured. The parent austenite grain boundaries of the reference sample match the sample quenched at 100 °C/s (CR100). Also the martensite substructures and crystallographic textures are similar in these two samples. The results from hardness measurements show that the reference sample exhibits higher hardness than the CR100 sample due to the presence of carbides in the reference sample. PMID:28772813

  4. Investigation of Parent Austenite Grains from Martensite Structure Using EBSD in a Wear Resistant Steel.

    PubMed

    Gyhlesten Back, Jessica; Engberg, Göran

    2017-04-26

    Crystallographic reconstruction of parent austenite grain boundaries from the martensitic microstructure in a wear resistant steel was carried out using electron backscattered diffraction (EBSD). The present study mainly aims to investigate the parent austenite grains from the martensitic structure in an as-rolled (reference) steel sample and samples obtained by quenching at different cooling rates with corresponding dilatometry. Subsequently, this study is to correlate the nearest cooling rate by the dilatometer which yields a similar orientation relationship and substructure as the reference sample. The Kurdjumov-Sachs orientation relationship was used to reconstruct the parent austenite grain boundaries from the martensite boundaries in both reference and dilatometric samples using EBSD crystallographic data. The parent austenite grain boundaries were successfully evaluated from the EBSD data and the corresponding grain sizes were measured. The parent austenite grain boundaries of the reference sample match the sample quenched at 100 °C/s (CR100). Also the martensite substructures and crystallographic textures are similar in these two samples. The results from hardness measurements show that the reference sample exhibits higher hardness than the CR100 sample due to the presence of carbides in the reference sample.

  5. Evaluation of macrozone dimensions by ultrasound and EBSD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, Andre, E-mail: Andre.Moreau@cnrc-nrc.gc.ca; Toubal, Lotfi; Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, QC, Canada H3C 1K3

    2013-01-15

    Titanium alloys are known to have texture heterogeneities, i.e. regions much larger than the grain dimensions, where the local orientation distribution of the grains differs from one region to the next. The electron backscattering diffraction (EBSD) technique is the method of choice to characterize these macro regions, which are called macrozones. Qualitatively, the images obtained by EBSD show that these macrozones may be larger or smaller, elongated or equiaxed. However, often no well-defined boundaries are observed between the macrozones and it is very hard to obtain objective and quantitative estimates of the macrozone dimensions from these data. In the presentmore » work, we present a novel, non-destructive ultrasonic technique that provides objective and quantitative characteristic dimensions of the macrozones. The obtained dimensions are based on the spatial autocorrelation function of fluctuations in the sound velocity. Thus, a pragmatic definition of macrozone dimensions naturally arises from the ultrasonic measurement. This paper has three objectives: 1) to disclose the novel, non-destructive ultrasonic technique to measure macrozone dimensions, 2) to propose a quantitative and objective definition of macrozone dimensions adapted to and arising from the ultrasonic measurement, and which is also applicable to the orientation data obtained by EBSD, and 3) to compare the macrozone dimensions obtained using the two techniques on two samples of the near-alpha titanium alloy IMI834. In addition, it was observed that macrozones may present a semi-periodical arrangement. - Highlights: Black-Right-Pointing-Pointer Discloses a novel, ultrasonic NDT technique to measure macrozone dimensions Black-Right-Pointing-Pointer Proposes a quantitative and objective definition of macrozone dimensions Black-Right-Pointing-Pointer Compares macrozone dimensions obtained using EBSD and ultrasonics on 2 Ti samples Black-Right-Pointing-Pointer Observes that macrozones may have a

  6. An EBSD Evaluation of the Microstructure of Crept Nimonic 101 for the Validation of a Polycrystal-Plasticity Model

    NASA Astrophysics Data System (ADS)

    Reschka, S.; Munk, L.; Wriggers, P.; Maier, H. J.

    2017-12-01

    Nimonic 101 is one of the early nickel-based superalloys developed for the use in gas turbines. In such environments, the material is exposed to a combination of both high temperatures and mechanical loads for a long duration. Hence, thermal creep is of the utmost concern as it often limits service life. This study focuses on creep tests, carried out on Nimonic 101 at different temperatures under a constant tensile load of 735 MPa. To characterize the microstructural evolution, electron backscatter diffraction (EBSD) measurements were employed before and after loading. At higher temperatures, a significant change of the microstructure was observed. The grains elongated and aligned their orientation along the load axis. In parallel, a crystal plasticity material model has been set up in the classical large deformation framework. Modeling results are compared to the acquired EBSD data.

  7. A novel EBSD-based finite-element wave propagation model for investigating seismic anisotropy: Application to Finero Peridotite, Ivrea-Verbano Zone, Northern Italy

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Frehner, Marcel; Kunze, Karsten; Zappone, Alba

    2014-10-01

    A novel electron backscatter diffraction (EBSD) -based finite-element (FE) wave propagation simulation is presented and applied to investigate seismic anisotropy of peridotite samples. The FE model simulates the dynamic propagation of seismic waves along any chosen direction through representative 2D EBSD sections. The numerical model allows separation of the effects of crystallographic preferred orientation (CPO) and shape preferred orientation (SPO). The obtained seismic velocities with respect to specimen orientation are compared with Voigt-Reuss-Hill estimates and with laboratory measurements. The results of these three independent methods testify that CPO is the dominant factor controlling seismic anisotropy. Fracture fillings and minor minerals like hornblende only influence the seismic anisotropy if their volume proportion is sufficiently large (up to 23%). The SPO influence is minor compared to the other factors. The presented FE model is discussed with regard to its potential in simulating seismic wave propagation using EBSD data representing natural rock petrofabrics.

  8. Anelasticity of olivine single crystals investigated by stress-reduction tests and high-angular resolution electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Wallis, D.; Hansen, L. N.; Kempton, I.; Wilkinson, A. J.

    2017-12-01

    Geodynamic phenomena, including glacial isostatic adjustment and postseismic deformation, can involve transient deformation in response to changes in differential stress acting on mantle rocks. As such, rheological models of transient deformation are incorporated in predictions of associated processes, including sea-level rise and stress redistribution after earthquakes. However, experimental constraints on rheological models for transient deformation of mantle materials are sparse. In particular, experiments involving stress reductions have been lacking. Moreover, a material's response to a reduction in stress can provide clues to the microphysical processes controlling deformation. To constrain models of transient deformation of mantle rocks we performed stress-reduction tests on single crystals of olivine at 1250-1300°C. Mechanical and piezoelectric actuators controlled constant initial stress during creep. At various strain intervals stress was reduced near-instantaneously using the piezoelectric actuator, inducing both elastic and anelastic (time-dependent) lengthening of the samples. A range of magnitudes of stress reduction were applied, typically unloading 10-90% of the initial stress. High-angular resolution electron backscatter diffraction (HR-EBSD), based on cross-correlation of diffraction patterns, was used to map dislocation density and elastic strain distributions in the recovered samples. Magnitudes of anelastic back-strain increase with increasing magnitudes of stress reduction and show a marked increase when stress reductions exceed 50% of the initial stress, consistent with previous observations in metals and alloys. This observation is inconsistent with the Burgers rheological model commonly used to describe transient behaviour and suggests that the style of rheological behaviour depends on the magnitude of stress change. HR-EBSD maps reveal that the crystal lattices are smoothly curved and generally lack subgrain boundaries and elastic strain

  9. Tiny twists in time; exploring angular resolution of in situ EBSD orientation microstructures in solar system zircon

    NASA Astrophysics Data System (ADS)

    Moser, D. E.

    2012-12-01

    Kikuchi discovered electron diffraction in samples of calcite in the 1920's, and orientation of lattice planes by Electron Backscatter Diffraction (EBSD) is now routinely measured by automated camera systems at a spatial resolution of tens of nanometers using Field Emission Gun SEM. The current methodology is proving particularly powerful when measuring lattice orientation microstructure in U-Pb geochronology minerals such as zircon and baddeleyite that have experienced high temperature deformation or shock metamorphism. These are among the oldest preserved mineral phases in inner solar system materials, and we have been applying EBSD to rare samples of the Early Earth and grains from extraterrestrial environments such as the Moon and Mars. In these cases the EBSD orientation data are useful for identifying high diffusivity pathways that may have afforded isotopic and trace element disturbance, microstructural proxies for shock metamorphic pressures, as well as resolving glide plane systems in ductile zircon and shear twin mechanisms. Blanket estimates of angular resolution for automated EBSD misorientation measurements are often in the range of 0.5 degrees. In some cases strain giving rise to only a few degrees of lattice misorientation has facilitated 100% Pb-loss. In some cases, however, there is a spatial correlation between trace element or cathodoluminescence zoning in zircon and what appears to be low magnitudes misorientation close to the limits of resolution. Given the proven value of performing EBSD analysis on geochronology minerals, a more thorough exploration of the precision and accuracy of EBSD lattice misorientation measurements is warranted. In this talk the relative weighting of the factors that limit EBSD angular resolution will be investigated, focusing on U-Pb dating minerals such as zircon. These factors include; sample surface preparation, phase symmetry, pseudo-symmetry effects, degree of crystallinity, Kikuchi band contrast and indexing

  10. Backscattered Diffraction | Materials Science | NREL

    Science.gov Websites

    crystalline orientation (left) and grain distribution (right). EBSD images showing properties of crystalline investigate misorientation between grain boundaries, texture, grain distribution, deformation, strain, and

  11. Genesis of diamond inclusions: An integrated cathodoluminescence (CL) and Electron backscatter diffraction (EBSD) study on eclogitic and peridotitic inclusions and their diamond host.

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Quint; Matveev, Sergei; Drury, Martyn; Gress, Michael; Chinn, Ingrid; Davies, Gareth

    2017-04-01

    Diamond inclusions are potentially fundamental to understanding the formation conditions of diamond and the volatile cycles in the deep mantle. In order to fully understand the implications of the compositional information recorded by inclusions it is vital to know whether the inclusions are proto-, syn-, or epigenetic and the extent to which they have equilibrated with diamond forming fluids. In previous studies, the widespread assumption was made that the majority of diamond inclusions are syngenetic, based upon observation of cubo-octahedral morphology imposed on the inclusions. Recent work has reported the crystallographic relationship between inclusions and the host diamond to be highly complex and the lack of crystallographic relationships between inclusions and diamonds has led some to question the significance of imposed cubo-octahedral morphology. This study presents an integrated EBSD and CL study of 9 diamonds containing 20 pyropes, 2 diopsides, 1 forsterite and 1 rutile from the Jwaneng and Letlhakane kimberlite clusters, Botswana. A new method was developed to analyze the crystallographic orientation of the host diamond and the inclusions with EBSD. Diamonds plates were sequentially polished to expose inclusions at different levels in the diamond. CL imaging at different depths was performed in order to produce a 3D view of diamond growth zones around the inclusions. Standard diamond polishing techniques proved too aggressive for silicate inclusions as they were damaged to such a degree that EBSD measurements on the inclusions were impossible. The inclusions were milled with a Ga+ focused ion beam (FIB) at a 12° angle to clean the surface for EBSD measurements. Of the 24 inclusions, 9 have an imposed cubo-octahedral morphology. Of these inclusions, 6 have faces orientated parallel to diamond growth zones and/or appear to have nucleated on a diamond growth surface, implying syngenesis. In contrast, other diamonds record resorption events such that

  12. Skeletal growth phases of the cold-water coral Lophelia pertusa shown by scanning electron microscope and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.

    2016-04-01

    Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.

  13. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  14. An electron back-scattered diffraction study on the microstructure evolution of severely deformed aluminum AI6061 alloy

    NASA Astrophysics Data System (ADS)

    Vaseghi, M.; Karimi Taheri, A.; Kim, H. S.

    2014-08-01

    In this paper dynamic strain ageing behavior in an Al-Mg-Si alloy related to equal channel angular pressing (ECAP) was investigated. In order to examine the combined plastic deformation and ageing effects on microstructure evolutions and strengthening characteristics, the Al6061 alloy were subjected to phi=90° ECAP die for up to 4 passes via route Bc at high temperatures. For investigating the effects of ageing temperature and strain rate in ECAP, Vickers hardness tests were performed. The combination of the ECAP process with dynamic ageing at higher temperatures resulted in a significant increase in hardness. The microstructural evolution of the samples was studied using electron back-scattering diffraction (EBSD). The grains of Al6061 aluminum alloy were refined significantly at 100 and 150 °C with greater pass numbers and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into highangle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAP 4 passes.

  15. Lattice-Preferred Orientation in Deformed Novaculite - Comparison of in-situ Results Using BEARTEX and Post-Mortem EBSD Analyses

    NASA Astrophysics Data System (ADS)

    Willenweber, A.; Thomas, S.; Burnley, P. C.

    2012-12-01

    The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem

  16. Strain Evolution in Cold-Warm Forged Steel Components Studied by Means of EBSD Technique

    PubMed Central

    Bonollo, Franco; Bassan, Fabio; Berto, Filippo

    2017-01-01

    Electron BackScatter Diffraction (EBSD) in conjunction with Field-Emission Environmental Scanning Electron Microscopy (FEG-ESEM) has been used to evaluate the microstructural and local plastic strain evolution in different alloys (AISI 1005, AISI 304L and Duplex 2205) deformed by a single-stage cold and warm forging process. The present work is aimed to describe the different behavior of the austenite and ferrite during plastic deformation as a function of different forging temperatures. Several topological EBSD maps have been measured on the deformed and undeformed states. Then, image quality factor, distributions of the grain size and misorientation have been analyzed in detail. In the austenitic stainless steel, the γ-phase has been found to harden more easily, then α-phase and γ-phase in AISI 1005 and in duplex stainless steel, sequentially. Compared to the high fraction of continuous dynamic recrystallized austenitic zones observed in stainless steels samples forged at low temperatures, the austenitic microstructure of samples forged at higher temperatures, 600–700 °C, has been found to be mainly characterized by large and elongated grains with some colonies of fine nearly-equiaxed grains attributed to discontinuous dynamic recrystallization. PMID:29258249

  17. Identifying deformation mechanisms in the NEEM ice core using EBSD measurements

    NASA Astrophysics Data System (ADS)

    Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.

    2015-04-01

    Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M

  18. Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, I., E-mail: basu@imm.rwth-aachen.de; Chen, M.; Loeck, M.

    One of the key aspects influencing microstructural design pathways in metallic systems is grain boundary motion. The present work introduces a method by means of which direct measurement of grain boundary mobility vs. misorientation dependence is made possible. The technique utilizes datasets acquired by means of serial electron backscatter diffraction (EBSD) measurements. The experimental EBSD measurements are collectively analyzed, whereby datasets were used to obtain grain boundary mobility and grain aspect ratio with respect to grain boundary misorientation. The proposed method is further validated using cellular automata (CA) simulations. Single crystal aluminium was cold rolled and scratched in order tomore » nucleate random orientations. Subsequent annealing at 300 °C resulted in grains growing, in the direction normal to the scratch, into a single deformed orientation. Growth selection was observed, wherein the boundaries with misorientations close to Σ7 CSL orientation relationship (38° 〈111〉) migrated considerably faster. The obtained boundary mobility distribution exhibited a non-monotonic behavior with a maximum corresponding to misorientation of 38° ± 2° about 〈111〉 axes ± 4°, which was 10–100 times higher than the mobility values of random high angle boundaries. Correlation with the grain aspect ratio values indicated a strong growth anisotropy displayed by the fast growing grains. The observations have been discussed in terms of the influence of grain boundary character on grain boundary motion during recrystallization. - Highlights: • Statistical microstructure method to measure grain boundary mobility during recrystallization • Method implementation independent of material or crystal structure • Mobility of the Σ7 boundaries in 5N Al was calculated as 4.7 × 10{sup –8} m{sup 4}/J ⋅ s. • Pronounced growth selection in the recrystallizing nuclei in Al • Boundary mobility values during recrystallization 2–3 orders

  19. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    PubMed Central

    Zhang, Tiantian; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-01-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270–1480 MPa. PMID:27279765

  20. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Jiang, Jun; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-05-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270-1480 MPa.

  1. 3-D microstructure of olivine in complex geological materials reconstructed by correlative X-ray μ-CT and EBSD analyses.

    PubMed

    Kahl, W-A; Dilissen, N; Hidas, K; Garrido, C J; López-Sánchez-Vizcaíno, V; Román-Alpiste, M J

    2017-11-01

    We reconstruct the 3-D microstructure of centimetre-sized olivine crystals in rocks from the Almirez ultramafic massif (SE Spain) using combined X-ray micro computed tomography (μ-CT) and electron backscatter diffraction (EBSD). The semidestructive sample treatment involves geographically oriented drill pressing of rocks and preparation of oriented thin sections for EBSD from the μ-CT scanned cores. The μ-CT results show that the mean intercept length (MIL) analyses provide reliable information on the shape preferred orientation (SPO) of texturally different olivine groups. We show that statistical interpretation of crystal preferred orientation (CPO) and SPO of olivine becomes feasible because the highest densities of the distribution of main olivine crystal axes from EBSD are aligned with the three axes of the 3-D ellipsoid calculated from the MIL analyses from μ-CT. From EBSD data we distinguish multiple CPO groups and by locating the thin sections within the μ-CT volume, we assign SPO to the corresponding olivine crystal aggregates, which confirm the results of statistical comparison. We demonstrate that the limitations of both methods (i.e. no crystal orientation data in μ-CT and no spatial information in EBSD) can be overcome, and the 3-D orientation of the crystallographic axes of olivines from different orientation groups can be successfully correlated with the crystal shapes of representative olivine grains. Through this approach one can establish the link among geological structures, macrostructure, fabric and 3-D SPO-CPO relationship at the hand specimen scale even in complex, coarse-grained geomaterials. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  2. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

    PubMed Central

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-01-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized. PMID:28447998

  3. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction.

    PubMed

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-04-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized.

  4. EBSD characterization of the growth mechanism of SiC synthesized via direct microwave heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jigang, E-mail: wangjigang@seu.edu.cn; Xizang Key Laboratory of Optical Information Processing and Visualization Technology, School of Information Engineering, Xizang Minzu University, Xianyang 712082; Huang, Shan

    2016-04-15

    Well-crystallized 3C-silicon carbide (SiC) grains/nanowires have been synthesized rapidly and conveniently via direct microwave heating, simply using silicon dioxide powders and artificial graphite as raw materials. The comprehensive characterizations have been employed to investigate the micro-structure of the obtained 3C-SiC products. Results indicated that, different from the classic screw dislocation growth mechanism, the 3C-SiC grains/nanowires synthesized via high-energy vacuum microwave irradiation were achieved through the two-dimension nucleation and laminar growth mechanism. Especially, the electron backscattered diffraction (EBSD) was employed to characterize the crystal planes of the as-grown SiC products. The calculated Euler angles suggested that the fastest-growing crystal planes (211)more » were overlapped gradually. Through the formation of the (421) transformation plane, (211) finally evolved to (220) which existed as the side face of SiC grains. The most stable crystal planes (111) became the regular hexagonal planes in the end, which could be explained by the Bravais rule. The characterization results of EBSD provided important experimental information for the evolution of crystal planes. - Graphical abstract: The formation of 3C-SiC prepared via direct microwave heating follows the mechanism of two-dimension nucleation and laminar growth. - Highlights: • 3C−SiC grains/nanowires were obtained via direct microwave heating. • 3C−SiC followed the mechanism of two-dimension nucleation and laminar growth. • In-situ EBSD analysis provided the experimental evidences of the growth.« less

  5. Insights to Meteorites and Impact Processes provided by Advanced EBSD Analysis

    NASA Astrophysics Data System (ADS)

    Palasse, Laurie; Berlin, Jana; Goran, Daniel; Tagle, Roald; Hamers, Maartje; Assis Fernandes, Vera; Deutsch, Alexander; Schulte, Peter; Salge, Tobias

    2013-04-01

    Electron backscatter diffraction (EBSD) is a powerful analytical technique for assessing the petrographic texture of rocks and the crystallographic orientation of minerals therein using a scanning electron microscope (SEM). Innovations in EBSD technology include colour-coded forescattered electron (FSE) images, high resolution and highly sensitive EBSD detectors, together with advanced EDS integration. It allows to accurately identify and discriminate different phases, and to investigate microstructures related to shock metamorphism. As an example, shocked carbonates and shocked quartz reveal a complex thermal history during post-shock cooling. (A) EBSD studies of calcite ejecta particles from the Chicxulub impact event, at the K-Pg boundary of El Guayal, Mexico (~520 km SW of the Chicxulub crater centre) display various microstructures [1] and spherulitic calcite ejecta particles reveal a fibre texture of elongated crystals with a preferred orientation. This indicates the presence of carbonate melts which were ejected at T>1240°C and P>40 bar from upper target lithologies and crystallized at cooling rates of ~100´s °C/s [2]. The calcite particles of El Guayal and the K/Pg boundary of La Lajilla (~1000 km W of the crater centre) show distinct microstructures represented by unoriented, equiaxed crystals with random orientation distribution. It documents recrystallization upon impact induced thermal stress at T>550°C during prolonged atmospheric transport. (B) Combined EBSD, FSE and cathodoluminescence (CL) studies of semi-amorphous shocked quartz of Chicxulub, Ries and Popigai impactites, reveal various microstructures. Colour-coded FSE imaging reveal recrystallized/deformed bands in Ries and Popigai samples indicative of planar deformation features. EBSD studies of Popigai allow to distinguish twinned Qz, α-Qz and α-cristobalite along the transition zone between shocked gneiss clast and impact melt. Recrystallized Qz grains are associated with amorphous SiO2

  6. Observations on the Role of Hydrogen in Facet Formation in Near-alpha Titanium (Preprint)

    DTIC Science & Technology

    2011-05-01

    using quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning...quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning electron...tilt fractography / electron backscatter diffraction (EBSD) technique in which both the crystallographic orientation of the fractured grain and the

  7. XRD and EBSD analysis of anisotropic microstructure development in cold rolled F138 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vincentis, N.S., E-mail: devincentis@ifir-conic

    The microstructural characteristics of deformation-processed materials highly influence their mechanical properties. For a complete characterization of a microstructure both local and global information must be gathered, which requires the combination of different analysis techniques. X-ray and Electron Backscatter Diffraction were used in the present paper to characterize the deformation induced in a cold rolled F138 austenitic stainless steel sample. The results obtained using laboratory and synchrotron X-ray sources were compared and combined with EBSD quantitative results, allowing the global and local characterization and orientation dependence of the deformation microstructure. A particular behavior was observed in the XRD data corresponding tomore » the planes with < 220 >∥ ND, likely due to a smaller amount of defects accumulated in the crystals with that particular orientation. EBSD was used to separate the scans data into partitions and to calculate misorientation variables and parameters, showing that this behavior can be attributed to a combination of larger grain sizes, lower local boundary misorientations and dislocation densities for crystals having < 220 >∥ ND. Several conclusions, of general validity for the evaluation of microstructure anisotropy, can be extracted from the results. - Highlights: •Combined XRD and EBSD for studying microstructure gave a superb insight on anisotropic accumulation of defects. •W-H and CMWP methods were applied for checking consistency of results. •XRD showed that a smaller accumulation of defects occurred in crystals with < 220 >∥ ND. •High brilliance X-ray beam allowed to study the anisotropy of defect accumulation.« less

  8. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the

  9. EBSD Analysis of Relationship Between Microstructural Features and Toughness of a Medium-Carbon Quenching and Partitioning Bainitic Steel

    NASA Astrophysics Data System (ADS)

    Li, Qiangguo; Huang, Xuefei; Huang, Weigang

    2017-12-01

    A multiphase microstructure of bainite, martensite and retained austenite in a 0.3C bainitic steel was obtained by a novel bainite isothermal transformation plus quenching and partitioning (B-QP) process. The correlations between microstructural features and toughness were investigated by electron backscatter diffraction (EBSD), and the results showed that the multiphase microstructure containing approximately 50% bainite exhibits higher strength (1617 MPa), greater elongation (18.6%) and greater impact toughness (103 J) than the full martensite. The EBSD analysis indicated that the multiphase microstructure with a smaller average local misorientation (1.22°) has a lower inner stress concentration possibility and that the first formed bainitic ferrite plates in the multiphase microstructure can refine subsequently generated packets and blocks. The corresponding packet and block average size decrease from 11.9 and 2.3 to 8.4 and 1.6 μm, respectively. A boundary misorientation analysis indicated that the multiphase microstructure has a higher percentage of high-angle boundaries (67.1%) than the full martensite (57.9%) because of the larger numbers and smaller sizes of packets and blocks. The packet boundary obstructs crack propagation more effectively than the block boundary.

  10. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD.

    PubMed

    Mark, A F; Li, W; Sharples, S; Withers, P J

    2017-07-01

    Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  11. EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Kipfstuhl, Sepp; Drury, Martyn R.

    2017-09-01

    Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD), has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth) and Greenland (NEEM deep ice core at 719 m of depth). EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain boundaries that are not related to the

  12. Exploring transmission Kikuchi diffraction using a Timepix detector

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Mingard, K.; Maneuski, D.; O'Shea, V.; Trager-Cowan, C.

    2017-02-01

    Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods.

  13. Effect of cold deformation on the recrystallization behavior of FePd alloy at the ordering temperature using electron backscatter diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hung-Pin; Chen, Yen-Chun; Chen, Delphic

    2014-08-15

    In this study, the evolution of the recrystallization texture and microstructure was investigated after annealing of 50% and 90% cold-rolled FePd alloy at 530 °C. The FePd alloy was produced by vacuum arc melting in an atmosphere of 97% Ar and 3% H{sub 2}. The specimens were cold rolled to achieve 50% and 90% reduction in thickness. Electron backscatter diffraction measurements were performed on the rolling direction–normal direction section. With increased deformation from 50% to 90%, recrystallized texture transition occurs. For the 50% cold-rolled alloy, the preferred orientation is (0 1 0) [11 0 1], which is close to themore » cubic orientation after 400 h of annealing. For the 90% cold-rolled alloy, the orientation changes to (0 5 4) [22–4 5] after 16 h of annealing. - Highlights: • Texture and microstructure in cold-rolled FePd alloy was investigated during annealing using EBSD. • The recrystallized texture of 50% cold-rolled FePd is (0 1 0) [11 0 1] at 530 °C for 400 hours. • The recrystallized texture of 90% cold-rolled FePd is changed to (0 5 4) [22–4 5] at 530 °C after 16 hours.« less

  14. Scaling ice microstructures from the laboratory to nature: cryo-EBSD on large samples.

    NASA Astrophysics Data System (ADS)

    Prior, David; Craw, Lisa; Kim, Daeyeong; Peyroux, Damian; Qi, Chao; Seidemann, Meike; Tooley, Lauren; Vaughan, Matthew; Wongpan, Pat

    2017-04-01

    Electron backscatter diffraction (EBSD) has extended significantly our ability to conduct detailed quantitative microstructural investigations of rocks, metals and ceramics. EBSD on ice was first developed in 2004. Techniques have improved significantly in the last decade and EBSD is now becoming more common in the microstructural analysis of ice. This is particularly true for laboratory-deformed ice where, in some cases, the fine grain sizes exclude the possibility of using a thin section of the ice. Having the orientations of all axes (rather than just the c-axis as in an optical method) yields important new information about ice microstructure. It is important to examine natural ice samples in the same way so that we can scale laboratory observations to nature. In the case of ice deformation, higher strain rates are used in the laboratory than those seen in nature. These are achieved by increasing stress and/or temperature and it is important to assess that the microstructures produced in the laboratory are comparable with those observed in nature. Natural ice samples are coarse grained. Glacier and ice sheet ice has a grain size from a few mm up to several cm. Sea and lake ice has grain sizes of a few cm to many metres. Thus extending EBSD analysis to larger sample sizes to include representative microstructures is needed. The chief impediments to working on large ice samples are sample exchange, limitations on stage motion and temperature control. Large ice samples cannot be transferred through a typical commercial cryo-transfer system that limits sample sizes. We transfer through a nitrogen glove box that encloses the main scanning electron microscope (SEM) door. The nitrogen atmosphere prevents the cold stage and the sample from becoming covered in frost. Having a long optimal working distance for EBSD (around 30mm for the Otago cryo-EBSD facility) , by moving the camera away from the pole piece, enables the stage to move without crashing into either the

  15. A multimodal microcharacterisation of trace-element zonation and crystallographic orientation in natural cassiterite by combining cathodoluminescence, EBSD, EPMA and contribution of confocal Raman-in-SEM imaging.

    PubMed

    Wille, G; Lerouge, C; Schmidt, U

    2018-01-16

    In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  16. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald

    2013-01-01

    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  17. Stress in recrystallized quartz by electron backscatter diffraction mapping

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, S.

    2017-07-01

    The long-term state of stress at middle and lower crustal depths can be estimated through the study of the microstructure of exhumed rocks from active and/or ancient shear zones. Constitutive equations for deformation mechanisms in experimentally deformed rocks relate differential stress to the size of recrystallized grains. Cross et al. (2017) take advantage of electron backscatter diffraction mapping to systematically separate new recrystallized grains from host grains on the basis of the measurable lattice distorsion within the grains. They produce the first calibrated piezometer for quartz with this technique, reproducing within error a previous calibration based on optical microscopy.

  18. Electron backscatter diffraction analysis of Nb3Al multifilamentary strands prepared by rapid heating, quenching and transformation annealing

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Tsuchiya, K.; Saeda, M.; Banno, N.; Kikuchi, A.; Iijima, Y.

    2010-12-01

    To enhance the non-Cu critical current density Jc at 15 T and 4.2 K (1000 A mm - 2 at present) we have endeavoured to refine the grain size of rapid heating, quenching and transformation (RHQT)-processed Nb3Al. In the present study, the grain boundary structures of RHQT-processed Nb3Al were examined by electron backscatter diffraction (EBSD) because transgranular fracture prevents the observation of fractured cross sections of Nb3Al to statistically determine the grain size. The grain size distributions of body-centred-cubic supersaturated-solid-solution Nb(Al)ss and A15 Nb3Al filaments were measured for grains misoriented by more than 2°, 5° and 15°. A mixed grain structure, which consists of a few large grains (>25 µm) and many small grains (<1 µm), was observed for an Nb3Al filament that had been transformed from non-deformed Nb(Al)ss. Plastic deformation that had been made between the rapid heating and quenching steps and the transformation step apparently homogenized the grain size distribution and then reduced the average grain size. The misorientation angle distributions of Nb(Al)ss and Nb3Al were also measured and compared with each other. A clear relationship between the Jc and the inverse grain size was not confirmed for the RHQT Nb3Al conductors examined in the present study, which indicates the importance of making a filament compositionally homogeneous to obtain a high Jc.

  19. Microshear in the deep EDML ice core analyzed using cryogenic EBSD

    NASA Astrophysics Data System (ADS)

    Kuiper, Ernst-Jan; Pennock, Gill; Drury, Martyn; Kipfstuhl, Sepp; Faria, Sérgio; Weikusat, Ilka

    2017-04-01

    Ice sheets play an important role in sea level evolution by storing large amounts of fresh water on land. The ice in an ice sheet flows from the interior of the ice sheet to the edges where it either melts or calves into the ocean. This flow of ice results from internal deformation of the ice aggregate. Dislocation creep is assumed to be the dominant deformation mechanism for polar ice and is grain size insensitive. Recently, a different deformation mechanism was identified in the deeper part of the EDML ice core (Antarctica) where, at a depth of 2385 meters, the grain size strongly decreases, the grain aspect ratio increase and, the inclination of the grain elongation changes (Faria et al., 2006; Weikusat et al., 2017). At this depth the borehole displacement increases strongly (Weikusat et al., 2017), which indicates a relatively high strain rate. Part of this EDML ice core section was studied using cryogenic electron backscattered diffraction (cryo-EBSD) (Weikusat et al, 2011). EBSD produces high resolution, full crystallographic (a-axis and c-axis) maps of the ice core samples. EBSD samples were taken from an ice core section at 2392.2 meter depth. This section was chosen for its very small grain size and the strongly aligned grain boundaries. The EBSD maps show a very low orientation gradient of <0.3° per millimetre inside the grains, which is 5-10 times lower than the orientation gradients found in other parts of the ice core. Furthermore, close to some grain boundaries, a relatively strong orientation gradient of 1°-2° per millimetre was found. The subgrain boundaries developed such that they elongate the sliding boundaries in order to accommodate the incompatibilities and maintain the strongly aligned grain boundary network. We identify the dominant deformation mechanism in this part of the ice core as grain boundary sliding accommodated by localized dislocation creep, which is a process similar to microshear (Drury and Humpreys, 1988). The existence of

  20. Three-Dimensional FIB/EBSD Characterization of Irradiated HfAl3-Al Composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Zilong; Guillen, Donna Post; Harris, William

    2016-09-01

    A thermal neutron absorbing material, comprised of 28.4 vol% HfAl3 in an Al matrix, was developed to serve as a conductively cooled thermal neutron filter to enable fast flux materials and fuels testing in a pressurized water reactor. In order to observe the microstructural change of the HfAl3-Al composite due to neutron irradiation, an EBSD-FIB characterization approach is developed and presented in this paper. Using the focused ion beam (FIB), the sample was fabricated to 25µm × 25µm × 20 µm and mounted on the grid. A series of operations were carried out repetitively on the sample top surface tomore » prepare it for scanning electron microscopy (SEM). First, a ~100-nm layer was removed by high voltage FIB milling. Then, several cleaning passes were performed on the newly exposed surface using low voltage FIB milling to improve the SEM image quality. Last, the surface was scanned by Electron Backscattering Diffraction (EBSD) to obtain the two-dimensional image. After 50 to 100 two-dimensional images were collected, the images were stacked to reconstruct a three-dimensional model using DREAM.3D software. Two such reconstructed three-dimensional models were obtained from samples of the original and post-irradiation HfAl3-Al composite respectively, from which the most significant microstructural change caused by neutron irradiation apparently is the size reduction of both HfAl3 and Al grains. The possible reason is the thermal expansion and related thermal strain from the thermal neutron absorption. This technique can be applied to three-dimensional microstructure characterization of irradiated materials.« less

  1. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  2. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    PubMed

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Stress Corrosion Cracking Facet Crystallography of Ti-8Al-1Mo-1V (Preprint)

    DTIC Science & Technology

    2011-05-01

    fractography and electron backscatter diffraction. The results indicate that most facets are formed nearly perpendicular to the loading direction on...of Ti-8Al- 1Mo-1V have been characterized using quantitative fractography and electron backscatter diffraction. The results indicate that most facets...EBSD and quantitative tilt fractography [27;29] allow for determination of the crystallographic fracture plane to an accuracy between 1o [29] and

  4. Reconstruction of the 3-D Shape and Crystal Preferred Orientation of Olivine: A Combined X-ray µ-CT and EBSD-SEM approach

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel

    2017-04-01

    The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three

  5. Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.

    PubMed

    Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc

    2017-10-01

    The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. User-independent EBSD parameters to study the progress of recovery and recrystallization in Cu-Zn alloy during in situ heating.

    PubMed

    Sharma, N K; Shekhar, S

    2016-12-01

    Microstructural evolution of cold-rolled Cu-5%Zn alloy during in situ heating inside field-emission scanning electron microscope was utilized to obtain user-independent parameters in order to trace the progress of static recovery and recrystallization. Electron back-scattered diffraction (EBSD)-based orientation imaging microscopy was used to obtain micrographs at various stages of in situ heating. It is shown that unlike the pre-existing methods, additional EBSD-based parameter can be used to trace the progress of recovery and recrystallization, which is not dependent on user input and hence less prone to error. True strain of 0.3 was imposed during cold rolling of alloy sample. Rolled sample was subjected to in situ heating from room temperature to 500°C (∼0.58 Tm) with soaking time of 10 min, at each of the intermediate temperatures viz. 100, 200, 300, 400 and 450°C. After reaching 500°C, the sample was kept at this temperature for a maximum duration of around 15 h. The sample showed clear signs of recovery for temperature up to 450°C, and at 500°C, recrystallization started to take place. Recrystallization kinetics was moderate, and full recrystallization was achieved in approximately 120 min. We found that EBSD parameter, namely, band contrast intensity can be used as an extra handle to map out the progress of recrystallization occurring in the sample. By contrast, mean angular deviation can be used to understand the evolution of recovery in samples. The parameters mentioned in the current study, unlike other pre-existing methods, can also be used for mapping local microstructural transformations due to recovery and recrystallization. We discuss the benefits and limitations in using these additional handles in understanding the changes taking place in the material during in situ heating. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  7. On the bulk degradation of yttria-stabilized nanocrystalline zirconia dental implant abutments: an electron backscatter diffraction study.

    PubMed

    Ocelík, V; Schepke, U; Rasoul, H Haji; Cune, M S; De Hosson, J Th M

    2017-08-01

    Degradation of yttria-stabilized zirconia dental implants abutments due to the tetragonal to monoclinic phase transformation was studied in detail by microstructural characterization using Electron Back Scatter Diffraction (EBSD). The amount and distribution of the monoclinic phase, the grain-size distribution and crystallographic orientations between tetragonal and monoclinic crystals in 3 mol.% yttria-stabilized polycrystalline zirconia (3Y-TZP) were determined in two different types of nano-crystalline dental abutments, even for grains smaller than 400 nm. An important and novel conclusion is that no substantial bulk degradation of 3Y-TZP dental implant abutments was detected after 1 year of clinical use.

  8. The impact of water on dislocation content and slip system activity in olivine constrained by HR-EBSD and visco-plastic self-consistent simulations

    NASA Astrophysics Data System (ADS)

    Wallis, D.; Hansen, L. N.; Tasaka, M.; Kumamoto, K. M.; Lloyd, G. E.; Parsons, A. J.; Kohlstedt, D. L.; Wilkinson, A. J.

    2016-12-01

    Changes in concentration of H+ ions in olivine have impacts on its rheological behaviour and therefore on tectonic processes involving mantle deformation. Deformation experiments on aggregates of wet olivine exhibit different evolution of crystal preferred orientations (CPO) and substructure from experiments on dry olivine, suggesting that elevated H+ concentrations impact activity of dislocation slip-systems. We use high angular-resolution electron backscatter diffraction (HR-EBSD) to map densities of different types of geometrically necessary dislocations (GND) in polycrystalline olivine deformed experimentally under wet and dry conditions and also in nature. HR-EBSD provides unprecedented angular resolution, resolving misorientations < 0.01°. We also employ visco-plastic self-consistent (VPSC) simulations to investigate changes in slip-system activity. HR-EBSD maps from experimental samples demonstrate that olivine deformed under hydrous conditions contains higher proportions of (001)[100] and (100)[001] edge dislocations than olivine deformed under anhydrous conditions. Furthermore, maps of wet olivine exhibit more polygonal subgrain boundaries indicative of enhanced recovery by dislocation climb. VPSC simulations with low critical resolved shear stresses for the (001)[100] and (100)[001] slip systems reproduce an unusual CPO with bimodal maxima of both [100] and [001] observed in wet olivine aggregates. Analysis of a mylonitic lherzolite xenolith from Lesotho reveals the same unusual CPO and similar proportions of dislocation types to `wet' experimental samples, supporting the applicability of these findings to natural deformation conditions. These results support suggestions that H+ impacts the flow properties of olivine by altering dislocation activity and climb, while also providing full quantification of GND content. In particular, the relative proportions of dislocation types may provide a basis for identifying olivine deformed under wet and dry

  9. Identifying Planar Deformation Features Using EBSD and FIB

    NASA Astrophysics Data System (ADS)

    Pickersgill, A. E.; Lee, M. R.

    2015-09-01

    Planar deformation features in quartz grains from the Gow Lake impact structure have been successfully identified and indexed using electron backscatter diffraction in combination with focused ion beam milling.

  10. Testing the Crystalline Integrity of Baddeleyite: A Systematic EBSD and Confocal Laser-Raman Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    DesOrmeau, J. W.; Ibanez-Mejia, M.; Lafuente Valverde, B.; Eddy, M. P.; Trail, D.; Wang, Y.

    2017-12-01

    The accessory mineral baddeleyite (monoclinic ZrO2) has great potential as a high-precision U-Pb geochronometer in silica-undersaturated rocks. However, due to a lack of understanding of alpha-recoil damage to the crystal structure and the influences on chemical diffusion properties and closed-system behavior, limitations still exist. Studies have shown phase transformations in baddeleyite (monoclinic to tetragonal) resulting from radiation damage due to ion bombardment [e.g., 1], but the effects of self-irradiation on the baddeleyite crystal structure over geologic timescales remain poorly understood. A recent study reported confocal laser-Raman spectra suggesting the presence of a tetragonal phase in a Phalaborwa baddeleyite [2], which has crucial implications for Pb mobility and high-precision U-Pb results. To better understand the physical effects of self-irradiation in baddeleyite over geologic timescales, samples of various ages (ca. 2060-32 Ma) and calculated alpha-doses (0.001-0.901 x 1016 α/mg) were imaged by cathodoluminescence (CL) and subsequently analyzed via electron backscatter diffraction (EBSD) and confocal laser-Raman spectroscopy. Synthetic baddeleyite grown in a one-atmosphere furnace was also analyzed to allow a comparison of EBSD and Raman results of the pure monoclinic phase and the natural unknown samples. Whole grain EBSD maps (n=75) of baddeleyite from the Phalabowra and Kovdor carbonatites, the Ammänpelto sill, and the Duluth, Ogden and Yinmawanshan gabbros show complex twinning that is loosely correlated to CL zoning and identification of the monoclinic phase only, suggesting no evidence for phase transformations within grains of contrasting age and amounts of alpha-doses. Preliminary Raman results show evidence of systematic shifts in the vibrational modes of Phalabowra baddeleyite with respect to the younger crystals, which may be the result of radiation-induced damage accumulation rather than phase transformation. These results aim

  11. Use of EBSD Data in Numerical Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, R; Wiland, H

    2000-01-14

    Experimentation, theory and modeling have all played vital roles in defining what is known about microstructural evolution and the effects of microstructure on material properties. Recently, technology has become an enabling factor, allowing significant advances to be made on several fronts. Experimental evidence of crystallographic slip and the basic theory of crystal plasticity were established in the early 20th Century, and the theory and models evolved incrementally over the next 60 years. (Asaro provides a comprehensive review of the mechanisms and basic plasticity models.) During this time modeling was primarily concerned with the average response of polycrystalline aggregates. While somemore » detailed finite element modeling (FEM) with crystal plasticity constitutive relations was done in the early 1980s, such simulations over taxed the capabilities of the available computer hardware. Advances in computer capability led to a flurry of activity in finite element modeling in the next 10 years, increasing understanding of microstructure evolution and pushing the limits of theories and material characterization. Automated Electron Back Scatter Diffraction (EBSD) has produced a similar revolution in material characterization. The data collected is extensive and many questions about the evolution of microstructure and its role in determining mechanic properties can now be addressed. It is also now possible to obtain sufficient information about lattice orientations on a fine enough scale to allow detailed quantitative comparisons of experiments and newly emerging large scale numerical simulations. The insight gained from the coupling of EBSD and FEM studies will provide impetus for further development of microstructure models and theories of microstructure evolution. Early studies connecting EBSD data to finite element models used manual measurements to define initial orientations for the simulation. In one study, manual measurements of the deformed structure

  12. Heteogeneities During Deformation of Polycrystalline Ice, Recent Advances in Cryo-EBSD Analyses

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Montagnat, M.; Chauve, T.; Barou, F.; Tommasi, A.; Mainprice, D.

    2017-12-01

    Microstructural heterogeneities come into play at various scales during deformation of polycrystalline materials. In particular, intra-granular heterogeneities such as subgrain boundaries, and dislocations sub-structures play a crucial role during dynamic recrystallization (DRX) mechanisms. The latter are active in ice, minerals and metals deformed at medium to high temperature, and enable a relaxation of strain energy. They regroup nucleation of new grains and grain boundary migration, which can drastically modify the microstructure and texture (crystallographic preferred orientations) during deformation in natural conditions or in the laboratory. Since ice has a strong viscoplastic anisotropy (with dislocations gliding mostly on the basal planes of its hexagonal crystalline structure), texture play a crucial role in the response of ice deformed naturally at low strain-rate. Texture evolution along natural ice cores has been studied for a long time but the bases DRX mechanisms were, up to recently, only offered a simplistic characterization due to the lack of resolution of the classical optical based technics. Since a few years, Electron BackScattering Diffraction (EBSD) imaging has been adapted for ice study. In particular, the EBSD of Geosciences Montpellier offers an unique opportunity to explore large samples of ice (2x3 cm2), at a relatively high resolution (20 to 5 μm), and a very good indexation (> 90%). We will present an overview of the type of informations made available by this technique, from a set of torsion and compression laboratory tests performed on ice polycrystals. The strong intra-granular heterogeneities measured were Geometrically Necessary Dislocations (GNDs), analyzed by the mean of the Weighted Burgers Vectors (Wheeler et al. 2009, J. of Microscopy 233).Our results clearly point out the complexity of the mechanisms (especially nucleation), and question up to the classical paradigm of the non-existence of non-basal dislocations with a c

  13. A Dictionary Approach to Electron Backscatter Diffraction Indexing.

    PubMed

    Chen, Yu H; Park, Se Un; Wei, Dennis; Newstadt, Greg; Jackson, Michael A; Simmons, Jeff P; De Graef, Marc; Hero, Alfred O

    2015-06-01

    We propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations. The statistical distribution of these closest matches is used in an unsupervised binary decision tree (DT) classifier to identify grain boundaries and anomalous regions. The DT classifies a pattern as an anomaly if it has an abnormally low similarity to any pattern in the dictionary. It classifies a pixel as being near a grain boundary if the highly ranked patterns in the dictionary differ significantly over the pixel's neighborhood. Indexing is accomplished by computing the mean orientation of the closest matches to each pattern. The mean orientation is estimated using a maximum likelihood approach that models the orientation distribution as a mixture of Von Mises-Fisher distributions over the quaternionic three sphere. The proposed dictionary matching approach permits segmentation, anomaly detection, and indexing to be performed in a unified manner with the additional benefit of uncertainty quantification.

  14. Subgrain boundary analyses in deformed orthopyroxene by TEM/STEM with EBSD-FIB sample preparation technique

    NASA Astrophysics Data System (ADS)

    Kogure, Toshihiro; Raimbourg, Hugues; Kumamoto, Akihito; Fujii, Eiko; Ikuhara, Yuichi

    2014-12-01

    High-resolution structure analyses using electron beam techniques have been performed for the investigation of subgrain boundaries (SGBs) in deformed orthopyroxene (Opx) in mylonite from Hidaka Metamorphic Belt, Hokkaido, Japan, to understand ductile deformation mechanism of silicate minerals in shear zones. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) analysis of Opx porphyroclasts in the mylonitic rock indicated that the crystal orientation inside the Opx crystals gradually changes by rotation about the b-axis by SGBs and crystal folding. In order to observe the SGBs along the b-axis by transmission electron microscopy (TEM) or scanning TEM (STEM), the following sample preparation protocol was adopted. First, petrographic thin sections were slightly etched with hydrofluoric acid to identify SGBs in SEM. The Opx crystals whose b-axes were oriented close to the normal of the surface were identified by EBSD, and the areas containing SGBs were picked and thinned for (S) TEM analysis with a focused ion beam instrument with micro-sampling system. High-resolution TEM imaging of the SGBs in Opx revealed various boundary structures from a periodic array of dissociated (100) [001] edge dislocations to partially or completely incoherent crystals, depending on the misorientation angle. Atomic-resolution STEM imaging clearly confirmed the formation of clinopyroxene (Cpx) structure between the dissociated partial dislocations. Moreover, X-ray microanalysis in STEM revealed that the Cpx contains a considerable amount of calcium replacing iron. Such chemical inhomogeneity may limit glide motion of the dislocation and eventually the plastic deformation of the Opx porphyroclasts at a low temperature. Chemical profiles across the high-angle incoherent SGB also showed an enrichment of the latter in calcium at the boundary, suggesting that SGBs are an efficient diffusion pathway of calcium out of host Opx grain during cooling.

  15. EBSD analysis of the Shergottite Meteorites: New developments within the technique and their implication on what we know about the preferred orientation of Martian minerals

    NASA Astrophysics Data System (ADS)

    Stephen, N.; Benedix, G. K.; Bland, P.; Berlin, J.; Salge, T.; Goran, D.

    2011-12-01

    What we know about the geology and mineralogy of the Martian surface has been characterised by both the use of remote sensing techniques and the analysis of Martian meteorites. Various techniques are employed to conduct these analyses including crystallographic, geochemical and spectral measurements, all of which enable us to infer a geological history for these rocks. Several references have been made to the potential for preferred orientation of crystals within the Shergottites [1] and their implication for the cooling history of the respective magmas on Mars [2]. We have already shown that a preferred orientation of the two pyroxenes, augite and pigeonite, can be seen in the Zagami meteorite using electron back-scatter diffraction (EBSD) analysis [3]. However, when compared to previous modal studies of the same meteorites [4], it becomes apparent that the current EBSD datasets for Martian meteorites are incomplete. Indexing of some minerals can be hampered by the lack of available matches within library databases for EBSD, or become difficult to resolve between minerals where crystallographic differences between similar minerals fall below the technical limitations of the instrument [3]. Recent advances in EBSD technologies combined with the simultaneous acquisition of energy-dispersive spectra (EDS) however now allow us to determine a more comprehensive set of analyses in a much shorter period of time, fully resolving even similar minerals where areas have been left with no indexing previously [5]. Preliminary investigations suggest that the new technology can successfully index >90% of the sample. The most recent EBSD analyses potentially reveals previously unseen fabrics in the meteorites alongside the EDS hyper-spectral imaging helping to resolve any unknown or questionable phases within them. In this study we will present new data from an investigation using EDS alongside EBSD analysis on 2 Shergottite meteorites, SAU 005 and Zagami, to further resolve

  16. Advances in 6d diffraction contrast tomography

    NASA Astrophysics Data System (ADS)

    Viganò, N.; Ludwig, W.

    2018-04-01

    The ability to measure 3D orientation fields and to determine grain boundary character plays a key role in understanding many material science processes, including: crack formation and propagation, grain coarsening, and corrosion processes. X-ray diffraction imaging techniques offer the ability to retrieve such information in a non-destructive manner. Among them, Diffraction Contrast Tomography (DCT) is a monochromatic beam, near-field technique, that uses an extended beam and offers fast mapping of 3D sample volumes. It was previously shown that the six-dimensional extension of DCT can be applied to moderately deformed samples (<= 5% total strain), made from materials that exhibit low levels of elastic deformation of the unit cell (<= 1%). In this article, we improved over the previously proposed 6D-DCT reconstruction method, through the introduction of both a more advanced forward model and reconstruction algorithm. The results obtained with the proposed improvements are compared against the reconstructions previously published in [1], using Electron Backscatter Diffraction (EBSD) measurements as a reference. The result was a noticeably higher quality reconstruction of the grain boundary positions and local orientation fields. The achieved reconstruction quality, together with the low acquisition times, render DCT a valuable tool for the stop-motion study of polycrystalline microstructures, evolving as a function of applied strain or thermal annealing treatments, for selected materials.

  17. EBSD investigation of the effect of the solidification rate on the nucleation behavior of eutectic components in a hypoeutectic Al-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Mohsen Sadrossadat, S.; Johansson, Sten; Peng, Ru Lin

    2012-06-01

    This article represents a study of the influence of the solidification rate on the crystallographic orientation of eutectic components with respect to the primary α-Al in the tested hypoeutectic alloy. Electron backscattering diffraction (EBSD) patterns were produced from the Al-Si cast specimens that were solidified with different cooling rates and prepared via ion etch polishing as a complementary method after mechanical polishing. The results indicated a strong orientation relationship between the primary α-Al and eutectic Al phase at all cooling rates. It was also found that the silicon eutectic flakes were heterogeneously nucleated in the interdendritic eutectic liquid. The increase of the cooling rate from 2 to 80 mm/min was found to be effective in lowering the intensity of the relationship between the primary α-Al and eutectic Al phases, and changing the misorientation angle clustering between the primary α-Al and eutectic Si phases in the interval from 41-60° to lower angle intervals.

  18. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  19. Meso-scale anisotropic hydrogen segregation near grain-boundaries in polycrystalline nickel characterized by EBSD/SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudriss, A.; Le Guernic, Solenne; Wang, Zhaoying

    2016-02-15

    To study anisotropic hydrogen segregation and diffusion in nickel polycrystalline, Secondary Ion Mass Spectrometry (SIMS) and Electron Back Scattered Diffraction (EBSD) are integrated to investigate hydrogen distribution around grain boundaries. Hydrogen distribution in pre-charged samples were correlated with grain boundary character by integrating high-resolution grain microstructure from EBSD inverse pole figure map and low-resolution hydrogen concentration profile map from SIMS. This multimodal imaging instrumentation shows that grain boundaries in nickel can be categorized into two families based on behavior of hydrogen distribution crossing grain boundary: the first one includes random grain boundaries with fast hydrogen diffusivity, showing a sharp gapmore » for hydrogen concentration profile cross the grain boundaries. The second family are special Σ3n grain boundaries with low hydrogen diffusivity, showing a smooth gradient of hydrogen concentration cross the grain boundary. Heterogeneous hydrogen distributions due to grain boundary family revealed by SIMS/EBSD on mesoscale further validate the recent hydrogen permeation data and anisotropic ab-initio calculations in nanoscale. The results highlight the fact that grain boundaries character impacts hydrogen distribution significantly.« less

  20. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  1. Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.S., E-mail: 160184@mail.csc.com.tw; Chiu, C.H.; Hong, I.T.

    2013-09-15

    Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes,more » which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.« less

  2. Strain analysis in quartzites with negative magnetic susceptibility using AMS and EBSD data

    NASA Astrophysics Data System (ADS)

    Rajendraprasad Renjith, A.; Mamtani, Manish A.

    2016-04-01

    This study is being done with the objective of trying to understand whether the anisotropy of magnetic susceptibility (AMS) data can provide information about strain in quartzites with negative magnetic susceptibility. For this, nine quartzite samples have been collected from Rengali Province (located in the eastern part of India) with bulk magnetic susceptibility between -13.6 x 10-6 SI units and -3.06 x 10-6 SI units. Since these rocks did not show any visible foliation or lineation, AMS analysis was performed using KLY-4S Kappabridge and the orientation of three principal axes of the AMS ellipsoid (K1>K2>K3) were determined. Thin sections were prepared parallel to the K1K3 plane of the AMS ellipsoid (plane parallel to lineation and perpendicular to foliation), which is equivalent to the XZ plane of the strain ellipsoid. SEM based electron backscatter diffraction (EBSD) analysis, shape preferred orientation (SPO) analysis and strain analysis were carried out in these sections. Recently, Renjith et al. (2016) used the same samples to establish that the AMS in quartzites gives information about the SPO and not the CPO. To further evaluate the robustness of AMS in strain analysis, the authors have integrated the degree of magnetic anisotropy (Pj - a measure of the eccentricity of AMS ellipsoid; Tarling and Hrouda, 1993) with the intensity of SPO (κ ; Piazolo and Passchier, 2002), and the strain (E - calculated using AMOCADO; Gerik and Kruhl, 2009) from the same samples from Rengali. EBSD data were used as the basis for the above calculations. Whilst the orientation of long axis of quartz grains from EBSD statistical data was used to calculate κ , the grain boundary map generated from EBSD analysis was used as the basis to determine strain (E). It is found that the sample with minimum Pj also has a minimum κ and E, and vice-versa. Hence it is concluded that one-to-one correlation exists between the degree of magnetic anisotropy, strain and intensity of SPO in

  3. Adaptive characterization of recrystallization kinetics in IF steel by electron backscatter diffraction.

    PubMed

    Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek

    2013-12-01

    In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  4. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  5. Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction

    NASA Technical Reports Server (NTRS)

    Griesser, Timothy; Balanis, Constantine A.

    1987-01-01

    The backscatter cross-sections of dihedral corner reflectors in the azimuthal plane are presently determined by both physical optics (PO) and the physical theory of diffraction (PTD), yielding results for the vertical and horizontal polarizations. In the first analysis method used, geometrical optics is used in place of PO at initial reflections in order to maintain the planar character of the reflected wave and reduce the complexity of the analysis. In the second method, PO is used at almost every reflection in order to maximize the accuracy of the PTD solution at the expense of a rapid increase in complexity. Induced surface current densities and resulting cross section patterns are illustrated for the two methods.

  6. EBSD and TEM characterization of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Gorman, Brian; Miller, Brandon; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to ∼1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had ∼2.5× higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice ∼25 μm cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.

  7. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken frommore » the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.« less

  8. Microstructure, crystallography and diagenetic alteration in fossil ostrich eggshells from Upper Palaeolithic sites of Indian peninsular region.

    PubMed

    Jain, Sonal; Bajpai, Sunil; Kumar, Giriraj; Pruthi, Vikas

    2016-05-01

    Biominerals studies are of importance as they provide an understanding of natural evolutionary processes. In this study we have investigated the fossil ostrich eggshells using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD). SEM studies demonstrated the ultrastructure of fossil eggshells and formation of calcified cuticular layer. The presence of calcified cuticle layer in eggshell is the basis for ancient DNA studies as it contains preserved biomolecules. EBSD accentuates the crystallographic structure of the ostrich eggshells with sub-micrometer resolution. It is a non-destructive tool for evaluating the extent of diagenesis in a biomineral. EBSD analysis revealed the presence of dolomite in the eggshells. This research resulted in the complete recognition of the structure of ostrich eggshells as well as the nature and extent of diagenesis in these eggshells which is vital for genetic and paleoenvironmental studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Physics-based simulation models for EBSD: advances and challenges

    NASA Astrophysics Data System (ADS)

    Winkelmann, A.; Nolze, G.; Vos, M.; Salvat-Pujol, F.; Werner, W. S. M.

    2016-02-01

    EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms.

  10. Hyperspectral Imaging at the Micro- and Nanoscale using Energy-dispersive Spectroscopy (EDS) with Silicon Drift Detector (SDD) and EBSD Analysis

    NASA Astrophysics Data System (ADS)

    Salge, T.; Goran, D.

    2010-12-01

    SDD systems have become state of the art technology in the field of EDS. The main characteristic of the SDDs is their extremely high pulse load capacity of up to 750,000 counts per second at good energy resolution (<123 eV Mn-Kα, <46 eV C-Kα at 100,000 counts per seconds). These properties in conjunction with electron backscatter diffraction (EBSD) technique and modern data processing allows not only high speed mapping but also hyperspectral analysis. Here, a database is created that contains an EDS spectrum and/or EBSD pattern for each pixel of the SEM image setting the stage for innovative analysis options: The Maximum Pixel Spectrum function [1] synthesizes a spectrum out of the EDS database, consisting of the highest count level found in each spectrum channel. Here, (trace) elements which occur in only one pixel can be detected qualitatively. Areas of similar EDS composition can be made visible with Autophase, a spectroscopic phase detection system. In cases where the crystallographic phase assessment by EBSD is problematic due to pattern similarity, the EDS signal can be used as additional information for phase separation. This paper presents geoscience applications with the QUANTAX system with EDS SDD and EBSD detector using the options described above: (1) Drill core analysis of a Chicxulub impact ejecta sequence from the K/Pg boundary at ODP leg 207 [2] using fast, high resolution element maps. (2) Detection of monazite in granite by the Maximum Pixel Spectrum function. (3) Distribution of elements with overlapping peaks by deconvolution at the example of rare earth elements in zoned monazite. (4) Spectroscopic phase analysis of a sulfate-carbonate-dominated impact matrix at borehole UNAM-7 from the Chicxulub impact crater [3]. (5) EBSD studies with examples of iron meteorites and impact-induced, recrystallized carbonate melts [4]. In addition, continuing technological advances require the elemental analysis of increasingly smaller structures in many

  11. Seismic properties and mineral crystallographic preferred orientations from EBSD data: Results from a crustal-scale detachment system, Aegean region

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard; Habler, Gerlinde

    2015-05-01

    The crystallographic preferred orientations (CPOs) were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System, Greece. Electron backscatter diffraction (EBSD) analyses were conducted on calcitic and mica schists, impure quartzites, and a blueschist, and the average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by the blueschist, with AVp averaging 20.3% and AVs averaging 14.5%, due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localised anisotropies of very high magnitudes are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~ 25% for AVp and AVs. The direction of the fast and slow P-wave velocities occurs parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction experienced in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during extension in the Aegean. Radial anisotropy in the Aegean mid-crust is strongly favoured to azimuthal anisotropy by our results.

  12. A quasi-in-situ EBSD observation of the transformation from rolling texture to recrystallization texture in V-4Cr-4Ti alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Lixia

    Recrystallization texture evolution of rolled V-4Cr-4Ti alloy has been investigated by quasi-in-situ EBSD (electron back-scattering diffraction) method. Concurrently, the precipitates were characterized by SEM (Scanning Electron Microscopy). It was found that both the initial rolling textures and the distribution of the precipitates affected the formation of the recrystallization texture. It was revealed that the texture transformations of (558) 〈110〉 + (665) 〈110〉 to (334) 〈483〉 + (665) 〈1 1 2.4〉 were possibly attributed to the selective drag induced by the sparsely dispersed Ti-rich precipitates. While the densely distributed Ti-rich precipitates were responsible for the randomized recrystallization texture. Finally, when themore » precipitates were absent, the orientation changes from (112) 〈110〉 and (558) 〈110〉 to (111) 〈112〉 and (001) <110> to (001) <520> were observed. - Highlights: • Micro recrystallization texture evolution in V-4Cr-4Ti alloys is reported for the first time. • The volume fraction of Ti-rich precipitates has significant effect on the recrystallization texture evolution. • The dissolution of the Ti-rich precipitates above 1100 °C induces the strengthening of (111) <112> texture.« less

  13. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  14. A Coupled EBSD/EDS Method to Determine the Primary- and Secondary-Alpha Textures in Titanium Alloys With Duplex Microstructures (Preprint)

    DTIC Science & Technology

    2007-07-01

    primary and secondary alpha in micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ...Following electropolishing , the sample was mounted 7/3/2007 6 on the tilting stage inside an XL30 field-emission-gun scanning-electron-microscope (FEG...AFRL-RX-WP-TP-2008-4338 A COUPLED EBSD/EDS METHOD TO DETERMINE THE PRIMARY–AND SECONDARY–ALPHA TEXTURES IN TITANIUM ALLOYS WITH DUPLEX

  15. In situ electron backscatter diffraction investigation of recrystallization in a copper wire.

    PubMed

    Brisset, François; Helbert, Anne-Laure; Baudin, Thierry

    2013-08-01

    The microstructural evolution of a cold drawn copper wire (reduction area of 38%) during primary recrystallization and grain growth was observed in situ by electron backscatter diffraction. Two thermal treatments were performed, and successive scans were acquired on samples undergoing heating from ambient temperature to a steady state of 200°C or 215°C. During a third in situ annealing, the temperature was continuously increased up to 600°C. Nuclei were observed to grow at the expense of the deformed microstructure. This growth was enhanced by the high stored energy difference between the nuclei and their neighbors (driving energy in recrystallization) and by the presence of high-angle grain boundaries of high mobility. In the early stages of growth, the nuclei twin and the newly created orientations continue to grow to the detriment of the strained copper. At high temperatures, the disappearance of some twins was evidenced by the migration of the incoherent twin boundaries. Thermal grooving of grain boundaries is observed at these high temperatures and affects the high mobile boundaries but tends to preserve the twin boundaries of lower energy. Thus, grooving may contribute to the twin vanishing.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.L.; Chen, P.Y.; Tsai, Y.T.

    The crystallography of lenticular martensite, which formed in coarse austenite grains (size about 80 μm) after subzero treatment at − 196 °C (liquid nitrogen) for different holding times, was investigated using electron backscatter diffraction (EBSD). For the sample treated with 15 min of isothermal holding, more than 50 martensite plates (with a thickness of larger than 1 μm) that formed within a coarse austenite grain were employed to obtain the pole figures. The pole figures clearly indicated that the individual plate of lenticular martensite approximately adopted the Kurdjumov–Sachs (K–S) orientation relationship with respect to the austenite matrix. For the samplemore » treated with 30 s of isothermal holding, a few martensite plates that formed in variant pairings in a coarse austenite grain were analyzed. The results showed that zigzag couplings (including spear couplings), the major product of plate martensite, had an absolute dominance of a specific variant pair (V1/V17). The orientation gradient within a lenticular martensite plate was also measured using convergent beam electron diffraction (CBED). The evidence strongly suggests that the spread in diffracted intensity within pole figures is related to the misorientation gradient within the lenticular martensite plate. - Highlights: • The orientation relationship between lenticular martensite and austenite was investigated by pole figures via Electron Backscatter Diffraction (EBSD). • The initial stage of lenticular martensite formation was investigated, excluding interference from hard impingement. • In addition to EBSD, convergent beam electron diffraction (CBED) was used to measure the misorientation angle from the midrib to the untwinned region in lenticular martensite plate. • Zigzag couplings (including spear couplings), the major product of plate martensite, had an absolute dominance of a specific variant pair (V1/V17).« less

  17. Raman spectroscopy as a tool to characterize heterogenite (CoO·OH) (Katanga Province, Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Burlet, C.; Vanbrabant, Y.; Goethals, H.; Thys, T.; Dupin, L.

    2011-10-01

    Natural heterogenite (CoO·OH) samples were studied by Raman microspectroscopy, electronic microprobe and Electronic BackScattered Diffraction (EBSD). Raw samples and polished sections were made from 10 mines covering the Katanga copperbelt (Katanga Province, Democratic Republic of Congo). Four typical Raman responses have been obtained leading to investigate the laser-induced dehydroxylation of heterogenite into a Co-spinel structure. The results are also compared with EBSD patterns from oven heated heterogenite samples. A close relationship was established between the chemical substitutions of Co by mainly Cu, Ni, Mn and Al and their impact on the mineral Raman response.

  18. EBSD in Antarctic and Greenland Ice

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming

  19. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures

    NASA Astrophysics Data System (ADS)

    Godec, M.; Skobir Balantič, D. A.

    2016-07-01

    High operating temperatures can have very deleterious effects on the long-term performance of high-Cr, creep-resistant steels used, for example, in the structural components of power plants. For the popular creep-resistant steel X20CrMoV12.1 we analysed the processes of carbide growth using a variety of analytical techniques: transmission electron microscopy (TEM) and diffraction (TED), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The evolution of the microstructure after different aging times was the basis for a much better understanding of the boundary-migration processes and the growth of the carbides. We present an explanation as to why some locations are preferential for this growth, and using EBSD we were able to define the proper orientational relationship between the carbides and the matrix.

  20. Element-resolved Kikuchi pattern measurements of non-centrosymmetric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au

    2017-01-15

    Angle-resolved electron Rutherford backscattering (ERBS) measurements using an electrostatic electron energy analyser can provide unique access to element-resolved crystallographic information. We present Kikuchi pattern measurements of the non-centrosymmetric crystal GaP, separately resolving the contributions of electrons backscattered from Ga and P. In comparison to element-integrated measurements like in the method of electron backscatter diffraction (EBSD), the effect of the absence of a proper 4-fold rotation axis in the point group of GaP can be sensed with a much higher visibility via the element-resolved Ga to P intensity ratio. These element-resolved measurements make it possible to experimentally attribute the previously observedmore » point-group dependent effect in element-integrated EBSD measurements to the larger contribution of electrons scattered from Ga compared to P. - Highlights: •Element specific Kikuchi patterns are presented for GaP. •Absence of a proper four-fold rotation axis is demonstrated. •Ga and P intensity variations after 90 degree rotation have opposite phase. •The asymmetry in the total intensity distribution resembles that of Ga.« less

  1. Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method.

    PubMed

    Endo, T; Sugino, Y; Ohono, N; Ukai, S; Miyazaki, N; Wang, Y; Ohnuki, S

    2014-11-01

    Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  3. Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xu, E-mail: xuw388@mail.usask.ca; Fan, Fan; Szpunar, Jerzy A.

    Ni-based superalloy Haynes 230 is used in many applications such as very high temperature reactor (VHTR) or solid oxide fuel cells (SOFCs) where it is exposed to high temperature service environment. In order to improve the resistance for high temperature oxidation, the effect of crystallographic orientation on the early stage oxidation was investigated. It was demonstrated that different oxide thicknesses are formed on grains having different orientations. Comparison of electron backscatter diffraction (EBSD) orientation maps before and after oxidation at 900 °C indicates that grains near (111) orientation, especially with the deviation angle from <111> that is smaller than 20°,more » are more oxidation resistant than grains of other orientations. Correlation between the results of electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) was used to compare the oxidation rate of grains having different crystallographic orientation. The oxidation rate was found to change with the crystallographic orientation as follows (111) < (110) < (100), also it was demonstrated that the oxidation rate changes are a nearly linear function of the angle of deviation from <111> direction. The morphology of surface oxide also depends on the orientation of grains. - Highlights: • Comparison of EBSD maps before and after oxidation allows to investigate the effect of orientation on oxidation in a more direct way; • Effect of crystallographic orientation on oxidation behavior of alloy 230 is studied by combination of EBSD and AFM; • Different thickness of oxide is formed on grain with different orientation and dependence of anisotropic oxidation behavior is discussed; • The morphology of grains is also orientation dependence.« less

  4. Deformation and spallation of a magnesium alloy under high strain rate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.; Lu, L.; Li, C.

    2016-04-01

    We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolvemore » three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.« less

  5. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less

  6. Seismic properties of the upper mantle beneath Lanzarote (Canary Islands): Model predictions based on texture measurements by EBSD

    NASA Astrophysics Data System (ADS)

    Vonlanthen, Pierre; Kunze, Karsten; Burlini, Luigi; Grobety, Bernard

    2006-12-01

    We present a petrophysical analysis of upper mantle xenoliths, collected in the Quaternary alkali basalt fields (Series III and IV) from the island of Lanzarote. The samples consist of eight harzburgite and four dunite nodules, 5 to 15 cm in size, and exhibit a typical protogranular to porphyroclastic texture. An anomalous foliation resulting from strong recovery processes is observed in half of the specimens. The lattice preferred orientations (LPO) of olivine, orthopyroxene and clinopyroxene were measured using electron backscatter diffraction (EBSD). In most samples, olivine exhibits LPOs intermediate between the typical single crystal texture and the [100] fiber texture. Occasionally, the [010] fiber texture was also observed. Simultaneous occurrence of both types of fiber textures suggests the existence of more than one deformation regime, probably dominated by a simple shear component under low strain rate and moderate to high temperature. Orthopyroxene and clinopyroxene display a weaker but significant texture. The LPO data were used to calculate the seismic properties of the xenoliths at PT conditions obtained from geothermobarometry, and were compared to field geophysical data reported from the literature. The velocity of P-waves (7.9 km/s) obtained for a direction corresponding to the existing seismic transect is in good agreement with the most recent geophysical interpretation. Our results are consistent with a roughly W-E oriented fastest P-wave propagation direction in the uppermost mantle beneath the Canary Islands, and with the lithosphere structure proposed by previous authors involving a crust-mantle boundary at around 18 km in depth, overlaid by intermediate material between 11 and 18 km.

  7. Crystallography of refractory metal nuggets in carbonaceous chondrites: A transmission Kikuchi diffraction approach

    NASA Astrophysics Data System (ADS)

    Daly, Luke; Bland, Phil A.; Dyl, Kathryn A.; Forman, Lucy V.; Saxey, David W.; Reddy, Steven M.; Fougerouse, Denis; Rickard, William D. A.; Trimby, Patrick W.; Moody, Steve; Yang, Limei; Liu, Hongwei; Ringer, Simon P.; Saunders, Martin; Piazolo, Sandra

    2017-11-01

    Transmission Kikuchi diffraction (TKD) is a relatively new technique that is currently being developed for geological sample analysis. This technique utilises the transmission capabilities of a scanning electron microscope (SEM) to rapidly and accurately map the crystallographic and geochemical features of an electron transparent sample. TKD uses a similar methodology to traditional electron backscatter diffraction (EBSD), but is capable of achieving a much higher spatial resolution (5-10 nm) (Trimby, 2012; Trimby et al., 2014). Here we apply TKD to refractory metal nuggets (RMNs) which are micrometre to sub-micrometre metal alloys composed of highly siderophile elements (HSEs) found in primitive carbonaceous chondrite meteorites. TKD allows us to analyse RMNs in situ, enabling the characterisation of nanometre-scale variations in chemistry and crystallography, whilst preserving their spatial and crystallographic context. This provides a complete representation of each RMN, permitting detailed interpretation of their formation history. We present TKD analysis of five transmission electron microscopy (TEM) lamellae containing RMNs coupled with EBSD and TEM analyses. These analyses revealed textures and relationships not previously observed in RMNs. These textures indicate some RMNs experienced annealing, forming twins. Some RMNs also acted as nucleation centres, and formed immiscible metal-silicate fluids. In fact, each RMN analysed in this study had different crystallographic textures. These RMNs also had heterogeneous compositions, even between RMNs contained within the same inclusion, host phase and even separated by only a few nanometres. Some RMNs are also affected by secondary processes at low temperature causing exsolution of molybdenite. However, most RMNs had crystallographic textures indicating that the RMN formed prior to their host inclusion. TKD analyses reveal most RMNs have been affected by processing in the protoplanetary disk. Despite this

  8. In-Depth View of the Structure and Growth of SnO2 Nanowires and Nanobrushes.

    PubMed

    Stuckert, Erin P; Geiss, Roy H; Miller, Christopher J; Fisher, Ellen R

    2016-08-31

    Strategic application of an array of complementary imaging and diffraction techniques is critical to determine accurate structural information on nanomaterials, especially when also seeking to elucidate structure-property relationships and their effects on gas sensors. In this work, SnO2 nanowires and nanobrushes grown via chemical vapor deposition (CVD) displayed the same tetragonal SnO2 structure as revealed via powder X-ray diffraction bulk crystallinity data. Additional characterization using a range of electron microscopy imaging and diffraction techniques, however, revealed important structure and morphology distinctions between the nanomaterials. Tailoring scanning transmission electron microscopy (STEM) modes combined with transmission electron backscatter diffraction (t-EBSD) techniques afforded a more detailed view of the SnO2 nanostructures. Indeed, upon deeper analysis of individual wires and brushes, we discovered that, despite a similar bulk structure, wires and brushes grew with different crystal faces and lattice spacings. Had we not utilized multiple STEM diffraction modes in conjunction with t-EBSD, differences in orientation related to bristle density would have been overlooked. Thus, it is only through a methodical combination of several structural analysis techniques that precise structural information can be reliably obtained.

  9. Evolution of the substructure of a novel 12% Cr steel under creep conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk

    2016-05-15

    In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less

  10. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Vipul K.

    The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of

  11. Investigation of Synthetic Mg(1.3)V(1.7)O4 Spinel with MgO Inclusions: Case Study of a Spinel with an Apparently occupied Interstitial Site

    NASA Technical Reports Server (NTRS)

    Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong

    2007-01-01

    A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.

  12. A Microstructure Study on an AZ31 Magnesium Alloy Tube after Hot Metal Gas Forming Process

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wu, Xin

    2007-06-01

    An AZ31 magnesium alloy tube has been deformed by the hot metal gas forming (HMGF) technique. Microstructures before and after deformation have been investigated by using Electron Backscattered Diffraction (EBSD) and Electron Microscopy. Due to the inhomogeneous distribution by induction heating, there is a temperature gradient distribution along the tube axis. Accordingly, the deformation mechanism is also different. In the middle area of deformation zone where the temperature is ˜410 °C, almost no twinning has been found, whereas at the edge areas of deformation zone where the temperature is ˜200 °C, a high density of twins has been found. EBSD experiments show a weak (0001) fiber texture along the radial direction of the tube before and after deformation in the high-temperature zone. EBSD experiments on the low temperature deformation region were not successful due to the high stored energy. Schmid factor analysis on the EBSD data shows that, despite the (0001) fiber texture, there are still many grains favoring basal slip along both the axis direction and hoop direction.

  13. Seismic anisotropy of the crust: electron-backscatter diffraction measurements from the Basin and Range

    NASA Astrophysics Data System (ADS)

    Erdman, Monica E.; Hacker, Bradley R.; Zandt, George; Seward, Gareth

    2013-11-01

    Crystal preferred orientations were measured in a suite of rocks from three locations in the Basin and Range using electron-backscatter diffraction. Anisotropic velocities were calculated for all rocks using single-crystal stiffnesses, the Christoffel equation and Voigt-Reuss-Hill averaging. Anisotropic velocities were calculated for all three crustal sections using these values combined with rock proportions as exposed in the field. One suite of rocks previously measured in the laboratory was used as a benchmark to evaluate the accuracy of the calculated velocities. Differences in the seismic anisotropy of the Funeral Mountains, Ruby Mountains and East Humboldt Range sections arise because of differences in mineralogy and strain, with the calc-silicate dominated Ruby Mountains section having higher P-wave speeds and VP/VS ratios because of the reduced quartz content. In all cases, the velocities show either transverse isotropy or nearly so, with a unique slow axis normal to the foliation. Velocity anisotropy can thus be used to infer the flow plane, but not the flow direction in typical crustal rocks. Areas with a subhorizontal foliation have minimal shear wave splitting for vertically propagating waves and are thus good places to measure mantle anisotropy using SKS-splitting.

  14. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.e

    The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triplemore » junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.« less

  15. Microstructural analysis of the thermal annealing of ice-Ih using EBSD

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-04-01

    Rocks deformed in the middle crust and deeper in the Earth typically remain at high temperature for extended time spans after the cessation of deformation. This results in annealing of the deformation microstructure by a series of thermally activated, diffusion-based processes, namely: recovery and static recrystallization, which may also modify the crystal preferred orientation (CPO) or texture. Understanding the effects of annealing on the microstructure and CPO is therefore of utmost importance for the interpretation of the microstructures and for the estimation of the anisotropy of physical properties of lower crustal and mantle rocks. Ice-Ih -the typical form of water ice on the Earth's surface, with hexagonal crystal symmetry- deforms essentially by glide of dislocations on the basal plane [1], thus it has high viscoplastic anisotropy, which induces strong heterogeneity of stresses and strains at both the intra- and intergranular scales [2-3]. This behavior makes ice-Ih an excellent analog material for silicate minerals that compose the Earth. In situ observations of the evolution of the microstructures and CPO during annealing enable the study of the interplay between the various physical processes involved in annealing (recovery, nucleation, grain growth). They also allow the analysis of the impact of the preexisting deformation microstructures on the microstructural and CPO evolution during annealing. Here we studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice-Ih pre-deformed in uniaxial compression at temperature of -7 °C to strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes

  16. Structural and crystal orientation analysis of Al-Si coating on Ni-based superalloy by means of EBSD technique

    NASA Astrophysics Data System (ADS)

    Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.

    2018-03-01

    Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.

  17. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.

    PubMed

    Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M

    2017-09-01

    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  18. Characterization of the multilayered shell of a limpet, Lottia kogamogai (Mollusca: Patellogastropoda), using SEM-EBSD and FIB-TEM techniques.

    PubMed

    Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro

    2010-08-01

    The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Phase identification in boron-containing powder metallurgy steel using EBSD in combination with EPMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Cai, Wen-Zhang

    2016-03-15

    Boron (B) is extensively used to induce liquid phase sintering (LPS) in powder metallurgy (PM) steels and thereby increase the densification. The alloying elements in B-containing PM steels affect the boride phase, stability of the boride, the temperature of liquid formation, and the progress of LPS. However, the boride phase has not been systematically identified yet. The main objective of this study was to clarify the influences of alloying elements, including C, Cr, and Ni, on the boride phases using electron backscatter diffraction (EBSD) in combination with electron probe microanalysis (EPMA). Network structures consisting of ferrite, Fe{sub 2}B boride, andmore » Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. The portions of Fe{sub 2}B were sufficiently larger than those of Fe{sub 3}C, and Fe{sub 3}C was mostly distributed at the interfaces between ferrite and Fe{sub 2}B. Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely changes the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase, where M represents the metallic elements, including Fe, Cr, Mo, and Ni. Furthermore, Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not. - Highlights: • Network structures consisting of ferrite, Fe{sub 2}B boride, and Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. • Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely transforms the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase. • Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not.« less

  20. Grain Boundary Evolution of Cold-Rolled FePd Alloy during Recrystallization at Disordering Temperature

    PubMed Central

    Lin, Hung-Pin; Chen, Delphic; Kuo, Jui-Chao

    2015-01-01

    In this study, the grain boundary character and texture of 50% and 90% cold-rolled FePd alloy was investigated during recrystallization at 700 °C. Electron backscatter diffraction (EBSD) measurements were performed on the rolling direction to normal direction section. Kernel average misorientation (KAM) calculated from EBSD measurements was employed to determine the recrystallization fraction. The Avrami exponent n of recrystallization is 1.9 and 4.9 for 50% and 90% cold rolling, respectively. The new formation of texture reveals random texture during the recrystallization process. As annealing time increased, the number of high angle boundary (HAGB) and coincidence site lattice (CSL) increased with consumption of low angle boundary (LAGB). In addition, possible transformations between different grain boundaries are observed here.

  1. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  2. Deformation compatibility in a single crystalline Ni superalloy

    PubMed Central

    Zhang, Tiantian; Dunne, Fionn P. E.

    2016-01-01

    Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F, in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure. PMID:26997901

  3. Diffraction-controlled backscattering threshold and application to Raman gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Harvey A.; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Mounaix, Philippe

    2011-04-15

    In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more stronglymore » than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.« less

  4. Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Burnett, T. L.; Weaver, P. M.; Blackburn, J. F.; Stewart, M.; Cain, M. G.

    2010-08-01

    The functional properties of ferroelectric ceramic bulk or thin film materials are strongly influenced by their nanostructure, crystallographic orientation, and structural geometry. In this paper, we show how, by combining textural analysis, through electron backscattered diffraction, with piezoresponse force microscopy, quantitative measurements of the piezoelectric properties can be made at a scale of 25 nm, smaller than the domain size. The combined technique is used to obtain data on the domain-resolved effective single crystal piezoelectric response of individual crystallites in Pb(Zr0.4Ti0.6)O3 ceramics. The results offer insight into the science of domain engineering and provide a tool for the future development of new nanostructured ferroelectric materials for memory, nanoactuators, and sensors based on magnetoelectric multiferroics.

  5. A phase quantification method based on EBSD data for a continuously cooled microalloyed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H.; Wynne, B.P.; Palmiere, E.J., E-mail: e.j

    2017-01-15

    Mechanical properties of steels depend on the phase constitutions of the final microstructures which can be related to the processing parameters. Therefore, accurate quantification of different phases is necessary to investigate the relationships between processing parameters, final microstructures and mechanical properties. Point counting on micrographs observed by optical or scanning electron microscopy is widely used as a phase quantification method, and different phases are discriminated according to their morphological characteristics. However, it is difficult to differentiate some of the phase constituents with similar morphology. Differently, for EBSD based phase quantification methods, besides morphological characteristics, other parameters derived from the orientationmore » information can also be used for discrimination. In this research, a phase quantification method based on EBSD data in the unit of grains was proposed to identify and quantify the complex phase constitutions of a microalloyed steel subjected to accelerated coolings. Characteristics of polygonal ferrite/quasi-polygonal ferrite, acicular ferrite and bainitic ferrite on grain averaged misorientation angles, aspect ratios, high angle grain boundary fractions and grain sizes were analysed and used to develop the identification criteria for each phase. Comparing the results obtained by this EBSD based method and point counting, it was found that this EBSD based method can provide accurate and reliable phase quantification results for microstructures with relatively slow cooling rates. - Highlights: •A phase quantification method based on EBSD data in the unit of grains was proposed. •The critical grain area above which GAM angles are valid parameters was obtained. •Grain size and grain boundary misorientation were used to identify acicular ferrite. •High cooling rates deteriorate the accuracy of this EBSD based method.« less

  6. Uncovering the true nature of deformation microstructures using 3D analysis methods

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Quadir, M. Z.; Afrin, N.; Xu, W.; Loeb, A.; Soe, B.; McMahon, C.; George, C.; Bassman, L.

    2015-08-01

    Three-dimensional electron backscatter diffraction (3D EBSD) has emerged as a powerful technique for generating 3D crystallographic information in reasonably large volumes of a microstructure. The technique uses a focused ion beam (FIB) as a high precision serial sectioning device for generating consecutive ion milled surfaces of a material, with each milled surface subsequently mapped by EBSD. The successive EBSD maps are combined using a suitable post-processing method to generate a crystallographic volume of the microstructure. The first part of this paper shows the usefulness of 3D EBSD for understanding the origin of various structural features associated with the plastic deformation of metals. The second part describes a new method for automatically identifying the various types of low and high angle boundaries found in deformed and annealed metals, particularly those associated with grains exhibiting subtle and gradual variations in orientation. We have adapted a 2D image segmentation technique, fast multiscale clustering, to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from a range of cold rolled and annealed metals described in the paper.

  7. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    PubMed

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

    NASA Astrophysics Data System (ADS)

    Li, Xu; Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2005-01-01

    We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.

  9. Anisotropy of the apparent frequency dependence of backscatter in formalin fixed human myocardium.

    PubMed

    Hall, C S; Verdonk, E D; Wickline, S A; Perez, J E; Miller, J G

    1997-01-01

    Measurements of the frequency dependence of ultrasonic backscatter are presented for specific angles of insonification for regions of infarcted and noninfarcted human myocardium. A 5-MHz transducer was used to insonify cylindrical cores taken from 7 noninfarcted regions and 12 infarcted regions of the left ventricular free wall of 6 formalin-fixed human hearts explanted because of ischemic cardiomyopathy. The dependence of apparent (uncompensated for diffraction effects and attenuation) backscatter on frequency was approximated by a power-law dependence, magnitude of B(f)2 = afn. Under ideal conditions in a lossless medium, the effect of not compensating for the effects of diffraction and attenuation leads to the value of n to be 2.0 for Rayleigh scatterers while the frequency dependence of the fully compensated backscatter coefficient would be f4. The value of n was determined over the frequency range, 3-7 MHz. Both nonifarcted and infarcted myocardium exhibited anisotropy of the frequency dependence of backscatter, with maxima occurring at angles that were perpendicular to the predominant myofiber direction and minima when parallel to the fibers. Perpendicular insonification yielded results for n of 1.8 +/- 0.1 for noninfarcted myocardium and 1.2 +/- 0.1 for infarcted myocardium while parallel insonification yielded results of 0.4 +/- 0.1 for noninfarcted and 0.0 +/- 0.1 for infarcted myocardium. The functional form of the angle-dependent backscatter is similar for both noninfarcted and infarcted myocardium, although the frequency dependence is clearly different for both tissue states for all angles of insonification. The results of this study indicate that the anisotropy of the frequency dependence of backscatter may play a significant role in ultrasonic imaging and is an important consideration for ultrasonic tissue characterization in myocardium.

  10. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  11. Robust diffraction correction method for high-frequency ultrasonic tissue characterization

    NASA Astrophysics Data System (ADS)

    Raju, Balasundar

    2004-05-01

    The computation of quantitative ultrasonic parameters such as the attenuation or backscatter coefficient requires compensation for diffraction effects. In this work a simple and accurate diffraction correction method for skin characterization requiring only a single focal zone is developed. The advantage of this method is that the transducer need not be mechanically repositioned to collect data from several focal zones, thereby reducing the time of imaging and preventing motion artifacts. Data were first collected under controlled conditions from skin of volunteers using a high-frequency system (center frequency=33 MHz, BW=28 MHz) at 19 focal zones through axial translation. Using these data, mean backscatter power spectra were computed as a function of the distance between the transducer and the tissue, which then served as empirical diffraction correction curves for subsequent data. The method was demonstrated on patients patch-tested for contact dermatitis. The computed attenuation coefficient slope was significantly (p<0.05) lower at the affected site (0.13+/-0.02 dB/mm/MHz) compared to nearby normal skin (0.2+/-0.05 dB/mm/MHz). The mean backscatter level was also significantly lower at the affected site (6.7+/-2.1 in arbitrary units) compared to normal skin (11.3+/-3.2). These results show diffraction corrected ultrasonic parameters can differentiate normal from affected skin tissues.

  12. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE PAGES

    Guo, Y.; Collins, D. M.; Tarleton, E.; ...

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  13. Short communication on Kinetics of grain growth and particle pinning in U-10 wt.% Mo

    NASA Astrophysics Data System (ADS)

    Frazier, William E.; Hu, Shenyang; Overman, Nicole; Lavender, Curt; Joshi, Vineet V.

    2018-01-01

    The alloy U-10 wt% Mo was annealed at temperatures ranging from 700 °C to 900 °C for periods lasting up to 24 h. Annealed microstructures were examined using Electron Backscattered Diffraction (EBSD) to obtain average grain sizes and grain size distributions. From the temporal evolution of the average grain size, the activation energy of grain growth was determined to be 172.4 ± 0.961 kJ/mol. Grain growth over the annealing period stagnated after a period of 1-4 h. This stagnation is apparently caused by the pinning effect of second-phase particles in the materials. Back-scattered electron imaging (BSE) was used to confirm that these particles do not appreciably coarsen or dissolve during annealing at the aforementioned temperatures.

  14. A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schayes, Claire; Valeo Engine Electrical Systems, 2 Rue André Boulle, 94046 Créteil; Bouquerel, Jérémie, E-mail: jeremie.bouquerel@univ-lille1.fr

    The current work aims at proposing an EBSD-based indicator for fatigue damage of a Fe-3Si steel. At the same time direct observation of dislocation structures is provided by electron channelling contrast imaging (ECCI). The investigation consisted in processing the EBSD data from patterns collected on specimen subjected to low cycle fatigue. It revealed two different regimes depending on the applied total strain variation which is explained by the identification of the dislocations structures and their evolution. At low strain variation, strain accommodation occurs by planar glide of dislocations uniformly distributed throughout the grains. No misorientation evolution is observed. At highermore » strain variation, the vein-channel structure is observed within the grain and the wall-channel structure in the vicinity of grain boundaries. The misorientation between these two dislocation structures is evaluated at about 0.7° which is detected by the EBSD analyses and explains the increase of the different misorientation based criteria. The EBSD study enables also the prediction of crack initiation mode. Finally, this study points out the limits of the EBSD technique as no misorientation evolution is detected at small strain variation. Indeed, the lattice distortion is too weak to be detected by conventional EBSD. - Highlights: • Microstructure investigation of the fatigue behaviour of an iron-silicon steel • Use of cECCI to investigate the fatigue dislocations structures • Characterisation of local plastic accommodation through EBSD misorientation criteria.« less

  15. Mechanistic Study of Delamination Fracture in Al-Li Alloy C458 (2099)

    NASA Technical Reports Server (NTRS)

    Tayon, W. A.; Crooks, R. E.; Domack, M. S.; Wagner, J. A.; Beaudoin, A. J.; McDonald, R. J.

    2009-01-01

    Delamination fracture has limited the use of lightweight Al-Li alloys. In the present study, electron backscattered diffraction (EBSD) methods were used to characterize crack paths in Al-Li alloy C458 (2099). Secondary delamination cracks in fracture toughness samples showed a pronounced tendency for fracture between grain variants of the same deformation texture component. These results were analyzed by EBSD mapping methods and simulated with finite element analyses. Simulation procedures include a description of material anisotropy, local grain orientations, and fracture utilizing crystal plasticity and cohesive zone elements. Taylor factors computed for each grain orientation subjected to normal and shear stresses indicated that grain pairs with the largest Taylor factor differences were adjacent to boundaries that failed by delamination. Examination of matching delamination fracture surface pairs revealed pronounced slip bands in only one of the grains bordering the delamination. These results, along with EBSD studies, plasticity simulations, and Auger electron spectroscopy observations support a hypothesis that delamination fracture occurs due to poor slip accommodation along boundaries between grains with greatly differing plastic response.

  16. Grain Boundary Sliding (GBS) as a Plastic Instability Leading to Coeval Pseudotachylyte Development in Mylonites: an EBSD Study of the Seismic Cycle in Brittle-Ductile Transition Rocks of the South Mountains Core Complex, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Miranda, E.; Stewart, C.

    2017-12-01

    Exposures of coeval pseudotachylytes and mylonites are relatively rare, but are crucial for understanding the seismic cycle in the vicinity of the brittle-ductile transition (BDT). We use both field observations and electron backscatter diffraction (EBSD) analysis to investigate the coeval pseudotachylytes and granodiorite mylonites exposed in the footwall of the South Mountains core complex, Arizona, to evaluate how strain is localized both prior to and during pseudotachylyte development at the BDT. In the field, we observe numerous pseudotachylyte veins oriented parallel to mylonitic foliation; the veins have synthetic shear sense with adjacent mylonites, and are < 2 cm thick, laterally discontinuous, and confined to a few m in structural thickness. EBSD analysis reveals that deformation is strongly partitioned into quartz in mylonites, where quartz shows subgrain rotation overprinted by bulging recrystallization microstructures and lattice preferred orientation (LPO) patterns indicative of dislocation creep. Foliation-parallel zones of finely recrystallized, (< 5 μm diameter) bulge-nucleated grains in the mylonites show four-grain junctions and randomized LPO patterns consistent with grain boundary sliding (GBS). Pseudotachylyte veins have elongate polycrystalline quartz survivor clasts that also exhibit GBS traits, suggesting that pseudotachylytes form within GBS zones in mylonites. We interpret the onset of GBS as a triggering mechanism for coeval pseudotachylyte development, where the accompanying decrease in effective viscosity and increase in strain rate initiated seismic slip and pseudotachylyte formation within GBS zones. Strain became localized within the pseudotachylyte until crystallization of melt impeded flow, inducing pseudotachylyte development in other GBS zones. We associate the pseudotachylyte veins and host mylonites with the coseismic and interseismic parts of the seismic cycle, respectively, where the abundance and lateral discontinuity of

  17. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    NASA Technical Reports Server (NTRS)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  18. A comparison of deformation and failure behaviors of AZ31 and E-form Mg alloys under V-bending test

    NASA Astrophysics Data System (ADS)

    Choi, Shi-Hoon; Singh, Jaiveer; Kim, Min-Seong; Yoon, Jeong-Whan

    2016-08-01

    Deformation and failure behaviors of magnesium (Mg) alloys (AZ31 and E-form) were investigated using V-bending test. Formability of these Mg alloys was discussed in terms of minimum bending radius. Microtexture evolution in the deformed Mg alloys was examined via electron back-scattered diffraction (EBSD) technique. Two level simulation technique which combined continuum finite element method (FEM) and crystal plasticity FEM successfully simulated the microtexture evolution in Mg alloys during V-bending test. The effect of deformation twinning on the failure in Mg alloys was also examined.

  19. Microstructural investigations of 0.2% carbon content steel

    NASA Astrophysics Data System (ADS)

    Tollabimazraehno, Sajjad; Hingerl, Kurt

    2011-10-01

    The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 μm thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional SEM micrographs, focus ion beam maps, and Electron backscatter diffraction (EBSD) the microstructural development and grain boundary variation of transformed phases martensite, biainte, tempered martensite and different combination of these phases were studied.

  20. Characterization of twin boundaries in an Fe–17.5Mn–0.56C twinning induced plasticity steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Erin E., E-mail: erin.diedrich@yahoo.com; Field, David P., E-mail: dfield@wsu.edu; Zhang, Yudong, E-mail: yudong.zhang@univ-metz.fr

    2013-11-15

    A twinning-induced plasticity steel of composition Fe–17.5 wt.% Mn–0.56 wt.% C–1.39 wt.% Al–0.24 wt.% Si was analyzed for the purpose of characterizing the relationship between tensile strain and deformation twinning. Tensile samples achieved a maximum of 0.46 true strain at failure, and a maximum ultimate tensile strength of 1599 MPa. Electron backscatter diffraction (EBSD) analysis showed that the grain orientation rotated heavily to < 111 > parallel to the tensile axis above 0.3 true strain. Sigma 3 misorientations, as identified by EBSD orientation measurements, and using the image quality maps were used to quantify the number of twins present inmore » the scanned areas of the samples. The image quality method yielded a distinct positive correlation between the twin area density and deformation, but the orientation measurements were unreliable in quantifying twin density in these structures. Quantitative analysis of the twin fraction is limited from orientation information because of the poor spatial resolution of EBSD in relation to the twin thickness. The EBSD orientation maps created for a thin foil sample showed some improvement in the resolution of the twins, but not enough to be significant. Measurements of the twins in the transmission electron microscopy micrographs yielded an average thickness of 23 nm, which is near the resolution capabilities of EBSD on this material for the instrumentation used. Electron channeling contrast imaging performed on one bulk tensile specimen of 0.34 true strain, using a method of controlled diffraction, yielded several images of twinning, dislocation structures and strain fields. A twin thickness of 66 nm was measured by the same method used for the transmission electron microscopy measurement. It is apparent that the results obtain by electron channeling contrast imaging were better than those by EBSD but did not capture all information on the twin boundaries such as was observed by transmission electron

  1. Evaluation of in-situ deformation experiments of TRIP steel

    NASA Astrophysics Data System (ADS)

    Procházka, J.; Kučerová, L.; Bystrianský, M.

    2017-02-01

    The paper reports on the behaviour of low alloyed TRIP (transformation induced plasticity) steel with Niobium during tensile test. The structures were analysed using in-situ tensile testing coupled with electron backscattering diffraction (EBSD) analysis carried out in scanning electron microscope (SEM). Steel specimens were of same chemical composition; however three different annealing temperatures, 800 °C, 850 °C and 950 °C, were applied to the material during the heat treatment. The treatment consisted of annealing for 20 minutes in the furnace; cooling in salt bath after the heating and holding at 425 °C for 20 minutes for all the samples. Untreated bar was used as reference material. Flat samples for deformation stage were cut out of the heat-treated bars. In situ documentation of microstructure and crystallography development were carried out during the deformation experiments. High deformation lead to significant degradation of EBSD signal.

  2. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T. K.; Wu, Z.; Stoica, A. D.

    The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less

  3. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature

    DOE PAGES

    Liu, T. K.; Wu, Z.; Stoica, A. D.; ...

    2017-06-17

    The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Toloczko, Mychailo B.; Olszta, Matthew J.

    High chromium, nickel-base Alloy 690 exhibits an increased resistance to stress corrosion cracking (SCC) in pressurized water reactor (PWR) primary water environments over lower chromium alloy 600. As a result, Alloy 690 has been used to replace Alloy 600 for steam generator tubing, reactor pressure vessel nozzles and other pressure boundary components. However, recent laboratory crack-growth testing has revealed that heavily cold-worked Alloy 690 materials can become susceptible to SCC. To evaluate reasons for this increased SCC susceptibility, detailed characterizations have been performed on as-received and cold-worked Alloy 690 materials using electron backscatter diffraction (EBSD) and Vickers hardness measurements. Examinationsmore » were performed on cross sections of compact tension specimens that were used for SCC crack growth rate testing in simulated PWR primary water. Hardness and the EBSD integrated misorientation density could both be related to the degree of cold work for materials of similar grain size. However, a microstructural dependence was observed for strain correlations using EBSD and hardness which should be considered if this technique is to be used for gaining insight on SCC growth rates« less

  5. Electron backscatter diffraction analysis of gold nanoparticles on Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochmann, A.; Teichert, S., E-mail: steffen.teichert@fh-jena.de; Katzer, C.

    2015-06-07

    It has been shown recently that the incorporation of gold nanoparticles into Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ} enhances the superconducting properties of this material in a significant way. Previous XRD and TEM investigations suggest different crystallographic relations of the gold nanoparticles with respect to the epitaxial Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ}. Here, detailed investigations of the crystal orientations for a large ensemble of gold nanoparticles with electron backscatter diffraction are reported. The average size of the gold nanoparticles is in the range of 60 nm–80 nm. We identified five different types of heteroepitaxial relationships between the gold nanoparticles and the superconductor film,more » resulting in complex pole figures. The observed different types of crystallographic orientations are discussed based on good lattice matching and the formation of low energy interfaces.« less

  6. An analytical model for light backscattering by coccoliths and coccospheres of Emiliania huxleyi.

    PubMed

    Fournier, Georges; Neukermans, Griet

    2017-06-26

    We present an analytical model for light backscattering by coccoliths and coccolithophores of the marine calcifying phytoplankter Emiliania huxleyi. The model is based on the separation of the effects of diffraction, refraction, and reflection on scattering, a valid assumption for particle sizes typical of coccoliths and coccolithophores. Our model results match closely with results from an exact scattering code that uses complex particle geometry and our model also mimics well abrupt transitions in scattering magnitude. Finally, we apply our model to predict changes in the spectral backscattering coefficient during an Emiliania huxleyi bloom with results that closely match in situ measurements. Because our model captures the key features that control the light backscattering process, it can be generalized to coccoliths and coccolithophores of different morphologies which can be obtained from size-calibrated electron microphotographs. Matlab codes of this model are provided as supplementary material.

  7. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained

    NASA Astrophysics Data System (ADS)

    Shamsujjoha, Md.; Agnew, Sean R.; Fitz-Gerald, James M.; Moore, William R.; Newman, Tabitha A.

    2018-04-01

    Structure-property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains ( 100 μm). The cellular structure grows along the <100> crystallographic directions. However, texture analysis revealed that the main <100> texture component is inclined by 15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of 1 × 1015 m-2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with <111> aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.

  8. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained

    NASA Astrophysics Data System (ADS)

    Shamsujjoha, Md.; Agnew, Sean R.; Fitz-Gerald, James M.; Moore, William R.; Newman, Tabitha A.

    2018-07-01

    Structure-property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains ( 100 μm). The cellular structure grows along the <100> crystallographic directions. However, texture analysis revealed that the main <100> texture component is inclined by 15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of 1 × 1015 m-2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with <111> aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.

  9. Comparison of high intensity focused ultrasound (HIFU) exposures using empirical and backscatter attenuation estimation methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Ter Haar, Gail; Rivens, Ian; Bamber, Jeff

    2005-09-01

    Currently, the intensity to be used in our clinical HIFU treatments is calculated from the acoustic path lengths in different tissues measured on diagnostic ultrasound images of the patient in the treatment position, and published values of ultrasound attenuation coefficients. This yields an approximate value for the acoustic power at the transducer required to give a stipulated focal intensity in situ. Estimation methods for the actual acoustic attenuation have been investigated in large parts of the tissue path overlying the target volume from the backscattered ultrasound signal for each patient (backscatter attenuation estimation: BAE). Several methods have been investigated. The backscattered echo information acquired from an Acuson scanner has been used to compute the diffraction-corrected attenuation coefficient at each frequency using two methods: a substitution method and an inverse diffraction filtering process. A homogeneous sponge phantom was used to validate the techniques. The use of BAE to determine the correct HIFU exposure parameters for lesioning has been tested in ex vivo liver. HIFU lesions created with a 1.7-MHz therapy transducer have been studied using a semiautomated image processing technique. The reproducibility of lesion size for given in situ intensities determined using BAE and empirical techniques has been compared.

  10. Effect of Welding Heat Input on Microstructure and Texture of Inconel 625 Weld Overlay Studied Using the Electron Backscatter Diffraction Method

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Suk; Lee, Hae-Woo

    2016-12-01

    The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.

  11. Geometrically Necessary Dislocation Density Evolution in Interstitial Free Steel at Small Plastic Strains

    NASA Astrophysics Data System (ADS)

    Kundu, Amrita; Field, David P.

    2018-06-01

    Measurement of geometrically necessary dislocation (GND) density using electron backscatter diffraction (EBSD) has become rather common place in modern metallurgical research. The utility of this measure as an indicator of the expected flow behavior of the material is not obvious. Incorporation of total dislocation density into the Taylor equation relating flow stress to dislocation density is generally accepted, but this does not automatically extend to a similar relationship for the GND density. This is discussed in the present work using classical equations for isotropic metal plasticity in a rather straight-forward theoretical framework. This investigation examines the development of GND structure in a commercially produced interstitial free steel subject to tensile deformation. Quantification of GND density was carried out using conventional EBSD at various strain levels on the surface of a standard dog-bone-shaped tensile specimen. There is linear increase of the average GND density with imposed macroscopic strain. This is in agreement with the established framework.

  12. Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.

    2014-02-01

    The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.

  13. Polycrystal-Plasticity Simulation of Roping in AA 6xxx Automotive Sheet Alloys

    NASA Astrophysics Data System (ADS)

    Engler, O.; Schäfer, C.; Brinkman, H.-J.

    The occurrence of roping in AA 6xxx series sheet for car body applications is caused by the collective deformation of band-like clusters of grains with similar crystallographic orientation. In this study large-scale orientation maps obtained by electron back-scattered diffraction (EBSD) are input into a visco-plastic self-consistent polycrystal-plasticity model to analyze the strain anisotropy caused by the topographic arrangement of the recrystallization texture orientations and, in turn, the occurrence of roping. At variance to earlier studies, the measurements were carried out in the short transverse section of the sheets so as to get information on distribution and morphology of orientation clusters through the sheet thickness. Then, narrow bands in the EBSD maps aligned parallel to the ridges on the sheet surface are considered, and the variation in macroscopic strain response from band to band is determined. For a given deformation of the sample these simulations yield quantitative information on the level of roping of Al-alloy sheet for car body applications.

  14. Analysis of FIB-induced damage by electron channelling contrast imaging in the SEM.

    PubMed

    Gutierrez-Urrutia, Ivan

    2017-01-01

    We have investigated the Ga + ion-damage effect induced by focused ion beam (FIB) milling in a [001] single crystal of a 316 L stainless steel by the electron channelling contrast imaging (ECCI) technique. The influence of FIB milling on the characteristic electron channelling contrast of surface dislocations was analysed. The ECCI approach provides sound estimation of the damage depth produced by FIB milling. For comparison purposes, we have also studied the same milled surface by a conventional electron backscatter diffraction (EBSD) approach. We observe that the ECCI approach provides further insight into the Ga + ion-damage phenomenon than the EBSD technique by direct imaging of FIB artefacts in the scanning electron microscope. We envisage that the ECCI technique may be a convenient tool to optimize the FIB milling settings in applications where the surface crystal defect content is relevant. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Delafossite structure of heterogenite polytypes (HCoO2) by Raman and infrared micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Burlet, C.; Goethals, H.; Vanbrabant, Y.

    2016-04-01

    Heterogenite is commonly referred in mineralogy literature as a cobalt oxy-hydroxide CoO(OH). However, detailed analysis of Raman and infrared spectra acquired on particularly well-crystallized natural samples of heterogenite suggests that the mineral can be characterized by a delafossite-type structure, with a general chemical formula ABO2. Indeed, the Raman spectrum of heterogenite, along the one with grimaldiite (HCrO2), lacks visible free OH-group vibrational modes, while the infrared spectrum shows strong hydrogen bond absorption bands. HCoO2 is thus a better formulation of heterogenite that describes more clearly its vibrational behavior and avoids the confusion in literature. Electronic backscattered diffraction (EBSD) is then used to distinguish and map the 2H and 3R heterogenite natural polytypes for the first time. The comparison of EBSD and Raman mappings clearly indicates that the 2H polytype is characterized by an additional peak at 1220 cm- 1. The presence/absence is therefore an efficient tool to distinguish both polytypes.

  16. 3D Microstructural Characterization of Uranium Oxide as a Surrogate Nuclear Fuel: Effect of Oxygen Stoichiometry on Grain Boundary Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudman, K.; Dickerson, P.; Byler, Darrin David

    The initial microstructure of an oxide fuel can play a key role in its performance. At low burn-ups, the diffusion of fission products can depend strongly on grain size and grain boundary (GB) characteristics, which in turn depend on processing conditions and oxygen stoichiometry. Serial sectioning techniques using Focused Ion Beam were developed to obtain Electron Backscatter Diffraction (EBSD) data for depleted UO2 pellets that were processed to obtain 3 different oxygen stoichiometries. The EBSD data were used to create 3D microstructure reconstructions and to gather statistical information on the grain and GB crystallography, with emphasis on identifying the charactermore » (twist, tilt, mixed) for GBs that meet the Coincident Site Lattice (CSL) criterion as well as GBs with the most common misorientation angles. Data on dihedral angles at triple points were also collected. The results were compared across different samples to understand effects of oxygen content on microstructure evolution.« less

  17. On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction

    DOE PAGES

    Weaver, Jordan S.; Priddy, Matthew W.; McDowell, David L.; ...

    2016-09-01

    Here, spherical nanoindentation combined with electron back-scattered diffraction has been employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti of two different compositions (in two different titanium alloys). Data analyses protocols needed to reliably extract the desired properties of interest are extended and demonstrated in this paper. Specifically, the grain-scale mechanical response is extracted in the form of indentation stress-strain curves for commercially pure (CP-Ti) alpha-Ti and alloyed (Ti-64) titanium from measurements on polycrystalline samples. The results are compared with responses of single crystals and nanoindentation tests (hardness and modulus) from the literature, and the measuredmore » indentation moduli are validated using crystal-elastic finite element simulations. The results obtained in this study show that (i) it is possible to characterize reliably the elastic and plastic anisotropy of alpha-Ti (hcp) of varying alloying contents with spherical nanoindentation stress-strain curves, (ii) the indentation modulus of alpha-Ti-64 is 5–10% less than CP-Ti, and (iii) the indentation yield strength of alpha-Ti-64 is 50–80% higher than CP-Ti.« less

  18. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  19. EBSD characterization of twinning in cold-rolled CP-Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X., E-mail: csulixu@hotmail.com; Duan, Y.L., E-mail: 876270744@qq.com; Xu, G.F., E-mail: csuxgf66@csu.edu.cn

    2013-10-15

    This work presents the use of a mechanical testing system and the electron backscatter diffraction technique to study the mechanical properties and twinning systems of cold-rolled commercial purity titanium, respectively. The dependence of twinning on the matrix orientation is analyzed by the distribution map of Schmid factor. The results showed that the commercial purity titanium experienced strong strain hardening and had excellent formability during rolling. Both the (112{sup ¯}2)<112{sup ¯}3{sup ¯}> compressive twins and (101{sup ¯}2)<101{sup ¯}1{sup ¯}> tensile twins were dependent on the matrix orientation. The Schmid factor of a grain influenced the activation of a particular twinning system.more » The specific rolling deformation of commercial purity titanium controlled the number and species of twinning systems and further changed the mechanical properties. - Highlights: • CP-Ti experienced strain hardening and had excellent formability. • Twins were dependent on the matrix orientation. • Schmid factor of a grain influenced the activation of a twinning system. • Rolling deformation controlled twinning systems and mechanical properties.« less

  20. Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.

    2009-01-01

    Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumurugoti, P.; Clark, B.M.; Edwards, D.J.

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffractionmore » (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.« less

  2. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  3. Evolution of microstructure in stainless martensitic steel for seamless tubing

    NASA Astrophysics Data System (ADS)

    Pyshmintsev, I. Yu.; Bityukov, S. M.; Pastukhov, V. I.; Danilov, S. V.; Vedernikova, L. O.; Lobanov, M. L.

    2017-12-01

    Scanning electron microscopy with orientation analysis by the electron backscatter diffraction (EBSD) method is used to study microstructures and textures formed in the 0.08C-13Cr-3Ni-Mo-V-Nb steel through seamless tube production route: after hot deformation by extrusion; after quenching from various temperatures and subsequent high tempering. It is shown that the martensitic microstructure formed both after hot deformation and after quenching is characterized by the presence of deformation crystallographic texture, which is predetermined by the texture of austenite. The effect of heat treatment on texture, packet refinement, lath width, precipitation of carbides and Charpy impact energy is analyzed.

  4. On the shock response of the magnesium alloy Elektron 675

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Appleby-Thomas, Gareth; Siviour, Clive; Wielewski, Euan

    2011-06-01

    Alloying elements such as aluminium, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high-strain rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armour-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The strength and spall behaviour was interrogated, with an estimate made of the material's Hugoniot elastic limit. Finally, electron backscatter diffraction (EBSD) techniques were employed to investigate post-shock microstructural changes.

  5. Influence of Heat Treatments on Microstructure and Magnetic Domains in Duplex Stainless Steel S31803

    NASA Astrophysics Data System (ADS)

    Dille, Jean; Pacheco, Clara Johanna; Camerini, Cesar Giron; Malet, Loic Charles; Nysten, Bernard; Pereira, Gabriela Ribeiro; De Almeida, Luiz Henrique; Alcoforado Rebello, João Marcos

    2018-06-01

    The influence of heat treatments on microstructure and magnetic domains in duplex stainless steel S31803 is studied using an innovative structural characterization protocol. Electron backscatter diffraction (EBSD) maps as well as magnetic force microscopy (MFM) images acquired on the same region of the sample, before and after heat treatment, are compared. The influence of heat treatments on the phase volumetric fractions is studied, and several structural modifications after heat treatment are highlighted. Three different mechanisms for the decomposition of ferrite into sigma phase and secondary austenite are observed during annealing at 800 °C. MFM analysis reveals that a variety of magnetic domain patterns can exist in one ferrite grain.

  6. Effect of Microstructure on Diffusional Solidification of 4343/3005/4343 Multi-Layer Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Tu, Yiyou; Tong, Zhen; Jiang, Jianqing

    2013-04-01

    The effect of microstructure on clad/core interactions during the brazing of 4343/3005/4343 multi-layer aluminum brazing sheet was investigated employing differential scanning calorimetry (DSC) and electron back-scattering diffraction (EBSD). The thickness of the melted clad layer gradually decreased during the brazing operation. It could be completely removed isothermally as a result of diffusional solidification at the brazing temperature. During the brazing cycle, the rate of loss of the melt in the brazing sheet, with small equiaxed grains' core layer, was higher than that with the core layer consisting of elongated large grains. The difference in microstructure affected the amount of liquid formed during brazing.

  7. In-situ observation of recrystallization in an AlMgScZr alloy using confocal laser scanning microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taendl, J., E-mail: johannes.taendl@tugraz.atl; Nambu, S.; Orthacker, A.

    2015-10-15

    In this work we present a novel in-situ approach to study the recrystallization behavior of age hardening alloys. We use confocal laser scanning microscopy (CLSM) at 400 °C to investigate the static recrystallization of an AlMg4Sc0.4Zr0.12 alloy in-situ. The results are combined with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses. It was found that CLSM is a powerful tool to visualize both the local initiation and temporal sequence of recrystallization. After fast nucleation and initial growth, the grain growth rate decreases and the grain boundary migration stops after some minutes due to Zener pinning from Al{sub 3}(Sc,Zr)more » precipitates produced during the heat treatment. EBSD and TEM analyses confirm both the boundary movements and the particle-boundary interactions. - Highlights: • First time that CLSM is used to study recrystallization in-situ. • The start and end of recrystallization can be directly observed. • The procedure is easy to apply and requires only simple data interpretation. • In-situ observations on the surface correlate to modifications inside the bulk. • In-situ observations correlate to EBSD and EFTEM analyses.« less

  8. Dynamic coherent backscattering mirror

    NASA Astrophysics Data System (ADS)

    Zeylikovich, I.; Xu, M.

    2016-02-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  9. Mechanical Twinning and Microstructures in Experimentally Stressed Quartzite

    NASA Astrophysics Data System (ADS)

    Minor, A.; Sintubin, M.; Wenk, H. R.; Rybacki, E.

    2015-12-01

    Since Dauphiné twins in quartz have been identified as a stress-related intracrystalline microstructure, several electron backscatter diffraction (EBSD) studies revealed that Dauphiné twins are present in naturally deformed quartz-bearing rocks in a wide range of tectono-metamorphic conditions. EBSD studies on experimentally stressed quartzite showed that crystals with particular crystallographic orientations contain many Dauphiné twin boundaries, while neighboring crystals with different orientations are largely free of twin boundaries. To understand the relationship between stress direction and orientation of Dauphiné twinned quartz crystals, a detailed EBSD study was performed on experimentally stressed quartzite samples and compared with an undeformed reference sample. We stressed 4 cylindrical samples in triaxial compression in a Paterson type gas deformation apparatus at GFZ Potsdam. Experimental conditions were 300MPa confining pressure, 500°C temperature and axial stresses of 145MPa, 250MPa and 460MPa for about 30 hours, resulting in a minor strain <0.04%. EBSD scans were obtained with a Zeiss Evo scanning electron microscope and TSL software at UC Berkeley. The EBSD maps show that Dauphiné twinning is present in the starting material as well as in experimentally stressed samples. Pole figures of the bulk orientation of the reference sample compared with stressed samples show a significant difference regarding the distribution for the r and z directions. The reference sample shows an indistinct maximum for r and z, whereas the stressed samples show a maximum for r poles and a minimum for z poles in the axial stress direction. EBSD scans of the reference and stressed samples were further analyzed manually to identify the orientations of single grains, which are free of twin boundaries and those, which contain twin boundaries. This analysis aims to quantify the relationship of crystal orientation and stress magnitude to initiate mechanical twinning.

  10. Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry

    NASA Astrophysics Data System (ADS)

    Su, Xiaoli; Luo, Zhicai; Zhou, Zebing

    2018-06-01

    Knowledge of backscatter change is important to accurately retrieve elevation change time series from satellite radar altimetry over continental ice sheets. Previously, backscatter coefficients generated in two cases, namely with and without accounting for backscatter gradient (BG), are used. However, the difference between backscatter time series obtained separately in these two cases and its impact on retrieving elevation change are not well known. Here we first compare the mean profiles of the Ku and Ka band backscatter over the Greenland ice sheet (GrIS), with results illustrating that the Ku-band backscatter is 3 ∼ 5 dB larger than that of the Ka band. We then conduct statistic analysis about time series of backscatter formed separately in the above two cases for both Ku and Ka bands over two regions in the GrIS. It is found that the standard deviation of backscatter time series becomes slightly smaller after removing the BG effect, which suggests that the method for the BG correction is effective. Furthermore, the impact on elevation change from backscatter change due to the BG effect is separately assessed for both Ku and Ka bands over the GrIS. We conclude that Ka band altimetry would benefit from a BG induced backscatter analysis (∼10% over region 2). This study may provide a reference to form backscatter time series towards refining elevation change time series from satellite radar altimetry over ice sheets using repeat-track analysis.

  11. Effect of Morphological Differences on the Cold Formability of an Isothermally Heat-Treated Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Weißensteiner, Irmgard; Suppan, Clemens; Hebesberger, Thomas; Winkelhofer, Florian; Clemens, Helmut; Maier-Kiener, Verena

    2018-04-01

    Steel sheets of Fe-0.2C-2Mn-0.2Si-0.03Ti-0.003B (m%) for the automotive industry were isothermally heat-treated, comprising austenitizing and subsequent isothermal annealing at temperatures between 300°C and 500°C. As a consequence, microstructures ranging from granular bainite over lower bainite to auto-tempered and untempered martensite were obtained. In tensile, hole expansion and bending tests, the performances in different forming conditions were compared and the changes of microstructure and texture were studied by complementary electron backscatter diffraction (EBSD) analyses. Samples with granular bainitic microstructures exhibited high total elongations but lower hole expansion ratios; in subsequent EBSD and texture analyses, evidence for inhomogeneous deformation was found. In contrast, the lath-like bainitic/martensitic microstructure showed higher strength and lower elongation to fracture. This results in a reduced bendability, but also in a high tolerance against damage induced by the shearing of edges, and, thus, allows homogeneous deformation to higher strains in the hole expansion test.

  12. High-Temperature Deformation Behavior of MnS in 1215MS Steel

    NASA Astrophysics Data System (ADS)

    Huang, Fei-Ya; Su, Yen-Hao Frank; Kuo, Jui-Chao

    2018-06-01

    The effect of manganese sulfide (MnS) inclusions on the machinability of free-cutting steel is based on their morphology, size and distribution. Furthermore, the plasticity of MnS is high during the hot working caused different characterization of MnS. In this study, the deformation behavior of MnS in 1215MS steel after a thermomechanical process was investigated at 1323 K. The microstructures of MnS inclusions were characterized by optical microscopy, scanning electron microscopy, energy-dispersive spectrometry, and electron backscattering diffraction (EBSD). As the thickness reduction of the inclusions increased from 10 to 70%, their average aspect ratio increased from 1.20 to 2.39. In addition, the deformability of MnS inclusions was lower than that of the matrix. The possible slip systems of A, B, C, and D plane traces were ( {\\bar{1}0\\bar{1}} )[ {\\bar{1}01} ],( {10\\bar{1}} )[ {101} ],( {011} )[ {01\\bar{1}} ] , and ( {110} )[ {1\\bar{1}0} ] . Furthermore, the EBSD measurements suggested that slip planes in MnS inclusions occur on {110} planes.

  13. Deformation Characteristics and Recrystallization Response of a 9310 Steel Alloy

    NASA Astrophysics Data System (ADS)

    Snyder, David; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2013-01-01

    The flow behavior and recrystallization response of a 9310 steel alloy deformed in the ferrite temperature range were studied in this work. Samples were compressed under various conditions of strain (0.6, 0.8 and multi-axial), strain rate (10-4 seconds-1 to 10-1 seconds-1) and temperature [811 K to 1033 K (538 °C to 760 °C)] using a Gleeble thermo-mechanical simulator. Deformation was characterized by both qualitative and quantitative means, using standard microscopy, electron backscatter diffraction (EBSD) analysis and flow stress modeling. The results indicate that deformation is primarily accommodated through dynamic recovery in sub-grain formation. EBSD analysis shows a continuous increase in sub-grain boundary misorientation with increasing strain, ultimately producing recrystallized grains from the sub-grains at high strains. This suggests that a sub-grain rotation recrystallization mechanism predominates in this temperature range. Analyses of the results reveal a decreasing mean dynamically recrystallized grain size with increasing Zener-Hollomon parameter, and an increasing recrystallized fraction with increasing strain.

  14. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies.more » In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.« less

  15. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    NASA Astrophysics Data System (ADS)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  16. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    DOE PAGES

    Pullen, M. G.; Wolter, B.; Le, A. -T.; ...

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O 2 and C 2H 2 molecules, with π g and π u symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less

  17. Acquisition of a High Resolution Field Emission Scanning Electron Microscope for the Analysis of Returned Samples

    NASA Technical Reports Server (NTRS)

    Nittler, Larry R.

    2003-01-01

    This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.

  18. Using in-situ diffraction, elastic plastic self-consistent models and microstructural analysis to interpret the low strain behavior of olivine polycrystals in the D-DIA apparatus

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Kaboli, S.

    2016-12-01

    The textbook stress strain curve has an elastic response followed by a yield point and then plastic flow. Typically in rock deformation experiments the observed `elastic' behavior deviates from the Young's modulus because the mechanical response of the loading frame and friction in the sample assembly and between moving parts of the loading frame cannot be easily corrected for. Stress strain curves generated in a D-DIA apparatus used in conjunction with synchrotron x-rays should not have these problems because the sample length is measured directly by radiography and the stress in the sample is measured from the sample itself by x-ray diffraction. However, the sample's `elastic behavior', in many instances, still deviates from what is expected. For example, in constant strain rate experiments on both polycrystalline San Carlos olivine and fayalite olivine conducted at a variety of temperatures (25 - 1200 C) and pressures (4 and 7 GPa) although we are able to use elastic plastic self-consistent (EPSC) models to describe the plastic behavior of the olivine we are not able to fit the initial elastic behavior for all but the lowest temperature experiments. To a first approximation it appears that samples are generally more compliant than their elastic properties would predict and that the degree of softening is temperature dependent. For D-DIA experiments which have been conducted at strain rates of 10-5 /sec, there are not enough data points to really clarify what is happening in the elastic portion of the experiment. Therefore, we conducted a suite of low strain experiments at 5 x 10-6/sec at temperatures ranging from 400 C to 1200 C. For each experiment we fit the diffraction data using EPSC models. We will present the results from our diffraction analysis as well as detailed microstructural analysis of the experimental samples using electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI). The relative degree of relaxation observed

  19. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  20. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co-Cr dental alloys.

    PubMed

    Li, Kai Chun; Prior, David J; Waddell, J Neil; Swain, Michael V

    2015-12-01

    The objective of this study was to identify the different microstructures produced by CC, PM and as-cast techniques for Co-Cr alloys and their phase stability following porcelain firings. Three bi-layer porcelain veneered Co-Cr specimens and one monolithic Co-Cr specimen of each alloy group [cast, powder metallurgy (PM), CAD/CAM (CC)] were manufactured and analyzed using electron backscatter diffraction (EBSD), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Specimens were treated to incremental numbers of porcelain firings (control 0, 5, 15) with crystallographic data, grain size and chemical composition subsequently obtained and analyzed. EBSD datasets of the cast alloy indicated large grains >200 μm whereas PM and CC alloy consisted of mean arithmetic grain sizes of 29.6 μm and 19.2 μm respectively. XRD and EBSD results both indicated the highest increase in hcp content (>13vol%) for cast Co-Cr alloy after treatment with porcelain firing while PM and CC indicated <2vol% hcp content. A fine grain interfacial layer developed on all surfaces of the alloy after porcelain firing. The depth of this layer increased with porcelain firings for as-cast and PM but no significant increase (p>.05) was observed in CC. EDS line scans indicated an increase in Cr content at the alloy surface after porcelain firing treatment for all three alloys. PM and CC produced alloy had superior fcc phase stability after porcelain firings compared to a traditional cast alloy. It is recommended that PM and CC alloys be used for porcelain-fused-to-metal restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Self-pumped Gaussian beam-coupling and stimulated backscatter due to reflection gratings in a photorefractive material

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammad Abu

    2007-05-01

    When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.

  2. Monte Carlo modeling of recrystallization processes in α-uranium

    DOE PAGES

    Steiner, M. A.; McCabe, R. J.; Garlea, E.; ...

    2017-08-01

    In this study, starting with electron backscattered diffraction (EBSD) data obtained from a warm clock-rolled α-uranium deformation microstructure, a Potts Monte Carlo model was used to simulate static site-saturated recrystallization while testing a number of different conditions for the assignment of recrystallized nuclei within the microstructure. The simulations support observations that recrystallized nuclei within α-uranium form preferentially on non-twin high-angle grain boundary sites at 450 °C, and demonstrate that the most likely nucleation sites on these boundaries can be identified by the surrounding degree of Kernel Average Misorientation (KAM), which may be considered as a proxy for the local geometricallymore » necessary dislocation (GND) density.« less

  3. Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.

    2018-04-01

    Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).

  4. An Efficient Image Recovery Algorithm for Diffraction Tomography Systems

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1993-01-01

    A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...

  5. Multibeam Sonar Backscatter Data Acquisition and Processing: Guidelines and Recommendations from the GEOHAB Backscatter Working Group

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T.

    2015-12-01

    Backscatter data acquired with multibeam sonars are now commonly used for the remote geological interpretation of the seabed. The systems hardware, software, and processing methods and tools have grown in numbers and improved over the years, yet many issues linger: there are no standard procedures for acquisition, poor or absent calibration, limited understanding and documentation of processing methods, etc. A workshop organized at the GeoHab (a community of geoscientists and biologists around the topic of marine habitat mapping) annual meeting in 2013 was dedicated to seafloor backscatter data from multibeam sonars and concluded that there was an overwhelming need for better coherence and agreement on the topics of acquisition, processing and interpretation of data. The GeoHab Backscatter Working Group (BSWG) was subsequently created with the purpose of documenting and synthetizing the state-of-the-art in sensors and techniques available today and proposing methods for best practice in the acquisition and processing of backscatter data. Two years later, the resulting document "Backscatter measurements by seafloor-mapping sonars: Guidelines and Recommendations" was completed1. The document provides: An introduction to backscatter measurements by seafloor-mapping sonars; A background on the physical principles of sonar backscatter; A discussion on users' needs from a wide spectrum of community end-users; A review on backscatter measurement; An analysis of best practices in data acquisition; A review of data processing principles with details on present software implementation; and finally A synthesis and key recommendations. This presentation reviews the BSWG mandate, structure, and development of this document. It details the various chapter contents, its recommendations to sonar manufacturers, operators, data processing software developers and end-users and its implication for the marine geology community. 1: Downloadable at https://www.niwa.co.nz/coasts-and-oceans/research-projects/backscatter-measurement-guidelines

  6. Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride

    NASA Astrophysics Data System (ADS)

    Muta, Hiroaki; Nishikane, Ryoji; Ando, Yusuke; Matsunaga, Junji; Sakamoto, Kan; Harjo, Stefanus; Kawasaki, Takuro; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke

    2018-03-01

    Precipitation of brittle zirconium hydrides deteriorate the fracture toughness of the fuel cladding tubes of light water reactor. Although the hydride embrittlement has been studied extensively, little is known about physical properties of the hydride due to the experimental difficulties. In the present study, to elucidate relationship between mechanical properties and microstructure, two δ-phase zirconium hydrides and one ε-phase zirconium hydride were carefully fabricated considering volume changes at the metal-to-hydride transformation. The δ-hydride that was fabricated from α-zirconium exhibits numerous inner cracks due to the large volume change. Analyses of the neutron diffraction pattern and electron backscatter diffraction (EBSD) data show that the sample displays significant stacking faults in the {111} plane and in the pseudo-layered microstructure. On the other hand, the δ-hydride sample fabricated from β-zirconium at a higher temperature displays equiaxed grains and no cracks. The strong crystal orientation dependence of mechanical properties were confirmed by indentation test and EBSD observation. The δ-hydride hydrogenated from α-zirconium displays a lower Young's modulus than that prepared from β-zirconium. The difference is attributed to stacking faults within the {111} plane, for which the Young's modulus exhibits the highest value in the perpendicular direction. The strong influence of the crystal orientation and dislocation density on the mechanical properties should be considered when evaluating hydride precipitates in nuclear fuel cladding.

  7. Diffractive paths for weak localization in quantum billiards

    NASA Astrophysics Data System (ADS)

    Březinová, Iva; Stampfer, Christoph; Wirtz, Ludger; Rotter, Stefan; Burgdörfer, Joachim

    2008-04-01

    We study the weak-localization effect in quantum transport through a clean ballistic cavity with regular classical dynamics. We address the question which paths account for the suppression of conductance through a system where disorder and chaos are absent. By exploiting both quantum and semiclassical methods, we unambiguously identify paths that are diffractively backscattered into the cavity (when approaching the lead mouths from the cavity interior) to play a key role. Diffractive scattering couples transmitted and reflected paths and is thus essential to reproduce the weak-localization peak in reflection and the corresponding antipeak in transmission. A comparison of semiclassical calculations featuring these diffractive paths yields good agreement with full quantum calculations and experimental data. Our theory provides system-specific predictions for the quantum regime of few open lead modes and can be expected to be relevant also for mixed as well as chaotic systems.

  8. Post Deformation Annealing Behaviour of Mg-Al-Sn Alloys

    NASA Astrophysics Data System (ADS)

    Kabir, Abu Syed Humaun; Su, Jing; Sanjari, Mehdi; Jung, In-Ho; Yue, Stephen

    In this study, effects of dynamically formed precipitates on the microstructure and texture evolutions were investigated after the post deformation annealing for various times. Two ternary alloys of Mg, Al and Sn were designed, produced and deformed at 300°C at a strain rate of 0.01s-1 to form different amounts of strain induced precipitates during deformation. Subsequent annealing at deformation temperature was performed for up to 4 hours. Microstructures and precipitation were investigated by optical and scanning electron microscopes and macro and micro-texture were measured by X-ray diffraction (XRD) and Electron Back-Scattered Diffraction (EBSD) techniques, respectively. It was found that certain amount of strain induced precipitates was necessary to prevent grain growth for a certain time during annealing by grain boundary pinning effect. Also, texture randomization was possible with the presence of precipitates after certain time of annealing.

  9. Nano-Scale Structure of Twin Boundaries in Shocked Zircon from the Vredefort Impact Structure.

    NASA Astrophysics Data System (ADS)

    Sharp, T. G.; Cavosie, A. J.

    2017-12-01

    Shock deformation of zircon produces distinct microstructures that can be used as evidence of shock in natural samples. These deformation features include {112} twins that have been observed in naturally shocked samples from Vredefort and elsewhere [1-3]. Electron backscatter diffraction (EBSD) has shown that these twins are polysynthetic, generally < 1µm wide and have a 65°/<110> crystallographic relation to the host zircon [2]. The structure and composition of these twin boundaries, and their effects on element mobility have not been explored previously. Here we use high-resolution TEM to investigate the nano-structure of a {112} twin in a shocked zircon crystal from the 2.0 Ga Vredefort impact structure [3]. Focused-ion-beam lift-out techniques were used to prepare a TEM foil with a 1 µm wide {112}-twin lamella. The foil was characterized by TEM imaging and electron diffraction using a FEI CM200-FEG transmission electron microscope. Selected area diffraction from the {112}-twin boundary, along a <111> zone, showed no apparent evidence of twining. However, the domain boundaries displayed weak diffraction contrast in this orientation. High-resolution images show a 50-nm wide zone of heterogeneous structural disorder and locally amorphous domains along the twin boundaries that is inferred to be a localized metamict zone. The detailed lattice structure of the interface was not discernable because of this structural disorder. Diffraction and imaging along <021> confirms that the {112}-twin composition plane is a mirror plane. The crystallographic relations observed along <110> and <021> are consistent with the 65°/<110> twin structure previously determined from EBSD [2]. Enhanced metamict disorder suggests a higher concentration of actinides along the twin boundaries and implies actinide mobility near twin boundaries. [1] Moser et al, 2011 Can J Earth Sci. [2] Erickson et al. 2013 Am Min. [3] Cavosie et al. 2015 Geol.

  10. CO2 lidar backscatter experiment

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Rothermel, Jeffry; Bowdle, David A.; Srivastava, Vandana; Cutten, Dean; Mccaul, Eugene W., Jr.

    1993-01-01

    The Aerosol/Lidar Science Group of the Remote Sensing Branch engages in experimental and theoretical studies of atmospheric aerosol scattering and atmospheric dynamics, emphasizing Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts by in-house personnel, coordinated with similar efforts by university and government institutional researchers. The primary focus of activities related to understanding aerosol scattering is the GLObal Backscatter Experiment (GLOBE) program. GLOBE was initiated by NASA in 1986 to support the engineering design, performance simulation, and science planning for the prospective NASA Laser Atmospheric Wind Sounder (LAWS). The most important GLOBE scientific result has been identified of a background aerosol mode with a surprisingly uniform backscatter mixing ratio (backscatter normalized by air density) throughout a deep tropospheric layer. The backscatter magnitude of the background mode evident from the MSFC CW lidar measurements is remarkably similar to that evident from ground-based backscatter profile climatologies obtained by JPL in Pasadena CA, NOAA/WPL in Boulder CO, and by the Royal Signals and Radar Establishment in the United Kingdom. Similar values for the background mode have been inferred from the conversion of in situ aerosol microphysical measurements to backscatter using Mie theory. Little seasonal or hemispheric variation is evident in the survey mission data, as opposed to large variation for clouds, aerosol plums, and the marine boundary layer. Additional features include: localized aerosol residues from dissipated clouds, occasional regions having mass concentrations of nanograms per cubic meter and very low backscatter, and aerosol plumes extending thousands of kilometers and several kilometers deep. Preliminary comparison with meteorological observations thus far indicate correlation between backscatter and water vapor under high humidity conditions. Limited

  11. Backscatter measurements for NIF ignition targets (invited).

    PubMed

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  12. Multibeam sonar backscatter data processing

    NASA Astrophysics Data System (ADS)

    Schimel, Alexandre C. G.; Beaudoin, Jonathan; Parnum, Iain M.; Le Bas, Tim; Schmidt, Val; Keith, Gordon; Ierodiaconou, Daniel

    2018-06-01

    Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.

  13. Australian aerosol backscatter survey

    NASA Technical Reports Server (NTRS)

    Gras, John L.; Jones, William D.

    1989-01-01

    This paper describes measurements of the atmospheric backscatter coefficient in and around Australia during May and June 1986. One set of backscatter measurements was made with a CO2 lidar operating at 10.6 microns; the other set was obtained from calculations using measured aerosol parameters. Despite the two quite different data collection techniques, there is quite good agreement between the two methods. Backscatter values range from near 1 x 10 to the -8th/m per sr near the surface to 4 - 5 x 10 to the -11th/m per sr in the free troposphere at 5-7-km altitude. The values in the free troposphere are somewhat lower than those typically measured at the same height in the Northern Hemisphere.

  14. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array

    NASA Astrophysics Data System (ADS)

    Gallaudet, Timothy Cole

    2001-10-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are

  15. Backscatter from metal surfaces in diagnostic radiology.

    PubMed

    Kodera, Y; Schmidt, R A; Chan, H P; Doi, K

    1984-01-01

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter from any of these four metals increases as the tube voltage is raised from 60 to 115 kV. Measured backscatter depends strongly on the screens used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than that from the other metals tested.

  16. EBSD characterization of pre-Cambrian deformations in conglomerate pebbles (Sierra de la Demanda, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio

    2010-05-01

    Diffraction (EBSD) technique. The identification of quartz c-axis point maxima or girdles and their geometrical relationships with respect to -axis arrangements and pebble foliation traces enabled us to identify the operation of basal and prism- and occasionally prism-[c] intracrystalline slip systems. This points to upper-greenschists and amphibolite facies syn-metamorphic deformations. By contrast, black chert and sandstone pebbles and matrix quartz aggregates lack any LPO. The source area of the conglomerates was likely a pre-Cambrian basement that contained penetratively deformed low- to medium-grade metamorphic rocks. Radiometric dating of this metamorphism has not been accomplished so far though it is known that inherited Precambrian sources in the Iberian Peninsula relate notably to Neoproterozoic (Pan-African and Cadomian) orogens, and to a lesser extent to Paleoproterozoic (1.8-2.1 Ga) or Neoarchean (2.4-2.8 Ga) ones. Neoproterozoic (Cadomian) metamorphism of this grade has only been recognized in SW Iberia. If the fabrics here studied were Cadomian, they might be related to the arc-related igneous suites that have been detected or inferred in other realms of the northern Iberian Massif.

  17. Backscatter from metal surfaces in diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Y.; Schmidt, R.A.; Chan, H.P.

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter from any of these four metals increases as the tube voltage is raised from 60 to 115 kV. Measured backscatter depends strongly on the screens used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than thatmore » from the other metals tested.« less

  18. Mineral Replacement Reactions as a Precursor to Strain Localisation: an (HR-)EBSD approach

    NASA Astrophysics Data System (ADS)

    Gardner, J.; Wheeler, J.; Wallis, D.; Hansen, L. N.; Mariani, E.

    2017-12-01

    Much remains to be learned about the links between metamorphism and deformation. Our work investigates the behaviour of fluid-mediated mineral replacement reaction products when exposed to subsequent shear stresses. We focus on albite from a metagabbro that has experienced metamorphism and subsequent deformation at greenschist facies, resulting in a reduction in grain size and associated strain localisation. EBSD maps show that prior to grain size reduction, product grains are highly distorted, yet they formed, and subsequently deformed, at temperatures at which extensive dislocation creep is unlikely. The Weighted Burgers Vector can be used to quantitatively describe the types of Burgers vectors present in geometrically necessary dislocation (GND) populations derived from 2-D EBSD map data. Application of this technique to the distorted product grains reveals the prominence of, among others, dislocations with apparent [010] Burgers vectors. This supports (with some caveats) the idea that dislocation creep is not responsible for the observed lattice distortion, as there are no known slip systems in plagioclase with a [010] Burgers vector. Distortion in a replacement microstructure has also been attributed to the presence of nanoscale product grains, which share very similar, but not identical, orientations due to topotactic nucleation from adjacent sites on the same substrate. As a precipitate, the product grains should be expected to be largely free of elastic strain. However, high angular resolution EBSD results demonstrate that product grains contain both elastic strains (> 10-3) and residual stresses (several hundred MPa), as well as GND densities on the order of 1014-1015 m-2. Thus we suggest the observed distortion (elastic strain plus rotations) in the lattice is produced during the mineral replacement reaction by a lattice mismatch and volume change between parent and product. Stored strain energy then provides a driving force for recovery and

  19. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less

  20. Microstructure of Transparent Strontium Fresnoite Glass-Ceramics

    PubMed Central

    Wisniewski, Wolfgang; Takano, Kazuya; Takahashi, Yoshihiro; Fujiwara, Takumi; Rüssel, Christian

    2015-01-01

    Glass-ceramics grown from a glass of the composition Sr2TiSi2.45O8.9 (STS 45) are analyzed by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Oriented nucleation with the c-axes preferably perpendicular to the surface is detected. A very strong 001-texture is observed after only 10 μm of growth into the bulk, making this the first system in which an orientation preferred during nucleation prevails during growth into the bulk in glass-ceramics. Piezoelectric measurements are performed and d33-values presented and discussed. The obtained results are critically viewed with respect to the two growth models describing Sr2TiSi2O8 growth in glasses. PMID:25780988

  1. C-band backscattering from corn canopies

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.; Biehl, L. L.

    1991-01-01

    A frequency-modulatad continuous-wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck, and backscatter coefficients of corn (Zea mays L.) were acquired as functions of polarizations, view angles, and row directions. As phytomass and green-leaf area index increased, the backscatter also increased. Near anthesis, when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level for view angles of 30 deg or greater. C-band backscatter data could provide information to monitor tillage operations at small view zenith angles and vegetation at large view zenith angles.

  2. A Backscatter-Lidar Forward-Operator

    NASA Astrophysics Data System (ADS)

    Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Vogel, Bernhard; Mattis, Ina; Flentje, Harald; Förstner, Jochen; Potthast, Roland

    2015-04-01

    We have developed a forward-operator which is capable of calculating virtual lidar profiles from atmospheric state simulations. The operator allows us to compare lidar measurements and model simulations based on the same measurement parameter: the lidar backscatter profile. This method simplifies qualitative comparisons and also makes quantitative comparisons possible, including statistical error quantification. Implemented into an aerosol-capable model system, the operator will act as a component to assimilate backscatter-lidar measurements. As many weather services maintain already networks of backscatter-lidars, such data are acquired already in an operational manner. To estimate and quantify errors due to missing or uncertain aerosol information, we started sensitivity studies about several scattering parameters such as the aerosol size and both the real and imaginary part of the complex index of refraction. Furthermore, quantitative and statistical comparisons between measurements and virtual measurements are shown in this study, i.e. applying the backscatter-lidar forward-operator on model output.

  3. Role of deformation temperature on the evolution and heterogeneity of texture during equal channel angular pressing of magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures

    Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure andmore » micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.« less

  4. Large-size TlBr single crystal growth and defect study

    NASA Astrophysics Data System (ADS)

    Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun

    2018-04-01

    Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.

  5. Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process

    NASA Astrophysics Data System (ADS)

    Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.

  6. Grain growth mechanism and magnetic properties in L10-FePt thin films

    NASA Astrophysics Data System (ADS)

    Li, W.; Chen, L.

    2017-08-01

    This paper focuses on the grain growth mechanisms and magnetic properties of FePt thin films during an annealing process. The grain size and grain orientation distribution have been quantitatively investigated by electron backscatter diffraction (EBSD), and the grain growth kinetics of thin films were described by the phenomenological kinetic grain growth model. The results show that the grain growth exponent and activation energy of the FePt thin films were 4.26 and 136 kJ/mol respectively, indicating that the grain growth mechanism is mainly controlled by the stochastic jumping of atoms crossing the grain boundaries. X-ray diffraction (XRD) results show that disorder-order transformation was concurrent with grain growth during the annealing process, slowing down the velocity of grain growth. The hysteresis loops reveal that the out-of-plane coercivity and squareness is enhanced with increasing annealing temperature and this can be attributed to the improvement of L10-ordered phase volume fraction and texture intensity.

  7. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

    NASA Astrophysics Data System (ADS)

    Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu

    2018-06-01

    The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

  8. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    NASA Astrophysics Data System (ADS)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  9. In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samih, Y., E-mail: youssef.samih@univ-lorraine.fr; Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures; Beausir, B.

    2013-09-15

    Electron BackScattered Diffraction (EBSD) maps are used to characterize quantitatively the graded microstructure formed by Surface Mechanical Attrition Treatment (SMAT) and applied here to the 316L stainless steel. In particular, the analysis of GNDs – coupled with relevant and reliable criteria – was used to depict the thickness of each zone identified in the SMAT-affected layers: (i) the “ultrafine grain” (UFG) zone present at the extreme top surface, (ii), the “transition zone” where grains were fragmented under the heavy plastic deformation and, finally, (iii) the “deformed zone” where initial grains are simply deformed. The interest of this procedure is illustratedmore » through the comparative analysis of the effect of some SMAT processing parameters (amplitude of vibration and treatment duration). The UFG and transition zones are more significantly modified than the overall affected thickness under our tested conditions. - Highlights: • EBSD maps are used to characterize quantitatively the microstructure of SMAT treated samples. • Calculation of the GND density to quantify strain gradients • A new method to depict the different zone thicknesses in the SMAT affected layer • Effects of SMAT processing parameters on the surface microstructure evolution.« less

  10. Backscatter from metal surfaces in diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Y.; Schmidt, R.A.; Chan, H.P.

    Backscatter from four commonly used metals (aluminum, lead, copper, and iron) was measured under diagnostic imaging conditions, using screen-film systems as detectors. The results indicate that for an 80-kV filtered beam and Par Speed/XRP system, backscatter increases as aluminum (Al) thickness increases until it reaches a plateau of approximately 12% at 50 mm Al. The amount of backscatter depends strongly on the screen used, possibly due to their attenuation and energy response. Backscatter from aluminum was significantly greater than that from the other metals tested.

  11. Deviations from Vegard's law in semiconductor thin films measured with X-ray diffraction and Rutherford backscattering: The Ge1-ySny and Ge1-xSix cases

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Senaratne, Charutha L.; Culbertson, Robert J.; Kouvetakis, John; Menéndez, José

    2017-09-01

    The compositional dependence of the lattice parameter in Ge1-ySny alloys has been determined from combined X-ray diffraction and Rutherford Backscattering (RBS) measurements of a large set of epitaxial films with compositions in the 0 < y < 0.14 range. In view of contradictory prior results, a critical analysis of this method has been carried out, with emphasis on nonlinear elasticity corrections and systematic errors in popular RBS simulation codes. The approach followed is validated by showing that measurements of Ge1-xSix films yield a bowing parameter θGeSi =-0.0253(30) Å, in excellent agreement with the classic work by Dismukes. When the same methodology is applied to Ge1-ySny alloy films, it is found that the bowing parameter θGeSn is zero within experimental error, so that the system follows Vegard's law. This is in qualitative agreement with ab initio theory, but the value of the experimental bowing parameter is significantly smaller than the theoretical prediction. Possible reasons for this discrepancy are discussed in detail.

  12. Photoelectron diffraction and holography: Some new directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadley, C.S.

    1993-08-01

    Photoelectron diffraction has by now become a versatile and powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering along bond directions and back-scattering path length differences. Further fitting experiment to theory can lead to structural accuracies in the {plus_minus}0.03 ){Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of {plus_minus}0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions formore » the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques.« less

  13. Effect of high-pressure torsion on the microstructural evolution and mechanical properties of an Fe-10Ni-7Mn (wt. %) lath martensitic steel

    NASA Astrophysics Data System (ADS)

    Kalahroudi, Faezeh Javadzadeh; Koohdar, Hamidreza; Jafarian, Hamidreza; Nili-Ahmadabadi, Mahmoud; Huang, Yi; Langdon, Terence. G.

    2018-01-01

    The high-pressure torsion (HPT) process is a severe plastic deformation (SPD) technique which imposes exceptionally high strains to produce extremely small grain sizes in bulk materials. In this paper, the HPT process was carried out on an Fe-10Ni-7Mn (wt.%) martensitic steel up to 20 revolutions at a rotation speed of 1 rpm under a pressure of 6.0 GPa at room temperature. The effects of the HPT process on the microstructure evolution and mechanical properties of the alloy were investigated by X-ray diffraction (XRD) analysis, electron backscatter diffraction (EBSD), micro-hardness measurement and conventional tensile testing. The XRD analysis revealed no changes in the detected phases after deformation. A significant refinement in grain size from 200 µm in the initial microstructure to around 230 nm after HPT was observed by EBSD. Although based on a rigid body assumption the imposed strain is linearly proportional to the distance from the center in HPT-processed disks, after 20 revolutions a uniform micro-hardness increment up to 650 Hv was achieved. Moreover, the tensile strength of the alloy increased from ˜800 MPa in the solution annealed condition to about 2300 MPa after the HPT process with a total tensile strain of 4%. Experimental results indicated that the HPT process leads to improvement of the tensile strength with a reasonable ductility due to the significant refinement of the microstructure.

  14. Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi, Pb)2Sr2Ca2Cu3O10 superconductor tapes

    NASA Astrophysics Data System (ADS)

    Tan, T. T.; Li, S.; Oh, J. T.; Gao, W.; Liu, H. K.; Dou, S. X.

    2001-02-01

    It is believed that grain boundaries act as weak links in limiting the critical current density (Jc) of bulk high-Tc superconductors. The weak-link problem can be greatly reduced by elimination or minimization of large-angle grain boundaries. It has been reported that the distribution of the Jc in (Bi, Pb)2Sr2Ca2Cu3O10+x (Bi2223) superconductor tapes presents a parabolic relationship in the transverse cross section of the tapes, with the lowest currents occurring at the centre of the tapes. It was proposed that the Jc distribution is strongly dependent on the local crystallographic orientation distribution of the Bi2223 oxides. However, the local three-dimensional crystallographic orientation distribution of Bi2223 crystals in (Bi, Pb)2Sr2Ca2Cu3O10+x superconductor tapes has not yet been experimentally determined. In this work, the electron backscattered diffraction technique was employed to map the crystallographic orientation distribution, determine the misorientation of grain boundaries and also map the misorientation distribution in Bi2223 superconductor tapes. Through crystallographic orientation mapping, the relationship between the crystallographic orientation distribution, the boundary misorientation distribution and the fabrication parameters may be understood. This can be used to optimize the fabrication processes thus increasing the critical current density in Bi2223 superconductor tapes.

  15. A method for removing arm backscatter from EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less

  16. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  17. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, T. M.; van Rooyen, I. J.; Wu, Y. Q.

    Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. Although the ultimate goal is to determine the grain boundary characteristics of fission product containing grain boundaries of neutron irradiated SiC, our work reports the effect of transmission electron microscope (TEM) lamella thickness on quality of data and establishes a baseline comparison on grain boundary characteristics determined previously using a conventional EBSD scanning electron microscope (SEM) based technique. In general, it was determined that the lamella thickness produced using the standardmore » FIB fabrication process, is sufficient to provide reliable PED measurements with thicker lamellae (~120 nm) produce higher quality orientation data. Analysis of grain boundary character from the TEM-based PED data showed a much lower fraction of low angle grain boundaries compared to SEM-based EBSD data from the SiC layer of the same TRISO-coated particle as well as a SiC layer deposited at a slightly lower temperature. The fractions of high angle and CSL-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm [12], depending on the fabrication parameters, and grain boundary fission product precipitates can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low angle, high angle and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed significantly larger than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be

  18. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    DOE PAGES

    Lillo, T. M.; van Rooyen, I. J.; Wu, Y. Q.

    2016-06-16

    Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. Although the ultimate goal is to determine the grain boundary characteristics of fission product containing grain boundaries of neutron irradiated SiC, our work reports the effect of transmission electron microscope (TEM) lamella thickness on quality of data and establishes a baseline comparison on grain boundary characteristics determined previously using a conventional EBSD scanning electron microscope (SEM) based technique. In general, it was determined that the lamella thickness produced using the standardmore » FIB fabrication process, is sufficient to provide reliable PED measurements with thicker lamellae (~120 nm) produce higher quality orientation data. Analysis of grain boundary character from the TEM-based PED data showed a much lower fraction of low angle grain boundaries compared to SEM-based EBSD data from the SiC layer of the same TRISO-coated particle as well as a SiC layer deposited at a slightly lower temperature. The fractions of high angle and CSL-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm [12], depending on the fabrication parameters, and grain boundary fission product precipitates can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low angle, high angle and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed significantly larger than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be

  19. Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru; hide

    2018-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.

  20. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaid, Md; Bhattacharjee, P.P., E-mail: pinakib@iith.ac.in

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. Themore » microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the

  1. The aCORN backscatter-suppressed beta spectrometer

    DOE PAGES

    Hassan, M. T.; Bateman, F.; Collett, B.; ...

    2017-06-16

    Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron–antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. Lastly, the design, construction, calibration, and performance ofmore » the spectrometer are discussed.« less

  2. Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns.

    PubMed

    Rampton, Travis M; Wright, Stuart I; Miles, Michael P; Homer, Eric R; Wagoner, Robert H; Fullwood, David T

    2018-02-01

    Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterisation of the incident beam and current diffraction capabilities on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Romanelli, G.; Krzystyniak, M.; Senesi, R.; Raspino, D.; Boxall, J.; Pooley, D.; Moorby, S.; Schooneveld, E.; Rhodes, N. J.; Andreani, C.; Fernandez-Alonso, F.

    2017-09-01

    The VESUVIO spectrometer at the ISIS pulsed neutron and muon source is a unique instrument amongst those available at neutron facilities. This is the only inverted-geometry neutron spectrometer accessing values of energy and wavevector transfer above tens of eV and {\\mathringA}-1 , respectively, and where deep inelastic neutron scattering experiments are routinely performed. As such, the procedure at the base of the technique has been previously described in an article published by this journal (Mayers and Reiter 2012 Meas. Sci. Technol. 23 045902). The instrument has recently witnessed an upsurge of interest due to a new trend to accommodate, within a single experiment, neutron diffraction and transmission measurements in addition to deep inelastic neutron scattering. This work presents a broader description of the instrument following these recent developments. In particular, we assess the absolute intensity and two-dimensional profile of the incident neutron beam and the capabilities of the backscattering diffraction banks. All results are discussed in the light of recent changes to the moderator viewed by the instrument. We find that VESUVIO has to be considered a high-resolution diffractometer as much as other diffractometers at ISIS, with a resolution as high as 2× 10-3 in backscattering. Also, we describe the extension of the wavelength range of the instrument to include lower neutron energies for diffraction measurements, an upgrade that could be readily applied to other neutron instruments as well.

  4. Snowcover influence on backscattering from terrain

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Abdelrazik, M.; Stiles, W. H.

    1984-01-01

    The effects of snowcover on the microwave backscattering from terrain in the 8-35 GHz region are examined through the analysis of experimental data and by application of a semiempirical model. The model accounts for surface backscattering contributions by the snow-air and snow-soil interfaces, and for volume backscattering contributions by the snow layer. Through comparisons of backscattering data for different terrain surfaces measured both with and without snowcover, the masking effects of snow are evaluated as a function of snow water equivalent and liquid water content. The results indicate that with dry snowcover it is not possible to discriminate between different types of ground surface (concrete, asphalt, grass, and bare ground) if the snow water equivalent is greater than about 20 cm (or a depth greater than 60 cm for a snow density of 0.3 g/cu cm). For the same density, however, if the snow is wet, a depth of 10 cm is sufficient to mask the underlying surface.

  5. Relating P-band AIRSAR backscatter to forest stand parameters

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.

    1993-01-01

    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun, E-mail

    Non-equilibrium microstructure of the heat-affected zone (HAZ) in the as-welded modified 9Cr–1Mo–V–Nb pipe steel (P91) weldment deposited by gas tungsten arc welding (GTAW) and flux core arc welding (FCAW) has been characterized by field-emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The heterogeneous structures in the sub-layers of the as-welded HAZ are attributable to phase transformations caused by the welding thermal cycles and the local structure variations in the as-received base metal. Coarse-grained heat-affected zone (CGHAZ) has a prior austenite grain (PAG) size of 20 μm. Fine uniformly-distributed precipitates and a higher fraction of MX carbonitrides are observedmore » in the CGHAZ. Fine-grained heat-affected zone (FGHAZ) consists of the finest grains (1.22 μm measured by EBSD, 5 μm PAG size), coarse undissolved M{sub 23}C{sub 6} carbides within the PAG boundaries and fine nucleated M{sub 23}C{sub 6} particles within the martensite laths. Inter-critical heat-affected zone (ICHAZ) consists of partially austenitized grains and over-tempered martensite laths. EBSD kernel average misorientation (KAM) map in the FGHAZ close to the ICHAZ illustrates the greatest local strain variations with a moderate normalized KAM value of 0.92°. The majority (88.1%) of the matrix grains in the CGHAZ are classified as deformed grains by EBSD grain average misorientation (GAM) evaluation. The FGHAZ close to the ICHAZ has the most recrystallized grains with an area fraction of 14.4%. The highest density variation of precipitates within grains in the FGHAZ originates from the inhomogeneous chemistry in the base metal. - Highlights: •A comprehensive characterization of the as-welded HAZ of P91 weldment is conducted. •Structural features in the each layer of the HAZ are quantified by EBSD. •Structural heterogenities in HAZ are due to welding cycle and base metal structure. •FGHAZ contains the finest grain structure

  7. Interlinking backscatter, grain size and benthic community structure

    NASA Astrophysics Data System (ADS)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p < 0.001). Results for the Clamshell grab for two of the methods have stronger positive correlations; mean backscatter intensity (r2 = 0.619; p < 0.001) and angular response predicted mean grain size (r2 = 0.692; p < 0.001). ANOVA reveals significant differences in mean grain size (Hamon) within acoustic groups for all methods: mean backscatter (p < 0.001), angular response predicted grain size (p < 0.001), and QTC class (p = 0.009). Mean grain size (Clamshell) shows a significant difference between groups for mean backscatter (p = 0.001); other methods were not significant. PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab

  8. SAR backscatter from coniferous forest gaps

    NASA Technical Reports Server (NTRS)

    Day, John L.; Davis, Frank W.

    1992-01-01

    A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture

  9. High-resolution neutron-diffraction measurements to 8 kbar

    NASA Astrophysics Data System (ADS)

    Bull, C. L.; Fortes, A. D.; Ridley, C. J.; Wood, I. G.; Dobson, D. P.; Funnell, N. P.; Gibbs, A. S.; Goodway, C. M.; Sadykov, R.; Knight, K. S.

    2017-10-01

    We describe the capability to measure high-resolution neutron powder diffraction data to a pressure of at least 8 kbar. We have used the HRPD instrument at the ISIS neutron source and a piston-cylinder design of pressure cell machined from a null-scattering titanium zirconium alloy. Data were collected under hydrostatic conditions from an elpasolite perovskite La?NiMnO?; by virtue of a thinner cell wall on the incident-beam side of the cell, it was possible to obtain data in the instrument's highest resolution back-scattering detector banks up to a maximum pressure of 8.5 kbar.

  10. The Weighted Burgers Vector: a new quantity for constraining dislocation densities and types using electron backscatter diffraction on 2D sections through crystalline materials.

    PubMed

    Wheeler, J; Mariani, E; Piazolo, S; Prior, D J; Trimby, P; Drury, M R

    2009-03-01

    The Weighted Burgers Vector (WBV) is defined here as the sum, over all types of dislocations, of [(density of intersections of dislocation lines with a map) x (Burgers vector)]. Here we show that it can be calculated, for any crystal system, solely from orientation gradients in a map view, unlike the full dislocation density tensor, which requires gradients in the third dimension. No assumption is made about gradients in the third dimension and they may be non-zero. The only assumption involved is that elastic strains are small so the lattice distortion is entirely due to dislocations. Orientation gradients can be estimated from gridded orientation measurements obtained by EBSD mapping, so the WBV can be calculated as a vector field on an EBSD map. The magnitude of the WBV gives a lower bound on the magnitude of the dislocation density tensor when that magnitude is defined in a coordinate invariant way. The direction of the WBV can constrain the types of Burgers vectors of geometrically necessary dislocations present in the microstructure, most clearly when it is broken down in terms of lattice vectors. The WBV has three advantages over other measures of local lattice distortion: it is a vector and hence carries more information than a scalar quantity, it has an explicit mathematical link to the individual Burgers vectors of dislocations and, since it is derived via tensor calculus, it is not dependent on the map coordinate system. If a sub-grain wall is included in the WBV calculation, the magnitude of the WBV becomes dependent on the step size but its direction still carries information on the Burgers vectors in the wall. The net Burgers vector content of dislocations intersecting an area of a map can be simply calculated by an integration round the edge of that area, a method which is fast and complements point-by-point WBV calculations.

  11. Backscatter correction factor for megavoltage photon beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yida; Zhu, Timothy C.

    2011-10-15

    Purpose: For routine clinical dosimetry of photon beams, it is often necessary to know the minimum thickness of backscatter phantom material to ensure that full backscatter condition exists. Methods: In case of insufficient backscatter thickness, one can determine the backscatter correction factor, BCF(s,d,t), defined as the ratio of absorbed dose measured on the central-axis of a phantom with backscatter thickness of t to that with full backscatter for square field size s and forward depth d. Measurements were performed in SAD geometry for 6 and 15 MV photon beams using a 0.125 cc thimble chamber for field sizes between 10more » x 10 and 30 x 30 cm at depths between d{sub max} (1.5 cm for 6 MV and 3 cm for 15 MV) and 20 cm. Results: A convolution method was used to calculate BCF using Monte-Carlo simulated point-spread kernels generated for clinical photon beams for energies between Co-60 and 24 MV. The convolution calculation agrees with the experimental measurements to within 0.8% with the same physical trend. The value of BCF deviates more from 1 for lower energies and larger field sizes. According to our convolution calculation, the minimum BCF occurs at forward depth d{sub max} and 40 x 40 cm field size, 0.970 for 6 MV and 0.983 for 15 MV. Conclusions: The authors concluded that backscatter thickness is 6.0 cm for 6 MV and 4.0 cm for 15 MV for field size up to 10 x 10 cm when BCF = 0.998. If 4 cm backscatter thickness is used, BCF is 0.997 and 0.983 for field size of 10 x 10 and 40 x 40 cm for 6 MV, and is 0.998 and 0.990 for 10 x 10 and 40 x 40 cm for 15 MV, respectively.« less

  12. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE PAGES

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...

    2015-02-11

    Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  13. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun

    2015-02-11

    The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  14. Laissez-Faire : Fully Asymmetric Backscatter Communication

    PubMed Central

    Hu, Pan; Zhang, Pengyu; Ganesan, Deepak

    2016-01-01

    Backscatter provides dual-benefits of energy harvesting and low-power communication, making it attractive to a broad class of wireless sensors. But the design of a protocol that enables extremely power-efficient radios for harvesting-based sensors as well as high-rate data transfer for data-rich sensors presents a conundrum. In this paper, we present a new fully asymmetric backscatter communication protocol where nodes blindly transmit data as and when they sense. This model enables fully flexible node designs, from extraordinarily power-efficient backscatter radios that consume barely a few micro-watts to high-throughput radios that can stream at hundreds of Kbps while consuming a paltry tens of micro-watts. The challenge, however, lies in decoding concurrent streams at the reader, which we achieve using a novel combination of time-domain separation of interleaved signal edges, and phase-domain separation of colliding transmissions. We provide an implementation of our protocol, LF-Backscatter, and show that it can achieve an order of magnitude or more improvement in throughput, latency and power over state-of-art alternatives. PMID:28286885

  15. Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Kent, G.; Yue, G. K.

    1982-01-01

    The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form.

  16. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Whitaker, Ross (Inventor); Turner, D. Clark (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  17. X-ray backscatter imaging of nuclear materials

    DOEpatents

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  18. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paggi, A., E-mail: alpaggi@tenaris.com; Angella, G.; Donnini, R.

    Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10{sup −} {sup 2} s{sup −} {sup 1} strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: ε{sub f} = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along themore » directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages.« less

  19. A microwave backscattering model for precipitation

    NASA Astrophysics Data System (ADS)

    Ermis, Seda

    A geophysical microwave backscattering model for space borne and ground-based remote sensing of precipitation is developed and used to analyze backscattering measurements from rain and snow type precipitation. Vector Radiative Transfer (VRT) equations for a multilayered inhomogeneous medium are applied to the precipitation region for calculation of backscattered intensity. Numerical solution of the VRT equation for multiple layers is provided by the matrix doubling method to take into account close range interactions between particles. In previous studies, the VRT model was used to calculate backscattering from a rain column on a sea surface. In the model, Mie scattering theory for closely spaced scatterers was used to determine the phase matrix for each sublayer characterized by a set of parameters. The scatterers i.e. rain drops within the sublayers were modelled as spheres with complex permittivities. The rain layer was bounded by rough boundaries; the interface between the cloud and the rain column as well as the interface between the sea surface and the rain were all analyzed by using the integral equation model (IEM). Therefore, the phase matrix for the entire rain column was generated by the combination of surface and volume scattering. Besides Mie scattering, in this study, we use T-matrix approach to examine the effect of the shape to the backscattered intensities since larger raindrops are most likely oblique in shape. Analyses show that the effect of obliquity of raindrops to the backscattered wave is related with size of the scatterers and operated frequency. For the ground-based measurement system, the VRT model is applied to simulate the precipitation column on horizontal direction. Therefore, the backscattered reflectivities for each unit range of volume are calculated from the backscattering radar cross sections by considering radar range and effective illuminated area of the radar beam. The volume scattering phase matrices for each range interval

  20. Electron-beam-induced current at absorber back surfaces of Cu(In,Ga)Se{sub 2} thin-film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavalakkatt, J.; Abou-Ras, D., E-mail: daniel.abou-ras@helmholtz-berlin.de; Nichterwitz, M.

    2014-01-07

    The present work reports on investigations of the influence of the microstructure on electronic properties of Cu(In,Ga)Se{sub 2} (CIGSe) thin-film solar cells. For this purpose, ZnO/CdS/CIGSe stacks of these solar cells were lifted off the Mo-coated glass substrates. The exposed CIGSe backsides of these stacks were investigated by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements as well as by electron backscattered diffraction (EBSD). EBIC and CL profiles across grain boundaries (GBs), which were identified by EBSD, do not show any significant changes at Σ3 GBs. Across non-Σ3 GBs, on the other hand, the CL signals exhibit local minimamore » with varying peak values, while by means of EBIC, decreased and also increased short-circuit current values are measured. Overall, EBIC and CL signals change across non-Σ3 GBs always differently. This complex situation was found in various CIGSe thin films with different [Ga]/([In]+[Ga]) and [Cu]/([In]+[Ga]) ratios. A part of the EBIC profiles exhibiting reduced signals across non-Σ3 GBs can be approximated by a simple model based on diffusion of generated charge carriers to the GBs.« less

  1. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is lookedmore » upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.« less

  2. Mode-converted diffuse ultrasonic backscatter.

    PubMed

    Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A

    2013-08-01

    Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.

  3. Measurements of Shock Effects Recorded by Hayabusa Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.

    2015-01-01

    We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD) [1,2]. As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.

  4. Measurements of Shock Effects Recorded by Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.

    2016-01-01

    We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD). As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.

  5. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  6. An energy-dependent electron backscattering coefficient

    NASA Astrophysics Data System (ADS)

    Williamson, W., Jr.; Antolak, A. J.; Meredith, R. J.

    1987-05-01

    An energy-dependent electron backscattering coefficient is derived based on the continuous slowing down approximation and the Bethe stopping power. Backscattering coefficients are given for 10-50-keV electrons incident on bulk and thin-film aluminum, silver, and gold targets. The results are compared with the Everhart theory and empirical fits to experimental data. The energy-dependent theory agrees better with experimental work.

  7. Interaction-induced backscattering in short quantum wires

    DOE PAGES

    Rieder, M. -T.; Micklitz, T.; Levchenko, A.; ...

    2014-10-06

    We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here in this paper we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of amore » Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.« less

  8. A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics

    NASA Astrophysics Data System (ADS)

    Mulay, Rupalee Prashant

    For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the <001>{110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of <100>{011} or <100>{010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of <111> dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to

  9. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.; Harker, K. J.

    1974-01-01

    Predictions of the backscatter spectrum, including effects of ionospheric inhomogeneity, are compared with experimental observations of incoherent backscatter from an artificially heated region. Our calculations show that the strongest backscatter echo received is not from the reflection level, but from a region some distance below. Certain asymmetrical features are explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several satellite peaks accompanying them.

  10. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  11. Effect of Grain Boundary Misorientation on Electromigration in Lead-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Tasooji, Amaneh; Lara, Leticia; Lee, Kyuoh

    2014-12-01

    Reduction in microelectronic interconnect size gives rise to solder bumps consisting of few grains, approaching a single- or bicrystal grain morphology in C4 bumps. Single grain anisotropy, individual grain orientation, presence of easy diffusion paths along grain boundaries, and the increased current density in these small solder bumps aggravate electromigration. This reduces the reliability of the entire microelectronic system. This paper focuses on electromigration behavior in Pb-free solder, specifically the Sn-0.7 wt.%Cu alloy. We discuss the effects of texture, grain orientation, and grain boundary misorientation angle on electromigration (EM) and intermetallic compound formation in EM-tested C4 bumps. The detailed electron backscatter diffraction (EBSD) analysis used in this study reveals the greater influence of grain boundary misorientation on solder bump electromigration compared with the effect associated with individual grain orientation.

  12. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy

    PubMed Central

    Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang

    2018-01-01

    The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains. PMID:29495312

  13. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy.

    PubMed

    Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang

    2018-02-24

    The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains.

  14. Characterization of Laves phase in Crofer 22 H stainless steel.

    PubMed

    Hsiao, Zheng-Wen; Kuhn, Bernd; Chen, Delphic; Singheiser, Lorenz; Kuo, Jui-Chao; Lin, Dong-Yih

    2015-07-01

    This study investigated the effect of annealing temperature on the precipitation behavior of Crofer(®) 22 H at 600°C, 700°C, and 800°C. The grain size distribution, precipitate phase identification, and microstructure were analyzed using electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDS). The morphology of Laves phase (Fe,Cr,Si)(2)(Nb,W) precipitates having the Cr(2)Nb structure changed from strip-like to needle-shaped as the annealing temperature was increased. The precipitates of the Laves phase also shifted from the grain boundaries to the grain interiors when the temperature was increased. However, the average grain size (150 μm) of the ferritic matrix did not significantly change at 600°C, 700°C, and 800°C for 10 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Incomplete immunity to backscattering in chiral one-way photonic crystals.

    PubMed

    Cheng, Pi-Ju; Tien, Chung-Hao; Chang, Shu-Wei

    2015-04-20

    We show that the propagating modes in a strongly-guided chiral one-way photonic crystal are not backscattering-immune even though they are indeed insensitive to many kinds of scatters. Since these modes are not protected by the nonreciprocity, the backscattering does occur under certain circumstances. We use a perturbative method to derive criteria for the prominent backscattering in such chiral structures. From both our theory and numerical examinations, we find that the amount of backscattering critically depends on the symmetry of scatters. Additionally, for these chiral photonic modes, disturbances at the most intense parts of field profiles do not necessarily lead to the most effective backscattering.

  16. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels.

    PubMed

    Zaefferer, S; Romano, P; Friedel, F

    2008-06-01

    Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them.

  17. Effects of processing history on the evolution of surface damage layer and dislocation substructure in large grain niobium cavities

    DOE PAGES

    Kang, D.; Bieler, T. R.; Compton, C.

    2015-12-16

    Large grain niobium (Nb) is being investigated for fabricating superconducting radiofrequency cavities as an alternative to the traditional approach using fine grain polycrystalline Nb sheets. Past studies have identified a surface damage layer on fine grain cavities due to deep drawing and demonstrated the necessity for chemical etching on the surface. However, the origin of and depth of the damage layer are not well understood, and similar exploration on large grain cavities is lacking. In this work, electron backscatter diffraction (EBSD) was used to examine the cross sections at the equator and iris of a half cell deep drawn frommore » a large grain Nb ingot slice. The results indicate that the damage (identified by a high density of geometrically necessary dislocations) depends on crystal orientations, is different at the equator and iris, and is present through the full thickness of a half cell in some places. After electron backscatter diffraction, the specimens were heat treated at 800 °C or 1000 °C for two hours, and the same areas were reexamined. A more dramatic decrease in dislocation content was observed at the iris than the equator, where some regions exhibited no change. The specimens were then etched and examined again, to determine if the subsurface region behaved differently than the surface. As a result, little change in the dislocation substructure was observed, suggesting that the large grain microstructure is retained with a normal furnace anneal.« less

  18. Optical backscattering properties of the "clearest" natural waters

    NASA Astrophysics Data System (ADS)

    Twardowski, M. S.; Claustre, H.; Freeman, S. A.; Stramski, D.; Huot, Y.

    2007-11-01

    During the BIOSOPE field campaign October-December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over 8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m-1 sr-1, respectively. These values were approximately 6%, 3%, and 3% of the volume scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: - distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; - Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; - accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1+0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and - closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: -The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; -Distributions of

  19. Optical backscattering properties of the "clearest" natural waters

    NASA Astrophysics Data System (ADS)

    Twardowski, M. S.; Claustre, H.; Freeman, S. A.; Stramski, D.; Huot, Y.

    2007-07-01

    During the BIOSOPE field campaign October-December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over ~8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m-1 sr-1, respectively. These values were approximately 6%, 3%, and 3% of the scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: - bbp distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; - Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; - accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1 + 0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and - closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: - The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; - Distributions of

  20. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.

    PubMed

    Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D

    2017-02-13

    Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  1. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD

    PubMed Central

    Barou, F.; Hidas, K.; Tommasi, A.; Mainprice, D.

    2017-01-01

    Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=−5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the ‘parent’ ones suggests the possibility of ‘spontaneous’ nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025294

  2. Reducing parametric backscattering by polarization rotation

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction,more » it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.« less

  3. Electron backscattering simulation in Geant4

    NASA Astrophysics Data System (ADS)

    Dondero, Paolo; Mantero, Alfonso; Ivanchencko, Vladimir; Lotti, Simone; Mineo, Teresa; Fioretti, Valentina

    2018-06-01

    The backscattering of electrons is a key phenomenon in several physics applications which range from medical therapy to space including AREMBES, the new ESA simulation framework for radiation background effects. The importance of properly reproducing this complex interaction has grown considerably in the last years and the Geant4 Monte Carlo simulation toolkit, recently upgraded to the version 10.3, is able to comply with the AREMBES requirements in a wide energy range. In this study a validation of the electron Geant4 backscattering models is performed with respect to several experimental data. In addition a selection of the most recent validation results on the electron scattering processes is also presented. Results of our analysis show a good agreement between simulations and data from several experiments, confirming the Geant4 electron backscattering models to be robust and reliable up to a few tens of electronvolts.

  4. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.; Harker, K. J.

    1976-01-01

    The purpose of this study is to compare predictions of the backscatter spectrum, including effects of ionospheric inhomogeneity, with experimental observations of incoherent backscatter from an artificially heated region. Our calculations show that the strongest backscatter echo received is not from the reflection level but from a region some distance below (about 900-1100 m for an experiment carried out at Arecibo). By taking the standing wave pattern of the pump properly into account the present theory explains certain asymmetrical features of the upshifted and downshifted plasma lines in the backscatter spectrum.

  5. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  6. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  7. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD.

    PubMed

    Zhang, Chunyang; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2017-09-01

    The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni 50 Mn 38 Sb 12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]} A // {2[Formula: see text]} M and 〈0[Formula: see text]1〉 A // 〈[Formula: see text]2〉 M ; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K 1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]} A and {0[Formula: see text]} A of austenite. The three {0[Formula: see text]} A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉 A axis zone. The {0[Formula: see text]} A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉 A axis zones having one {0[Formula: see text]} A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the

  8. Ocean backscatter across the Gulf Stream sea surface temperature front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nghiem, S.V.; Li, F.K.

    1997-06-01

    Ocean backscatter was measured by the Jet Propulsion Laboratory, with the airborne NUSCAT K{sub u}-band scatterometer, across the Gulf Stream sea surface temperature front during the Surface Wave Dynamics Experiment off the coast of Virginia and Maryland in the winter of 1991. Backscatter across the front between the National Oceanic and Atmospheric Administration experimental coastal buoy A (44024) on the cold side and Discus C buoy (44023) on the warm side shows a difference of more than 5 dB for vertical polarization in many cases. This large frontal backscatter change is observed in all upwind, downwind, and crosswind directions. Themore » sea surface temperature difference measured by the buoys was about 9{degrees}C. The corresponding difference in wind speed cannot account for the large backscatter change in view of geophysical model functions depending only on neutral wind velocity such as SASS. The measured backscatter also has larger upwind-downwind and upwind-crosswind ratios compared to the model results. Furthermore, NUSCAT data reveal that upwind backscatter on the cold side was smaller than or close to crosswind backscatter on the warm side for incidence angles between 30{degrees} to 50{degrees}. This suggests that the temperature front can be detected by the scatterometer at these incidence angles for different wind directions in the cold and warm sides.« less

  9. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE PAGES

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...

    2018-04-30

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  10. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  11. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  12. Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter.

    PubMed

    Rocadenbosch, F; Soriano, C; Comerón, A; Baldasano, J M

    1999-05-20

    A first inversion of the backscatter profile and extinction-to-backscatter ratio from pulsed elastic-backscatter lidar returns is treated by means of an extended Kalman filter (EKF). The EKF approach enables one to overcome the intrinsic limitations of standard straightforward nonmemory procedures such as the slope method, exponential curve fitting, and the backward inversion algorithm. Whereas those procedures are inherently not adaptable because independent inversions are performed for each return signal and neither the statistics of the signals nor a priori uncertainties (e.g., boundary calibrations) are taken into account, in the case of the Kalman filter the filter updates itself because it is weighted by the imbalance between the a priori estimates of the optical parameters (i.e., past inversions) and the new estimates based on a minimum-variance criterion, as long as there are different lidar returns. Calibration errors and initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate atmospheric stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables one to retrieve the optical parameters as time-range-dependent functions and hence to track the atmospheric evolution; the performance of this approach is limited only by the quality and availability of the a priori information and the accuracy of the atmospheric model used. The study ends with an encouraging practical inversion of a live scene measured at the Nd:YAG elastic-backscatter lidar station at our premises at the Polytechnic University of Catalonia, Barcelona.

  13. Multiwavelength Comparison of Modeled and Measured Remote Tropospheric Aerosol Backscatter Over Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Pueschel, R. F.; Srivastava, V.; Clarke, A. D.; Rothermel, J.; Spinhirne, J. D.; Menzies, R. T.

    1996-01-01

    Aerosol concentrations and size distributions in the middle and upper troposphere over the remote Pacific Ocean were measured with a forward scattering spectrometer probe (FSSP) on the NASA DC-8 aircraft during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. The FSSP size channels were recalibrated based on refractive index estimates from flight-level aerosol volatility measurements with a collocated laser optical particle counter (LOPC). The recalibrated FSSP size distributions were averaged over 100-s intervals, fitted with lo-normal distributions and used to calculate aerosol backscatter coefficients at selected wavelengths. The FSSP-derived backscatter estimates were averaged over 300-s intervals to reduce large random fluctuations. The smoothed FSSP aerosol backscatter coefficients were then compared with LOPC-derived backscatter values and with backscatter measured at or near flight level from four lidar systems operating at 0.53, 1.06, 9.11, 9.25, and 10.59 micrometers. Agreement between FSSP-derived and lidar-measured backscatter was generally best at flight level in homogeneous aerosol fields and at high backscatter values. FSSP data often underestimated low backscatter values especially at the longer wavelengths due to poor counting statistics for larger particles (greater than 0.8 micrometers diameter) that usually dominate aerosol backscatter at these wavelengths. FSSP data also underestimated backscatter at shorter wavelengths when particles smaller than the FSSP lower cutoff diameter (0.35 micrometers) made significant contributions to the total backscatter.

  14. A Backscattering Enhanced Microwave Canopy Scattering Model Based On MIMICS

    NASA Astrophysics Data System (ADS)

    Shen, X.; Hong, Y.; Qin, Q.; Chen, S.; Grout, T.

    2010-12-01

    For modeling microwave scattering of vegetated areas, several microwave canopy scattering models, based on the vectorized radiative transfer equation (VRT) that use different solving techniques, have been proposed in the past three decades. As an iterative solution of VRT at low orders, the Michigan Microwave Canopy Scattering Model (MIMICS) gives an analytical expression for calculating scattering as long as the volume scattering is not too strong. The most important usage of such models is to predict scattering in the backscattering direction. Unfortunately, the simplified assumption of MIMICS is that the scattering between the ground and trunk layers only includes the specular reflection. As a result, MIMICS includes a dominant coherent term which vanishes in the backscattering direction because this term contains a delta function factor of zero in this direction. This assumption needs reconsideration for accurately calculating the backscattering. In the framework of MIMICS, any incoherent terms that involve surface scattering factors must at least undergo surface scattering twice and volume scattering once. Therefore, these incoherent terms are usually very weak. On the other hand, due to the phenomenon of backscattering enhancement, the surface scattering in the backscattering direction is very strong compared to most other directions. Considering the facts discussed above, it is reasonable to add a surface backscattering term to the last equation of the boundary conditions of MIMICS. More terms appear in the final result including a backscattering coherent term which enhances the backscattering. The modified model is compared with the original MIMICS (version 1.0) using JPL/AIRSAR data from NASA Campaign Soil Moisture Experimental 2003 (SMEX03) and Washita92. Significant improvement is observed.

  15. Lidar backscattering measurements of background stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Northam, G. B.; Butler, C. F.

    1979-01-01

    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.

  16. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  17. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  18. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  19. Microstructure effects on the recrystallization of low-symmetry alpha-uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Rodney James; Richards, Andrew Walter; Coughlin, Daniel Robert

    2015-10-01

    We employ electron backscatter diffraction (EBSD) to investigate microstructural evolution of uranium during recrystallization. To understand the relationship between microstructure and recrystallization, we use measures of intra-granular misorientation within grains and near grain boundaries in both deformed (non-recrystallized) uranium and recrystallizing uranium. The data show that the level of intra-granular misorientation depends on crystallographic orientation. However, contrary to expectation, this relationship does not significantly affect the recrystallization texture. Rather, the analysis suggests that recrystallization nucleation occurs along high angle grain boundaries in the deformed microstructure. Specifically, we show that the nucleation of recrystallized grains correlates well with the spatially heterogeneousmore » distribution of high angle boundaries. Due to the inhomogeneous distribution of high angle boundaries, the recrystallized microstructure after long times exhibits clustered distributions of small and large grains. Twin boundaries do not appear to act as recrystallization nucleation sites.« less

  20. GaN epitaxial layers grown on multilayer graphene by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  1. Characterization of Al-Mg Alloy Aged at Low Temperatures

    DOE PAGES

    Yi, Gaosong; Cullen, David A.; Littrell, Kenneth C.; ...

    2017-02-06

    For this research, long-term aged [343 K (70 °C) for 30 months and natural exposure for over 10 years] Al 5456 H116 samples were characterized using electron backscatter diffraction (EBSD), scanning transmission electron microscopy (STEM), state-of-the-art energy-dispersive X-ray spectroscopy (EDS) systems, and small-angle neutron scattering (SANS). ASTM G-67 mass loss tests of the sensitized Al 5456 alloy samples were conducted. Intragranular Mg-rich precipitates, such as Guinier–Preston (GP) zones, were confirmed in Al 5456 H116 aged at 343 K (70 °C) for 30 months, and the volume of these precipitates is 1.39 pct. β' phase is identified at the grain boundarymore » of a navy ship sample, while high-resolution STEM results reveal no intragranular precipitates. Intergranular corrosion (IGC) of Al 5456 was found to be related to the continuity of intergranular precipitates.« less

  2. Microstructure heterogeneity after the ECAP process and its influence on recrystallization in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, S., E-mail: wronski@fis.agh.edu.pl; Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl; Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr

    The main purpose of the present work is to describe the qualitative and quantitative behaviours of aluminium during high strain plastic deformation and the effect of deformation on the subsequent recrystallization process. An Electron Backscatter Diffraction analysis of aluminium after the Equal channel angular pressing (ECAP) and recrystallization process is presented. In order to do this, several topological maps are measured for samples processed by 4 and 8 passes and recrystallized. The processing was conducted with route C. For all samples, distributions of grain size, misorientation, image quality factor (IQ) and texture were preceded and then analysed in some detail.more » - Highlights: ► Describe the microstructure fragmentation in aluminum. ► High strain plastic deformation and effect of deformation on recrystallization. ► The microstructure fragmentation and its influence on recrystallization. ► Image quality factor and misorientation characteristics are examined using EBSD.« less

  3. Numerical Simulation and Experimental Casting of Nickel-Based Single-Crystal Superalloys by HRS and LMC Directional Solidification Processes

    NASA Astrophysics Data System (ADS)

    Yan, Xuewei; Wang, Run'nan; Xu, Qingyan; Liu, Baicheng

    2017-04-01

    Mathematical models for dynamic heat radiation and convection boundary in directional solidification processes are established to simulate the temperature fields. Cellular automaton (CA) method and Kurz-Giovanola-Trivedi (KGT) growth model are used to describe nucleation and growth. Primary dendritic arm spacing (PDAS) and secondary dendritic arm spacing (SDAS) are calculated by the Ma-Sham (MS) and Furer-Wunderlin (FW) models respectively. The mushy zone shape is investigated based on the temperature fields, for both high-rate solidification (HRS) and liquid metal cooling (LMC) processes. The evolution of the microstructure and crystallographic orientation are analyzed by simulation and electron back-scattered diffraction (EBSD) technique, respectively. Comparison of the simulation results from PDAS and SDAS with experimental results reveals a good agreement with each other. The results show that LMC process can provide both dendritic refinement and superior performance for castings due to the increased cooling rate and thermal gradient.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Gaosong; Cullen, David A.; Littrell, Kenneth C.

    For this research, long-term aged [343 K (70 °C) for 30 months and natural exposure for over 10 years] Al 5456 H116 samples were characterized using electron backscatter diffraction (EBSD), scanning transmission electron microscopy (STEM), state-of-the-art energy-dispersive X-ray spectroscopy (EDS) systems, and small-angle neutron scattering (SANS). ASTM G-67 mass loss tests of the sensitized Al 5456 alloy samples were conducted. Intragranular Mg-rich precipitates, such as Guinier–Preston (GP) zones, were confirmed in Al 5456 H116 aged at 343 K (70 °C) for 30 months, and the volume of these precipitates is 1.39 pct. β' phase is identified at the grain boundarymore » of a navy ship sample, while high-resolution STEM results reveal no intragranular precipitates. Intergranular corrosion (IGC) of Al 5456 was found to be related to the continuity of intergranular precipitates.« less

  5. Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy

    NASA Astrophysics Data System (ADS)

    Hu, Xianzhi; Jin, Shenbao; Zhou, Hao; Yin, Zhe; Yang, Jian; Gong, Yulan; Zhu, Yuntian; Sha, Gang; Zhu, Xinkun

    2017-09-01

    Using surface mechanical attrition treatment (SMAT), a gradient structure composed of two gradient structure (GS) layers and a coarse grain (CG) layer was generated from a Cu-5.7 wt pct Ge alloy, significantly improving the yield strength of the sample. Unloading-reloading tests showed an unusual Bauschinger effect in these GS samples. The back stresses caused by the accumulated geometrically necessary dislocations (GNDs) on the GS/CG border increased with increasing strain. As found by electron backscatter diffraction (EBSD), the GNDs are mainly distributed in the gradient structured layer, and the density of the GNDs increase with increasing SMAT time. The effect of the back stress increased with increasing SMAT processing time due to the increase in the strain gradient. The pronounced Bauschinger effect in a GS sample can improve the resistance to forward plastic flow and finally contributes to the high strength of GS samples.

  6. EBSDinterp 1.0: A MATLAB® Program to Perform Microstructurally Constrained Interpolation of EBSD Data.

    PubMed

    Pearce, Mark A

    2015-08-01

    EBSDinterp is a graphic user interface (GUI)-based MATLAB® program to perform microstructurally constrained interpolation of nonindexed electron backscatter diffraction data points. The area available for interpolation is restricted using variations in pattern quality or band contrast (BC). Areas of low BC are not available for interpolation, and therefore cannot be erroneously filled by adjacent grains "growing" into them. Points with the most indexed neighbors are interpolated first and the required number of neighbors is reduced with each successive round until a minimum number of neighbors is reached. Further iterations allow more data points to be filled by reducing the BC threshold. This method ensures that the best quality points (those with high BC and most neighbors) are interpolated first, and that the interpolation is restricted to grain interiors before adjacent grains are grown together to produce a complete microstructure. The algorithm is implemented through a GUI, taking advantage of MATLAB®'s parallel processing toolbox to perform the interpolations rapidly so that a variety of parameters can be tested to ensure that the final microstructures are robust and artifact-free. The software is freely available through the CSIRO Data Access Portal (doi:10.4225/08/5510090C6E620) as both a compiled Windows executable and as source code.

  7. Microstructural evolution during thermal annealing of ice-Ih

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-06-01

    We studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice pre-deformed in uniaxial compression at temperature of -7 °C to macroscopic strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This initial evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period ≥1.5 h, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intragranular misorientations, consuming first the most misorientated parts of primary grains. Grain growth kinetics fits the parabolic growth law with grain growth exponents in the range of 2.4-4.0. Deformation-induced tilt boundaries and kink bands may slow down grain boundary migration. They are stable features during early stages of static recrystallization, only erased by normal growth, which starts after >24 h of annealing.

  8. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-dong

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocationmore » mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.« less

  9. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    PubMed

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  10. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  11. Computer simulation of backscattering spectra from paint

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Silva, T. F.

    2017-09-01

    To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.

  12. Identification of major backscattering sources in trees and shrubs at 10 GHz

    NASA Technical Reports Server (NTRS)

    Zoughi, R.; Wu, L. K.; Moore, R. K.

    1986-01-01

    A short-range very-fine-resolution FM-CW radar scatterometer has been used to identify the primary contributors to 10-GHz radar backscatter from pine, pin oak, American sycamore and sugar maple trees, and from creeping juniper shrubs. This system provided a range resolution of 11 cm and gave a 16-cm diameter illumination area at the target range of about 4 m. For a pine tree, the needles caused the strongest backscatter as well as the strongest attenuation in the radar signal. Cones, although insignificant contributors to the total backscatter, were more important for backscattering than for attenuation. For the rest of the trees, leaves were the strongest cause of backscattering and attenuation. However, in the absence of leaves, the petioles, small twigs, and branches gave relatively strong backscatter. For American sycamore and sugar maple trees, the fruits did not affect the total backscatter unless they were packed in clusters. For creeping juniper the backscattered energy and attenuation in the radar signal were mainly due to the top two layers of the evergreen scales. The contribution of the tree trunks was not determined.

  13. Bruce Thompson: Adventures and advances in ultrasonic backscatter

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.

    2012-05-01

    Over the course of his professional career Dr. R. Bruce Thompson published several hundred articles on non-destructive evaluation, the majority dealing with topics in ultrasonics. One longtime research interest of Dr. Thompson, with applications both to microstructure characterization and defect detection, was backscattered grain noise in metals. Over a 20 year period he led a revolving team of staff members and graduate students investigating various aspects of ultrasonic backscatter. As a member of that team I had the privilege of working along side Dr. Thompson for many years, serving as a sort of Dr. Watson to Bruce's Sherlock Holmes. This article discusses Dr. Thompson's general approaches to modeling backscatter, the research topics he chose to explore to systematically elucidate a better understanding of the phenomena, and the many contributions to the field achieved under his leadership. The backscatter work began in earnest around 1990, motivated by a need to improve inspections of aircraft engine components. At that time Dr. Thompson launched two research efforts. The first led to the heuristic Independent Scatterer Model which could be used to estimate the average grain noise level that would be seen in any given ultrasonic inspection. There the contribution from the microstructure was contained in a measureable parameter known as the Figure-of-Merit or FOM. The second research effort, spearheaded by Dr. Jim Rose, led to a formal relationship between FOM and details of the metal microstructure. The combination of the Independent Scattering Model and Rose's formalism provided a powerful tool for investigating backscatter in metals. In this article model developments are briefly reviewed and several illustrative applications are discussed. These include: the determination of grain size and shape from ultrasonic backscatter; grain noise variability in engine-titanium billets and forgings; and the design of ultrasonic inspection systems to improve defect

  14. Observation of coherent backscattering of light in ultracold ^85Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2002-05-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and our measurements of atomic coherent backscattering. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider scattering orders up to 8 and a Gaussian atom distribution in the MOT. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes.

  15. Effects of soil and canopy characteristics on microwave backscattering of vegetation

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.

    1991-01-01

    A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles.

  16. Ku-band ocean radar backscatter observations during SWADE

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, F. K.; Lou, S. H.; Neumann, G.

    1993-01-01

    We present results obtained by an airborne Ku-band scatterometer during the Surface Wave Dynamics Experiment (SWADE). The specific objective of this study is to improve our understanding of the relationship between ocean radar backscatter and near surface winds. The airborne scatterometer, NUSCAT, was flown on the NASA Ames C-130 over an instrumented oceanic area near 37 deg N and 74 deg W. A total of 10 flights from 27 Feb. to 9 Mar. 1991 were conducted. Radar backscatter at incidence angles of 0 to 60 deg were obtained. For each incidence angle, the NUSCAT antenna was azimuthally scanned in multiple complete circles to measure the azimuthal backscatter modulations. Both horizontal and vertical polarization backscatter measurements were made. In some of the flights, the cross-polarization backscatter was measured as well. Internal calibrations were carried out throughout each of the flights. Preliminary results indicate that the radar was stable to +/-0.3 dB for each flight. In this paper, we present studies of the backscatter measurements over several crossings of the Gulf Stream. In these crossings, large air-sea temperature differences were encountered and substantial changes in the radar cross section were observed. We summarize the observations and compare them to the changes of several wind variables across the Gulf Stream boundary. In one of the flights, the apparent wind near the cold side of the Gulf Stream was very low (less than 3 m/s). The behavior of the radar cross sections at such low wind speeds and a comparison with models are presented. A case study of the effects of swell on the absolute cross section and the azimuthal modulation pattern is presented. Significant wave heights larger than m were observed during SWADE. The experimentally observed effects of the swell on the radar backscatter are discussed. The effects are used to assess the uncertainties in wind retrieval due to underlying waves. A summary of azimuthal modulation from our ten

  17. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  18. Measure of Backscatter for small particles of atmosphere by lasers

    NASA Astrophysics Data System (ADS)

    Abud, Mariam M.

    2018-05-01

    It developed a program for the atmosphere to study the backscattering for contents gas and molecules, aerosol, fog, clouds and rain droplets. By using Rayleigh, Mie and geometric scattering. The aim of research, using different types of lasers from various optical region, is to calculate differential cross scatter section and backscatter of atmosphere component in one layer from height 10-2000m. 180° is backscattering angle using ISA standard sea level condition P=1013.25 (kpa) at t0=15 ° C.and then calculated the density of molecules and water vapor molecules represented D in kg/m3. Results reflected index consist of the large value of the real part and imaginary m=1.463-0.028i.this research diff. scatter cross section of different component of atmosphere layer decreased vs. wavelengths. The purpose of lider research to find backscatter from UV to IR laser within the optical range in the atmosphere and measurement of excitation and analysis of backscatter signals. Recently, the atmosphere of Iraq has become full of dust and pollution, so by knowing the differential cross scatter section and backscatter of atmosphere. Relation between total Rayleigh scatter coefficient & type of particles include fog and clouds, aerosols and water droplets (-0.01, 0.025,- 0.005) m-1/sr-1.

  19. Backscattering from a Gaussian distributed, perfectly conducting, rough surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1977-01-01

    The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.

  20. Analysis of C and Ku band ocean backscatter measurements under low-wind conditions

    NASA Astrophysics Data System (ADS)

    Carswell, James R.; Donnelly, William J.; McIntosh, Robert E.; Donelan, Mark A.; Vandemark, Douglas C.

    1999-09-01

    Airborne ocean backscatter measurements at C and Ku band wavelengths obtained in low to moderate-wind conditions are presented. The differences between the low-wind backscatter data and the CMOD4 and SASS-II models are reported. The measurements show that the upwind/crosswind backscatter ratio is greater than predicted. These large upwind/crosswind backscatter ratios are attributed to a rapid decrease in the crosswind backscatter at low winds. Qualitative agreement with the composite surface model proposed by Donelan and Pierson suggests the rapid decrease in the crosswind backscatter may be caused by viscous dampening of the Bragg-resonant capillary-gravity waves. We show that for larger antenna footprints typical of satellite-based scatterometers, the variability in the observed wind field smooths out the backscatter response such that the rapid decrease in the crosswind direction is not observed.

  1. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1973-01-01

    Predictions of the backscatter spectrum are compared, including effects of ionospheric inhomogeneity with experimental observations of incoherent backscatter from an artificially heated region. Calculations show that the strongest backscatter echo received is not, in fact, from the reflection level, but from a region some distance below (about 0.5 km for an experiment carried out at Arecibo), where the pump wave from a HF transmitter approximately 100 kW) is below the threshold for parametric amplification. By taking the standing wave pattern of the pump into account, asymmetry is explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several peaks typically observed in the region of the spectrum near the HF transmitter frequency.

  2. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  3. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  4. Design of the optical backscatter diagnostic for laser plasma interaction measurements on NIF

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Datte, P.; Ng, E.; Maitland, K.; Hsing, W.; MacGowan, B. J.; Froula, D. H.; Neumayer, P.; Sutter, L.; Meezan, N.; Glenzer, S. H.; Kirkwood, R. K.; Divol, L.; Andrews, S.; Jackson, J.; MacKinnon, A.; Jovanovic, I.; Beeler, R.; Bertolini, L.; Landon, M.; Alvarez, S.; Lee, T.; Watts, P.

    2007-11-01

    We describe the design of the backscatter diagnostic for NIF laser-plasma interaction (LPI) studies. It will initially be used to validate the 280 eV point design hohlraum and select phase plates for the ignition experiments. Backscatter measurements are planned for two separate groups of 4 beams (a quad). One quad is 30^o from the hohlraum axis and the other at 50^o. The backscatter measurement utilizes 2 instruments for each beam quad. The full aperture backscatter system (FABS) measures light backscattered into the final focus lens of each beam in the quad. The near backscatter imager (NBI) measures light backscattered outside of the beam quad. Both instruments must work in conjunction to provide spectrally and temporally resolved backscatter power. We describe the design of the diagnostic and its capabilities as well as plans for calibrating it and analyzing the resulting data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  5. Non-basal dislocations should be accounted for in simulating ice mass flow

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  6. Twinning and martensite in a 304 austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yongfeng; Li, Xi; Sun, Xin

    2012-08-30

    The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyondmore » that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.« less

  7. Strain softening during tension in cold drawn Cu–Ag alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.L., E-mail: lilichang@sdu.edu.cn; Wen, S.; Li, S.L.

    2015-10-15

    Experiments were conducted on Cu–0.1wt.%Ag alloys to evaluate the influence of producing procedures and annealing conditions on microstructure evolution and mechanical properties of Cu–Ag alloys. Optical microscopy (OM), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for microstructural evaluation and mechanical properties were characterized by tensile tests. The results indicated that hot-extruded Cu–Ag alloys had a typical dynamic recrystallized microstructure with equiaxed grains. Cold drawing at room temperature leaded to partial recrystallized microstructure with a mixture of coarse and fine grains. The dominate {001}<100 > cubic texture formed during hot extrusion was changed tomore » be {112}<111 > copper texture by cold drawing. Strain softening occurred during room temperature tension of cold drawn Cu–Ag alloys with an average grain size of 13–19.7 μm. - Highlights: • Strain softening occurred during tension of Cu–Ag alloys with coarse grain size. • Work hardening was observed in hot-extruded and annealed Cu–0.1wt.%Ag alloys. • Strain softening was ascribed to dynamic recovery and dynamic recrystallization.« less

  8. Transformation and Precipitation Kinetics in 30Cr10Ni Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Fazarinc, Matevz; Terčelj, Milan; Bombač, David; Kugler, Goran

    2010-09-01

    To improve the microstructure during casting, hot forming, and heat treatment of 30Cr10Ni duplex stainless steel, accurate data on the precipitation and transformation processes at high temperatures are needed. In this article, the precipitation and transformation processes at various aging times in the temperature range 873 K to 1573 K (600 °C to 1300 °C) were studied. The 30Cr10Ni ferrous alloy contains a relatively large amount of Cr, Ni, and C, which results in a complex microstructure. In addition to the ferrite, austenite, and sigma phase, the M23C6 and MC carbides were also observed in the microstructure. The precipitation of the sigma phase was observed after just 3 minutes of aging, and after 30 minutes of aging at approximately 1053 K (780 °C), its fraction exceeded 40 pct. An intensive austenite-to-ferrite transformation was observed above 1423 K (1150 °C). Optical microscopy, energy-dispersive X-ray spectroscopy (EDS), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD), as well as micro-indentation hardness, hardness, impact toughness, and tensile tests, were carried out to evaluate the obtained microstructures of aged samples.

  9. Seafloor Characterization from Spatial Variation of Multibeam Backscatter vs. Grazing Angle

    NASA Astrophysics Data System (ADS)

    hou, T.

    2001-12-01

    Backscatter vs. grazing angle, which can be extracted from multibeam backscatter data, depend on characteristics of the multibeam system and the angular responses of backscatter that are characteristic of different seafloor properties, such as sediment hardness and roughness. Changes in backscatter vs. grazing angle that are contributed by the multibeam system normally remain fixed over both space and time. Therefore, they can readily be determined and removed from backscatter data. The variation of backscatter vs. grazing angle due to the properties of sediments will vary from location to location, as sediment type changes. The sediment component of variability can be inferred using the redundant observations from different grazing angles in several small pieces of seafloor where the sediment property is uniform in any given piece of seafloor yet vary from one piece of the seafloor to another. Thanks to the multibeam survey (Roger Flood, State University of New York) at SAX 99 Project sponsored by Office of Naval Research (ONR), which had 800% coverage in most of the survey area; there is a data set, which is suitable for investigating seafloor characterization. The investigation analyzed the spatial variation of the backscatter vs. grazing angle and compared that with ground truth sediment data. In this research, the 6.9 gigabytes raw multibeam data were cleaned using an automated outlier detection algorithm (Tianhang Hou, Lloyd Huff and Larry Mayer. 2001). Then, the surveyed area was equally divided into 52X78 rectangle working cells (4056), the side of each cell was about 20 meters. The backscatter vs. grazing angle of backscatter data for each cell is computed by averaging backscatter data by the corresponding beam numbers using all data with the same beam number from different survey lines. Systematic effects on the backscatter vs. grazing angle, caused by multibeam system hardware or software as well as system installation, were corrected in order to remove

  10. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  11. Investigation of the optimal backscatter for an aSi electronic portal imaging device.

    PubMed

    Ko, Lung; Kim, Jong Oh; Siebers, Jeffrey V

    2004-05-07

    The effects of backscattered radiation on the dosimetric response of the Varian aS500 amorphous silicon electronic portal imaging device (EPID) are studied. Measurements demonstrate that radiation backscattered from the EPID mechanical support structure causes 5% asymmetries in the detected signal. To minimize the effect of backscattered radiation from the support structure, this work proposes adding material downstream of the EPID phosphor which provides uniform backscattering material to the phosphor and attenuates backscatter from the support structure before it reaches the phosphor. Two material locations were studied: downstream of the existing image cassette and within the cassette, immediately downstream of the flat-panel imager glass panel. Monte Carlo simulations were used to determine the thicknesses of water, Pb and Cu backscattering materials required to saturate the backscattered signal response for 6 MV and 18 MV beams for material thicknesses up to 50 mm. Water was unable to saturate the backscattered signal for thicknesses up to 50 mm for both energies. For Pb, to obtain a signal within 1% of saturation, 3 mm was required at 6 MV, and 6.8 mm was required at 18 MV. For Cu, thicknesses of 20.6 mm and 22.6 mm were required for the 6 MV and 18 MV beams, respectively. For saturation thicknesses, at 6 MV, the Cu backscatter enhanced the signal more than for Pb (Cu 1.25, Pb 1.11), but at 18 MV the reverse was found (Cu 1.19, Pb 1.23). This is due to the fact that at 6 MV, the backscattered radiation signal is dominated by low-energy scattered photons, which are readily attenuated by the Pb, while at 18 MV, electron backscatter contributes substantially to the signal. Image blurring caused by backscatter spread was less for Pb than Cu. Placing Pb immediately downstream of the glass panel further reduced the signal spread and increased the backscatter enhancement to 1.20 and 1.39 for the 6 MV and 18 MV beams, respectively. Overall, it is determined that

  12. Quantifying Fish Backscattering using SONAR Instrument and Kirchhoff Ray Mode (KRM) Model

    NASA Astrophysics Data System (ADS)

    Manik, Henry M.

    2016-08-01

    Sonar instrument was used to study backscattering from tuna fish. Extraction of target strength, incidence angle, and frequency dependence of the backscattered signal for individual scatterer was important for biological information. For this purpose, acoustic measurement of fish backscatter was conducted in the laboratory. Characteristics and general trends of the target strength of fish with special reference to tuna fish were investigated by using a Kirchhoff Ray Mode (KRM) model. Backscattering strength were calculated for the KRM having typical morphological and physical parameters of actual fish. Those backscattering amplitudes were shown as frequency, body length, backscattering patterns, the density and sound speed dependences, and orientation dependence. These results were compared with experimentally measured target strength data and good agreement was found. Measurement and model showed the target strength from the fish are depend on the presence of swimbladder. Target Strength increase with increasing the frequency and fish length.

  13. Backscattering Measurement From a Single Microdroplet

    PubMed Central

    Lee, Jungwoo; Chang, Jin Ho; Jeong, Jong Seob; Lee, Changyang; Teh, Shia-Yen; Lee, Abraham; Shung, K. Kirk

    2011-01-01

    Backscattering measurements for acoustically trapped lipid droplets were undertaken by employing a P[VDF-TrFE] broadband transducer of f-number = 1, with a bandwidth of 112%. The wide bandwidth allowed the transmission of the 45 MHz trapping signal and the 15 MHz sensing signal using the same transducer. Tone bursts at 45 MHz were first transmitted by the transducer to hold a single droplet at the focus (or the center of the trap) and separate it from its neighboring droplets by translating the transducer perpendicularly to the beam axis. Subsequently, 15 MHz probing pulses were sent to the trapped droplet and the backscattered RF echo signal received by the same transducer. The measured beam width at 15 MHz was measured to be 120 μm. The integrated backscatter (IB) coefficient of an individual droplet was determined within the 6-dB bandwidth of the transmit pulse by normalizing the power spectrum of the RF signal to the reference spectrum obtained from a flat reflector. The mean IB coefficient for droplets with a 64 μm average diameter (denoted as cluster A) was −107 dB, whereas it was −93 dB for 90-μm droplets (cluster B). The standard deviation was 0.9 dB for each cluster. The experimental values were then compared with those computed with the T-matrix method and a good agreement was found: the difference was as small as 1 dB for both clusters. These results suggest that this approach might be useful as a means for measuring ultrasonic backscattering from a single microparticle, and illustrate the potential of acoustic sensing for cell sorting. PMID:21507767

  14. Acoustic backscatter of the 1995 flood deposit on the Eel shelf

    USGS Publications Warehouse

    Borgeld, J.C.; Hughes-Clarke, John E.; Goff, John A.; Mayer, Larry A.; Curtis, Jennifer A.

    1999-01-01

    Acoustic swath mapping and sediment box coring conducted on the continental shelf near the mouth of the Eel River revealed regional variations in acoustic backscatter that can be related to the shelf sedimentology. The acoustic-backscatter variations observed on the shelf were unusually narrow compared to the response of similar sediment types documented in other areas. However, the acoustic data revealed four principal bottom types on the shelf that can be related to sedimentologic differences observed in cores. The four areas are: (1) low acoustic backscatter associated with the nearshore-sand facies and the prodelta terraces of the Eel and Mad rivers, composed of fine sands and coarse silts with low porosity; (2) high acoustic backscatter associated with fine silts characterized by high porosity and deposited by the 1995 flood of the Eel River; (3) intermediate acoustic backscatter in the outer-shelf muds, where clayey silts are accumulating and the 1995 flood apparently had limited direct effect; and (4) intermediate acoustic backscatter near the fringes of the 1995 flood deposits and in areas where the flood sediments were more disrupted by post-depositional processes. The highest acoustic backscatter was identified in areas where the 1995 flood sediments remained relatively intact and near the shelf surface into the summer of 1995. Cores collected from these areas contained wavy or lenticular bedding. The rapid deposition of the high-porosity muddy layers results in better preservation of incorporated ripple forms than in areas less directly impacted by the flood deposit. The high-porosity muddy layers allow acoustic penetration into the sediments and result in greater acoustic backscatter from incorporated roughness elements.

  15. HF coherent backscatter in the ionosphere: In situ measurements of SuperDARN backscatter with e-POP RRI

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; James, H. G.; Hussey, G. C.; Howarth, A. D.; Yau, A. W.

    2017-12-01

    We report in situ polarimetry measurements of HF scattering obtained by the Enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) during a coherent backscatter scattering event detected by the Saskatoon Super Dual Auroral Radar Network (SuperDARN). On April 1, 2015, e-POP conducted a 4 minute coordinated experiment with SuperDARN Saskatoon, starting at 3:38:44 UT (21:38:44 LT). Throughout the experiment, SuperDARN was transmitting at 17.5 MHz and e-POP's ground track moved in a northeastward direction, along SuperDARN's field-of-view, increasing in altitude from 331 to 352 km. RRI was tuned to 17.505 MHz, and recorded nearly 12,000 SuperDARN radar pulses during the experiment. In the first half of the experiment, radar pulses recorded by RRI were "well behaved": they retained their transmitted amplitude envelope, and their pulse-to-pulse polarization characteristics were coherent - Faraday rotation was easily measured. During the second half of the experiment the pulses showed clear signs of scattering: their amplitude envelopes became degraded and dispersed, and their pulse-to-pulse polarization characteristics became incoherent - Faraday rotation was difficult to quantify. While these pulses were being received by RRI, SuperDARN Saskatoon detected a latitudinal band of coherent backscatter at e-POP's location, indicating that the scattered pulses measured by RRI may be a signature of HF backscatter. In this presentation, we will outline the polarimetric details of the scattered pulses, and provide an analytic interpretation of RRI's measurements to give new insight into the nature of HF coherent backscatter mechanism taking place in the terrestrial ionosphere.

  16. Light backscattering efficiency and related properties of some phytoplankters

    NASA Astrophysics Data System (ADS)

    Ahn, Yu-Hwan; Bricaud, Annick; Morel, André

    1992-11-01

    By using a set-up that combines an integrating sphere with a spectroradiometer LI-1800 UW, the backscattering properties of nine different phytoplankters grown in culture have been determined experimentally for the wavelengths domain ν = 400 up to 850 nm. Simultaneously, the absorption and attenuation properties, as well as the size distribution function, have been measured. This set of measurements allowed the spectral values of refractive index, and subsequently the volume scattering functions (VSF) of the cells, to be derived, by operating a scattering model previously developed for spherical and homogeneous cells. The backscattering properties, measured within a restricted angular domain (approximately between 132 and 174°), have been compared to theoretical predictions. Although there appear some discrepancies between experimental and predicted values (probably due to experimental errors as well as deviations of actual cells from computational hypotheses), the overall agreement is good; in particular the observed interspecific variations of backscattering values, as well as the backscattering spectral variation typical of each species, are well accounted for by theory. Using the computed VSF, the measured backscattering properties can be converted (assuming spherical and homogeneous cells) into efficiency factors for backscattering ( overlineQbb) . Thhe spectral behavior of overlineQbb appears to be radically different from that for total scattering overlineQb. For small cells, overlineQ (λ) is practically constant over the spectrum, whereas overlineQb(λ) varies approximately according to a power law (λ -2). As the cell size increases, overlineQbb conversely, becomes increasingly featured, whilst overlineQb becomes spectrally flat. The chlorophyll-specific backscattering coefficients ( b b∗ appear highly variable and span nearly two orders of magnitude. The chlorophyll-specific absorption and scattering coefficients, a ∗ and b ∗, are mainly ruled by

  17. Retrieval of Ocean Subsurface Particulate Backscattering Coefficient from Space-Borne CALIOP Lidar Measurement

    NASA Technical Reports Server (NTRS)

    Lu, Xiaomei; Hu, Yongxiang; Pelon, Jacques; Trepte, Chip; Liu, Katie; Rodier, Sharon; Zeng, Shan; Luckher, Patricia; Verhappen, Ron; Wilson, Jamie; hide

    2016-01-01

    A new approach has been proposed to determine ocean subsurface particulate backscattering coefficient bbp from CALIOP 30deg off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180deg scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies.

  18. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Derek H.; Bicknell, Jonathan; Jorgensen, Luke

    2016-03-15

    In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porositymore » inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor < 001 > fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are

  19. Correlative characterization of primary particles formed in as-cast Al-Mg alloy containing a high level of Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shi'ang

    Primary particles formed in as-cast Al-5Mg-0.6Sc alloy and their role in microstructure and mechanical properties of the alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and tensile testing. It was found that primary particles due to a close orientation to matrix could serve as the potent heterogeneous nucleation sites for α-Al during solidification and thus impose a remarkable grain refinement effect. Eutectic structure consisted of layer by layer of ‘Al{sub 3}Sc + α-Al + Al{sub 3}Sc + ⋯’ and cellular-dendritic substructure were simultaneously observed at the particles inside, indicating that these particles couldmore » be identified as the eutectics rather than individual Al{sub 3}Sc phase. A calculating method, based on EBSD results, was introduced for the spatial distribution of these particles in matrix. The results showed that these eutectic particles randomly distributed in matrix. In addition, the formation of primary eutectic particles significant improved the strength of the Al-Mg alloy in as-cast condition, which is ascribed to the structural evolution from coarse dendrites to prefect fine equiaxed grains. On the other hand, these large-sized particles due to the tendency to act as the microcrack sources could cause a harmful effect in the ductility of Al-Mg-Sc alloy. - Highlights: •Primary particles exhibit an ‘Al{sub 3}Sc + α-Al + Al{sub 3}Sc + ⋯’ multilayer feature with a cellular-dendritic mode of growth. •EBSD analyses the mechanism of grain refinement and the distribution of primary particles in α-Al matrix. •A computational method was presented to calculate the habit planes of primary particles.« less

  20. Textural and chemical evolution of pyroxene during hydration and deformation: A consequence of retrograde metamorphism

    NASA Astrophysics Data System (ADS)

    Centrella, Stephen; Putnis, Andrew; Lanari, Pierre; Austrheim, Håkon

    2018-01-01

    Centimetre-sized grains of Al-rich clinopyroxene within the granulitic anorthosites of the Bergen Arcs, W-Norway undergo deformation by faults and micro-shear zones (kinks) along which fluid has been introduced. The clinopyroxene (11 wt% Al2O3) reacts to the deformation and hydration in two different ways: reaction to garnet (Alm41Prp32Grs21) plus a less aluminous pyroxene (3 wt% Al2O3) along kinks and the replacement of the Al-rich clinopyroxene by chlorite along cleavage planes. These reactions only take place in the hydrated part of a hand specimen that is separated from dry, unreacted granulite by a sharp interface that defines the limit of hydration. We use electron probe microanalysis (EPMA) and X-Ray mapping together with electron backscatter diffraction (EBSD) mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis (Gresens, 1967) has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to garnet + low-Al clinopyroxene induces a loss in volume of the solid phases whereas the chlorite formation gains volume. Strain variations result in local variation in undulose extinction in the parent clinopyroxene. EBSD results suggest that the density-increasing reaction to garnet + low-Al clinopyroxene takes place where the strain is highest whereas the density-decreasing reaction to chlorite forms away from shear zones where EBSD shows no significant strain. Modelling of phase equilibria suggest that the thermodynamic pressure of the assemblage within the shear zones is > 6 kbar higher than the pressure conditions for the whole rock for the same range of temperature ( 650 °C). This result suggests that the stress redistribution within a rock may play a role in determining the reactions that take place during retrograde metamorphism.

  1. Microstructure characterization of 316L deformed at high strain rates using EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yvell, K., E-mail: kyv@du.se

    2016-12-15

    Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s{sup −1} at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneousmore » and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain. - Highlights: •Only changes in strain, not strain rate, gave differences in the microstructure. •A bimodal lognormal size distribution was found to describe the size distribution. •Variation of the subgrain fraction sizes agrees with models for heterogeneous slip. •Variation of subgrain size with strain describes part of the stress strain curve.« less

  2. Relating multifrequency radar backscattering to forest biomass: Modeling and AIRSAR measurement

    NASA Technical Reports Server (NTRS)

    Sun, Guo-Qing; Ranson, K. Jon

    1992-01-01

    During the last several years, significant efforts in microwave remote sensing were devoted to relating forest parameters to radar backscattering coefficients. These and other studies showed that in most cases, the longer wavelength (i.e. P band) and cross-polarization (HV) backscattering had higher sensitivity and better correlation to forest biomass. This research examines this relationship in a northern forest area through both backscatter modeling and synthetic aperture radar (SAR) data analysis. The field measurements were used to estimate stand biomass from forest weight tables. The backscatter model described by Sun et al. was modified to simulate the backscattering coefficients with respect to stand biomass. The average number of trees per square meter or radar resolution cell, and the average tree height or diameter breast height (dbh) in the forest stand are the driving parameters of the model. The rest of the soil surface, orientation, and size distributions of leaves and branches, remain unchanged in the simulations.

  3. The effect of leaf size on the microwave backscattering by corn

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1986-01-01

    Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.

  4. Probabilities and statistics for backscatter estimates obtained by a scatterometer

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    Methods for the recovery of winds near the surface of the ocean from measurements of the normalized radar backscattering cross section must recognize and make use of the statistics (i.e., the sampling variability) of the backscatter measurements. Radar backscatter values from a scatterometer are random variables with expected values given by a model. A model relates backscatter to properties of the waves on the ocean, which are in turn generated by the winds in the atmospheric marine boundary layer. The effective wind speed and direction at a known height for a neutrally stratified atmosphere are the values to be recovered from the model. The probability density function for the backscatter values is a normal probability distribution with the notable feature that the variance is a known function of the expected value. The sources of signal variability, the effects of this variability on the wind speed estimation, and criteria for the acceptance or rejection of models are discussed. A modified maximum likelihood method for estimating wind vectors is described. Ways to make corrections for the kinds of errors found for the Seasat SASS model function are described, and applications to a new scatterometer are given.

  5. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Prichard, H. M.; Barnes, S. J.; Godel, B.; Reddy, S. M.; Vukmanovic, Z.; Halfpenny, A.; Neary, C. R.; Fisher, P. C.

    2015-03-01

    Nodular chromite is a characteristic feature of ophiolitic podiform chromitite and there has been much debate about how it forms. Nodular chromite from the Troodos ophiolite in Cyprus is unusual in that it contains skeletal crystals enclosed within the centres of the nodules and interstitial to them. 3D imaging and electron backscatter diffraction have shown that the skeletal crystals within the nodules are single crystals that are surrounded by a rim of polycrystalline chromite. 3D analysis reveals that the skeletal crystals are partially or completely formed cage or hopper structures elongated along the < 111 > axis. The rim is composed of a patchwork of chromite grains that are truncated on the outer edge of the rim. The skeletal crystals formed first from a magma supersaturated in chromite and silicate minerals crystallised from melt trapped between the chromite skeletal crystal blades as they grew. The formation of skeletal crystals was followed by a crystallisation event which formed a silicate-poor rim of chromite grains around the skeletal crystals. These crystals show a weak preferred orientation related to the orientation of the core skeletal crystal implying that they formed by nucleation and growth on this core, and did not form by random mechanical aggregation. Patches of equilibrium adcumulate textures within the rim attest to in situ development of such textures. The nodules were subsequently exposed to chromite undersaturated magma resulting in dissolution, recorded by truncated grain boundaries in the rim and a smooth outer surface to the nodule. None of these stages of formation require a turbulent magma. Lastly the nodules impinged on each other causing local deformation at points of contact.

  6. Microscopic stress characterisation of functional iron-based alloys by white X-ray microbeam diffraction

    NASA Astrophysics Data System (ADS)

    Kwon, E. P.; Sato, S.; Fujieda, S.; Shinoda, K.; Kajiwara, K.; Sato, M.; Suzuki, S.

    2018-01-01

    Microscopic residual stress evolution in an austenite (γ) grain during a shape-memory process in an Fe-Mn-Si-Cr alloy was investigated using the white X-ray microbeam diffraction technique. The stresses were measured on a coarse grain, which had an orientation near <144>, parallel to the tensile loading direction with a high Schmid factor for a martensitic transformation. The magnitude of the residual stresses in a grain of the sample, which was subjected to a 23 % tensile strain and subsequent shape-recovery heating, was found to be very small and comparable to that prior to tensile deformation. Measurements of the recovery strain and microstructural analyses using electron backscatter diffraction suggested that the low residual stresses could be attributed to the significant shape recovery caused by a highly reversible martensitic transformation in the grain with a particular orientation.

  7. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks.

    PubMed

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-06-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model.

  8. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    PubMed Central

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  9. X-Ray Backscatter Imaging for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel; Edwards, Talion; Toh, Chin

    2011-06-01

    Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.

  10. CO2 lidar backscatter profiles over Hawaii during fall 1988

    NASA Technical Reports Server (NTRS)

    Post, Madison J.; Cupp, Richard E.

    1992-01-01

    Aerosol and cloud backscatter data, obtained over a 24-day period in fall 1988 with the National Oceanic and Atmospheric Administration's Doppler lidar at 10.59-micron wavelength, are analyzed by using a new technique to lessen biases that are due to dropouts. Typical backscatter cross sections were significantly lower than those routinely observed over the continental United States, although episodic backscatter enhancements caused by cirrus and mineral dust also occurred. Implications of these data on the proposed Laser Atmospheric Wind Sounder wind profiling satellite sensor are discussed.

  11. Phase transitions and melting on the Hugoniot of Mg2SiO4 forsterite: new diffraction and temperature results

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Akin, M. C.; Homel, M.; Crum, R. S.; Pagan, D.; Lind, J.; Bernier, J.; Mosenfelder, J. L.; Dillman, A. M.; Lavina, B.; Lee, S.; Fat'yanov, O. V.; Newman, M. G.

    2017-06-01

    The phase transitions of forsterite under shock were studied by x-ray diffraction and pyrometry. Samples of 2 mm thick, near-full density (>98% TMD) polycrystalline forsterite were characterized by EBSD and computed tomography and shock compressed to 50 and 75 GPa by two-stage gas gun at the Dynamic Compression Sector, Advanced Photon Source, with diffraction imaged during compression and release. Changes in diffraction confirm a phase transition by 75 GPa. In parallel, single-crystal forsterite shock temperatures were taken from 120 to 210 GPa with improved absolute calibration procedures on the Caltech 6-channel pyrometer and two-stage gun and used to examine the interpretation of superheating and P-T slope of the liquid Hugoniot. This work performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, supported in part by LLNL's LDRD program under Grants 15-ERD-012 and 16-ERD-010. The Dynamic Compression Sector (35) is supported by DOE / National Nuclear Security Administration under Award Number DE-NA0002442. This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Caltech lab supported by NSF EAR-1426526.

  12. Backscatter and attenuation characterization of ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Gibson, Allyson Ann

    2009-12-01

    This Dissertation presents quantitative ultrasonic measurements of the myocardium in fetal hearts and adult human hearts with the goal of studying the physics of sound waves incident upon anisotropic and inhomogeneous materials. Ultrasound has been used as a clinical tool to assess heart structure and function for several decades. The clinical usefulness of this noninvasive approach has grown with our understanding of the physical mechanisms underlying the interaction of ultrasonic waves with the myocardium. In this Dissertation, integrated backscatter and attenuation analyses were performed on midgestational fetal hearts to assess potential differences in the left and right ventricular myocardium. The hearts were interrogated using a 50 MHz transducer that enabled finer spatial resolution than could be achieved at more typical clinical frequencies. Ultrasonic data analyses demonstrated different patterns and relative levels of backscatter and attenuation from the myocardium of the left ventricle and the right ventricle. Ultrasonic data of adult human hearts were acquired with a clinical imaging system and quantified by their magnitude and time delay of cyclic variation of myocardial backscatter. The results were analyzing using Bayes Classification and ROC analysis to quantify potential advantages of using a combination of two features of cyclic variation of myocardial backscatter over using only one or the other feature to distinguish between groups of subjects. When the subjects were classified based on hemoglobin A1c, the homeostasis model assessment of insulin resistance, and the ratio of triglyceride to high-density lipoprotein-cholesterol, differences in the magnitude and normalized time delay of cyclic variation of myocardial backscatter were observed. The cyclic variation results also suggested a trend toward a larger area under the ROC curve when information from magnitude and time delay of cyclic variation is combined using Bayes classification than when

  13. Applying Transmission Kikuchi Diffraction (TKD) to Understand Nanogranular Fault Rock Materials

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Demurtas, M.; Prior, D. J.; Di Toro, G.

    2017-12-01

    Nanoparticles (<< 1 µm) form in the localized slip zones of natural and experimental faults, but their origin (e.g. seismic vs. aseismic slip) and mechanical behaviour is still debated. Understanding the deformation processes that produce nanoparticles in faults requires an understanding of grain sizes, shapes and crystallographic orientations at higher spatial resolution than is currently possible using standard EBSD techniques. Transmission Kikuchi Diffraction (TKD) in the SEM is a technique that allows to overcome this spatial resolution issue by performing orientation mapping in a commercial EBSD system on electron transparent foils with resolutions that can be below 10 nm. Therefore, the potential of TKD to understand deformation processes in nanoparticles is very high. We present results of TKD analysis performed on mixed calcite-dolomite gouges deformed in a rotary-shear apparatus at slip rates ranging from sub-seismic to co-seismic (30 µm/s to 1 m/s). Samples for TKD were prepared by argon ion slicing, a method that yields relatively large (104 µm2) electron transparent areas, as well as standard argon ion milling. Coupled TKD-EDS analysis allows quantification of elemental contents at a scale of tens of nanometers. Preliminary results show that at a slip velocity of 1 m/s, the localized slip zone that forms in the gouges during shearing is composed of recrystallized grains of calcite and Mg-calcite (the latter being a decarbonation product of dolomite) with an average grain size of c. 300 nm. Individual grains are characterized by relatively straight boundaries, and many triple and quadruple grain junctions are present. The nanogranular aggregates show a polygonised texture with absence of clear porosity and shape preferred orientation. Orientation data show a random distribution of the calcite c-axes. Further investigation will help to obtain new insights into the deformation mechanisms active during seismic faulting in carbonate-bearing faults. The

  14. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  15. Circularly polarized measurements of radar backscatter from terrain

    NASA Astrophysics Data System (ADS)

    Wilson, E. A.; Brunfeldt, D. R.; Ulaby, F. T.; Holtzman, J. C.

    1980-02-01

    This report documents the design changes to the University of Kansas MAS 8-18/35 scatterometer system required to incorporate a circular polarization capability and a subsequent backscatter measurement program. The modifications enable the MAS 8-18/35 system to acquire both linear (HH, HV, VV) and circular (RR, RL, LL) radar backscatter data over its entire operating range of 8-18 GHz and 35 GHz. The measurement program described herein consisted of measurements of the backscatter coefficient, as a function of the angle of incidence (0-80) at selected frequencies in the 8-18 GHz range using circular polarization. Targets studied included coniferous and deciduous trees, wet and dry asphalt and concrete and bare and plowed ground at various moisture conditions. Coniferous and deciduous tree measurements were taken in both August and November so that seasonal changes could be observed.

  16. Study of the influence of the parameters of an experiment on the simulation of pole figures of polycrystalline materials using electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonova, A. O., E-mail: aoantonova@mail.ru; Savyolova, T. I.

    2016-05-15

    A two-dimensional mathematical model of a polycrystalline sample and an experiment on electron backscattering diffraction (EBSD) is considered. The measurement parameters are taken to be the scanning step and threshold grain-boundary angle. Discrete pole figures for materials with hexagonal symmetry have been calculated based on the results of the model experiment. Discrete and smoothed (by the kernel method) pole figures of the model sample and the samples in the model experiment are compared using homogeneity criterion χ{sup 2}, an estimate of the pole figure maximum and its coordinate, a deviation of the pole figures of the model in the experimentmore » from the sample in the space of L{sub 1} measurable functions, and the RP-criterion for estimating the pole figure errors. Is is shown that the problem of calculating pole figures is ill-posed and their determination with respect to measurement parameters is not reliable.« less

  17. Evaluation of consolidation method on mechanical and structural properties of ODS RAF steel

    NASA Astrophysics Data System (ADS)

    Frelek-Kozak, M.; Kurpaska, L.; Wyszkowska, E.; Jagielski, J.; Jozwik, I.; Chmielewski, M.

    2018-07-01

    In the present work, the effects of the fabrication method on mechanical and structural properties of 12%Cr, 2%W, 0.25%Ti, 0.25%Y2O3 steels were investigated. Materials obtained by Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and Hot Extrusion (HE) methods were studied. The microstructure was characterized by using Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction analysis (EBSD). Mechanical properties of the studied samples were evaluated by using Vickers micro hardness HV0.1, Small Punch Test (SPT) and nanoindentation (NI) methods. The analysis revealed that samples manufactured via HIP and SPS processes exhibit very similar properties, whereas SPS method produces material with slightly lower hardness. In addition, significantly lower mechanical properties of the specimens after HE process were observed. The study described in this article addresses also the problems of mechanical parameters measured in micro- and nano-scale experiments and aims to identify possible pitfalls related to the use of various manufacturing technologies.

  18. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.

    PubMed

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-12

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.

  19. Effect of composition on the tensile properties and fracture toughness of A7N01S-T5 aluminum alloys welded joints

    NASA Astrophysics Data System (ADS)

    Liu, Yali; Gou, Guoqing; Chen, Jia; Chen, Hui; Wang, Wanjng; Li, Xiaodong; Che, Xiaoli; Wang, Yirong

    2017-07-01

    In this paper, welded joints of four types of A7N01S-T5 aluminum alloy with different chemical compositions were investigated. The welding process was under 70% environmental humidity conditions at 10∘C with single-pulse GMAW welding technology. The strength and fracture toughness of the four types of samples were tested, and the microstructures were investigated by micro-X-ray fluorescence (SR-LXRF) technology and backscattered electron diffraction (EBSD) technology. The results showed that the #2 alloy that is composed of Zn: 4.59 wt.%, Mg: 1.56 wt.% Mn: 0.22 wt.%, Cr: 0.14 wt.%, Zr: 0.01 wt.% and Ti: 0.027 wt.% had the best combination of tensile strength and elongation, with the values of 302.35 MPa and 3.74%, respectively. The better result for the combination of the strength and elongation was mainly determined by the volume fraction and size. The fine grain size and compositions played important roles to obtain high fracture toughness.

  20. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    DOE PAGES

    Schwarm, Samuel C.; Kolli, R. Prakash; Aydogan, Eda; ...

    2016-11-03

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in themore » γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).« less

  1. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarm, Samuel C.; Kolli, R. Prakash; Aydogan, Eda

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in themore » γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).« less

  2. Microstructural evolution and rheology of quartz in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Rahl, Jeffrey M.; Skemer, Philip

    2016-06-01

    We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Samuel, E-mail: S.J.Clark@warwick.ac.uk; Janik, Vit, E-mail: V.Janik@warwick.ac.uk; Rijkenberg, Arjan, E-mail: arjan.rijkenberg@tatasteel.com

    In-situ characterization techniques have been applied to elucidate the influence of γ/α transformation upon the extent of interphase precipitation in a low-carbon, vanadium-HSLA steel. Electron Back-scattered diffraction analyses of the γ/α orientation relationship with continuous cooling at 2 and 10 K/s suggest that the proportion of ferrite likely to hold interphase precipitation varies little with cooling rate. However, TEM analyses show that the interphase precipitation refines with increasing cooling rate in this cooling range. With cooling rates in excess of 20 K/s, interphase precipitation is increasingly suppressed due to the increasingly diffusional-displacive nature of the Widmanstätten γ/α transformation that ismore » activated. The present study illustrates that the extent and dimensions of interphase precipitation can be controlled through controlled cooling. - Highlights: • In-situ characterization of γ/α transformation • EBSD characterization of γ/α transformation orientation relationship • Extent of interphase precipitation can be controlled through controlled cooling.« less

  4. Texture-Induced Anisotropy in an Inconel 718 Alloy Deposited Using Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Tayon, W.; Shenoy, R.; Bird, R.; Hafley, R.; Redding, M.

    2014-01-01

    A test block of Inconel (IN) 718 was fabricated using electron beam freeform fabrication (EBF(sup 3)) to examine how the EBF(sup 3) deposition process affects the microstructure, crystallographic texture, and mechanical properties of IN 718. Tests revealed significant anisotropy in the elastic modulus for the as-deposited IN 718. Subsequent tests were conducted on specimens subjected to a heat treatment designed to decrease the level of anisotropy. Electron backscatter diffraction (EBSD) was used to characterize crystallographic texture in the as-deposited and heat treated conditions. The anisotropy in the as-deposited condition was strongly affected by texture as evidenced by its dependence on orientation relative to the deposition direction. Heat treatment resulted in a significant improvement in modulus of the EBF(sup 3) product to a level nearly equivalent to that for wrought IN 718 with reduced anisotropy; reduction in texture through recrystallization; and production of a more homogeneous microstructure.

  5. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels

    PubMed Central

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-01

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening. PMID:29329260

  6. Calculations of radar backscattering coefficient of vegetation-covered soils

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)

    1983-01-01

    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.

  7. EBSD Imaging of Monazite: a Petrochronological Tool?

    NASA Astrophysics Data System (ADS)

    Mottram, C. M.; Cottle, J. M.

    2014-12-01

    Recent advances in in-situ U-Th/Pb monazite petrochronology allow ages obtained from micron-scale portions of texturally-constrained, individual crystals to be placed directly into a quantitative Pressure-Temperature framework. However, there remain major unresolved challenges in linking monazite ages to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Few studies have quantitatively investigated monazite microstructure, and these studies have largely focused only on crystals produced experimentally (e.g. Reddy et al., 2010). The dispersion in age data commonly yielded from monazite U-Th/Pb datasets suggest that monazite dynamically recrystallises during deformation. It remains unclear how this continual recrystallisation is reflected in the monazite crystal structure, and how this subsequently impacts the ages (or age ranges) yielded from single crystals. Here, combined laser ablation split-stream analysis of deformed monazite, EBSD imaging and Pressure-Temperature (P-T) phase equilibria modelling is used to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains. These data provide links between ages and specific deformation events, thus helping further our understanding of the role of dynamic recrystallisation in producing age variation within and between crystals in a deformed rock. These data provide a new dimension to the field of petrochronology, demonstrating the importance of fully integrating the Pressure-Temperature-time-deformation history of accessory phases to better interpret the meaningfulness of ages yielded from deformed rocks. Reddy, S. et al., 2010. Mineralogical Magazine 74: 493-506

  8. Characterizing Three-Dimensional Mixing Process in a River Confluence using Hydro-acoustical Backscatter and Flow Measurement

    NASA Astrophysics Data System (ADS)

    Son, Geunsoo; Kim, Dongsu; Kim, YoungDo; Lyu, Siwan; Kim, Seojun

    2017-04-01

    concentration by using acoustic backscatter. Cross-sectional ADCP measurements in a confluence were collected with high spatial resolution in order to analyze the details of spatial distribution in the perspective of the three-dimensional mixing patterns of flow and sediment, where backscatters (or SNR) measured from ADCPs were used to track sediment mixing assuming that it could be a surrogate to estimate the suspended sediment concentration. Raw backscatter data were corrected by considering the beam spreading and absorption by water. Also, an optical Laser diffraction instrument (LISST) was used to verify the method of acoustic backscatter and to collect the particle size distribution of main stream and tributary. In addition, image-based spatial distributions of sediment mixture in the confluence were monitored in various flow conditions by using an unmanned aerial vehicle (UAV), which were compared with the spatial distribution of acoustic backscatter. As results, we found that when acoustic backscatter and flow measurements by ADCPs were well processed, they could be proper indicators to identify the spatial patterns of the three-dimensional mixing process between two rivers.

  9. Microstructures of ancient and modern cast silver–copper alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northover, S.M., E-mail: s.m.northover@open.ac.uk; Northover, J.P., E-mail: peter.northover@materials.ox.ac.uk

    The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in themore » form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.« less

  10. Comparison of radar backscatter from Antarctic and Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Hosseinmostafa, R.; Lytle, V.

    1992-01-01

    Two ship-based step-frequency radars, one at C-band (5.3 GHz) and one at Ku-band (13.9 GHz), measured backscatter from ice in the Weddell Sea. Most of the backscatter data were from first-year (FY) and second-year (SY) ice at the ice stations where the ship was stationary and detailed snow and ice characterizations were performed. The presence of a slush layer at the snow-ice interface masks the distinction between FY and SY ice in the Weddell Sea, whereas in the Arctic the separation is quite distinct. The effect of snow-covered ice on backscattering coefficients (sigma0) from the Weddell Sea region indicates that surface scattering is the dominant factor. Measured sigma0 values were compared with Kirchhoff and regression-analysis models. The Weibull power-density function was used to fit the measured backscattering coefficients at 45 deg.

  11. Sci—Fri PM: Dosimetry—05: Megavoltage electron backscatter: EGSnrc results versus 21 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, E. S. M.; The Ottawa Hospital Cancer Centre, Ottawa; Buchenberg, W.

    2014-08-15

    The accuracy of electron backscatter calculations at megavoltage energies is important for many medical physics applications. In this study, EGSnrc calculations of megavoltage electron backscatter (1–22 MeV) are performed and compared to the data from 21 experiments published between 1954 and 1993 for 25 single elements with atomic numbers from 3 to 92. Typical experimental uncertainties are 15%. For EGSnrc simulations, an ideal detector is assumed, and the most accurate electron physics options are employed, for a combined statistical and systematic uncertainty of 3%. The quantities compared are the backscatter coefficient and the energy spectra (in the backward hemisphere andmore » at specific detector locations). For the backscatter coefficient, the overall agreement is within ±2% in the absolute value of the backscatter coefficient (in per cent), and within 11% of the individual backscatter values. EGSnrc results are systematically on the higher end of the spread of the experimental data, which could be partially from systematic experimental errors discussed in the literature. For the energy spectra, reasonable agreement between simulations and experiments is observed, although there are significant variations in the experimental data. At the lower end of the spectra, simulations are higher than some experimental data, which could be due to reduced experimental sensitivity to lower energy electrons and/or over-estimation by EGSnrc for backscattered secondary electrons. In conclusion, overall good agreement is observed between EGSnrc backscatter calculations and experimental measurements for megavoltage electrons. There is a need for high quality experimental data for the energy spectra of backscattered electrons.« less

  12. Theoretical and experimental models of the diffuse radar backscatter from Mars

    NASA Technical Reports Server (NTRS)

    England, A. W.

    1995-01-01

    The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.

  13. Bathymetry and acoustic backscatter: Estero Bay, California

    USGS Publications Warehouse

    Hartwell, Stephen R.; Finlayson, David P.; Dartnell, Peter; Johnson, Samuel Y.

    2013-01-01

    Between July 30 and August 9, 2012, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from Estero Bay, San Luis Obispo, California, under PCMSC Field Activity ID S-05-12-SC. The survey was done using the R/V Parke Snavely outfitted with a multibeam sonar for swath mapping and highly accurate position and orientation equipment for georeferencing. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  14. SuperDARN elevation angle calibration using HAARP-induced backscatter

    NASA Astrophysics Data System (ADS)

    Shepherd, S. G.; Thomas, E. G.; Palinski, T. J.; Bristow, W.

    2017-12-01

    SuperDARN radars rely on refraction in the ionosphere to make Doppler measurements of backscatter from ionospheric irregularities or the ground/sea, often to ranges of 4000 km or more. Elevation angle measurements of backscattered signals can be important for proper geolocation, mode identification and Doppler velocity corrections to the data. SuperDARN radars are equipped with a secondary array to make elevation angle measurements, however, calibration is often difficult. One method of calibration is presented here, whereby backscatter from HAARP-induced irregularities, at a known location, is used to independently determine the elevation angle of signals. Comparisons are made for several radars with HAARP in their field-of-view in addition to the results obtained fromray-tracing in a model ionosphere.

  15. Calculation of the effects of ice on the backscatter of a ground plane

    NASA Technical Reports Server (NTRS)

    Lambert, K. M.; Peters, L., Jr.

    1988-01-01

    Described is a technique for examining the effect of a rough ice layer on the backscatter of a ground plane. The technique is applied to the special case of a rough ice layer that is periodic in space. By assuming that the roughness is periodic, the backscatter of the ground plane can be found from the backscatter of a single period. Backscatter calculations are presented for a single period in which the thickness of the ice layer has a Gaussian shape.

  16. Replacing backscattering with reduced scattering. A better formulation of reflectance function?

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; McKee, David; Freda, Wlodzimierz

    2014-05-01

    Modern reflectance formulas all involve backscattering coefficient divided by absorption coefficient (bb/a). The backscattering (or backward scattering) coefficient describes how much of the incident radiation is scattered at angles between 90 and 180 deg. However, water leaving photons are not necessarily backscattered because it is possible for a variable fraction to exit after multiple forward scattering events. Therefore the whole angular function of scattering probability (phase function) influences the reflectance signal. This is the reason why phase functions of identical backscattering ratio may result in different reflectance values, contrary to the universally used formula. This creates the question whether there may exist a better formula using a parameter better describing phase function shape than backscattering ratio. The asymmetry parameter g (the average scattering cosine) is commonly used to parametrize phase functions. A replacement for backscattering should decrease with increasing g. Therefore, the simplest candidate to replace backscattering has the form of b(1-g), where b is the scattering coefficient. Such a parameter is well known in biomedical optics under the name of reduced scattering (sometimes transport scattering). It has even been used in parametrizing reflectance in (highly turbid) human tissues. However no attempt has been made to check its usefulness in marine optics. We perform Monte Carlo radiative transfer calculations of reflectance for multiple combinations of inherent optical properties, including different phase functions. The results are used to create a new reflectance formula as a function of reduced scattering and absorption and test its robustness to changes in phase function shape compared to the traditional bb/a formula. We discuss its usefulness as well as advantages and disadvantages compared to the traditional formulation.

  17. A laboratory investigation into microwave backscattering from sea ice. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bredow, Jonathan W.

    1989-01-01

    The sources of scattering of artificial sea ice were determined, backscatter measurements semi-quantitatively were compared with theoretical predictions, and inexpensive polarimetric radars were developed for sea ice backscatter studies. A brief review of the dielectric properties of sea ice and of commonly used surface and volume scattering theories is presented. A description is provided of the backscatter measurements performed and experimental techniques used. The development of inexpensive short-range polarimetric radars is discussed. The steps taken to add polarimetric capability to a simple FM-W radar are considered as are sample polarimetric phase measurements of the radar. Ice surface characterization data and techniques are discussed, including computation of surface rms height and correlation length and air bubble distribution statistics. A method is also presented of estimating the standard deviation of rms height and correlation length for cases of few data points. Comparisons were made of backscatter measurements and theory. It was determined that backscatter from an extremely smooth saline ice surface at C band cannot be attributed only to surface scatter. It was found that snow cover had a significant influence on backscatter from extremely smooth saline ice at C band.

  18. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  19. Scanning electron microscopy of the surfaces of ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.; van der Berg, N. G.; Kuhudzai, R. J.; Hlatshwayo, T. T.; Thabethe, T. T.; Odutemowo, O. S.; Theron, C. C.; Friedland, E.; Botha, A. J.; Wendler, E.

    2015-07-01

    This paper gives a brief review of radiation damage caused by particle (ions and neutrons) bombardment in SiC at different temperatures, and its annealing, with an expanded discussion on the effects occurring on the surface. The surface effects were observed using SEM (scanning electron microscopy) with an in-lens detector and EBSD (electron backscatter diffraction). Two substrates were used, viz. single crystalline 6H-SiC wafers and polycrystalline SiC, where the majority of the crystallites were 3C-SiC. The surface modification of the SiC samples by 360 keV ion bombardment was studied at temperatures below (i.e. room temperature), just at (i.e. 350 °C), or above (i.e. 600 °C) the critical temperature for amorphization of SiC. For bombardment at a temperature at about the critical temperature an extra step, viz. post-bombardment annealing, was needed to ascertain the microstructure of bombarded layer. Another aspect investigated was the effect of annealing of samples with an ion bombardment-induced amorphous layer on a 6H-SiC substrate. SEM could detect that this layer started to crystalize at 900 °C. The resulting topography exhibited a dependence on the ion species. EBSD showed that the crystallites forming in the amorphized layer were 3C-SiC and not 6H-SiC as the substrate. The investigations also pointed out the behaviour of the epitaxial regrowth of the amorphous layer from the 6H-SiC interface.

  20. Analysis of the ductility dip cracking in the nickel-base alloy 617mod

    NASA Astrophysics Data System (ADS)

    Eilers, A.; Nellesen, J.; Zielke, R.; Tillmann, W.

    2017-03-01

    While testing steam leading power plant components made of the nickel-base alloy A617mod at elevated temperatures (700 °C), ductility dip cracking (DDC) was observed in welding seams and their surroundings. In order to clarify the mechanism of crack formation, investigations were carried out on welded specimens made of A617mod. Interrupted tensile tests were performed on tensile specimens taken from the area of the welding seam. To simulate the conditions, the tensile tests were conducted at a temperature of 700 °C and with a low strain rate. Local strain fields at grain boundaries and inside single grains were determined at different deformation states by means of two-dimensional digital image correlation (DIC). Besides the strain fields, local hardnesses (nanoindentation), energy dispersive X-Ray spectroscopy (EDX), and electron backscatter diffraction (EBSD) measurements were performed. Besides information concerning the grain orientation, the EBSD measurement provides information on the coincidence site lattice (CSL) at grain boundaries as well as the Schmid factor of single grains. All results of the analysis methods mentioned above were correlated and compared to each other and related to the crack formation. Among other things, correlations between strain fields and Schmid factors were determined. The investigations show that the following influences affect the crack formation: orientation of the grain boundaries to the direction of the loading, the orientation of the grains to each other (CSL), and grain boundary sliding.

  1. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de; Ballaschk, U.; Aneziris, C.G.

    2015-09-15

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they canmore » trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Rui; Gao, Liming, E-mail: liming.gao@sjtu.edu.cn; Li, Ming, E-mail: mingli90@sjtu.edu.cn

    As the continuous shrinkage of the interconnect line width in microelectronics devices, there is a growing concern about the electromigration (EM) failure of bonding wire. In addition, an innovative Ag–8Au–3Pd alloy wire has shown promise as an economical substitute for gold wire interconnects due to the cost pressure of gold in the last decade. In present study of the Ag–8Au–3Pd alloy wire, the surface diffusion occupied the dominant position during EM failure, and the activation energy was found to be 0.61 eV. In order to reveal the failure mechanism, the cross-sections of the Ag–8Au–3Pd alloy wire during EM were preparedmore » by focused ion beam (FIB) micro-machining for electron backscatter diffraction (EBSD) analysis. The microstructure evolution of the Ag–8Au–3Pd alloy wire was characterized by the grain size and grain boundary. As a result, the EM failure originates in the atom transportation, which causes grain size increasing and atom diffusion on the wire surface. - Highlights: • The activation energy of Ag–8Au–3Pd alloy wire was obtained as 0.61 eV. • During EM, the silver atoms diffused from negative to the positive terminal on the wire surface. • The microstructure (grain size and grain boundary) was characterized by FIB-EBSD. • During EM, the atom transportation was found to cause grain size growth and atom diffusion on the wire surface.« less

  3. Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV

    NASA Astrophysics Data System (ADS)

    Matheson, J.; Moldovan, G.; Kirkland, A.; Allinson, N.; Abrahams, J. P.

    2017-11-01

    Interest in direct detectors for low-energy electrons has increased markedly in recent years. Detection of electrons in the energy range up to low tens of keV is important in techniques such as photoelectron emission microscopy (PEEM) and electron backscatter diffraction (EBSD) on scanning electron microscopes (SEMs). The PEEM technique is used both in the laboratory and on synchrotron light sources worldwide. The ubiquity of SEMs means that there is a very large market for EBSD detectors for materials studies. Currently, the most widely used detectors in these applications are based on indirect detection of incident electrons. Examples include scintillators or microchannel plates (MCPs), coupled to CCD cameras. Such approaches result in blurring in scintillators/phosphors, distortions in optical systems, and inefficiencies due the limited active area of MCPs. In principle, these difficulties can be overcome using direct detection in a semiconductor device. Growing out of a feasibility study into the use of a direct detector for use on an XPEEM, we have built at Rutherford Appleton Laboratory a system to illuminate detectors with an electron beam of energy up to 20 keV . We describe this system in detail. It has been used to measure the performance of a custom back-thinned monolithic active pixel sensor (MAPS), a detector based on the Medipix2 chip, and a commercial detector based on MCPs. We present a selection of the results from these measurements and compare and contrast different detector types.

  4. Effects of Retained Austenite Volume Fraction, Morphology, and Carbon Content on Strength and Ductility of Nanostructured TRIP-assisted Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yongfeng; Qiu, LN; Sun, Xin

    2015-06-01

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (weight percent, wt.%). After intercritical annealing and bainitic holding, a combination ultimate tensile strength (UTS) of 1,100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferritemore » grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governingmicrostructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.« less

  5. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    DOE PAGES

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less

  6. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  7. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  8. Backscatter Correction Algorithm for TBI Treatment Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Nieto, B.; Sanchez-Doblado, F.; Arrans, R.

    2015-01-15

    The accuracy requirements in target dose delivery is, according to ICRU, ±5%. This is so not only in standard radiotherapy but also in total body irradiation (TBI). Physical dosimetry plays an important role in achieving this recommended level. The semi-infinite phantoms, customarily used for dosimetry purposes, give scatter conditions different to those of the finite thickness of the patient. So dose calculated in patient’s points close to beam exit surface may be overestimated. It is then necessary to quantify the backscatter factor in order to decrease the uncertainty in this dose calculation. The backward scatter has been well studied atmore » standard distances. The present work intends to evaluate the backscatter phenomenon under our particular TBI treatment conditions. As a consequence of this study, a semi-empirical expression has been derived to calculate (within 0.3% uncertainty) the backscatter factor. This factor depends lineally on the depth and exponentially on the underlying tissue. Differences found in the qualitative behavior with respect to standard distances are due to scatter in the bunker wall close to the measurement point.« less

  9. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    NASA Astrophysics Data System (ADS)

    Shand, B. A.; Lester, M.; Yeoman, T. K.

    1996-08-01

    A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s-1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s-1 and 700 m s-1. At velocities greater than 700 m s-1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  10. Thomson-backscattered x rays from laser-accelerated electrons.

    PubMed

    Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R

    2006-01-13

    We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.

  11. Modelling of backscatter from vegetation layers

    NASA Technical Reports Server (NTRS)

    Van Zyl, J. J.; Engheta, N.; Papas, C. H.; Elachi, C.; Zebker, H.

    1985-01-01

    A simple way to build up a library of models which may be used to distinguish between the different types of vegetation and ground surfaces by means of their backscatter properties is presented. The curve of constant power received by the antenna (Gamma sphere) is calculated for the given Stokes Scattering Operator, and model parameters are adopted of the most similar library model Gamma sphere. Results calculated for a single scattering model resembling coniferous trees are compared with the Gamma spheres of a model resembling tropical region trees. The polarization which would minimize the effect of either the ground surface or the vegetation layer can be calculated and used to analyze the backscatter from the ground surface/vegetation layer combination, and enhance the power received from the desired part of the combination.

  12. Compositional Signatures in Acoustic Backscatter Over Vegetated and Unvegetated Mixed Sand-Gravel Riverbeds

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2017-10-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  13. Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds

    USGS Publications Warehouse

    Buscombe, Daniel; Grams, Paul E.; Kaplinski, Matt A.

    2017-01-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macente, A.; Fusseis, F.; Menegon, L.

    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets withmore » increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical

  15. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron x-ray imaging and diffraction

    DOE PAGES

    Lu, L.; Huang, J. W.; Fan, D.; ...

    2016-08-29

    In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less

  16. Fiber optic backscatter spectroscopic sensor to monitor enamel demineralization and remineralization in vitro

    PubMed Central

    Kishen, Anil; Shrestha, Annie; Rafique, Adeela

    2008-01-01

    In this study, a Fiber Optic Backscatter Spectroscopic Sensor (FOBSS) is used to monitor demineralization and remineralization induced changes in the enamel. A bifurcated fiber optic backscatter probe connected to a visible light source and a high resolution spectrophotometer was used to acquire the backscatter light spectrum from the tooth surface. The experiments were conducted in two parts. In Part 1, experiments were carried out using fiber optic backscatter spectroscopy on (1) sound enamel and dentine sections and (2) sound tooth specimens subjected to demineralization and remineralization. In Part 2, polarization microscopy was conducted to examine the depth of demineralization in tooth specimens. The enamel and dentine specimens from the Part-1 experiments showed distinct backscatter spectra. The spectrum obtained from the enamel-dentine combination and the spectrum generated from the average of the enamel and dentine spectral values were closely similar and showed characteristics of dentine. The experiments in Part 2 showed that demineralization and remineralization processes induced a linear decrease and linear increase in the backscatter light intensity respectively. A negative correlation between the decrease in the backscatter light intensity during demineralization and the depth of demineralization determined using the polarization microscopy was calculated to be p = -0.994. This in vitro experiment highlights the potential benefit of using FOBSS to detect demineralization and remineralization of enamel. PMID:20142887

  17. Experimental results on the enhanced backscatter phenomenon and its dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Nelson, William; Ko, Jonathan; Davis, Christopher C.

    2014-10-01

    Enhanced backscatter effects have long been predicted theoretically and experimentally demonstrated. The reciprocity of a turbulent channel generates a group of paired rays with identical trajectory and phase information that leads to a region in phase space with double intensity and scintillation index. Though simulation work based on phase screen models has demonstrated the existence of the phenomenon, few experimental results have been published describing its characteristics, and possible applications of the enhanced backscatter phenomenon are still unclear. With the development of commercially available high powered lasers and advanced cameras with high frame rates, we have successfully captured the enhanced backscatter effects from different reflection surfaces. In addition to static observations, we have also tilted and pre-distorted the transmitted beam at various frequencies to track the dynamic properties of the enhanced backscatter phenomenon to verify its possible application in guidance and beam and image correction through atmospheric turbulence. In this paper, experimental results will be described, and discussions on the principle and applications of the phenomenon will be included. Enhanced backscatter effects are best observed in certain levels of turbulence (Cn 2≍10-13 m-2/3), and show significant potential for providing self-guidance in beam correction that doesn't introduce additional costs (unlike providing a beacon laser). Possible applications of this phenomenon include tracking fast moving object with lasers, long distance (>1km) alignment, and focusing a high-power corrected laser beam over long distances.

  18. Backscattering enhancement with a finite beam width for millimeter-wavelength weather radars

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Iguchi, Toshio; Im, Eastwood

    2004-12-01

    Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.

  19. A new barometer from stress fields around inclusions

    NASA Astrophysics Data System (ADS)

    Avadanii, Diana; Hansen, Lars; Wallis, David; Waters, David

    2017-04-01

    A key step in understanding geological and geodynamic processes is modelling the pressure-temperature paths of metamorphic rocks. Traditional thermobarometry relies on mineral assemblage equilibria and thermodynamic modelling to infer the pressures and temperatures of chemical equilibration. This approach requires the presence of specific mineral assemblages and compositions, which narrows its applicability. In this study we aim to develop a geobarometer based on mechanical interactions between inclusions and their host grains. Exhumation of minerals with inclusions causes heterogeneous residual stress fields due to the different, and often anisotropic, elastic properties of the inclusion and host. Recent studies measure residual mean stresses within inclusions using Raman spectroscopy and use those stresses as a barometer. In contrast, we map each component of the stress tensor around inclusions using high angular-resolution electron backscatter diffraction (HR-EBSD). This technique provides both higher spatial resolution and increased sensitivity to elastic strains relative to Raman spectroscopy. We focus on quartz inclusions in garnet, a common feature in metamorphic rocks. This assemblage also provides an opportunity to test our results with compositional thermobarometry. We analyse samples metamorphosed at pressures ranging from ˜ 300 MPa to ˜ 1600 MPa, as recorded by independent geobarometers. HR-EBSD reveals symmetric and lobate signals around inclusions, with elastic strains and residual stresses of the order 10-3 and ±102 -103 MPa, respectively. We solve Eshelby's problem for the 'inhomogeneous inclusion' case to simulate the elastic strain/stress field around an anisotropic ellipsoidal inclusion surrounded by an isotropic, homogeneous, infinite matrix. This model calculates the stress disturbances caused by differential expansion of an inclusion and host subjected to decompression. We additionally account for differential expansion related to cooling

  20. Artist concept of Solar Backscatter UV (SBUV) measurement technique on TIROS

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Artist concept titled OZONE MEASUREMENT TECHNIQUE shows how the Solar Backscatter Ultraviolet (UV) 2 (SBUV-2) on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites (NOAA-9 and NOAA-11) works. Ozone is derived from the 'SBUV' instrument from the ratio of the observed backscattered radiance to the solar irradiance in the ultraviolet. This is called the ultraviolet albedo. During STS-34 Shuttle Solar Backscatter Ultraviolet (SSBUV) instruments in Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB) will calibrate the instruments onboard the TIROS satellites. SSBUV is managed by Goddard Space Flight Center (GSFC).

  1. Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.; Haner, D. A.

    1984-01-01

    Measurements of atmospheric aerosol backscatter coefficients, using a coherent CO2 lidar at 9.25- and 10.6-micron wavelengths, are described. Vertical profiles of the volume backscatter coefficient beta have been measured to a 10-km altitude over the Pasadena, CA, region. These measurements indicate a wide range of variability in beta both in and above the local boundary layer. Certain profiles also indicate a significant enhancement in beta at the 9.25-micron wavelength compared with beta at the 10.6-micron wavelength, which possibly indicates a major contribution to the volume backscatter from ammonium sulfate aerosol particles.

  2. Control of the repeatability of high frequency multibeam echosounder backscatter by using natural reference areas

    NASA Astrophysics Data System (ADS)

    Roche, Marc; Degrendele, Koen; Vrignaud, Christophe; Loyer, Sophie; Le Bas, Tim; Augustin, Jean-Marie; Lurton, Xavier

    2018-06-01

    The increased use of backscatter measurements in time series for environmental monitoring necessitates the comparability of individual results. With the current lack of pre-calibrated multibeam echosounder systems for absolute backscatter measurement, a pragmatic solution is the use of natural reference areas for ensuring regular assessment of the backscatter measurement repeatability. This method mainly relies on the assumption of a sufficiently stable reference area regarding its backscatter signature. The aptitude of a natural area to provide a stable and uniform backscatter response must be carefully considered and demonstrated by a sufficiently long time-series of measurements. Furthermore, this approach requires a strict control of the acquisition and processing parameters. If all these conditions are met, stability check and relative calibration of a system are possible by comparison with the averaged backscatter values for the area. Based on a common multibeam echosounder and sampling campaign completed by available bathymetric and backscatter time series, the suitability as a backscatter reference area of three different candidates was evaluated. Two among them, Carré Renard and Kwinte, prove to be excellent choices, while the third one, Western Solent, lacks sufficient data over time, but remains a valuable candidate. The case studies and the available backscatter data on these areas prove the applicability of this method. The expansion of the number of commonly used reference areas and the growth of the number of multibeam echosounder controlled thereon could greatly contribute to the further development of quantitative applications based on multibeam echosounder backscatter measurements.

  3. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  4. Artificially controlled backscattering in single mode fibers based on femtosecond laser fabricated reflectors

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; Wu, Qiong

    2018-04-01

    A novel method to artificially control the backscattering of the single-mode fiber (SMF) is proposed and investigated for the first time. This method can help to fabricate a high backscattering fiber (HBSF), such as by fabricating reflectors in every one meter interval of an SMF based on the exposure of the femtosecond laser beam. The artificially controlled backscattering (ACBS) can be much higher than the natural Rayleigh backscattering (RB) of the SMF. The RB power and ACBS power in the unit length fiber are derived according to the theory of the RBS. The total relative power and the relative back power reflected in the unit length of the HBSF have been simulated and presented. The simulated results show that the HBSF has the characteristics of both low optical attenuation and high backscattering. The relative back power reflected in the unit length of the HBSF is 25dB larger than the RB power of the SMF when the refractive index modulation quantity of the reflectors is 0.009. Some preliminary experiments also indicate that the method fabricating reflectors to increase the backscattering power of the SMF is practical and promising.

  5. A framework to quantify uncertainties of seafloor backscatter from swath mapping echosounders

    NASA Astrophysics Data System (ADS)

    Malik, Mashkoor; Lurton, Xavier; Mayer, Larry

    2018-06-01

    Multibeam echosounders (MBES) have become a widely used acoustic remote sensing tool to map and study the seafloor, providing co-located bathymetry and seafloor backscatter. Although the uncertainty associated with MBES-derived bathymetric data has been studied extensively, the question of backscatter uncertainty has been addressed only minimally and hinders the quantitative use of MBES seafloor backscatter. This paper explores approaches to identifying uncertainty sources associated with MBES-derived backscatter measurements. The major sources of uncertainty are catalogued and the magnitudes of their relative contributions to the backscatter uncertainty budget are evaluated. These major uncertainty sources include seafloor insonified area (1-3 dB), absorption coefficient (up to > 6 dB), random fluctuations in echo level (5.5 dB for a Rayleigh distribution), and sonar calibration (device dependent). The magnitudes of these uncertainty sources vary based on how these effects are compensated for during data acquisition and processing. Various cases (no compensation, partial compensation and full compensation) for seafloor insonified area, transmission losses and random fluctuations were modeled to estimate their uncertainties in different scenarios. Uncertainty related to the seafloor insonified area can be reduced significantly by accounting for seafloor slope during backscatter processing while transmission losses can be constrained by collecting full water column absorption coefficient profiles (temperature and salinity profiles). To reduce random fluctuations to below 1 dB, at least 20 samples are recommended to be used while computing mean values. The estimation of uncertainty in backscatter measurements is constrained by the fact that not all instrumental components are characterized and documented sufficiently for commercially available MBES. Further involvement from manufacturers in providing this essential information is critically required.

  6. Polished sample preparing and backscattered electron imaging and of fly ash-cement paste

    NASA Astrophysics Data System (ADS)

    Feng, Shuxia; Li, Yanqi

    2018-03-01

    In recent decades, the technology of backscattered electron imaging and image analysis was applied in more and more study of mixed cement paste because of its special advantages. Test accuracy of this technology is affected by polished sample preparation and image acquisition. In our work, effects of two factors in polished sample preparing and backscattered electron imaging were investigated. The results showed that increasing smoothing pressure could improve the flatness of polished surface and then help to eliminate interference of morphology on grey level distribution of backscattered electron images; increasing accelerating voltage was beneficial to increase gray difference among different phases in backscattered electron images.

  7. Backscattered electron simulations to evaluate sensitivity against electron dosage of buried semiconductor features

    NASA Astrophysics Data System (ADS)

    Mukhtar, Maseeh; Thiel, Bradley

    2018-03-01

    In fabrication, overlay measurements of semiconductor device patterns have conventionally been performed using optical methods. Beginning with image-based techniques using box-in-box to the more recent diffraction-based overlay (DBO). Alternatively, use of SEM overlay is under consideration for in-device overlay. Two main application spaces are measurement features from multiple mask levels on the same surface and buried features. Modern CD-SEMs are adept at measuring overlay for cases where all features are on the surface. In order to measure overlay of buried features, HV-SEM is needed. Gate-to-fin and BEOL overlay are important use cases for this technique. A JMONSEL simulation exercise was performed for these two cases using 10 nm line/space gratings of graduated increase in depth of burial. Backscattered energy loss results of these simulations were used to calculate the sensitivity measurements of buried features versus electron dosage for an array of electron beam voltages.

  8. Enhanced backscatter of a reflected beam in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Churnside, James H.; Wilson, James J.

    1993-05-01

    We measure the mean and the variance of the irradiance of a diverging laser beam after reflection from a retroreflector and from a plane mirror in a turbulent atmosphere. Increases in both the mean irradiance and the normalized variance are observed in the direct backscatter direction because of correlation of turbulence on the outgoing path and the return path. The backscattered irradiance is enhanced by a factor of about 2 and the variance by somewhat less.

  9. The nucleation and growth mechanism of Ni-Sn eutectic in a single crystal superalloy

    NASA Astrophysics Data System (ADS)

    Jiang, Weiguo; Wang, Li; Li, Xiangwei; Lou, Langhong

    2017-12-01

    The microstructure of single crystal superalloy with and without tin layer on the surface of as-cast and heat-treatment state was investigated by optical microscope (OM) and scanning electron microscopy (SEM). The composition of different regions on the surface was tested by energy dispersive X-ray (EDS). The reaction intermetallic compound (IMC) formed in the heat treatment process was confirmed by X-ray diffraction (XRD). The orientations of different microstructure in samples as heat treatment state were determined by electron back-scattering diffraction (EBSD) method. The porosity location in the interdendritic region was observed by X-ray computed tomography (XCT). The experiment results showed that the remained Sn on the surface of the superalloy reacted with Ni, and then formed Ni3Sn4 in the as-cast state. Sn enriched by diffusion along the porosity located in the interdendritic region and γ + γ‧ (contain a little of Sn) eutectic and Ni3Sn2 formed in single crystal superalloy during heat treatment, and the recalescence behaviors were found. Ni3Sn2 nucleated independently in the cooled liquid at the front of (γ + γ‧) (Sn) eutectic. The nucleation and growth mechanism of the eutectic and Ni3Sn2 IMC during heat treatment was discussed in the present paper.

  10. Cube texture formation during the early stages of recrystallization of Al-1%wt.Mn and AA1050 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Miszczyk, M. M.; Paul, H.

    2015-08-01

    The cube texture formation during primary recrystallization was analysed in plane strain deformed samples of a commercial AA1050 alloy and an Al-1%wt.Mn model alloy single crystal of the Goss{110}<001> orientation. The textures were measured with the use of X-ray diffraction and scanning electron microscopy equipped with an electron backscattered diffraction facility. After recrystallization of the Al-1%wt.Mn single crystal, the texture of the recrystallized grains was dominated by four variants of the S{123}<634> orientation. The cube grains were only sporadically detected by the SEM/EBSD system. Nevertheless, an increased density of <111> poles corresponding to the cube orientation was observed. The latter was connected with the superposition of four variants of the S{123}<634> orientation. This indicates that the cube texture after the recrystallization was a ‘compromise texture’. In the case of the recrystallized AA1050 alloy, the strong cube texture results from both the increased density of the particular <111> poles of the four variants of the S orientation and the ∼40°(∼< 111>)-type rotation. The first mechanism transforms the Sdef-oriented areas into Srex ones, whereas the second the near S-oriented, as-deformed areas into near cube-oriented grains.

  11. Comparison between different techniques applied to quartz CPO determination in granitoid mylonites

    NASA Astrophysics Data System (ADS)

    Fazio, Eugenio; Punturo, Rosalda; Cirrincione, Rosolino; Kern, Hartmut; Wenk, Hans-Rudolph; Pezzino, Antonino; Goswami, Shalini; Mamtani, Manish

    2016-04-01

    Since the second half of the last century, several techniques have been adopted to resolve the crystallographic preferred orientation (CPO) of major minerals constituting crustal and mantle rocks. To this aim, many efforts have been made to increase the accuracy of such analytical devices as well as to progressively reduce the time needed to perform microstructural analysis. It is worth noting that many of these microstructural studies deal with quartz CPO because of the wide occurrence of this mineral phase in crustal rocks as well as its quite simple chemical composition. In the present work, four different techniques were applied to define CPOs of dynamically recrystallized quartz domains from naturally deformed rocks collected from a ductile crustal scale shear zone in order to compare their advantages and limitation. The selected Alpine shear zone is located in the Aspromonte Massif (Calabrian Peloritani Orogen, southern Italy) representing granitoid lithotypes. The adopted methods span from "classical" universal stage (US), to image analysis technique (CIP), electron back-scattered diffraction (EBSD), and time of flight neutron diffraction (TOF). When compared, bulk texture pole figures obtained by means of these different techniques show a good correlation. Advances in analytical techniques used for microstructural investigations are outlined by discussing results of quartz CPO that are presented in this study.

  12. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian

    2018-04-01

    The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.

  13. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    PubMed Central

    Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong

    2018-01-01

    The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642

  14. Microstructure and Texture Development during Cold Rolling in UNS S32205 and UNS S32760 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khatirkar, Rajesh Kisni; Chalapathi, Darshan; Kumar, Gulshan; Suwas, Satyam

    2017-05-01

    In the present study, microstructure and texture evolution during cold rolling in UNS S32205 and UNS S32760 duplex stainless steel was investigated. Both steels were unidirectionally cold rolled up to 80 pct thickness reduction. Scanning electron microscopy and electron backscattered diffraction (EBSD) were used for microstructural characterization, while X-ray diffraction (XRD) was used for the measurement of bulk texture. Strain-induced martensite (SIM) was identified and quantified with the help of magnetic measurements (B-H curve and magnetization saturation). With the increase in plastic strain, the grains became morphologically elongated along the rolling direction with the reduction in average band thickness and band spacing. SIM increased with the increase in deformation and was found to be a function of strain and the SFE of austenite. The increase in SIM was much more pronounced in UNS S32205 steel as compared to UNS S32760 steel. After cold rolling, strong α-fiber (RD//<110>) texture was developed in ferrite, while brass texture was dominant in austenite for both steels. The strength of texture components and fibers was stronger in UNS S32760 steel. Another significant feature was the development of weak γ-fiber (ND//<111>) in UNS S32760 steel at intermediate deformation.

  15. Near-IR extinction and backscatter coefficient measurements in low- and mid-altitude clouds

    NASA Technical Reports Server (NTRS)

    Sztankay, Z. G.

    1986-01-01

    Knowledge of the attenuation and backscattering properties of clouds is required to high resolution for several types of optical sensing systems. Such data was obtained in about 15 hours of flights through clouds in the vicinity of Washington, D.C. The flights were mainly through stratocumulus, altocumulus, stratus, and stratus fractus clouds and covered an altitude and temperature range of 300 to 3200 m and -13 to 17 C. Two instruments were flown, each of which measured the backscatter from close range in two range bins to independently determine both the extinction and backscatter coefficients. The extinction and backscatter coefficients can be obtained from the signals in the two channels of each instrument, provided that the aerosol is uniform over the measurement region. When this assumptions holds, the extinction coefficient is derived basically from the ratio of the signal in the two channels; the backscatter coefficient can then be obtained from the signal in either channel.

  16. Integrating Multibeam Backscatter Angular Response, Mosaic and Bathymetry Data for Benthic Habitat Mapping

    PubMed Central

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre

    2014-01-01

    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives

  17. Intercomparisons of Lidar Backscatter Measurements and In-situ Data from GLOBE

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Spinhirne, James D.

    1992-01-01

    The Global Backscatter Experiment (GLOBE) took place during Nov. 1989 and May - Jun. 1990 and involved flight surveys of the Pacific region by the NASA DC-8 aircraft. The experimental instruments were lidars operating at wavelengths ranging from the visible to the thermal infrared and various optical particle counters for in-situ measurements. The primary motivation for GLOBE was the development of spaceborne wind sensing lidar. This paper will concern a comparison of direct backscatter measurements and backscatter calculated from particle counter data. Of special interest is that the particle measurements provided data on composition, and thus refractive index variation may be included in the analysis.

  18. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan

    2014-07-15

    Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, ismore » the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.« less

  19. Long-term variation of radar-auroral backscatter and the interplanetary sector structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeoman, T.K.; Burrage, M.D.; Lester, M.

    Recurrent variation of geomagnetic activity at the {approximately}27-day solar rotation period and higher harmonics is a well-documented phenomenon. Auroral radar backscatter data from the Sweden and Britain Radar-Auroral Experiment (SABRE) radar provide a continuous time series from 1981 to the present which is a highly sensitive monitor of geomagnetic activity. In this study, Maximum Entropy Method (MEM) dynamic power spectra of SABRE backscatter data from 1981 to 1989, concurrent interplanetary magnetic field (IMF) and solar wind parameters from 1981 to 1987, and the Kp index since 1932 are examined. Data since 1977 are compared with previously published heliospheric current sheetmore » measurements mapped out from the solar photosphere. Stong periodic behavior is observed in the radar backscatter during the declining phase of solar cycle 21, but this periodicity disappears at the start of solar cycle 22. Similar behavior is observed in earlier solar cycles in the Kp spectra. Details of the radar backscatter, IMF, and solar wind spectra indicate that the solar wind momentum density is the dominant parameter in determining the backscatter periodicity. The temporal evolution of two- and four-sector structures, as predicted by SABRE backscatter spectra, throughout solar cycle 21 generally still agree well with heliospheric current sheet measurements. For one interval, however, there is evidence that evolution of the current sheet has occurred between the photospheric source surface and the Earth.« less

  20. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana

    USGS Publications Warehouse

    Kwoun, Oh-Ig; Lu, Z.

    2009-01-01

    Using multi-temporal European Remote-sensing Satellites (ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) synthetic aperture radar (SAR) data over the Louisiana coastal zone, we characterize seasonal variations of radar backscat-tering according to vegetation type. Our main findings are as follows. First, ERS-1/-2 and RADARSAT-1 require careful radiometric calibration to perform multi-temporal backscattering analysis for wetland mapping. We use SAR backscattering signals from cities for the relative calibration. Second, using seasonally averaged backscattering coefficients from ERS-1/-2 and RADARSAT-1, we can differentiate most forests (bottomland and swamp forests) and marshes (freshwater, intermediate, brackish, and saline marshes) in coastal wetlands. The student t-test results support the usefulness of season-averaged backscatter data for classification. Third, combining SAR backscattering coefficients and an optical-sensor-based normalized difference vegetation index can provide further insight into vegetation type and enhance the separation between forests and marshes. Our study demonstrates that SAR can provide necessary information to characterize coastal wetlands and monitor their changes.

  1. Hydrodynamic influences on acoustical and optical backscatter in a fringing reef environment

    NASA Astrophysics Data System (ADS)

    Pawlak, Geno; Moline, Mark A.; Terrill, Eric J.; Colin, Patrick L.

    2017-01-01

    Observations of hydrodynamics along with optical and acoustical water characteristics in a tropical fringing reef environment reveal a distinct signature associated with flow characteristics and tidal conditions. Flow conditions are dominated by tidal forcing with an offshore component from the reef flat during ebb. Measurements span variable wave conditions enabling identification of wave effects on optical and acoustical water properties. High-frequency acoustic backscatter (6 MHz) is strongly correlated with tidal forcing increasing with offshore directed flow and modulated by wave height, indicating dominant hydrodynamic influence. Backscatter at 300 and 1200 kHz is predominantly diurnal suggesting a biological component. Optical backscatter is closely correlated with high-frequency acoustic backscatter across the range of study conditions. Acoustic backscatter frequency dependence is used along with changes in optical properties to interpret particle-size variations. Changes across wave heights suggest shifts in particle-size distributions with increases in relative concentrations of smaller particles for larger wave conditions. Establishing a connection between the physical processes of a fringing tropical reef and the resulting acoustical and optical signals allows for interpretation and forecasting of the remote sensing response of these phenomena over larger scales.

  2. Effect of species structure and dielectric constant on C-band forest backscatter

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Landry, R.; Kilic, O.; Chauhan, N.; Khadr, N.; Leckie, D.

    1993-01-01

    A joint experiment between Canadian and USA research teams was conducted early in Oct. 1992 to determine the effect of species structure and dielectric variations on forest backscatter. Two stands, one red pine and one jack pine, in the Petawawa National Forestry Institute (PNFI) were utilized for the experiment. Extensive tree architecture measurements had been taken by the Canada Centre for Remote Sensing (CCRS) several months earlier by employing a Total Station surveying instrument which provides detailed information on branch structure. A second part of the experiment consisted of cutting down several trees and using dielectric probes to measure branch and needle permittivity values at both sites. The dielectric and the tree geometry data were used in the George Washington University (GWU) Vegetation Model to determine the C band backscattering coefficients of the individual stands for VV polarization. The model results show that backscatter at C band comes mainly from the needles and small branches and the upper portion of the trunks acts only as an attenuator. A discussion of variation of backscatter with specie structure and how dielectric variations in needles for both species may affect the total backscatter returns is provided.

  3. Microwave backscattering from an anisotropic soybean canopy

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Saatchi, S.; Levine, D. M.

    1986-01-01

    Electromagnetic backscattering from a soybean canopy is modeled in the L band region of the spectrum. Mature soybean plants are taken as an ensemble of leaves and stems which are represented by lossy dielectric disks and rods respectively. Field data indicated that leaves and stems are not distributed uniformly in the azimuth coordinate. The plant has a tendency to grow out into the area between the rows. The effects on backscattered radar waves was computed by the distorted Born approximation. Results for look directions along the rows and perpendicular to the rows show that only a modest difference occurs in the L band frequency range. The use of another nonuniform distribution, different from those observed experimentally, results in a significant effect due to vegetation asymmetry.

  4. Performance of low-power RFID tags based on modulated backscattering

    NASA Astrophysics Data System (ADS)

    Mhanna, Zeinab; Sibille, Alain; Contreras, Richard

    2017-02-01

    Ultra Wideband (UWB) modulated backscattering (MBS) passive Radio-Frequency IDentification (RFID) systems provide a promising solution to overcome many limitations of current narrowband RFID devices. This work addresses the performance of such systems from the point of view of the radio channel between the readers and the tags. Such systems will likely combine several readers, in order to provide both the detection and localization of tags operating in MBS. Two successive measurements campaigns have been carried out in an indoor reference scenario environment. The first is intended to verify the methods and serves as a way to validate the RFID backscattering measurement setup. The second represents a real use case for RFID application and allows one to quantitatively analyze the path loss of the backscattering propagation channel. xml:lang="fr"

  5. Investigation of phonon coherence and backscattering using silicon nanomeshes

    DOE PAGES

    Lee, Jaeho; Lee, Woochul; Wehmeyer, Geoff; ...

    2017-01-04

    Phonons can display both wave-like and particle-like behaviour during thermal transport. While thermal transport in silicon nanomeshes has been previously interpreted by phonon wave effects due to interference with periodic structures, as well as phonon particle effects including backscattering, the dominant mechanism responsible for thermal conductivity reductions below classical predictions still remains unclear. Here we isolate the wave-related coherence effects by comparing periodic and aperiodic nanomeshes, and quantify the backscattering effect by comparing variable-pitch nanomeshes. We measure identical (within 6% uncertainty) thermal conductivities for periodic and aperiodic nanomeshes of the same average pitch, and reduced thermal conductivities for nanomeshes withmore » smaller pitches. Ray tracing simulations support the measurement results. We conclude phonon coherence is unimportant for thermal transport in silicon nanomeshes with periodicities of 100 nm and higher and temperatures above 14 K, and phonon backscattering, as manifested in the classical size effect, is responsible for the thermal conductivity reduction.« less

  6. Measuring Ultrasonic Backscatter in the Presence of Nonlinear Propagation

    NASA Astrophysics Data System (ADS)

    Stiles, Timothy; Guerrero, Quinton

    2011-11-01

    A goal of medical ultrasound is the formation of quantitative ultrasound images in which contrast is determined by acoustic or physical properties of tissue rather than relative echo amplitude. Such images could greatly enhance early detection of many diseases, including breast cancer and liver cirrhosis. Accurate determination of the ultrasonic backscatter coefficient from patients remains a difficult task. One reason for this difficulty is the inherent nonlinear propagation of ultrasound at high intensities used for medical imaging. The backscatter coefficient from several tissue-mimicking samples were measured using the planar reflector method. In this method, the power spectrum from a sample is compared to the power spectrum of an optically flat sample of quartz. The results should be independent of incident pressure amplitude. Results demonstrate that backscatter coefficients can vary by more than an order of magnitude when ultrasound pressure varies from 0.1 MPa to 1.5 MPa at 5.0 MHz. A new method that incorporates nonlinear propagation is proposed to explain these discrepancies.

  7. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, H.; Mori, Y.; Kitagawa, Y.

    2013-08-28

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  8. Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Hillman, Jess I. T.; Lamarche, Geoffroy; Pallentin, Arne; Pecher, Ingo A.; Gorman, Andrew R.; Schneider von Deimling, Jens

    2018-06-01

    Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.

  9. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  10. Quantitative broadband ultrasonic backscatter - An approach to nondestructive evaluation in acoustically inhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Miller, J. G.

    1981-01-01

    The use of a broadband backscatter technique to obtain the frequency dependence of the longitudinal-wave ultrasonic backscatter coefficient from a collection of scatterers in a solid is investigated. Measurements of the backscatter coefficient were obtained over the range of ultrasonic wave vector magnitude-glass sphere radius product between 0.1 and 3.0 from model systems consisting of dilute suspensions of randomly distributed crown glass spheres in hardened polyester resin. The results of these measurements were in good agreement with theoretical prediction. Consequently, broadband measurements of the ultrasonic backscatter coefficient may represent a useful approach toward characterizing the physical properties of scatterers in intrinsically inhomogeneous materials such as composites, metals, and ceramics, and may represent an approach toward nondestructive evaluation of these materials.

  11. Effect of curvature on the backscattering from leaves

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.

    1988-01-01

    Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.

  12. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  13. Cavitation inception by the backscattering of pressure waves from a bubble interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less

  14. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  15. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  16. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  17. Comparison of modeled backscatter with SAR data at P-band

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Davis, Frank W.; Melack, John M.

    1992-01-01

    In recent years several analytical models were developed to predict microwave scattering by trees and forest canopies. These models contribute to the understanding of radar backscatter over forested regions to the extent that they capture the basic interactions between microwave radiation and tree canopies, understories, and ground layers as functions of incidence angle, wavelength, and polarization. The Santa Barbara microwave model backscatter model for woodland (i.e. with discontinuous tree canopies) combines a single-tree backscatter model and a gap probability model. Comparison of model predictions with synthetic aperture radar (SAR) data and L-band (lambda = 0.235 m) is promising, but much work is still needed to test the validity of model predictions at other wavelengths. The validity of the model predictions at P-band (lambda = 0.68 m) for woodland stands at our Mt. Shasta test site was tested.

  18. Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations

    NASA Astrophysics Data System (ADS)

    Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.

  19. TU-D-209-02: A Backscatter Point Spread Function for Entrance Skin Dose Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Xiong, Z; Shankar, A

    Purpose: To determine the distribution of backscattered radiation to the skin resulting from a non-uniform distribution of primary radiation through convolution with a backscatter point spread function (PSF). Methods: A backscatter PSF is determined using Monte Carlo simulation of a 1 mm primary beam incident on a 30 × 30 cm × 20 cm thick PMMA phantom using EGSnrc software. A primary profile is similarly obtained without the phantom and the difference from the total provides the backscatter profile. This scatter PSF characterizes the backscatter spread for a “point” primary interaction and can be convolved with the entrance primary dosemore » distribution to obtain the total entrance skin dose. The backscatter PSF was integrated into the skin dose tracking system (DTS), a graphical utility for displaying the color-coded skin dose distribution on a 3D graphic of the patient during interventional fluoroscopic procedures. The backscatter convolution method was validated for the non-uniform beam resulting from the use of an ROI attenuator. The ROI attenuator is a copper sheet with about 20% primary transmission (0.7 mm thick) containing a circular aperture; this attenuator is placed in the beam to reduce dose in the periphery while maintaining full dose in the region of interest. The DTS calculated primary plus backscatter distribution is compared to that measured with GafChromic film and that calculated using EGSnrc Monte-Carlo software. Results: The PSF convolution method used in the DTS software was able to account for the spread of backscatter from the ROI region to the region under the attenuator. The skin dose distribution determined using DTS with the ROI attenuator was in good agreement with the distributions measured with Gafchromic film and determined by Monte Carlo simulation Conclusion: The PSF convolution technique provides an accurate alternative for entrance skin dose determination with non-uniform primary x-ray beams. Partial support from NIH

  20. Complete grain boundaries from incomplete EBSD maps: the influence of segmentation on grain size determinations

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée; Kilian, Ruediger

    2017-04-01

    Grain size analyses are carried out for a number of reasons, for example, the dynamically recrystallized grain size of quartz is used to assess the flow stresses during deformation. Typically a thin section or polished surface is used. If the expected grain size is large enough (10 µm or larger), the images can be obtained on a light microscope, if the grain size is smaller, the SEM is used. The grain boundaries are traced (the process is called segmentation and can be done manually or via image processing) and the size of the cross sectional areas (segments) is determined. From the resulting size distributions, 'the grain size' or 'average grain size', usually a mean diameter or similar, is derived. When carrying out such grain size analyses, a number of aspects are critical for the reproducibility of the result: the resolution of the imaging equipment (light microscope or SEM), the type of images that are used for segmentation (cross polarized, partial or full orientation images, CIP versus EBSD), the segmentation procedure (algorithm) itself, the quality of the segmentation and the mathematical definition and calculation of 'the average grain size'. The quality of the segmentation depends very strongly on the criteria that are used for identifying grain boundaries (for example, angles of misorientation versus shape considerations), on pre- and post-processing (filtering) and on the quality of the recorded images (most notably on the indexing ratio). In this contribution, we consider experimentally deformed Black Hills quartzite with dynamically re-crystallized grain sizes in the range of 2 - 15 µm. We compare two basic methods of segmentations of EBSD maps (orientation based versus shape based) and explore how the choice of methods influences the result of the grain size analysis. We also compare different measures for grain size (mean versus mode versus RMS, and 2D versus 3D) in order to determine which of the definitions of 'average grain size yields the

  1. Deciphering the Possible Role of Strain Path on the Evolution of Microstructure, Texture, and Magnetic Properties in a Fe-Cr-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khatirkar, Rajesh Kisni; Gupta, Aman; Shekhawat, Satish K.; Suwas, Satyam

    2018-06-01

    In the present work, the influence of strain path on the evolution of microstructure, crystallographic texture, and magnetic properties of a two-phase Fe-Cr-Ni alloy was investigated. The Fe-Cr-Ni alloy had nearly equal proportion of austenite and ferrite and was cold rolled up to a true strain of 1.6 (thickness reduction) using two different strain paths—unidirectional rolling and multi-step cross rolling. The microstructures were characterized by scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD), while crystallographic textures were determined using X-ray diffraction. For magnetic characterization, B-H loops and M-H curves were measured and magnetic force microscopy was performed. After unidirectional rolling, ferrite showed the presence of strong α-fiber (rolling direction, RD//<110>) and austenite showed strong brass type texture (consisting of Brass (Bs) ({110}<112>), Goss ({110}<001>), and S ({123}<634>)). After multi-step cross rolling, strong rotated cube ({100}<110>) was developed in ferrite, while austenite showed ND (normal direction) rotated brass ( 10 deg) texture. The strain-induced martensite (SIM) was found to be higher in unidirectionally rolled samples than multi-step cross-rolled samples. The coherently diffracting domain size, micro-strain, coercivity, and core loss also showed a strong correlation with strain and strain path. More strain was partitioned into austenite than ferrite during deformation (unidirectional as well as cross rolling). Further, the strain partitioning (in both austenite and ferrite) was found to be higher in unidirectionally rolled samples.

  2. Two-color short-pulse laser altimeter measurements of ocean surface backscatter

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Mcgarry, Jan F.

    1987-01-01

    The timing and correlation properties of pulsed laser backscatter from the ocean surface have been measured with a two-color short-pulse laser altimeter. The Nd:YAG laser transmitted 70- and 35-ps wide pulses simultaneously at 532 and 355 nm at nadir, and the time-resolved returns were recorded by a receiver with 800-ps response time. The time-resolved backscatter measured at both 330-m and 1291-m altitudes showed little pulse broadening due to the submeter laser spot size. The differential delay of the 355-nm and 532-nm backscattered waveforms were measured with a rms error of about 75 ps. The change in aircraft altitudes also permitted the change in atmospheric pressure to be estimated by using the two-color technique.

  3. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344).

    PubMed

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  4. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.

    2015-02-01

    The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 μm3 in 1 s.

  5. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    PubMed Central

    Kurz, Walter; Rogowitz, Anna

    2017-01-01

    Abstract In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e‐twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal‐plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low‐angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high‐temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity. PMID:29081570

  6. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  7. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jianbo

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationshipmore » between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.« less

  8. Comparison of Lidar Backscatter with Particle Distribution and GOES-7 Data in Hurricane Juliette

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; McCaul, Eugene W., Jr.; Jedlovec, Gary J.; Atkinson, Robert J.; Pueschel, Rudolf F.; Cutten, Dean R.

    1997-01-01

    Measurements of calibrated backscatter, using two continuous wave Doppler lidars operating at wavelengths 9.1 and 10.6 micrometers were obtained along with cloud particle size distributions in Hurricane Juliette on 21 September 1995 at altitude approximately 11.7 km. Agreement between backscatter from the two lidars and with the cloud particle size distribution is excellent. Features in backscatter and particle number density compare well with concurrent GOES-7 infrared images.

  9. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  10. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    NASA Astrophysics Data System (ADS)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This

  11. Standard-target calibration of an acoustic backscatter system

    USGS Publications Warehouse

    Foote, Kenneth G.; Martini, Marinna A.

    2010-01-01

    The standard-target method used to calibrate scientific echo sounders and other scientific sonars by a single, solid elastic sphere is being adapted to acoustic backscatter (ABS) systems. Its first application, to the AQUAscat 1000, is described. The on-axis sensitivity and directional properties of transducer beams at three operating frequencies, nominally 1, 2.5, and 4 MHz, have been determined using a 10-mm-diameter sphere of tungsten carbide with 6% cobalt binder. Preliminary results are reported for the 1-MHz transducer. Their application to measurements of suspended sediment made in situ with the same device is described. This will enable the data to be expressed directly in physical units of volume backscattering.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiyuan; Zhang, Zicheng, E-mail: zhangzicheng2004@126.com; Manabe, Ken-ichi

    Transformation-induced plasticity aided seamless steel tube comprising of ferrite, bainite, and metastable austenite was processed through forging, piercing, cold-drawing, and two-stage heat treatment. T-shape hydroforming is a classic forming method for experimental research and practical production. The current work studied austenite-to-martensite transformation and microcrack initiation and propagation of the tube during T-shape hydroforming using electron backscattering diffraction, scanning electron microscopy, and transmission electron microscopy. The strain distribution in the bcc-phase and fcc-phase was studied by evaluating changes in the average local misorientation. Compared to the compressive stress, metastable austenite with similar strain surrounding or inside the grains transformed easier undermore » tensile loading conditions. The inclusions were responsible for microcrack initiation. The propagation of the cracks is hindered by martensite/austenite constituent due to transformation induced plasticity effect. The volume fraction of untransformed retained austenite decreased with increase in strain implying transformation-induced plasticity effect. - Highlights: • Hydroformed tubes processed via TRIP concept • EBSD provided estimate of micro local strain. • Retained austenite hinders propagation of microcracks.« less

  13. In-situ laser ultrasonic measurement of the hcp to bcc transformation in commercially pure titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinbine, A., E-mail: alyssa.shinbine@gmail.com; Garcin, T.; Sinclair, C.

    2016-07-15

    Using a novel in-situ laser ultrasonic technique, the evolution of longitudinal velocity was used to measure the α − β transformation during cyclic heating and cooling in commercially pure titanium. In order to quantify the transformation kinetics, it is shown that changes in texture can not be ignored. This is particularly important in the case of titanium where significant grain growth occurs in the β-phase leading to the ultrasonic wave sampling a decreasing number of grains on each thermal treatment cycle. Electron backscatter diffraction measurements made postmortem in the region where the ultrasonic pulse traveled were used to obtain anmore » estimate of such local texture and grain size changes. An analysis technique for including the anisotropy of wave velocity depending on local texture is presented and shown to give self consistent results for the transformation kinetics. - Highlights: • Laser ultrasound and EBSD interpret the hcp/bcc phase transformation in cp-Ti. • Grain growth and texture produced variation in velocity during similar treatments. • Texture was deconvoluted from phase addition to obtain transformation kinetics.« less

  14. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    DOE PAGES

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; ...

    2016-03-28

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less

  15. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu

    2017-12-01

    The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

  16. Understanding the Effect of Grain Boundary Character on Dynamic Recrystallization in Stainless Steel 316L

    NASA Astrophysics Data System (ADS)

    Beck, Megan; Morse, Michael; Corolewski, Caleb; Fritchman, Koyuki; Stifter, Chris; Poole, Callum; Hurley, Michael; Frary, Megan

    2017-08-01

    Dynamic recrystallization (DRX) occurs during high-temperature deformation in metals and alloys with low to medium stacking fault energies. Previous simulations and experimental research have shown the effect of temperature and grain size on DRX behavior, but not the effect of the grain boundary character distribution. To investigate the effects of the distribution of grain boundary types, experimental testing was performed on stainless steel 316L specimens with different initial special boundary fractions (SBF). This work was completed in conjunction with computer simulations that used a modified Monte Carlo method which allowed for the addition of anisotropic grain boundary energies using orientation data from electron backscatter diffraction (EBSD). The correlation of the experimental and simulation work allows for a better understanding of how the input parameters in the simulations correspond to what occurs experimentally. Results from both simulations and experiments showed that a higher fraction of so-called "special" boundaries ( e.g., Σ3 twin boundaries) delayed the onset of recrystallization to larger strains and that it is energetically favorable for nuclei to form on triple junctions without these so-called "special" boundaries.

  17. Investigation of Abnormal Grain Growth in a Friction Stir Welded and Spin-Formed Al-Li Alloy 2195 Crew Module

    NASA Technical Reports Server (NTRS)

    Tayon, Wesley A.; Domack, Marcia S.; Hoffman, Eric K.; Hales, Stephen J.

    2013-01-01

    In order to improve manufacturing efficiency and reduce structural mass and costs in the production of launch vehicle structures, NASA is pursuing a wide-range of innovative, near-net shape manufacturing technologies. A technology that combines friction stir welding (FSW) and spin-forming has been applied to manufacture a single-piece crew module using Aluminum-Lithium (AL-Li) Alloy 2195. Plate size limitations for Al-Li alloy 2195 require that two plates be FSW together to produce a spin-forming blank of sufficient size to form the crew module. Subsequent forming of the FSW results in abnormal grain growth (AGG) within the weld region upon solution heat treatment (SHT), which detrimentally impacts strength, ductility, and fracture toughness. The current study seeks to identify microstructural factors that contribute to the development of AGG. Electron backscatter diffraction (EBSD) was used to correlate driving forces for AGG, such as stored energy, texture, and grain size distributions, with the propensity for AGG. Additionally, developmental annealing treatments prior to SHT are examined to reduce or eliminate the occurrence of AGG by promoting continuous, or uniform, grain growth

  18. Correlation of Fracture Behavior With Microstructure in Friction Stir Welded, and Spin Formed AI-Li 2195 Domes

    NASA Technical Reports Server (NTRS)

    Tayon, Wesley A.; Domack, Marcia S.; Hales, Stephen J.

    2012-01-01

    Single-piece, spin-formed domes manufactured from friction stir welded (FSW) plates of Al-Li alloy 2195 have the potential to reduce the cost of fabricating cryogenic propellant tanks. Mechanical properties in the completed domes can be related directly to the final material condition and the microstructures developed. However, these new fabrication techniques have resulted in unexpected material challenges, such as abnormal grain growth in the weld nugget and the propensity for fracture in the adjacent thermo-mechanically affected zone (TMAZ). In this study, the microstructure and texture transformations within the TMAZ are related to fracture location in the vicinity of the weldment. The texture variations in the TMAZ are caused primarily by the varying amounts of shear deformation introduced during the FSW process. Grain morphology and microtexture characteristics are examined as a function of location in the TMAZ via electron backscatter diffraction (EBSD). A strong correlation between fracture location and the presence of texture banding in the TMAZ is observed. The fracture path tends to follow a distinct region of low Taylor Factor (TF) grains.

  19. Grain Cluster Microstructure and Grain Boundary Character Distribution in Alloy 690

    NASA Astrophysics Data System (ADS)

    Xia, Shuang; Zhou, Bangxin; Chen, Wenjue

    2009-12-01

    The effects of thermal-mechanical processing (TMP) on microstructure evolution during recrystallization and grain boundary character distribution (GBCD) in aged Alloy 690 were investigated by the electron backscatter diffraction (EBSD) technique and optical microscopy. The original grain boundaries of the deformed microstructure did not play an important role in the manipulation of the proportion of the Σ3 n ( n = 1, 2, 3…) type boundaries. Instead, the grain cluster formed by multiple twinning starting from a single nucleus during recrystallization was the key microstructural feature affecting the GBCD. All of the grains in this kind of cluster had Σ3 n mutual misorientations regardless of whether they were adjacent. A large grain cluster containing 91 grains was found in the sample after a small-strain (5 pct) and a high-temperature (1100 °C) recrystallization anneal, and twin relationships up to the ninth generation (Σ39) were found in this cluster. The ratio of cluster size over grain size (including all types of boundaries as defining individual grains) dictated the proportion of Σ3 n boundaries.

  20. TEM investigations on twin boundary structures of feathery crystals in aluminum alloys during Bridgman solidification

    NASA Astrophysics Data System (ADS)

    Yang, Luyan; Li, Shuangming; Fan, Kai; Li, Yang; Zhong, Hong; Fu, Hengzhi

    2018-06-01

    Feathery crystals are an ensemble of twinned dendrites, and are characterized by a unique twin boundary (TB) structure in the solidification pattern of aluminum alloys. In this work, the high-density twinned dendrites of Al-4.5 wt% Cu alloys, produced during the Bridgman solidification, have been studied using electron backscattered diffraction (EBSD) and high-resolution transmission electron microscopy (HRTEM). The experimental results showed that, after systematically decreasing the growth rate from 3000 μm/s to 1 μm/s, the TBs remained stable, while the solute field around the TBs changed significantly. According to the HRTEM results, successive stacking faults were occurred near the TBs at 1 μm/s, while slight distortion was observed around the TBs at 3000 μm/s. The composition analysis revealed an obvious solute enrichment near the TBs. Furthermore, the solute gradient profile within the TBs became smoother with the decrease in the growth speed. This is due to the more sufficient solid-state back diffusion occurring perpendicular to the twin plane after the solidification.

  1. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications.

    PubMed

    Fischer, M; Laheurte, P; Acquier, P; Joguet, D; Peltier, L; Petithory, T; Anselme, K; Mille, P

    2017-06-01

    Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu

    2018-03-01

    The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

  3. Correlation of Fracture Behavior with Microstructure in Friction Stir Welded, and Spin-Formed Al-Li 2195 Domes

    NASA Astrophysics Data System (ADS)

    Tayon, Wesley A.; Domack, Marcia S.; Hales, Stephen J.

    Single-piece, spin-formed domes manufactured from friction stir welded (FSW) plates of Al-Li alloy 2195 have the potential to reduce the cost of fabricating cryogenic propellant tanks. Mechanical properties in the completed domes can be related directly to the final material condition and the microstructures developed. However, these new fabrication techniques have resulted in unexpected material challenges, such as abnormal grain growth in the weld nugget and the propensity for fracture in the adjacent thermo-mechanically affected zone (TMAZ). In this study, the microstructure and texture transformations within the TMAZ are related to fracture location in the vicinity of the weldment. The texture variations in the TMAZ are caused primarily by the varying amounts of shear deformation introduced during the FSW process. Grain morphology and microtexture characteristics are examined as a function of location in the TMAZ via electron backscatter diffraction (EBSD). A strong correlation between fracture location and the presence of texture banding in the TMAZ is observed. The fracture path tends to follow a distinct region of low Taylor Factor (TF) grains.

  4. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

    PubMed

    Cui, Liping; Knox, Wayne H

    2010-01-01

    Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.

  5. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  6. Backscattering from targets residing in caustics resulting from ocean boundary interactions

    NASA Astrophysics Data System (ADS)

    Dzikowicz, Benjamin R.; Marston, Philip L.

    2005-04-01

    Detection of targets by backscatter in shallow water can be enhanced by interactions with ocean boundaries. A laboratory experiment is performed where a spherical target passes through an Airy caustic formed by a curved surface. When the target resides in the insonified region of the caustic there are two sets of multi-path rays: two pairs reflecting once off the surface (either to or from the target), and three reflecting twice off the surface (to and from the target). When a target moves across the caustic the singly reflected rays merge, as do the doubly reflected. With a longer tone burst the rays in each set overlap and the backscatter is greatly enhanced as the target moves into the insonified region. For a point target the singly reflected backscatter scales as an Airy function [B. R. Dzikowicz and P. L. Marston, J. Acoust. Soc. Am. 116, 2751-2757 (2004)], and the doubly reflected as the square of an Airy function. For a finite target the doubly reflected backscatter unfolds into a hyperbolic umbilic function. The arguments of the Airy and Hyperbolic Umbilic functions are calculated using the relative echo times of transient pulses. [Work supported by ONR.

  7. Analysis of seafloor backscatter strength dependence on the survey azimuth using multibeam echosounder data

    NASA Astrophysics Data System (ADS)

    Lurton, Xavier; Eleftherakis, Dimitrios; Augustin, Jean-Marie

    2018-06-01

    The sediment backscatter strength measured by multibeam echosounders is a key feature for seafloor mapping either qualitative (image mosaics) or quantitative (extraction of classifying features). An important phenomenon, often underestimated, is the dependence of the backscatter level on the azimuth angle imposed by the survey line directions: strong level differences at varying azimuth can be observed in case of organized roughness of the seabed, usually caused by tide currents over sandy sediments. This paper presents a number of experimental results obtained from shallow-water cruises using a 300-kHz multibeam echosounder and specially dedicated to the study of this azimuthal effect, with a specific configuration of the survey strategy involving a systematic coverage of reference areas following "compass rose" patterns. The results show for some areas a very strong dependence of the backscatter level, up to about 10-dB differences at intermediate oblique angles, although the presence of these ripples cannot be observed directly—neither from the bathymetry data nor from the sonar image, due to the insufficient resolution capability of the sonar. An elementary modeling of backscattering from rippled interfaces explains and comforts these observations. The consequences of this backscatter dependence upon survey azimuth on the current strategies of backscatter data acquisition and exploitation are discussed.

  8. Coherent and incoherent ultrasound backscatter from cell aggregates.

    PubMed

    de Monchy, Romain; Destrempes, François; Saha, Ratan K; Cloutier, Guy; Franceschini, Emilie

    2016-09-01

    The effective medium theory (EMT) was recently developed to model the ultrasound backscatter from aggregating red blood cells [Franceschini, Metzger, and Cloutier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2668-2679 (2011)]. The EMT assumes that aggregates can be treated as homogeneous effective scatterers, which have effective properties determined by the aggregate compactness and the acoustical characteristics of the cells and the surrounding medium. In this study, the EMT is further developed to decompose the differential backscattering cross section of a single cell aggregate into coherent and incoherent components. The coherent component corresponds to the squared norm of the average scattering amplitude from the effective scatterer, and the incoherent component considers the variance of the scattering amplitude (i.e., the mean squared norm of the fluctuation of the scattering amplitude around its mean) within the effective scatterer. A theoretical expression for the incoherent component based on the structure factor is proposed and compared with another formulation based on the Gaussian direct correlation function. This theoretical improvement is assessed using computer simulations of ultrasound backscatter from aggregating cells. The consideration of the incoherent component based on the structure factor allows us to approximate the simulations satisfactorily for a product of the wavenumber times the aggregate radius kr ag around 2.

  9. Comparison of SeaWinds Backscatter Imaging Algorithms

    PubMed Central

    Long, David G.

    2017-01-01

    This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143

  10. Kinematic evolution of the Mbakop Pan-African granitoids (western Cameroon domain): An integrated AMS and EBSD approach

    NASA Astrophysics Data System (ADS)

    Bella Nké, B. E.; Njanko, T.; Mamtani, M. A.; Njonfang, E.; Rochette, P.

    2018-06-01

    This study integrates anisotropy of magnetic susceptibility, microstructural and crystallographic preferred orientation (CPO) data from the Mbakop granitic pluton (MGP; Pan-African age) in order to decipher its kinematic evolution. The MGP lies close to NE-SW branch of Central Cameroon Shear Zone (CCSZ) and is emplaced in gneissic basement. High mean magnetic susceptibility and presence of multi-domain magnetite are recorded. Quartz CPO measured using Electron Backscatter diffraction reveals dominance of rhomb , prism and prism slip in different samples, which is consistent with microstructures developed under upper greenschist/amphibolite facies conditions. Quartz CPO along with other kinematic indicators (feldspar porphyroclasts/mineral fish) indicate non-coaxial deformation was important during tectonic evolution of the MGP. Contrasting sense of shear is recorded implying multi-stage mylonitization in the Western Cameroon Domain. Top-towards-south sense of shear is related to regional D2 deformation (613-585 Ma), while top-towards-north is related to D3 (585-540 Ma). The magnetic fabric in MGP records D3. The obliquity between mean orientation of magnetic foliation (N12°E) and the NE-SW CCSZ branch (N48°E) gives kinematic vorticity number of 0.95. This indicates dominantly simple shear with a minor pure shear component. It is concluded that regional transpression was important during MGP emplacement.

  11. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum

    2016-06-01

    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  12. Development of global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1985-01-01

    The improvement of an understanding of the variation of the aerosol backscattering at 10.6 micron within the free troposphere and the development model to describe this was undertaken. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets are obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained, which describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season. Most data are available and greatest consistency is found inside the Northern Hemisphere.

  13. Characterization of trabecular bone using the backscattered spectral centroid shift.

    PubMed

    Wear, Keith A

    2003-04-01

    Ultrasonic attenuation in bone in vivo is generally measured using a through-transmission method at the calcaneus. Although attenuation in calcaneus has been demonstrated to be a useful predictor for osteoporotic fracture risk, measurements at other clinically important sites, such as hip and spine, could potentially contain additional useful diagnostic information. Through-transmission measurements may not be feasible at these sites due to complex bone shapes and the increased amount of intervening soft tissue. Centroid shift from the backscattered signal is an index of attenuation slope and has been used previously to characterize soft tissues. In this paper, centroid shift from signals backscattered from 30 trabecular bone samples in vitro were measured. Attenuation slope also was measured using a through-transmission method. The correlation coefficient between centroid shift and attenuation slope was -0.71. The 95% confidence interval was (-0.86, -0.47). These results suggest that the backscattered spectral centroid shift may contain useful diagnostic information potentially applicable to hip and spine.

  14. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    NASA Astrophysics Data System (ADS)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model

  15. Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun

    NASA Astrophysics Data System (ADS)

    Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.

    2012-11-01

    Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.

  16. Development of a global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1986-01-01

    The variation of the aerosol backscattering at 10.6 micrometers within the free troposphere was investigated and a model to describe this variation was developed. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets used were obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series, and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained that describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season.

  17. Assessing Performance of P-Band Backscattering Coefficients and TSAR in Hemi-Boreal Forest AGB Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Feng, Qi

    2014-11-01

    To assess performance of P-band backscattering coefficients and TSAR for hemi-boreal forest AGB estimation, airborne P-band repeat-path Pol-InSAR data collected by ESAR in Ramingstorp test site during March and May 2007 are applied. The correlation coefficient (R) between P-band backscattering coefficients and in-situ biomass reaches 0.87 for HH polarization. Meanwhile, the R between P-band backscattering power at specific height and in-situ biomass are higher in VV polarization than that in HH and HV polarization. And R between P-band backscattering power and in-situ biomass reaches 0.70 at 5m and 10m height in VV polarization.

  18. Assessing Performance of P-Band Backscattering Coefficients and TSAR in Hemi-Boreal Forest AGB Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Feng, Qi

    2014-11-01

    To assess performance of P-band backscattering coefficients and TSAR for hemi-boreal forest AGB estimation, airborne P-band repeat-path Pol-InSAR data collected by ESAR in Ramingstorp test site during March and May 2007 are applied.The correlation coefficient (R) between P-band backscattering coefficients and in-situ biomass reaches 0.87 for HH polarization. Meanwhile, the R between P-band backscattering power at specific height and in-situ biomass are higher in VV polarization than that in HH and HV polarization. And R between P-band backscattering power and in-situ biomass reaches 0.70 at 5m and 10m height in VV polarization.

  19. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations.

    PubMed

    De Vries, Rowen J; Marsh, Steven

    2015-11-08

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.

  20. Waterfall notch-filtering for restoration of acoustic backscatter records from Admiralty Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Fonseca, Luciano; Hung, Edson Mintsu; Neto, Arthur Ayres; Magrani, Fábio José Guedes

    2018-06-01

    A series of multibeam sonar surveys were conducted from 2009 to 2013 around Admiralty Bay, Shetland Islands, Antarctica. These surveys provided a detailed bathymetric model that helped understand and characterize the bottom geology of this remote area. Unfortunately, the acoustic backscatter records registered during these bathymetric surveys were heavily contaminated with noise and motion artifacts. These artifacts persisted in the backscatter records despite the fact that the proper acquisition geometry and the necessary offsets and delays were applied during the survey and in post-processing. These noisy backscatter records were very difficult to interpret and to correlate with gravity-core samples acquired in the same area. In order to address this issue, a directional notch-filter was applied to the backscatter waterfall in the along-track direction. The proposed filter provided better estimates for the backscatter strength of each sample by considerably reducing residual motion artifacts. The restoration of individual samples was possible since the waterfall frame of reference preserves the acquisition geometry. Then, a remote seafloor characterization procedure based on an acoustic model inversion was applied to the restored backscatter samples, generating remote estimates of acoustic impedance. These remote estimates were compared to Multi Sensor Core Logger measurements of acoustic impedance obtained from gravity core samples. The remote estimates and the Core Logger measurements of acoustic impedance were comparable when the shallow seafloor was homogeneous. The proposed waterfall notch-filtering approach can be applied to any sonar record, provided that we know the system ping-rate and sampling frequency.

  1. Enhanced backscattering of optical waves due to densely distributed scatterers

    NASA Astrophysics Data System (ADS)

    Ma, Yushieh; Varadan, Vijay K.; Varadan, Vasundara V.

    1988-01-01

    Using multiple scattering theory, the T matrix of a pair of scatterers which takes all back-and-forth scattering between the pair members into account and considers multiple scattering effects in the intensity calculation is used to calculate the magnitude and the width of the backscattered intensity peak. Generally, at low concentrations, both the magnitude of the scattered intensity and multiple scattering contributions are not sufficiently strong to reach the enhanced-backscattering threshold. The results obtained are consistent with those yielded by optical experiments.

  2. Optical-beam wavefront control based on the atmospheric backscatter signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banakh, V A; Razenkov, I A; Rostov, A P

    2015-02-28

    The feasibility of compensating for aberrations of the optical-beam initial wavefront by aperture sounding, based on the atmospheric backscatter signal from an additional laser source with a different wavelength, is experimentally studied. It is shown that the adaptive system based on this principle makes it possible to compensate for distortions of the initial beam wavefront on a surface path in atmosphere. Specifically, the beam divergence decreases, while the level of the detected mean backscatter power from the additional laser source increases. (light scattering)

  3. Multi-angle backscatter classification and sub-bottom profiling for improved seafloor characterization

    NASA Astrophysics Data System (ADS)

    Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens

    2018-06-01

    This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian

  4. A Model for Backscattering from Quasi Periodic Corn Canopies at L-Band

    NASA Technical Reports Server (NTRS)

    Lang, R.; Utku, C.; Zhao, Q.; O'Neill, P.

    2010-01-01

    In this study, a model for backscattering at L-band from a corn canopy is proposed. The canopy consists of a quasi-periodic distribution of stalks and a random distribution of leaves. The Distorted Born Approximation (DBA) is employed to calculate the single scattered return from the corn field. The new feature of the method is that the coherence of the stalks in the row direction is incorporated in the model in a systematic fashion. Since the wavelength is on the order of the distance between corn stalks in a row, grating lobe behavior is observed at certain azimuth angles of incidence. The results are compared with experimental values measured in Huntsville, Alabama in 1998. The mean field and the effective dielectric constant of the canopy are obtained by using the Foldy approximation. The stalks are placed in the effective medium in a two dimensional lattice to simulate the row structure of a corn field. In order to mimic a real corn field, a quasi-periodic stalk distribution is assumed where the stalks are given small random perturbations about their lattice locations. Corn leaves are also embedded in the effective medium and the backscattered field from the stalks and the leaves is computed. The backscattering coefficient is calculated and averaged over successive stalk position perturbations. It is assumed that soil erosion has smoothed the soil sufficiently so that it can be assumed flat. Corn field backscatter data was collected from cornfields during the Huntsville 98 experimental campaign held at Alabama A&M University Research Station, Huntsville, Alabama in 1998 using the NASA/GW truck mounted radar. Extensive ground truth data was collected. This included soil moisture measurements and corn plant architectural data to be used in the model. In particular, the distances between the stalks in a single row have been measured. The L-band radar backscatter data was collected for both H and V polarizations and for look angles of 15o and 45o over a two week

  5. Backscatter nephelometer to calibrate scanning lidar

    Treesearch

    Cyle E. Wold; Vladmir A. Kovalev; Wei Min Hao

    2008-01-01

    The general concept of an open-path backscatter nephelometer, its design, principles of calibration and the operational use are discussed. The research-grade instrument, which operates at the wavelength 355 nm, will be co-located with a scanning-lidar at measurement sites near wildfires, and used for the lidar calibration. Such a near-end calibration has significant...

  6. Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.

  7. Effect of curvature on the backscattering from a leaf

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.

    1988-01-01

    Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross-section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.

  8. Backscattering of decametric waves on magnetically oriented ionosphere inhomogeneities

    NASA Astrophysics Data System (ADS)

    Sivokon', V. P.

    2017-05-01

    The method of study of magnetically oriented ionosphere inhomogeneities based on the analysis of radar decametric emission backscattering on inhomogeneities is proposed. It is shown that certain conditions, including the orientation of the propagation route relative to the Earth's magnetic field lines and the polarization and frequency of the emitted wave, make possible resonant backscattering of radiolocation system emission on magnetically oriented ionosphere inhomogeneities. The paper presents the results of experimental observation of scattering in Kamchatka Peninsula. They demonstrated the opportunity to evaluate the extension of the scattering region, the vertical and horizontal components of the velocities of magnetically oriented inhomogeneities, and the frequency dependence of these parameters.

  9. Purification of melt-spun metallurgical grade silicon micro-flakes through a multi-step segregation procedure

    NASA Astrophysics Data System (ADS)

    Martinsen, F. A.; Nordstrand, E. F.; Gibson, U. J.

    2013-01-01

    Melt-spun metallurgical grade (MG) micron dimension silicon flakes have been purified into near solar grade (SG) quality through a multi-step melting and re-solidification procedure. A wet oxidation-applied thermal oxide maintained the sample morphology during annealing while the interiors were melted and re-solidified. The small thickness of the flakes allowed for near elimination of in-plane grain boundaries, with segregation enhanced accumulation of impurities at the object surface and in the few remaining grain boundaries. A subsequent etch in 48% hydrofluoric acid (HF) removed the impure oxide layer, and part of the contamination at the oxide-silicon interface, as shown by electron dispersive spectroscopy (EDS) and backscattered electron imaging (BEI). The sample grains were investigated by electron back-scattered diffraction (EBSD) after varying numbers of oxidation-annealing-etch cycles, and were observed to grow from ˜5 μm to ˜200 μm. The concentration of iron, titanium, copper and aluminium were shown by secondary ion mass spectroscopy (SIMS) and inductively coupled plasma mass spectroscopy (ICPMS) to drop between five and six orders of magnitude. The concentration of boron was observed to drop approximately one order of magnitude. A good correlation was observed between impurity removal rates and segregation models, indicating that the purification effect is mainly caused by segregation. Deviations from these models could be explained by the formation of oxides and hydroxides later removed through etching.

  10. Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Han, J.; Zolensky, M.

    2016-01-01

    Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure

  11. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jiangdong

    The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C weremore » investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.« less

  12. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  13. Target reflectance measurements for calibration of lidar atmospheric backscatter data

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.; Haner, D. A.; Oppenheim, U. P.; Flamant, P. H.

    1983-01-01

    Wavelength and angular dependence of reflectances and depolarization in the 9-11 micron region are reported for four standard targets: flowers of sulfur, flame-sprayed aluminum, 20-grit sandblasted aluminum, and 400-grit silicon carbon sandpaper. Measurements are presented and compared using a CW CO2 grating-tunable laser in a laboratory backscatter apparatus, an integrating sphere, and a coherent pulsed TEA-CO2 lidar system operating in the 9-11 micron region. Reflectance theory related to the use of hard targets to calibrate lidar atmospheric backscatter data is discussed.

  14. Evaluation of backscatter dose from internal lead shielding in clinical electron beams using EGSnrc Monte Carlo simulations

    PubMed Central

    Marsh, Steven

    2015-01-01

    Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2 mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2–14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997±0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs. PACS numbers: 87.53.Bn, 87.55.K‐, 87.56.bd PMID:26699566

  15. Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength Lidar measurements

    NASA Technical Reports Server (NTRS)

    Sasano, Y.; Browell, E. V.

    1986-01-01

    Aerosols are often classified into several general types according to their origins and composition, such as maritime, continental, and stratospheric aerosols, and these aerosol types generally have different characteristics in chemical and physical properties. The present study aims at demonstrating the potential for distinguishing these aerosol types by the wavelength dependence of their backscatter coefficients obtained from quantitative analyses of multiple wavelength lidar signals. Data from the NASA Airborne Differential Abosrption lidar (DIAL) S ystems, which can measure aerosol backscatter profiles at wavelenghts of 300, 600, and 1064 nm and ozone profiles of backscatter coefficients for these three wavelength were derived from the observations of aerosols of different types. Observations were performed over the Atlantic Ocean, the Southwestern United States, and French Guyana.

  16. Experimental evaluation of effective atomic number of composite materials using back-scattering of gamma photons

    NASA Astrophysics Data System (ADS)

    Singh, Inderjeet; Singh, Bhajan; Sandhu, B. S.; Sabharwal, Arvind D.

    2017-04-01

    A method has been presented for calculation of effective atomic number (Zeff) of composite materials, by using back-scattering of 662 keV gamma photons obtained from a 137Cs mono-energetic radioactive source. The present technique is a non-destructive approach, and is employed to evaluate Zeff of different composite materials, by interacting gamma photons with semi-infinite material in a back-scattering geometry, using a 3″ × 3″ NaI(Tl) scintillation detector. The present work is undertaken to study the effect of target thickness on intensity distribution of gamma photons which are multiply back-scattered from targets (pure elements) and composites (mixtures of different elements). The intensity of multiply back-scattered events increases with increasing target thickness and finally saturates. The saturation thickness for multiply back-scattered events is used to assign a number (Zeff) for multi-element materials. Response function of the 3″ × 3″ NaI(Tl) scintillation detector is applied on observed pulse-height distribution to include the contribution of partially absorbed photons. The reduced value of signal-to-noise ratio interprets the increase in multiply back-scattered data of a response corrected spectrum. Data obtained from Monte Carlo simulations and literature also support the present experimental results.

  17. Window flaw detection by backscatter lighting

    NASA Technical Reports Server (NTRS)

    Crockett, L. K.; Minton, F. R.

    1978-01-01

    Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.

  18. Backscattering of electrons from solid targets

    NASA Astrophysics Data System (ADS)

    Dapor, Maurizio

    1990-11-01

    A simple equation is derived which describes the electron backscattering coefficient as a function of the target atomic number in the primary energy range 2-45 KeV. Such an equation, very useful for practical purposes, is in better agreement with the experimental data of Palluel and of Cosslett and Thomas than both the treatments of Everhart and of Archard.

  19. Spectra of Particulate Backscattering in Natural Waters

    NASA Technical Reports Server (NTRS)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  20. Terrain-analysis procedures for modeling radar backscatter

    USGS Publications Warehouse

    Schaber, Gerald G.; Pike, Richard J.; Berlin, Graydon Lennis

    1978-01-01

    The collection and analysis of detailed information on the surface of natural terrain are important aspects of radar-backscattering modeling. Radar is especially sensitive to surface-relief changes in the millimeter- to-decimeter scale four conventional K-band (~1-cm wavelength) to L-band (~25-cm wavelength) radar systems. Surface roughness statistics that characterize these changes in detail have been generated by a comprehensive set of seven programmed calculations for radar-backscatter modeling from sets of field measurements. The seven programs are 1) formatting of data in readable form for subsequent topographic analysis program; 2) relief analysis; 3) power spectral analysis; 4) power spectrum plots; 5) slope angle between slope reversals; 6) slope angle against slope interval plots; and 7) base length slope angle and curvature. This complete Fortran IV software package, 'Terrain Analysis', is here presented for the first time. It was originally developed a decade ago for investigations of lunar morphology and surface trafficability for the Apollo Lunar Roving Vehicle.